当前位置: 仪器信息网 > 行业主题 > >

蛋白质测序

仪器信息网蛋白质测序专题为您整合蛋白质测序相关的最新文章,在蛋白质测序专题,您不仅可以免费浏览蛋白质测序的资讯, 同时您还可以浏览蛋白质测序的相关资料、解决方案,参与社区蛋白质测序话题讨论。

蛋白质测序相关的资讯

  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 蛋白质测序技术发展漫谈(上)
    本期中国科学院大连化物所单亦初老师将分享蛋白质测序技术的发展,本次分享将以连载形式以飨读者。蛋白质一级结构是组成蛋白质的氨基酸序列。蛋白氨基酸序列分析是确定蛋白质全部氨基酸序列的过程。通过蛋白质测序获得的信息有许多用途,包括:蛋白质的鉴定;合成可用作免疫原的肽段;用于治疗的抗体仿制产品的研发;以市场上销售的抗体试剂为基础进行抗体药物研发。目前的蛋白质测序方法主要分为三类:基于PCR扩增的蛋白质测序、Edman降解测序以及基于质谱的蛋白质测序。基于PCR扩增的蛋白质测序是利用细胞中表达的DNA或者RNA进行基因测序,然后再按照氨基酸密码子表转换为蛋白质的氨基酸序列,本质上属于基因测序技术。Edman降解测序是较早发展的蛋白质测序技术,利用化学方法从蛋白质的N端将氨基酸依次降解,再使用高效液相色谱对氨基酸进行鉴定。但是这种方法只能用于鉴定蛋白质和多肽的N-末端氨基酸残基(通常是几个-十几个残基,最多不超过四十个残基),无法对大的蛋白质进行全序列测定。此外,Edman降解法也有一定的局限,例如N末端封闭或有化学修饰的情况下将不能使用Edman降解法对蛋白质序列进行分析。目前使用最广的蛋白质测序方法是质谱法,较Edman降解法而言,其优点在于,质谱法更敏感,可以更快地裂解肽,可以识别末端封闭或修饰的蛋白质。基于质谱的蛋白质测序策略可分为两大类:自上而下策略(Top-Down)和自下而上(Bottom-Up)策略。自上而下的策略无需对蛋白质进行降解,直接使用LC-MS对完整蛋白质进行分析,根据谱图中碎片离子确定其序列;自下而上策略是先将蛋白质水解成肽段,通过LC-MS对肽段检测,再对肽段从头测序以及序列拼接从而得到完整蛋白质序列。图 :蛋白质序列测定原理Kira Vyatkina[1]通过自上而下的策略发展了一种Twister测序算法对单克隆抗体测序,虽然不需要使用蛋白酶酶解,减少了蛋白质预处理的步骤,但仅可以鉴定到抗体的序列片段。Liu[2]结合自上而下和自下而上两种策略发展了TBNovo测序算法对蛋白质进行测序,将自上而下的质谱数据作为抗体序列的骨架,再将胰蛋白酶酶解肽段的质谱数据对骨架的序列进行补充覆盖。由于特异性蛋白酶酶解后肽段种类少、覆盖率低,对抗体的轻链和CAH2区的测序覆盖率为86.9%和75.2%。Sen[3]发展了一种基于同源数据库搜索与从头测序结合的Supernovo测序算法,通过4种蛋白酶对单克隆抗体分别酶解,该测序方法仅可实现对抗体重链的可变区测序,无法对抗体全序列进行测定。Savidor[4]发展了一种蛋白质全序列从头测序的方法。将蛋白质在微波辅助下快速酸解,得到了种类丰富的肽段,使用其发展的肽段序列拼接算法——“肽段标签组装”(Peptide Tag Assembler,PTA),对从头测序的肽段进行序列拼接,但由于酸解的消化方式会使谷氨酰胺和天冬酰胺发生脱酰胺化,分别变为谷氨酸和天冬氨酸,降低了对蛋白质序列测定的准确度。为了解决蛋白质测序覆盖度低、准确度低的问题,我们发展了一种蛋白质全序列测定新方法[5]:该方法使用多种非特异性蛋白酶对蛋白质连续酶解,提高蛋白质酶解肽段种类和重叠度,从而提高蛋白质测序的覆盖度;此外,发展了一种序列拼接算法,根据从头测序得到的肽段序列中每个氨基酸的得分值和出现次数,对蛋白质序列进行组装和拼接,显著提高了蛋白质全序列测定的准确度。利用该测序方法对牛血清白蛋白的多种非特异性蛋白酶酶解后的肽段序列进行测序和拼接,实现了对牛血清白蛋白全序列100%准确度的测定。此外,将该方法应用于对乳腺癌药物单克隆抗体赫赛汀的全序列测定,重链和轻链的测序准确度分别达到99.6%和100%。参考文献[1] K V. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence [J]. Proteomes, 2017, 5(1), https://doi.org/10.3390/proteomes5010006[2] LIU X, DEKKER L J M, WU S, et al. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra [J]. J Proteome Res, 2014,13(7): 3241-3248.[3] KI S, WH T, S N, et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery [J]. J Am Soc Mass Spectrom, 2017, 28(5): 803-810.[4] SAVIDOR A, BARZILAY R, ELINGER D, et al. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination [J]. Mol Cell Proteomics, 2017, 16(6): 1151-1161.[5]杨超,单亦初,张玮杰等,基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法,化学学报,修稿中。作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 蛋白质组测序也迈入千元时代?
    导读:自今年1月份Illumina让&ldquo 1000美元基因组&rdquo 成为现实,许多生物技术公司及科研机构纷纷购买其测序仪,而今美研究者指出DNA编码的蛋白质是几乎所有生命过程的主要执行者,可实现千元基因组测序的工具,也可以最终帮助人们完成千元蛋白质组测序。 人类生命的蓝图是三十亿碱基对组成的人类基因组。1000美元基因组测序,让人都觉得有些疯狂,然而有研究者认为千元测序蛋白质组也将成为现实。 今年初,全美最大最佳的五所&ldquo 大学城&rdquo 之一拥有近130年历史的Arizona State University(亚利桑纳州立大学)生物 设计学院( Biodesign Institute)的Stuart Lindsay及其团队同事,在纳米孔DNA测序技术的基础上,让单链肽段穿过纳米孔,纳米孔两边的电极可记录每个氨基酸通过时产生的电信号。他们使用一种机器学习算法,让电脑能够识别代表不同氨基酸的特征信号。这些信号可以作为可靠的指纹,帮助人们鉴别氨基酸的种类,以及氨基酸发生的微妙改变。因此开发了能够精确鉴定氨基酸的蛋白单分子测序技术。 这项研究于四月六日发表在Nature Nanotechnology杂志的网站上。 从基因组到蛋白组 蛋白对于细胞的生长、分化和修复至关重要,它们能够催化化学反应,抵御疾病,具有各种各样的重要功能。自今年1月份Illumina让&ldquo 1000美元基因组&rdquo 成为现实,研究者们将眼光转向了蛋白质组测序的研究。 与线虫等简单生物相比,人类的基因数相对较少,不过科学家们鉴定的人类蛋白已经超过了十万,而且不少人认为这些蛋白只是冰山一角。有限的基因数为何能形成如此大量的蛋白呢?这是因为蛋白能通过多种机制发生改变,选择性剪切和翻译后修饰就是其中两个关键的过程。 在这项研究中,研究人员将一对金属电极分隔在约两纳米的孔洞旁边,当线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个电回路,并发出相应的电信号。而这样的电信号可以帮助人们判断,通过纳米孔的是哪一个氨基酸。 这一技术称为recognition tunneling,原本是Lindsay等人开发的DNA单分子测序技术。&ldquo 大约两年前,我们的一次实验室会议提出,可以尝试将这一技术用于氨基酸测序,&rdquo Lindsay说。与DNA的A、G、C、T相比,用 recognition tunneling鉴定组成蛋白的二十种氨基酸实际上是一个更大的挑战。 蛋白质单分子测序技术具有巨大的应用价值,可以帮助人们检测被选择性剪切或翻译后修饰改变的微量蛋白。而这些蛋白往往是疾病研究所追寻的目标,用其他技术很难检测得到。 PCR能够将样品中微量的DNA快速扩增,但在蛋白研究领域还没有这样的技术,Lindsay强调。在这种情况下,能进行单分子水平上进行检测的recognition tunneling,&ldquo 将给蛋白质组学研究带来一场彻底的变革&rdquo 。 这项研究为人们展示了一个,快速测序单个蛋白分子的低成本方法。据Lindsay介绍,该技术通过大约50种不同的信号特征来鉴定氨基酸,不过绝大多数鉴别只需要不到10个信号特征。 值得注意的是,recognition tunneling不仅能够高度可信的鉴定氨基酸,区分翻译后修饰的蛋白(肌氨酸)及其前体(甘氨酸),还能够鉴别被称为对映体的镜像分子,以及质量相同但序列不同的分子。 千元蛋白组? Lindsay的研究指出,可实现千元基因组测序的工具,也可以最终帮助人们完成千元蛋白质组测序。事实上,Lindsay认为这一里程碑离我们并不遥远。 目前,这一技术还需要使用复杂的实验室仪器&mdash &mdash 扫描隧道显微镜STM。不过Lindsay和他的同事正在开发一个可以快速鉴定氨基酸和其他分析物的新设备,以便将低成本的蛋白质组测序真正推广到临床。 该技术不仅可以用来在临床上测序蛋白质和检测新生物指标,还有望给医疗领域带来彻底的改变,在单分子水平上精确监控患者对治疗的应答情况。
  • 蛋白质测序技术发展漫谈(中)
    前文回顾(点击):蛋白质测序技术发展漫谈(上)前面提到,基于质谱的蛋白质测序主要流程为:首先对蛋白质酶解得到肽段,经过LC-MS/MS分析得到相应的质谱数据,再使用测序软件根据质谱数据对肽段测序,最后对测序得到的肽段序列进行拼接。其中根据肽段的二级质谱图进行从头测序是其核心内容。目前已发展的肽段从头测序算法有三十余种,主要可以分为三类:图方法、穷举法和动态规划法,包括PEAKS[ 1]、pNovo系列[2]、Pepnovo[3]、Novor[4]等。 Muth[5]评估了Novor、PEAKS和PepNovo三种测序软件在实验数据集上测序的准确度,这三款软件对肽段的测序准确度最高只有35%。这是由于质谱谱图中存在着噪声和干扰离子,无法有效的区分谱图中可用于肽段测序的碎片离子[6],使得精准解析谱图的难度增加且耗费大量的时间。基于碎片离子的蛋白质组稳定同位素标记定量方法通过在细胞培养或样品处理的过程中引入不同种类的同位素标记,混合后进行LC-MS分析。不同稳定同位素标记的相同序列肽段质量相同或相近,可在质谱中同时碎裂,形成成对的碎片离子[7]。借鉴该方法,可更好的区分并提取用于测序的碎片离子,用于肽段的序列测定。Nie[8]在细胞培养时加入同位素标记的精氨酸和赖氨酸,再利用Lys-N和Arg-C对提取的蛋白质酶解,形成N端为精氨酸、C端为赖氨酸的等重肽段,在二级谱中可形成成对的b离子和成对的y离子,但这种标记方法只能在细胞水平标记,且通过两种蛋白酶酶解后只有少部分肽段质量相等并被鉴定到。Zhang[9]发展了部分等重肽段末端标记方法,使用Lys-C酶解后,肽段的C端为含有氨基的赖氨酸,再通过对两末端使用不同同位素标记,使得相同序列的肽段质量差为2 Da,在二级谱中产生了质量差为4 Da的成对b离子和质量差为6 Da的成对y离子,为使肽段能够碎裂在同一张谱图中,质谱的分离窗口需要被放大到4 m/z甚至更多[10],但放大分离窗口会导致更多的质量相近的肽段发生共碎裂,谱图会变得更加复杂难以解析,增加了从头测序的难度。为此,我们开发了一种基于二甲基化标记和胰蛋白酶催化18O标记的肽段末端准等重标记(Pseudo Isobaric Peptide Termini Labelling,PIPTL)从头测序方法 [11](图1)。经该方法进行同位素标记后,序列相同的肽段质量仅相差0.0166 Da,这些准等重肽段无需扩大质谱分离窗口即可在质谱中同时碎裂,产生成对的b离子和成对的y离子;基于发展的PIPTL-Novo测序算法,根据不同系列碎片离子质量差可快速准确提取并区分b/y离子,再对b/y离子进行测序分析,从而实现对肽段的准确测序。以牛血清白蛋白为研究对象,对肽段从头测序的准确度进行评价,测序准确率为95.5%;最后将此从头测序方法应用于对单克隆抗体赫赛汀重链和轻链的序列测定,对赫赛汀的酶解肽段从头测序准确率为93.6%。图1 基于二甲基化和胰蛋白酶催化18O标记的PIPTL-Novo策略参考文献[1] Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 2003, 17(20): 2337-42.[2] Yang H, Chi H, Zhou W-J, et al. Open-pNovo: de novo peptide sequencing with thousands of protein modifications. J Proteome Res, 2017, 16(2): 645-54.[3] Frank A M, Savitski M M, Nielsen M L, et al. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res, 2007, 6(1): 114-23.[4] Ma B. Novor: real-time peptide de novo sequencing software. J AmSoc Mass Spectrom, 2015, 26(11): 1885-94.[5] Muth T, Renard B Y. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? . Brief Bioinform, 2018, 19(5): 954-70.[6] Lu B, Chen T. A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 2003, 10(1): 1-12.[7] Merrill A E, Coon J J. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Curr Opin Chem Biol, 2013, 17(5): 779-86.[8] Nie A-Y, Zhang L, Yan G-Q, et al. In vivo termini amino acid labeling for quantitative proteomics. Anal Chem, 2011, 83(15): 6026-33.[9] Zhang S, Shan Y, Zhang S, et al. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing. J Proteomics, 2017, 154(40-8.[10] Hennrich M L, Mohammed S, Altelaar A M, et al. Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom, 2010, 21(12): 1957-65.[11] 杨超,刘健慧,张玮杰等,基于末端准等重同位素标记的肽段从头测序方法. 分析化学, 2021, 49 (03), 366-376.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。中国临床质谱产业化发展论坛(点击报名)仪器信息网联合浙江省先进质谱技术与分子检测重点实验室、宁波大学质谱技术与应用研究院,共同举办“第六届中国质谱产业化发展论坛——临床质谱产业化发展”,在2021年第十五届中国科学仪器发展年会(ACCSI 2021)召开同期,邀请临床质谱业内专家、国内质谱企业、第三方医学实验室、医院专家代表,共同就中国临床质谱技术与产业化发展等话题展开探讨、答疑解惑,为中国临床质谱产业链上中下游三方搭建互动交流平台,助力中国临床质谱产业发展,进一步优化和拓展临床质谱产业市场,共同促进中国质谱产业健康快速发展。
  • 蛋白质测序技术发展漫谈(下)
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇)前面讨论了基于质谱的蛋白质测序技术的一般流程及基于质谱的肽段序列测定方法。在组成蛋白质的20种氨基酸中,亮氨酸和异亮氨酸互为同分异构体,具有相同的分子质量,无法通过二级质谱产生的同系列离子的质量差异被区分。然而亮氨酸/异亮氨酸对单克隆抗体药物的功能影响巨大,典型的单克隆抗体在互补决定区(CDR)中含有至少3个亮氨酸/异亮氨酸,在复杂的样品中可以存在多达9个。单克隆抗体中CDR的错误识别,会导致抗原结合亲和力与抗体的特异性大量丧失。因此,对单克隆抗体中的全部亮氨酸或异亮氨酸进行准确测定意义重大[1-2]。亮氨酸和异亮氨酸的侧链分别是异丁基和仲丁基,通过质谱的多级碎裂产生的特征离子可以对亮氨酸和异亮氨酸进行区分。一种方法是通过不同系列的碎片离子质量差来区分,其原理是肽段在ETD-HCD或EThcD碎裂模式下可产生z离子,含有异亮氨酸和亮氨酸肽段分别失去一个乙基自由基(C2H5)和一个丙基自由基(C3H7),产生质量分别减少29 Da和43 Da的w离子,因此通过质谱产生的z/w离子质量差,可区分肽段中的亮氨酸和异亮氨酸[2-5]。Zhokhov[3]对人血清白蛋白(HSA)、gp188蛋白两种蛋白质的43条胰蛋白酶酶解肽段中的93个亮氨酸和异亮氨酸进行鉴定,准确区分了其中的83个,但由于z/w离子分别产生在ETD和HCD谱图中,在鉴定过程中需要人工筛选含有z/w离子的谱图。Tatiana[4]等通过EThcD的碎裂模式对蛙皮肤分泌的14条肽段进行鉴定,使肽段的z/w离子出现在同一张谱图中,区分鉴定了这些肽段中的61/75个亮氨酸和异亮氨酸。由于不能保证每个含有亮氨酸或异亮氨酸的肽段在质谱中碎裂一定会产生相应的z/w离子,因此通过z/w离子质量差的方法无法对蛋白序列中全部的亮氨酸和异亮氨酸准确测定。另一种方法是通过亮氨酸和异亮氨酸的亚胺离子的三级碎片离子区分,其原理是亮氨酸或异亮氨酸质子化的离子(132 Da)容易损失甲酸而形成相应的亚胺离子(86 Da),它们的亚胺离子在三级碎裂中分别会产生m/z 69和m/z 43的特征离子。Nakamura[6]使用嗜热菌蛋白酶对人钙降素进行酶解,得到以亮氨酸或异亮氨酸为N端的肽段,通过该方法确定钙降素的第4和9个氨基酸为亮氨酸,第27个氨基酸为异亮氨酸,但此方法的缺点是当一条肽段中含有不止一个亮氨酸或异亮氨酸时,特征离子峰相会互干扰,无法对其判断。Bagal[5]将亚胺离子的三级碎片离子的方法和z/w离子质量差的方法结合,并将该策略用于两个单克隆抗体CDR中的亮氨酸和异亮氨酸的鉴定,由于使用胰蛋白酶酶解产生的肽段长度过长,对鉴定造成影响,仅对6条肽段中的亮氨酸和异亮氨酸的准确鉴定,无法区分CRD区全部亮氨酸和异亮氨酸。Sheila[7]使用4种蛋白酶对单克隆抗体进行酶解,对二级质谱产生的a1离子进行三级碎裂,排除了肽段内部亮氨酸或异亮氨酸的干扰,根据每个三级谱图中特征峰强度的比值对亮氨酸和异亮氨酸区分,由于谱图中噪音干扰以及肽段的共碎裂,会使一些含有特征离子的谱图不能用于准确区分亮氨酸和异亮氨酸,最终对单克隆抗体中的71.1%-94.1%亮氨酸和异亮氨酸进行区分。我们借鉴该方法,结合非特异酶连续酶解技术,以及基于碎片离子质量校正和多谱图共同打分策略,实现了对单克隆抗体药物赫赛汀轻链中7个异亮氨酸和18个亮氨酸,重链中9个异亮氨酸和33个亮氨酸的鉴定,准确度100%,轻链鉴定的覆盖度为100%,重链鉴定的覆盖度为97.67%。鉴定蛋白质中亮氨酸和异亮氨酸的流程图[1] Hurtado P P, O' Connor P B. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry [J]. Mass Spectrom Rev, 2012, 31(6): 609-25.[2] Xiao Y, Vecchi M M, Wen D. Distinguishing between Leucine and Isoleucine by Integrated LC-MS Analysis Using an Orbitrap Fusion Mass Spectrometer [J]. Anal Chem, 2016, 88(21): 10757-66.[3] Zhokhov S S, Kovalyov S V, Samgina T Y, et al. An EThcD-Based Method for Discrimination of Leucine and IsoleucineResidues in Tryptic Peptides [J]. J Am Soc Mass Spectrom, 2017, 28(8): 1600-11.[4] Samgina T Y, Kovalev S V, Tolpina M D, et al. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond [J]. J Am Soc Mass Spectrom, 2018, 29(5): 842-52.[5] Bagal D, Kast E, Cao P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMS(n) [J]. Anal Chem, 2017, 89(1): 720-7.[6] Nakamura T, Nagaki H, Ohki Y, et al. Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry [J]. 1990, 62(3): 311-3.[7] Maibom-Thomsen S, Heissel S, Mortz E, et al. Discrimination of Isoleucine and Leucine by Dimethylation-Assisted MS3 [J]. Anal Chem, 2018, 90(15): 9055-9.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 我国或将实现蛋白质测序仪器和试剂国产化
    基因测序技术飞速发展,使得几十个甚至上百个基因的测序能够在几天之内完成,近日,&ldquo 蛋白质测序仪器和试剂国产化&rdquo 项目实施工作会议在北京大学顺利落幕,会议得到了北京大学前沿交叉学科研究院方竞院长的大力支持。   90年代人类基因组计划,中国科学家承担了1%的任务 而2010年代的人类蛋白组计划,则是由中国科学家领军 20年来,从承担人类基因组计划1%到人类蛋白组计划的领袖全球,证明了中国科学的长足进步,也体现了中国科学家的卓越贡献。此次工作会议是科研与产业化结合非常好的范例,由国内蛋白组领域的重要企业参会,并成立了&ldquo 中国人类蛋白质计划企业工作组&rdquo ,由知名企业担任企业工作组组长,努力打破生物质谱被国外企业垄断的局面,迅速将相关的研究成果运用于临床诊断。   &ldquo 蛋白质测序仪器和试剂国产化&rdquo 项目,基于&ldquo 中国人类蛋白质组计划&rdquo ,项目共分9个课题,其中&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题,是一重点研究方向,将会加大蛋白质组学在临床领域的研究与应用,快速推动生物质谱技术在临床医疗领域的应用。   利用对人体DNA分子的鉴定来辅助诊断的技术(分子诊断技术)在上个世纪就已经出现了,比如,FISH等核酸杂交技术已经可以进行染色体和基因水平的分析。上世纪90年代,定量PCR技术的兴起大大加快了突变鉴定的速度,可以进行DNA上单个位点突变的鉴定,被广泛应用于临床。本世纪初,人类基因组草图绘制的完成标志着第一代基因测序技术的成熟,对一个或几个基因的测序开始应用在临床上,对基因突变测量的分辨率得以提升,在传染病的鉴定以及癌症等致命性疾病的靶向治疗中应用广泛。   除了精度的提高,基因芯片技术的发明使得同时检测许多基因的变化成为可能。如今新一代测序技术的进展使得大规模测序的速度急剧提高,成本急剧降低,越来越多的疾病找到了可用于诊断或分型的分子标志物,同时检测几十个基因的微小变化也不再困难,对传染病病原体的鉴定变得更加快速,许多遗传性疾病都可以实现无创的产前诊断。   科技的进步应用于医疗领域需要经过一段时间,与IT等领域不同,医疗领域是政府监管最为严格的领域,合规性是临床应用上绕不开的问题。一项技术的成熟必须得到政府监管部门的认可才能得到应用,而新技术的批准、质控可溯源体系的建立、收费标准的建立等需要耗费时间。新一代测序的应用涉及到测序仪器、测序试剂、生物信息软件与数据库的相互配合,虽然这项技术在21三体综合症的产前诊断等应用方面展现出了极好的前景,但我们必须承认,在从基因序列到疾病的探索中,还有许多未知的问题需要解决。
  • 转录组测序结合蛋白质组分析探索蝾螈再生奥秘
    来自德国及美国等处的研究人员针对基因组特别大,难以进行全基因组测序的动物,提出了以转录组测序与蛋白质组分析联合以解析功能基因的策略,并以蝾螈进行实验,开辟了组织及器官再生研究的新思路。该研究成果已发表近期的《Genome Biology》杂志上。 蝾螈是一种在侏罗纪中期演化的有尾两栖动物,目前存活的约有400种。红色斑点蝾螈虽然小,但其组织工程学技艺却令人惊叹。蝾螈在失去了组织,包括心肌、中枢神经系统元件甚至眼睛的晶状体后仍能再生。一般来讲,动物的再生组织的能力是所有多细胞动物所共有的古老程序,因此,医生们一直希望蝾螈的这种能力依赖于基础遗传学程序,而该程序潜伏在包括哺乳动物在内的所有动物中,这样他们就可以在再生医学中利用蝾螈的再生机制。 然而蝾螈的基因组十分庞大,比人类基因组大十倍,要从头获得蝾螈的全基因组序列不容易。因此研究者们将目光转向基因表达所产生的RNA,他们利用454新一代测序技术对蝾螈的转录组进行了研究。经过从头组装N. viridescens的转录组,获得了超过120,000个RNA转录本,约有15,000个转录本编码蛋白质,其中有826个转录本是蝾螈所特有的。这些转录本中包含了不同器官所有再生阶段的转录本,这些转录本中的一部分与其它生物相似。通过对蝾螈胚胎和幼体的心脏、四肢、眼睛、尾、肝脏、脾脏等组织中再生过程表达的蛋白的分离以及质谱分析方法,对这些蛋白进行分类及与转录本的比对。 通过454新一代测序结果与质谱技术的结合,发现了500多个其它生物中从未被发现的肽段,接下来会进一步探索这些蛋白是否与再生能力相关。这项研究不仅为目前科学家们提供了两栖类动物的基因数据,更为基因组测序困难的动物研究,提出了一种新思路。 参考文献: Genome Biol. 2013 Feb 20 14(2):R16. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration.Looso M, Preussner J, Sousounis K, Bruckskotten M, Michel CS, Lignelli E, Reinhardt R, Hoeffner S, Krueger M, Tsonis PA, Borchardt T, Braun T.
  • Science重磅:纳米孔直接测序蛋白质,精度高达100%,还可识别氨基酸修饰
    蛋白质是构成生物体的主要成分,同时也是生命活动的主要承担者。具有生物学功能的蛋白质往往具有特定的空间结构,而蛋白质结构在多个层级上被定义,其中一级结构,即氨基酸的种类和排列,最为重要,它可以决定蛋白质的高级结构。但一直以来,想要直接读取蛋白质的一级结构是十分困难的,在大多数情况下,科学家们会根据基因序列和氨基酸密码子表来“破译”蛋白质的氨基酸序列。然而,由于转录后修饰和翻译后修饰的存在,破译结果并非完全正确,甚至与真实的氨基酸序列有很大差异。2021年11月4日,荷兰代尔夫特理工大学的研究人员在 Science 期刊上发表了题为:Multiple rereads of single proteins at single–amino acid resolution using nanopores(利用纳米孔在单氨基酸分辨率下对单蛋白质进行多次重读)的研究论文。该研究利用纳米孔测序技术成功扫描并读取单个蛋白质的氨基酸序列:线性化的DNA-肽复合物缓慢通过一个微小的纳米孔,根据电流的变化和强度,研究人员就能读取相关的蛋白质信息内容,直接对蛋白质的氨基酸序列进行测序。蛋白质是生命活动的主要承担者。事实上,所有生物的蛋白质都是由大约20种不同的氨基酸组成的长肽链,就像项链上有不同种类的珠子一样。遗憾的是,目前的蛋白质测序方法价格昂贵,而且不能检测许多稀有蛋白质。近年来发展起来的纳米孔测序技术,已经能够直接扫描和排序单个DNA分子。如今,这篇发表在Science 上的研究表明,我们完全可以以类似于DNA纳米孔测序的方式直接读取蛋白质的氨基酸序列。本研究的通讯作者 Cees Dekker 教授表示:在过去的30年里,基于纳米孔的DNA测序已经从一个想法发展成为一个实际的工作设备,并成功开发了商业化的便携式纳米孔测序仪,服务于价值数十亿美元的基因组测序市场。在我们的论文中,我们将纳米孔的概念扩展到单个蛋白质的读取。这可能会对基础蛋白质研究和医学诊断产生重大影响。牛津纳米孔开发的纳米孔基因测序仪直接读取氨基酸序列对于如何利用纳米孔读取肽链中的单个氨基酸的特征,这篇论文的第一作者 Henry Brinkerhoff 博士打了一个形象的比喻:“想象一下,一个肽链中的氨基酸链就像一条项链,上面有不同大小的珠子。然后,你打开水龙头,慢慢地把项链送入下水道,也就是纳米孔。如果在某个时间点是一颗大珠子,它会堵塞下水道,那里面的水也就成了涓涓细流。相反,如果是一颗小珠子,那么下水道剩余的空隙就会比较大,水流也更大。”用纳米孔肽阅读器直接读取氨基酸序列因此,通过这项技术,研究人员可以非常精确地测量纳米孔的电流大小,并以此推测相应的氨基酸种类。更关键的是,这个过程并不会影响肽链的完整性,因此我们能够一次又一次地读取单个肽链,然后对所有数据进行拟合,从而以基本上100%的准确率获得肽链的序列组成。解旋酶(红色)拖动连接了多肽(紫色)的 DNA 分子(黄色),使其缓慢通过纳米孔(绿色),从而通过读取电信号(橙色高亮)表征多肽的氨基酸序列。条形码般的识别精度为了进一步验证这项技术的准确性,研究人员改变了肽链的某个氨基酸,然后能够检测到显著差异的电信号,表明该技术是极其灵敏的。事实上,这项新技术在识别单个蛋白质和绘制它们之间的细微变化方面非常强大,打个形象的比方——就像超市的收银员通过扫描条形码来识别每个产品一样。这也可能为未来的蛋白质从头测序提供新的途径。纳米孔肽阅读器可以区分单氨基酸替代的单肽Henry Brinkerhoff 博士表示:这项方法可能为未来蛋白质测序奠定基础,但就目前来说,蛋白的从头测序仍然是一个巨大的挑战。我们仍然需要大量描述来自不同序列的电信号,以便创建一个对应电信号和蛋白质序列的“密码表”。但即便如此,该研究已经能够成功分辨蛋白质序列中的单个氨基酸的改变,这无疑是一项重大进步,也将产生许多直接应用。看见生物学的“暗物质”https://www.science.org/doi/10.1126/science.abl4381
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • “蛋白质测序仪器和试剂国产化项目”工作会议召开
    2014年4月26号,由毅新兴业(北京)科技有限公司牵头的国家高技术研究发展计划资助项目(863计划)、"蛋白质测序仪器和试剂国产化"项目实施工作会议在北京大学顺利召开。会议由项目首席科学家复旦大学杨芃原教授主持,国家科技部生物医药处、国家科技部生物中心、北京市生物促进中心、北京市人力社保局、北京市食品药品监督管理局、中关村管委会产业处等领导出席,军事医学科学院甄蓓处长、"中国人类蛋白质计划"负责人秦军教授、钱小红教授,中国人民解放军总医院(301医院)生化科主任医师田亚平教授、首都医科大学附属北京天坛医院实验诊断中心主任康熙雄教授、首都医科大学附属北京世纪坛医院检验科主任医师张曼教授等七十多专家学者出席了本次会议,会议得到了北京大学前沿交叉学科研究院方竞院长的大力支持。 "蛋白质测序仪器和试剂国产化"项目,基于"中国人类蛋白质组计划",项目共分9个课题,由毅新兴业(北京)科技有限公司主要承担的"激光解析基体辅助离子源-蛋白测序仪器"课题,是一重点研究方向,将会加大蛋白质组学在临床领域的研究与应用,快速推动生物质谱技术在临床医疗领域的应用。 1990年代人类基因组计划,中国科学家承担了1%的任务 而2010年代的人类蛋白组计划,则是由中国科学家领军 20年来,从承担人类基因组计划1%到人类蛋白组计划的领袖全球,证明了中国科学的长足进步,也体现了中国科学家的卓越贡献!此次会议也是科研与产业化结合非常好的范例,毅新兴业(北京)科技有限公司、华质泰科生物技术(北京)有限公司、聚光科技(杭州)股份有限公司等国内蛋白组领域的重要企业参会,并成立了"中国人类蛋白质计划企业工作组",由毅新兴业担任企业工作组组长,努力打破生物质谱被国外企业垄断的局面,迅速将相关的研究成果运用于临床诊断。 飞行时间质谱既是蛋白质组学领域进行科学研究的重要工具,也是将蛋白质组学的科学研究向临床转化的重要桥梁,2013年8月,法国梅里埃公司的用于微生物鉴定的飞行时间质谱仪器通过FDA注册,2013年11月,德国布鲁克公司的飞行时间质谱也通过FDA注册,2013年10月,美国Sequenom公司用于基因检测的飞行时间质谱仪器申请了FDA注册 2013年10月,使用质谱技术检测血液中蛋白标志物进行肺部结节良恶性判断的研究成果被Science转化医学认可,并迅速被众多美国ClinLab认证实验室临床使用。 项目实施工作会议上,各个课题负责人依次对课题的主要研究内容、预期的任务指标、课题的执行进度以及存在问题与解决方案进行了阐述与汇报。相关领导进行了重要发言,认真地听取了汇报,对课题已经完成的任务和取得的成绩给予肯定,对课题负责人提出的问题做了认真回答。最后,参会代表和科研管理人员就实施工作的内容进行了热烈讨论,交换了课题实施与管理方面的经验。很多参会代表认为实施工作会议的内容丰富,通过参会提高了课题管理能力,拓宽了知识面,将有利于以后课题的有效管理和顺利实施。
  • 天府锦城实验室在生物传感与蛋白质测序领域取得重要进展
    3月10日,封面新闻记者从天府锦城实验室(未来医学城)获悉,四川大学华西医院临床检验医学研究中心与生物治疗全国重点实验室、天府锦城实验室(未来医学城)耿佳教授和华西第二医院陈路教授联合团队在生物传感与蛋白质测序领域取得重要进展。耿佳教授、陈路教授(左四、左五)与主要作者合影(左至右:陈山川、张丹、张明、王紫纯、唐超)。摄影:谢忱据了解,每个人体内都有超过百万种蛋白质,与水、脂肪和无机物等共同构成生物体。蛋白质是生命活动的主要承担者,例如胰岛素和胰高血糖素控制血糖高低;视紫质能够感应光子,对于正常视觉功能必不可少。许多疾病的发生与蛋白质的异常直接相关,例如缺乏凝血因子会引起血友病;异常淀粉样蛋白斑可损害神经元,是阿尔茨海默病的潜在诱因。破译蛋白质信息是探索生命现象、促进人类健康的关键一环。该研究成果阐明了纳米孔单分子检测新策略,实现了对全部20种天然氨基酸的直接区分,提出并验证了纳米孔外切酶实时多肽测序(Nanopore Exopeptidase Real-time Peptide Sequencing, NEPS)方法,为实现单分子蛋白质测序提供了可行途径,展示出生物传感器技术与人工智能算法结合的优异潜力。NEPS技术为最终破译“生命天书”、更精准的疾病诊断和治疗、更快的药物开发提供有力工具,同时代表我国生物传感技术与蛋白组学工具的原始创新能力进入全球前沿方阵。相关成果日前在线发表于《自然方法》。相关成果日前在线发表于《自然方法》近年来,成都未来医学城围绕高质量发展和科技创新时代主题,依托成渝地区双城经济圈国家战略,以临床医学转化为创新原点,专注创新成果转化、孵化。2023年7月,天府锦城实验室(未来医学城)耿佳教授团队联合卢克锋教授、戚世乾教授、李绘绘教授等团队共同在世界知名学术期刊《Nature Communications》发布学术文章,半年后,天府锦城实验室(未来医学城)耿佳教授团队再传喜报,提出并验证了纳米孔外切酶实时多肽测序(Nanopore Exopeptidase Real-time Peptide Sequencing, NEPS)方法,研发领域成果喜人。截至目前,天府锦城实验室(未来医学城)成功导入高能级科研团队14支,其中院士级团队3支,聚集研发人才200人;承担国家级科研课题3项、省级课题2项,发表SCI论文7篇,注册企业19家。成都未来医学城下一步,成都未来医学城将充分发挥成渝双城经济圈建设国家战略及区位优势,搭建集技术开发、概念验证、小中试等功能为一体的成果创新转化平台,打通基础创新源头和科技成果转化的“最后一公里”,促进创新链、产业链、资金链、人才链深度融合,护航科技创新策源转化,提升创新成果转化效率,助力成都加快形成新质生产力。
  • 岛津应用:应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列
    生物体在合成蛋白质时,N-末端首位的甲硫氨酸在蛋白质加工过程中可能被酶切除。本文以蛋白质类药物重组人粒细胞巨噬细胞刺激因子注射液原液为例,演示了应用蛋白质测序仪PPSQ-53A进行N-末端甲硫氨酸部分缺失的蛋白质分析的方法和结果。本应用蛋白质测序仪PPSQ-53A测定了发生N-末端部分甲硫氨酸切除的蛋白质类药物重组人粒细胞巨噬细胞刺激因子的-N未端前16个氨基酸的序列,结果与理论序列一致。除了氨基酸定性,根据信号峰强度,可以粗略估计样品N-末端甲硫氨酸的缺失比例。以上表明应用PPSQ-53A可以测定N-未端部分甲硫氨酸缺失的蛋白质的N-末端氨基酸序列。可作为此类生物药物样品分析时的参考。 ?了解详情,敬请点击《应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津推出《蛋白质测序仪PPSQ在生物药N-末端氨基酸序列分析的应用》方案
    —抗体药、蛋白质药、N-末端甲硫氨酸缺失或焦谷氨酸环化封闭等—? 目前,在制药领域,生物药得到越来越多的关注。生物药是利用DNA重组、细胞融合、细胞培养等生物技术开发出的蛋白质药物、抗体药物等。几乎所有蛋白质合成都起始于N-末端,其序列组成对于蛋白质整体的生物学功能有着重要的影响力,因此蛋白质的序列分析对于生物药效果非常关键。 2015版《中国药典》三部人用重组DNA技术产品总论对生物药的生产及质量控制方面,,针对其蛋白质结构提出技术要求,应测定目标产品的氨基酸序列,并与其基因序列推断的理论氨基酸序列进行比较。因此,N-末端氨基酸序列分析是很多已上市生物药的年检项目,如重组人促红素注射液(CHO细胞) 、重组人粒细胞刺激因子注射液等。此外,国际法规中也有对于生物药N-末端氨基酸序列测定的要求。药品注册的国际协调组织颁布的指导法规ICH-Q6B规定,生物药进行申报时,必须提供N-末端氨基酸序列信息。《欧洲药典》中规定,生物仿制药申报也必须提供N-末端序列。 Edman降解法是蛋白质N-末端测序的常用方法,岛津公司的蛋白质测序仪(Protein Sequencer)PPSQ以Edman降解法为基础,将蛋白质从N-末端顺次切断进行序列分析。此方法具有直接测定、可靠性高的优势。近期,岛津推出新型的蛋白质测序仪PPSQ 51A/53,配备SPD-M30A高灵敏度检测器、软件满足FDA 21 CFR Part 11数据完整性的要求。PPSQ 51A/53梯度系统更是在等度系统基础上,提高检测灵敏度,适合微量样品的氨基酸序列分析。我们应用岛津PPSQ 51A/53A开发了单克隆抗体药、重组蛋白药的N-末端氨基酸序列分析方法,另外,也开发了具有特殊结构的生物药N-末端氨基酸序列分析方法,如甲硫氨酸缺失、焦谷氨酸环化封闭等样品,编写了《蛋白质测序仪PPSQ在生物药N-末端氨基酸序列分析的应用》文集:包括经十二烷基硫酸钠聚丙烯酰胺凝胶电泳分离轻链和重链,从而测定N-末端氨基酸序列的单克隆抗体药贝伐单抗和曲妥珠单抗等;含有特殊结构的如N-末端部分甲硫氨酸缺失的重组人粒细胞巨噬细胞刺激因子注射液原液、N-末端焦谷氨酸环化封闭类单克隆抗体帕尼单抗、含有二硫键的溶菌酶和催产素;用自制的脱盐装置分析具有高浓度盐的蛋白质药物重组人促红素原液(CHO细胞)和重组人粒细胞刺激因子注射液。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. etal. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
  • 岛津应用:蛋白质测序仪PPSQ-53A分析贝伐单抗N-末端氨基酸序列
    贝伐单抗是重组的人源化单克隆抗体。2004年2月26日获得FDA的批准,是美国第一个获得批准上市的抑制肿瘤血管生成的药。本文应用 SDS-PAGE(十二烷基硫酸钠聚丙烯酰胺凝胶电泳)将贝伐单抗的重链和轻链进行分离,使用电转印方法将 SDS-PAGE膜上的样品转移到PPSQ使用的PVDF膜上,使用蛋白质测序仪PPSQ-53A对贝伐单抗进行N-末端氨基酸序列分析。实验结果显示测定的重链和轻链的N-末端氨骏序列与理论相符,验证了方法的准确性,表明此方法适合抗体药N-末端的氨基酸序列分析。本文可作为分析抗体药N-末端氨基酸序列分析时的参考。 了解详情,敬请点击《蛋白质测序仪PPSQ-53A分析贝伐单抗N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 蛋白分析利器-月旭科技助力探索蛋白质人工化学合成的奥秘
    1965年,中国科学家在世界上首次人工合成牛胰岛素,开启了生命化学研究的新时代。过去数十年历尽科研工作者的不断努力,蛋白质的人工化学合成取得了巨大进步。相较于自然界的生物合成,化学合成可创制具有各种精确控制结构及非天然结构的人造蛋白质,对于发展满足我们需求的蛋白质工具和蛋白质产品带来了新机遇。近期科研工作者们在化学合成蛋白领域又取得了新的成果,并应用了月旭科技的相关色谱柱产品,快来随小编一起饱尝科研的饕餮盛宴吧!化学合成大型镜像聚合酶并实现镜像DNA信息存储WELCH据悉,自然状态下的DNA,会经过精巧的进化来存储遗传信息。而手性倒链L-DNA具有相同的信息能力,但耐生物降解,可作为一个健壮的生物正交信息库。在一项新研究中,清华大学生命学院朱听课题组的研究人员们用化学方法合成了一个90kda的高保真镜像Pfu DNA聚合酶,它能够精确组装一个千碱基大小的镜像基因。该实验中首次使用的大型镜像蛋白质全化学合成策略及千碱基长度镜像基因的组装技术,解决了长期制约镜像生物学领域发展的大型镜像生物分子的制备难题。该研究成果以“利用高保真镜像Pfu DNA聚合酶实现生物正交的镜像DNA信息存储”(Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase)为题,于2021年7月29日发表在Nature Biotechnology杂志上。研究成果快览研究人员们用聚合酶在L-DNA中编码路易斯巴斯德1860年的一段话,这段话第一次提出了生物学的镜像世界。为突破全化学合成对蛋白质大小的限制,研究团队通过将嵌合的D-DNA/L-DNA关键分子嵌入到D-DNA存储库中,来实现手性隐写。团队将全长为775个氨基酸的Pfu DNA聚合酶分割为长度为467个氨基酸和308个氨基酸的两个片段分别合成,将其混合后共同复性,使其正确折叠为具有完整功能的90 kDa高保真镜像Pfu DNA聚合酶,为目前已报道最大的全化学合成蛋白质;研究者还利用该高保真镜像聚合酶组装出长达1.5 kb的镜像16S核糖体RNA基因,为目前已报道最长的镜像DNA。此外,他们发现保存在自然环境条件下(当地池塘水中)的微量L-DNA条形码,在1年内仍可扩增和测序;而在相同条件下的D-DNA条形码,在1天后就已经无法扩增。背后原因只有一个:它们的手性不同。在研究中,该课题组利用Ultimate® XB-C4 (4.6*250mm, 5μm)来监测反应的进行,并检测肽段产品的纯度。同时用制备柱Ultimate® XB-C4和C18 (21.2*250mm, 5μm或10*250mm, 5μm)来分离制备粗品肽段和连接产物。全化学合成富含二硫蛋白质WELCH在生物医学研究中,富含二硫的蛋白质是有用的药物或工具分子,但它们的合成由于折叠的困难而变得复杂。有鉴于此,清华大学的刘磊教授、中国科学技术大学的郑基深教授等研究人员,使用可移除的O-连接的β-N-乙酰葡萄糖胺策略,实现了正确折叠的富含二硫键蛋白质的全化学合成,该研究成果以“Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy”为题,发表于2022年1月3日的JACS杂志上。研究成果快览研究人员描述了一种可移除糖基化修饰(RGM)策略,它可以加速具有多个或甚至链间二硫键的正确折叠蛋白质的化学合成。实验过程中,利用Ultimate® XB-C4(120Å或300Å,250mm×4.6mm,5μm)监测蛋白的合成反应,并用半制备柱Ultimate® XB-C4和C18(300Å,250mm×10mm,5μm)成功制备得到目标蛋白。该策略包括在Ser/Thr位点引入简单的O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)基团,通过稳定其折叠中间体,有效地促进了富含二硫的蛋白质的折叠。折叠后,O-GlcNAc基团可以用β-N-乙酰氨基葡萄糖酶(OGA)被有效地去除,从而获得正确折叠的蛋白质。使用这种策略,该研究组完成了正确折叠的铁调素的合成,这是一种含有四组二硫键的铁调节激素。研究人员首次实现了正确折叠的白细胞介素5(IL-5)的全合成,这是一种26kDa的同型二聚体细胞因子,负责嗜酸性粒细胞的生长和分化。“工欲善其事,必先利其器”,月旭科技专门针对多肽、蛋白类等生物样品方法开发,推出Welch生物样品分析方法开发包,助力前沿的科学研究和日常生产分析制备工作。● 适合蛋白、多肽或其他大分子的方法开发。为了能更好地与键合相发生作用,需使用大孔径(300Å或450Å)的填料。● 不同保留能力的不同选择性键合相,满足各种分子大小的蛋白质、多肽的保留和分离。参考文献1. Ting F. Zhu, et al. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology,2021. Nature Biotechnology | VOL 39 | December 2021 | 1548–1555.2. Lei Liu, et al. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J. Am. Chem. Soc. 2022, 144, 349−357.
  • 解析人类蛋白质组草图公布
    1 人类蛋白质组草图公布   之前,尽管不少大型的蛋白质组数据集,已经收集约上万个蛋白数据,然而覆盖80%的人类蛋白质组的草图却并未绘制。此次的研究,则突破了这一局限。   该图谱由德国慕尼黑工业大学、约翰霍普金斯大学/印度生物信息研究所等机构的两个团队独立完成。其中,在印度生物信息研究所和美国约翰霍普金斯大学等机构绘制了17 924个基因编码的蛋白质草图,其总数约占人类基因总数的84% 而慕尼黑理工大学领衔的团队,则对19 629个基因编码的蛋白质绘制草图,其总数约占人类基因总数的92%。不过,印度和美国团队,与德国团队所采用的实验数据来源略有不同,印度和美国的研究者从30个人体组织的许多不同的样品及细胞系(包括7种胎儿组织和6种血细胞类型)中提取、纯化所有蛋白质,并用质谱技术揭示组成各蛋白片段的氨基酸序列,因而两种数据的分析方法相对统一 德国的团队所采用的数据从公共数据库收集获得,而后与实验室生成的数据合并完成分析。在德国的研究中,慕尼黑工业大学的Bernhard Kü ster等人建立了搜索性公共数据库ProteomicsDB,而公共数据库收集获得的质谱分析数据约占ProteomicsDB数据的60%,其他的数据来自于60个人类组织体液,13个体液,147个癌细胞系。   这些蛋白大多为健康人群中组织和器官中表达的蛋白,对于理解疾病状态下发生的变化,具有现实的意义,如德国团队完成的数据能用于识别数百个翻译的基因间非编码RNAs(lincRNAs),比较分析通过蛋白质对癌症药物的敏感性,发现mRNA和组织中蛋白的定量关系等。同时,这两项研究也发现了许多新蛋白,而编码这些蛋白的基因之前被认为位于基因组的非编码区域,因而也丰富了对于遗传学研究的认识。   2 研究团队的基本背景   此次研究的美国和印度团队,由约翰霍普金斯大学的副教授Akhilesh Pandey领衔,而他也是印度生物信息学研究所首席科学顾问。此前,印度生物信息学研究所和约翰霍普金斯大学的生物信息学团队就有广泛的合作,例如两个机构的26名科学家经过18个月的努力,排列出了人类的X染色体顺序,并将其与黑猩猩、老鼠的基因组相比较,发现了新基因。   慕尼黑工业大学的化学和功能蛋白质组学分析者Bernhard Kü ster,其研究的主要领域是探索蛋白质的相互作用及其与活性药物成分的相互作用,分析癌症发生发展的分子机制,以及开发相应的临床治疗方法。作为研究者,Bernhard Kü ster也曾参与了蛋白质组技术平台上具有雄厚基础的Cellzome公司的发明(新的酶相互作用化合物的方法)。而Cellzome公司的药物研发平台,可对于特定蛋白相互作用的药物进行筛选,其具有高度的灵敏性,而葛兰素史克(GSK)公司也正在看中了这一点已将其并购。   3 中国人类蛋白质组计划(CNHPP)   在人类蛋白质组草图公布的同时,&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 已经由科技部正式批准启动实施。此前,中国科学家已倡导并领衔人类第一个器官(肝脏)国际蛋白质组计划(HLPP)。   在&ldquo 中国人类蛋白质组计划&rdquo 中,&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题是重点研究方向之一,致力于蛋白质测序仪器和试剂国产化,从而加速蛋白质组学和生物质谱技术在临床领域的研究与应用。   4 蛋白质组测序技术的开发   蛋白质组是一个细胞、组织、有机体在一定时间内表达的所有蛋白质(总蛋白质)。对蛋白质组进行系统的、全面的研究,而快速、准确、低成本的蛋白质分离纯化技术(如双向电泳、计算机图像分析与大规模数据处理技术以及质谱技术等)的发展,则是系统、全面研究的基础。有了基因组计划和基因组测序技术的发展经验,人类在蛋白质组草图公布的前后,也就有了对低成本、高效率的蛋白质组测序技术的格外重视。例如,亚利桑纳州立大学的Stuart Lindsay团队正在致力于研究让单链肽段穿过纳米孔的技术,从而将纳米孔单分子DNA测序技术(第三代基因测序技术,采用纳米孔的单分子读取,与之前的测序技术测序时间长、价格比较昂贵、测序分子需要大量扩增、还需要进行荧光标记等相比,第三代测序技术读取数据更快,测序成本明显降低)的设计理念应用于蛋白质组的测序,开发蛋白质单分子测序技术。   5 蛋白质组学与个性化医疗   人类蛋白质组草图的成果表明,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成。这也说明了基因组和蛋白质组之间的巨大差别。例如,表观遗传研究的核心内容即是基因的拼接和翻译后修饰,而蛋白质随时间和空间的动态变化等,使得蛋白质组的研究远比基因组研究复杂。   尽管目前的个性化医疗以基因解析为特征,然而真正衔接基因型与疾病表型的还是蛋白质。随着蛋白质组测序技术的快速发展,也许蛋白质组学的研究会带动个性化医疗新的发展阶段。   本文作者:中国科学院上海生命科学信息中心 于建荣 江洪波。
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 蛋白质组学全球市场已达500亿美元
    01 摘要蛋白质组学目前的研究活动的成长与基因组学早期的发展轨迹相似。基因组学花费了大概十年的时间实现了产业化。尽管蛋白质组学技术起步的时间比基因组学更早,但蛋白质组学相对更大的复杂性导致其与基因组学相比需要更先进的技术。然而,今天,蛋白质组学的重要研究瓶颈正在被不断突破,让科学家们看到了其在研究、转化和临床意义上达到与基因组学相当的水平的前景。因此,随着时间的推移,蛋白质组学在研究和临床中应用的商业机会将与基因组学的可用市场总量(TAM)规模趋于一致,目前全球TAM已经达到500亿美元。并且我们有理由相信,由于蛋白质组学动态、变化的性质将使得其超过基因组学而转化为更加具有经常性、重复性的临床应用。质谱是最能促进蛋白质组学工业化的技术,但其工作流程的标准化,尤其是样品制备阶段的标准化,仍然存在着挑战。对于长期投资商来说,应该对在这个生态圈中拥有于众不同知识产权的供应商给与更大的关注。尽管以基于高元多工分析方法为代表的新兴检测方法与质谱方法相比仅处于早期发展阶段,但也具有巨大的潜力。02 背景与投资情况论述生命的基本构成部分是核酸和氨基酸。核酸是基因的基本构成成分。氨基酸是蛋白质的基本构成成分。事实上,我们体内每个细胞的成分都可以归类于蛋白质、基因、脂质或碳水化合物这四类大分子化合物。脂质和碳水化合物组成简单不易出错。因此,最重要的是对基因和蛋白质进行深入了解。我们对人类生物学的理解,从细胞功能到疾病的因果关系,再到药物治疗,都是我们对基因组学和蛋白质组学知识的衍生品。在20世纪,先进显微镜和生物化学技术的发明导致我们对基于结构的蛋白质和基因的理解有了很大的进步。在21世纪,基因组学经历了一场革命,使其从一个刚刚起步的研究领域经历了工业化的过程,成为了临床生物学重要方面。这不仅使得人类对生物学有了更深更新的了解,也提供了包括液体活检诊断,CAR-T细胞治疗,甚至是mRNA疫苗的一系列新的临床治疗及诊断方法。蛋白质组学在21世纪也取得了重要进展。这不仅是由于质谱和X射线晶体学等成像方面新技术的出现,也是由于免疫检定试剂方面的生物化学方法创新,使得我们可以分离特定的蛋白进行进一步的研究。与基因组学相比,蛋白质组学还未取得飞跃。这并不是由于它相对于基因学的有较小的前景和应用场景,这只与它的方法的复杂性有关。我们认为,下一个十年蛋白质组学将进入快车道,使生物学研究、医学治疗和诊断方面进入一个以蛋白质为中心的新时代。蛋白质组学的挑战。超过95%的获得FDA批准的药物都是以蛋白质为目标,但蛋白质组中的多数组分却尚未被人们所了解。我们相信,十年后,西方国家的蛋白质组学公司所创造的股权价值将与今天基于基因组学的公司所创造的约2500亿美元的市值相当或更多。创新的速度正在加快:在1869年由弗里德里希-米歇尔(Friedrich Miescher)发现核酸之后近85年才由沃森和克里克于1953年发现了DNA双螺旋。从沃森和克里克的发现到2001年第一个人类基因组序列的发表花费了近50年时间。从2001年人类基因组的第一份草图到2021年7月公布的第一份完整序列花费了20年时间。总而言之,从核酸发现到确定完整的人类基因组花费了近155年的时间。在接下来的155年里,创新的速度将呈指数型增长,而蛋白质组学将是其中最大的受益者。03 蛋白质组学的今天:挑战与机遇什么是蛋白质组学?它为什么重要?图一:蛋白质组学受益于多种技术跨越式进步蛋白质组学作为一个术语首次出现在1996年,它被定义为对一个细胞系的整个蛋白质图谱进行大规模表征。蛋白质组学的要点是完整性和深度:通过检测和解读该细胞中的所有蛋白质的作用以及相互作用来彻底了解细胞功能,而不是应用传统的通过抗体分离已知蛋白质的方法单独检测每个蛋白质。基于抗体的蛋白质检测将继续在后续的工作中得到应用,但蛋白质组学是针对所有蛋白质,它们的相互作用,及其多种形态的大规模、高通量、高灵敏度的分析。因为蛋白质修饰和相互作用出错是发生疾病的通常原因,蛋白质组学研究对理解造成疾病发生的原因非常重要,Source: Graves PR, Haystead TA., Molecular biologist’s Guide to Proteomics(2002)04 蛋白质组学和基因组学之间的关系是什么?当马克-威尔金斯(Mark Wilkins)在1996年首次使用蛋白质组学一词时,他明确表示他指的是“基因组的补充”。基因是细胞的说明书。通过RNA的表达,他们指示细胞要构建哪些蛋白质。蛋白质细胞构建之后,它们通过与其他蛋白质和环境的相互作用而被翻译和修饰。因此,1) 基因组学的大部分功能效用通过蛋白质组体现;2) 下游事件-包括蛋白质间的相互作用,新的蛋白质形态和动态修饰的产生,及其对细胞分裂的影响-是蛋白质组学而不是基因组学的主题。Source: Virag D, Dalmadi K B. Current Trends in the Analysis of Post-translational Modifications (2020)因此,基因组学和蛋白质组学是相互关联的,而不是分开的,但蛋白质组学在功能上更为重要及复杂。有25000个独立的基因,但有超过100万种蛋白形式。虽然一个人的基因组不会改变,但一个人的蛋白质组是动态的。身体里的变化是通过蛋白质的修饰来表达的。你出生时的基因组和今天一样。但你的蛋白质组每天都在变化。05 为什么蛋白质组学研究如此困难?1. 分子的复杂性和多样性Source: Creative-Proteomics.com蛋白质分子本身的分子结构更为复杂。DNA是由4种核苷酸组成的,而蛋白质是由20种不同的氨基酸组成的。翻译后修饰,如甲基化和羟基化,改变了蛋白质的形态和功能。每个蛋白质可以有9种不同的蛋白形式。取决于翻译后修饰和蛋白质间的相互作用。这意味着同一个蛋白质可以有9种不同的功能。DNA的分子结构相对简单,有4种核苷酸变体,这意味着基因测序方法(如合成测序)不能应用于蛋白质组。需要新的、更复杂的、定制的方法来捕获生物样本中数百万种不同的蛋白质形态。2. 动态范围问题Source: Montanaro Research Aebersold R., Targeted Proteomic Strategy for Clinical Biomarker Discovery (2009)Y轴表示血浆样品中特定蛋白质分子的浓度和丰度。虽然有些蛋白质的含量极高,但大多数蛋白质类型的浓度很小,甚至可以忽略不计。红圈中的蛋白质存在于蛋白质组的“黑暗角落”,在这种极低的丰度下,这些蛋白质非常难以测得。大多数蛋白质的丰度极低。在血浆细胞中发现的约12,000个独立的蛋白质中,前10个占总蛋白量的90%,而其他约11,990个仅占10%。3. 少数的暴政如下饼图显示了血浆样品中蛋白质的相对丰度。单一的一种蛋白质,即血浆白蛋白,占了57%的总丰度,使读取其余的1万种蛋白质更加困难。Source: Anderson NG., Molecular Cell Proteomics (2002)06 蛋白质组学市场机遇有多大?我们相信,蛋白质组学在分子生物学研究以及临床医学和诊断方面有与基因组学一样远大的前景。Source: Montanaro Research自2001年第一个人类基因组的组装以来,基因组学已经成为生物医学的一个工业化部分, 纯基因组学公司的总市值达到2400亿美元。Illumina是其中最大的公司。蛋白质组学TAM(可用市场总量)如今已经达到数百亿美元。Somalogic estimate the total TAM to be $50 bn (Source: Somalogic)虽然临床应用方面的TAM具有最大的长期潜力,但在未来5年内研究和发展方面的TAM是最容易解决的。Source: Souda P., Proteomics: The Next Frontier, SVB Leerink (2021)SVB Leerink的蛋白质组学专家Puneet Souda估计,目前仅美国的研发TAM 有140亿美元,这基于学术界和制药业共约 26,100 个实验室总经费的2.5%的保守估计。如果我们把西方国家的实验室数量看作是约50,000个,并更合理的假设占总经费的5%的资金分配给蛋白质组学研究,我们估计在全球发达经济体中的蛋白质组学研发TAM为500亿美元。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • 杨芃原团队深度参与人类蛋白质组计划项目
    中国全面启动人类蛋白质组计划   &mdash &mdash 生物医学研究院杨芃原教授等复旦团队深度参与   &ldquo 中国人类蛋白质组计划&rdquo (CNHPP)6月10日在京全面启动实施,主要目标是以我国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,绘制人类蛋白质组生理和病理精细图谱、构建人类蛋白质组&ldquo 百科全书&rdquo ,全景式揭示生命奥秘,为提高重大疾病防治水平提供有效手段,为我国生物医药产业发展提供原动力。   该计划分为三个项目具体实施:&ldquo 中国人类蛋白质组草图&rdquo A类S973项目,&ldquo 人类蛋白质组大数据库和知识挖掘&rdquo 国际合作项目和&ldquo 蛋白质测序新技术新装备及配套试剂国产化&rdquo 863主题项目。复旦大学有关课题组作为核心团队之一深度参与CNHPP计划。化学系和生物医学研究院杨芃原教授担任专项管理委员会委员, 并作为首席科学家领衔&ldquo 蛋白质测序新技术新装备及配套试剂国产化&rdquo 863主题项目。生物医学研究院申华莉副研究员(课题组长)负责&ldquo 蛋白质测序新技术新装备及配套试剂国产化&rdquo 项目中的电喷雾-质谱仪器国产化课题, 化学系杨芃原、徐国宾博士参加激光解析基体辅助-质谱仪器国产化课题。中山医院钱菊英教授(课题组长)和生物医学研究院张莉娟博士负责&ldquo 中国人类蛋白质组草图&rdquo 项目中的循环系统蛋白质组课题(包括心脏和血细胞),参加人员还有来自生命科学学院和肿瘤医院的课题组。中山医院刘银坤教授参加&ldquo 中国人类蛋白质组草图&rdquo 项目中的消化腺系统蛋白质组课题(肝脏和胰脏等),肿瘤医院蔡三军教授和生物医学研究院陆豪杰教授参加&ldquo 中国人类蛋白质组草图&rdquo 项目中的消化道系统蛋白质组课题(胃、肠等)。化学系张祥民(课题组长)、陆豪杰(课题组长)、邓春辉(课题组长)、杨芃原等教授和基础医学院顾建新教授(课题组长)还为主参加了&ldquo 中国人类蛋白质组计划&rdquo 中建立新技术新方法的S973/863项目的有关课题。化学系杨芃原教授负责染色体蛋白质组计划中8号染色体蛋白质组任务,生物医学研究院钟凡副研究员(课题组长)负责染色体蛋白质组计划中缺失蛋白质的发现和验证课题。生物医学研究院吴飞珍副研究员和钟凡副研究员还参与&ldquo 人类蛋白质组大数据库和知识挖掘&rdquo 的有关任务。   人类蛋白质组计划(HPP)是继基因组计划之后人类全面探索自我奥秘征程中又一伟大科技工程,是新世纪第一个国际大型科技合作计划。中国科学家率先倡导并领衔了人类第一个器官(肝脏)国际蛋白质组计划(HLPP),开中国引领国际大型科技合作计划之先河,所形成的理论框架、整体策略和技术标准被国际同行认可和应用,为人类蛋白质组计划的全面展开发挥了示范和指导作用。近4年,中国在这一领域国际核心刊物发文章1000多篇,跃居世界第二。在乙酰化新的代谢通路调控机制、炎症诱发肿瘤、骨形成调节、疾病易感性等方面取得系列原创成果。   CNHPP产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 。构建的人类蛋白质组生理和病理图谱,将准确呈现各种病理状态下蛋白质组的变化,揭示疾病的发病机制和病理过程,发现系列新型诊断标志物、治疗靶点和创新药物,为全面提高疾病防诊治水平提供新策略新手段。
  • 蛋白质组学研究进展与趋势
    1.蛋白质组学研究的研究意义和背景 随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。 虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。 国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。2.蛋白质组学研究的策略和范围 蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。 早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。3.蛋白质组学研究技术 可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/ 4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面:3.1 蛋白质组研究中的样品制备 通常可采用细胞或组织中的全蛋白质组分进行蛋白质组分析。也可以进行样品预分级,即采用各种方法将细胞或组织中的全体蛋白质分成几部分,分别进行蛋白质组研究。样品预分级的主要方法包括根据蛋白质溶解性和蛋白质在细胞中不同的细胞器定位进行分级,如专门分离出细胞核、线粒体或高尔基体等细胞器的蛋白质成分。样品预分级不仅可以提高低丰度蛋白质的上样量和检测,还可以针对某一细胞器的蛋白质组进行研究。 对临床组织样本进行研究,寻找疾病标记,是蛋白质组研究的重要方向之一。但临床样本都是各种细胞或组织混杂,而且状态不一。如肿瘤组织中,发生癌变的往往是上皮类细胞,而这类细胞在肿瘤中总是与血管、基质细胞等混杂。所以,常规采用的癌和癌旁组织或肿瘤与正常组织进行差异比较,实际上是多种细胞甚至组织蛋白质组混合物的比较。而蛋白质组研究需要的通常是单一的细胞类型。最近在组织水平上的蛋白质组样品制备方面也有新的进展,如采用激光捕获微解剖(Laser Capture Microdissection, LCM) 方法分离癌变上皮类细胞。3.2 蛋白质组研究中的样品分离和分析 利用蛋白质的等电点和分子量通过双向凝胶电泳的方法将各种蛋白质区分开来是一种很有效的手段。它在蛋白质组分离技术中起到了关键作用。如何提高双向凝胶电泳的分离容量、灵敏度和分辨率以及对蛋白质差异表达的准确检测是目前双向凝胶电泳技术发展的关键问题。国外的主要趋势有第一维电泳采用窄pH梯度胶分离以及开发与双向凝胶电泳相结合的高灵敏度蛋白质染色技术,如新型的荧光染色技术。 质谱技术是目前蛋白质组研究中发展最快,也最具活力和潜力的技术。它通过测定蛋白质的质量来判别蛋白质的种类。当前蛋白质组研究的核心技术就是双向凝胶电泳-质谱技术,即通过双向凝胶电泳将蛋白质分离,然后利用质谱对蛋白质逐一进行鉴定。对于蛋白质鉴定而言,高通量、高灵敏度和高精度是三个关键指标。一般的质谱技术难以将三者合一,而最近发展的质谱技术可以同时达到以上三个要求,从而实现对蛋白质准确和大规模的鉴定。3.3 蛋白质组研究的新技术 做过双向凝胶电泳的人一定会抱怨它的繁琐、不稳定和低灵敏度等缺点。发展可替代或补充双向凝胶电泳的新方法已成为蛋白质组研究技术最主要的目标。目前,二维色谱 (2D-LC)、二维毛细管电泳 (2D-CE)、液相色谱-毛细管电泳 (LC-CE) 等新型分离技术都有补充和取代双向凝胶电泳之势。另一种策略则是以质谱技术为核心,开发质谱鸟枪法(Shot-gun)、毛细管电泳-质谱联用 (CE-MS)等新策略直接鉴定全蛋白质组混合酶解产物。随着对大规模蛋白质相互作用研究的重视,发展高通量和高精度的蛋白质相互作用检测技术也被科学家所关注。此外,蛋白质芯片的发展也十分迅速,并已经在临床诊断中得到应用。3.4 蛋白质组生物信息学 蛋白质组数据库是蛋白质组研究水平的标志和基础。瑞士的SWISS-PROT拥有目前世界上最大,种类最多的蛋白质组数据库。丹麦、英国、美国等也都建立了各具特色的蛋白质组数据库。生物信息学的发展已给蛋白质组研究提供了更方便有效的计算机分析软件;特别值得注意的是蛋白质质谱鉴定软件和算法发展迅速,如SWISS-PROT、Rockefeller大学、UCSF等都有自主的搜索软件和数据管理系统。最近发展的质谱数据直接搜寻基因组数据库使得质谱数据可直接进行基因注释、判断复杂的拼接方式。随着基因组学的迅速推进,会给蛋白质组研究提供更多更全的数据库。另外,对肽序列标记的从头测序软件也十分引人注目。4. 蛋白质组学发展趋势 在基础研究方面,近两年来蛋白质组研究技术已被应用到各种生命科学领域,如细胞生物学、神经生物学等。在研究对象上,覆盖了原核微生物、真核微生物、植物和动物等范围,涉及到各种重要的生物学现象,如信号转导、细胞分化、蛋白质折叠等等。在未来的发展中,蛋白质组学的研究领域将更加广泛。 在应用研究方面,蛋白质组学将成为寻找疾病分子标记和药物靶标最有效的方法之一。在对癌症、早老性痴呆等人类重大疾病的临床诊断和治疗方面蛋白质组技术也有十分诱人的前景,目前国际上许多大型药物公司正投入大量的人力和物力进行蛋白质组学方面的应用性研究。 在技术发展方面,蛋白质组学的研究方法将出现多种技术并存,各有优势和局限的特点,而难以象基因组研究一样形成比较一致的方法。除了发展新方法外,更强调各种方法间的整合和互补,以适应不同蛋白质的不同特征。另外,蛋白质组学与其它学科的交叉也将日益显著和重要,这种交叉是新技术新方法的活水之源,特别是,蛋白质组学与其它大规模科学如基因组学,生物信息学等领域的交叉,所呈现出的系统生物学(System Biology)研究模式,将成为未来生命科学最令人激动的新前沿。
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 首届中国计算蛋白质组学研讨会在京召开
    蛋白质组学的兴起带动了质谱技术的快速发展,而质谱技术的进步则拓宽了蛋白质组学研究问题的广度。随着蛋白质组学的兴起,特别是质谱技术的快速发展,蛋白质组学研究中产生的数据规模越来越大。依靠简单的手工处理已经远远不能满足问题的需求,通过先进的计算机算法与软件工具来自动处理大批量的蛋白质组数据已经成为蛋白质组学研究的重要分支,这就是“计算蛋白质组学”(Computational Proteomics)。   仪器信息网讯 为了总结交流近年来我国计算蛋白质组学领域的基础研究与前沿动向,推动计算技术在蛋白质组研究中发挥更加切实的作用,2010年11月10-11日,由中国科学院计算技术研究所主办的“首届中国计算蛋白质组学研讨会”在北京中国科学院计算技术研究所召开。来自全国高等院校、科研机构、企事业单位的150余位从事计算蛋白质组学及其相关研究的专家学者参加了此次会议。 会议现场   会议主办方代表贺思敏研究员在会上表示:一般来说,计算蛋白质组学以计算技术为主要手段,是基于质谱技术的规模化蛋白质表达分析,也包括结构与功能的高通量分析。近年来,随着“精密蛋白质组学”概念和LTQ Orbitrap等技术的诞生,计算蛋白质组学的的研究发展迅速。   从2005年开始美国相继举办了3次蛋白质组学研讨会,欧洲也陆续开展了3次蛋白质组学研讨会,其他国家会议也相继设立蛋白质组学的专题会议。同时,国际上专业的学术期刊也相继刊载了蛋白质组学的综述文章,这标志着计算蛋白质组学已经取得了学术界的普遍重视,首届中国计算蛋白质组学研讨会也正是应运而生。   在我国,一些从事生化领域研究的专家几乎从不“上岸”,而部分毕业于信息领域的专家又从不“下水”,当然也存在着一批学者教授属于“两栖”作战,这样的研究现状不利于计算蛋白质研究的快速发展,因此,本次研讨会也是为了促进计算技术与生化领域的专家交流沟通。 中国科学院计算技术研究所贺思敏研究员   同时,大会还邀请了20多位计算蛋白质领域的著名专家学者做了精彩的学术报告,报告内容涉及质谱数据分析、蛋白质鉴定、翻译后修饰、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构、蛋白基因组学等。 上海复旦大学杨芃原教授 报告题目:糖蛋白结构的质谱数据库   目前,通过各种技术构建专业性强、针对性明显的糖链结构数据库已经引起了关注。杨芃原教授的研究基于生物质谱的数据分析,建立了蛋白质糖基化位点以及糖链结构数据库。并开发了一套糖蛋白鉴定和糖链结构确立的理论算法,并将理论算法在我们创建的软件GRIP(Glycopeptide Reveal & Interpretation Platform)中全部实现。分析表明,该方法可有效进行通量化的糖蛋白结构质谱分析,展现了比较好的应用前景。 加拿大西安大略大学张凯中教授 报告题目:利用串联质谱技术解析多糖结构   张凯中教授主要介绍了生命科学中蛋白糖结构及其和串联质谱与计算机科学的关系。张凯中教授表示,蛋白质中糖结构的变化是一种重要的蛋白质转录后修饰;蛋白质被酶处理后,经色谱分离,可用串联质谱解析其多糖结构。基于糖肽序列从头测序算法,张教授通过分析花生类蛋白质中的多糖结构得到了一种多项式时间算法简单模型,实践表明,该方法更具启发性。 美国加州大学旧金山分校关慎恒教授 报告题目:利用稳定同位素代谢标记研究哺乳动物动态蛋白质组的数据处理平台   据关慎恒教授介绍,放射性同位素标记与稳定同位素标记是目前用于研究蛋白周转的主要工具。关慎恒教授利用稳定同位素代谢标记,通过测量小数组织中的1000多个蛋白的代谢常数,建立了复杂生物体系蛋白代谢周转组动力学的试验和信息处理平台。通过此平台,可以处理无标定量、SILAC。氢氘交换的实验数据。 华大基因张勇先生 报告题目:从新一代测序技术的组学到基于质谱仪的蛋白质组学--华大基因的生物信息学   张勇先生介绍到,对于海量数据的信息分析和挖掘成为华大基因立足世界基因组领域的根本。除了测序仪,质谱仪无疑成为蛋白质组领域的高通量仪器。目前,华大基因通过利用海量数据的信息学分析从而识别关键要素,发挥了高通量、低成本的仪器特性。华大基因也逐步从 DNA、RNA水平,向蛋白质水平研究发展。。 加拿大滑铁卢大学马斌教授 报告题目:利用质谱和同源数据库进行全蛋白测序   马斌教授首先谈到了,蛋白质数据库搜索和传统同源查找时遇到的问题,并分别给出了“分两步走”和“兼听则明”的两个解决办法。另外,串联质谱(MS/MS)的在该领域的应用仍然是一个非常具有挑战性的问题。马斌教授提出了一种新算法和自动化软件(CHAMPS),实验表明,该方法具有大于99%的序列覆盖率和100%的蛋白质序列准确性。 中科院计算所孙瑞祥副研究员 报告题目:电子转运裂解质谱特征及其在蛋白质鉴定中的应用   孙瑞祥研究员指出,近10年内,肽段或完整蛋白质在质谱仪中的裂解技术-电子捕获裂解(ECD)与电子转运裂解(ETD)逐渐发展起来。其中,目前市场上ETD主流仪器的供应商主要有赛默飞世尔、布鲁克、安捷伦、ABI、日立等公司。ECD和ETD在蛋白质组学中的应用,特别是在蛋白质的翻译后修饰鉴定和“自顶而下”的完整蛋白质裂解研究中已经展示出了诱人的前景。 中科院大连化学物理研究所叶明亮研究员 报告题目:基于质谱的蛋白质组学数据处理新方法和平台发展   叶明亮研究员介绍到,在蛋白质组学数据处理方法和平台方面分别发展了针对非修饰肽段和磷酸化肽段鉴定的数据筛选方法。此外,还发展了一种结合二级质谱(MS2)和三级质谱(MS3)图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的高灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。 参会者合影留念   另外,为了使参会人员能够获得有关蛋白质组质谱数据分析的基本技能,同时了解到本学科发展的最新动态,本次会议还安排了质谱技术与蛋白质组学基础培训,共有72人注册参加了此次培训课程,培训现场提问的听众络绎不绝,气氛十分活跃。 培训人员与专家交流探讨
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。   走近中国大科学工程   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象 图为蛋白质科学研究(上海)设施核磁共振分析系统。   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 科学家绘制世界最大蛋白质图谱
    科学家已经发现了上万种新的蛋白联结,约占蛋白联结总量的四分之一。  为了揭示蛋白质是如何构建细胞与机体,来自多个国家的科学家组成的研究团队筛选了不同生物的细胞,这些细胞从变形虫到蠕虫到老鼠到人类,来源十分广泛。  这项蛋白质科学的壮举,是来自七个国家的三个研究小组合作的结果,由多伦多大学唐纳利中心的Andrew Emili教授和德克萨斯大学奥斯汀分校的EdwardMarcotte教授领导,发现了成百上千种新的蛋白质相互作用,其中细胞内蛋白质的接触作用大约占四分之一。  一个蛋白联结的缺失都会致病。图谱已经帮助科学家锁定病变蛋白。这些数据将通过开放数据库的访问提供给世界各地的研究人员。  虽然十几年前的人类基因组测序无疑是生物学中最伟大的发现之一,然而这只是人们对细胞工作的深入了解的开始。基因只不过是一幅模板,而它的复制品——蛋白质,担任了细胞运转的主要工作。  蛋白间相互联系,共同协作。许多蛋白质结合形成所谓的分子机器并在细胞活动中扮演关键角色,例如合成新的蛋白质,或者是回收旧蛋白,再造新蛋白。但是人类细胞中有上万种蛋白质,其中的大部分我们仍旧不知道它们的作用。  于是有了Emili 和Marcotte的图谱,团队使用最先进的方法,可以提取细胞内数千个分子机器并分析其蛋白构成。然后他们建立了一个类似于社交网站的网络,通过探知未知蛋白与已知蛋白的联结,推知未知蛋白质的功能。例如,未知蛋白与“杂活儿工”蛋白有联结,那么这个未知蛋白极可能也具有细胞修复功能。  今天这项里程碑式的研究收集了九个物种分子机器的信息,分别包含了面包酵母、阿米巴虫、海葵、苍蝇、蠕虫、海胆、青蛙、老鼠和人类,并由此可以绘制出一个生命树图。这个新的图谱将蛋白质结合体数目扩大到已知的十倍有余,并可以让我们观察到它们如何随着时间进行进化的。  “对于我来单单是此项研究的规模就足以吸引人们的眼球,我们已知的每个物种的蛋白联结已达到到原先所知的三倍。我们现在通过蛋白质相互作用网络可以非常可靠的预测,所有动物具有超过一百万种蛋白质相互作用,这从根本上来讲是一个巨大的进步。”Emili说,他也是疾病管理生物标记方面的安大略研究会主席、分子遗传学教授。  研究发现,自从十亿年前原始细胞出现之后,动物生命出现在地球上以前,成千上万种蛋白质协作关系一直保持不变。  “就蛋白质分布而言,人类与其他物种通常是相同的,这不仅印证了我们拥有共同祖先,也对在基因组学的基础上研究多种疾病以及这些疾病如何存在于不同物种中有实际意义。”Marcotte说。  在确定人类疾病的可能原因方面,人们已经证明这个图谱是有用的,例如一种新发现的分子机器名为Commander,由十二个单一的蛋白质组成。人们曾发现一些智力障碍患者的机体里具有编码Commander某些组分的基因,但并不清楚这些蛋白质的机制。  由于Commander存在于所有动物的细胞里,研究生FanTu正在破坏蝌蚪中的蛋白质部件,揭示了胚胎发育阶段脑细胞位置异常,并为复杂的人类起源问题提供了一个可能。  “有了成千上万种蛋白质相互作用,我们的图谱会帮助人们研究蛋白质相互作用和人类疾病的多种联系,这是我们未来几年的研究方向。”Emili博士总结道。
  • 首届计算蛋白质组学研讨会日程安排公布
    随着蛋白质组学的兴起,特别是质谱技术的快速发展,蛋白质组学研究中产生的数据规模越来越大。依靠简单的手工处理已经远远不能满足问题的需求,通过先进的计算机算法与软件工具来自动处理大批量的蛋白质组数据已经成为蛋白质组学研究的重要分支,这就是“计算蛋白质组学”(Computational Proteomics)。   “计算蛋白质组学”是以计算技术为主要手段,通过开发高效的算法和实用的软件工具来处理大规模的蛋白质实验或模拟数据,解决蛋白质组学研究中的蛋白质鉴定、翻译后修饰分析、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构或蛋白质动力学等领域中的问题。我国的计算蛋白质组学与国际基本处于同步的发展态势,特别是最近十年内在中国蛋白质组学项目的驱动下,计算蛋白质组学的研究发展迅速。   为了推动计算技术在中国的蛋白质组研究中发挥出更加切实的作用,由中国科学院计算技术研究所主办的“首届中国计算蛋白质组学研讨会”将于2010年11月10日至11日在北京召开。   会议主题:计算蛋白质组学   研讨内容:质谱数据分析、蛋白质鉴定、翻译后修饰、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构、蛋白基因组学等。 会议报告日程 2010年11月10日星期三上午: 大会邀请报告(一) Wednesday, November 10, 2010: Invited talks 地点: 中科院计算所一楼多功能报告厅 主持人: 王通 应万涛 时间 Time 报告题目 Title 报告人 Speaker 报告人单位 Institution 报告摘要页码 Abstract Page 8:30-9:00 签到注册 参加培训的不需注册 (不收注册费) 9:00-9:10 首届中国计算蛋白质组学研讨会简介 Brief introduction to CNCP2010 贺思敏 中科院计算所 9:10-9:20 欢迎词 Opening Ceremony 所领导 中科院计算所 9:20-9:40 合影 Photo 全体 (计算所一楼大厅) 9:40-10:10 糖蛋白结构的质谱数据库 杨芃原 复旦大学 19 10:10-10:40 核心岩藻糖化蛋白质特异性发掘的系统解决方案 Establishment of a systematic method coupling consecutive MSn and software tools for charactering core-fucosylated glycoproteins 应万涛 北京蛋白质组研究中心 20 10:40-11:10 利用串联质谱技术解析多糖结构 Glycan Structure Sequencing with Tandem Mass Spectrometry 张凯中 加拿大西安大略大学 21 11:10-11:20 休息 Break 11:20-11:50 解码细胞迁移过程中的信号通路网络 Deciphering the Signaling Network in the Leading Edge of the Migrating Cells 汪迎春 中科院遗传与发育生物学研究所 22 11:50-12:20 信号通路分析辅助的功能蛋白质组学研究策略 Pathway analysis-assisted study strategy in functional proteomics 王通 暨南大学 23 12:20-13:30 午餐 Lunch 全体 2010年11月10日星期三下午: 大会邀请报告(二) Wednesday, November 10, 2010: Invited talks 地点: 中科院计算所一楼多功能报告厅 主持人: 谢鹭 陆豪杰 时间 Time 报告题目 Title 报告人 Speaker 报告人单位 Institution 报告摘要页码 Abstract Page 1:30-2:00 利用稳定同位素代谢标记研究哺乳动物动态蛋白质组的数据处理平台 A dataprocessing platform for mammalian proteome dynamics studies using stable isotope metabolic labeling 关慎恒 美国加州大学旧金山分校 24 2:00-2:30 大规模SILAC标记定量蛋白质组学研究中的数据分析 Data analysis in large scale quantitative proteomics study with SILAC approach 徐平 北京蛋白质组研究中心 25 2:30-3:00 体内终端氨基酸标记在定量蛋白质组学中的应用In vivo termini amino acid labeling for quantitative proteomics 陆豪杰 复旦大学 26 3:00-3:30 利用基于肽段计数的无标记定量技术揭示线粒体蛋白质组的功能特性 Quantitative Analysis of Mitochondrial Proteomes using Normalized Spectral Abundance Factor 邓宁 浙江大学 27 3:30-3:50 休息 Break 3:50-4:20 尿液蛋白质疾病标志物数据库 The urinary protein biomarker database 邵晨 中国协和医科大学 28 4:20-4:50 基于质谱数据发现小鼠基因组新蛋白质编码区域 The discovery of novel protein-coding features in mouse genome based on mass spectrometry data 谢鹭 上海生物信息中心 29 4:50-5:20 从新一代测序技术的组学到基于质谱仪的蛋白质组学 -- 华大基因的生物信息学 From NGS Genomics to MS-based Proteomics -- BGI's bioinformatics activities 张勇 深圳华大基因研究院 30 5:20-5:50 腾冲嗜热菌的多温度条件下的蛋白质组基因组学研究 赵屹 中科院计算所 31 5:50-7:30 宴会 Banquet 邀请专家 2010年11月11日星期四上午: 大会邀请报告(三) Thursday, November 11, 2010: Invited talks 地点: 中科院计算所一楼多功能报告厅 主持人: 邹汉法 孙瑞祥 时间 Time 报告题目 Title 报告人 Speaker 报告人单位 Institution 报告摘要页码 Abstract Page 8:30-9:00 签到注册 未注册的人员 (不收注册费) 9:00-9:30 基于HCD谱图的肽段从头测序 De novo Sequencing of Peptides Using HCD Spectra 董梦秋 北京生命科学研究所 32 9:30-10:00 从未知基因组到可测定的蛋白质组:通过从头测序来研究依赖于pH值的N10细菌蛋白质组 From an unknown genome to a measurable proteome: Studying on the pH-dependent proteomes in N10 bacteria by denovo sequencing 王全会 中科院北京基因组研究所 33 10:00-10:30 利用质谱和同源数据库进行全蛋白测序 Complete Protein Sequencing with MS/MS and a Homologous Database 马斌 加拿大滑铁卢大学 34 10:30-11:00 电子转运裂解质谱:特征发现与鉴定应用 Electron Transfer Dissociation: Characterization and Applications in Protein Identification 孙瑞祥 中科院计算所 35 11:00-11:20 休息 Break 11:20-11:50 基于质谱的蛋白质组学数据处理新方法和平台发展 Development of Methods and Platform for Data Processes in Mass Spectrometry Based Proteome Research 邹汉法 大连化学物理研究所 36 11:50-12:20 基于优化的肽质量指纹谱方法鉴定蛋白质混合物 Optimization-Based Peptide Mass Fingerprinting for Protein Mixture Identification 余维川 香港科技大学 37 12:20-13:30 午餐 Lunch 全体 2010年11月11日星期四下午: 大会邀请报告(四) Thursday, November 11, 2010: Invited talks 地点: 中科院计算所一楼多功能报告厅 主持人: 张红雨 付岩 时间 Time 报告题目 Title报告人 Speaker 报告人单位 Institution 报告摘要页码 Abstract Page 1:30-2:00 基于相关谱图对的非限制性修饰检测 Unrestrictive modification detection based on related spectral pairs 付岩 中科院计算所 38 2:00-2:30 评价诱饵库设计,搜索策略,匹配误差和质量控制对鸟枪法蛋白质组学中肽段鉴定精确性的影响 Evaluation of the effect of decoy design, search strategy, mass tolerance and quality control method on the accuracy of peptide identifications in shotgun proteomics 朱云平 北京蛋白质组研究中心 39 2:30-3:00 BuildSummary : 一个基于目标-诱饵策略的蛋白质鉴定整合软件 BuildSummary: A software tool for assembling protein 盛泉虎 上海生命科学研究院 40 3:00-3:30 冷冻电镜中的计算方法:图像数据处理和三维重构 Computational methods in cryo-electron microscopy: image data processing and 3D structure reconstruction 张法 中科院计算所 41 3:30-3:50 休息 Break 3:50-4:20 DomainRBF: 一种对疾病相关蛋白质结构域进行优先排序的贝叶斯回归方法 DomainRBF: a Bayesian regression approach to the prioritization of associations between protein domains and human complex diseases 江瑞 清华大学 42 4:20-4:50 蛋白质结构“字母表”设计 Designing Succinct Structural Alphabets 卜东波 中科院计算所 43 4:50-5:20 蛋白质作为分子化石 Proteins as molecular fossils 张红雨 华中农业大学 44 5:20-5:30 会议总结 杨芃原 复旦大学 5:30-7:00 晚餐 Supper 附件:首届中国计算蛋白质组学研讨会参会手册CNCP2010 Program.pdf
  • 首届中国计算蛋白质组学研讨会第一轮通知
    The First China Workshop on Computational Proteomics (CNCP2010)   2010年11月10日至11日, 北京   一.会议简介   随着蛋白质组学的兴起,特别是质谱技术的快速发展,蛋白质组学研究中产生的数据规模越来越大。依靠简单的手工处理已经远远不能满足问题的需求,通过先进的计算机算法与软件工具来自动处理大批量的蛋白质组数据已经成为蛋白质组学研究的重要分支,这就是“计算蛋白质组学”(Computational Proteomics)。   “计算蛋白质组学”是以计算技术为主要手段,通过开发高效的算法和实用的软件工具来处理大规模的蛋白质实验或模拟数据,解决蛋白质组学研究中的蛋白质鉴定、翻译后修饰分析、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构或蛋白质动力学等领域中的问题。我国的计算蛋白质组学与国际基本处于同步的发展态势,特别是最近十年内在中国蛋白质组学项目的驱动下,计算蛋白质组学的研究发展迅速。   为了推动计算技术在中国的蛋白质组学研究中发挥出更加切实的作用,由中国科学院计算技术研究所主办的“首届中国计算蛋白质组学研讨会”将于2010年11月10日至11日在北京召开,为了更好地促进国内的学术交流,本会议不收取注册费,并对按时返回会议回执(10月8日前)的代表免费提供会议期间的餐饮。欢迎从事与计算技术和蛋白组学研究相关的科研人员和研究生参加。   二.研讨内容   会议主题:计算蛋白质组学   研讨内容:   质谱数据分析   蛋白质鉴定   翻译后修饰   蛋白质定量   蛋白质相互作用   蛋白质定位   蛋白质结构   蛋白基因组学等   三. 邀请专家   11月10日和11日两天全天为邀请专家作大会报告,本次会议不征文,只设邀请报告。确认参会的部分专家名单如下,报告题目将在第二轮通知中发布。   关慎恒 美国加州大学旧金山分校   曾嵘 中国科学院上海生命科学研究院   钱小红 北京蛋白质组研究中心   朱云平 北京蛋白质组研究中心   徐平 北京蛋白质组研究中心   应万涛 北京蛋白质组研究中心   刘斯奇 中科院北京基因组研究所   董梦秋 北京生命科学研究所   陈涉 北京生命科学研究所   张学工 清华大学   江瑞 清华大学   高友鹤 中国协和医科大学   邵晨 中国协和医科大学   杨芃原 复旦大学   陆豪杰 复旦大学   谢鹭 上海生物信息中心   邹汉法 中科院大连化学物理研究所   叶明亮 中科院大连化学物理研究所   何庆瑜 暨南大学   王 通 暨南大学   马斌 加拿大滑铁卢大学   余维川 香港科技大学   孙瑞祥 中科院计算所   付岩 中科院计算所   卜东波 中科院计算所   张法 中科院计算所   赵屹 中科院计算所   四.会前培训   为了使参会人员能够获得有关蛋白质组质谱数据分析的基本技能,同时了解到本学科发展的最新动态,我们有幸邀请到美国加州大学旧金山分校的关慎恒老师,他将为参会人员作如下内容的培训讲座。关于关老师的详细介绍,可参见:   http://ms-facility.ucsf.edu/staff/guan.html   11月8日上午:质谱技术与蛋白质组学基础   11月8日下午:蛋白质组信息学   11月9日上午:翻译后修饰与定量技术   11月9日下午 蛋白质定量与从头测序(De Novo)分析软件   关老师的技术培训讲座后还有来自中科院计算所在分析质谱数据方面富有经验的人员作数据库搜索、从头测序(De Novo)与蛋白质定量分析的算法与软件培训。从基础入手,手把手教如何分析质谱数据。推荐参加培训的人员带上个人笔记本电脑,可以实地实时操作软件,现场体会分析质谱数据的乐趣。   本培训自愿报名,培训费用学生为500元(报到时需提供学生证),其他人员为800元,培训费包含培训讲义资料、优盘、分析数据和软件、两天的工作餐等,培训费现场缴纳。   五.会议回执   请于10月8日前将本回执发送到CNCP2010@ict.ac.cn, 邮件标题为:   CNCP2010回执(姓名)。鉴于已经预订的会场座位有限,10月8日之后返回回执者,请见谅我们无法确保您的座位安排。 姓名 性别 职称 电话 手机 E-mail 单位 2住宿选择: A.燕山酒店 B.天创宾馆 C.自行安排 单人间还是合住: 是否参加11月8日和9日的两天培训 是否需协助预订返程票 (如需要请提供信息) 预计到会时间 11月 日 预计离会时间 11 月 日   1. 如为学生,请注明硕士生/博士生   2. 燕山酒店: 四星,标准间约 450元/天,单人间约400元/天(均含早餐和上   网),距离会场约15分钟车程(有专车每天接送)   天创宾馆:标准间约198元/天(含早餐和上网,优先学生预订), 到会场步行约5分钟。   六.联系我们   会议网站: http://cncp2010.ict.ac.cn   联系邮件: CNCP2010@ict.ac.cn (尽量邮件联系)   联系电话: 010-62601352 任菲 刘玉东   会务组织: 中国科学院计算技术研究所pFind研发组
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:   报告题目: 蛋白质组数据分析软件pFind系统新进展   报告人:中国科学院计算技术研究所贺思敏研究员 贺思敏研究员   pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。   贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。   报告题目:构建心血管蛋白质组生物医学数据库及分析平台   报告人:浙江大学生物医学工程与仪器科学学院段会龙教授 段会龙教授   心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。   该课题组目前已完成了如下工作:   (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。   (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。   (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。   报告题目:大规模蛋白质组研究中的质谱数据定量分析方法   报告人:国防科技大学机电工程与自动化学院谢红卫教授 谢红卫教授   谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:   (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。   (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。   (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。   (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。   (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。   (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。   (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。   报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究   报告人:中国科学院大连化学物理研究所叶明亮研究员 叶明亮研究员   叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。   在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。   在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。   在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制