当前位置: 仪器信息网 > 行业主题 > >

电池实验室

仪器信息网电池实验室专题为您整合电池实验室相关的最新文章,在电池实验室专题,您不仅可以免费浏览电池实验室的资讯, 同时您还可以浏览电池实验室的相关资料、解决方案,参与社区电池实验室话题讨论。

电池实验室相关的资讯

  • 锂离子动力及电池实验室揭牌
    由中科院大连化物所、大连丽昌新材料研究所联合组建的锂离子动力及储能电池联合实验室上周在大连成立,标志着我国新材料、新能源发展迈向产业与科研相结合。该联合实验室也将成为大连花园口打造世界级新材料基地的重要支撑。   据悉,不论是风电、太阳能还是电动汽车项目,电池都是非常重要的部件。联合实验室的成立对大连新能源、新材料的发展非常重要。
  • 中科院锂电池实验室落户金华
    “我们已经与中科院上海微系统与信息技术研究所签订合作协议,在金华成立以动力和储能锂离子电池相关课题研发为主的联合实验室,首期合作三年,全面提升金华汽摩配产业在动力研究方面的话语权。”昨天,浙江南博电源科技开发有限公司董事长陈庆武告诉记者,该公司的锂电池产品已经通过中试鉴定。   南博公司成立于2006年,在国家有关科研院所的技术指导下,从事研发、生产锂离子动力电池科技型新能源产品。   据了解,目前我国汽车产销量已达1300万辆。到2020年中国汽车保有量肯定要突破2亿辆,油品供应问题将非常突出。除了电动汽车,没有其他更有效的解决方案,因此电动汽车产业化发展已经列入国家“十二五”规划中。陈庆武告诉记者:“金华有青年、众泰、康迪、绿源、金大等多家整车制造厂,2009年锂电池市场需求已经超过9000万元,今年还要翻番。南博公司将投入1.8亿元资金,专门用于生产锂电池,加强产业化技术和工艺的研发。”   浙江力霸皇工贸集团副总经理李家亮,对锂电池的好处如数家珍。锂电池重量只有2.5至5公斤,是普通电池重量的1/4,使用寿命却为铅酸电池的3~5倍,锂电池电动车顺应了国家的环保要求,是我市电动车产业可持续发展的必然选择。浙江金大车业有限公司总经理章小理告诉记者,我市电动车产业发展路线一直采用跟随战略,虽然具备整车优势,但在新能源领域,是否能够摆脱跟随路线,逐步向领导者行列跨进,锂电池技术将成为关键突破口。如果南博公司能将电动车锂电池从目前的1200元降到800元,将改变金华电动车行业在国内的竞争格局。
  • 亚洲首家CTIA电池认证实验室落户深圳
    记者从深圳摩尔实验室(MORLAB)获悉,亚洲第一家由美国移动通信行业协会(CTIA)正式批准的电池认证指定实验室上周末正式落户深圳。这意味着深圳在电池的国际化和综合化服务方面迈出了重要一步。 今后,深圳乃至全亚洲的电池厂商或手机厂商若要出口电池到美国CTIA(及其下属运营商),可就近在深检测,此举可为厂商节约一半的检测费用和检测时间。   据了解,目前全球电池尤其是手机电池的安全事故时有发生,世界各国对于电池安全问题都十分关注。而CTIAIEEE1725(“IEEE”为电器和电子工程师协会的缩写)电池系统认证已成为北美地区电信运营商的强制性准入要求。该标准主要针对手机充电锂电池拟定了一系列测试验证的规范及方法,确立了手机电池设计、制造和评估的统一要求。其认证程序包含了产品测试、设计及制造文件审查、制造商声明等内容。记者了解到,该认证实验室落户深圳后已经收到了来自全国四五家手机厂商的认证申请。   深圳摩尔实验室总经理舒峦介绍,新批准的深圳实验室,将主要负责出口到美国移动通信行业协会的电池CTIAIEEE1725的认证。据悉,这是美国移动通信行业协会在亚洲批准的第一家电池认证实验室。除亚洲外,目前其在美国本土外只有一家位于欧洲的指定认可实验室。
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 干货:实验室选择燃料电池测试系统应注意哪些技术问题?
    燃料电池具有工作温度低、启动响应快、能源效率高、电池寿命长、产物无污染等优点,是交通、工业、建筑等领域实现能源转型的重要途径。当前,全球主要经济体都在加大氢燃料电池技术研究投入,破解氢燃料电池商用化难题。燃料电池测试系统作为氢能实验室科研必备仪器,发挥着重要作用。燃料电池测试包含电池性能测试(稳态模型、极化曲线V-I特性、极限电流、气体计量比、扩散增益、温度、压力、湿度、过载等)、气密性测试、耐久性测试及环境适应性测试等内容。一套功能强大的燃料电池测试系统可以帮助科研人员高效率完成测试工作,实验数据更准确,结果易重现,节约大量的宝贵时间。实验室选择燃料电池测试系统应该注意哪些技术问题呢?这3个技术点值得注意。1、 自动背压与手动背压背压的作用是根据燃料电池电堆进气需求,与空压机配合,提供适当流量和压力的空气。有自动背压与手动背压两种类型。实验室一定要首先考虑自动背压型燃料电池测试系统。手动背压依赖实验人员的动手经验,操作费时费力,不能非常细腻地调控数值,反应滞后,且存在压力波动现象,测试数据受人为干预因素较大,不利于结果复现。自动背压完全由计算机程序控制,可以连续实时保持恒流恒压的状态,保证了实验的重复性和精准性,避免物料浪费,加快研发效率。2、 电子负载多参数极化曲线测试是典型的燃料电池测试项目,通过描述输出电压和电流密度曲线,表征燃料电池的电化学反应和电子传输情况。在测试时,需要面临“0V启动”、“大电流”问题。具备“0V启动”功能的燃料电池测试系统可以从0电压开始测试,即便是满电流带载运行也无须担心设备问题。燃料电池测试系统的“大电流”选择也很重要,实验室测试所用的电子负载并不是越高越好。过高电子负载的燃料电池测试系统仪器规格不仅尺寸庞大,造价不菲。也非常占空间,操作复杂繁琐,维护保养成本高。很多测试实验根本用不到那么高的电流、功率。一般而言,0-300A即可满足绝大多数测试需求。合理的电子负载,不仅价格经济、不挑空间,而且功能完善、性能卓著。以武汉电弛新能源研制的DC 980Pro燃料电池测试系统为例,该系统电子负载规格10V/240A/1600W,具备0V启动功能,100毫秒超高响应速度,反极也能测试,电子负载的精度、分辨率与进口设备同水平。3、 质量流量控制燃料电池本质上是氢、氧化学反应的发电装置,质量流量控制至关重要,是衡量一套燃料电池测试系统的重要指标。当参与反应的氧气量不足时,电堆输出电压降低,质子交换膜过热,降低电堆寿命。反之参与反应的氧气量过高,电堆输出功率不会随之增加但对应的空压机功耗变大,燃料电池系统净输出功率减少。[1]以武汉电弛新能源DC 980Pro为例,流量计和压力仪表负责主要液体、气体和压力测量和控制相关任务。该系统拥有10000:1(0.01%-100%量程)超宽稳定控制,精度可+/- 0.125%满量程。阳极气体流量控制最大可到5 SLPM,阴极气体流量控制最大可达10 SLPM,应用国际一线品牌T型热电偶,连续实时检测燃料电池质量流量数据,为后续开发节能型燃料电池产品技术打下坚实基础。结语工欲善其事,必先利其器。燃料电池测试系统强大的应用功能不仅能帮助科技工作者快速完成分析测试工作,其多功能性特点也有助于材料学、界面科学、电化学、流体力学等多学科交流创新,对我国氢能源技术加速发展,意义非凡。引用资料[1] 西南交通大学 张玉瑾, 《大功率PEMFC空气系统控制策略研究》
  • 微生物燃料电池有望走出实验室 可净化污水
    美国宾夕法尼亚州立大学环境工程系教授Bruce Logan的研究组正在尝试开发微生物燃料电池,可以把未经处理的污水转变成干净的水,同时发电。无论对发展中国家还是发达国家,这项“一举两得”的技术都相当诱人。更诱人的是,据美国国家自然科学基金会(NSF)网站消息,该项技术未来还可能实现海水淡化,成为“一举三得”的技术。   污水处理费时、费钱还消耗大量能量,基本是个只投入不产出的行业,也是让各国政府头疼的一大难题。有数据称,5%的电力消费被用于污水处理。根据美国国家发展委员会统计,美国每年需要处理330亿加仑的生活污水,处理费用大约为250亿美元,其中大部分为能源成本。   因此,又能净化水质、又能发电的微生物燃料电池一旦出现,将有望把污水处理变成一个有利可图的产业。Logan认为,未来污水处理厂通过使用微生物燃料电池不仅可以满足自身用电,还能向外输电。   传统的燃料电池利用氢气发电,但Logan和他的研究小组首次尝试使用富含有机物的污水来发电。理论上说,直接将污水倒入燃料电池就可以发电同时净化污水。该电池系统的工作原理是:污水中的细菌以有机物为食,随之释放电子,电子在燃料电池的碳棒上集聚,在水中形成电流回路。一旦放电能力提高到一定程度,就可加以利用。   早在2005年,Logan的小组就宣布研制出微生物燃料电池。他们在实验室里产生了72瓦的电流,用以驱动一个小风扇。   最近几年,实验室在NSF的资助下又获得一系列进展。例如,除了产生电流,给系统另外加上一点电压,还能产生氢气。氢气是一种环境友好的清洁能源,有多种工业用途。   另外,Logan还在试验往燃料电池中通入海水,这样不仅能够产生更多的电能,如果试验成功,该系统就可以同时产生能量、处理污水并淡化海水,可谓一箭三雕。   实际上,微生物燃料电池并不是一个新概念。早在1910年,英国植物学家马克比特首次发现了细菌的培养液能够产生电流,他用铂作为电极成功制造出了世界第一个微生物燃料电池 1984年,美国制造了一种能在外太空使用的微生物燃料电池,它的燃料为宇航员的尿液和活细菌,不过放电率极低。   除了Logan,世界上还有其他的研究组在开发微生物燃料电池,不过都没有走出实验室。   虽然目前还未有商业产品问世,但多伦多大学的科学家戴维伯格雷曾估计污水中潜在的电能价值是其处理成本的10倍。Logan则认为,只要能利用潜在电能的1/20,污水处理厂就可以解决污水处理成本。不过他估计,微生物燃料电池实现工业应用还需5~10年。   在现阶段,Logan指出,突破工业应用的关键问题仍然是如何继续降低成本、提高电池性价比。   据悉,在早期的研究中,Logan小组使用了大量昂贵的材料,如昂贵的石墨电极、聚合物以及铂等贵金属。但其最新的电池系统已经使用了更便宜并且环境友好的材料。“我们现在已经可以不用任何贵金属。”Logan说。
  • 硅酸盐所与索尼建锂电池实验室
    中国科学院上海硅酸盐研究所与索尼公司共同创建的锂电池联合实验室,昨天在沪揭幕。研究方向直指电动汽车的“心脏”——电池,期待能为电动汽车开发出一种大容量储能电池,其能量密度堪比汽油。中科院副院长施尔畏出席揭幕仪式。   据悉,这是上海硅酸盐所与索尼组建的第二个联合实验室。此前,双方分别在钠硫电池和锂离子电池研发领域积累了丰富的经验。
  • 限国产!佛山仙湖实验室预算540万采购燃料电池环境实验舱
    3月12日,佛山仙湖实验室燃料电池环境实验舱采购项目发布招标公告,该项目预算540万,采购本国产品。一、项目基本情况项目编号:XH2021CB-01-006(内部编号:GZGK21D039A0087Z)项目名称:佛山仙湖实验室燃料电池环境实验舱采购项目采购方式:公开招标预算金额:5,400,000.00元采购需求:燃料电池环境实验舱实现的功能:环境舱主要用于150KW功率等级燃料电池发动机及其配套散热器,以及150KW的电堆在-40-+85℃的环境下进行温度存储试验,在-30-+65℃的舱内环境下进行60min额定功率、峰值功率、动态响应、稳态特性等试验时,舱内空气供应充足,各工况下发动机迎风面温度波动不超±3℃。并满足-40℃条件下低温启动试验,温度海拔高度试验(进排气管道气压模拟)。环境仓预留气体、冷却水以及电路接口。环境舱可分别做燃料电池发动机及电堆环境测试,环境舱需与发动机测试台架及电堆测试台架进行软硬件系统集成,可通过测试台架主控系统远程监测控制环境仓的工作状态。环境舱可进行单独编程控制,也可通过测试台架主控程序进联调控制。注:本项目采购本国产品。二、获取招标文件时间:2021年03月12日至2021年03月19日,每天上午09:00:00至12:00:00,下午14:30:00至17:30:00(北京时间,法定节假日除外)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)方式:现场购买或在线购买。售价(元/套): 300三、提交投标文件截止时间、开标时间和地点2021年04月02日 15时00分00秒(北京时间)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)四、联系方式1. 釆购人信息名称:佛山仙湖实验室地址:广东省佛山市南海区丹灶镇仙湖度假区阳明路1号联系方式:0757-812290952. 釆购代理机构信息名称:广州市国科招标代理有限公司地址:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)联系方式:020-876870433. 项目联系方式项目联系人:张小姐、李小姐电话:020-87687142、020-87688847五、附件投标须知.pdf0087Z佛山仙湖实验室燃料电池环境实验舱采购项目——发售稿.pdf
  • 服务川渝储能产业 国家电网电池储能技术实验室共享(重庆)实验室正式运行
    重庆日报消息,3月14日,记者从两江新区获悉,位于两江协同创新区的国家电网电池储能技术实验室共享(重庆)实验室(以下简称共享实验室)正式运行。该共享实验室将承担国家电网西南片区储能电池市场检测与认证评价任务,同时为川渝两地企业动力电池性能检测与技术开发服务。记者了解到,共享实验室是北京理工大学重庆创新中心重点围绕新型储能体系及全产业链关键技术建设的科技创新平台。平台负责人苏岳锋教授介绍,目前,全国大部分水电资源分布在西南地区,以水电为代表的新能源发电,已经成为西南地区排名前两位的电力来源。但由于自然因素的限制,新能源发电普遍具有较强的间歇性和波动性。用电化学储能方式,将新能源发电的电能储存起来,犹如装上“充电宝”,可以在需要时释放电能,能够大大减轻电网负荷,保障用电稳定。因此,用于电化学储能的电池性能尤为重要。据估算,2030年西南地区电化学储能装机量将超过10亿瓦时。市场对储能电池专业检测有极大的需求。共享实验室正好填补了这一市场空白。它是国家电网在西南片区唯一的电池储能技术实验室。该实验室不仅具备电池检测能力,而且提供电池材料性能检测服务。目前,该实验室内拥有场发射扫描电子显微镜、X射线光电子能谱仪、原位多功能X射线衍射仪、电池单体和模块充放电设备等高端精密仪器设备,达到业内先进水平。共享实验室还开展绿色二次电池体系的设计、研发和产业化工作。目前,共享实验室团队开发出的多晶/单晶高镍正极材料产业化制备技术,已经应用于宜宾锂宝新材料有限公司产线,使生产成本降低约25%。团队已经依托北京理工大学重庆创新中心孵化了一家学术型公司,即重庆理英新能源科技有限公司,专注于高容量锂离子电池正极新材料的研发和生产,目前已获得650万元的天使轮投资。两江协同创新区相关负责人表示,今后,共享实验室将建成具有自主创新能力和检测资质的先进储能技术创新研发和测试平台,辐射带动川渝两地储能行业高质量发展。
  • 厦门新能源电池检测领域迎来突破:2亿投资打造尖端实验室
    厦门市发展和改革委员会新近正式批准厦门市质检院建设高比能新能源电池重点实验室台车碰撞试验场地项目,将投入总投资约为21022万元人民币打造该尖端实验室。据介绍,该项目依托厦门市质检院集美检测基地的技术实力,计划在集美检测基地新建包括台车碰撞检测试验平台实验室大楼、电池安全性能实验室大楼以及电机性能实验室大楼等设施。这些设施的建设,将为动力电池检测提供更为全面和精准的服务。台车碰撞测试在动力电池安全性评估中扮演着至关重要的角色。该测试通过模拟实际交通事故中的碰撞情景,对电池在极端条件下的安全性能进行全面检验。这项测试不仅能够评估电池在碰撞时的物理损伤,还能检测电池在受到冲击后的电气性能和热稳定性,确保其在各种复杂情况下的安全可靠。通过台车碰撞测试,可以全面验证电池系统的设计合理性和结构强度,以及电池管理系统在极端情况下的保护效果。厦门市质检院在新能源电池领域的检测能力已全面覆盖动力电池、储能电池和消费电池三大应用,达到国内领先水平。其试验设备先进,能精确模拟各种环境和极端条件,确保检测结果可靠、准确且可重复。实验室环境设施严格遵循国际标准,提供稳定的专业测试环境。在体系管理上,厦门市质检院建立了完善的质量管理体系,涵盖从样品接收到结果发布的每个环节,实现检测过程的规范化和标准化。检测工程师精通各类检测标准,依据最新的国际、国家和行业标准进行检测,保证结果的准确性。厦门市质检院相关人士表示,未来将借助高比能新能源电池重点实验室的台车碰撞平台,全面整合动力电池检测链条,提升检测能力和技术水平,巩固其在新能源领域的领先地位,为行业发展提供坚实的技术支持。
  • 能源汽车电池及控制技术实验室设备采购项目招标
    一、项目基本情况1.1项目编号:ZHGX-2022-0141.2项目名称:新能源汽车电池及控制技术实验室设备采购项目1.3最高限价:人民币大写壹佰零柒万伍仟元整(¥:1075000.00) 1.4招标内容:序号货物名称参考品牌数量单位技术参数及性能、配置1计算工作站戴尔/惠普/华硕2台图形工作站,至强W-2245★处理器/3.9G 8核/★64G内存/512G固态+2T/显卡RTX5000-16G。2新能源电池包检测仪元征/欧维德/天威1套新能源电池包专用诊断设备,覆盖95%以上主流新能源汽车品牌;电池包检测功能强大、诊断精准度高,媲美专检;创新支持通过快充口检测电池包,定制开发电池包接口专用接头;配备iSmartEV BOX诊断盒,且主机与诊断盒采用Wi-Fi通讯,在传输速率、诊断距离、抗干扰等方面远优于传统蓝牙;支持CAN FD、DOIP等主流诊断协议;支持通用的大部分物理接口,如:USB Type C、USB Type A等;★2.0GHz八核处理器,★4G内存+128G存储;安卓7.1操作系统,10.1英寸高清触摸屏;可通过OBD接口、快充口、专用电池包测试线、跳线四种方式进行电池包检测;可读取电池包信息,包括但不限于:电池包SOC及SOH、电池包当前温度及电压、电池包单体电压及单体温度、电池包故障码等,快速定位电池包问题;支持检测亿能、科列、国新、宁德时代等多品牌电池包诊断。诊断功能支持新能源车型全系统、全功能快速诊断、读取故障码、清除故障码、读取数据流、动作测试等。主机参数:显示屏 10.1英寸(1920x 1200)CPU 高通 2.0GHz八核内存 4GB存储 128GB系统 安卓7.1通讯 支持双Wi-Fi模块、蓝牙摄像头 前置800万像素,后置1300万像素接口 TypeA、TypeC电池 3.8V/9360mAH聚合物锂电池尺寸 318x 40.5x 246.5(mm)… … … … … … 具体内容详见招标文件。二、投标人的资格要求:2.1国内注册,经营范围满足本次招标内容的投标人;2.2 法定代表人或负责人为同一个人的两个或两个以上投标人,存在相互参股关系、高级管理人员(股东、监事、经理)相互兼任情况的两个或两个以上投标人,只接受其中先提交投标文件的投标人参加投标,不接受其他投标人参加投标;2.3根据最高人民法院等9部门 《关于在招标投标活动中对失信被执行人实施联合惩戒的通知》(法〔2016〕285号)规定,投标人不得为失信被执行人【以评标阶段通过“信用中国”网站(www.creditchina.gov.cn)查询的结果为准】;2.4至投标截止日,投标人及其法定代表人、主要负责人或实际控制人、拟委任项目经理(项目负责人)近三年内无行贿记录【行贿记录起始时间为生效刑事判决书、刑事裁定书落款时间,以评标阶段通过“中国裁判文书”网站(https://wenshu.court.gov.cn/)查询结果为准】;2.5 投标人的投标标的如果涉及知识产权(包括专利、商标和著作等)使用,投标人应在投标文件中提供相关知识产权的权属证明或合法使用证明复印;2.6本项目不接受联合体投标。三.招标文件的获取3.1 凡有意参加投标者,请于 2022年 4 月 21 日至 2022 年 4 月 27 日,每日上午 9:00 时至12:00时,下午14:30时至 17:00 时(北京时间,下同), 持单位介绍信、授权委托书原件和委托代理人身份证复印件(委托代理时),法定代表人或负责人身份证复印件、营业执照副本复印件(以上资料为复印件或打印件的,必须加盖公章)到 南宁市青秀区东葛路163号绿地中央广场B1栋9层(上海正弘建设工程顾问有限公司广西分公司) 购买招标文件。3.2招标文件每套售价 300 元,售后不退。3.3邮购招标文件的,需另加手续费(含邮费) 50元。招标人在收到3.1条款要求的全部报名资料和邮购款(含手续费)后 1个工作日 内寄送。招标文件价款及邮费以单位名义交纳到以下银行账户,转账时必须备注本项目的项目编号。开户名称:上海正弘建设工程顾问有限公司广西分公司开户银行:广西北部湾银行南宁市嘉宾支行银行账号:0804 0120 9000 7555嘉宾支行行号:313611008044四、投标文件的递交4.1投标文件递交的截止时间(投标截止时间,下同)为 2022 年5月12日 15 时 00 分,地点为南宁市青秀区东葛路163号绿地中央广场B1栋9层(上海正弘建设工程顾问有限公司广西分公司开标厅)。4.2递交方4.2.1采用现场递交的,需遵守以下规定:投标文件递交起止时间:2022年5月12日 14 时 00 分至 15时 00 分(北京时间)。投标人应在投标文件递交起止时间内,将投标文件密封送达投标地点,未在规定时间内送达或者未按照招标文件要求密封的投标文件,将予以拒收。4.2.2采用邮寄方式递交的,需遵守以下规定:(1)投标文件必须在投标截止时间前送达。招标代理机构工作人员签收邮寄包裹的时间即为投标文件的送达时间,且须交由招标代理机构当面签收,逾期送达的投标文件无效。逾期送达的,后果由投标人自行承(2)投标人应充分预留投标文件邮寄、送达所需要的时间。为确保疫情防控期间邮寄包裹能及时送达,应选择邮寄运送时间有保障的快递公司寄送投标文件。(3)投标人在按照招标文件的要求装订、密封好投标文件后,应使用不透明、防水的邮寄袋(或箱)再次包裹已密封好的投标文件,并在邮寄袋(或箱)上注明投标人全称、项目名称、项目编号、开标时间、投标人代表人(姓名、身份证号码、移动电话和电子邮箱)等内容,如投标文件在运送过程中发生破损、受潮等情况,后果由投标人自行承担。(4)招标代理机构工作人员在收到投标文件的邮寄包裹时,确认无误接收完成后,第一时间按照投标人在邮寄包裹上所预留的电子邮箱告知投标文件收件情况,请投标人务必确保所预留的电子邮箱的有效性,并注意查收邮件。(5)投标文件邮寄地址:南宁市青秀区东葛路163号绿地中央广场B1栋9层(上海正弘建设工程顾问有限公司广西分公司) 收件人:覃江激 联系电话:13507713314、17776658009、0771-20266294.3逾期送达的或者未送达指定地点的投标文件,招标人不予受理。五、发布公告的媒介本次招标公告同时在采购与招标网(https://www.chinabidding.cn/)、南宁学院(www.nnxy.cn)、上海正弘建设工程顾问有限公司(www.zhenghong.net.cn)网上发布。六、对本次招标提出询问,请按以下方式联系1.招标人信息招标人:南宁学院地 址:广西南宁市邕宁区龙亭路8号联系人:王老师联系方式:0771-59008152.招标代理机构信息招标代理机构:上海正弘建设工程顾问有限公司地 址: 南宁市青秀区东葛路163号绿地中央广场B1栋9层邮 编: 530022 联 系 人: 陈琴 电 话: 0771-2026629、17776658009 传 真: 0771-2026628电 子 邮 箱:zhgxfgs@163.com开 户 银 行: 广西北部湾银行南宁市嘉宾支行 账 号: 0804 0120 9000 7555 招标人:南宁学院 招标代理机构:上海正弘建设工程顾问有限公司2022 年4月21日
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 安东帕集团全球首家电池材料表征实验室隆重开幕!
    安东帕集团全球首家电池材料表征实验室开幕仪式于2023年9月1日在广州隆重举办。开幕式上,安东帕同时推出2款全新高精密仪器: Autosorb 6100 全自动气体吸附仪和 Litesizer DIA 500 动态图像法粒度分析仪。安东帕中国区总经理王德滨先生,安东帕集团总部市场发展经理 Anthony Chalou 先生,及多位高层领导和特邀嘉宾出席此次活动。图中从左向右依次:安东帕中国表征团队经理陈飞跃先生、中科院宁波材料所国家石墨烯创新中心肖宏亮先生、安东帕中国总经理王德滨先生,安东帕集团总部市场发展经理 Anthony Chalou 先生、广东工业大学徐睿杰教授,安东帕中国华南区销售经理罗世敬先生。此次电池材料表征实验室落成于广州,旨在为中国乃至全球电池行业客户提供更优质的产品和服务,推动创新,共同前行!中国的新能源电池产业蓬勃发展,同时,电池行业用户对于表征测量的需求也在不断增长和变化。安东帕凭借百年表征仪器的精密测量和优质服务,收获了诸多中国电池行业用户的青睐。安东帕中国区总经理王德滨先生寄语:“实验室的建立将进一步帮助安东帕中国,拓展我们中国本土化的服务能力,服务于华南地区乃至全国的电池材料领域用户,为客户赋能研发创新能力,从而创造更多的业务机会,共同推动行业的发展。同时,随着”电池材料表征实验室”的建立,我们也将与积极开展产学研合作,与学术科研机构建立紧密的合作关系,推动科研和技术创新的发展。”开幕式现场,广东工业大学徐睿杰教授,中科院宁波材料所国家石墨烯创新中心肖宏亮先生、安东帕中国表征团队经理陈飞跃先生,以及安东帕产品经理宋绪东先生分别与现场来宾分享行业新知和应用,探讨如何赋能电池行业的未来。本次电池材料表征实验室落成,进一步拓展了安东帕本土化服务能力,它将配备安东帕的先进表征仪器和优秀工程师,服务于华南地区乃至全国的电池行业用户,共同探索电池材料领域的最新解决方案,推动行业发展。
  • 康塔仪器与复旦大学先进材料实验室联办电池行业交流会
    中国电池行业近来发展迅猛,同时竞争也日趋激烈,材料作为决胜的关键之一,一直备受关注。作为比表面及孔径分析的全球领导者,康塔仪器产品在电池行业拥有着极其广泛的应用,涵盖:正极和负极材料(含钴酸锂等低比表面积材料)、多孔电极、电池隔膜、电解液、燃料电池催化剂、气体扩散层等。无论是比表面积、孔径及其分布、孔隙率、催化剂活性面积、水含量、真密度和堆密度、电导率和电位还是粒度和形貌,康塔都不单能提供最合适的产品,还有着丰富的应用经验。 为了让广大电池相关行业客户深入了解“气体吸附法测定比表面和孔径分布技术”以及“颗粒和多孔材料分析技术”的进展,提高分析测试水平,以充分发挥仪器在科研、教学及生产工作中的作用,同时搭建一个大家与康塔仪器之间深入交流的平台,共同探讨相关分析技术,解决实际应用中的难题,美国康塔仪器公司与复旦大学先进材料实验室联合举办本次“电池行业技术与培训交流会”,由杨正红总经理亲自主讲,并特邀在锂电池研究上有深厚造诣的复旦大学先进材料实验室夏永姚教授做锂电行业专题报告。我们携卓越的产品,先进的解决方案和翔实的应用案例,恭迎您的莅临。 日期:2016 年3月25日 地点: 上海市复旦大学江湾校区先进材料大楼新能源研究院一楼会议室地址: 上海市杨浦区淞沪路2005号(近国帆路) 会议主要内容:康塔公司简介锂电行业技术发展展望(夏永姚教授)3.BET基本知识和原理介绍4.NOVA比表面及孔径分析仪测试数据分析1)怎么得到更稳定的数据2)怎么提高测试速度3)怎么看待不同仪器之间的测试差异4)怎么设置测试条件,得到更好的测试效果5)NOVA除了测试比表面,还有哪些功能可以开发5.新品NOVATOUCH比表面及孔径分析仪创新点介绍1)新的功能介绍以及和NOVAe系列的区别介绍2)NOVATOUCH系列测试的速度优势和数据精度优势6.锂电行业其他仪器介绍1)IQ系列比表面及孔径分析仪在锂电行业的应用(石墨烯和活性炭领域)2)粒度粒形分析3)水吸附及其他蒸汽吸附4)DT在浆料上的应用5)堆密度及真密度测试 如果您有任何咨询或问题,请直接与我们联系,报名联系人:张经理 021-52828278-25 jameszhang@quantachrome.com.cn报名截止日期,2016年3月19日,名额有限,报名从速。
  • Nano Energy:实验室台式XAFS助力高性能水系锌离子电池研究
    水系锌离子电池(ZIBs)是一种安全环保且可大规模应用的新兴储能电池,而如何开发出耐用、稳定且有益于Zn2+快速嵌入/脱出的正材料是目前主要面临的挑战。美国华盛顿大学曹国忠教授等人合作在Nano Energy上发表了题为“Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate”的水系锌离子电池相关研究成果。该研究通过水热合成法引入Al3+,有效的改善了纯水合氧化钒 (VOH) 正材料用于水系锌电池中的缺点:包括提升其离子迁移率和循环稳定性等[1]。Al3+的成功掺入,在改变V原子局部原子环境的同时,增加了材料中V4+的含量,使得合成的 Al-VOH 材料具有更大的晶格间距和更高的电导率,实现了Zn2+的快速迁移和电子转移。该正材料在50 mAg-1下的初始容量达到380 mAhg-1,且具有较好的长期循环稳定性(容量保持超过 3000 次循环)。值得一提的是,该团队通过利用台式X射线吸收精细结构谱仪(easyXAFS300+)获得了V k边的边前及近边结构谱图,并对Al3+掺杂的VOH正材料进行了深入的研究,从而揭示了引入Al3+后,VOH的结构变化及充放电过程中的有利作用等。图1(a),(b)和(c)所示分别为Al-VOH的SEM,TEM和EDS图,分别对样品的形貌和元素分布进行了分析。图d和e分别展示了Al掺杂前后VOH的电池性能对比图,可以看出掺杂后,电池的倍率性能和循环稳定性有了较大的提升。随后研究人员进一步通过X射线吸收谱对掺杂前后的正材料进行表征。结合X射线吸收谱相关理论可知,吸收边边前谱主要发生的是在偶规则下,内层电子跃迁到空的束缚态,包含了体系的对称性和轨道杂化等信息。吸收边位置主要发生电离过程,其位置反应了吸收原子的氧化态信息。而近边谱主要涉及的是多重散射共振,反映了吸收原子紧邻原子的空间结构信息。边前结构主要反应了体系对称性和d轨道未占据态的数量[2]。如图1g所示,标准的V2O3和VO2主要是对称的[VO6]八面体结构,但V3+未占据的d轨道较少,所以V3+的边前锋强度稍低于V2O3和VO2。V2O5是不对称的[VO5]棱锥结构,未占据的d轨道更多,所以展现出更强的边前吸收峰。对于VOH来说,前边前锋强度在VO2和V2O5之间,表明其主要存在交替的[VO6]和[VO5]结构。然而,Al-VOH的边前峰比VOH更强,这是由于体系中Al-VOH中V4+比例较高,说明Al3+的引入(Al-O配位和O空位的产生)增加了V周围结构的不对称性,导致了结构的扭曲。根据 V的k-edge位置计算出V4+在Al-VOH和VOH的比例分别为29.3%和13.0%[3]。综合ICP及XANES结果,可以得出在Al3+的引入同时, O原子也被带入到VOH体系中,从而引发V4+含量的提升。图1. Al-VOH的(a)SEM图;(b)TEM图;(c)EDS图 (d)电池倍率性能对比图;(e)电池循环稳定性对比图;(f)充放电前后样品的Zn2+ XPS表征图 (g)归一化后Al-VOH及常见钒氧化物的V k边边前及近边吸收结构谱;(h)充放电后Al-VOH及常见钒氧化物的V k边边前及近边吸收结构.如图1(h)所示,放电过程中,Al-VOH中V的k-edge边前峰强度下降,主要是由于V被部分还原,其未占据的d轨道数目下降导致的。而充电后,其边前峰的强度有所提升,但与原始Al-VOH相比还是低了一点。进一步通过k-edge位置算出V4+在充放电过程中的比例分别为45.2%和放电87.0%,可证明部分Zn2+残留在正材料中(次充电后,图1(f) XPS亦可证明)。综合上述结论可以验证:(1)残留的Zn2+导致了正材料中V4+的比例提升,有利于后续的电化学过程,且高浓度的Zn2+可以加速V4+/V3+的还原反应;(2)更高比例的Zn2+可以和Al3+一起支撑Al-VOH的主体结构,从而避免层状材料在充放电过程中的过度晶格收缩和结构退化。如图2所示,在不依赖稀缺性强的同步辐射光源的情况下,台式X射线吸收精细结构谱仪-XAFS可以对材料的原子、电子结构(键长,配位数,无序度,平均价态,结构构型等)进行精细表征,且可得到科研别高分辨率谱图数据,这将助力更多研究人员在常规的实验室环境中即可实现X射线吸收精细结构的测量和分析,实现更高质量的科学研究。图2.(a) XAFS技术示意图;(b)罗兰环单色器设计;(c)easyXAFS公司台式XAFS谱仪及创始人Devon Mortensen 参考文献:[1] Zheng J, Liu C, Tian M, et al. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate[J]. Nano Energy, 2020, 70: 104519.[2] Sun Z, Liu Q, Yao T, et al. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Science China Materials, 2015, 58(4): 313-341.[3] Jahrman E P, Pellerin L A, Ditter A S, et al. Laboratory-based x-ray absorption spectroscopy on a working pouch cell battery at industrially-relevant charging rates[J]. Journal of The Electrochemical Society, 2019, 166(12): A2549.
  • 投资28.8亿元,东旭集团含电池等13个实验室的天水高端装备产业园项目签约
    1月7日,甘肃省天水市政府与东旭集团有限公司在天水宾馆举行高端装备产业园项目签约仪式。图片来源:天水日报东旭集团天水高端装备产业园项目,总投资28.8亿元,占地119亩,总建筑面积8.22万平方米。项目包含光电显示材料产业研究院、高端装备制造基地两部分。其中,光电显示材料产业研究院包括料方研发实验室、智能装备加工中心及玻璃态电池实验室、大尺寸玻璃基板实验室、盖板玻璃实验室、EC玻璃实验室、高折射玻璃实验室、半导体装备研发实验室、数学物理模拟实验室、溢流砖开发实验室、UTG玻璃实验室、3D车载玻璃研发实验室、高硼玻璃实验室、石墨烯实验室等13个实验室。高端装备制造基地主要为13个实验室的研发成果进行产业转化,及相关行业产线装备的研发、设计、制造、应用。据天水日报报道,天水市委书记王锐指出,高端装备产业园项目是继东旭集团新材料产业园项目成功签约及OLED载板玻璃、中硼药用玻璃两个项目奠基开工之后,东旭集团在天水市新布局的又一重大高科技项目,标志着天水市在发展高端装备产业、补齐产业短板、延伸和完善产业链方面又迈出了坚实的一步。2020年9月底,东旭光电发布公告称,公司于9 月 29 日与天水市人民政府(以下简称“天水市政府”)在甘肃省天水市签署了《项目投资协议书》,双方就共同在天水市投资建设“G6-OLED 载板玻璃项目”、“中性硼硅药用玻璃管及制瓶项目” 事宜达成合作意向。2020年11月24日,东旭集团天水新材料产业园OLED载板玻璃项目、中硼药用玻璃项目奠基仪式举行。【延伸阅读】企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇第27批国家企业技术中心名单出炉,涉及这些仪器厂商探寻微弱电流的律动:超高精度皮安计模块亮相三家半导体设备商上榜“中国上市企业市值500强”862项标准获批,涉及半导体、化工检测和检测仪器等领域盘点各地十四五规划建议”芯“政策湖北省集成电路CMP用抛光垫三期项目拟购置43台仪器设备
  • 认监委关于发布锂离子电池等产品强制性产品认证实验室指定决定的公告
    国家认证认可监督管理委员会公告发布时间:2023-06-072023年第9号 认监委关于发布锂离子电池等产品强制性产品认证实验室指定决定的公告 根据《认证认可条例》、《强制性产品认证机构和实验室管理办法》和《认监委关于开展锂离子电池等产品强制性产品认证实施机构指定工作的公告》(2023年第5号),现对电子电器产品使用的锂离子电池和电池组、移动电源强制性产品认证实验室指定决定予以公告。对本指定决定有异议的,应于公告发布之日起15个工作日内向我委提出申诉或投诉(注明联系人和联系方式)。 认监委2023年6月5日电子电器产品使用的锂离子电池和电池组、移动电源强制性产品认证实验室指定决定指定项目编号业务领域指定实验室指定业务范围地址及联系方式法人单位2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源中国电子技术标准化研究院赛西实验室/电子工业安全与电磁兼容检测中心(00101)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京亦庄经济技术开发区同济南路8号联系人:王晓冬电话:010-64102208传真:010-64102185E-mail:wangxd@cesi.cn邮编:100176中国电子技术标准化研究院(工业和信息化部电子工业标准化研究院)2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源国家广播电视产品质量检验检测中心(北京泰瑞特检测技术服务有限责任公司)(00201)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京市朝阳区酒仙桥北路乙7号联系人:李磊电话:010-59570568传真:010-59570553E-mail:lilei@tirt.com.cn邮编:100015北京泰瑞特检测技术服务有限责任公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源工业和信息化部电子第五研究所/中国赛宝实验室(00401)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源广东省广州市增城区朱村街朱村大道西78号联系人:杨林电话:020-85131105传真:020-87236171mail:lynny@ceprei.biz邮编:510610中国电子产品可靠性与环境试验研究所(〔工业和信息化部电子第五研究所〕〔中国赛宝实验室〕)2.1CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源威凯检测技术有限公司(00501)CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源广州市科学城开泰大道天泰一路3号联系人:邓俊泳电话:020-32293899E-mail:office@cvc.org.cn邮编:510663威凯检测技术有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源中家院(北京)检测认证有限公司(中国家用电器检测所)(00601)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京经济技术开发区博兴八路3号联系人:潘权电话:010-58083802传真:010-58083806F-mail:panq@cheari.com邮编:100176中家院(北京)检测认证有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源上海电器设备检测所有限公司(00901)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源上海市武宁路505号/环城北路358号联系人:艾云电话:021-62574990-442传真:021-62435543E-mail:aiyun@seari.com.cn邮编:201805上海电器设备检测所有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源中认尚动(上海)检测技术有限公司(01001)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源上海市浦东新区书院镇新府路95号/上海市徐汇区桂菁路19号联系人:陈建秋电话:021-64314863传真:021-64339515E-mail:chen_jq@setri.cn邮编:200233中认尚动(上海)检测技术有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源中检集团南方测试股份有限公司(02101)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源深圳市南山区西丽街道沙河路43号电子检测大厦联系人:吴立安电话:0755-26627966传真:0755-26628013E-mail:wla@ccic-set.com邮编:518055中检集团南方测试股份有限公司2.1CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源广东产品质量监督检验研究院(02301)CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源广东省广州市黄埔区科学大道10号联系人:黄镇泽电话:020-35671697传真:020-89232876E-mail:qg@gqi.org.cn邮编:510670广东产品质量监督检验研究院2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源福建省产品质量检验研究院(02501)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源福建省福州市马尾经济开发区葆桢路101号联系人:陈晓健电话:0591-83774485传真:0591-83710867E-mail:13950233990@163.com邮编:350002福建省产品质量检验研究院2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源深圳市计量质量检测研究院(02801)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源深圳市南山区西丽街道办同发路4号国家数字电子产品质量监督检验中心大楼联系人:李菊欢、姚晶晶电话:0755-869289150755-86009898-31174传真:0755-86009898-31299E-mail:lijh@smq.com.cntech@ smq.com.cn邮编:518055深圳市计量质量检测研究院2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京尊冠科技有限公司(03301)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京市海淀区北四环中路211号联系人:符瑜慧电话:010-89055851传真:010-89055897E-mail:fuyh@nctc.org.cn邮编:100083北京尊冠科技有限公司2.1CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源浙江科正电子信息产品检验有限公司(国家电子计算机外部设备质量检验检测中心)(03701)CCNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源浙江省杭州市滨江区江虹南路316号联系人:刘灿辉电话:0571-88366861传真:0571-88366821E-mail:liucanhui@ksign.cn邮编:310052浙江科正电子信息产品检验有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京中认检测技术服务有限公司(06901)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京经济技术开发区荣华中路16号联系人:刘扬电话:010-67888592传真:010-67863835E-mail:liuyang2008@126.com邮编:100176北京中认检测技术服务有限公司2.1CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源北京市产品质量监督检验研究院(08102)CNCA-C09-01:信息技术设备中的下列产品--电子电器产品使用的锂离子电池和电池组、移动电源挪亚检测认证(北京)有限公司
  • 谈动力电池检测实验室建设、检测技术难点及展望——访国联研究院检测事业部副总沈雪玲
    p style=" text-indent: 2em " span style=" text-indent: 2em " 国联汽车动力电池研究院有限责任公司(以下称“国联研究院”)于2014年的9月18日成立,注册资本9.3亿元。国联研究院检测事业部于2016年成立,资本超3亿元,配置超600台/套仪器设备,检测人员40余人,主要提供从材料到电池到模组到系统的相关法规性测试、设计验证、研发能力测试、风险评估等服务。 /span /p p style=" text-indent: 2em " 近日,第十四届中国科学仪器发展年会在天津召开同期,由仪器信息网联合国联汽车动力电池研究院有限责任公司、天目湖先进储能技术研究院有限公司合办的“新能源电池检测技术发展论坛”成功召开,国联研究院专家代表云凤玲高级工程师分享了题为“动力电池全生命周期检测技术研究”的报告。 /p p style=" text-indent: 2em " 会后,仪器信息网寻现场采访了 strong span style=" color: rgb(0, 112, 192) " 国联研究院检测事业部副总经理沈雪玲 /span /strong ,请其结合国联研究院检测事业部动力电池检测实验室建设历程及动力电池检测业务,分享了动力电池检测实验室检测建设经验、车用动力电池检测技术难点及展望。 /p p style=" text-indent: 2em " strong 点击以下现场采访视频,观看关于动力电池检测的完整观点: /strong /p script src=" https://p.bokecc.com/player?vid=D91B840B4CDCFFA39C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " & nbsp strong style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 部分采访观点摘要: /span /strong /p p style=" text-indent: 2em " 锂电检测实验室建设,首先要做好定位,如是要做法规性测试,还是要做设计验证,或者给客户做全套检测方案;新能源电池安全测试尤为重要,安全实验室建设过程中,一些相关标准,可能要优于国标或要求,以防后患;因为新能源技术更新较快,所以在设备选型方面,要用发展的眼光去看待,尽量选型不要局限于目前可能是一些设备,提出更高的要求。 /p p style=" text-indent: 2em " 随着新能源发展,相关的研究需求逐渐增加,国联研究院检测事业部的许多电池测试项目超出国标,相关非标项目甚至占其测试能力的百分之八九十。 /p p style=" text-indent: 2em " 锂电测试技术难点不足的话,在电和电热特性的和方面的话,一些检测手段还太成熟,怎么能用快速的手段,无损的把什么引起内短的问题解决是其中的一个需求。 /p p style=" text-indent: 2em " 关于车用锂离子动力电池检测技术的发展,除了无损、快速。大家还需要共同联合起来共同协作,从仪器、检测、用户需求等角度联合起来共同推进锂电检测的发展。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft=" " white-space:=" " text-indent:=" " span style=" margin: 0px padding: 0px color: rgb(0, 112, 192) " strong style=" margin: 0px padding: 0px " 附: /strong /span br style=" margin: 0px padding: 0px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " strong style=" margin: 0px padding: 0px " 1.“新能源电池检测技术发展论坛”现场6位报告直播回放: /strong span style=" text-decoration: none " strong style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " a href=" https://www.instrument.com.cn/news/20200927/560802.shtml" target=" _blank" style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " https://www.instrument.com.cn/news/20200927/560802.shtml /a /strong /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " strong style=" margin: 0px padding: 0px " 2.同期专家视频采访: /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " a href=" https://www.instrument.com.cn/news/20201013/561672.shtml" target=" _blank" style=" margin: 0px padding: 0px color: rgb(0, 176, 240) text-decoration: underline " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px " 谈锂电检测机构现状、与科学仪器协同发展——访上海蓄熙新能源材料检测有限公司总经理韩广帅 /span /strong strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px " /span /strong strong style=" margin: 0px padding: 0px " /strong /a /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " a href=" https://www.instrument.com.cn/news/20201010/561328.shtml" target=" _blank" style=" margin: 0px padding: 0px color: rgb(0, 176, 240) text-decoration: underline " microsoft=" " text-indent:=" " white-space:=" " strong style=" margin: 0px padding: 0px " 锂电测试仪器技术当前相对单一,亟需原位在线技术——访天目湖先进储能技术研究院杨伟博士 /strong strong style=" margin: 0px padding: 0px " /strong /a /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " strong style=" margin: 0px padding: 0px color: rgb(0, 176, 240) text-decoration-line: underline " span style=" margin: 0px padding: 0px " a href=" https://www.instrument.com.cn/news/20200930/561140.shtml" target=" _blank" style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " 新能源国策下,汽车检测人谈电池检测技术与市场——访张家港清研检测技术有限公司总经理郑郧 /a /span /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: " microsoft=" " text-indent:=" " white-space:=" " 3.关于 /strong strong 国联汽车动力电池研究院有限责任公司 /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " 国联汽车动力电池研究院有限责任公司(以下简称:国联研究院)是在国家政府部门大力支持下,由中国汽车工业协会倡导和组织、北京有色金属研究总院牵头发起,汇集国内的科研单位、动力电池生产企业和整车制造企业共同组建的产业技术协同创新平台。 br/ & nbsp & nbsp & nbsp & nbsp 国联研究院的主要定位是开展先进动力电池的研究开发、测试验证、成果转化和行业服务,主要任务是通过技术协同创新,推动我国动力电池产业的升级换代,支撑我国自主品牌新能源汽车产业发展。 br/ & nbsp & nbsp & nbsp & nbsp 2016年6月30日国家动力电池创新中心成立。国家动力电池创新中心以国联汽车动力电池研究院有限责任公司为核心、外延构建中国汽车动力电池产业创新联盟。 /p
  • 京津冀角力氢能技术 北京将建国家级电池汽车全产业链检测重点实验室
    《中国经营报》记者了解到,北京正在推动国家级电池汽车全产业链检验检测能力的国家重点实验室落户大兴。京津冀地区的政府和企业正在加紧推进氢能产业的突破,使用氢能的观光船即将下水,天津将在管网沿线建设加氢公路。京津冀地区是全国最早开展氢能技术研究与应用示范的地区,三地氢能产业发展目标高度一致、产业基础各具优势、资源禀赋充分互补、产业优势主体集聚,已经形成了良好的科技、产业与应用协同基础。新标准,新实验室落户北京“经常有金融人士问我,哪个领域最具有前景?只能说很多人都在攻关从水制氢的催化剂技术。”一位北京大学化学系教授向记者表示。氢能作为21世纪最具发展潜力的二次清洁能源之一,是实现多领域深度清洁脱碳的重要载体,也是全球能源技术革命和转型发展的重大战略方向。发展氢能产业是北京市应对气候变化,实现绿色可持续发展的重要战略选择。近年来,北京市先后发布《氢燃料电池汽车产业发展规划》《氢能产业发展实施方案》及相关的配套政策,高位谋划、超前布局全市的氢能产业发展与跨区域产业协同,统筹推进技术和模式创新,区域产业布局,重点项目落地,产业发展呈现积极的态势。北京市经济和信息化局材料产业处副处长冷少林在首届链博会上透露,在标准研制方面,全国氢能标委会、燃料电池标委会、压力容器标委会等众多氢能领域的国家级标准化机构秘书处均设在北京。近年来,组织开展了数十项国家级标准的编制和转化工作,各权威机构设立了标准化机构,也进一步完善了氢能行业的标准体系。他表示,北京市在2022年正式发布了《北京市燃料电池汽车的标准体系》,初步确立了北京市燃料电池汽车标准体系的目标和方向。同年支持成立了北京市氢能质量标准化技术委员会。“北京市氢能质量标准化技术委员会已经立项液氢加注规程等三项地方标准的修订计划,目前正在推动大兴区在国际氢能示范区建设国家级电池汽车全产业链检验检测能力的国家重点实验室。”他透露。据了解,北京市在科技创新、产业基础、市场应用、政策环境和支撑要素等方面具有全国领先优势,牵头的京津冀燃料电池汽车示范城市群在前两个年度均超额完成示范任务,近年来,陆续发布《北京市氢能产业发展实施方案》等一系列政策,为氢能产业集聚化、规模化发展创造了良好的条件。多场景探索即便在京津冀地区内部,新场景、新技术、新政策也在争先推出。“下一步我们将建设氢能车辆示范应用线路,谋划在管网沿线设置加氢站点,将会为氢气运输和加注的降本增效带来一个很好的效果。”天津市相关负责人向记者表示。张家口在氢能示范应用场景持续拓展方面一直靠前。“我们积极推动氢能在交通领域示范。从2018年起,已经累计投运氢燃料公交车444辆,完成载客量超过1亿人次,运行里程超过3800万公里,今年10月以来又新增了83辆冷链物流、渣土车、牵引车等。”张家口市发展和改革委员会副主任尹旭光表示。钢铁行业一直是耗能重点领域。他介绍,河钢宣钢全国首套120万吨氢能源开发与利用工程已经实现连续性生产。今年10月该工程荣获世界钢铁协会低碳生产卓越成就奖。河北省工业厅支持的天然气掺氢示范项目已经实现3%—20%的氢气掺混可调。国内首款氢能源物流快递车已经在涿鹿县投入运行。张家口不断完善加氢站等基础设施建设。累计建成加氢站8座,加氢每12小时达到7.7吨。张家口在获批建设国内首家省级氢能产业创新中心基础上,“正在积极申报国家级氢能产业创新中心。目前占地72亩的创新中心总部基地主体结构已经建成。”他说。目前正在进行的项目有,“国内首台千瓦级固体燃料电解池制氢系统,电解水制造设备也正在加快建设。引进河北特种设备检测研究院,氢能源储备装备检测检验项目正在加快启动招标。”在交通领域寻求突破“首先近期谋定主攻方向,氢能产业发展是有一定规律的,前期在交通领域是一个重要的切入点。虽然氢能作为能源应用广泛,但是前期在交通领域是比较现实或者更容易突破的领域,我们希望在这个领域以商用车为突破点。”国氢科技总经理助理、技术总监陈平透露。“之前也做了很多商用车尝试,大巴、物流、重卡以这个为起始点来进行推广。未来,乘用车也要关注。从交通领域来看,包括从电动车发展来看都是从商用车向乘用车过渡,如果真的想把产业成本降下来性能提上去,必须扩大市场范围,乘用车是最大的市场。可以谋划从商用车逐步向乘用车推进过渡。”他表示。技术仍然是核心竞争力。他认为,“如果想提升性能降低成本,除了系统上很多技术之外,最关键的是材料技术在这里的影响,如果不掌握关键技术,到了产品端是无法有效提升产品性能以及降低成本,或者跟国外竞争对手PK的。同时,如果未来关键技术在国外,也是一个又陷入了之前很多像一些关键技术被别人制约的可能,我们是无法很好去发展的。”“一开始怎么能够平衡好车的增加和能源供给,需要做一个很好的规划和协同。这两个协同就需要我们按照党中央的要求部署进行双轮驱动,希望能够在政府层面、企业层面共同合作。”他建议。
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 冠亚电池水分测定仪参与华为石墨烯电池研究
    冠亚电池水分测定仪参与华为石墨烯电池研究 原标题:华为石墨烯电池研究获突破:寿命是锂离子电池2倍 12月1日消息,近日,华为中央研究院瓦特实验室在第57届日本电池大会上宣布在锂离子电池领域实现重大研究突破,推出业界高温长寿命石墨烯基锂离子电池。实验结果显示,以石墨烯为基础的新型耐高温技术可以将锂离子电池上限使用温度提高10℃,使用寿命是普通锂离子电池的2倍。  华为瓦特实验室首席科学家李阳兴博士指出,石墨烯基高温锂离子电池技术突破主要来自三个方面:在电解液中加入特殊添加剂,除去痕量水,避免电解液的高温分解;电池正极选用改性的大单晶三元材料,提高材料的热稳定性;同时,采用新型材料石墨烯,可实现锂离子电池与环境间的高效散热。  “高温环境下的充放电测试表明,同等工作参数下,该石墨烯基高温锂离子电池的温升比普通锂离子电池降低5℃; 60°C高温循环2000次,容量保持率仍超过70%;60℃高温存储200天,容量损失小于13%”, 李阳兴博士表示。  这一研究成果将给通信基站的储能业务带来革新。在炎热地区使用该高温锂离子电池的外挂基站工作寿命可达4年以上。石墨烯基锂离子电池也将助力电动车在高温环境下持久续航,以及无人机高温发热下的安全飞行。  去年,华为瓦特实验室在第56届日本电池大会(The 56th Battery Symposium in Japan)上发布了5分钟即可充满3000mAh电池48%电量的快充技术成果,引起业界广泛关注。据李阳兴博士透露,华为快充电池已经商用,并将于今年12月底正式对外发布超级快充手机。 期间冠亚电池水分测定仪参与华为电池研究(代工厂)部分实验,冠亚电池水分仪系列包括有:电解液水分含量检测仪,特殊添加剂固含量检测仪,电池正极水分测定仪,石墨烯水分仪,锂电池水分仪等。采用国际标准方法可对电池材料水分含量在2-3分钟之内测试完。水分含量下限10ppm,检测方便科学精准,是电池厂商,实验室,检测部门的水分检测仪。
  • 北大电镜室:原位电子显微学法研究锂电池离子迁移
    对于锂离子电池,锂离子在电极材料中迁移的动力学过程决定了电池的宏观性能。比如,离子迁移的快慢决定了充电放电的速率,离子迁移的数量对应了电池的容量,离子迁移引起的结构恶化是电池寿命变短的根本原因。因此研究锂离子在电极材料中的迁移过程是我们了解电池工作原理、失效原理等的关键。透射电子显微镜是研究材料结构的利器,结合原位局域场探测的手段,则能在原子尺度下实时监控外场下的结构演化。这种表征手段很适合于研究锂电池中电化学势驱动的离子迁移。北大电镜室俞大鹏院士团队的高鹏研究员在过去几年在一直从事原位电镜局域场探测固态离子迁移的研究。他们与合作者曾成功地观察到离子导体中氧空位的迁移(JACS 132, 4197,2010),阻变存取器件中的Ag、Ni、Cu、Pt等金属离子的迁移行为(Nat.Commun. 3, 732 ,2012) Nat.Commun. 5, 4232,2014))等。  最近,高鹏研究员课题组研究了Li和Na离子在二维材料中的迁移行为,取得了系列进展, 包括Li离子在SnS2中的迁移(Nano Lett 16, 5582,2016,作者:Peng Gao*, Liping Wang, Yu-Yang Zhang*, Yuan Huang, Lei Liao, Peter Sutter, Kaihui Liu, Dapeng Yu, En-Ge Wang),Na离子在SnS2中的迁移(Nano Energy 32, 302,2017),Na离子在MoS2中的迁移(ACS Nano 9, 11296,2015)。这些具有van der Waals相互作用的二维材料,不仅仅展现出了优异电学、力学、光学性能,也是重要的能源存储材料。作为电池电极材料,van der Waals相互作用系统的最主要特征就是层间相互作用很弱,碱金属离子能够比较容易地在其中发生迁移。他们的研究发现,在二维材料中离子插入和拔出的反应路径是不对称的,这种不对称的反应路径对应着充放电过程中不对称电压平台。该研究揭示了这些层状锂电池电极材料中低能量效率的一个根源。高鹏研究员为这些论文第一作者和通讯作者。  另外,他们与东南大学合作研究了Na离子在尖晶石NiCo2O4纳米结构的迁移行为(Adv. Fun. Mater., DOI: 10.1002/adfm.201606163,2017),也发现了类似的非对称反应路径。高鹏研究员为论文共同通讯作者。  原子尺度上实时跟踪锂电池电极材料SnS2中的离子迁移过程电子束诱导的spinel -rocksalt的核壳结构。Rocksalt 核的直径约3 nm,相界宽度约1~2nm。  此外,他们和日本东京大学的合作者用电子束激发的方法,发现LiMn2O4中的Li和Mn离子都会发生迁移,发生从尖晶石到岩盐的结构相变(Chem. Mater. 29,1006,2017)。一般认为,这种结构相变会导致LiMn2O4电池的容量损失和电压降低。他们利用球差矫正透射电子显微镜,跟踪了Li和Mn 在氧四面体和氧八面体之间的迁移过程,揭示了离子迁移过程中的中间相、迁移路径、相界的原子结构、以及阳离子迁移伴随着的氧原子位置的自我调整,据此提出了一些可能的提高电极材料稳定性和电池寿命的方法。高鹏研究员为论文第一作者和共同通讯作者。  由俞大鹏院士领导的北京大学“电子光学与电子显微镜实验室”-校级大型公共仪器平台在2015年底増置了两台国际上迄今最先进的球差矫正透射电镜: Nion公司的配置单色仪的U-HERMES200(能量分辨率8 meV)和FEI公司的双球差矫正的Titan Cubed Themis G2 300 (空间分辨率60 pm)。与此同时,俞大鹏院士也积极在国际上积极招募青年才俊,重点发展电子显微学新技术在材料科学方面的应用,进一步提高大型高端仪器的管理水平、提升电镜平台服务效率和质量。目前,FEI双球差矫正电镜正在调试当中。  该研究工作得到了国家自然科学基金委、科技部、量子物质科学协同创新中心、千人计划和电子显微镜实验室等的大力支持。  论文链接:  http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02136  http://pubs.acs.org/doi/full/10.1021/acsnano.5b04950  http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b03659  http://www.sciencedirect.com/science/article/pii/S2211285516306176
  • 厦大孙世刚院士团队:透过电池,探索能源转换密码
    因对电化学基础研究的突出贡献,他当选中国科学院院士。心怀科技报国初心,近年来,他带领团队立足学科基础研究,持续在新能源领域斩获面向产业的突破性成果,推动实验室成果与生产转化的连接。  中国科学院院士、厦门大学教授孙世刚和他的团队一道,在服务区域发展和国家战略中,践行高校科研人的责任与使命。  “滋… … ”显微镜旋转发出的响声又在召唤。  透过镜片,再一次,孙世刚来到微观世界,探索能源转换密码。  观测锂离子传输速度,记录晶体结构演化,复杂多变的微观世界,是孙世刚的“战场”。  每一块电池中,固体电极与液体电解质碰撞交界,产生出奇妙的能量变化,这被称为“界面”。  在“界面”不到20纳米的厚度里,藏着有关电池效率和寿命的奥秘。  过去数十年,长期从事电化学、能源电化学研究的孙世刚及其团队,在这一领域持续攻关,并将科学研究与企业需求相结合,为地方产业发展提供强劲的科研支撑,助力产业发展。孙世刚教授在实验室进行质子交换膜燃料电池工况测试指导。潘万华/摄  源于初心,怀着科技报国的深厚情怀  “我心中有一种使命,就是推动国家的生产力发展,推动国家科技和产业崛起”  与化学结缘,要追溯到40多年前。  1977年,作为高考恢复后的第一届考生,孙世刚考上厦门大学化学系,并于1982年第一批公派留学前往法国攻读博士学位。  1986年9月,孙世刚获得巴黎居里大学授予的法国国家博士学位,并留在法国科研中心界面电化学研究所继续博士后研究。  “一到国外,我就意识到我们国家当时确实落后了很多年,那时我就下定决心,学好后要为国家做事情。”孙世刚说。面对选择,他毅然于1987年回到厦门大学。  “我心中有一种使命,就是推动国家的生产力发展,推动国家科技和产业崛起。”孙世刚说,“当时的想法很朴素,赶快回国,把所学的知识教给学生,差距不能再拉大了。”  心有所指,行有所向。回国后,孙世刚专注电化学和表界面研究,取得了一系列突破性成果。他先后主持完成国家杰出青年科学基金、国家自然科学基金重点项目、国家“973计划”项目等重要科研项目,是国家自然科学基金委“界面电化学”创新研究群体学术带头人。  2015年,因在电化学领域的杰出贡献,孙世刚当选中国科学院院士。  “科研就是一种攻坚,它需要勇气和坚韧。”面对当时国内科研条件与国外的差距,孙世刚迎难而上。设备陈旧落后,他想办法克服;科研经费欠缺,他能省则省。“为自己的祖国搞科研,再苦再累也值得!”他说。  十多年前的一件往事,足以映射初心。2007年,孙世刚团队在纳米催化剂合成研究中取得重大突破,首次制备出高活性的二十四面体铂纳米晶催化剂。  被广泛用于燃料电池、石油化工、汽车尾气净化等领域的铂催化剂,因铂金属资源有限,价格昂贵。提高铂纳米材料的催化活性、稳定性,一直是企业亟需。  孙世刚团队的成果吸引了跨国企业的注意。  “当时韩国企业派代表跨洋飞到厦门来找我,希望能够在技术上进行合作。”孙世刚表示,“但是这样的技术,我肯定要留在国内!”  虽然拒绝了合作请求,但大型跨国企业对核心技术的渴求和战略眼光,让孙世刚感慨:我们什么时候也能有这样的企业?  基础研究是科技创新的源头。把基础研究做扎实了,在国家快速发展中,研究成果必能对接到产业应用的方向。  近年来,随着中国新能源产业崛起,企业迅速成长。宁德时代、厦门钨业等越来越多的行业龙头找上门来,寻求科研支持和合作。  孙世刚当年的感慨,如今变成了满怀的信心。他主动肩负起责任,把自己的科学追求融入产业发展需求,带领团队开始与企业进行产学研合作。  始于2011年1月的“界面电化学”创新群体项目,历时9年,在孙世刚的带领下,项目连续三次获得国家自然科学基金委员会的持续资助。从基础研究到实际应用,这个项目,成为孙世刚探索成果转化的舞台。  “前两期研究内容主要是界面电化学的基础科学问题,到了第三期以后,我们转变重点,把目标放在解决产业界重要的应用问题,以及对国家战略需求作出贡献上。”孙世刚带领团队,将研究方向聚焦到新能源领域。孙世刚教授在实验室,指导研究生进行锂离子电池在线电化学质谱测试。施晨静/摄  精于转化,打造面向产业的科研力量  “我们的研发成果能够帮助企业创新,企业能力提升后产生的需求,也在帮助我们调整科研方向”  新能源产业,是福建重点布局的战略性新兴产业。  “十四五”时期,福建计划打造两个以上产值超千亿元的新能源产业集群。厦门作为新崛起的电动之城,此前已将中航锂电、海辰新能源、厦钨新能源等新能源龙头企业揽入怀中。2021年底,宁德时代投资70亿元,厦门时代锂离子电池生产基地项目(一期)开工建设。  这样的土壤,让孙世刚团队的科学研究成果有了更广阔的用武之地。  厦门厦钨新能源材料股份有限公司,是厦门本土第一家新能源电池材料上市公司。其母公司厦门钨业从2002年起,陆续建立能源新材料产业生产线,重金投入于先进电池材料的研发,并于2016年分拆出独立的新能源子公司——厦钨新能源。  “研发新产品,一旦我们在技术开发中遇到了难以解决的理论问题,就需要依托高校进行联合攻关。”厦门钨业股份有限公司技术中心硬质材料研究所所长刘超表示。  其实早在2012年,孙世刚团队就开始了与厦门钨业的技术合作,签订“新能源材料合作研究计划”,致力于提升锂电池正极材料性能。  锂电池正极材料,是直接影响锂离子电池的性能、决定电池成本的关键因素。  为了让手机待机时间更长,业内普遍做法是提高充电电压,以提高手机电池中钴酸锂材料的能量密度。但充电电压过高,会导致材料和界面不稳定,电池安全性能、循环性能下降。  孙世刚团队成员李君涛教授介绍:“我们研究的技术,在钴酸锂材料表面形成包覆层,就相当于给它们穿了件‘防电衣’,使电池在高电压下也能正常充放电。”  对此,厦钨新能源首席工程师魏国祯深有体会:“孙老师团队在这一领域的基础研究前沿并且深入运用他们的方法,加深了我们对电池材料界面的认识和理解,大大缩短了我们解决技术难题的时间。”  2018年,厦门钨业获批国家发改委“高端储能材料国家地方联合工程研究中心”。孙世刚受聘担任中心技术指导委员会主任。孙世刚认为:“我们的研发成果能够帮助企业创新,企业能力提升后产生的需求,也在帮助我们调整科研方向。”  科研成果与产业需求有效结合,双方的合作走向深入。如今,厦钨将能源新材料发展为三大主营业务之一,成为锂电正极材料领域的一流供应商。  宁德时代,则是孙世刚团队进行成果转化的另一个舞台。  作为电动车的心脏,动力电池占据整车成本的近40%。曾经,关键锂电技术和材料都掌握在日韩手中,突破不了电池技术,就难以在新能源汽车领域开拓新局面。  2014年,宁德时代与孙世刚团队相遇。孙世刚团队自主研发的原位表征技术,助力宁德时代实现产品的变革性提升。  孙世刚教授团队成员介绍:“这项技术可以让研发人员‘在线’观察锂电池材料变化,充放电同时进行分析。可以实时检测到哪种状态产生了气体,准确把握故障原因,并快速改进。”  自2014年起,孙世刚担任宁德时代首届专家技术委员会委员;2016年,宁德时代建立了院士专家工作站;2017年,宁德时代企业博士后流动站成立,黄令教授作为合作导师,共同培养企业博士后至今。  “宁德时代实现愿景离不开创新,高校是在创新路上最重要的合作伙伴,厦门大学更是新能源产业科研领域的佼佼者。”宁德时代董事长曾毓群表示,高校的教研优势、人才优势,将为新能源产业集群持续提供创新动能。  谋于未来,聚焦科技竞争和发展制高点  “我们搞科学研究,就是要结合国家和社会需要解决的问题,用心做,不断探索”  面对蓬勃发展的新能源产业,电化学在燃料电池、电动汽车等领域正大有可为。而此时,孙世刚团队已将研究方向投向了更远的未来,以抢占科技竞争和发展制高点。  孙世刚说:“我们搞科学研究,就是要结合国家和社会需要解决的问题,用心做,不断探索。”  氢能具有来源广、燃烧值高、零碳排等优势,作为具有发展潜力的清洁能源,全球已有多个国家和地区发布了氢能源发展规划或路线图。当前我国氢能产业也处在快速发展阶段。  “氢的大规模运用是一个重要的发展方向。”孙世刚表示,“氢燃料电池商业化一直受阻于昂贵的铂基催化剂。怎样把催化剂效率提上去,同时把成本降下来,是我们未来研究重点。”  在厦门大学,以孙世刚团队为代表,氢能已开始了技术攻关和产学研结合。在氢能与燃料电池技术方面,嘉庚创新实验室已建立新型协同攻关机制,联合厦门金龙、宁德时代、厦门钨业等开展产业攻关。  参与嘉庚创新实验室氢能产学研攻关的周志有教授,是孙世刚团队成员。他介绍:“用铂金属做氢燃料电池催化剂材料,成本很高。现在,我们正以厦门钨业的钨、钼材料为基体,研制氢燃料电池用催化剂材料。”  这些研究,为未来燃料电池新型催化剂的研制提供了新思路。  与厦钨新能源的合作,同样正迈向更广泛的空间。锂硫电池,比钴酸锂电池具有更高能量。为在激烈的电池材料竞争中保持先机,厦钨新能源与孙世刚团队,正共同开展锂硫电池方面的研发。  如今,孙世刚团队不断突破研究边界,正为抢占新能源科研制高点助力。团队成员廖洪钢教授毅然从国外归来,加入孙世刚团队。“这里不仅有我需要的实验室设备,更有我向往的团队科研氛围。”廖洪钢说。  经过潜心攻关,廖洪钢通过MEMS加工技术在电子显微镜中成功构筑了一个纳米实验室。“借助这一技术,我们可以动态实时观察物质结构,全程高清拍摄每个原子的变化和运动轨迹。”廖洪钢表示,这项技术,可广泛应用于基础研究及产业升级等领域。  2019年,廖洪钢成立了厦门超新芯科技有限公司,获评国家级高新技术企业,目前已完成千万级天使轮融资,成为成功切入全球电镜产业链的中国科技企业代表。  对未来的科学研究与成果转化,孙世刚院士充满信心:“按照现有的研究基础,我们期望未来在基于非贵金属催化剂的燃料电池、超高比能量密度和比功率密度储能体系以及解决一些国家重大需求方面,取得新的突破。”
  • 【会议通知】固态十大焦点问题解答&天目湖先进电池产业创新论坛暨固态电池研讨会
    —2月23-24日中国-溧阳—天目湖先进电池产业创新论坛暨固态电池研讨会 参会联系人史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)如申请参会请填写左方二维码 论坛信息论坛时间2023年2月23-24日论坛地点江苏溧阳天目湖豪生大酒店组织机构l 指导单位工业和信息化部产业发展促进中心溧阳市人民政府长三角物理研究中心l 主办单位江苏省溧阳高新技术产业开发区管理委员会天目湖先进储能技术研究院江苏省储能行业协会中国汽车动力电池产业创新联盟固态电池分会北京清洁能源前沿研究中心江苏省储能材料与器件产业技术创新战略联盟 l 赞助单位赛默飞世尔科技(中国)有限公司溧阳储慧智能软件科技有限公司上海微纳国际贸易有限公司林德(中国)投资有限公司康模数尔软件技术(上海)有限公司牛津仪器科技(上海)有限公司上海交通大学绍兴新能源与分子工程研究院广东光华科技股份有限公司深圳市科晶智达科技有限公司上海米开罗那机电技术有限公司天津三英精密仪器股份有限公司深圳市新威尔电子有限公司合肥科晶材料技术有限公司博亿(深圳)工业科技有限公司威格科技(苏州)股份有限公司北京并行科技股份有限公司苏州易拓联国际贸易有限公司天美仪拓实验室设备(上海)有限公司苏州越视精密仪器有限公司瑞士万通中国有限公司深圳市迪斯普设备有限公司徕卡显微系统(贸易)有限公司广东欧科空调制冷有限公司杭州蓝固新能源科技有限公司东莞市琅菱机械有限公司咸阳科源新材装备有限公司深圳市泰能新材料有限公司苏州鸿昱莱机电有限公司复纳科学仪器(上海)有限公司复阳固态储能科技(溧阳)有限公司荷兰IVIUM艾维电化学(天津德尚科技有限公司)上海荆谱若科技有限公司天目湖先进储能技术研究院中科海钠科技有限责任公司北京卫蓝新能源科技有限公司l 合作媒体environmental advances、储能科学与技术、电化学期刊、电源技术杂志、高低温特种电池、金属空气电池、锂电联盟会长、锂电新能源、锂想生活、连线新能源、纳米materials、能源学人、石墨时讯、无人机、新材料资讯、新能源情报局、新威、伊曼如歌、仪器信息网、中国颗粒学会 组织委员会名誉主席:陈立泉 执行主席:温兆银,李泓组织委员会主席:李泓委员(按姓名首字母排序):薄首行、别晓非、曹安民、曾伟国、陈立桅、崔光磊、郜明文、关敬党、金東規、李泓、李晶泽、刘敏、刘张波、陆浩、史冬梅、王建涛、王尊志、尉海军、吴凡、夏晖、徐吉静、许晓雄、阳如坤、杨全红、姚霞银、易昊昊、赵伟、周伟东报告日程 固态十大焦点问题圆桌讨论期间邀请资深专家进行解答1、全固态锂电池相对于液态锂离子电池,是否有足够的的不可替代的优势,它的出现能否更好的解决安全性问题和里程焦虑?2、适合固态电池的电芯构型是什么?圆柱、软包和方壳?制造工艺选择叠片还是卷绕?制备极片选择干法还是湿法?3、有报道称,LG放弃全固态,这是否意味着全固态电池商业化短期内看不到希望?中国能否后发先至?4、原位固态化技术的意义和优势是什么?其主要难点和挑战在哪?5、为克服锂资源瓶颈,发展固态钠离子电池是否可行?固态钠离子电池相比于固态锂离子电池,可能有哪些优势和不足?6、硫化物全固态电池量产必须引入哪些新的制备技术和装备,大规模制造有哪些挑战?制造成本是否可以接受?7、目前硫化物全固态电池能量密度最高达到什么水平?循环性能达到什么水平,室温倍率特性如何?关键性能指标距离动力电池应用需求还有多大距离?8、固态电池技术在大规模储能市场的应用前景如何?是否有必要开始布局?哪些材料体系需要重点布局?9、目前混合固液电池技术在能量密度、安全性、循环寿命方面达到了什么水平?是否存在技术指标的天花板,是否是全固态电池的过渡技术?10、固态锂硫电池具备高能量密度、低成本和解决多硫离子穿梭问题的可能,目前还有哪些技术影响其量产? 赞助单位 参会单位 报名参会和住宿预订01参会费用如申请参会请填写左方二维码*注:1、参会费用包含:论坛注册费、餐费(含晚宴)、茶歇、资料费等,不包含酒店住宿费用。2、由于酒店餐饮容纳人员有限,超出部分用餐自理,敬请谅解。02缴费付款方式:银行转账公司名称:溧阳深水科技咨询有限公司地 址:江苏省溧阳市昆仑街道上上路87号(江苏中关村创智园1号楼)电 话:0519-87300136开 户 行:建设银行溧阳燕山路支行账 号:32050162634800000124付款请注明:“固态电池+姓名”,并将付款凭证保留,便于报到时查验。缴费成功后,请保持手机畅通,会务组会尽快与您联系,感谢您的支持!03住宿会务组在天目湖豪生大酒店以优惠价格为本次会议联系了一定数量的房间,参会人员可享受会议优惠价,鉴于会议规模,房间数量有限,先到先得。请各位嘉宾及时与工作人员联系确认,以免错过优惠价,费用自理。 会议联系人会务组邮箱ties-conference@aesit.com.cn联系电话史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制