当前位置: 仪器信息网 > 行业主题 > >

蛋白质工程

仪器信息网蛋白质工程专题为您整合蛋白质工程相关的最新文章,在蛋白质工程专题,您不仅可以免费浏览蛋白质工程的资讯, 同时您还可以浏览蛋白质工程的相关资料、解决方案,参与社区蛋白质工程话题讨论。

蛋白质工程相关的资讯

  • 蛋白质工程:跨学科研究揭神奇面纱
    在基因工程基础上发展起来的蛋白质工程,被称为“第二代基因工程”。在亚太地区蛋白质学会主席、北京大学跨院系蛋白质科学中心主任昌增益教授看来,蛋白质工程不仅蕴涵着人类攻克癌症等生命难题的重大契机,其在产业化上的巨大发展空间也是不言而喻的。   近年来,蛋白质工程研究和应用已遍及医疗、工业、农业等领域。目前,分子生物学家们已经能够通过对蛋白质进行修饰、加工、改良,使蛋白质“升级换代”。例如,人们对药物蛋白进行PEG(聚乙二醇)修饰,可以延长药物蛋白的作用半衰期 葡萄糖异构酶在工业上有着广泛的应用,人们对其基因进行定点诱变,将第138位的甘氨酸(Gly138)替代为脯氨酸(Pro)后,可显著提高葡萄糖异构酶的热稳定性,有利于其在食品工业上的应用 转入多拷贝串联的金属硫蛋白α-结构域编码基因的转基因植株,有着比野生植株更高的对重金属的抗性等等。   然而,昌增益认为,对蛋白质工程这座“金矿”的开发才刚刚开始。“尽管几十年来人们在蛋白质基础研究方面有了很大进步,但是我们对蛋白质这类结构和功能极其多样的神奇生命分子的认知还很有限,对蛋白质功能机制的研究方法和手段还远不够完善。”   他表示,如何揭示蛋白质分子发挥作用的规律,是一个复杂而艰深的难题。“借助其他学科平台,通过跨学科研究对蛋白质工程提出新的理论、新的方法,从不同的层面揭示蛋白质运作的机制,将是一个新的挑战和机遇。”   据了解,蛋白质工程研究的触角已经延伸到了各个高科技领域,包括生物、化学、物理、医学、工程以及计算机等。   “多学科、多角度、多层次的系统研究,能够帮助人们更深刻地揭示蛋白质‘神奇’的面纱,同时也能促进各学科的发展。”昌增益说。
  • 第三届国际蛋白质和多肽大会在京召开
    第三届国际蛋白质和多肽大会暨生命科学仪器展览会在京召开   仪器信息网讯 2010年3月21日,由国家外国专家局国外人才信息研究中心、中国医药生物技术协会主办,大连生物技术医药专家库、大连百奥泰生物技术有限公司承办的“第三届蛋白质和多肽大会暨生命科学仪器展览会(PepCon-2010)”在北京国际会议中心召开。本次会议共吸引了世界30多个国家和地区的1000余人参与,600多名著名专家学者、企业家和商务代表参加。 会议现场   会议以“深入探索生命的分子机器—蛋白质”为主题,旨在为全球从事蛋白质和多肽研究的科学工作者、研究机构和相关企业搭建一个自由交流的平台,从而促进国际项目合作,进一步推动该领域的发展。   大会议程共分为主题论坛、平行论坛及生命科学仪器展览三部分。其主题论坛邀请了国际上著名专家围绕会议主题集中为与会者做主题报告 而中平行论坛设有十二个分会主题,分别为:蛋白质基础科学、蛋白质技术、蛋白质和疾病、人类蛋白组学技术及癌症研究、蛋白激酶作为小分子药物发现的靶标、其它基于蛋白质的药物发现、蛋白质表达、蛋白质生物标志物、蛋白质作为生物催化剂和生物材料、蛋白质分析和质量控制、蛋白质工程和生产以及蛋白质作为非抗体和非疫苗药物的蛋白质治疗。在生命科学仪器展览会上,赛默飞世尔科技有限公司、沃特世科技(上海)有限公司、马尔文仪器有限公司、杭州华安生物技术有限公司、北京中科亚光生物科技有限公司、苏州中科天马肽工程中心有限公司等20余家企业参展。   部分参展的厂商:
  • 赛分科技参加第五届蛋白质和多肽大会
    2012年3月23-25日,第五届蛋白质和多肽大会(五周年庆)在北京国际会议中心隆重召开,本届会议的主题是“强大的蛋白质和多肽”。除主论坛外,大会科技议题还包括:蛋白质科技前沿、蛋白质组学与宏蛋白质组学、人类疾病与蛋白质发现、蛋白药物及其临床意义、非人类蛋白的研发、多肽科学、多肽化学与合成方法、多肽药物发现、对生物活性肽及其应用的探索、肽的新应用、蛋白质工程技术、仪器设备的创新等14大分会和100多个分论坛。赛分科技作为全球知名的生物分离色谱领航者,积极参加了此次会议,并带来了赛分科技的最新科技成果——“抗体分析方法包”。 赛分科技最新解决方案——“抗体分析方法包” 在此次会议中,赛分科技总裁兼首席技术官黄学英博士应邀主持了“蛋白质质量控制/质量评价与分析工具”专场,并发表了“单克隆抗体在分离与鉴定中的全套解决方案”的主题报告。 黄学英博士在报告中 单克隆抗体作为一种重要的治疗蛋白质,越来越受到关注。赛分科技推出的抗体分析方法包为单克隆抗体的分析和鉴定提供了完整的解决方案。其中,Zenix™ 300体积排阻色谱柱可高效分离抗体单体、多聚体、片段、轻链和重链;Antibodix™ 阳离子交换色谱柱用于分离在结构上差异很小的单克隆抗体异构体。Bio-C8反相色谱柱可分离Fab和Fc以及轻重链。 与会观众和专家们对赛分科技的“抗体分析方法包”产生了浓厚的兴趣,积极提问,并纷纷索取相关产品资料。会议交流热烈,气氛友好。 赛分科技展台 赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。
  • 走访北京蛋白质组研究中心
    21世纪是生命科学的世纪,随着人类基因组计划的完成,人类蛋白组研究成为了生命科学乃至自然科学领域下一步的重大科学命题。在这一背景下,2004年6月30日,由军事医学科学院院长贺福初院士牵头,军事医学科学院、中国科学院、中国医学科学院、清华大学、北京大学、北京生物技术和新医药产业促进中心及江中集团共同发起,组建成立BPRC,并于2005年10月29日正式入驻中关村生命科学园。   2012年7月26日,仪器信息网编辑和我要测工作人员走访了中关村生命科学园内的北京蛋白质组研究中心(Beijing Proteome Research Center以下简称BPRC)。走访得到了BPRC技术部史冬梅部长的热情接待,不但了解了BPRC的一些具体情况,还参观了部分实验室。   据了解,BPRC专注于具有自主知识产权的蛋白质组和功能基因组的研究与开发,经过5年的建设,已经成为国际人类肝脏蛋白质组计划执行总部、蛋白质组学国家重点实验室、全军蛋白质组学重点实验室、蛋白质组学北京市重点实验室、“首都科技条件平台”和“中关村开放实验室”。另外,申报的蛋白质药物国家工程研究中心、国家蛋白质科学基础设施也已获得国家发改委批准,即将启动建设。BPRC建成“产、学、研、用”四维一体的综合基地的目标正在逐步实现中。    BPRC取得的部分资质   BPRC内部办公区   BPRC部分专家简介   BPRC实验室部分仪器:AB SCIEX三重四极杆质谱   BPRC实验室部分仪器:赛默飞三重四极杆质谱   BPRC实验室部分仪器   仪器信息网编辑和史冬梅部长(中)合影   科研项目   BPRC现有蛋白质分离鉴定、翻译后修饰蛋白质组、多肽组、蛋白质相互作用、蛋白质定位、功能蛋白质组、功能基因组、肝脏免疫学、脑/神经蛋白质组、模式生物蛋白质组、抗体工程、蛋白质工程、蛋白质组新技术、生物信息学、网络与信号转导共15个研究室,仅拥有的大型设备总价值就达六、七百万,研究团队200多人,包括1名中科院院士、16名研究员、23名副研究员,还有国际人类蛋白质组组织理事1人、亚太地区人类蛋白质组组织副主席1人、蛋白质组学国际权威刊物Proteomics编辑4人,CNHUPO委员12人。   目前,BPRC承担的各类科研任务共计172项,其中由中心牵头承担的重大项目包括973有4项,863项目4项,国际合作项目4项,国家自然科学基金项目13项,国家自然基金创新群体1项,“艾滋病和病毒性肝炎等重大传染病防治”专项2项,国家重大新药创制和军用特需新药创新专项7项。   在接受任务的同时,BPRC也取得了很多骄人的成绩:多人多次获得国际、国家、军队和北京市的科研奖项,仅2011年,BPRC就有10名科技人员获奖,其中贺福初院士获得由人类蛋白质组组织颁发的“杰出贡献奖”,张令强研究员一人获得了“国家杰出青年科学基金” 、“中国科协求是杰出青年实用工程奖”和“贝时璋青年生物物理学家奖”3个奖项 在国际刊物Nature、Science、Mol Cell Proteomics等发表了多篇文章,平均影响因子达5.7 除此之外,BPRC还获得了40项国家、欧盟专利及软件著作权,并将部分开发的软件放到互联网上,供有需要的人免费使用。   人才培养   人才是科研的关键和未来,BPRC对人才的培养主要分三个方面进行:一、对现有人员的扶持和激励,设立“凤凰”杰出人才奖励基金、“雏鹰计划”、“青苗计划”、“重点实验室青年研究项目”和“绿叶奖”等各类人才基金,鼓励人才大胆创新 二、对生力军的大力培养,除军事研究科学院招收的部分研究生外,BPRC还接受访问学者、留学生和进修生,至今已培养出100余名博士、80余名硕士、20余名博士后,其中2人获得全国百篇优秀博士学问论文 三、面向蛋白质相关研究人员的技术培训,BPRC已举办各类培训班50余期,培训学员近万人次,包括医疗、制药等多个行业的从业人员,对推进中国蛋白质组学领域的研究和应用起到了推动。   在人才的培养的同时,BPRC也不忘交流和互动,先后主办了多次大型学术会议和科研交流活动。一方面鼓励科研人员走出去,参加国外的高端科研会议学习、取经,如2011年9月4-7日,贺福初院士等一行十余人赴瑞士日内瓦参加第十届国际蛋白质组大会 另一方面欢迎国外的专家学者来BPRC进行学术交流,如世界知名制药企业罗氏和默克公司,都曾由全球研发总裁带队,带领公司高层和技术人员到BPRC参观、考察。   对外服务   BPRC充分发挥自身技术平台的人力、技术和设备优势,本着资源共享的宗旨,接受委托研究并对外提供技术服务。资质方面,BPRC参与了国际人类蛋白质组组织(HUPO)组织的全球27家实验室比对评估实验,是首批获得100%正确结果的6家实验室之一,并通过了ISO/IEC17025:2005(CNAS-CL01)实验室认可,有着完善的质量控制体系,是首都科技条件平台和中关村开放实验室成员,可提供蛋白质组学、多肽组学及相关药物结构确认等多项服务。目前为止,服务范围已覆盖全国各省市,为500余家研究院所、高校、医院、食品及生物医药企业提供过技术服务。   另外,BPRC还对外提供一些科研检测试剂盒和毛细管液相色谱填充柱。这些都是BPRC自主研发,平时应用于研究中的一些成熟产品,对于特定实验有着更高的灵敏度和更短的检测时间,并可根据客户需要量身订制,满足客户实际需求。   附录:北京蛋白质组研究中心   http://www.bprc.ac.cn
  • 仪器信息网参观北京蛋白质组研究中心
    北京蛋白质组研究中心(Beijing Proteome Research Center,BPRC)经过国际人类蛋白质组组织(HUPO)认可,已经成为国际人类肝脏蛋白质组计划(HLPP)的执行总部,是蛋白质组科学研究的数据与信息中枢、科技成果与知识产权的交流中心。同时也是中国人类肝脏蛋白质组计划(CNHLPP)的组织者和主要承担单位,是国家蛋白质组科学研究的基地和蛋白质药物国家工程研究中心。2008年3月18日,仪器信息网相关人员应邀参观。 图一 北京蛋白质组研究中心研发大楼   在中心副主任魏开华老师的带领下, 仪器信息网人员参观了中心研发大楼内(总建筑面积达12600平方米)学术走廊、展报、墙报、研究室和分析测试实验室。中心已建成的十大国际一流水平研究平台如下:蛋白质表达谱研究室/技术平台、蛋白质修饰谱研究室/技术平台、蛋白质相互作用研究室/技术平台、蛋白质定位研究室/技术平台、抗体工程研究室/技术平台、生物信息学研究室/技术平台、功能蛋白质组研究室/技术平台、功能基因组研究室/技术平台、蛋白质组新技术研究室/技术平台、蛋白质工程研究室/技术平台。大家对中心分析实验室内国际先进的蛋白质分离、鉴定系统,LTQ-FT、LTQ、MALDI-TOF-MS、MALDI-TOF-TOF-MS、ESI-Q-TOF-MS、ESI-Ion Trap-MS等大型质谱设备以及超级计算机检索系统赞叹不已。 图二 研发大楼内办公区 图三 研发大楼内办公区展报走廊1 图四 研发大楼内办公区展报走廊2 图五 研发大楼内实验室区学术走廊1 图六 研发大楼内实验室区学术走廊2 图七 研发大楼内实验室区分析实验室 图八 研发大楼内实验室区小型质谱仪室 图九 研发大楼内实验室区MALDI-TOF-TOF-MS仪   蛋白质组研究中心的先进大型仪器和优越检索系统,形成了高通量、高灵敏度、高分辨率和规模化的蛋白质组技术检测体系,结合相应的标记技术(DIGE、ITRAQ、SILAC等)和富集技术(IMAC等),构建了较完整的差异蛋白质以及修饰蛋白质的分析技术。   目前北京蛋白质组研究中心已开展重大疾病,尤其是肝脏疾病和肿瘤相关的蛋白质组研究,为下一步重要药物靶标的发现奠定了基础。中心平台承接各类蛋白质组学技术服务,开展规模化、高通量的蛋白质组学委托科研服务。同时,中心长期从事生物质谱和蛋白质组学研究方面的培训服务,详情可登陆网站:http://www.bprc.ac.cn 查询。
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 多柱组合层析高通量蛋白质分离设备仪器研制项目通过验收
    4月24日,中科院过程工程所苏志国研究员主持完成的“多柱组合层析高通量蛋白质分离设备”重大科研装备研制项目通过中科院计划局组织的专家验收。   验收专家组成员认真听取设备研制工作报告、经费收支检查报告、设备使用报告、测试报告,并现场考察了研制的4柱和12柱组合层析分离装置。专家组充分讨论后认为:承担单位研制的多柱组合层析高通量蛋白质分离设备拥有自主知识产权,具有创新性和实用性,在蛋白质分离设备的国产化方面取得了突破 研制的4柱和12柱组合层析分离装置运行正常,各项技术指标均达到了任务书规定的要求,部分技术指标优于任务书原定的指标 研制的设备采用多柱组合的创新设计思路,实现了计算机自动控制和高通量、高效率、多模式层析,在同时分离纯化多种蛋白产物和蛋白质的分离纯化效率方面优于当前国际知名品牌的同类仪器。   自2007年以来,苏志国课题组开始进行多柱组合层析高通量蛋白质分离设备的研制工作,经过两年多的努力,取得了一系列创新性成果,实现了关键部件的自主设计加工,完成了一套通用性强、自动化高、操作简便快捷的蛋白质层析工作站。   蛋白质的高通量层析分离纯化是蛋白质组学研究和蛋白质产品生产过程中的关键技术之一。本项目的成功,一方面解决了生化工程国家重点实验室分离纯化各种蛋白质药物和天然产物药物的装备所需,另一方面也可以为我国生物技术同行提供有自主知识产权的蛋白质分离纯化装备,满足国家和中科院蛋白质工程研究所需,提供一种高通量大规模制备蛋白质的平台。      12柱组合层析系统     4柱组合层析系统
  • 139万!东南大学医学与生命科学平台蛋白纯化仪和蛋白质稳定分析仪采购项目
    项目编号:JSHC-2022121190C2项目名称:东南大学医学与生命科学平台蛋白纯化仪采购预算金额:96.0000000 万元(人民币)采购需求:东南大学医学与生命科学平台采购蛋白纯化仪一套,主要功能要求如下:可以进行生物大分子的范例纯化,已知和未知蛋白质的纯化,蛋白质的结构动力学药物作用靶点研究,药物蛋白的分离,蛋白质工程药物的合成,蛋白质的定性,基因表达产物的分离。主要技术要求如下:蛋白纯化系统主机部分系统泵:精确的全自动微量柱塞泵,双泵四泵头,每个泵头都有独立除气阀。流速:0.001-25ml/min;装柱可以双泵模式运行,达到0.1–50ml/min。压力范围:0–20 MPa (200bar,2900 psi);梯度流速范围:0.5-25ml/min。具备恒压调速功能,自动根据压力调节流速输出,使压力保持稳定。项目编号:JSHC-2022121193C7项目名称:东南大学医学与生命科学平台蛋白质稳定分析仪采购预算金额:43.0000000 万元(人民币)采购需求:东南大学医学与生命科学平台采购蛋白质稳定分析仪一套,主要技术要求如下:(1)适用范围:可分析任意类型的蛋白样品:病毒颗粒、膜蛋白、标签蛋白、酶、抗体、激酶、多聚复合物等。(2)样品数量:≥6 个(3)测量时间:≤3 分钟(4)样品消耗量:≤10 µL合同履行期限:详见采购文件本项目( 不接受 )联合体投标。
  • 瑞士Tecan参加2013第六届国际蛋白质和多肽大会
    中国,苏州,2013年3月25日- 2013年3月21-23日,全球近400生物医药领域专家和行业从业者汇聚苏城,参加了2013第六届国际蛋白质和多肽大会。本次大会由中国国家外国专家局国外人才信息研究中心、苏州市人才工作领导小组办公室、苏州人力资源和社会保障局、中国医药生物技术协会联合主办。本次大会主题为&ldquo 发展、转变与产业化&rdquo ,为期三天,就蛋白质组学、蛋白质科学、蛋白分析与分离技术、蛋白质设计与蛋白质工程、蛋白质与疾病、多肽技术与商务合作、分析技术等40个科技议题展开。 大会开幕式 瑞士Tecan集团作为实验室自动化引领者,在蛋白质纯化、自动化胶内酶解与MALDI TOF MS样本制备、蛋白结晶、蛋白表达等领域积累了丰富的经验和知识。Tecan集团Guy Burssens博士应主办方邀请在&ldquo 生物医学和生命科学中质谱(MS)应用&rdquo 的分会场为大家介绍了Tecan 自动化样本制备技术在小分子质谱分析中的应用优势。近年来,小分子质谱分析的样本通量大幅增加,具有高灵敏度和快速高效的质谱分析技术,与目前具有良好选择性和可靠性的液相色谱系统一起,使得实验处理时间大大缩短。但是由于手工制备样本既耗时耗力,又容易出现错误影响实验再现性,因此样本制备环节越来越成为整个实验流程的瓶颈。 使用自动化液体处理技术进行LC-MS/MS样本制备,既可以提高实验可重复性、省时省力,又能极大地保证样本和试剂的可溯源性,因此变得越来越流行。自动化技术良好的成本效益提高了日样本处理通量。另一方面,自动化项目的上马需要综合考虑预算、实验室场地、建设周期等多方面的因素,Guy Burssens博士通过介绍LC-MS/MS中进行自动化样本制备的几组案例,与参会代表们分享了如何有效开展自动化技术,使其能够极大简化现有的实验流程。 Guy Burssens博士介绍自动化样本制备在MS、LC/MS-MS中的应用优势 欲了解更多Tecan蛋白类应用解决方案,请点击www.tecan.cn/protein。 更多详情,欢迎您联系: 帝肯(上海)贸易有限公司 Libby Zhu Tel: 021 2206 3206 / 010 8511 7823 Fax:021 2206 5260 / 010 8511 8461 infotecancn@tecan.com www.tecan.com 关于帝肯 瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域自动化及解决方案供应商。公司成立于1980年,总部设在瑞士Mä nnedorf,分别在瑞士、北美和奥地利设有自己的研发和生产基地,目前公司主要经营的产品有三大类:全自动化液体处理平台( Liquid Handling & Robotics )、多功能酶标仪(Multimode Reader)和OEM组件。销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。其液体处理技术已拥有行业经验32年,在全球处于领先地位,备受世界领先生命科学实验室的青睐。作为原始设备制造商(OEM),Tecan同样在OEM设备和组件开发和生产方面占有世界领先地位。2011年,Tecan创造了3.77亿瑞士法郎(即4.24亿美元;或3.06亿欧元)的销售业绩。Tecan集团的注册股票在瑞士证券交易所交易(TK: TECN/Reuters: TECZn.S/ ISIN: 12100191)。欲了解更多信息,请浏览公司网站:www.tecan.com。 关于帝肯中国 瑞士Tecan于2004年在北京开设代表处,正式进驻中国市场。2008年4月在上海浦东成立帝肯(上海)贸易有限公司,作为Tecan集团在亚太地区(日本及韩国除外)总部,全面负责Tecan集团在中国的所有商业活动,包括销售、市场活动与合作、以及客户支持。帝肯(上海)目前拥有一支专业的售前和售后服务团队,在科研、制药、公安刑侦、医院、血站、CDC和CIQ领域构建了良好的经销和售后服务网络,并以&ldquo 力求比客户期望做的更好&rdquo 的服务理念,给广大的终端用户提供专业的服务。我们致力于成为包括客户在内的所有合作方的首选合作伙伴(Partner of Choice)。 欲了解更多信息,请浏览公司网站:www.tecan.cn。
  • 内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析
    内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析北京佰司特贸易有限责任公司蛋白质是生物体中广泛存在的一类生物大分子,具有特定立体结构的和生物活性以及诸多功能,根据这些功能我们可以将其应用于蛋白质的分子设计、蛋白质功能的改造、疾病的基因治疗以及新型耐抗药性药物的开发与设计甚至是发现生物进化的规律等先进科研领域上。因此,蛋白质具有非常重要的研究价值。进行蛋白质性质和功能研究的前提是获得稳定的蛋白质样品,而由于蛋白质自身性质的复杂性,难以保证获得的蛋白质样品是否具有正确的三维结构以及功能,因此急需一种技术手段或设备,对蛋白质的稳定性进行分析,确定获得蛋白质最ZUI适宜的缓冲液条件、蛋白质的长期储存稳定性等。另外在进行蛋白质-配体小分子相互作用研究时,因为需要筛选的小分子配体数量巨大,因此也急需一种技术手段或设备,可以高通量的对配体结合进行筛选。蛋白中的色氨酸和酪氨酸可以被280 nm的紫外光激发并释放出荧光,其荧光性质与所处的微环境密切相关。蛋白变性过程中,色氨酸从疏水的蛋白内部逐渐暴露到溶剂中,荧光释放的峰值也从330 nm逐渐转移到350 nm。内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光(350 nm/330 nm比值)的改变,获得蛋白的热稳定性(Tm值)、化学稳定性(Cm值)等参数。相比传统的方法,无需添加染料,通量高,样品用量少,数据精度高。 多功能蛋白质稳定性分析仪PSA-16是一款无需加入荧光染料、高通量、低样品消耗量检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变形剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。基于内源差示扫描荧光技术(intrinsic fluorescence DSF),在无需添加外源染料的条件下,对蛋白进行升温变性,通过内源荧光和散射光的变化与三级结构变化的关系,PSA-16可用于测定不同buffer中蛋白的Tm值变化,获得蛋白质正确折叠的最ZUI优buffer条件;测定不同detergent条件下膜蛋白Tm值,进行detergent筛选;测定不同添加剂对蛋白稳定性的影响;测定添加配体后Tm值变化进行配体结合筛选;测定蛋白中变性部分的比例,进行质量控制;测定蛋白Tm值与浓度的相关性,获得最ZUI优蛋白浓度进行后续结晶等实验;测定蛋白去折叠过程,进行蛋白复性条件筛选;测定蛋白folding enthalpy,研究蛋白的长期稳定性;测定不同批次和存储后的蛋白的稳定性,并进行相似性评分,对蛋白进行质量控制。多功能蛋白质稳定性分析仪PSA-16,无需对蛋白进行荧光标记,可以直接测定蛋白在不同缓冲液条件中的Tm值,进行缓冲液筛选和优化;同时还可以测定添加不同配体化合物对蛋白稳定性的影响,通过Tm值变化进行配体结合筛选。PSA-16满足我们目前对于蛋白质稳定性分析的迫切需求。多功能蛋白质稳定性分析仪PSA-16可用于评估蛋白(抗体或疫苗)热稳定性、化学稳定性、颗粒稳定性等特性,实现非标记条件下的高通量的抗体制剂筛选、分子结构相似性鉴定、物理稳定性、长期稳定性、质量控制、折叠和再折叠动力学研究等功能。★ 蛋白热稳定性分析★ 蛋白化学稳定性分析★ 蛋白等温稳定性分析★ 蛋白颗粒稳定性分析★ 免标记热迁移实验(dye-free TSA)★ 蛋白去折叠、再折叠、结构相似性分析★ 蛋白质量控制分析 多功能蛋白质稳定性分析仪PSA-16基于内源差示扫描荧光(ifDSF)技术,广泛应用于蛋白质稳定性研究、蛋白质类大分子药物(抗体)优化工程、蛋白质类疾病靶点的药物小分子筛选和结合力测定等领域,具有快速、准确、高通量等诸多优点。蛋白质中色氨酸/酪氨酸的荧光性质与它们所处的环境息息相关,因此可以通过检测蛋白内部色氨酸/酪氨酸在加热或者添加变性剂过程中的荧光变化,测定蛋白质的化学和热稳定性。PSA-16采用紫外双波长检测技术,可精准测定蛋白质去折叠过程中色氨酸和酪氨酸荧光的变化,获得蛋白的Tm值和Cm值等数据;测定时无需额外添加染料,不受缓冲液条件的限制且测试的蛋白质样品浓度范围非常广(10 µ g/ml - 250 mg/ml),因此可广泛用于去垢剂环境中的膜蛋白和高浓度抗体制剂的稳定性研究。此外,PSA-16具有非常高的数据采集速度,从而可提供超高分辨率的数据。同时PSA-16一次最多可同时测定16个样品,通量高;每个样品仅需要15 uL,样品用量少,非常适合进行高通量筛选。PSA-16操作简单,使用后无需清洗,几乎无维护成本。★ 非标记测试★ 10分钟内完成16个样品的分析★ 仅需10μL样品,浓度范围0.005mg/ml—200mg/ml★ 15-110℃温控范围,升温速率0.1-7℃/min★ 适用于任意种类的蛋白分子★ 无需清洗和维护★ 可增配机械手臂实现全自动工作 性能参数:★ 直接检测蛋白质内源紫外荧光,测定时无需额外添加染料,不限制蛋白缓冲液。★ 可同时测定16个样品。★ 样品管材质:高纯度石英管,8联排设计,可使用多通道移液器批量上样,亦可单管使用。★ 样品体积:15 μL/样品。★ 样品浓度范围:0.01 mg/mL–250 mg/mL。★ 温控范围:15-110℃可选。★ 升温速度范围:0.1-15℃/分钟可调。★ 温控精度:+ 0.2℃。★ 采样频率:1 HZ,1/60 HZ可选。★ 应用范围:热稳定性实验、化学稳定性实验、等温稳定性实验、温度循环实验、TSA实验。★ 软件具备比对功能,可通过热变性曲线对蛋白进行相似性评分。★ 测定参数:Tm、Ton、Cm、ΔG、Similarity。★ Tm测定精度:★ 一体机,可以通过触摸屏进行试验设置,实时采集数据和显示数据,生成详细的结果报告。应用领域:多功能蛋白质稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白质稳定性分析系统在各学科的研究中都有基础性意义。 1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。   走近中国大科学工程   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. etal. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
  • 国家蛋白质科学基础设施(凤凰工程)可行性研报告顺利通过评估
    2010年8月23日,受国家发改委委托,中国国际工程咨询公司(以下简称“中咨公司”)在北京永兴花园饭店组织召开了国家蛋白质科学基础设施—北京基地(凤凰工程)建设项目可行性研究报告(以下简称“可研报告”)评估会。总后卫生部、国家教育部、中国科学院、北京市发改委和昌平区发改委的有关领导出席了会议。中心主任、军事医学科学院院长贺福初院士、院科技部徐天昊副部长、院务部任华林副部长、二所杨晓明所长、清华大学陈吉宁常务副校长、生命科学学院院长施一公教授、北京大学林建华常务副校长、生命科学学院院长饶毅教授、中科院生物物理所许瑞明副所长等出席了此次会议。   专家组认真听取了军事医学科学院、清华大学、北京大学、中科院生物物理所等建设单位和可研报告编制单位中国中元国际工程公司的汇报,并与出席会议的建设单位的领导和专家进行了充分的交流。专家组认为,凤凰工程是在国家层面统一部署、集中建设的大型基础设施,是开展大规模蛋白质研究与开发,抢占生命科学研究战略前沿必要的基础条件,其建设符合《国家中长期科学和技术发展规划纲要(2006—2020年)》总体部署要求。   根据前期对该项目情况的了解以及可研报告中各项建设条件的充分论证分析,专家组认为,该项目建设单位拥有科研基础雄厚、专业水平顶尖的人才队伍,为项目建设提供了雄厚的技术支持和保障;项目技术方案合理,选址及建设规模符合北京市规划要求,布局合理;项目所在位置的市政条件配套完善,环境保护措施和节能措施完备,投资估算全面细致,规范合理。   经充分讨论,专家组一致认为,该项目的建设将进一步提升我国蛋白质科学的整体研究水平和能力,培养高水平人才,为我国生命科学研究和发展做出重要贡献;该项目建设条件已经基本具备,可行性研究分析合理,应加快项目前期工作,尽早获得国家批复并开工建设。同时专家组建议进一步健全对外开放的运行机制,促进科研院所与高等院校之间的强强联合和资源集成,使该设施充分发挥作用。   会上,总后卫生部、国家教育部和中国科学院有关领导希望项目建设单位继续团结协作,利用这个契机,建设和完善我国蛋白质科学的支撑体系,共同为我国我军的蛋白质科学乃至生命科学的发展做出更大的贡献,同时也为今后生命科学领域的其它大型设施的建设起到引领和示范作用。   最后,贺福初院士对国家发改委、中咨公司、国家教育部、总后卫生部、北京市发改委等相关部门和评审组专家长期以来对该项目的关心和支持表示感谢。作为项目法人单位的负责人、项目建设总负责人和首席科学家,贺院士同时表示,要充分发挥解放军敢打硬仗、能打胜仗、会打漂亮仗的传统,联合清华大学等优势单位,把“凤凰工程”建设好,管理好、运行好,让这只“凤凰”飞起来。这个项目之所以命名为“凤凰工程”,就是希望这个国家设施能充分发挥国家级公共平台的作用,有力支撑我国乃至全世界的蛋白质科学的发展和腾飞。   清华大学生命科学学院王志新院士、隋森芳院士、科研院王治强副主任,北京大学生命科学学院科研部周辉部长,我院科技部综合计划处徐池副处长、二所科技处王东根处长、甄蓓副处长等领导出席了此次会议。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • 蛋白质组:解码生命“天书”
    人类和老鼠的外貌可说是天渊之别,但实际上他们却有着近99%相同的基因组。何以&ldquo 失之毫厘差之千里&rdquo ?正是蛋白质放大了他们基因上的细微差别。 日前,中国人类蛋白质组计划全面启动。&ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至几近万倍地放大。&rdquo 亚太蛋白质组组织主席、中国科学院院士贺福 初表示,这一计划的实施将对基因组序列图进行&ldquo 解码&rdquo ,进而全景式揭示生命奥秘,为提高重大疾病防诊治水平提供有效手段。 解码生命的&ldquo 密钥&rdquo 提起蛋白质,大家并不陌生。它是生物体内一种极为重要的高分子有机物,约占人体干重的54%。 不过,&ldquo 蛋白质组&rdquo 一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后&ldquo 操盘者&rdquo 并非基因组,而是蛋白质组。&ldquo 1994年澳大利亚科学家率先提出蛋白质组这个概念,指某个时刻、某个组织、器官或个体中所有蛋白质的集合。&rdquo 贺福初说。 科学家们之所以对蛋白质组产生浓厚兴趣,还要从人类基因组计划说起。2003年4月,耗资27亿美元、经由6国科学家历时13年奋战的人类基因组计划,以人类基因组序列图的绘制完成为标志,画上了句号。 没想到,更大的挑战还在后头&mdash &mdash &ldquo 科学界曾经认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是错了&rdquo 。国际蛋白质组组织启动计划主席萨姆· 哈纳什说,事实上,我们此时只了解10%的基因的功能,剩下的90%仍是未知的。 &ldquo 人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能的执行体层次,揭示人类生、老、病、死的全部秘密。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面。&rdquo 贺福初表示。 就 人体而言,各个器官的基因组是一样的,而它们之所以形态、功能各异,正是其结构与功能的物质基础&mdash &mdash 不同的蛋白质组在&ldquo 操盘&rdquo 。&ldquo 就像蛹化蝶,无论形态如 何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红说,人的每一种生命形态,都是特定蛋白质组在不同时间、空间出现并发挥功能的 结果。比如,某些蛋白质表达量偏离常态,就能够表征人体可能处于某种疾病状态。 &ldquo 无论是正常的生理过程还是病理过程,最直接的体现是蛋白质以及它们的集合体&mdash &mdash 蛋白质组。&rdquo 上述专家们表示。&ldquo 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。&rdquo 贺福初说。 独辟蹊径的&ldquo 中国画卷&rdquo 事实上,早在上世纪90年代人类基因组计划成形之际,已有科学家提出解读人类蛋白质组的想法。其目标是,将人体所有蛋白质归类,并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用等。 《科学》杂志在2001年,也将蛋白质组学列为六大科学研究热点之一,其&ldquo 热度&rdquo 仅次于干细胞研究,名列第二。 不过,严峻的现实挑战,让这一想法迟迟停留在&ldquo 纸上谈兵&rdquo 阶段。&ldquo 生物蛋白质数的差别大概是基因数差别的三个数量级左右,人类基因总数大概2万多个,人体内的蛋白质及其变异、修饰体却是百万级的数量。&rdquo 贺福初表示。 不仅如此,人类基因组图谱只有一张,而蛋白质组图谱每个器官、每个器官的每一种细胞都有一张,且在生理过程和疾病状态时还会发生相应改变。工程的艰巨性可想而知。 但困难并未阻挡住科学家们对其探索的脚步。1995年,首先倡导&ldquo 蛋白质组&rdquo 的两家澳大利亚实验室分别挂牌成立蛋白质组研究中心。随后欧美日韩等国均有行动。 1998年初,从事基因组研究的贺福初敏锐地嗅到这朵夜幕后悄然盛开的&ldquo 莲花&rdquo ,逐渐将精力投入到这个新兴领域。 2001年,&ldquo 基因组会战&rdquo 尚未鸣金,《自然》、《科学》杂志即发出&ldquo 蛋白质组盟约&rdquo 。同年秋,&ldquo 人类蛋白质组计划&rdquo 开始孕育。 2002 年4月,贺福初在华盛顿会议上阐述&ldquo 人类肝脏蛋白质组计划&rdquo 。同年11月,&ldquo 人类血浆蛋白质组计划&rdquo &ldquo 人类肝脏蛋白质组计划&rdquo 正式启动,贺福初担任&ldquo 人类 肝脏蛋白质组计划&rdquo 主席。其后两年间,德国牵头的&ldquo 人类脑蛋白组计划&rdquo 、瑞士牵头的&ldquo 大规模抗体计划&rdquo 、英国牵头的&ldquo 蛋白质组标准计划&rdquo 及加拿大牵头的 &ldquo 模式动物蛋白质组计划&rdquo 相继启动。 然而,很少有人知道,这种以生物系统为单元的研究策略酝酿之初饱受诟病。贺福初回忆,在华盛顿,中国人提出蛋白质组计划必须按生物系统(如器官、组织、细胞)进行一种战略分工和任务分割,一石激起千层浪,争议四起。 &ldquo 要想通过分工合作来完成全景式分析人类蛋白质组的宏大目标,必须以人体的生物系统作为研究单元和分工的规则。这个策略,10年来合者渐众,不过目前仍存争议,中国的先见之明可能得在下个10年成为不可阻挡的潮流。&rdquo 贺福初坦陈。 定位疾病的&ldquo GPS&rdquo 历经10余年的努力,以贺福初为代表的中国蛋白质组研究团队,在该领域向世界交了一份漂亮答卷: 成功构建迄今国际上质量最高、规模最大的人类第一个器官(肝脏)蛋白质组的表达谱、修饰谱、连锁图及其综合数据库; 首次实现人类组织与器官转录组和蛋白质组的全面对接; 在 炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的 新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝 癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记。2012年,张令强课题组研制出世界上首个能特异性靶向成骨细胞的核酸递送系 统,提供了一种基于促进骨形成的全新骨质疏松症治疗途径,向解决骨丢失无法补回这一医学难题迈出了坚实的一步。2014年,张令强课题组首次在国际上揭示 泛素连接酶Smurf1是促进结直肠癌发生发展,并且导致病人预后差的一个重要因子&hellip &hellip 上述几项成果均发表于国际顶级的《科学》、《自然》系列杂志。 还没来得及分享这一喜悦,激烈的角逐又让他们绷紧了神经。日前,英国《自然》杂志公布美国、印度和德国等合作完成的人类蛋白质组草图。研究人员表示,这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。 &ldquo 尽 管还有许多不完善的地方,但确实是蛋白质组学领域乃至整个生命科学领域,具有里程碑意义的科学贡献。&rdquo 中国科学院院士饶子和直陈。中国科学院院士张玉奎指 出,虽然中国在蛋白质组的一些领域走在了世界前列,但国外有些团队正快马加鞭,我们不得不警醒,否则很快将被甩出第一阵营。 6 月10日,中国人类蛋白质组计划全面启动实施。&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊断标志物、治疗和创新药物,可以全面提高疾病防 诊治水平。这个项目完成后,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo ,进而找到针对性的诊断措施、干预措施和预防措 施。&rdquo 记者了解到,中国人类蛋白质组计划第一阶段,将全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及的主要组织器官的蛋白质组,了解疾病发生的主要异常,进而研制诊断试剂以及筛选药物。这将在2017年左右完成。 &ldquo 这是真正的原始创新,也是中国能够引领世界科技发展的重要领域之一。&rdquo 贺福初强调说。
  • 安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会
    安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议 2011年5月6-9日,亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议在世博之城上海隆重召开。本届会议由&ldquo 亚太地区蛋白质科学联合会(Asia Pacific Protein Association, APPA)和国际蛋白质学会(The Protein Society)主办、中国生化学会蛋白质专业委员会(The Chinese Protein Society)承办。本次会议以&ldquo Proteins and Beyond&rdquo 为主题,诚邀国内外蛋白质组学领域众多顶尖专家学者,围绕业内热点问题成功举行了一次高端学术盛宴,会议议题主要围绕蛋白合成/质控、蛋白翻译后修饰、蛋白相互作用、蛋白工程、蛋白定量、疾病蛋白质组学与药物发现、生物制药等热门领域。 安捷伦公司作为会议的主赞助商以及蛋白质组学领域的重要方案供应商,在本届会议上再次为广大用户呈现其蛋白质组学全面、完备、专业的解决方案。针对蛋白定量这一行业热点课题,安捷伦公司凭借其最新超高灵敏度6490三重四极杆质谱技术、灵活强大的软件功能以及高通量全自动样品前处理技术在这一应用上具有突出及独特的优势。 在5月8日下午的大会学术报告专场,来自安捷伦公司的蛋白质组学应用工程师陶定银博士为在场听众进行了题为《安捷伦6490三重串联四级杆质谱仪在超痕量蛋白定量分析中的应用》的精彩报告:全新一代安捷伦6490三重串联四级杆质谱仪集多种高精技术于一体,与不同流速范围的液相色谱仪&ldquo 无缝&rdquo 匹配,在纳流、微流及常规流速范围内均可提供高灵敏、高重现的超痕量蛋白定量分析结果。配合安捷伦的全自动样品前处理机器人,使用户彻底摆脱繁冗的手工处理,获得重现性优异的分析结果。 Agilent 6490创新型串联质谱简介 1.概况 2010年5月24日 安捷伦科技公司在美国犹他州盐湖城举行的第58届美国质谱年会上推出了基于iFunnel技术的6490三重四极杆液质联用系统。 iFunnel是一种革命性的大气压离子进样技术,可以在大多数应用上极大提高灵敏度。与旧型号相比,6490系统减少了25%的占地面积,但灵敏度却提高了10倍以上。革新产品6490展示了其尖端应用能力,即检测灵敏度可达到10-21mol(Zeptomol)及ppq级别,这种水平的灵敏度过去只能在昂贵的加速器质谱系统上实现。 2.应用价值与意义 6490的尖端性能为富于高灵敏度挑战的分析工作带来的新的成功可能。比如环境领域通常要求灵敏度在ppt级别;制药/生物医药等领域,有时需要做到微小剂量、吸入药物检测和干血斑点分析等等。常规分析中这种高灵敏度也为临床、食品安全和蛋白质/肽定量分析带来了新机遇,而且全面提高了耐受性和样品制备效率。 有关安捷伦6490三重四极杆质谱更多信息,请参考: http://www.chem.agilent.com/en-US/Products/Instruments/ms/Pages/6490.aspx 有关安捷伦蛋白质组学方案更多信息,请参考: http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • GE医疗携完整蛋白质研究解决方案亮相第八届中国蛋白质组学大会
    2013年9月7日, 重庆 &ndash 在今天开幕的第八届中国蛋白质组学大会上,GE医疗生命科学部以&ldquo 成功的要素&rdquo (Ingredients for Success)为主题精彩亮相。通过仪器展示、技术培训等多种形式,向参会嘉宾、学者全面展示其完整的蛋白质研究解决方案。 GE医疗此次从&ldquo 探索、 发现、纯化、鉴定、确证&rdquo 五个方面展示了其领先的蛋白质研究解决方案。从组学的解析和修饰的鉴定,到分子及细胞水平的结构与功能的探索,GE医疗都可以提供一系列的世界领先的科研工具,以跨学科的技术与手段,帮助科学家解决蛋白质组学研究中的难题。 GE展台 会议期间,GE医疗展示了AKTA Pure 和AKTA Avant蛋白纯化系统,这两款世界知名的生物大分子纯化系统已经成为基础科研机构和医药企业的必备工具,而其丰富的色谱柱与填料产品,更是为应对分离纯化的各种挑战提供了多样化的选择。就在会议前夕,GE医疗发布了最新的AKTAPure150纯化系统,其系统单泵最高流速可以达到150mL/min,且可以兼容直径范围在70~100mm的工业层析柱。伴随着这款高流速系统的推出,Ä KTApure 系列选择将更丰富,涵盖从实验室级别到小规模工业级别的梯度解决方案,用户可以根据预期的纯化规模选择更为合适贴心的系统。 GE医疗的Biacore与 MicroCal非标记生物物理技术,是全面解析生物分子相互作用的不二选择,此次展示的ITC200从高灵敏的热力学角度解密分子间的相互作用,及其结构和功能,在分子水平上描述相互作用的发生机制,在药物设计、蛋白质和酶工程,以及蛋白质结构等领域有这广泛的应用。此外GE医疗还展出了DeltaVision高分辨活细胞显微镜,DV Elite拥有创新的优秀光学组件,是目前最灵敏的显微镜之一,已成为长时间活细胞成像和研究的利器。 GE医疗员工向参会代表介绍高分辨活细胞成像系统 在大会举办的&ldquo 蛋白质组学新技术培训&rdquo 中,GE医疗生命科学部应用工程师张名昌进行题为&ldquo 如何成功进行荧光Westernblotting实验&rdquo 的技术培训,介绍了运用GE医疗生命科学部的ImageQuant LAS和Typhoon系列成像系统实现荧光WesternBlotting的整体解决方案。同时,还与到场嘉宾一同分享和讨论荧光Western Blotting的实验经验和应用。 更多相关信息,请咨询GE医疗生命科学部热线:800-810-9118 或 400-810-9118。
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:   报告题目: 蛋白质组数据分析软件pFind系统新进展   报告人:中国科学院计算技术研究所贺思敏研究员 贺思敏研究员   pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。   贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。   报告题目:构建心血管蛋白质组生物医学数据库及分析平台   报告人:浙江大学生物医学工程与仪器科学学院段会龙教授 段会龙教授   心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。   该课题组目前已完成了如下工作:   (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。   (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。   (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。   报告题目:大规模蛋白质组研究中的质谱数据定量分析方法   报告人:国防科技大学机电工程与自动化学院谢红卫教授 谢红卫教授   谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:   (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。   (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。   (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。   (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。   (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。   (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。   (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。   报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究   报告人:中国科学院大连化学物理研究所叶明亮研究员 叶明亮研究员   叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。   在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。   在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。   在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象 图为蛋白质科学研究(上海)设施核磁共振分析系统。   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。   考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:   Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。   今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。   我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。   蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。 姓 名 工作单位 主要贡献 Richard D. Smith 美国太平洋西北国家实验室 1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白 John Yates III 美国Scripps研究所 SEQUEST MS/MS数据库搜索程序 Joshua Coon 美国威斯康星大学麦迪逊分校 发明了电子转移解离技术(ETD) Neil Kelleher 美国西北大学 Top-down蛋白质组学 Kathryn Lilley 英国剑桥大学 蛋白质组学定量技术 Pierre Thibault 加拿大蒙特利尔大学 应用生物质谱和蛋白质组学到细胞生物学 Michael MacCoss 美国华盛顿大学(西雅图) 稳定同位素标记技术 Albert Heck 荷兰Utrecht大学 基于质谱的结构生物学 Catherine Costello 美国波士顿大学 HUPO前任主席,质谱技术发展及应用 Alexander Makarov 德国Thermo Fisher Scientific 生物质谱全球研发总监 领导研发Orbitrap质谱仪 Donald Hunt 美国弗吉尼亚大学 FT-MS and ETD   简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 聚能生物与国家蛋白质平台开展广泛合作
    JNBIO(聚能生物)是一家由留学人员创办的高新技术企业,自主创新与欧洲前沿技术相融合,开发生产低温超高压连续流细胞破碎仪,是国家技术创新基金立项扶持的项目。   JNBIO系列低温超高压连续流细胞破碎仪自投入市场以来,积极开展与国家蛋白质科学研究平台的合作。到目前为止,中国科学院生物物理研究所(中国科学院蛋白质科学研究平台)、中国科学院上海应用物理研究所、复旦大学遗传工程研究所等国家重要蛋白质研究中心已采购使用JNBIO(聚能生物)高活性低温超高压连续流细胞破碎仪。   JNBIO低温超高压连续流细胞破碎仪特有的细胞高活性破碎技术,最大限度地保持了蛋白质的空间结构和内部活性基团,为研究蛋白的高级结构,晶体工程提供了先决条件。   人类基因组计划完成之后,蛋白质科学研究成为当代生命科学领域的前沿,是未来生物技术与生物产业发展的重要源泉。全球发达国家政府、研究机构和大学以及相关产业界竞相抢占蛋白质研究的制高点。   2004年5月,中国科学院生物物理研究所率先启动了“中国科学院蛋白质科学研究平台”建设。2008年7月中旬,中国科学院生物物理研究所(中国科学院蛋白质科学研究平台)采购了JNBIO低温超高压细胞破碎仪(JN-3000)。目前,中国科学院生物物理研究所用JNBIO低温超高压细胞破碎仪全面替代了国产和进口的高压细胞破碎仪。   中国科学院上海应用物理研究所的上海光源是一台高性能的中能第三代同步辐射光源,它的英文全名为ShanghaiSynchrotronRadiationfacility,简称SSRF。它是我国迄今为止最大的大科学装置和大科学平台。生命科学和医药学与人类健康生活息息相关,也是同步辐射光得到广泛应用的重要领域。同步辐射X射线衍射方法是当前测定生物大分子结构的最有力手段,是研究生命现象与生物过程的利器。2009年5月26日,JNBIO低温超高压连续流细胞破碎仪(JN-3000PLUS)正式进驻上海光源。   复旦大学遗传工程国家重点实验室是在由谈家桢院士创立的复旦大学遗传学研究所的基础上发展而来的研究实体,是我国最早建立的国家重点实验室之一。1984年经国家计委批准建立,1985年开始运行,同时向国内外开放,1987年通过国家验收。近年来,遗传工程国家重点实验室投入大量经费,采购先进的仪器设备建立蛋白质组学研究平台等。JNBIO低温超高压连续流细胞破碎仪独有的细胞高活性破碎技术和5ml微样品量,受到了遗传所教授们的青睐。日前,JN-3000PLUS微量精密型低温超高压连续流细胞破碎仪已正式投入使用。
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
  • 全国“最牛”蛋白质实验室可免费“共享”
    p 耗资7.56亿元、总建筑面积超过3万平方米的高规格实验室,居然免费向各大科研机构开放。 /p p   记者8月29日在国家蛋白质科学研究中心(上海)深度体验到这处拥有全世界最顶尖蛋白质相关实验设施的场地如何炫酷。 /p p   相关领域的科学家们做尖端实验,再也不用为昂贵的试验设备担心了,通过这个蛋白质研究中心的官网申请,符合要求即可预约在上海做实验,使用全球最好的实验设施。 /p p   2017年9月,位于上海的张江实验室揭牌成立,蛋白质实验室成为第一个划入张江实验室的国家重大科技基础设施,由张江实验室统一管理,依托法人单位变更为中科院上海高等研究院。 /p p   据悉,只要是获得过国家基金资助的科研项目,无论是高校项目、科研机构项目还是企业项目,都可以通过官网申请到这里来做实验。该试验中心拥有9大技术系统,包括我国自主研制的自动化蛋白质制备系统、蛋白质结构与动态分析系统,300KV电镜为主的集成电镜分析系统、系列质谱组成的蛋白质修饰与相互作用分析系统、超高分辨率显微镜等组成的复合激光显微镜系统等。上述系统各项指标均达到了项目设计的性能指标,部分指标达到国际领先水平。 /p p   海归博士后彭超现在是蛋白质实验室质谱系统负责人,他告诉记者,现在质谱系统一周会收到世界各地寄来的约200个样品,每一件样品每一小时都能产生海量的数据,实验室要根据样品提供者的需求,实验并搜集其中有用的数据以帮助科学家们进行下一步研究。 /p p   “很多机构的实验室并没有专人做质谱实验、分析,我们的7人团队,能为很多机构专业快速地‘代劳’质谱分析。”彭超说,质检、食药监、公安等部门对质谱分析需求极大,此外质谱分析还可以检测空气污染、尿液小分子超标、疾病蛋白质表达等关键问题,可以发挥的空间很大。 /p p   张江实验室脑与智能科技研究院院长、中科院上海分院副院长、院士张旭告诉记者,蛋白质实验室的布局具有重要的战略意义,“蛋白质是脑科学信号传递、采集的主要物质,也是疾病诊断、药物抗体、疫苗、生物技术、现代农业中的重要战略资源。如果把蛋白质相关的生命科学研究和信息技术结合到一起,就可以行进到类脑智能交叉学科。 /p p   张旭说,张江这片区域特别适合发展交叉学科的研究。一方面,这里产业、研究机构集聚,“不像大学,一个研究所的研究目的很明确,只研究自己的领域就好” 另一方面,这里正在打造的“张江实验室”为各种机构都提供了进行学科交叉、互动的机会。以蛋白质实验室为例,这里可以进行生命科学、信息技术、工程技术的多方位交叉实验,为未来我国人工智能的发展提供坚实的基础。 /p p br/ /p
  • 中科院加强蛋白质研究平台建设
    中科院加强蛋白质研究平台建设   路甬祥为中科院蛋白质科学中心大楼揭牌   2009年12月28日,全国人大常委会副委员长、中国科学院院长路甬祥到中科院生物物理研究所调研,并为中国科学院蛋白质科学中心大楼正式启用揭牌。中科院党组成员、副秘书长、北京分院党组书记、常务副院长何岩,副秘书长、办公厅(党组办)主任邓麦村,生物局局长张知彬,计财局局长孔力和北京生命科学研究院等领导和专家陪同调研。   蛋白质是所有生命活动载体和功能执行者,也是生物技术研发的主体,是药物靶标发现、重大疾病诊断标志物、重大新药创制、重大传染病防诊治、重要农作物改良、生物能源转化、工业生物催化等多个领域的创新源泉和重要的战略资源。蛋白质研究集科学与技术、基础和应用于一身,将催生一系列新的生物技术,带动医药、农业和绿色产业的发展,引领未来生物经济。因此,蛋白质科学是目前发达国家激烈争夺的生命科学制高点。   中科院北京地区蛋白质研究力量是目前国内蛋白质研究实力颇为雄厚的一支研究队伍,在中科院奥运园区生命科学园内汇聚了生物物理研究所等8个研究所,拥有一批以多名院士、“千人计划”、“百人计划”领衔的蛋白质科学研究领域的领军人才,在蛋白质科学领域高端人才和创新团队最为密集,成果产出丰硕,创新能力强大。曾以胰岛素晶体结构解析等成果为中国蛋白质科学的发展作出了历史性贡献,近年来更以中国膜蛋白结构零的突破、SARS、禽流感、H1N1病毒结构与功能研究的重大成果引领中国蛋白质研究发展、服务于国家重大需求和人民健康,承担着国家中长期重大科学计划——“蛋白质研究计划”、973、863、“重大新药创制”和“重大传染病防治”重大专项等一批国家重大科研任务。   中国科学院蛋白质研究平台依托生物物理所,从2004年开始建设,历经两期工程,已经投入3.7亿元,着力打造国际先进的蛋白质研究共享设施,同时平台高度重视优秀的技术支撑队伍、管理队伍建设和开放共享机制创新,组建了一支以首席技术专家领衔的专业技术支撑队伍,并在大型科研装备开放共享和关键技术自主创新方面取得突出成效,先后为众多科研机构、大学、医院和企业提供了技术服务,取得了良好的社会效益和经济效益。目前平台56台套大型仪器设备全部上网对全社会开放服务,截至2009年12月15日,共完成6203个有效预约服务,测试样品数达到29254个,有效机时达到35639小时。大型仪器平均有效共享率达到82%。   该蛋白质科学研究平台围绕蛋白质科学研究,促进学科交叉和资源集成,以高起点、高水平、高目标、大框架实现跨越式可持续发展,将成为支撑国家重大科学研究计划、开拓蛋白质科学前沿研究领域、产出国际领先水平的原创性成果、造就国家战略科技人才、引领生物高技术产业发展、具有国际一流水平的国家研究实验基地。   路甬祥一行视察了蛋白质科学中心的实验室建设与科研工作情况,并与科学中心的院士、专家进行了座谈交流。   路甬祥指出,中国科学院大力推动蛋白质科学研究平台建设,是为了进一步夯实基础,加强与大学和其他研究机构的联合合作,进一步对外开放,为蛋白质科学国家实验室建设提供条件保障,为我国生命科学的持续发展提供有力支撑。通过几年的实践,生物物理研究所在大型仪器公用共享方面业已经积累了丰富的成功经验,值得借鉴和推广。   路甬祥强调,作为蛋白质科学研究的重要支撑,国家实施蛋白质科学基础设施建设,是为了更好地促进我国蛋白质科学的发展,不论设施建在什么地方,都应把国家利益放在首位,都要汇聚国内最强的研究力量参与建设,都要面向全国开放共享,都要经得起历史的检验。中国科学院以生物物理研究所为代表的京区各单位,在国家几十年来长期支持下,经过几代科学家不懈努力,形成了蛋白质科学研究的骨干力量和优良的学风,取得了一系列重大研究成果。中科院京区有关单位应积极主动参与国家蛋白质科学北京地区基础设施的建设,并与其他蛋白质科学研究力量开展强强联合,共同为提升我国的蛋白质科学研究水平,为促进生物科技和生物产业的发展,保障13亿人民的健康,不断做出科技工作者的创新贡献。
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 中国蛋白质组研究水平跻身世界前列
    作为国际人类肝脏蛋白质组计划执行总部,北京蛋白质组研究中心成立5年来,已成为我国蛋白质组学国家重点实验室、全军基因组学与蛋白质组学重点实验室。投资10多个亿的蛋白质药物国家工程研究中心、国家蛋白质科学基础设施即将开工,一个集科学研究、技术服务、成果转化为一体的综合基地初见雏形。这一切表明,中国的蛋白质组研究水平已跻身世界前列。   人类基因组计划是20世纪与曼哈顿原子弹研制计划、阿波罗登月计划齐名的世界三大科学“珠峰”计划,绘制一部记录人类遗传信息和生命奥秘的“天书”是全球科学家共同的愿望。要解读这本“天书”,就必须全面研究人体基因的编码产物——蛋白质。   近年来,为规模化、全景式研究人体蛋白质,以国际人类肝脏蛋白质组计划执行委员会主席、中国科学院院士、军事医学科学院院长贺福初少将领衔的北京蛋白质组研究中心科研团队和全球科学家汇聚在一起,为真正破译、阐释、读懂这部“天书”而努力。   中国青年科学家首次领导重大国际科技协作计划   据统计,全球有3.5亿乙肝病毒携带者,其中中国占50%。肝炎是中国第一大疾病,肝癌为中国恶性肿瘤的第二号杀手。2002年11月,当时年仅39周岁、中国科学院最年轻的贺福初院士在国际会议上提出了“人类肝脏蛋白质组研究计划”,并最终赢得了与会代表的广泛支持。一年后,中国被确定为该计划的唯一牵头国,贺福初院士为唯一主席。   人类肝脏蛋白质组研究计划的实施,无疑将会发掘出一批重要的功能蛋白,发现一批全新的药物靶标,催生一批治疗药物,为肝病预防、诊疗提供新策略,新技术,从而大大降低肝脏领域疾病医疗成本。该项研究不仅比基因组计划更为复杂艰巨,而且需要资金数十亿,即使全球科学家通力合作,也要数十年时间。   2004年6月,为整合国内外优势资源,在贺福初院士的推动下,由军事医学科学院、中国科学院、中国医学科学院、清华大学、北京大学、江中集团及北京生物技术和新医药产业促进中心共同创建了北京蛋白质组研究中心。2005年10月,中心正式入驻中关村生命科学园,开始作为国际“人类肝脏蛋白质组计划”总部,负责计划的全面实施。截至目前,已吸引了全球共16个国家、80多家实验室的数千名优秀科学家参与此项研究工作。   许多老一辈科学家感叹,在人类基因组计划中,中国曾经作为唯一的发展中国家竭力争取,但最终仅承担了1%的测序任务;而在今天的人类肝脏蛋白质组计划中,中国青年科学家却承担了30%以上的核心任务,并且成为推进该计划的主力军团,这本身就是一种飞跃。   国际顶级刊物首次同期刊发同一单位3篇论文   《分子与细胞蛋白质组学》是蛋白质组学领域全球影响力最大的专业性刊物。2009年3月,最新一期《分子与细胞蛋白质组学》同时发表了中心姜颖副研究员课题组、朱云平研究员课题组、钱小红研究员课题组共3篇高质量研究论文,创下该刊单期同一单位发文数之最。   5年里,中心科研人员取得了一项又一项重大成果。他们成功鉴定了人类肝脏蛋白质13000余种;构建了国际上最大规模的、含有3480多对高可信肝脏蛋白质相互作用的网络图,发现58种潜在的肝脏疾病候选基因、92种潜在肝脏表型基因和260多种新的信号通路调控分子;建立了国际上首个系统的人体器官蛋白质组数据库,被多个国际重要蛋白质组数据库和重要学术论文引用。   此外,中心还发现了脂肪肝、肝细胞病毒感染、癌变以及转移相关的蛋白质标志物群、潜在药靶和候选药物;揭示了骨形成负调控分子及其在机体骨量稳态调控中的作用机制等;寻找到了一批与肝癌、脓毒症鼻和咽癌等复杂疾病相关的易感基因。这些发现,为上述疾病的早期预防、早期预警、风险预测及个体化医疗打下坚实基础。   我国蛋白质组研究水平首次跻身世界前列   今年8月,一条新闻在中国乃至世界引起了轰动,由贺福初院士领衔的课题组再次获得的重大科学发现——在人类染色体的特殊位置发现了一个容易导致肝癌的易感基因区域。与此同时,《自然遗传学》在线公布了这一原创性研究成果,这是该团队近两年发表的第11篇《自然》子刊论文,继续在该领域领跑国际同行。   领跑源于人才。从成立之日起,中心就着手组建了由31位不同领域知名专家、包括10位院士组成的学委会,以及由中国青年科技奖获得者周钢桥、张令强等为骨干的近300人的科研大军,基本形成了以院士领衔,中青年学者为骨干的科技创新团队。5年来,中心科技人员分别获得了国际蛋白质组学贡献奖和成就奖、谈家桢生命科学奖、求是奖、何梁何利奖、国家自然基金委创新研究群体、全军科技创新群体,另有3人获得中国青年科技奖,8人被评为总后科技银星、新星,2人获全国百篇优秀博士论文。   人才推动发展。2009年4月,张令强研究员课题组在肿瘤研究领域发现了一种重要的新型蛋白质,可以选择性地干扰抑癌基因,可能成为肿瘤防治的新型靶向分子;2009年8月,唐丽、杨俊涛博士等在前期大规模发掘人类胎肝新基因、新蛋白的基础上,经过长年的潜心探索研究,第一个发现了在肝脏中特异表达的免疫调控分子;2009年国庆前夕,在加拿大多伦多举办的首届“国际蛋白质组学高峰论坛”上,贺福初院士荣获“国际蛋白质组学成就奖”。这是我国首位科学家首次获此殊荣。   发展催生硕果。2005年至2010年9月,中心共发表学术论文230篇,影响因子合计1307。其中国际顶级刊物《自然》系列子刊、《科学》发表文章11篇。获省部级二等奖以上成果11项,其中国家自然科学奖二等奖3项、国家科技进步二等奖1项、军队科技进步奖一等奖1项和北京市科学技术一等奖3项。此外,还获得发明专利19项。   金秋十月,在中心成立5周年之际,又传来振奋人心的好消息——曾被誉为“九大行星”的“两谱”、“两图”、“两组”、“三库”任务,即人类肝脏蛋白质组表达谱和修饰谱,定位图和连锁图,生理组与病理组,样本库、抗体库和数据库,基本架构已经完成,标志着蛋白质组“九大行星”架构里第一个“人体器官”正式诞生,进一步奠定了我国在该领域的国际核心地位。
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 关于举办第14期蛋白质分离纯化技术专题研讨班的通知
    由中国生物工程杂志社(中国生物工程学会会刊)主办的第14期蛋白质分离纯化技术专题研讨班定于2012年9月15-16日在上海举行。本期研讨班课程综合了国内外最新的蛋白质分离纯化技术与方法,特别是广泛吸纳了历届参会代表的大量问题解答与反馈意见以及研发与产业中的实际应用需求,经权威专家的反复提炼而成。研讨班内容涵盖蛋白质样品制备、纯化策略、过程优化,相关的产品规定、政策解读以及技术经济分析等内容,并注意突出重点和难点,如基因工程上下游的整体策略、纯化中的具体难点,层析介质的选择等多方面,以及层析柱蛋白质失活等具体问题。   本期研讨班由中国科学院从事制备与纯化技术的一线专家授课,注重引导学员讨论实际案例,突出互动性以提高学习效果,从而帮助参会人员在短时间里高效率地掌握蛋白质分离纯化工具,获得规范和先进的蛋白质纯化与工艺开发知识和方法,提高蛋白质分离纯化实践中解决具体问题的能力。   本期研讨班课程涵盖了从样品制备到纯化策略和过程优化的全过程,主要内容包括:   蛋白质样品的获得层析预处理原则与技术:离心、过滤、超滤、双水相抽提蛋白质层析,包括:   (1)层析介质选择:层析介质特性对层析过程的影响——材质、孔径、官能团   (2)层析技术:分子排阻、离子交换、疏水层析、金属螯合、亲和层析等   (3)层析步骤整合方法:选择性、分辨率、动态载量、主要杂质的控制和去除   (4)蛋白质纯化平台:适应于分子生物学实验室蛋白质纯化的方法和实例   单克隆抗体纯化,包括:   (1)单克隆抗体的生化性质   (2)单克隆抗体纯化的工具   (3)单克隆抗体纯化的策略和方案   用于疫苗和基因治疗的病毒颗粒纯化策略和方法   (1)双水相技术   (2)整体柱分离技术:病毒颗粒的离子交换,疏水,IMAC及亲和层析纯化   蛋白质纯化的溶液体系   (1)蛋白质纯化的缓冲溶液组成和功能   (2)各种层析模式的常用缓冲溶液的设计和使用   蛋白质层析技术经济分析   研讨班还安排高效重组蛋白表达策略与经验介绍等专题内容。   会议时间、地点:2012年9月15-16日,中国科学院上海学术活动中心(好望角大饭店),地址:上海市肇嘉浜路500号。报到时间:2012年9月14日,报到地点:好望角大饭店一层。   参会办法:参会代表请于9月7日前填写会议回执后Email/邮寄/传真至会议主办单位中国生物工程杂志社,会议费每人1600元,在读研究生每人1400元(凭有效证件),食宿统一安排,费用自理。   联系方式:   通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)   联 系 人:任红梅13641036700   电 话:(010)82624544,82626611-6511 传真:(010)82624544   电子邮件:renhm@mail.las.ac.cn   中国生物工程杂志社   2012年8月   第14期蛋白质分离纯化技术专题研讨班报名回执表   (参会代表请于2012年9月5日前Emial/传真/邮寄至中国生物工程杂志社) 单位名称 通信地址 邮编 姓名 性别 职称 电话 传真 E-mail 是否住会   第14期蛋白质分离纯化技术专题研讨班住宿预订表   (住会者请务必2012年9月5日前回传本表,否则无法安排住宿) 单位名称 联系人 电话 手机 电子邮件 代表姓名 性别 是否需要单人间 入住日期 离店日期   报到及住宿酒店   好望角大饭店,地址:上海市肇嘉浜路500号,酒店电话021-64716060。住宿标准:330元/天标准间。由于好望角大饭店属于政府采购指定酒店,对于事业单位的参会代表,可以凭工作证享受政府采购价格298元/标准间(含早餐)。
  • 2015技术展望之蛋白质分析
    蛋白质是细胞功能的执行者,是一切生命的物质基础。然而人们对蛋白质和蛋白质组的了解还远远不够,蛋白质分析被认为是一项复杂而艰巨的任务。2015年是蛋白质领域的关键一年,有可能决定着蛋白质分析的未来走向。   1.人类蛋白互作图谱取得更大的成果。最近Cell杂志上发表了一项大规模的蛋白质研究,科学家们鉴定了一万四千个蛋白相互作用,获得了迄今为止最大规模的人类蛋白互作图谱。他们计划将在未来六年中逐步完成人类基因组的全部互作图谱。这种图谱可以帮助人们更全面的了解人类互作组,进一步理解疾病的发生和发展。对新发现的蛋白互作进行研究,能够揭示基因型和表型之间的真实关系。我们期待在2015年看到这类研究结出更多硕果。   2.人造环境为蛋白质分析提供便利。今年八月Roy Bar-Ziv及其同事在Science杂志上发表文章,展示了以微流体DNA隔室为基础的人造细胞。这些二维的人造细胞可以实现预编程的蛋白合成、代谢和通讯,是一种非常灵活的蛋白合成系统。研究显示,人造细胞能够更好的模拟蛋白表达的动态模式,维持蛋白信号的梯度。人们可以利用这一系统来评估蛋白质的活性和相互作用,这种方法将对蛋白质功能研究产生重要的影响。   3. 一个时代的终结&mdash &mdash 蛋白质结构计划PSI收官。PSI项目在运行了十五年后,正逐步走向自己的终点。PSI项目已经确定了六千三百多个蛋白结构,为蛋白质分析做出了重要的贡献。那些为PSI而建的高通量蛋白生产中心可能会继续维持下去,给其他结构生物学实验室使用。结构生物学家们也可能启动与数据处理有关的中、大型项目,作为PSI的延续。   不管怎样,对于蛋白质领域来说明年都是特别的一年,研究者们需要决定PSI之后的前进方向。我们希望未来能有更多类似人类互作组图谱的大型项目,增进我们对蛋白质结构和功能的理解。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制