当前位置: 仪器信息网 > 行业主题 > >

蛋白质表征

仪器信息网蛋白质表征专题为您整合蛋白质表征相关的最新文章,在蛋白质表征专题,您不仅可以免费浏览蛋白质表征的资讯, 同时您还可以浏览蛋白质表征的相关资料、解决方案,参与社区蛋白质表征话题讨论。

蛋白质表征相关的资讯

  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
  • 蛋白质表征和鉴定市场容量2019将达26亿美元
    市场调研机构Research and Markets发布报告称:全球蛋白质表征和鉴定的市场容量在2014年达到了15.69亿美元,预计年复合年增长率为10.63%,到2019年将达到26.0028亿美元。该市场容量的计算包含了色谱、电泳、质谱仪器,及相关的耗材和服务。   蛋白质鉴定仪器和耗材在生命科学、临床诊断、药物发现和开发等多个领域都有应用,它们广泛的用于生物标记物的鉴定和生物药品的表征。其中药物发现和开发是2014年蛋白质鉴定仪器和耗材最大的应用市场之一。   蛋白质表征和鉴定仪器的终端用户主要集中于学术研究所、生物技术和制药公司、科技开发服务企业。   蛋白质表征和鉴定仪器、耗材的重要供应商有:安捷伦、伯乐、布鲁克、丹纳赫、GE医疗、珀金埃尔默、岛津、西格玛奥德里奇、赛默飞、沃特世等。
  • 新型蛋白质表征仪器系统使生物治疗分析得到改观
    p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司推出了一款新型蛋白质表征平台——AQS3& reg PRO,这一平台结合了强大的、高度集成的自动化生物分析软件,为生物医疗行业带来了高灵敏度的光谱分析。 /p p style=" text-indent: 2em " 用户通过这一平台可以观察浓度范围在0.1至200 mg/mL的蛋白质二级结构变化,并能进行集成性、可量化、稳定的结构检测和相似性检测,为用药的安全性和有效性提供重要支撑。它能够提供多种属性的测量,减少甚至消除了使用不同工具进行各种单一属性测量的需要。此外,AQS3pro还具有先进的自动化多样本分析功能,大大简化了生物医疗产业的分析工作流程。 /p p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司的首席技术官Eugene Ma表示:“ AQS3prois是生物物理表征领域的一项重大进展——将红外光谱应用在生物医疗领域的诊断分析上。这一平台是我们内部一流研发团队与大量行业专家、学术专家倾力合作的结晶。其检测的准确性、重复性和重现性已在数百个样本中得到验证,这些样本包含有数千种尺寸量度的蛋白质。有力的数据支撑和合作伙伴的热情增强了我们对AQS3Pro的信心,我们相信这一成果具有相当大的产业化价值。” /p p style=" text-indent: 2em " AQS3Pro新系统使用了RedShift& #8482 BioAnalytics公司的微流控调制光谱学(MMS)专利技术,这一技术将针对微流体的中红外激光光谱分析与先进的信号处理相结合,对蛋白质的二级结构进行测量。它能够在0.01至200mg/mL的浓度范围内对蛋白质直接进行无需标记的测量,在生物医药研发和制造过程经常遇到的各种条件下,无需样品稀释,就可以进行样品表征。其检测是高度自动化的,其多样品检测功能、便捷化操作设置和最先进的生物分析软件进一步提升了检测流程的效率。创新而灵活的分析套件也使得光谱数据的常规分析高度自动化,其先进的检测分析工具能够方便地获得样品的结构性变化,并对这些变化的影响进行深入分析。 /p p style=" text-indent: 2em " “我与RedShift& #8482 BioAnalytics一直在AQS3PRO的验证性测试中合作。”美国特拉华大学的Christopher Roberts教授说, “这一平台将MMS和红外光谱应用在蛋白质溶液的分析中,让我们能够对多种样本、多种浓度范围蛋白质的二次结构性变化,进行同时的原位量化测量。无论是对从事蛋白质基础性研究的科学家,还是负责生物产品开发的工程师,AQS3PRO都将带来极大的助益。” /p
  • 310万!全自动蛋白质表征分析系统等采购项目
    项目编号:OITC-G220290791项目名称:ZYCGR22011901仪器平台(第二批)科研设备采购项目预算金额:310.0000000 万元(人民币)最高限价(如有):280.0000000 万元(人民币)采购需求:包号货物名称数量是否允许采购进口产品预算金额(万元)最高限价(万元)1全自动蛋白质表征分析系统1套是1801652毛细管电泳仪1台是130115合同履行期限:详见项目需求。本项目( 不接受 )联合体投标。
  • 利用自上而下质谱对蛋白质高阶结构和动力学进行时间分辨表征的微流控平台
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry [1],文章的通讯作者是北京大学生物医学前沿创新中心的王冠博教授和中国科学院深圳先进技术研究院的门涌帆副研究员。  蛋白质的高阶结构和动力学特性对理解蛋白质的生物学功能和揭示其潜在机制至关重要。自顶向下质谱法(Top-down MS)在完整蛋白水平和肽段碎片水平都能获得结构信息。非变性Top-down MS可以分析蛋白质复合体的结构以及完成亚基鉴定和修饰分析。自顶向下氢/氘交换质谱(Top-down HDX MS)为构象或结合界面分析提供了高空间分辨率,并实现了构象特异性表征。微流控芯片可以为这些质谱工作流程的前端反应提供优越的平台。然而,目前大多数质谱微芯片装置是为Bottom-up或Top-down蛋白质组学设计的。本文中,作者提出了一种用于蛋白质高阶结构和动态Top-down MS分析的芯片设计策略。它适用于时间分辨的非变性质谱和HDX质谱,该设计旨在有效电离完整的蛋白质复合物,灵活控制多种反应物流动,并在较大的流速范围内精确控制反应时间在亚微升/分钟。本文通过对单克隆抗体、抗体-抗原复合物和共存蛋白构象等体系的分析来验证该装置的性能。  TDK-MS(Top-down and kinetic MS)芯片的结构如图1A所示,该方法可以有效电离完整的蛋白质,包括单克隆抗体(mAb)和抗体-抗原复合物(图1 B, C)。  图1. 完整蛋白质和蛋白质复合体在非变性条件下的高效电离  虽然分析蛋白质组合化学计量学和监测构象变化需要保持蛋白质高阶结构和非共价相互作用的完整性,然而为了推导结构信息或在串联MS中展开蛋白质以提高碎裂效率,往往需要不同程度的变性来产生亚复合体,因此变性剂的浓度和变性的时间对变性程度至关重要。本文中,作者采用交错人字微结构(Herringbone microstructure, HM)(图2A, B),并对其性能进行了评估(图2C−E)。如此高的混合效率为进一步微型化芯片混合模块提供了可能。在监测Mb的变性时,作者使用TDK-MS芯片和商用混合三通管平行混合holo-Mb溶液(5 μM)与乙腈(ACN),并比较它们在混合比例变化时的响应(图2F)。TDK-MS芯片在非变性和变性条件之间切换的快速响应通过NIST mAb的变性得到了证明,在向NIST mAb溶液中添加甲酸后,响应时间小于5分钟(图2G)。  图2. 高效混合和快速响应的流体控制  微芯片的灵活通道设计允许引入独立控制的溶液。例如,尽管酸和有机溶剂都能诱导变性,但这两种变性剂同时存在时,对变性途径的影响是不同的。Mb和Hb是血红素蛋白,其中血红素基团分别非共价连接在1条多肽链和4条非共价组装链上,因此这是研究共存复合体解离动力学和亚基构象变化的理想模型。将5 μM holo蛋白溶液与ACN和FA按一定的混合比例依次混合,可以通过解离产物的出现和蛋白质离子电荷态分布的变化来表征复杂的解离和蛋白质的展开。在固定ACN浓度下,随着FA浓度从0.01增加到0.3% (v/v),依次观察到的主要现象是血红素丢失、apo-Mb展开以及折叠的holo-Mb转化为展开的apo-Mb(图3A)。相比之下,在FA浓度恒定的情况下,当ACN从1增加到50%时,Mb主要表现为血红素损失,只有中等程度的apo-Mb展开,这可能是由于展开的部分迅速聚集(图3B)。  图3. (A)增加FA浓度,固定ACN浓度和(B)增加ACN浓度,固定FA浓度时获得的Mb和Hb的质谱图。  在HDX MS检测中,TDK-MS芯片提供了快速和有效的氘代及淬灭,精确控制HDX反应时间,并在2H-标记形式下高效电离完整蛋白质(图4)。  图4. 2H标记完整的(A)Mb、(B)Hb α亚基和(C)Hb β亚基在不同反应时间下的HDX质谱图  由于过大的流速不利于电离效率,并且有可能会增加堵塞或流动中断的风险,因此流速应保持在最佳范围内,这又限制了混合通道中HDX时间的可调节范围,从而影响了HDX动力学分析的灵活性。为了解决这一问题,作者设计了一个具有多个不同长度反应通道的混合模块,在不更换芯片的情况下,除了改变流速外,还可以通过通道切换在更大范围内调整反应时间。在原型芯片中,5个不同长度的通道可以在对蛋白质电离和流动稳定性都最优的流速下,产生从几秒到几分钟不等有效的HDX时间(图5)。  图5. Top-Down HDX MS 分析  本文中作者开发的策略将有利于生物大分子结构的精细分析,并有助于质谱微芯片的方法开发。
  • 王方军团队成果:发布蛋白质-纳米材料界面相互作用的结构质谱表征实验手册
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子结构表征新方法研究组研究员王方军团队发布了表征蛋白质-纳米材料界面相互作用精细结构的赖氨酸反应性分析-质谱(LRP-MS)实验手册。  微/纳米材料在生命科学、医药健康、生物催化等领域广泛应用,探讨蛋白质与材料之间的界面相互作用分子机制对生物医用材料的安全性评价、纳米药物的毒性评估和理性设计、生物-无机功能杂合体的改性和催化活性提升等具有重要意义。然而,现有光谱学等方法只能表征材料引起的蛋白质结构整体变化情况,蛋白质-材料界面相互作用分子细节的探测面临挑战。  赖氨酸残基通常定位于亲水性蛋白质表面,其侧链伯氨基的化学标记反应性取决于其溶剂可及性和微环境非共价相互作用。当蛋白质表面与微/纳米材料结合时,结合界面上赖氨酸的溶剂可及性和反应性均随之降低。因此,王方军等提出了赖氨酸的反应性变化是探测蛋白质-微/纳米材料复合体中蛋白质定位方向、相互作用序列区域、关键结合位点、材料结合引起蛋白质结构变化的有效指标。该团队发展了在蛋白质—微/纳米材料复合体活性和变性条件下的两步同位素二甲基化标记的标准化策略,结合质谱定量分析实现蛋白质上赖氨酸反应性的全面分析,研究通过材料结合前后赖氨酸标记反应性的显著性差异确定蛋白质-材料的界面序列区域和关键位点。  王方军团队长期从事生物大分子结构质谱尖端仪器和创新方法研究,所发展的LRP-MS策略近年来已应用于蛋白质-蛋白质、蛋白质-小分子、蛋白质-微/纳米材料的界面相互作用分子机制解析,取得了系列研究进展。  近日,相关研究成果以Structural Characterization of the Protein-Material Interfacial Interactions Using Lysine Reactivity Profiling-Mass Spectrometry为题,发表在《自然-实验手册》(Nature Protocols)上。研究工作得到国家重点研发计划、国家自然科学基金和大连化物所创新基金等的支持。  论文链接:https://www.nature.com/articles/s41596-023-00849-0
  • 安捷伦科技发布有助于加快蛋白质高级结构表征的亚二微米反相UHPLC色谱柱
    安捷伦科技发布有助于加快蛋白质高级结构表征的亚二微米反相UHPLC色谱柱 2011 年6 月28 日,安捷伦科技公司(纽约证交所:A)发布了用于UHPLC 系统的ZORBAX RRHD 300SB-C18 1.8 微米色谱柱。该产品为反相硅胶柱,可实现对完整蛋白质和蛋白质酶解物更高级结构的反相色谱表征。 安捷伦生物色谱柱产品经理Linda Lloyd 介绍说:&ldquo 越来越多的研究者开始转向超高压液相色谱仪(UHPLC)分析,以期获得更快、更可靠的分析结果。有了这些新型超高压快速高分离度色谱柱,研究人员现在可以充分利用最新液相技术的优势,包括1260 生物惰性HPLC以及耐 1200 bar 高压的安捷伦1290 Infinity UHPLC。该色谱柱的问世扩展了安捷伦针对蛋白质一级结构分析的产品线。&rdquo 该新型色谱柱采用ZORBAX StableBond 固定相填充,在pH 低至1 时同样具有高稳定性,可以放心使用三氟乙酸和甲酸洗脱液。该色谱柱在温度高达90 ℃时依然非常稳定,耐久性不会有丝毫损害。 如需了解更多信息,请访问:www.agilent.com/chem/BioRPUHPLC。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 李灵军团队新成果:CIU与AIU两种去折叠方法在蛋白质构象表征中的比较研究
    大家好,本周为大家分享一篇发表在Journal of the American Society for Mass Spectrometry上的文章,Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization ,文章的通讯作者是美国威斯康星大学的李灵军教授和南开大学的李功玉教授。近年来,离子迁移质谱(Ion mobility−mass spectrometry, IM−MS)不断发展,成为了探究生物分子结构和稳定性的有力工具。IM-MS实验中测量得到的漂移时间可以转换为与分析物的大小或形态相对应的碰撞截面值(CCS)。碰撞诱导去折叠(collision-induced unfolding, CIU)通过将碰撞能量(CE)应用于气相分析物,研究其在去折叠过程中CCS值的变化,从而提供更多的结构细节。尽管电荷分离的CCS分布代表了气相中丰富的结构信息,但预测具有最接近native状态结构的蛋白质离子电荷态仍然存在困难。另一种方法是记录所有蛋白质电荷状态的四极杆无选择全离子去折叠方法(all ion unfolding, AIU)。如图1所示,本文中作者首先比较了四极杆选择对去折叠的影响及其产生的数据质量。然后,作者引入了一种CCS积累方法,用一个新的CCS参数——CCSacc(accumulated CCS)进行去折叠数据解析,该参数对所有观察到的电荷状态的数据进行汇总,以更好地区分气相中蛋白的结构和构象。作者发现,使用这种CCSacc方法生成的去折叠差异图更稳健,对nESI过程中产生的蛋白质电荷状态的变化具有更高的耐受性。此外,作者观察到用于比较的整体信号强度的增加,使去折叠指纹图谱质量得到改善。另外,这种CCSacc方法保留了电荷分离的CIU信息,也可以按需提取。图1.AIU和CIU工作流程比较图2a展示在不同的碰撞电压下,HSA的CCSacc的分布。CCSacc是综合的气相离子特征,以红色表示。通过CCSacc特征可以分析每个离子对结构的贡献,有助于全面了解现有的HSA结构异质性。通过计算HSA的CCSacc数据可以创建一个新的去折叠指纹图谱,将其与HSA的两种主要电荷态进行比较(图2c)发现,如果只分析单个电荷状态数据,而不将收集到的所有信息合并,就会导致信息丢失。CIU50值揭示的构象稳定性信息也显示了累积指纹图谱与单电荷态指纹图谱的差异,进一步强调了考虑所有电荷态结构信息的必要性。(图3)图2.CCSacc结构分析AIU指纹图谱结合CCSacc数据处理可以更全面地阐明蛋白质变体之间的构象差异。为了证明这一点,作者获取了BSA和HSA的AIU数据,然后提取CCSacc数据,用CIUSuite软件进行定量分析。总的来看,基于CIU50的构象稳定性比较和基于RMSD的整体去折叠指纹图谱比较都清楚地表明,AIU和CCS的累积能够提供更全面的结构信息,并对生物相似性蛋白的细微结构差异进行全面表征。图3.利用CCSacc全面比较HSA和BSA结构最后,作者将CCSacc应用于唾液化的糖蛋白bovine transferrin(bTF),快速分析糖基化对蛋白质结构的影响。图4a显示了bTF的非变性质谱图以及相应的漂移时间热图。先前的糖链研究证明,转铁蛋白是一种具有多种糖型的异质性蛋白,作者的非变性质谱数据(图4a)也明确支持多种糖型的存在。接下来,作者在AIU操作模式下追踪bTF的逐步去折叠行为(图4b-e)。图4f展示了通过CCSacc获得的累积去折叠指纹图谱。可以清楚地观察到,四种不同的构象主导了bTF去折叠过程。CCSacc弥补了不同离子种类观察到的结构差异。此外,构象特征CCS分析和相应的基于CIU50的稳定性分析表明,CCSacc主导的数据与传统CIU分析中常用的最丰富的电荷态所得数据不匹配。这些差异应该主要源于离子种类的贡献,而不是最丰富的离子种类,结果突出了在溶液中使用单一电荷态作为整个蛋白质种类的结构特征时存在的潜在偏差和/或结构损失。图4.通过CCSacc探究唾液酸化糖蛋白的结构CCSacc策略可以更好地维持蛋白质的天然构象,并降低由于仪器条件或溶液中蛋白质电荷态变化造成的影响。在提高去折叠指纹图谱的信噪比并丰富拓扑结构信息的情况下,该策略可以得到更广泛的应用。参考文献:Ashley Phetsanthad, Gongyu Li, Chae Kyung Jeon, et al. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry, 2022.
  • 中山大学李惠琳团队成果:整合Top-down及Bottom-up蛋白质组学质谱表征核糖体蛋白异质性
    大家好,本周为大家分享一篇本课题组发表在Journal of Pharmaceutical Analysis上的文章,Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity [1],文章的通讯作者是中山大学药学院的李惠琳教授。  蛋白质的合成过程是生物体内最重要的生命活动之一。在细胞中,核糖体是信使RNA翻译合成蛋白质的细胞机器。核糖体高度复杂,它主要由特化的RNA和几十个蛋白组成。这些蛋白和RNA组装成两个不同大小的核糖体亚基即大亚基和小亚基。近年来,多项研究表明,核糖体与多种疾病的发生密切相关,包括恶性肿瘤、阿尔兹海默病和帕金森病等,这些过程中除发生rRNA合成异常和核糖体蛋白表达失调外,还伴有核糖体蛋白基因突变、RNA剪切、翻译后修饰(PTMs)变化所形成的核糖体蛋白异质体(proteoforms)的异常表达和调节。本文中,作者整合了Top-down及Bottom-up蛋白质组学质谱全面表征了核糖体蛋白异质性,为发现疾病特异型proteoform生物标志物或靶点提供了方法。  首先,作者采用E.coli 70S核糖体在Waters SYNAPT G2-Si MS仪器上建立了Top-down检测方法(图1)。50S核糖体大亚基蛋白质L7和L12具有相同序列,其差别在于L7在N-端含有乙酰化修饰而L12无N-端非乙酰化修饰。实验发现,L7和L12在Top-down分析中取得了良好的分离,并且L7和L12的峰放大图显示二者除含有其对应野生型外,它们都具有甲基化的proteoforms,而Bottom-up仅能检测到甲基化的肽段(图2)。L7/L12在蛋白质生物合成过程中参与和翻译因子的相互作用,是肽链终止所必需的。L7/L12发生异常会降低蛋白质的合成速度和准确性。本研究中,作者采用Top-down方法对L7/L12的PTMs和proteoforms进行了全面分析,并结合Bottom-up定位了甲基化位点。同时,该结果也反映出Bottom-up方法固有的缺陷,即从小肽推断出的有限的序列信息往往不足以鉴别proteoforms。  图1. Top-down和Bottom-up蛋白质组学表征E.coli 70S核糖体总览  图2. Top-down和Bottom-up蛋白质组学表征E.coli 50S核糖体亚基蛋白质L7/L12  随后,作者采用建立好的方法分析了HeLa 80S核糖体蛋白。如图3A所示,实验检测到大量Methionine剪切伴随的N-端乙酰化、40S RP S10和S25上的二甲基化、40S RP S23上的hydroxyproline、60S RP L8上的hydroxyhistidine、乙酰化和甲基化等多种修饰。值得关注的是,Top-down结果显示多种蛋白存在截短型的truncated proteoforms。分子完整性是保证蛋白质生物学功能的重要因素之一。分子完整性的缺失,特别是由于选择性剪接或蛋白质水解而导致的截短,已成为一个重要的问题。作者在排除蛋白质提取过程造成的影响、色谱柱上酶切和质谱源内裂解等因素后,认为截短型的proteoforms很大程度上与生物过程相关。RP L19是一个从60S亚基突出并跨越到40S亚基的长螺旋蛋白质,L19的C端螺旋在pre-translocation状态下扭结,在亚基旋转时动态地改变构象,在post-translocation状态下变为线性(图3B)。这种构象转变导致蛋白质L19带正电的Arg172和Arg176侧链与18S rRNA核苷酸G909和G910的磷酸根之间形成盐桥。本文中,作者观察到C端部分序列缺失的截断型L19。除此之外,其他截短型的蛋白质如图C所示。目前研究发现,核糖体蛋白质除了在细胞翻译和蛋白质合成中发挥核心作用外,还具有核糖体外功能,参与细胞增殖、分化、凋亡、DNA修复、调节细胞迁移和侵袭等细胞过程。以截短型形式观察到的许多核糖体蛋白,都与血液、代谢、心血管疾病和癌症的发展与进展有关,核糖体蛋白proteoforms的全面表征为发现潜在疾病生物标志物或靶点提供了前题条件。  图3. 利用Top-down蛋白质组学方法鉴定HeLa 80S核糖体蛋白质PTM及proteoforms  总的来说,本文整合了Top-down及Bottom-up蛋白质组学质谱方法,全面表征了E.coli 70S核糖体和HeLa 80S核糖体蛋白质。尽管这些proteoforms和疾病的相关性还需要深入挖掘,但实验提供了一种先进的方法来确定疾病特异性proteoforms或靶点。
  • 葛瑛团队成果:自上而下蛋白质组学表征人类心脏中肌球蛋白特异性表达
    大家好,本周为大家分享一篇预发表的文章,Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  肌球蛋白作为肌节的“分子马达”,产生心肌收缩所必需的收缩力。肌球蛋白轻链1和2 (MLC-1和-2)在调节六聚体肌蛋白分子结构中起着重要的功能作用。轻链中存在“心房”和“心室”亚型,在心脏中呈现出腔限表达。然而,近年来MLC亚型在人心脏的腔室特异性表达受到了质疑。在本文中,作者使用自上而下蛋白质组学质谱分析了成人非衰竭供体心脏的四个心脏腔室中MLC-1和-2心房和心室亚型的表达。  MLC-1v和MLC-2a是在所有供体心脏中呈现出腔限表达模式的MLC异构体。重要的是,作者的结果明确地表明,MLC-1v,而不是MLC-2v,在成年人心脏中是心室特异性的。图1展示了LV(left ventricle)、RV(right ventricle)、LA(left atrium)和RA(right atrium)中MLC异构体的检测和定量。作者发现MLC-1v存在心室特异性表达,而MLC-2v没有特异性,并在心房组织中发现了与MLC-2v和pMLC-2v分子质量相匹配的峰。此外,在所有(n=17)无心脏疾病的捐赠者的每颗心脏的心房组织中都能检测到MLC-2v。MLC-2v占总MLC-2含量的百分比采用单因素方差分析(one-way ANOVA)进行定量分析,认为MLC-2v占总MLC-2含量的百分比具有统计学意义,心室和心房间差异显著,LA和RA间横向差异显著。  图1. MLCs Top-down MS分析  接下来作者使用串联质谱(MS/MS)鉴定了MLC-2v蛋白质序列。位于心房组织MLC-2v上的去酰胺化翻译后修饰(PTM)被定位到氨基酸N13。去酰胺化位点与调控磷酸化位点Ser14相邻。磷酸化位点附近的脱酰胺基团所带来的额外负电荷模拟了MLC-2a在Ser22/23位点的双磷酸化模式(图2C)。心房特异性的MLC-2v去酰胺化可能与心房内心力的产生有关。磷酸化诱导了MLC-2的构象变化,而第二负电荷的加入可能有助于提高钙敏感性并诱导蛋白质进一步的构象变化。  图2. Top-down MS/MS 鉴定  总的来说,自上而下蛋白质组学对整个人类心脏的MLC亚型表达进行了无偏差分析,揭示了之前意想不到的亚型表达模式和PTMs。  撰稿:张颖  编辑:李惠琳  文章引用:Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.
  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
  • 新型非离子表面活性剂在自上而下蛋白质组学中的应用
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的Letter,Nonionic, Cleavable Surfactant for Top-Down Proteomics [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授和Kyle A. Brown博士。非离子表面活性剂是从细胞中溶解和纯化蛋白质的通用工具,是结构生物学中使用的关键试剂。N-dodecyl-β-D-maltoside(DDM)是最受欢迎的非离子表面活性剂之一,用于从非变性环境中提取蛋白质进行下游生物学实验。然而,表面活性剂的存在,即使是像DDM这样温和的表面活性剂,依然会对自上而下蛋白质组学分析产生不利影响。与表面活性剂相关的信号抑制一般是由低分子量物质较高的电离效率和信噪比引起的。此外,表面活性剂的存在会对常见的前端蛋白质分离技术产生负面影响,例如对于反相液相色谱(RPLC)而言,可能会导致再现性和稳健性方面的潜在问题。克服表面活性剂在下游蛋白质组学分析中的不兼容性问题的一种方法是插入一个可裂解键(例如酸或光不稳定键),能够在质谱分析之前降解为无害的副产物。然而通常用于蛋白质组学的可裂解表面活性剂含有变性阴离子基团,如硫酸盐,不能用于需要非变性条件的应用。因此,急需开发一种可以在非变性条件下辅助传统的蛋白质制备方法的可裂解表面活性剂,并能适用于下游蛋白质组学分析。本文中,作者首次使用了一种非离子型可裂解的表面活性剂N-decyl-disulfide-β-D-maltoside(DSSM),用于自上而下的蛋白质组学。(图1)  图1. DSSM在蛋白质组学中的应用  首先,作者在变性条件下,用碳酸酐酶(29.1 kDa)评价了DSSM与ESI-MS分析的相容性。表面活性剂通过TCEP在4℃条件下降解2 h,在DSSM降解和离心后,没有观察到不溶性降解产物。    图2. DSSM与完整蛋白ESI-MS分析的相容性。  作者进一步评估了DSSM与RPLC-MS的兼容性,以研究膜蛋白。膜蛋白是一类重要的药物靶点,由于其固有的低溶解性和低丰度,通常难以使用自上而下蛋白质组学进行研究。作者对一种模型离子通道蛋白KcsA进行了DSSM辅助膜蛋白组学分析。使用氯仿:甲醇:水沉淀法去除不相容的缓冲组分(盐、洗涤剂等)后,在DSSM (2× CMC)中溶解KcsA。表面活性剂用TCEP(在水中或50%异丙醇中)降解,用CID进行RPLC-MS/MS破碎。结果显示,作者成功地表征了防止通道失活的突变(E71A)。(图3)    图3.DSSM溶解膜蛋白的自上而下蛋白质组学  最后,作者利用DSSM提取哺乳动物细胞内源性蛋白,表面活性剂降解后直接用RPLC MS/MS进行分析。在采用TopPIC对数据进行分析之后,作者通过四次LC-MS/MS实验从206个蛋白质组中鉴定出276种proteoform。作者证明了DSSM是一种有价值的用于细胞裂解的表面活性剂,并可以用于RPLC-MS/MS分析进行proteoform鉴定。  图4. 使用DSSM从细胞裂解液中提取的内源性蛋白质的自上而下蛋白质组学总的来说,作者证明DSSM可以促进膜蛋白的自上而下蛋白质组学表征,以确定序列变异和翻译后修饰(PTMs)。未来在蛋白质组学实验和结构生物学研究中,DSSM可以作为DDM的一般替代品。  撰稿:张颖编辑:李惠琳文章引用:Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.  李惠琳课题组网址 www.x-mol.com/groups/li_huilin  参考文献  Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.
  • 生物大分子药之蛋白表征
    蛋白表征生物大分子药蛋白质是由不同氨基酸连接形成的多聚体,并且通过正确折叠为一个特定构型,发挥蛋白药物的生物学功能。氨基酸序列的特定位置可以与化学基团共价结合,发生蛋白质翻译后修饰,这些翻译后修饰会导致蛋白的结构发生改变,从而影响蛋白药物的生物学活性,所以需要对蛋白的分子量、肽段覆盖率、翻译后修饰等进行检测。精确分子量分析:分子量的检测是鉴定蛋白的第一步,使用高分辨率质谱分析可得到蛋白质的多电荷信号,通过对信号进行去卷积分析,可获得精确分子量数值,并初步判断蛋白的修饰状态。对于抗体药物还可打开轻重链或者去除糖基,分别分析糖基化和去糖基化轻链和重链的分子量。我们推荐THERMO高分辨质谱来进行:Thermo Scientific LTQ-Orbitrap XL 是离子阱和轨道阱高分辨组合质谱仪,通过强大的功能、稳定性以及低运行成本成为蛋白质组学和代谢组学研究的最佳选择,完全超过并替代 Q-TOF系统。通过高分辨、精确质量数测量和多级碎片解析,完成复杂体系成份鉴定和表征。LTQ-Orbitrap XL采用全新HCD八极碰撞反应池,实现信息更丰富的MS/MS应用,包括蛋白质差异定量分析iTRAQ、PTM分析、de novo 序列分析以及代谢组学研究。Thermo Scientific&trade Q Exactive&trade 组合型四极杆 Orbitrap 质谱仪可以快速可靠地识别、定量和确认更多化合物。 本台式 LC-MS/MS 系统将四极杆母离子选择性与高分辨率和准确质量数(HRAM)Orbitrap 检测相结合,提供出色性能和多功能性。 Q Exactive 质谱仪特别适用于非目标或目标化合物筛查,也能够实现广泛的定性和定量应用,可广泛用于药物发现、蛋白质组学、环境和食品安全、临床研究和法医毒理学。2.肽段覆盖率及肽段分析:肽段覆盖率是指检测到的肽段氨基酸数量占该蛋白质总氨基酸数量的比例。蛋白质肽段覆盖率的检测,对于蛋白质类药物的一级氨基酸序列的确证,保证蛋白质类药物的高级结构形成及维持蛋白质类药物性质均具有很重要的意义。3.二硫键分析:二硫键是蛋白质通过各种链间和链内的半胱氨酸连接在一起的化学键,对蛋白质分子保持正确的高级结构,维持必要的生物活性至关重要。所以在蛋白质类药物的结构分析中,二硫键一直是分析的重点。4.N-糖糖型分析:N糖(聚糖与天冬酰胺的氮链相连)是生物药物中,尤其是单抗药物中最广为人知的糖基化形式,其中N-聚糖结构会影响药代动力学、药效学和免疫原性,因此需要对糖型进行分析。另外,抗体结构分析还可以用到毛细管电泳系统,我们推荐BECKMAN PA800 PLUScIEF法测定单抗药物等电点 使用CE(毛细管电泳仪)对样品与已知等电点多肽作为参照物进行cIEF等点聚焦,依据样品与参照肽段的相对迁移时间计算样品的等电点。 cIEF 法测定单抗样品电荷异质体纯度 使用CE(毛细管电泳仪)对样品进行cIEF等点聚焦,而后对主峰纯度进行积分,得出样品电荷异质体纯度。 CE-SDS 法测定单克隆抗体纯度 将样品还原后,使用SDS毛细管电泳电泳与紫外检测器分析,检验轻链或重链的纯度及杂质含量。
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 沃特世发布糖蛋白表征分析新技术
    沃特世将通过新型UPLC和UPLC-MS分析工作流程为蛋白糖基分析带来革命性转变 新型RapiFluor-MS标记试剂和样品制备方案将极大提升对蛋白N-糖进行分析和表征的速度、灵敏度以及简便性 华盛顿特区,2015年1月27日 – 沃特世(Waters?)公司(纽约证券交易所代码:WAT)今日隆重发布用于糖蛋白表征分析的开创性新技术。此技术将在WCBP 2015大会上介绍给公众,其内容包括新型GlycoWorks?RapiFluor-MS N-糖分析试剂盒、Waters?ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,使分析速度、灵敏度和简便性提升到更高水平,为科学家们提供前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和研发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。“我们今天推出的新型技术为蛋白糖基分析带来了开创性的分析方法,它的出现意味着科学家们将能够对游离N-糖进行前所未有的监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” 大部分的生物治疗性蛋白质都是糖蛋白,且这些蛋白质上的特异性多聚糖群体是关键的品质属性,可对其功能、稳定性和治疗安全性概况产生影响。提交至监管机构的新药申报材料中必须包含其所含糖基侧链的详细结构信息,以及能够证明这些糖蛋白能够在生产过程中保持糖型谱图一致的信息。 支持糖蛋白工艺开发、监测和批量放行 对于从事生物治疗药物工艺开发、监测或批量放行研究的科学家们而言,全新的RapiFluor-MS标记技术与沃特世ACQUITY UPLC H-Class系统和QDa检测器的完美结合将开创游离N-糖谱图监测的新时代。沃特世所提供的试剂和方案在速度和灵敏度方面都具有非常突出的优势,将为用户带来更加简便的常规MS分析,ACQUITY QDa检测器可生成前所未有的详细信息,分析人员通过这些质量数数据即可轻松确认糖型。科学家们无需再依靠质谱专家和高分辨率的LC-MS仪器,即可对糖型分析进行方法开发、转换和执行过程中频频出现的问题作出确切的解答。此套工作流程可帮助生物制药组织更轻松地诊断问题、加快决策制定,更快速地将实验室中的分子变成药物推向临床领域。 对使用荧光检测技术的分析人员而言,将此款新型试剂盒与ACQUITY UPLC和ACQUITY UPLC FLR检测器联用时,样品制备时间可从一天缩短至一小时以内,同时荧光灵敏度也将得到有效提高。 支持蛋白糖基表征分析 蛋白糖基表征包括对连接到糖蛋白的所有多聚糖(无论其浓度有多低)进行鉴别,以及对这些多聚糖的分子结构进行确证。要高效地完成这项工作,需要UPLC-MS-MS仪器能够应对分析中的各项难题。 沃特世UNIFI?蛋白糖基分析应用解决方案于2013年推出,是更广泛的沃特世UNIFI生物制药平台解决方案的一部分,它配有高分辨率的UPLC/QTof-MS系统,可对生物制药研发实验室中以及受高度监管的后期开发和QC组织中的蛋白糖基侧链进行定性和监测。 现在,凭借RapiFluor-MS标记提供的高灵敏度,研究人员将获得更大的光谱和质谱响应值,这将有力促进低含量峰的准确质量数确认,提高MS/MS多聚糖碎裂性能,实现确定性更高的糖型指认。 此外,我们还推出了RapiFluor-MS葡聚糖校准曲线标准品和多聚糖性能测试标准品(基于混合IgG),用以支持系统性能的基准测试和执行基于葡聚糖单元数(GU)的蛋白游离糖基分析研究。沃特世公司率先将基于GU的葡聚糖校准曲线标准品保留时间归一化方法实现了商业化,此方法最初由来自爱尔兰国家生物工艺研究培训所(NIBRT)的Pauline Rudd教授提出。这种基于GU的方法使多聚糖的分析更加稳定,可以更轻松地在仪器之间和实验室之间实现UPLC-MS检测分析的转换。沃特世正在与Rudd教授及其在NIBRT的团队合作,开发全新的GU数据库,期望能够促进GU和GU+准确质量数多聚糖分配,这项工作将作为联合海报的主题于本年度的WCBP会议上展示。 更多信息: 有关GlycoWorksRapiFluor-MS N-多聚糖试剂盒的更多信息,请访问www.waters.com/glycans。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、RapiFluor-MS、ACQUITY、ACQUITY UPLC、UNIFI、QDa和UPLC是沃特世公司的商标。
  • 张玉奎院士、张丽华研究员团队蛋白质组学最新成果:N-磷酸化蛋白质组的深度覆盖分析新方法
    仪器信息网讯 近日,中国科学院大连物理研究所生物分子高效分离与表征研究组(1810组)张丽华研究员和张玉奎院士团队,蛋白组组学分析最新成果发表于《自然-通讯》(Nature Communications)上。团队发展了N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。  与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N酰胺键具有较高的吉布斯自由能,且易发生水解,目前仍缺乏有效的N-磷酸化蛋白质组分析方法,制约了人们对其生物学功能的认识。  团队研制了具有核壳结构的亚二微米硅球,并通过在硅球表面键合双二甲基吡啶胺双锌分子,在中性条件下实现了N-磷酸化肽段的高效、高选择性、快速富集 通过基于该材料的on-tip富集方法和液质联用分离鉴定的结合,不仅从HeLa细胞中鉴定到3384个N-磷酸化位点(目前最大的哺乳动物N-磷酸化数据集),而且还发现N-磷酸化位点附近亮氨酸高度表达 建立的N-磷酸化蛋白质组分析新方法不仅为深入研究其生物学功能提供了基础数据,而且也为推动精准医学、合成生物学等领域的发展提供了技术支撑。  上述工作得到国家自然科学基金、国家重点研发计划、中科院大连化物所创新基金等项目的资助。文章链接:《自然-通讯》(Nature Communications)。
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 蛋白质组:解码生命“天书”
    人类和老鼠的外貌可说是天渊之别,但实际上他们却有着近99%相同的基因组。何以&ldquo 失之毫厘差之千里&rdquo ?正是蛋白质放大了他们基因上的细微差别。 日前,中国人类蛋白质组计划全面启动。&ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至几近万倍地放大。&rdquo 亚太蛋白质组组织主席、中国科学院院士贺福 初表示,这一计划的实施将对基因组序列图进行&ldquo 解码&rdquo ,进而全景式揭示生命奥秘,为提高重大疾病防诊治水平提供有效手段。 解码生命的&ldquo 密钥&rdquo 提起蛋白质,大家并不陌生。它是生物体内一种极为重要的高分子有机物,约占人体干重的54%。 不过,&ldquo 蛋白质组&rdquo 一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后&ldquo 操盘者&rdquo 并非基因组,而是蛋白质组。&ldquo 1994年澳大利亚科学家率先提出蛋白质组这个概念,指某个时刻、某个组织、器官或个体中所有蛋白质的集合。&rdquo 贺福初说。 科学家们之所以对蛋白质组产生浓厚兴趣,还要从人类基因组计划说起。2003年4月,耗资27亿美元、经由6国科学家历时13年奋战的人类基因组计划,以人类基因组序列图的绘制完成为标志,画上了句号。 没想到,更大的挑战还在后头&mdash &mdash &ldquo 科学界曾经认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是错了&rdquo 。国际蛋白质组组织启动计划主席萨姆· 哈纳什说,事实上,我们此时只了解10%的基因的功能,剩下的90%仍是未知的。 &ldquo 人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能的执行体层次,揭示人类生、老、病、死的全部秘密。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面。&rdquo 贺福初表示。 就 人体而言,各个器官的基因组是一样的,而它们之所以形态、功能各异,正是其结构与功能的物质基础&mdash &mdash 不同的蛋白质组在&ldquo 操盘&rdquo 。&ldquo 就像蛹化蝶,无论形态如 何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红说,人的每一种生命形态,都是特定蛋白质组在不同时间、空间出现并发挥功能的 结果。比如,某些蛋白质表达量偏离常态,就能够表征人体可能处于某种疾病状态。 &ldquo 无论是正常的生理过程还是病理过程,最直接的体现是蛋白质以及它们的集合体&mdash &mdash 蛋白质组。&rdquo 上述专家们表示。&ldquo 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。&rdquo 贺福初说。 独辟蹊径的&ldquo 中国画卷&rdquo 事实上,早在上世纪90年代人类基因组计划成形之际,已有科学家提出解读人类蛋白质组的想法。其目标是,将人体所有蛋白质归类,并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用等。 《科学》杂志在2001年,也将蛋白质组学列为六大科学研究热点之一,其&ldquo 热度&rdquo 仅次于干细胞研究,名列第二。 不过,严峻的现实挑战,让这一想法迟迟停留在&ldquo 纸上谈兵&rdquo 阶段。&ldquo 生物蛋白质数的差别大概是基因数差别的三个数量级左右,人类基因总数大概2万多个,人体内的蛋白质及其变异、修饰体却是百万级的数量。&rdquo 贺福初表示。 不仅如此,人类基因组图谱只有一张,而蛋白质组图谱每个器官、每个器官的每一种细胞都有一张,且在生理过程和疾病状态时还会发生相应改变。工程的艰巨性可想而知。 但困难并未阻挡住科学家们对其探索的脚步。1995年,首先倡导&ldquo 蛋白质组&rdquo 的两家澳大利亚实验室分别挂牌成立蛋白质组研究中心。随后欧美日韩等国均有行动。 1998年初,从事基因组研究的贺福初敏锐地嗅到这朵夜幕后悄然盛开的&ldquo 莲花&rdquo ,逐渐将精力投入到这个新兴领域。 2001年,&ldquo 基因组会战&rdquo 尚未鸣金,《自然》、《科学》杂志即发出&ldquo 蛋白质组盟约&rdquo 。同年秋,&ldquo 人类蛋白质组计划&rdquo 开始孕育。 2002 年4月,贺福初在华盛顿会议上阐述&ldquo 人类肝脏蛋白质组计划&rdquo 。同年11月,&ldquo 人类血浆蛋白质组计划&rdquo &ldquo 人类肝脏蛋白质组计划&rdquo 正式启动,贺福初担任&ldquo 人类 肝脏蛋白质组计划&rdquo 主席。其后两年间,德国牵头的&ldquo 人类脑蛋白组计划&rdquo 、瑞士牵头的&ldquo 大规模抗体计划&rdquo 、英国牵头的&ldquo 蛋白质组标准计划&rdquo 及加拿大牵头的 &ldquo 模式动物蛋白质组计划&rdquo 相继启动。 然而,很少有人知道,这种以生物系统为单元的研究策略酝酿之初饱受诟病。贺福初回忆,在华盛顿,中国人提出蛋白质组计划必须按生物系统(如器官、组织、细胞)进行一种战略分工和任务分割,一石激起千层浪,争议四起。 &ldquo 要想通过分工合作来完成全景式分析人类蛋白质组的宏大目标,必须以人体的生物系统作为研究单元和分工的规则。这个策略,10年来合者渐众,不过目前仍存争议,中国的先见之明可能得在下个10年成为不可阻挡的潮流。&rdquo 贺福初坦陈。 定位疾病的&ldquo GPS&rdquo 历经10余年的努力,以贺福初为代表的中国蛋白质组研究团队,在该领域向世界交了一份漂亮答卷: 成功构建迄今国际上质量最高、规模最大的人类第一个器官(肝脏)蛋白质组的表达谱、修饰谱、连锁图及其综合数据库; 首次实现人类组织与器官转录组和蛋白质组的全面对接; 在 炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的 新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝 癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记。2012年,张令强课题组研制出世界上首个能特异性靶向成骨细胞的核酸递送系 统,提供了一种基于促进骨形成的全新骨质疏松症治疗途径,向解决骨丢失无法补回这一医学难题迈出了坚实的一步。2014年,张令强课题组首次在国际上揭示 泛素连接酶Smurf1是促进结直肠癌发生发展,并且导致病人预后差的一个重要因子&hellip &hellip 上述几项成果均发表于国际顶级的《科学》、《自然》系列杂志。 还没来得及分享这一喜悦,激烈的角逐又让他们绷紧了神经。日前,英国《自然》杂志公布美国、印度和德国等合作完成的人类蛋白质组草图。研究人员表示,这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。 &ldquo 尽 管还有许多不完善的地方,但确实是蛋白质组学领域乃至整个生命科学领域,具有里程碑意义的科学贡献。&rdquo 中国科学院院士饶子和直陈。中国科学院院士张玉奎指 出,虽然中国在蛋白质组的一些领域走在了世界前列,但国外有些团队正快马加鞭,我们不得不警醒,否则很快将被甩出第一阵营。 6 月10日,中国人类蛋白质组计划全面启动实施。&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊断标志物、治疗和创新药物,可以全面提高疾病防 诊治水平。这个项目完成后,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo ,进而找到针对性的诊断措施、干预措施和预防措 施。&rdquo 记者了解到,中国人类蛋白质组计划第一阶段,将全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及的主要组织器官的蛋白质组,了解疾病发生的主要异常,进而研制诊断试剂以及筛选药物。这将在2017年左右完成。 &ldquo 这是真正的原始创新,也是中国能够引领世界科技发展的重要领域之一。&rdquo 贺福初强调说。
  • 赛默飞在美开设高级蛋白质组学研究中心
    为了促进利用先进的质谱技术进行标志物蛋白质组学研究,赛默飞世尔科技、格莱斯顿研究所、加州大学和QB3(美国定量生物科学研究所)联合在美国三藩市的格莱斯顿研究所开设了赛默飞世尔科技疾病标志物发现蛋白质组学中心。   此研究中心负责人是格莱斯顿研究所高级研究员、加州大学分子与分子药理学教授和加州大学生命科学研究所主任Nevan J. Krogan 博士。Nevan J. Krogan 说,这里的科研人员来自格莱斯顿研究所、加州大学和QB3 ,在这里的工作会使他们掌握解决复杂生物系统中蛋白质动力学的先进质谱技术。这些技术将使研究者获得前所未有的基因与其产生的蛋白质之间的互动知识,也将帮助解决之前无法解释的生物医学问题。   研究中心进行的研究活动包括高分辨率蛋白质-蛋白质相互作用导图的创建、高级蛋白质表征、基因组定向蛋白质组筛选、大量蛋白质或翻译后修饰蛋白的超高灵敏度定量分析等。   此中心也会展示用于精细生物学发现和定量的最新质谱,包括新的Orbitrap Fusion和TSQ Quantiva三重四极杆LC/MS 系统。除了进行研究之外,赛默飞研究中心将作为促进生物学质谱应用的据点,举办一系列特邀报告会、讨论会、研习班和培训。 编译:郭浩楠
  • 科学家发展蛋白质组学分析新方法
    近日,中国科学院大连化学物理研究所研究员叶明亮、研究员秦洪强团队开发了表征蛋白质中组氨酸残基反应活性的蛋白质组学分析新方法。该工作筛选并获得了具有组氨酸优异反应效率的α, β-不饱和醛探针,发展了基于烯醛探针的组氨酸标记技术和可逆酰肼化学富集方法,通过蛋白质组定量技术实现了人类蛋白质组中的组氨酸反应活性的高效表征。相关成果发表在《美国化学会志》上。  氨基酸亲核反应活性的表征推动了共价药物靶点和候选药物分子的发现。组氨酸占据超过1/5人源酶活性中心,在生理环境中既是质子的供体又是质子的受体,受到蛋白质空间微环境的精细调控。然而,由于缺乏可以在生理条件下标记组氨酸的化学探针,在此之前难以实现组氨酸活性的全局性表征。  本工作发现α, β-不饱和醛在生理状态下可与组氨酸残基发生迈克尔加成反应,且引入的醛基可作为富集标签用于后续的可逆酰肼富集。与基于点击化学的经典活性蛋白质组分析方法(ABPP)相比,该策略引入活性最高的烯醛探针——丙烯醛作为反应基团和富集标签,是目前报道的最小尺寸的ABPP多功能探针。  同时,该方法样品处理流程简便,引入标签质量小,并通过可逆富集过程引入稳定同位素标记试剂,有效避免了传统工作中制备同位素连接臂的繁琐流程和高成本。该方法共定量了超过8200个组氨酸残基的标记效率,筛选到317个高亲核反应性组氨酸残基,并且发现组氨酸的反应活性和其磷酸化呈负相关。  该方法为后续基于组氨酸的共价靶向偶联药物的开发提供了数据支持,且丙烯醛衍生物也可作为新型反应基团用于共价抑制剂的研制。
  • 沃特世在京成功举办质谱技术在蛋白表征及高级结构中应用技术研讨会
    沃特世公司(纽约证券交易所代码:WAT)近日在北京成功举办了以“质谱技术在蛋白表征及高级结构中应用”为主题的技术研讨会,吸引了60余位来自国家蛋白质组中心、中国食品药品检定研究院、中国科学院、清华大学、北京大学、军事医学科学院、中国农业科学院等知名高校、科研院所、分析测试平台及生物制药企业等相关领域的研究人员参加了会议。 研讨会的主旨为 “提升国内蛋白表征领域对蛋白高级结构研究的认知”,涵盖三大议题:蛋白药物深度结构表征所需要的质谱技术与生物信息学软件、氢氘交换(HDX)技术及IMS在结构生物学特别是表位学研究、蛋白质相互作用研究领域的最新进展及SONAR技术在蛋白质鉴定和非标记定量蛋白质组学研究中的进展。 会上国际知名学者、日本大阪大学副教授Susumu Uchiyama博士指出,氢氘交换质谱(HDX MS)逐渐成为蛋白质高级结构研究不可或缺的技术,并介绍了氢氘交换质谱技术及其在表位学和蛋白相互作用研究上的具体应用 。同时对其最近发表在Nature Communication上的题为《Haem-dependent dimerization of PGRMC1/sigma-2 receptor facilitates cancer proliferation and chemoresistance》论文的研究成果进行了汇报,获得了与会科研学者的一致高度评价。 日本大阪大学副教授Susumu Uchiyama博士做大会报告 沃特世(Waters® )总部制药业务部高级市场拓展经理Asish Chakraborty博士对生物制药行业普遍关注的宿主蛋白残余测定进行了报告演讲,并介绍了使用通用型UPLC/MS分析对生物治疗性蛋白质中的HCP进行全面鉴定和定量。此分析方法采用在线二维液相色谱法分离多肽,然后利用高分辨率、高质量准确度的质谱仪进行蛋白质鉴定和定量。另外,Chakraborty博士对当前氢氘交换质谱方案的新进展也作了更新介绍。 沃特世公司总部Asish Chakraborty博士做大会报告 来自沃特世亚太区的高级科学家陈熙博士作了题为“非变性质谱技术及IMS行波离子淌度质谱技术在蛋白质高级结构研究上的应用进展”的精彩报告,介绍了行波离子淌度高分辨质谱技术在生物药分析上的最新应用进展,成熟的行波离子淌度分离技术为常规高分辨质谱增加了更多一个维度的分离能力,在蛋白质药物常规结构表征如二硫键错配、氢-氘交换质谱技术进行蛋白质药物高级结构和动态变化研究以及HCP(宿主细胞蛋白)残留的鉴定和定量上发挥着重要作用。 沃特世亚太区高级科学家陈熙博士做大会报告 沃特世中国应用科学家殷薛飞博士作了 “最新DIA质谱技术-SONAR在非标记定量蛋白质组学研究中的应用”的报告。殷博士介绍的 SONAR数据采集模式于今年9月发布,科学家们只需执行一次进样即可完成更准确的定性和定量分析,对复杂样品中脂质、代谢物和蛋白质的定量和鉴定,可免去采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。 大会还邀请了来自美国Genentech的蛋白质化学部科学家甘雨田博士分享了她运用蛋白质组学思路进行生物药物研究开发的思路与实践,甘博士还介绍了她今年8月发表于Nature Biotechnology上的ISDetect快速自动蛋白末端质谱检测法,引起与会人员的强烈兴趣。 会议最后 ,沃特世中国生物制药高级经理宋兰坤女士作了“LC/MS平台化方案助力生物药研究开发”的报告,并对会议进行了总结。宋经理说:“质谱技术是蛋白质研究中不可取代的工具,其在蛋白质常规表征及高级结构研究中均有很好的应用方案及研究文献, 为揭示生命科学的奥秘发挥着越来越重要的作用。作为全球生物制药领域解决方案顶尖供应商,沃特世公司为生物药物产业界及蛋白质研究相关科学领域提供先进的仪器和技术。希望本次会议的议题可以激发与启迪科研工作者的思路,为生物药物产业的从业人员搭建一个学术讨论与经验分享的平台。 会议同期展出的蛋白科学研究先进生物技术墙报
  • 蛋白质组学在病毒入侵宿主中的研究
    2020年初,一场突如其来的疫情打乱了大家的生活节奏。面对来势汹涌的疫情,全国上下正在积聚力量,全力战胜新型高致病性冠状病毒(2019-nCoV)。医护人员、解放军战士、志愿者们纷纷奔赴武汉,与疫魔竞速,守卫着国民的生命安全,致敬最美逆行者!同时疫情研究者一样没有停下自己的脚步,特别是在分子水平,我们调研了基于Orbitrap超高分辨的蛋白质组学和结构组学技术在病毒学研究中的应用,谨以此文致敬白衣天使和深耕医学研究的学者。Orbitrap技术促进病毒机理研究病毒与宿主共同进化,获得捕获和操纵宿主细胞过程进行复制的机制传播。同样,宿主细胞会通过部署防御机制或通过适应感染环境。在整个感染过程中,细胞严重依赖于时空调控的病毒-宿主蛋白-蛋白相互作用的形成。 蛋白质组学方法与病毒学的结合促进了对病毒复制、抗病毒宿主反应和病毒对宿主防御的颠覆机制的深入研究。而Orbitrap技术依靠其高灵敏度、高精度,高通量等特性在该方面表现出色。案例一:Orbitrap技术深度挖掘病毒-宿主蛋白质相互作用2019年Viruses杂志上发表了基于组学技术研究宿主变化的综述,质谱技术中基于亲和纯化分离蛋白质复合物随后进行MS分析(AP-MS)的方法可以用于分离病毒-病毒和病毒-宿主多蛋白复合物,可识别间接和直接的蛋白质相互作用,提供相互作用事件的瞬时信息,或跟踪单个病毒基因产物的过表达,以深入了解单个蛋白质的功能;表达蛋白质组学技术(定量蛋白质组学和翻译后修饰组学)可以研究病毒蛋白的组成,宿主在病毒入侵过程中蛋白质和翻译后修饰的动态变化。(Viruses 2019, 11, 878 doi:10.3390/v11090878)迄今为止,基于蛋白质组学方法的进展已经为识别数量惊人的病毒-宿主蛋白关联铺平了道路,科学家基于这些数据构建了包含了5000多种病毒成分和宿主细胞之间的非冗余蛋白相互作用数据库。这些有价值的信息库包括相互作用蛋白数据库、VirHostNet(http://virhostnet.prabi.fr/)、VirusMentha(Nucleic Acids Res. 2015 43(D1):D588–D592)、IntAct-MINT(Nucleic Acids Res. 2015 43(D1):D583–D587)和Uniprot。 案例二:Orbitrap技术揭示新型塞卡病毒宿主因子Pietro,Scaturro, Alexey, et al. Nature, 2018 寨卡病毒(ZIKV)最近成为全球健康问题,由于它的广泛传播和与严重的联系新生儿神经症状和小头症。然而,与致病性相关的分子机制关于ZIKV的大部分仍然未知。 技术路线:利用赛默飞 LTQ-Orbitrap和Orbitrap Q Exactive HF质谱进行全蛋白质组学和修饰蛋白质组学(实验路线见下图a),研究对象为神经细胞系SK-N-BE2和NPC细胞,表征细胞对病毒的反应,在蛋白质组和磷酸化蛋白质组水平上的变化,利用亲和蛋白组学方法鉴定ZIKV蛋白的细胞靶点。使用这种方法,找到了386个与zikv相互作用的蛋白质,导致宿主在神经发育受损,视网膜缺陷和不孕。此外,确定了寨卡病毒感染后1216个磷酸化位点存在上调或下调,来自AKT, MAPK-ERK和ATM-ATR信号通路中,为防范ZIKV感染扩散提供机制基础。在功能上,系统地理解了ZIKV诱导后的宿主的蛋白质和细胞通路水平的扰动,并对感染后细胞施加Rock抑制剂药物干预,利用非标定量蛋白质组学方法分析差异蛋白进行验证(下图热图),补充这一空白。技术路线图案例三:Orbitrap技术深入探寻寨卡病毒病毒与宿主的相互作用Etienne Coyaud, et al. Molecular & Cellular Proteomics,2018,技术路线技术路线:本文利用生物素识别以及IPMS亲和纯化结合MS 方法,研究寨卡病毒侵染后病毒与宿主细胞蛋白质的相互作用(技术路线见上图),实验结果揭示了1224个蛋白3033多肽形成的相互作用网络(见下图a)。相互作用包括多肽加工和质量控制、囊泡方面的作用运输,RNA处理和脂质代谢。40%的 作用都是以新报道的相互作用。通过数据挖掘分析,揭示过氧化物酶体在ZIKV感染中的关键作用。病毒宿主蛋白相互作用网络图 温馨提示:积极防护 保护自己 戴口罩 勤洗手
  • 三问中国人类蛋白质组计划
    前不久,历经多年论证、被誉为我国生命科学研究领域里程碑事件的中国人类蛋白质组计划(简称CNHPP)正式在京启动,来自清华大学、北京大学、中国科学院、军事医学科学院、解放军总医院、复旦大学等40多所高校、科研机构的近百名专家,共同见证了这一历史性时刻。 蛋白质组计划和基因组计划有何不同?中国的蛋白质组研究在国际上处于什么位置?中国人类蛋白质组计划将如何进行? 围绕上述问题,人民日报记者独家采访了有关专家。 一问 为什么要搞中国人类蛋白质组计划? 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命 相比&ldquo 蛋白质组&rdquo ,&ldquo 蛋白质&rdquo 一词更为人们所熟知。它是生物体内一种极为重要的高分子有机物,占人体干重的54%,1838年由荷兰科学家格里特首先发现。 基于此,1994年,澳大利亚科学家率先提出&ldquo 蛋白质组&rdquo ,意指某个时刻,某个组织、器官或个体中所有蛋白质的集合,是一个整体的概念。 科学家们之所以对蛋白质组产生浓厚兴趣,还得从人类基因组计划说起。2003年4月,经由6国科学家历时13年奋战的人类基因组计划画上了句号。 &ldquo 科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源。但我们错了。&ldquo 国际蛋白质组组织首任主席萨姆 哈纳什说,事实上,我们只了解10%基因的功能,剩下的90%仍是未知的。 &ldquo 人们总以为蛋白质组计划是基因组计划的附庸或者说是子产品,这也是一个误区。人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能去揭示人类 生、老、病、死的全部秘密,基因组序列只是提供了一维遗传信息,而更复杂的多维信息则发生在蛋白质组层面。&rdquo 国际人类蛋白质组计划执委、亚太蛋白质组组织 主席、中国科学院院士贺福初说,基因组和蛋白质组的关系,好比词典与文章、元素表与化工厂。 &ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大,想要解密基因组,必须先系统认识蛋白质组。&rdquo 贺福初认为。 他举例说,人体各个器官如耳、鼻、喉、心、肝、肺,其基因组完全相同,不同的是蛋白质组。因此,不同器官形态、功能各异,是蛋白质组在背后&ldquo 操盘&rdquo 。 &ldquo 就 像蛹化蝶,无论形态如何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红这样比喻。在她看来,人的每一种生命形态,都是特定蛋白 质组在不同时间、空间出现并发挥功能的结果。比如,某些蛋白质表达量偏离常态的高或低,就能够表征人体可能处于某种疾病状态。 &ldquo 生,源于基 因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命。&rdquo 贺福初进一步解释道,&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊 断标志物、治疗和创新药物,可以全面提高疾病防诊治水平。这个项目如完成,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo , 进而找到针对性的诊断措施、干预措施和预防措施。&rdquo 二问 中国能搞人类蛋白质组计划吗? 以贺福初院士为代表的中国蛋白质组研究团队,在该领域向世界交上了一份漂亮的答卷,在某些方面已走在全球前列 近代以来,中国先后错过了多次世界科技革命的机遇。蛋白质组学研究,恰恰是我国生命科学中少数几个能够始终跻身世界前沿的科学领域。 据专家介绍,中国人类蛋白质组事业的发展,也催生了一系列大型研究基地和覆盖全国的协作网络。据不完全统计,目前包括中科院、教育部、卫生计生委、军队以及 湖南、广东、重庆、浙江等在内的省部级重点实验室已超过10个。由贺福初院士发起,以军事医学科学院、清华、北大为代表的7家单位共同筹建的北京蛋白质组 研究中心,于2005年被确立为&ldquo 人类肝脏蛋白质组计划&rdquo 国际执行总部,成为一座世界级的&ldquo 生命之都&rdquo 。 此外,自2000年至2010年,中国累计发表论文2800多篇,位列全球该领域第四。值得一提的是,最近4年,中国在该领域发文量直线上升,历史性地达到1000多篇,年度论文发表数已跃居世界第二(第一为美国),位居全国其他学科前列。 历经十余年的努力,中国蛋白质组研究团队向世界交上了一份漂亮的答卷:成功构建迄今国际上质量最高、规模最大的人类第一个器官&mdash &mdash 肝脏蛋白质组的表达谱、修 饰谱、连锁图及其综合数据库;首次实现人类组织与器官转录组和蛋白质组的全面对接;在炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜 在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌 细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物 标记&hellip &hellip 上述几项成果均发表于国际顶级的《科学》《自然》系列杂志。 三问 中国人类蛋白质组计划怎样进行? 将分三个阶段进行,计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 世界蛋白质组学领域内的新一轮科技竞赛已开始。中科院院士张玉奎指出,虽然中国在蛋白质组一些领域走在了世界前列,但国外有些团队如今正快马加鞭。这警醒我们:必须加快步伐,否则很快将被甩出第一阵营。 &ldquo 逆水行舟不进则退,我们绝不能丧失已经取得的优势。&rdquo 贺福初说。 据悉,中国人类蛋白质组计划将分三个阶段展开。第一阶段,全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及主要的组织器官的蛋白质组,了解疾病发生的主要 异常,进而研制诊断试剂、筛选药物,力争2017年左右完成;第二阶段,争取覆盖中国人的其他常见疾病,提升中国人群疾病的防治水平;第三阶段,实现人类 更多疾病的覆盖。 当前,全球每年产生的生物数据总量高达EB级(10的18次方比特),生命科学领域正在爆发数据革命。生物数据最大的是基因组数据,它完成后,蛋白质组数据 无疑将成为更大、更重要和更核心的科学数据。我国已部署建设的蛋白质科学基础设施将相继投入运行,这是国际上最大的蛋白质组学研究基地,将有力支撑和推动 中国人类蛋白质组计划的实施和大数据的产生。中国人类蛋白质组计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 。 &ldquo 这 项计划,是以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,绘制人类蛋白质组生理和病理精细图谱、构建人类蛋白质组&lsquo 百科全书&rsquo , 为提高重大疾病防诊治水平提供有效手段和中国生物医药产业发展提供原动力。&rdquo 贺福初说,&ldquo 我们首先看重科学价值,其次才是经济效益,因为这是真正的原始创 新,是中国能够引领世界科技发展的重要领域之一。&rdquo
  • Thermo蛋白质组学解决方案在高端心血管研究中的应用
    本文将讨论伦敦国王学院采用的蛋白质组学解决方案在先进的心血管研究中的重要性。 引言 蛋白质组学是对蛋白质的大范围分析,被认为是生物系统研究的下一趋势。尽管干细胞疗法对于再生医学和组织工程具有很大的潜力,但是干细胞如何分化为心血管系统细胞的机理仍不明晰。很多以往的研究着重于基因表达,但是蛋白质组学能够在超越基因水平上通过对蛋白质改性的研究推进对干细胞分化的认识。 高端蛋白质组学解决方案的出现使得研究者可以揭示干细胞分化的新认识,这一点通过传统技术无法获得。该方法的应用可能引出治疗和治愈心血管疾病的新方法。 研究进展 伦敦国王学院James Black中心的心血管蛋白质组学研究团体(The Vascular Proteomics Group)正进行蛋白质组学的最新研究。该团体具有包括基因组学、蛋白质组学、多光子共聚焦显微镜技术(multiphoton confocal microscopy)和核磁共振成像技术(MRI)等一系列核心能力。2007年12月,心血管科获得了英国心脏基金会颁发的优秀研究奖奖金9,000,000欧元奖金。部分奖金将用于推进蛋白质组学研究应用于心血管疾病的发展。国王学院的研究焦点之一就是确定干细胞如何修复心血管或者缺血心肌。 心血管蛋白质组学研究团体进行研究的目的是解释干细胞起源的心血管细胞不同的蛋白质组学和代谢特点。因为干细胞研究对于再生医学和组织工程具有深远意义,研究的总体目标是鉴别出可能成为促进干细胞分化的药物靶标的关键蛋白或者小分子。 蛋白质组学在心血管研究中的重要性 以往研究局限于表面标记物的表达来表征干细胞。然而,细胞表面标记物并不一定表明很多细胞活化状态的信息。但是它可以解释为什么注射入一个病人体内的干细胞比在另外一个病人体内更有效。 心血管蛋白质组学研究团体的目标是展示注入病人体内的细胞特性及其分子特性的综合架构。这一目标需要通过分离干细胞和研究其分泌因子来完成。标准的ELISAs(酶联免疫吸附试验)可以一次测试一个分子,质谱可以对某个数值以上的所有蛋白进行综合测试。分泌蛋白质组的复杂性是非常有限的,因此,即使是ng/mL水平的蛋白质,例如细胞因子和趋化因子,也可以被鉴别出来。 随着研究的进行,国王学院将分离出病人的干细胞,表征其分泌因子,并设法确定干细胞如何有益于临床应用。 挑战 心血管蛋白质组学研究团体进行的研究中,所用设备的灵敏度和耐受性是非常重要的。国王学院的研究者和技术人员是生物医学研究者,因此,该团体所需要的是一种用户友好,几乎不需要日常维护,并可以给出高准确数据的非常可靠的解决方案。该解决方案必须可以可进行短肽序列分析和提供准确的蛋白鉴定。国王学院要求前沿技术来支持研究中心多学科环境和核心能力。 因此,中心要寻找一种高速、强大而尽少维护的系统,用以发展鉴别复杂蛋白质的高通量方法。该系统可以保证小组准确分析很多样品。操作仪器也需要高度灵敏和高度可靠以便应用蛋白质组学来保证细胞分化和在移植或者组织修复中的安全使用。 解决方案 对于这项具体的研究,国王学院要求一种高灵敏度仪器来处理大数量的样品和分析低浓度水平的较大的分子。 国王学院购买了高性能质谱、蛋白质鉴定和生物标记物发现工作平台(Thermo Scientific LTQ Orbitrap XL)和具有电子转移解离能力(ETD)的线性离子阱(Thermo Scientific LTQ XL)等仪器的组合。这些设备提供了研究必需的高质量和高灵敏度。 采用高性能的线性离子阱使得国王学院可以比传统离子阱质谱输送更多的结构信息;ETD选项则提供了传统分析方法无法提供的序列信息。研究小组发现通过快速交互变换破碎技术,可以显著扩大蛋白质组的范围,并增强了蛋白质改性鉴定的把握。心血管蛋白质组学研究团体相信ETD技术是蛋白质组学研究的未来,因而愿意成为首先使用这种前沿设备的一员。ETD提供了蛋白质分析中最前沿的技术,该组织相信,在未来,ETD将成为蛋白质组学研究中广泛应用的一种破碎技术。 OrbitrapXL很高的质量准确度和分辨率使得国王学院可以研究不同干细胞的分泌因子。即使是低丰度蛋白,仍然可能获得可靠的匹配,而准确的质量则增加了复杂基质中肽分析的可靠性。 这些不同仪器的组合为复杂的蛋白质分析和智能肽序列分析提供了综合解决方案。 结论 国王学院的心血管蛋白质组学研究组织将蛋白质组学应用于干细胞和心血管研究中。该研究的潜在意义在于应用于临床治疗。从长远看来,该组织希望鉴定因子,这一点传递了干细胞疗法的优势。从药理学观点来看,给病人注入蛋白或者小分子比细胞要好的多。 将蛋白质组学应用于心血管研究中的高级专业技术将会帮助今天的研究者推进他们对心血管疾病的认识,并有助于将来新药品的发现以及基于干细胞的治疗。
  • 蛋白质组学全球市场已达500亿美元
    01 摘要蛋白质组学目前的研究活动的成长与基因组学早期的发展轨迹相似。基因组学花费了大概十年的时间实现了产业化。尽管蛋白质组学技术起步的时间比基因组学更早,但蛋白质组学相对更大的复杂性导致其与基因组学相比需要更先进的技术。然而,今天,蛋白质组学的重要研究瓶颈正在被不断突破,让科学家们看到了其在研究、转化和临床意义上达到与基因组学相当的水平的前景。因此,随着时间的推移,蛋白质组学在研究和临床中应用的商业机会将与基因组学的可用市场总量(TAM)规模趋于一致,目前全球TAM已经达到500亿美元。并且我们有理由相信,由于蛋白质组学动态、变化的性质将使得其超过基因组学而转化为更加具有经常性、重复性的临床应用。质谱是最能促进蛋白质组学工业化的技术,但其工作流程的标准化,尤其是样品制备阶段的标准化,仍然存在着挑战。对于长期投资商来说,应该对在这个生态圈中拥有于众不同知识产权的供应商给与更大的关注。尽管以基于高元多工分析方法为代表的新兴检测方法与质谱方法相比仅处于早期发展阶段,但也具有巨大的潜力。02 背景与投资情况论述生命的基本构成部分是核酸和氨基酸。核酸是基因的基本构成成分。氨基酸是蛋白质的基本构成成分。事实上,我们体内每个细胞的成分都可以归类于蛋白质、基因、脂质或碳水化合物这四类大分子化合物。脂质和碳水化合物组成简单不易出错。因此,最重要的是对基因和蛋白质进行深入了解。我们对人类生物学的理解,从细胞功能到疾病的因果关系,再到药物治疗,都是我们对基因组学和蛋白质组学知识的衍生品。在20世纪,先进显微镜和生物化学技术的发明导致我们对基于结构的蛋白质和基因的理解有了很大的进步。在21世纪,基因组学经历了一场革命,使其从一个刚刚起步的研究领域经历了工业化的过程,成为了临床生物学重要方面。这不仅使得人类对生物学有了更深更新的了解,也提供了包括液体活检诊断,CAR-T细胞治疗,甚至是mRNA疫苗的一系列新的临床治疗及诊断方法。蛋白质组学在21世纪也取得了重要进展。这不仅是由于质谱和X射线晶体学等成像方面新技术的出现,也是由于免疫检定试剂方面的生物化学方法创新,使得我们可以分离特定的蛋白进行进一步的研究。与基因组学相比,蛋白质组学还未取得飞跃。这并不是由于它相对于基因学的有较小的前景和应用场景,这只与它的方法的复杂性有关。我们认为,下一个十年蛋白质组学将进入快车道,使生物学研究、医学治疗和诊断方面进入一个以蛋白质为中心的新时代。蛋白质组学的挑战。超过95%的获得FDA批准的药物都是以蛋白质为目标,但蛋白质组中的多数组分却尚未被人们所了解。我们相信,十年后,西方国家的蛋白质组学公司所创造的股权价值将与今天基于基因组学的公司所创造的约2500亿美元的市值相当或更多。创新的速度正在加快:在1869年由弗里德里希-米歇尔(Friedrich Miescher)发现核酸之后近85年才由沃森和克里克于1953年发现了DNA双螺旋。从沃森和克里克的发现到2001年第一个人类基因组序列的发表花费了近50年时间。从2001年人类基因组的第一份草图到2021年7月公布的第一份完整序列花费了20年时间。总而言之,从核酸发现到确定完整的人类基因组花费了近155年的时间。在接下来的155年里,创新的速度将呈指数型增长,而蛋白质组学将是其中最大的受益者。03 蛋白质组学的今天:挑战与机遇什么是蛋白质组学?它为什么重要?图一:蛋白质组学受益于多种技术跨越式进步蛋白质组学作为一个术语首次出现在1996年,它被定义为对一个细胞系的整个蛋白质图谱进行大规模表征。蛋白质组学的要点是完整性和深度:通过检测和解读该细胞中的所有蛋白质的作用以及相互作用来彻底了解细胞功能,而不是应用传统的通过抗体分离已知蛋白质的方法单独检测每个蛋白质。基于抗体的蛋白质检测将继续在后续的工作中得到应用,但蛋白质组学是针对所有蛋白质,它们的相互作用,及其多种形态的大规模、高通量、高灵敏度的分析。因为蛋白质修饰和相互作用出错是发生疾病的通常原因,蛋白质组学研究对理解造成疾病发生的原因非常重要,Source: Graves PR, Haystead TA., Molecular biologist’s Guide to Proteomics(2002)04 蛋白质组学和基因组学之间的关系是什么?当马克-威尔金斯(Mark Wilkins)在1996年首次使用蛋白质组学一词时,他明确表示他指的是“基因组的补充”。基因是细胞的说明书。通过RNA的表达,他们指示细胞要构建哪些蛋白质。蛋白质细胞构建之后,它们通过与其他蛋白质和环境的相互作用而被翻译和修饰。因此,1) 基因组学的大部分功能效用通过蛋白质组体现;2) 下游事件-包括蛋白质间的相互作用,新的蛋白质形态和动态修饰的产生,及其对细胞分裂的影响-是蛋白质组学而不是基因组学的主题。Source: Virag D, Dalmadi K B. Current Trends in the Analysis of Post-translational Modifications (2020)因此,基因组学和蛋白质组学是相互关联的,而不是分开的,但蛋白质组学在功能上更为重要及复杂。有25000个独立的基因,但有超过100万种蛋白形式。虽然一个人的基因组不会改变,但一个人的蛋白质组是动态的。身体里的变化是通过蛋白质的修饰来表达的。你出生时的基因组和今天一样。但你的蛋白质组每天都在变化。05 为什么蛋白质组学研究如此困难?1. 分子的复杂性和多样性Source: Creative-Proteomics.com蛋白质分子本身的分子结构更为复杂。DNA是由4种核苷酸组成的,而蛋白质是由20种不同的氨基酸组成的。翻译后修饰,如甲基化和羟基化,改变了蛋白质的形态和功能。每个蛋白质可以有9种不同的蛋白形式。取决于翻译后修饰和蛋白质间的相互作用。这意味着同一个蛋白质可以有9种不同的功能。DNA的分子结构相对简单,有4种核苷酸变体,这意味着基因测序方法(如合成测序)不能应用于蛋白质组。需要新的、更复杂的、定制的方法来捕获生物样本中数百万种不同的蛋白质形态。2. 动态范围问题Source: Montanaro Research Aebersold R., Targeted Proteomic Strategy for Clinical Biomarker Discovery (2009)Y轴表示血浆样品中特定蛋白质分子的浓度和丰度。虽然有些蛋白质的含量极高,但大多数蛋白质类型的浓度很小,甚至可以忽略不计。红圈中的蛋白质存在于蛋白质组的“黑暗角落”,在这种极低的丰度下,这些蛋白质非常难以测得。大多数蛋白质的丰度极低。在血浆细胞中发现的约12,000个独立的蛋白质中,前10个占总蛋白量的90%,而其他约11,990个仅占10%。3. 少数的暴政如下饼图显示了血浆样品中蛋白质的相对丰度。单一的一种蛋白质,即血浆白蛋白,占了57%的总丰度,使读取其余的1万种蛋白质更加困难。Source: Anderson NG., Molecular Cell Proteomics (2002)06 蛋白质组学市场机遇有多大?我们相信,蛋白质组学在分子生物学研究以及临床医学和诊断方面有与基因组学一样远大的前景。Source: Montanaro Research自2001年第一个人类基因组的组装以来,基因组学已经成为生物医学的一个工业化部分, 纯基因组学公司的总市值达到2400亿美元。Illumina是其中最大的公司。蛋白质组学TAM(可用市场总量)如今已经达到数百亿美元。Somalogic estimate the total TAM to be $50 bn (Source: Somalogic)虽然临床应用方面的TAM具有最大的长期潜力,但在未来5年内研究和发展方面的TAM是最容易解决的。Source: Souda P., Proteomics: The Next Frontier, SVB Leerink (2021)SVB Leerink的蛋白质组学专家Puneet Souda估计,目前仅美国的研发TAM 有140亿美元,这基于学术界和制药业共约 26,100 个实验室总经费的2.5%的保守估计。如果我们把西方国家的实验室数量看作是约50,000个,并更合理的假设占总经费的5%的资金分配给蛋白质组学研究,我们估计在全球发达经济体中的蛋白质组学研发TAM为500亿美元。
  • 11月9日开播!蛋白分析及表征技术进展主题网络研讨会
    蛋白质作为生命基本构成单元,几乎承担着所有生命活动。深入研究蛋白质的功能和结构,全面分析蛋白质间的相互作用和调控机制,不仅能更好地了解生命的奥秘,还为疾病的预防和治疗提供新思路和新方法。为帮助广大实验室用户及时了解蛋白质分析及表征技术最新进展及前沿应用,仪器信息网将于11月09日举办“蛋白分析及表征技术进展”主题网络研讨会,聚焦蛋白质的结构表征、相互作用和动态变化等前沿研究,涵盖质谱、X射线晶体衍射、核磁共振、原子力显微镜和冷冻电镜等技术分享,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/fbs (点击报名)『会议日程』蛋白分析及表征技术进展(2023年11月09日)报告时间报告方向专家单位09:30-10:00结构蛋白组学质谱仪器与方法徐伟北京理工大学 教授10:00-10:30分析型超速离心机在生物大分子药物分析中的前沿应用李文奇清华大学蛋白质研究技术中心 蛋白质制备与鉴定平台主管/高级工程师10:30-11:00分析实验中移液产品的正确选择和使用庄昕晔普兰德(上海)贸易有限公司 产品专员11:00-11:30大分子晶体学在蛋白分析中的应用范仕龙清华大学蛋白质研究技术中心 X射线晶体学平台主管/高级工程师11:30-12:00基于等温滴定微量热技术的蛋白互作分析研究吴萌中国科学院分子细胞科学卓越创新中心 高级工程师12:00-13:30午休时间13:30-14:00高速原子力显微镜的生物大分子研究焦放中国科学院物理研究所 特聘研究员14:00-14:30生物型原子力显微镜在蛋白质形貌和结构表征中的应用樊友杰布鲁克(北京)科技有限公司 高级应用/服务工程师14:30-15:00蛋白质表观分子量的核磁共振检测方法李红卫北京大学北京核磁共振中心 高级工程师15:00-15:30冷冻电镜制样技术经验交流郭振玺北京大学冷冻电镜平台 副主任/高级工程师15:30-16:00利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究谢成北京大学张文彬教授课题组 博士后『精彩报告预览』徐伟 教授北京理工大学《结构蛋白组学质谱仪器与方法》【报告摘要】:针对生理条件下微量生物分子三维结构及功能研究这个科学问题,首先发展了具有高稳定性、高重复性的液相离子迁移电泳技术与仪器,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。为了获取生物大分子较全面的立体结构,课题组进一步将离子迁移电泳与非变性质谱技术相结合,通过气相非变性质谱实验获得了分子的溶液可及表面积、通过液相迁移电泳实验获取了分子体积,再结合流体力学Stokes Flow方程,最终获取了蛋白及蛋白复合体的三维几何尺寸信息,该方法可应用于蛋白-小分子复合体结构研究和蛋白质内部几何结构解析。基于液相离子迁移原理,课题组进而开发了液相离子阱装置,在液相条件下实现了离子的富集、选择性传输与顺序弹射分析。通过该装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度提升100倍以上。报名占位李文奇 蛋白质制备与鉴定平台主管/高级工程师清华大学蛋白质研究技术中心《分析型超速离心机在生物大分子药物分析中的前沿应用》【报告摘要】:生物大分子药物包括抗体药、细胞治疗药、疫苗、重组蛋白类药物等;生物大分子药物具有分子量大,结构复杂的特点,随着生产工艺的不断优化和分析技术的进步,生物大分子药物的质量控制将日趋规范和严格,国家药品监督管理部门也在不断提升该类产品的质量控制要求。有效的质量控制分析方法是确保产品安全性和有效性的基础,报告介绍了生物大分子药物市场规模以及临床现状,结合生物大分子药物的研发流程和基本性质,针对性的对其成药性评价,制备和工艺开发提出相对应的质量控制分析方法,尤其是分析型超速离心机在生物大分子药物分析中的主要应用和发展前景,通过分析超速离心技术在国内外进而对于不同类型的生物大分子药物制定分析策略。报名占位庄昕晔 产品专员普兰德(上海)贸易有限公司《分析实验中移液产品的正确选择和使用》【报告摘要】:移液操作是实验工作的基本技能之一,同时也是最容易被忽视的技能。 液体移液仪器、体积量具在实验室移液操作中扮演着重要的角色。这决定了几乎所有化学与生物学分析测试的精度和结果的可靠性、重复性,正确的选择、使用移液产品是生化实验的必要基础。本次报告将介绍BRAND瓶口分液器、移液器、连续分液器、容量瓶、移液管等移液产品的原理和操作。报名占位范仕龙 晶体学平台主管/高级工程师清华大学蛋白质研究技术中心《大分子晶体学在蛋白分析中的应用》【报告摘要】: 大分子晶体学是一种通过生物大分子(如蛋白质和核酸)形成晶体,以获得其高分辨率三维结构的技术。在蛋白性质研究中,大分子晶体学发挥着重要的作用。 通过大分子晶体学,可以确定蛋白质的三维结构,这对于理解蛋白质的功能和作用机制非常重要;通过大分子晶体学,可以解析蛋白质与其他分子(如酶底物、配体等)的结合位点,以及相互作用的方式。这有助于揭示蛋白质的功能机理,例如酶的催化机制、信号传递等。从而指导药物设计和研发。通过解析药物与靶蛋白的结合模式,可以优化药物的结构和性能,提高药物的特异性和效力;最后大分子晶体学可以提供结构信息,帮助药物研发人员进行结构优化工作。通过研究晶体结构和结合位点的特性,可以设计和改进蛋白质受体和配体的结构,使其具有更好的稳定性、活性和选择性。 总之,大分子晶体学在蛋白性质研究中发挥着至关重要的作用,可以帮助揭示蛋白质的结构、功能机理和多样性,指导大分子和小分子药物设计和优化。报名占位吴萌 高级工程师中国科学院分子细胞科学卓越创新中心《基于等温滴定微量热技术的蛋白互作分析研究》【报告摘要】:蛋白质与其他分子的相互作用是蛋白组学研究中的重要内容,用于研究蛋白-蛋白相互作用的技术和方法有很多种。等温滴定微量热技术是最早发展起来可用于蛋白间相互作用研究的定量检测技术,具有可在溶液中无需任何标记、样品无损地进行检测的特点。本报告结合工作实际对等温滴定微量热技术(ITC)的原理、操作及应用着重进行介绍。报名占位焦放 特聘研究员中国科学院物理研究所《高速原子力显微镜的生物大分子研究》【报告摘要】:待定。报名占位樊友杰 高级应用/服务工程师布鲁克(北京)科技有限公司《生物型原子力显微镜在蛋白质形貌和结构表征中的应用》【报告摘要】:蛋白质在细胞中发挥着各种各样的功能,涵盖了细胞生命活动的各个方面,如发挥催化作用的酶和参与生物体内的新陈代谢的胰岛素,还有可以进行物质运输的分子马达蛋白。细胞免疫反应、细胞分化、细胞凋亡等过程中也都有大量蛋白质的参与。 研究蛋白质的形貌和结构以及蛋白质与其他分子之间的相互作用,有助于理解蛋白质的作用,了解蛋白质是如何行使其生物功能,这无论是对于生物学还是医学和药学,都是非常重要的。通过对蛋白力学结构的分析,可以进行功能注释和指导设计特异性的蛋白的合成。 本报告我们将向大学介绍Bruker生物型原子力显微镜在蛋白质领域的相关应用,包括蛋白质形貌的表征和原位动态过程的观察,还有单分子力谱在蛋白结构解析中的应用。 Bruker生物型原子力显微镜的全针尖扫描模式的设计能从结构上很好地与现在的主流倒置显微镜进行无缝的耦合联用,能够让我们从多变量角度对蛋白质进行解析。报名占位李红卫 高级工程师北京大学北京核磁共振中心《蛋白质表观分子量的核磁共振检测方法》【报告摘要】:蛋白质表观分子量更加真实的反映了其在接近生理条件下的存在状态。本报告介绍一种可以极大降低环境因素的影响、提高测试结果的可重复性的蛋白质表观分子量的测定方法,方法在蛋白质研究以及蛋白质类产品的研发与生产过程中具有较高的实用价值。通过该方法,发明人旨在探索一条从方法创新到实验室应用再到企业应用的途径。报名占位郭振玺 副主任/高级工程师北京大学冷冻电镜平台《冷冻电镜制样技术经验交流》【报告摘要】:冷冻电镜样品制备是冷冻电镜技术发展的瓶颈之一,制约着解析生物大分子复合物三维结构的效率。本报告将结合报告人所在冷冻电镜平台自主开展的支撑科研工作者快速制备冷冻样品的几种方法,与大家进行交流。报名占位谢成 博士后北京大学化学与分子工程学院张文彬教授课题《利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究》【报告摘要】:我们探究了氢键对肌红蛋白(Mb)结构域交换二聚体的形成和稳定性的影响。当Mb二聚体铰链区氢键网络附近的 Leu137 突变为亲水性氨基酸(Glu 或 Asp)后,二聚体的稳定性增强。铰链区氢键网络更紧密的突变体中,氢键数量更多,α螺旋刚性更强,二聚体结构更加稳定。本研究证明了氢键对于设计稳定结构域交换蛋白质二聚体的重要性和实用性。报名占位扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 李惠琳团队成果:非变性自上而下质谱用于蛋白及其复合物结构表征
    大家好,本周为大家分享一篇李惠琳课题组最近发表在Mass Spectrometry Reviews上的综述,Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes1。结构生物学的快速发展极大地促进了蛋白结构表征工具的开发。其中,基于质谱的分析方法凭借其快速、灵敏、高通量的优势从中脱颖而出。相比于原子水平的高分辨结构表征工具如X-射线晶体学、核磁共振(NMR)、冷冻电镜(Cryo-EM)等,基于质谱的分析方法能够有效地补充蛋白动力学结构变化的信息,并且不受蛋白纯度、分子量大小的限制。而相较于低分辨的蛋白表征工具如圆二色光谱、动态光散射等,基于质谱的分析方法能够提供更高的肽段或残基水平分辨率,获取额外的序列、翻译后修饰(post‐translational modifications, PTMs)、局部空间结构等信息。常见的结构质谱包括:氢氘交换质谱(hydrogen‐deuterium exchange MS, HDX-MS)、交联质谱(cross‐linking MS, CX-MS)、表面标记质谱(covalent labeling MS, CL-MS)等。已有相当多的文献对这些方法进行了详细的介绍2,3,在此不再赘述。而此篇综述将重点介绍非变性至上而下质谱(native top‐down MS, nTDMS)在蛋白及其复合物结构表征中的应用。在过去的十年,非变性质谱(native MS, nMS)特别是nTDMS发展迅速。nMS作为一个桥梁将蛋白质组学与结构生物学相连,其保留非共价相互作用的特性使其广泛用于蛋白复合物四级结构表征,如推断亚基组成、化学计量比、亚基排布等。然而,对于一些深层次的结构信息,如氨基酸序列、PTMs、配体结合位点、亚基结合界面等,仅靠单一的nMS是无法获取的。与之对应的,变性条件下的自上而下质谱(TDMS)能够在完整蛋白水平下直接获得序列以及PTMs信息,虽然有助于PTM的准确定位以及蛋白、蛋白异质体(Proteoform)的鉴别,但却丢失了涉及非共价相互作用的高级结构信息。受限于质谱仪器的发展,在早期,nMS与TDMS通常在两个独立的实验中进行,随着质量分析器以及多种活化/碎裂方式的开发,nMS与TDMS的能够有效的结合,充分发挥各自的优势,在实现多层次结构信息获取的同时,也在不断挑战更加复杂的生物体系,如核糖体、膜蛋白、内源蛋白混合物等。实验设计nTDMS已成为表征蛋白质和复合物的初级到高级结构的重要工具。随着蛋白质样品的大小和复杂性的增加,用于nTDMS的仪器不仅需要符合某些特定标准,还需要不断提高其性能以满足这些增加的需求。nTDMS分析中几个关键的步骤包括:样品前处理、ESI离子化、二级碎裂、质量检测以及数据处理。样品前处理为了维持蛋白的自然状态,通常需要在生理环境中进行nMS分析。然而,缓冲液中的非挥发性盐会产生大量盐簇并与蛋白离子形成非特异性加合物,从而抑制离子信号、降低检测的准确度和灵敏度。因此,样品前处理过程中最重要的环节就是除盐。然而适当的离子强度有助于维持蛋白的三维结构,所以通常的步骤是对蛋白进行缓冲液置换,将蛋白置换至醋酸铵或碳酸氢铵等挥发性盐溶液中。目前已开发了多种在线或离线的除盐方法,详细内容的可在综述原文中查看,此处不再赘述。除了使用非挥发性缓冲盐,减小ESI喷针孔径大小也可以提高系统耐盐能力。碎裂/活化方式二级碎裂方式是实现nMS到nTDMS的关键。常见的活化方式按照原理可分为三类:基于碰撞(CID, SID)、基于电子(ECD, ETD, EID等)以及基于光子(UVPD, IRMPD)的活化/碎裂方式。值得注意的是,CID与IRMPD都属于慢加热的活化方式,能量累积的非常慢,以至于在发生碎裂之前已经进行了能量重排,一些较弱的或者不稳定的键会优先发生断裂,最终导致非共价相互作用在活化的过程中被破坏。而SID、ExD与UVPD则属于快加热的活化方式,碎裂发生在能量重排之前,非共价相互作用得以在这一过程保留下来,碎片化程度受到非共价相互作用的限制,因此可被用于表征蛋白的空间结构。此外,将多种活化方式的结合或与离子淌度技术串联也是获取多层次结构信息的关键。质量检测与变性条件下的质谱分析相比,蛋白复合物在天然环境下通过电喷雾电离产生的电荷数相对较少,因此需要具有较大m/z 范围的质量分析仪(高达m/z = 20,000 Da甚至更高)。最初,nMS分析高度依赖基于飞行时间(time of fight, TOF)质量分析器,因为TOF具有理论上无限的m/z范围。近年来,高分辨质量分析器如轨道阱(Orbitrap)和傅里叶变换离子回旋共振(FTICR)为生物大分子的nTDMS分析带来了新的活力。在综述中,我们简要介绍了每种质量分析器的最新进展,并重点强调了FTICR和Orbitrap在nTDMS分析中的发展和应用。数据处理除了基本的硬件设施,配套的数据处理软件也十分重要。nTDMS数据处理流程通常包括以下4个步骤:同位素峰选取、去卷积、数据库搜索、验证和可视化。正文中,我们对每个步骤进行了简要描述,并重点介绍用于数据库搜索和异质体鉴别的软件。多层次结构信息的获取得益于多种活化/碎裂方式的开发,nTDMS分析可同时获得多层次的结构信息(图1)。主要有以下两种策略:第一种策略,完整蛋白复物(MS1)首先被CID或SID碎裂至亚基(MS2),亚基可进一步碎裂肽段(MS3),在MS1及MS2中可获蛋白复合物结合计量比、拓扑结构、蛋白异质性等信息,在MS3阶段则可获取蛋白序列、PTMs定位以及异质性来源等信息。第二种策略则是完整蛋白复合物(MS1)直接被UVPD或ExD碎裂成肽段(MS2),受益于UVPD以及ExD独特的碎裂方式,发生碎裂的区域主要位于蛋白复合物的表面可及区,而未发生碎裂的区域可能位于蛋白复合物的核心区域或参与亚基相互作用界面。不同的碎裂情况反映不同的空间结构,带有配体的肽段碎片可以用于配体结合位点的定位。综述中,我们详细阐述了如何利用nTDMS获得蛋白复合物的多层次结构信息以及如何将碎片信息与结构信息相关联。图1. nTDMS可提供的多维度结构信息复杂生物体系中的应用蛋白质的空间结构决定了其生物功能,而蛋白质-蛋白质/配体相互作用是大多数生物进程的基础。通过突变、翻译后修饰、或者与金属、小分子配体、蛋白质、DNA、RNA等分子发生共价或非共价的相互作用,蛋白质功能在活细胞中不断受到调节。随着MS仪器、方法的不断开发和数据处理软件的逐渐成熟,nTDMS已被广泛应用于各种生物系统,从小蛋白质、蛋白质-配体复合物到大分子组装体,如膜蛋白、蛋白酶体、核糖体、病毒衣壳,甚至是内源性蛋白混合物。它们中的许多都是极具挑战性的体系,即便是采用NMR、X-射线晶体学或Cryo-EM等生物物理方法分析也是非常困难的。因此,来自nTDMS的见解对于理解这些蛋白质和复合物至关重要。在这里,我们总结nTDMS在所有生物体系中的应用实例,旨在全面了解nTDMS在解决生物学问题方面的潜力。小蛋白的结构表征和区分最初,nTDMS主要用于50 kDa以下单体蛋白的结构表征,大部分的研究都是围绕蛋白质气相结构与溶液相结构对比展开的。根据nTDMS的碎裂情况,推断蛋白的气相空间结构,并与NRM获得的溶液结构进行对比。此外,如果在二级碎裂前增加离子预活化有助于蛋白分子的展开,以便研究蛋白气相展开路径以及获取蛋白质内部空间结构信息。得益于碎片离子对蛋白空间结构的高度敏感性,nTDMS还被用于区分不同蛋白亚型、蛋白突变体的结构差异。蛋白-小分子配体相互作用随后,nTDMS应用到了蛋白-配体复合物中,不同的配体类型适合不同的活化/碎裂方式,除了金属离子、RNA/DNA等以静电作用为主的蛋白配体能够在CID活化时存活,大部分复合物的碎裂都需要选择ECD或UVPD等方式。nTDMS可用于蛋白-配体结合计量比、亲和力、结合位点、作用机制、结构动力学/变构效应的研究。它是一种强大的结构表征工具,其在抑制剂筛选、酶催化监控、RNA-蛋白质互作机制的应用实例在正文中已有详细的介绍。蛋白-蛋白相互作用随着仪器设备的快速发展,nTDMS已应用到更大的体系如蛋白-蛋白复合物,通过组合不同的活化/碎片化技术,在一次实验中可以获得多层次的结构信息。nTDMS可以帮助区分不同的蛋白异质体,并在完整复合物、亚基、肽段三个水平上确定异质性的来源。蛋白的异质性与其生物学功能密切相关,通过调整蛋白的异质性可以实现蛋白功能的转变,具体的应用案例已在正文详细介绍。除此之外,nTDMS还可以用作蛋白-蛋白复合物结合界面、气相展开以及深层次结构探索。治疗性抗体和抗原-抗体复合物在过去的几十年中,治疗性抗体已成为最受欢迎的候选药物之一,它们的高特异性和低副作用促进了治疗性抗体的快速增长。在综述中,我们还详细地介绍了nTDMS在治疗性抗体和抗原-抗体复合物体系中的应用。nTDMS可用于抗体可变区的测序、具有不同药物计量比(DARs)的抗体耦联药物的结构表征、以及抗体-抗原复合物中互补决定区及抗原表位区的鉴别。膜蛋白无论是对于传统的结构表征工具如:X-射线晶体学、NMR还是nTDMS,膜蛋白的结构表征一直以来面临着诸多困难。膜蛋白具有低丰度以及低溶解性等特点,最常见的方法是利用与nMS兼容的膜模拟物如:去污剂胶束、纳米微盘等去溶解膜蛋白,在nTDMS分析时再将膜蛋白从胶束中释放出来,释放出的蛋白可在nTDMS中进一步碎裂获取结构信息。具体的实验流程和应用实例可在综述正文中查看。大分子组装体正文中,还介绍nTDMS在极具挑战性的大分子组装体如:核糖体、蛋白酶体、病毒衣壳中的应用实例,这些生物体系普遍存在的问题是分子量非常大(接近MDa),且具有较高的异质性。对这些大分子机器进行nTDMS分析要求仪器具有较高的质量范围以及分辨率。大分子机器的结构表征充分说明nTDMS方法无论在深度还是广度上都有极大的提升。Native top-down MS蛋白质组学值得注意的是,当质谱前端结合非变性分离技术,如native GELFrEE,尺寸排阻色谱,毛细管区带电泳,离子交换色谱等,nTDMS还可以在靶向模式或发现模式下用于复杂蛋白质组的高通量分析,如内源性蛋白混合物。nTDMS分析最大的优势在于它能区分不同的蛋白异质体,并对每种蛋白异质体进行结构表征,这是其他在肽段水平进行分析的结构质谱法如:HDX-MS, CL-MS所无法实现的。总结与展望总之,在这篇综述中我们重点介绍了nTDMS的最新进展和在不同生物体系中的应用,强调通过nMS与TDMS结合可以获得额外的多层次结构信息。新技术的出现以及仪器的进步使nTDMS能够应用于结构生物学中日益复杂的生物样本体系,包括蛋白质配体、多聚蛋白复合物、大分子组装体和内源性复合物。尽管这样,nTDMS分析仍面临着的挑战,包括但不限于前端的样品分离、离子化、去溶剂化、高质荷比分子传输、异质性样本的分析以及软件的开发。未来nTDMS将与其他的一些结构表征方法相结合以获取更加全面的结构信息。正文中对未来发展趋势进行了讨论并提到了其他一些令人兴奋的创新技术如:基于MALDI离子源的质谱成像技术用于蛋白原位分析、电荷检测质谱(CDMS)用于异质性样本分析,多重技术的结合将为蛋白质复合物的nTDMS研究开辟新的道路。我们希望这篇综述能让读者更好地理解nTDMS提供的独特结构信息,并推动该方法的广泛应用。撰稿:刘蕊洁编辑:李惠琳原文:Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. 参考文献1.Liu RJ, Xia SJ, Li HL. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spec Rev. 2022 e21793. https://doi.org/10.1002/mas.217932.Britt HM, Cragnolini T, Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. 2022 122(8):7952-7986. 3.Liu XR, Zhang MM, Gross ML. Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem Rev. 2020 120(10):4355-4454.
  • 国家蛋白质科学中心正式亮相,贝克曼助力蛋白科学研究!
    中国,上海——2014 年5月29日——国家蛋白质科学中心将于2014年年底正式投入使用。国家蛋白质科学中心配备了先进的规模化蛋白质制备系统,该系统是由我国科学家自主设计的五套大型自动化装置组成,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化。由贝克曼库尔特科学事业部提供的系统核心-Biomek系列自动化工作站,分别在高通量克隆构建,高通量原核细胞、昆虫细胞以及哺乳动物细胞的培养及蛋白表达,高通量蛋白质纯化等研究领域,为该中心的科研人员提供了强有力平台和技术支持。观看央视专题视频采访,敬请点击:http://news.cntv.cn/2014/05/25/VIDE1400996168085191.shtml 关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。处于全球领先地位的贝克曼库尔特公司,为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和世界级的技术服务与支持,不断促进生物学科研的新技术发展。作为离心机和流式细胞仪的行业领导者,贝克曼库尔特公司长期以来一直是毛细管电泳、颗粒表征和实验室自动化的创新者,其产品主要用于最前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.com.cn。更多详情,欢迎您联系:贝克曼库尔特商贸(中国)有限公司Tel: 021 3865 1000 / 010 6521 3000Fax: 021 5830 6850 / 010 6515 6025www.beckmancoulter.com.cn
  • 葛瑛领衔多位专家于《自然综述方法导论》发表自上而下蛋白质组学综述论文
    近日,威斯康星大学麦迪逊分校葛瑛教授应《自然综述方法导论》(Nature Reviews Methods Primers)邀请,联合了多位蛋白质组学领域科学家共同撰写的”自上而下蛋白质组学“(Top Down Proteomics)综述文章成功发表。本文的第一作者是葛瑛教授的博士生David Roberts,他目前正于斯坦福大学诺贝尔化学奖得主Carolyn Bertozzi教授的指导下进行博士后研究。《自然综述方法导论》(Nature Reviews Methods Primers)创刊于2021年1月,致力于加强多学科对综合性、复杂性科学问题的协同攻关,通常围绕一个重要主题,邀请跨地区、跨学科的多名顶尖学者合作撰写介绍和总结先进方法或技术的引导性综述,旨在面向更为广泛的读者,概述该主题相关方向的发生发展、方法与应用。葛瑛等在该文中详细介绍了自上而下蛋白质组学技术方法和最新应用,并梳理了该领域所面临的技术挑战和未来发展前景。自上而下蛋白质组学(Top-Down Proteomics,TDP)是一种前沿的分析技术,通过直接分析完整的蛋白质分子,提供了对蛋白质组的全貌视角。与传统的自下而上方法不同,后者需要将蛋白质消化成肽段进行分析,自上而下蛋白质组学保留了蛋白质的完整性和所有的翻译后修饰(PTMs)信息。这对于全面了解蛋白质的功能和动态变化至关重要。TDP的核心优势在于其能够准确识别和表征蛋白质变体(proteoforms),这些变体是由基因多态性、RNA剪接和各种PTMs产生的。通过高分辨质谱技术,TDP可以精确地测量蛋白质的分子量,解析其一级结构,并识别其修饰位置和类型。这种能力使得TDP在揭示蛋白质功能、疾病机制以及生物标志物发现方面具有巨大潜力。在实验操作上,TDP涉及从样品制备、蛋白质分离、质谱分析到数据处理的多个步骤。样品制备需要特别注意蛋白质的提取和纯化,以保持其完整性。质谱分析则依赖于高分辨质谱仪器,如四极杆飞行时间质谱(Q-TOF)和傅里叶变换离子回旋共振质谱(FT-ICR MS)等。数据处理和分析方法也在不断发展,以应对TDP产生的大量复杂数据。近年来,TDP技术在多种应用中取得了显著进展,包括生物医学研究、疾病诊断和生物制药开发。例如,人类蛋白质变体项目旨在全面绘制人类蛋白质变体图谱,为精准医学提供基础数据支持。此外,TDP还在探索生物标志物和治疗靶点方面展现出巨大的潜力。尽管如此TDP仍面临一些挑战,如高复杂度的样品处理、数据分析难度大和仪器要求高等。未来的研究将继续致力于优化这些技术细节,提高TDP的灵敏度和准确性,扩大其应用范围随着技术的不断进步,自上而下蛋白质组学有望在更多领域发挥重要作用,推动生命科学和医学研究的前沿发展。综述论文链接:https://www.nature.com/articles/s43586-024-00318-2.epdf?sharing_token=COpcr8STB7LLuFGw1WzSb9RgN0jAjWel9jnR3ZoTv0Pexs-IoMaC2jUJ4NS8tHNjD4ZV9O4HC1i8tk8NHMk8_JHuptH_gUjNdkoANzz1ye5kvJZe-CkjPcGqZUDgZ1z5dRXEy0mPxl8WCdrHVEaUgsR7hRkijTIS-rAweHYCqgA%3D
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制