当前位置: 仪器信息网 > 行业主题 > >

单细胞肿瘤

仪器信息网单细胞肿瘤专题为您整合单细胞肿瘤相关的最新文章,在单细胞肿瘤专题,您不仅可以免费浏览单细胞肿瘤的资讯, 同时您还可以浏览单细胞肿瘤的相关资料、解决方案,参与社区单细胞肿瘤话题讨论。

单细胞肿瘤相关的论坛

  • 2022细胞产业大会(深圳)单细胞多组学研究与临床应用峰会3D细胞培养与类器官临床应用峰会

    [b][b][font=&][size=18px]会议咨询:[font=inherit]顾成刚13621995193(微信同号)[/font][/size][/font][/b][font=&][size=18px][color=#404040]2022深圳细胞产业大会[/color][/size][size=18px][color=#404040]第九届(深圳)细胞与肿瘤精准医疗高峰论坛[/color][/size][size=18px][color=#404040]2022年8月深圳 11月 武汉[/color][/size][/font][font=&][size=18px]深圳会议时间:2022年8月21-22日[size=16px][/size][/size][/font][font=&][size=18px][size=16px]深圳会议地点:深圳湾万丽酒店(深圳市南山区科技南路18号)[/size][/size][/font][font=&][size=18px][size=16px][/size][/size][size=18px][color=#404040][/color][/size][size=18px][color=#404040]同期举办:[/color][/size][size=18px][color=#404040]细胞与基因治疗前沿技术应用峰会 外泌体技术转化与疾病研讨会[/color][/size][size=18px][color=#404040]单细胞多组学研究与临床应用峰会 3D细胞培养与类器官临床应用峰会[/color][/size][/font][color=#404040]细胞外囊泡前沿与转化峰会[/color][color=#404040][img]https://img-user-qn.hudongba.com/upload/_oss/userarticleimg/202207/28/31658988346866_article3_1579.png?image/auto-orient,1/quality,q_80[/img][/color][color=#404040]招展联系人:顾先生13621995193(微信Wechat)[/color][size=14px][color=#404040]大会概况:[/color][color=#404040]2022细胞产业大会 2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛将于8月在深圳举办,本次峰会紧密围绕政策规范、监管、工艺与产业化进展、细胞与基因治疗、外泌体临床研究与疾病治疗、外泌体临床检验与肿瘤免疫治疗、细胞外囊泡领域的机制研究、体外诊断及疾病治疗、单细胞多组学、单细胞测序、3D细胞培养与类器官、溶瘤病毒药物的开发与产业转化、干细胞临床前研究与临床应用转化、干细胞存储与治疗、肿瘤免疫治疗、通用型CAR-T细胞治疗、基因治疗及溶瘤病毒、实体瘤治疗及药物开发、临床研究与治疗进展等话题,特邀来自国家药品审评监管机构、科研院所、医疗机构、创新药企、生物治疗、生物技术和服务企业、产业链上下游企业、产业园区、投资机构、行业协会等多位权威专家与产业先锋进行分享交流及产品展示。组委会竭诚搭建优质对话合作平台,诚邀您八月深圳相聚,共襄盛会![/color][color=#404040]近年来,现代生命科学与生物技术取得了一系列重要进展和重大突破,尤其是以干细胞、免疫细胞为核心的细胞治疗技术更是迅猛发展,在多种难治性疾病的临床研究上获得了许多成绩,在未来展现出了巨大的应用前景细胞治疗受到前所未有的重视,国家和地方层面也密集出台相关政策,支持干细胞、免疫细胞研究的发展。[/color][color=#404040]2009年单细胞测序技术强势问世,发展至今,单细胞测序技术已经在肿瘤、临床诊断、免疫学、微生物学、神经科学等领域占有重要的应用地位,是目前研究和应用的点。研究范围也不再只是基因组、转录组学,而扩展到了表观基因组、空间转录组学、代谢组、免疫组、蛋白组谱系。这些“多组学”技术允许研究人员更仔细地观察细胞之间的异质性,更清楚地识别特定细胞及其功能。[/color][color=#404040]细胞与基因治疗改变了人类治疗遗传疾病和疑难杂症的方式,并正在撬动整个制药生态圈。在各种适应症需求的推动下,细胞与基因治疗快速发展,多种细胞免疫疗法、干细胞疗法、基于腺相关病毒及慢病毒载体的基因疗法相继问世,为复发难治性肿瘤及严重的基因遗传缺陷类疾病提供了重要的治疗选择。随着CAR-T免疫细胞疗法在国际以及国内获批上市,细胞和基因疗法进入了全新的赛道,整个行业进入了技术突破和产业化的快速演进。[/color][color=#404040]2022细胞产业大会 2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛将于8月在深圳举办,本次峰会紧密围绕政策规范、监管、工艺与产业化进展、干细胞临床前研究与临床应用转化、干细胞存储与治疗、肿瘤免疫治疗、细胞与基因治疗、通用型CAR-T细胞治疗、单细胞多组学、单细胞测序、细胞外囊泡分离及检测、3D细胞培养与类器官、基因治疗及溶瘤病毒、实体瘤治疗及药物开发、临床研究与治疗进展等话题,特邀来自国家药品审评监管机构、科研院所、医疗机构、创新药企、生物治疗、生物技术和服务企业、产业链上下游企业、产业园区、投资机构、行业协会等多位权威专家与产业先锋进行分享交流及产品展示。组委会竭诚搭建优质对话合作平台,诚邀您八月深圳相聚,共襄盛会![/color][color=#404040]专题会议[/color][color=#404040]1、干细胞临床研究与转化应用峰会[/color][color=#404040]干细胞临床前研究与转化应用[/color][color=#404040]干细胞临床前研究与临床应用转化[/color][color=#404040]干细胞治疗技术与临床研究[/color][color=#404040]干细胞与免疫细胞临床研究的制剂质量评价[/color][color=#404040]干细胞治疗质量控制管理的现状与未来[/color][color=#404040]干细胞与类器官研究[/color][color=#404040]干细胞外泌体的应用[/color][color=#404040]干细胞与再生医学[/color][color=#404040]间充质干细胞外囊泡治疗难治性疾病[/color][color=#404040]新型干细胞治疗新冠肺炎[/color][color=#404040]2、肿瘤免疫治疗产业转化领袖峰会[/color][color=#404040]细胞免疫治疗研发突破与商业化进程[/color][color=#404040]通用型CAR-T细胞免疫治疗[/color][color=#404040]细胞免疫治疗质量控制&产业化[/color][color=#404040]细胞治疗药物研发与商业化生产[/color][color=#404040]细胞治疗产品开发与工艺优化[/color][color=#404040]TIL细胞在实体瘤治疗中的技术挑战与发展趋势[/color][color=#404040]iPSC来源的CAR先天性免疫细胞及其在肿瘤免疫细胞治疗中的应用[/color][color=#404040]细胞外囊泡的多组学研究[/color][color=#404040]细胞外囊泡RNA组分解析及其应用[/color][color=#404040]外泌体技术的开发与临床转化[/color][color=#404040]3、单细胞多组学研究与临床应用峰会[/color][color=#404040]单细胞多组学研究与临床应用[/color][color=#404040]单细胞转录组技术致力于大脑发育及神经干细胞调控的研究[/color][color=#404040]单细胞多组学科学创新前沿及最新技术[/color][color=#404040]单细胞空间组学的开发与应用进展[/color][color=#404040]单细胞技术助力精准医学研究[/color][color=#404040]单细胞组学研究技术在肿瘤免疫与个性化治疗中的应用[/color][color=#404040]单细胞技术在肿瘤微环境及肿瘤细胞异质性探究中的应用[/color][color=#404040]单细胞测序结合多组学技术的应用[/color][color=#404040]4、细胞与基因治疗前沿技术应用峰会[/color][color=#404040]细胞及基因治疗的临床研究与产业转化[/color][color=#404040]细胞与基因治疗的国内外最新研究进展[/color][color=#404040]细胞与基因治疗CDMO[/color][color=#404040]基因治疗及溶瘤病毒产品的开发[/color][color=#404040]AAV基因治疗药物大规模生产工艺研究及成本控制[/color][color=#404040]基因治疗GMP病毒载体规模化生产[/color][color=#404040]基因工程化外泌体用于肿瘤靶向治疗的研究[/color][color=#404040]溶瘤病毒及RNA疗法[/color][color=#404040]5、3D细胞培养与类器官临床应用峰会[/color][color=#404040]3D细胞培养与类器官前沿进展[/color][color=#404040]3D类器官培养技术发展及其应用[/color][color=#404040]类器官基础研究与技术开发[/color][color=#404040]类器官临床医学研究与应用[/color][color=#404040]类器官药物筛选与生物制造[/color][color=#404040]类器官技术的科研应用和临床转化[/color][color=#404040]类器官在肿瘤精准医学研究中的应用[/color][color=#404040]类器官在伴随诊断和新药研发中的应用和进展[/color][color=#404040]微流控器官芯片在精准医疗及药物研发中的应用[/color][color=#404040]* 最终议程以现场为准,发言企业可自行命题[/color][color=#404040]更多嘉宾邀约中,欢迎各单位推荐自荐![/color][color=#404040]* 最终以现场为准[/color][color=#404040]谁将参与[/color][color=#404040]全国各大医院的院长、医院管理者、肿瘤内科、肿瘤外科、生物治疗科、血液科、病理科、辅助生殖科、检验科等各科室主任医师、副主任医师、主治医生及从相关领域研究的专家、科研人员、医药企业等;[/color][color=#404040]科研院所、生物医药企业、技术服务代理商及投资机构、临床医生等;[/color][color=#404040]知名高校的教授、研究员、副研究员及生命科学专业、药学专业、医学专业、免疫学专业等;[/color][color=#404040]细胞及肿瘤抗体免疫治疗上游供应商、诊断试剂及设备服务商、技术与设备仪器提供商、IT大数据解决方案提供商等;[/color][color=#404040]基因治疗、基因编辑、基因测序、基因检测公司、生物技术公司研发人员等技术人员、研发总监等;[/color][color=#404040]精准医疗方面的机构、企业、细胞存储与治疗上、中、下游产业链的企业以及CRO、CMO等;[/color][color=#404040]CEO及药厂研发负责人:抗体免疫治疗药物研发、免疫细胞治疗及制品开发、溶瘤病毒、治疗性疫苗、小分子免疫治疗药物、细胞治疗与再生医学领域的专家、临床研究人员、从业医师、研究生以及细胞治疗与再生医学领域的医疗用品科研人员与厂商等;[/color][color=#404040]政府机构与代表、产业园区、招商局、投资孵化机构、咨询与培训机构、银行、律师、知识产权、证券公司等。[/color][/size][size=14px][color=#404040][img=2021.9嘉宾集竖版.jpg,1047,1177]https://img-user-qn.hudongba.com/upload/_oss/uePasteUpload/202206/2315/1655968748942_2757.jpg?image/auto-orient,1/quality,q_80[/img][/color][/size][size=14px][color=#404040]2021细胞产业大会 2021第六届(上海)细胞与肿瘤精准医疗高峰论坛伴随着为期两天的会议和三天的展览于4月25日在上海展览中心(上海市静安区延安中路1000号)落下帷幕!本次大会集聚60+行业大咖到场分享精彩演讲,现场参观参会人数高达1800多人,共有100多家优质展商和60多家行业媒体列席,呈现出一场学术与产业紧密交融的盛宴。细胞产业大会成熟的“会议+展览”的模式得到了参会嘉宾、参展企业及参会代表的一致好评![/color][/size][size=14px][color=#404040][img=2021.4嘉宾集竖版.jpg,1047,1266]https://img-user-qn.hudongba.com/upload/_oss/uePasteUpload/202206/2315/1655968747557_2756.jpg?image/auto-orient,1/quality,q_80[/img][/color][/size][size=14px][color=#404040]2021细胞产业大会 2021第七届(深圳)细胞与肿瘤精准医疗高峰论坛/2021基因与精准诊疗(深圳)高峰论坛/2021肿瘤精准诊疗(深圳)论坛伴随着为期两天的会议和展览于10月27日在深圳会展中心落下帷幕!疫情特殊时期,本次大会采用了“线上(约12万人观看)+线下(600多人参加)”相结合的方式同步进行的,专家们以专业的视角分享行业动态,以战略的眼光探讨产业发展,共商细胞治疗、基因治疗及肿瘤精准诊疗的未来发展之路![/color][color=#404040]活动预告[/color][color=#404040]2022细胞产业大会[/color][color=#404040]2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛[/color][color=#404040]时间:2022年8月[/color][color=#404040]地点:深圳[/color][color=#404040]2022细胞产业大会[/color][color=#404040]2022第十届(武汉)细胞与肿瘤精准医疗高峰论坛[/color][color=#404040]时间:2022年11月[/color][color=#404040]地点:武汉[/color][color=#404040]展位及论坛赞助[/color][color=#404040]赞助商及演讲收费标准:[/color][color=#404040]套餐一:2个开放式展位+40分钟演讲+大会电子版会刊封三+资料入袋 RMB 100,000[/color][color=#404040]套餐二:1个开放式展位+30分钟演讲+大会电子版会刊彩页1P RMB 50,000[/color][color=#404040]套餐三:1个开放式展位+20分钟演讲+大会电子版会刊彩页1P RMB 40,000[/color][color=#404040]套餐四:20分钟演讲 RMB 20,000[/color][color=#404040]套餐六:1个开放式展位 RMB 22,800[/color][color=#404040]套餐七:光地展位每平方米 RMB 2,000[/color][color=#404040]听众参会代表收费标准:[/color][color=#404040]2022年8月1日前注册RMB 1,000/人,8月1日后注册RMB 1,200/人(深圳) [/color][color=#404040]2022年11月1日前注册RMB 1,000/人;11月1日后注册RMB 1,200/人(武汉) [/color][color=#404040]团体注册:3人以上可享受9折优惠(深圳、武汉两地均享此政策)[/color][color=#404040]费用包含:会议资料、大会入场资格、授权老师的PPT、午餐、茶歇等。[/color][color=#404040]上海顺展展览服务有限公司[/color][color=#404040]联系人:顾先生13621995193(微信Wechat)[/color][color=#404040]邮箱:[/color][/size][size=14px][color=#404040][email]2498299886@qq.com[/email][/color][/size][size=14px][color=#404040]地址:上海市松江区沪松公路1221号星晨大厦801室[/color][/size][size=14px][color=#404040][img]https://img-user-qn.hudongba.com/upload/_oss/userarticleimg/202207/28/11658988287538_article1_1574.png?image/auto-orient,1/quality,q_80[/img][/color][/size][/b]

  • 单细胞转移分离系统特点

    [b][url=http://www.f-lab.cn/cell-analyzers/puncher.html][b]单细胞转移分离系统[/b][/url]是可用于单细胞转移,单细胞分离和单细胞隔离,单细胞成像应用的多功能单细胞分离操作仪器,它可以实现从微孔芯片转移单细胞到细胞收集管中。单细胞转移分离系统[/b][color=#666666]集单细胞成像,单细胞隔离,单细胞选择功能于一体,自动聚焦成像。[/color][b]单细胞转移分离系统转移单细胞到Eppendorf微管,PCR微孔板或其它反应微管中,[/b][color=#666666]在隔离单细胞后,它可以对选定收集的细胞进行扫描并成像。[/color][b]单细胞转移分离系统[/b][color=#666666]采用Nikon Ti-2倒置荧光显微镜,配备自动扫描显微镜载物台,自动聚焦器件,高灵敏度荧光CCD相机和LED激发光源组建而成。[/color][img=单细胞转移分离系统]http://www.f-lab.cn/Upload/single-cell-isolation.JPG[/img][b]单细胞转移分离系统[/b]特点完全自动化,步进系统高质量单细胞荧光成像单细胞分离的效率超过90% 超过70%分离的细胞增殖 分离后兼容所有的单细胞的WGA工具包(放大器的‐1,picoplex,复制‐G)实惠微Wells基于硅微孔微腔。由薄膜封闭70µ m,井底直径(1µ m),包含一个单孔。样品流体进入威尔斯并从底部的孔隙中流出。单个细胞被拖着走。一旦单个细胞降落到孔隙上,流动停止,其他细胞就不会进入井内。有用的细胞被识别出来。选定的细胞穿孔从微孔到384孔PCR板或离心管等等。单细胞转移分离系统:[url]http://www.f-lab.cn/cell-analyzers/puncher.html[/url]

  • 单细胞分析——你能做得更多

    定义:单细胞研究,就是针对单个细胞的研究,这是相对于群体细胞的研究。研究意义:细胞是生命活动的基本单位,研究细胞的结构功能及行为,有利于揭示复杂生命体的生命活动规律,探究生理生化现象,获得统计平均结果。然而,现代研究表明,单个细胞内的成分存在巨大差异,平均分析结果不能反映单个细胞内成分的真实情况,会带来误导信息。癌症等疾病总是从个别细胞的变异开始,极少量异常细胞信号会被群体信号所掩盖,不能及时获得有关病变的信息。另外,细胞间的信号传导,应激反应等活动在细胞内迅速发生,传统方法无法做到实时监测。对于数量较少且较为珍贵的细胞样本,如干细胞、元祖细胞及患者样本,传统分析方法需要大量的细胞样本,并不适宜。关于物质在细胞内的空间分布,亚细胞结构如细胞器的分析,传统方法也不能满足。这些都要求我们在一定范围内从单细胞水平研究细胞的生命活动。单细胞分析方法:毛细管电泳、微流控芯片、图像分析、动力学分析及纳米技术等。目前单细胞分析存在的难点:首先无论是针对一个特异性大分子,还是在OMIC水平上进行分子分析,都存在单细胞提取物数量少,难以分析的困难,这甚至可以说是不可能完成的,因此增加灵敏度势在必行。除此之外高通量分析也是一个瓶颈,要想获得单细胞分析确切的分析结果,研究人员必须快速而准确的分析多个细胞,这并不容易。另外单细胞分析也常常需要进行多种方式分析,这不仅是由于细胞存在于一种异质性环境汇总,而且也在同一时间,也需要测量多个参数。

  • 【转帖】iPS细胞:人造肿瘤细胞?

    各国争相发展的重点项目  iPS技术,即诱导性多能干细胞技术,是一种将成体成熟、分化的体细胞重编程获得类似胚胎干细胞的新兴技术。2007年11月美国和日本科学家分别独立宣布可将人类皮肤细胞转化为iPS细胞。这一发现被《自然》和《科学》杂志分别评为2007年第一和第二大科学进展。之后,iPS细胞研究迅猛发展,不同的国家和实验室纷纷报道了多种方法建立的iPS细胞系。就连世界第一只体细胞克隆动物多利羊的培育者伊恩·威尔莫特也宣布放弃人类胚胎干细胞克隆研究,转而进行 iPS 细胞研究,因为他认为这种细胞比胚胎干细胞更具潜在优势。  我国连续多年将干细胞研究列入“863”、“973”、国家自然基金重点项目。国务院2006年发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,干细胞作为五项生物技术之一成为未来15年我国前沿技术的重点研究领域。  致瘤风险浮出水面  Yamanaka研究组在《自然·生物技术》上发表的文章显示,用iPS细胞诱导的神经干细胞,即使不含c-Myc(曾被认为是导致肿瘤的主要原因),在植入NOD/SCID免疫缺陷小鼠后仍有很强的致瘤性,甚至高于胚胎干细胞。   他们共研究了36个iPS细胞克隆,在诱导方式上,有些诱导剂配方中含有c-Myc基因,有些没有,因此具有较好的代表性。同时他们选择了3株胚胎干细胞作为对照。在45周的观察中,移植胚胎干细胞来源神经干细胞的34只小鼠有4只长出肿瘤。在100只移植胚胎成纤维细胞来源的iPS神经干细胞小鼠中34只发现肿瘤,概率和胚胎干细胞相当。在55只移植成人成纤维细胞来源的iPS神经干细胞小鼠中46只发现肿瘤,概率远高于胚胎干细胞。在36只移植肝细胞来源的iPS神经干细胞小鼠中10只发现肿瘤,概率高于胚胎干细胞。8只移植胃上皮细胞来源的iPS神经干细胞小鼠中未发现肿瘤。病理学检查证实肿瘤均为畸胎瘤,部分为恶性畸胎瘤。  研究还发现,以前认为致瘤性很强的c-Myc在去掉后并没有减少iPS神经干细胞的致瘤性,相反以前认为没有致瘤性的Nanog基因却可以明显增强iPS神经干细胞的致瘤性。  这次试验的另一个意外结果是并未发现在生成的肿瘤细胞中有c-Myc或其他基因的激活。以前的观点认为,转入的癌基因是iPS致瘤性的基础,只要在iPS细胞诱导成功后通过各种方法去除已完成使命的癌基因即可使iPS细胞免于致瘤性。这次试验的结果无疑给这些想法留下了阴影,而且使iPS致瘤的机制更加扑朔迷离。

  • Nature:终于逮到你了!肿瘤干细胞

    http://www.bioon.com/biology/UploadFiles/201208/2012080216013081.jpg癌症研究人员可以测定肿瘤细胞基因组的序列,扫描其异常的基因活性,剖析其突变的蛋白质和研究它们在实验室培养皿中的生长,但研究者一直无法跟踪细胞形成肿瘤的过程。现在三个独立研究小组在小鼠体内做到了这一点。他们的研究结果支持这样的观点:一小部分细胞驱动肿瘤的生长,而想要治愈癌症可能需要将这些所谓肿瘤干细胞清除。目前还无法确认,这些从脑瘤,肠癌和皮肤癌研究的结论是否适用于其他类型肿瘤,但是得克萨斯大学西南医学中心的路易斯·帕拉达认为,如果它们适用于其他肿瘤,"将深刻地改变目前的化疗疗效评价和临床疗法的制定标准"。 不仅是看某种疗法是否缩小肿瘤,研究人员将更关注是否杀死了正确的细胞。帕拉达和他的同事们想检测是否特异性标识健康成人神经干细胞的一个遗传标记,也可标识神经母细胞瘤中的癌症干细胞。他们发现,所有神经母细胞瘤样本中至少有几个标记细胞 - 大概是干细胞。未标记细胞可被标准化疗杀死,但肿瘤可迅速恢复。进一步的实验表明,未标记细胞起源于标记的细胞祖先。当研究者把化疗与抑制标记细胞的遗传手段相结合进行治疗时,帕拉达说,肿瘤显著缩小到"残留遗迹"的水平。在另一项研究中,荷兰乌得勒支Hubrecht研究所的干细胞生物学家们把注意力瞄着了肠道。利用药物驱动的荧光素标志物表达系统,他们在小鼠体内证实,多种不同类型的肿瘤细胞,其实是来源于同一干细胞的。而且,这些干细胞是肿瘤发展的驱动力。对皮肤癌的研究,Blanpain和他的小组标记单个肿瘤细胞,而不是特异地标记干细胞。他们发现,细胞表现出两种不同的分工模式:它们要么在慢慢耗尽前分裂出少数细胞,或者产生许多细胞。这再次证实,一类独特的细胞亚群是肿瘤生长的驱动力。研究者说,下一步的研究计划将是,搞清楚这些实验所跟踪的细胞如何与通过多年移植实验所确定的,假定的癌症干细胞相联系的。研究人员已经紧锣密鼓地在寻找杀死这些细胞的方法;现在他们有更多的工具来测试这样的策略是否会奏效。

  • 生物“电脑”摧毁肿瘤细胞:人类细胞导入诊断网络

    作者:丁香园网友Docofsoul《每日科学》2011年9月1日报道——由瑞士联邦理工学院(ETH)Yaakov Benenson教授与麻省理工Ron Weiss教授率领的研究小组成功地将生物“计算机”诊断网络导入人类细胞。该网络有识别某些肿瘤细胞的能力,利用五种肿瘤特异性分子因子的逻辑组合,进而触发肿瘤细胞毁灭过程。http://img1.jiansuo.net/cms/upload/userfiles/image/2011/09/04/1315042501_small.jpg细胞微机布线图:所有五种因子必须处于相应的正确状态,由此触发细胞死亡(图片来源:y Benenson Y. 教授 R. Weis教授)开发活体细胞内运作的生物电脑,是ETH苏黎世分院合成生物学教授Yaakov (Kobi) Benenson孜孜以求的目标,其职业生涯的大部分时间都倾注于此。他想建立既能侦测细胞生存状况、又能在细胞异常时对相应信息进行处理以提供合适的治疗响应的生物微机。目前,通过与麻省理工教授Ron Weiss以及团队成员(包括博士后学者Zhen Xie 与 Liliana Wroblewska、博士生Laura Prochazka)合作,他向这一目标迈出了重大一步。这一研究成果已发表于《Science》(见本文所附参考文献),论文介绍了一种多基因合成“电路”;此电路负责鉴别正常细胞与肿瘤细胞、继而进一步摧毁肿瘤细胞。其工作方式是:对细胞内五种肿瘤特异性分子因子及其出现频率进行抽样与综合;只有当所有这些因子在细胞内同时出现时,该电路才会作出正识别响应。这种方式使得侦测肿瘤的准确率非常高。研究者希望这一成果能够为高特异性抗癌治疗奠定基础。对肿瘤细胞的选择性破坏本研究对实验室培养的两种类型人类细胞进行了基因网络测试:海拉细胞(子宫颈癌细胞)与正常细胞。当基因生物微机被导入这两种不同的细胞类型时,只有海拉细胞被摧毁,而正常细胞则安然无恙。当然,取得这一结果需要做大量的基础工作。首先必须找出海拉细胞特有的分子组合。Benenson及其他小组成员在属于小RNA分子(MicroRNA或miRNA)这一类化合物的分子中找,终于确认其中一个miRNA组合(或者说“可识别属性”)只有海拉细胞才有,其它健康细胞类型内则不存在。发现这种可识别属性是一项颇具挑战性的任务。人体内既存在250种不同的健康细胞类型,此外也存在为数众多的肿瘤细胞的变异型(其中数百种可作实验室培养)。但miRNA多样性则更是不让须眉花样繁多,人类细胞中已得以描述的即达500到1000不同种类。Benenson指出:“每种健康或病损细胞类型都有其不同的miRNA分子处于开放或关闭状态。”可识别肿瘤属性中的五种因子确立一种miRNA“可识别属性”与发现一组症状以可靠诊断一种疾病有所不同。教授说:“一种症状,比如说发热吧,不可能由此概括出一种疾病。医生获得的信息越多,其诊断才越可靠。” 一年半前他从哈佛大学到ETH后,研究小组找到了几种因子,可由此可靠地将海拉细胞从所有其它健康细胞中鉴别出;结果表明,仅仅五种特定miRNA的组合(其中某些以高水平出现,某些则以极低水平出现)就足以将海拉细胞从其混迹的健康细胞中揪出来。与微机运作相似的网络Benenson介绍说:“这些miRNA因子在细胞内进行逻辑代数运算;该生物微机运用诸如‘与’与‘非’等逻辑操作将这些因子进行组合,并且,当全部因子的整体运算结果为逻辑‘真’值时,只产生所需要的结果——那就是细胞死亡。” 确实,研究者已经能够显示该网络在活体细胞内可以非常稳定地运作,可正确组合所有细胞内因子并给出正确的诊断。Benenson认为,这一成果代表该领域的一项重大成就。动物模型与基因疗法该研究小组想在下一步在合适的动物模型上测试该细胞计算方法,以期在未来创建诊断与治疗工具。这听起来可能象科幻小说,但Benenson相信其可行性;不过,仍有不少棘手的问题需要解决。比如,如何有效、安全地将外源基因导入细胞?这种DNA递送在目前情况下颇具挑战性。尤其是,该方法需要将外源基因暂时而不是永久导入细胞。现有的病毒导入法或化学导入法均未充分开发,需要进一步完善。Benenson说:“为人类提供一种功能完善的治疗方法还非常遥远。不过这一工作是重要的第一步,显示了单一细胞水平上这样一种选择性诊断方法具有可行性。”参考文献:1. Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, Y. Benenson. Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells. Science, 2011; 333 (6047): 1307 DOI: 10.1126/science.1205527

  • 肿瘤细胞P谱样品怎么制备?

    我想做一下肿瘤细胞的P谱,但以前没有做过,制备样品是把肿瘤细胞制成细胞悬液就行了吗?内标和普通样品的内标一样吗?是不是应该先做一下细胞培养液的P谱?求大神帮助!!

  • 单细胞凝胶电泳步骤

    单细胞凝胶电泳步骤:1. 分离制备单细胞悬液:(1) 体外培养的细胞株:用胰酶消化,最后用PBS悬浮吹打成单细胞悬液,细胞要计数,具体的量我前边已经说过。(2) 体内脏器细胞:处死动物,取出脏器,于Hanks’液中制备成单个细胞悬液。2. 胶板制备:(1) 取100μl于45℃水浴中保温的0.5%NMA,铺于磨沙载玻片上,形成底胶。盖玻片推匀,不能有气泡,4度凝固5至8分钟。(2) 水平取下盖片,取100μl于37℃水浴中保温的0.5%LMA与20μl细胞悬液(约400个细胞)混匀,立即铺片,加上盖玻片,4度凝固5至8分钟。3. 细胞裂解与电泳:(1) 将制备好的胶板去掉盖玻片后,浸于4℃预冷的细胞裂解液中,在4℃下裂解2.5到3小时。(2) 取出胶板,用双蒸水浸没漂洗后放入电泳槽中,浸泡在4℃预冷的电泳液中解旋20分钟。(3) 玻片水平放置阳极端附近,4℃电泳20到25分钟(25V,300mA)。可在电泳槽周围加冰块以保持低温。4. 中和与染色:(1) 电泳结束,将胶板浸泡于中和液中,每次10分钟,共中和3次,每次要更换中和液。最后晾干。(2) 取出胶板,置于染色缸中,在2μg/ml的EB染色液中,暗处染色5到10分钟。(3) 蒸馏水漂洗2次,每次5分钟。稍晾干,滤纸吸去多余水分,尽快在荧光显微镜下观察。从胶板制备开始到最后都应该在暗光下操作。先讲这些,你们可以先开始摸索,真正做了才能发现具体的问题,到时我们再探讨。

  • Sartorius实时活细胞分析系统助力肿瘤及细胞治疗研究

    [size=24px][b]课程详情[/b][/size]肿瘤的发生及发展机制是当前生命科学和基础医学的重要研究领域,对应的抗肿瘤药物和细胞治疗方法的研发也是行业研究热点。本次讲座将围绕肿瘤细胞和细胞治疗研究方法,介绍赛多利斯提供的活细胞水平检测方法及整体解决方案。[size=18px][b]讲师简介:[/b][/size]黄雯琪:黄雯琪,女,就职于赛多利斯公司生物分析部门,负责细胞检测产品线的应用支持、产品培训等业务,在细胞生物学检测技术及实验方法方面具有丰富的经验。[size=18px][b]相关领域:[/b][/size](生物产业)-(综合)[size=18px][b]相关仪器:[/b][/size](生命科学仪器及设备)-(细胞生物学仪器)-(高内涵细胞成像分析系统)点击链接立即报名:[url]https://www.instrument.com.cn/webinar/meeting_13888.html[/url]

  • 肿瘤干细胞学说

    [align=center]肿瘤干细胞学说[/align][font='times new roman'][size=16px][color=#000000]关于肿瘤起源,目前讨论较多的是肿瘤干细胞学说。肿瘤干细胞学说认为,肿瘤细胞中存在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]一[/color][/size][/font][font='times new roman'][size=16px][color=#000000]小部分[/color][/size][/font][font='times new roman'][size=16px][color=#000000]具有自我更新和分化能力[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的细胞,是[/color][/size][/font][font='times new roman'][size=16px][color=#000000]真正驱动肿瘤发生和发展的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]“[/color][/size][/font][font='times new roman'][size=16px][color=#000000]动力[/color][/size][/font][font='times new roman'][size=16px][color=#000000]”[/color][/size][/font][font='times new roman'][size=16px][color=#000000],在维持肿瘤的恶性增殖、侵袭、耐药、转移、复发等方面起着决定性的作用[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][6, 7][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]且在多种恶性肿瘤中已成功分离出了肿瘤干细胞。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]虽然其在肿瘤组织中数量极少[/color][/size][/font][font='times new roman'][size=16px][color=#000000]([/color][/size][/font][font='times new roman'][size=16px][color=#000000][/color][/size][/font][font='times new roman'][size=16px][color=#000000]1%), [/color][/size][/font][font='times new roman'][size=16px][color=#000000]但是对于肿瘤的预后及治疗意义重大,可能成为肿瘤诊断标志物及治疗靶点。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][8-10][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][10][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ABCG2[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][11][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]LGR5[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][12, 13][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SOX2[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][14][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]是目前研究相对较多的潜在的肿瘤干细胞标志物。研究显示,与非小细胞肺癌相比,小细胞肺癌的肿瘤干细胞数量明显增加[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][15][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]肿瘤干细胞显示胚胎干细胞的许多特征,具有高度的致瘤性,并经常表现出参与发育和组织稳态的一个或多个高度保守的信号通路的持续激活,包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Notch[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Hedgehog[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]W[/color][/size][/font][font='times new roman'][size=16px][color=#000000]nt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路,所有这些[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]中都可能[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表现活跃[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][4][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]、[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]为目前已知的肿瘤干细胞标志物,其在小细胞肺癌细胞中也是呈[/color][/size][/font][font='times new roman'][size=16px][color=#000000]高表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的。通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Western blot[/color][/size][/font][font='times new roman'][size=16px][color=#000000]技术[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可[/color][/size][/font][font='times new roman'][size=16px][color=#000000]检测其在蛋白质水平的表达。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]已有研究表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达成正相关,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]的细胞[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量明显升高,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]双阳性表达在结直肠癌的转移及浸润有着重要的协同作用[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][69][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000],[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wang[/color][/size][/font][font='times new roman'][size=16px][color=#000000]等人发现[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]细胞及干细胞样球形肿瘤细胞中表达,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]敲低表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]抑制球形菌落形成,并且降低了[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][26][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。小细胞肺癌细胞的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量降低后,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]表达量也下降,表明[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD133[/color][/size][/font][font='times new roman'][size=16px][color=#000000]存在共表达,但两者之间相互调控机制尚不清楚,需进一步研究。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]是一种跨膜受体蛋白,属于黏附分子家族,是第一个发现并证实是实体瘤干细胞表面标志分子[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][70][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000],研究显示,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]也可能是肺癌肿瘤干细胞的标志物,并可能成为治疗新的靶点[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][71][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可以作为透明质酸的受体将信号传导入胞内激活下游信号通路如[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt/β-catenin[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][72][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。研究显示,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在肝细胞癌中,肝癌干细胞的干细胞性质与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达有关[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][73][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI[/color][/size][/font][font='times new roman'][size=16px][color=#000000]1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]调节[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000]+[/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]肿瘤干细胞诱导结直肠癌的发生的过程,并且增强肿瘤干细胞的耐药[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。在神经胶质瘤中,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]促进肿瘤干细胞标志物[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达[/color][/size][/font][font='times new roman'][sup][size=16px][color=#000000][74][/color][/size][/sup][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]同样影响[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的表达,而[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路相互作用,那么,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MSI1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]与[/color][/size][/font][font='times new roman'][size=16px][color=#000000]CD44[/color][/size][/font][font='times new roman'][size=16px][color=#000000]可能是通过调控[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Wnt[/color][/size][/font][font='times new roman'][size=16px][color=#000000]通路相互影响。[/color][/size][/font]

  • 分享一篇2013年Science上单细胞代谢的研究

    该文该文汇总了单细胞代谢的研究方法,包括质谱 (MS),质谱成像( MS imaging), 毛细管电泳(CE)(其中主要是chip ce), 光谱学(optical spectroscopy),和荧光生物传感器等多种技术手段分析了几百个单细胞,对单细胞进行大分子层面上的表征,以此阐述细胞代谢的表型异质性(phenotypic heteroge-neity)。大概就这个意思吧,大牛的东西,读起来反正就是半懂不懂。

  • 单细胞凝胶电泳 标准操作规程(

    关键词:单细胞凝胶电泳目的:为便于各室单细胞凝胶电泳试验结果的可比性背景知识:略原理:在细胞核中,DNA是环状附着在核基质上,细胞裂解过程中,核基质被溶解、抽提,DNA的结构则未发生变化。如果DNA链上存在缺口,则使DNA超螺旋变的松弛,DNA环向外展,同时由于暴露了阴电荷,在电场力的作用下,松动的DNA环向阳极迁移,但是由于这种松动的DNA环一端仍附着于核DNA,其迁移距离受到限制,因此尾长并不总是真实反映链缺口的多少。实际应当依靠尾长与尾部的荧光强度同时来进行分析。主体内容:操作步骤见下文主要参考文献:略操作步骤:1. 分离制备单细胞悬液:(1) 体外培养的细胞株:用胰酶消化,吹打成单细胞悬液(2) 体内脏器细胞:处死动物,取出脏器,于Hanks’液中制备成单个细胞悬液。2. 胶板制备:(1) 取20~50μl于56℃水浴中保温的0.5%普通熔点琼脂糖,铺于磨沙载玻片上,形成底胶。(2) 取100~150μl 0.5%普通熔点琼脂糖加在底胶上,再于其上加盖玻片,4℃冷凝10分钟。(3) 取下盖片,取50~100μl于37℃水浴中保温的1.0%的低熔点琼脂糖与50~100μl细胞悬液(105个细胞/ml)混匀,立即铺片,加上盖玻片,4℃冷凝10分钟。(4) 去掉盖玻片,取70~100μl于37℃水浴中保温的0.5%的低熔点琼脂糖铺片,加盖玻片,4℃冷凝。3. 细胞裂解与电泳:(1) 将制备好的胶板去掉盖玻片后,浸于4℃预冷的细胞裂解液中,4℃裂解1小时。(2) 取出胶板,放入电泳槽中,浸泡在电泳液中解旋20分钟。(3) 4℃电泳20分钟(25V,300mA)。4. 中和与染色:(1) 电泳结束,将胶板浸泡于中和液中,每次15分钟,共中和两次,注意更换中和液。(2) 取出胶板,置于染色架上,滴加5μg/ml的PI,暗处染色20分钟。(3) 蒸馏水脱色15分钟。5. 镜检和分析:(1) 在荧光显微镜下观察,绿光激发吸收滤片590nm。必要时照相记录。(2) 记数观察的细胞,记录彗星细胞出现的频率,用目镜测微尺测头长与全长,计算核DNA迁移距离。* * * * *使用两层凝胶法,经裂解、DNA解旋、电泳和中和得到湿琼脂糖凝胶片。将湿琼脂糖凝胶片置于冰冷无水乙醇中脱水10分钟,后置于空气中自发干燥。每人制备2张琼脂糖凝胶片。全部操作在采血后8小时内完成,操作过程中注意避光。脱水干燥的琼脂糖凝胶片装于含有干燥剂的载片盒中运回实验室。使用50μl 30μM的溴乙锭溶液染色、照相。使用单细胞凝胶电泳软件分析所有照片,每人随机测量100个以上细胞的尾长和olive尾矩,以尾长和olive尾矩的算术均数代表个体DNA损伤情况。

  • 【讨论】测单细胞的拉曼光谱

    各位朋友: 您们好! 我最近在使用Renishaw公司的拉曼光谱仪,是共聚焦的,来测试单细胞的拉曼光谱,采用785nm光源,但每次测试的效果都非常不好! 我是将细胞种在盖波片上,或者直接将细胞溶液滴在载波片上,直接用显微镜看到细胞之后,再打光测试,但每次总是打在载物台上,而且基本上测不到细胞的拉曼光谱... 请问有哪位朋友能为在下指点迷津啊,我这也试了许多次了,但总是没有效果...

  • 昆明植物所等发现对肿瘤细胞有选择性的铂类抗癌化合物

    铂类药物是一类重要的肿瘤化疗药物,在临床中得到广泛的应用,成为治疗包括肺癌、胃癌、结肠癌、卵巢癌、睾丸癌等常见恶性肿瘤的一线药物。然而,目前临床使用的铂类抗癌药物对肿瘤细胞缺乏选择性,在杀死肿瘤细胞的同时,对正常细胞也有较大伤害,导致明显的临床毒副作用。同时,肿瘤病人容易对铂类药物产生耐药性,导致化疗失败。 针对铂类药物存在的以上两大问题,中国科学院昆明植物研究所李艳研究组与昆明贵金属研究所刘伟平研究组合作,发现mixed-NH3/cyclopentamine和不对称的3-X-1,1-cyclobutanedicarboxylato与Pt(II)配合物对肿瘤细胞显示出明显的选择性,能选择性诱导肿瘤细胞的凋亡,而对正常细胞影响很小,同时对顺铂耐受的非小细胞肺癌和卵巢癌细胞株有较高的杀伤活性,显示出重要的研究开发前景。 近日,这类化合物的结构和用途已经获得国家发明专利授权(ZL20101027465.2)。

  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印

    [size=15px][color=#333333]细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。[/color][/size][size=15px][color=#333333]近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。[/color][/size][size=15px][color=#333333]单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。[/color][/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。[/color][/size][/font][b]研究内容[/b][size=15px]近日,哈尔滨工业大学(深圳)[color=#004976][b]陈华英课题组[/b][/color]在英国皇家化学会(RSC)期刊[color=#004976][b] Lab on a chip[/b][/color] 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” ([color=#007aaa]《单细胞连续捕获、弹性模量测量和可寻址分选打印》[/color])的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。[/size][size=15px]该论文第一作者是哈工大(深圳)在读硕士研究生[color=#004976][b]蔡逸珂[/b][/color]和硕士毕业生[color=#004976][b]余恩[/b][/color]。[color=#004976][b]陈华英副教授[/b][/color]为通讯作者。[/size][img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ebc9a4-6d42-4ef1-bfd0-c7cf1f5c3a15.jpg[/img]微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。[img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ee5e4c-b99c-4b5e-8904-b5a6d2817633.jpg[/img][table=677][tr][td=1,1,5]▲[/td][td=1,1,549][b]图1[/b] 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。[/td][/tr][/table][来源:陈华英团队 RSC英国皇家化学会][align=right][/align]

  • 【每周读报】单细胞分析--CE无可取代地位之体现!

    【每周读报】单细胞分析--CE无可取代地位之体现!

    题名:自动化毛细管电泳的快速单细胞分析(Automated Capillary Electrophoresis System for Fast Single-Cell Analysis)作者:Alexandra J. Dickinson , Paul M. Armistead , andNancy L. Allbritton (一群美国滴家伙)杂志:Analytical Chemistry年卷页: 2013, 85 (9), pp 4797–4804 正文:毛细管电泳在单细胞分析上显示了其独特而强有力的优势,这是HPLC和UPLC等难望其项背的优势之一。以下就给大家介绍一个该项技术在单细胞分析上的应用,很牛很强大~ 为了介绍全面一点,我把整段摘要给翻译了。毛细管电泳用于单细胞分析是一种非常有前景的技术,但是在生物研究上其具有低通量的局限性。本文提出了一个微型细胞捕获器和三通道体系的自动化分析平台,在该系统上可进行快速缓冲液交换以进行快速单细胞分析。导入的细胞跟荧光素和俄勒冈绿一起被分离分析,通量为3.5 细胞/分,荧光素和俄勒冈绿的分离度为2.3±0.6。细胞蛋白激酶B(PKB)的活性是通过检测免疫荧光染色后的二氧膦基-PKB来检测的。结果显示,PKB在并没有变化,说明在CE分析过程中应激活化蛋白酶没有被上调,而且在细胞溶膜之前基底细胞的生理机能也没有被扰乱。在癌细胞中鞘氨醇激酶(SK)通常情况下是会被上调的。在此实验中,通过将神经胺-荧光黄(SF)基底引入细胞中而对SK进行检测。SF、神经胺-1-磷酸荧光黄(S1PF)和1/3荧光种类在单细胞中得到分析。219个细胞中,单细胞通量为2.1细胞/分钟。虽然这些亚种群细胞(此类细胞SK活性差异很大,这些差异跟种群均值有关)很容易被测定到,但88%的细胞具有上调SK的活性。该系统稳定,重现性好,可用于上百个贴壁和非贴壁细胞的生物组分的分离分析;还可用于检测非表征的生物学现象。生物方面的知识翻译起来颇费功夫,有些地方翻译得不一定地道。不过生物知识在这里不是重点,亮点在仪器上。比如微型细胞捕获器,这个装置至于毛细管入口端上面50微米处,那个三通道系统也一副牛掰哄哄的样子。如下图: http://ng1.17img.cn/bbsfiles/images/2014/01/201401202053_488354_1624715_3.png其他参数:溶膜方式:激光脉冲生理盐水和分离缓冲液的控制方式:接地电位进样方式:电动进样(-5kV,1s),此时横跨毛细管的电压设为0,1s,毛细管被从air gap移动到分离缓冲溶液中。结语:如果没有多年的科研积累和强大的平台是做不出这样的实验的。纵观这两年发到AC上的文章,动则CE-MS,剩下的就是类似这种:需要很多电化和物化知识外加搞技术难度的仪器创新。革命尚未成功,同志们需多努力啊~~~~~~~

  • 单细胞“纳米生物间谍”技术能进入活细胞取样

    原标题 “纳米生物间谍”技术能进入活细胞取样 可用于深入揭示线粒体基因组变异的重要性 科技日报讯 据物理学家组织网近日报道,美国加利福尼亚大学圣克鲁兹分校(UCSC)研究人员开发出一种机器人式的“纳米生物间谍”系统,能从单个活细胞内提取出微量样本,进行RNA或DNA测序,而不会杀死细胞。研究人员表示,这种单细胞“纳米生物间谍”技术是一种了解活细胞内部动态过程的有力工具。相关论文发表在最近出版的美国化学协会《纳米》杂志上。 “我们能从活细胞中拿走一个‘生物间谍’,再把它送回该细胞,在几天内这样重复多次而不会杀死细胞。如果用其他技术,你不得不牺牲这个细胞才能分析它。”该生物传感与生物电技术小组负责人、UCSC巴斯金工程学院生物分子工程教授内德·波曼德说。 “纳米生物间谍”平台是研究小组用纳米吸液管开发的最新设备。纳米吸液管是一种小玻璃管,取液端越来越细,至尖端直径仅50到100纳米。波曼德说:“我能在实验室造出纳米吸液管,这不需要昂贵的纳米制造设备。但要进入一个细胞,问题是即使在高倍显微镜下,你也看不见吸液管尖端,不知道它偏离了细胞有多远。” 实验室博士后研究员亚当·赛格尔解决了这一问题。他基于在一台改造过的扫描离子电导显微镜(SICM),开发出一种反馈控制系统。该系统能利用通过纳米吸液管尖端的离子流作为反馈信号,在尖端接近细胞表面时探测其中的液滴。在尖端进入细胞之前,一种自动控制系统能定位它在细胞上面的位置,然后尖端很快插入穿透细胞膜,通过操控电压有控制地提取一小点细胞内物质。由于吸液管尖端极精细,对细胞造成的损害极微小。 研究小组用这种系统从活细胞中提取的微量细胞物质,估计只有50毫微微升(千万亿分之一升),约一个人体细胞百分之一的量。他们从单个人体癌细胞中提取物质并进行RNA测序,还从人类成纤维细胞中提取了线粒体并对其进行了DNA测序。“人们已经知道,线粒体和多种神经退化疾病有关。该技术可用于深入揭示线粒体基因组变异的重要性。”波曼德说。 该技术应用前景广阔。波曼德希望能与其他研究人员合作,探索其更多用途。“对于癌症生物学家、干细胞生物学家等想要了解细胞内部情况的科学家来说,这是一种多功能的平台。”(常丽君)来源:中国科技网-科技日报 2014年01月20日

  • 基于阻抗方法实时无标记细胞分析系统--肿瘤免疫治疗以及病毒学研究中的应用

    [font=&][size=16px][color=#343a40] 肿瘤免疫治疗是一种利用人体免疫系统来战胜肿瘤的治疗方案。成功与否的关键就在于免疫系统能否被激活到足够去特异性地杀死肿瘤的程度。在临床实验前,人们需要借助体外实验先行评估治疗方案的效力。 Axion BioSystems公司革命性地推出了使用生物电感应技术的Maestro Z/ZHT平台,完美具备评估体外效力的必要条件。它能在免除标记物影响的同时,在长达几天的时间中,以非侵入的方式对细胞的健康和活动开展监测,并自动且实时地获得多至384个样本的完整实验信息。其秘诀就是通过埋设在微孔板底部的高灵敏度电极来进行生物电阻抗的测试。这种技术能够追踪微小的细胞变化,从而能够揭示出远低于其它技术最低检出限的生物学信息。[/color][/size][/font][font=&][size=16px][color=#343a40][b]--利用Maestro Z/ZHT评估T细胞对胶质母细胞瘤的杀伤效力(car T治疗):[/b][/color][/size][/font][font=&][size=16px][color=#343a40][b]人体免疫系统中的效应T细胞,对肿瘤细胞有着高特异性和与生俱来的细胞毒性,在未来的脑胶质瘤治疗中被人们寄予很高的期望。Maestro Z的阻抗测试有着高灵敏、无标记及无损的特点,能够实时监测肿瘤细胞的增殖和T细胞介导的细胞溶解等过程,在体外评估免疫治疗的效价方面有着突出的优势。美国乔治亚大学的科学家们借助Maestro Z平台,对不同条件活化后的T细胞,开展了恶性胶质母细胞瘤杀伤效力的对比评估。详情点击:[url=http://www.axionbio.cn/page_1.html]CAR-T治疗 (axionbio.cn)[/url][/b][/color][/size][/font][font=&][size=16px][color=#343a40][/color][/size][/font][font=&][size=16px][color=#343a40][b]--利用Maestro Z 评估药物对COVID-19病毒感染力的中和作用:[/b][/color][/size][/font][color=#343a40][b][font=&][size=16px]病毒学研究的重点就在于开发抗病毒药物用于预防和治疗病毒感染。其中的挑战在于筛选到能够选择性抑制病原体复制并对宿主没有损害的化合物。病毒导致的细胞病变效应(CPEs)常常和靶细胞在形态、胞间贴合度、附着力及活力等方面的变化相关联。研究者可在体外联合使用宿主细胞、病原体和药物来模拟三者在体内的互作,借助 Maestro Z 定量CPE引起的阻抗变化。轻松实现在筛选药效的同时,完成安全性的初步评沽。[b]详情点击:[/b][url=http://www.axionbio.cn/page_4.html]page_4 - (axionbio.cn)[/url][/size][/font][/b][/color][font=&][color=#343a40][b][font=&][/font][/b][/color][/font]

  • 什么是CAR-T细胞疗法?CAR-T细胞疗法是如何治疗肿瘤疾病的?

    [font=宋体][font=Calibri]CAR-T[/font][font=宋体]细胞疗法是一种治疗肿瘤的新型精准靶向疗法,近几年通过优化改良在临床肿瘤治疗上取得很好的效果,是一种非常有前景的,能够精准、快速、高效,且有可能治愈癌症的新型肿瘤免疫治疗方法。[/font][/font][font=宋体] [/font][font=宋体][b][font=宋体]一、[/font][font=Calibri]CAR-T[/font][font=宋体]细胞疗法是如何治疗肿瘤疾病的?治疗的流程是什么样?[/font][/b][/font][font=宋体][font=宋体]步骤一:分离[/font][font=Calibri]T[/font][font=宋体]细胞[/font][/font][font=宋体][font=宋体]从患者身上分离[/font][font=Calibri]T[/font][font=宋体]细胞,通过白细胞分离术收集患者的外周血单核细胞,再分离出特定的[/font][font=Calibri]T[/font][font=宋体]细胞亚群。[/font][/font][font=宋体][font=宋体]步骤二:[/font] [font=宋体]改造[/font][font=Calibri]T[/font][font=宋体]细胞[/font][/font][font=宋体][font=宋体]被改造过的[/font][font=Calibri]T[/font][font=宋体]细胞如同带有[/font][font=Calibri]GPS[/font][font=宋体]导航的[/font][font=Calibri]T[/font][font=宋体]细胞,能够随时准备找到癌细胞,并发动自杀性袭击,与之同归于尽。[/font][/font][font=宋体]步骤三:扩增[/font][font=宋体][font=宋体]在体外培养,大量扩增[/font][font=Calibri]CAR-T[/font][font=宋体]细胞,一般一个病人需要几亿个[/font][font=Calibri]CAR-T[/font][font=宋体]细胞。[/font][/font][font=宋体]步骤四:回输[/font][font=宋体][font=宋体]把扩增好的[/font][font=Calibri]CAR-T[/font][font=宋体]细胞输回病人体内。[/font][/font][font=宋体]步骤五:监护[/font][font=宋体]再回输治疗后,严密监护患者的身体状况。[/font][font=宋体][b][font=宋体]二、[/font][font=Calibri]CAR-T[/font][font=宋体]细胞疗法有哪些优势?[/font][/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、治疗更精准[/font][/font][font=宋体][font=宋体]由于[/font][font=Calibri]CAR-T[/font][font=宋体]细胞是应用基因修饰病人自体的[/font][font=Calibri]T[/font][font=宋体]细胞,利用抗原抗体结合的机制,能克服肿瘤细胞通过下调[/font][font=Calibri]MHC[/font][font=宋体]分子表达以及降低抗原递呈等免疫逃逸,让肿瘤细胞无所逃遁;[/font][/font][font=宋体][font=Calibri]2[/font][font=宋体]、多靶向更精准[/font][/font][font=宋体][font=Calibri]CAR-T[/font][font=宋体]既可以利用肿瘤蛋白质抗原,又可利用糖脂类非蛋白质抗原,扩大了肿瘤抗原靶点范围,[/font][font=Calibri]CAR-T[/font][font=宋体]细胞作用过程不受[/font][font=Calibri]MHC[/font][font=宋体]的限制;[/font][/font][font=宋体][font=Calibri]3[/font][font=宋体]、杀瘤范围更广[/font][/font][font=宋体][font=宋体]鉴于很多肿瘤细胞表达相同的肿瘤抗原,针对某一种肿瘤抗原的[/font][font=Calibri]CAR[/font][font=宋体]基因构建一旦完成,便可以被广泛利用;[/font][/font][font=宋体][font=Calibri]4[/font][font=宋体]、杀瘤效果更持久[/font][/font][font=宋体][font=宋体]新一代[/font][font=Calibri]CAR-T[/font][font=宋体]结构中加入了促进[/font][font=Calibri]T[/font][font=宋体]细胞增殖与活化的基因序列,能保证[/font][font=Calibri]T[/font][font=宋体]细胞进入体内后还可以增殖,[/font][font=Calibri]CAR-T[/font][font=宋体]细胞具有免疫记忆功能,可以长期在体内存活。[/font][/font][font=宋体] [/font][font=宋体][b][font=宋体]三、[/font][font=Calibri]CAR-T[/font][font=宋体]细胞疗法适用于哪些患者?[/font][/b][/font][font=宋体][font=Calibri]CAR-T[/font][font=宋体]目前在部分白血病和淋巴瘤的治疗中效果非常好,在多发性骨髓瘤治疗中也取得了巨大进展。针对实体肿瘤的治疗,全球有多项针对不同靶点的临床研究正在开展,一些早期研究结果证实了在实体瘤中应用的安全性和初步有效性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/category/car-t-cell-immunotherapy][b]综合性的[/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/category/car-t-cell-immunotherapy][b]CAR-T[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/category/car-t-cell-immunotherapy][b]细胞疗法开发解决方案[/b][/url],从[/font][font=Calibri]CAR[/font][font=宋体]开发、[/font][font=Calibri]T[/font][font=宋体]细胞激活、慢病毒包装、[/font][font=Calibri]CAR-T[/font][font=宋体]细胞扩增到[/font][font=Calibri]CAR-T[/font][font=宋体]细胞质量控制的完整解决方案,全面支持药企进行[/font][font=Calibri]CAR-T[/font][font=宋体]研究。覆盖开发全流程,详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/category/car-t-cell-immunotherapy[/font][/font]

  • AI 单细胞应用!英伟达携手Deepcell开发单细胞分析的生成式AI技术应用

    [b][i]Deepcell周一表示,已与英伟达合作开发用于单细胞研究应用的生成人工智能技术。[/i][/b][align=center][b][i][img=image.png,113,83]https://img1.17img.cn/17img/images/202401/uepic/174b29e0-2f00-4d45-af22-8d08603d1fda.jpg[/img][/i][/b][/align][align=center][b][i][img=e763286044be6f856573c041d533273b_logo_with_R.jpg]https://img1.17img.cn/17img/images/202401/uepic/ee51f257-73e0-4f4c-beab-da55f87c445f.jpg[/img][/i][/b][/align]通过合作,公司将利用英伟达的计算专业知识和Clara一套专注于医疗保健的计算平台和软件,为基于细胞形态的分析应用程序构建新的算法,这些算法可以与Deepcell最近推出的REM-I高维细胞分析和分选平台等工具结合使用。Deepcell联合创始人、总裁兼首席技术官Mahyar Salek在一份声明中表示:“我们看到了将多模式和生成性人工智能融入我们的平台的多种可能性,并利用我们拥有的数十亿细胞图像的专有数据库来训练更多的人工智能模型。我们与英伟达的关系将帮助我们加快此类增强,并将这些进步带给我们的客户。”总部位于加利福尼亚州门洛帕克的Deepcell成立于2017年,是斯坦福大学的子公司,于2022年初筹集了7300万美元的B轮资金。Deepcell 是人工智能(AI)驱动的单细胞分析领域的先驱,旨在推动深度生物学发现,早在2023年2 月 6 日宣布,它已经发布了三个数据集,使研究人员能够探索新的高维形态数据。这些数据集是在 Deepcell 的高通量平台上生成的,该平台由成像和分选仪器、AI 模型和软件套件组成。Deepcell的首席技术官 Mahyar Salek曾经表示:“Deepcell的数据表明,深度学习可以实现较高的分类准确率,揭示了精确描述细胞特征和表型的新方法,并能够对感兴趣的细胞进行无标记分离,以进行进一步的深度分析。这项技术为生物医学界的科学家、转化研究机构和制药行业提供了一种新的工具,以从细胞形态学数据中获得对细胞的深度认识。”[b]关于 Deepcell[/b]Deepcell 是一家生命科学公司,它将 AI 引入细胞生物学,开启了称为形态组学的高维生物发现新领域。通过 Deepcell 的人工智能成像和微流体解决方案 REM-I 平台,该公司正在利用细胞形态学进行无限发现,从而实现新规模的细胞生物学研究和单细胞分析。Deepcell 的平台利用其 AI 模型,即人类基础模型,根据形态差异来识别和分类细胞,有助于推动基础和转化研究,并提供诊断测试和治疗靶向方面的未来应用。该公司于 2017 年从斯坦福大学分拆出来,已筹集近 1 亿美元的风险投资。[来源:仪器信息网译] 未经授权不得转载[align=right][/align]

  • 图文讲座第233期:实时细胞分析技术在肿瘤研究和病毒抗体疫苗检测中的应用

    图文讲座第233期:实时细胞分析技术在肿瘤研究和病毒抗体疫苗检测中的应用

    【线上讲座233期】实时细胞分析技术在肿瘤研究和病毒抗体疫苗检测中的应用 主讲人:周尧 活动时间:2013年10月9日-10月19日 热烈欢迎 周尧 老师光临生命科学仪器版面进行讲座!http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647975_2685866_3.gif引言实时无标记细胞分析技术(RTCA, Real Time cell Analysis)是艾森生物全球独有的专利核心技术,该技术采用特殊工艺,将微电极列阵整合在细胞培养板的每个细胞生长孔底部,用以构建实时、动态、定量跟踪细胞形态和增殖分化改变的细胞阻抗检测传感系统。该技术可广泛应用于生物活性因子测定、细胞增殖检测、大规模抗肿瘤药物筛选、细胞毒性检测等研究。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647975_2685866_3.gif提要一、 实时细胞分析技术原理 1.传统终点检测与实时无标记动态检测 2. 实时细胞分析技术原理 3. 实时细胞分析技术优势二、 实时细胞分析技术平台产品简介三、 实时细胞分析技术在肿瘤、药物细胞毒性检测领域的应用 1.RTCA实时动态细胞毒性检测 2.肿瘤与微环境之间的相互作用RTCA实时动态检测 四、 实时细胞分析技术在病毒、细胞毒素、中和抗体及疫苗检测与评估领域的应用 1.RTCA实时动态检测病毒Cytopathic Eff ect效应 2.RTCA实时定量检测病毒侵染效力及评估中和抗体效价http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647975_2685866_3.gif提问时间:2013年10月09日--10月19日答疑时间: 2013年10月09日--10月19日特邀佳宾:生命科学仪器版面版主、专家以及同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就ATR技术知识的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2013年10月19日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励在活动期间我们将评选出20名积极参与奖和5名精彩问答奖。3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :周尧老师您好!我有以下问题想请教,http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647975_2685866_3.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归tianzhen老师和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647975_2685866_3.gif

  • 中国科学院动物研究所单细胞建库试剂盒采购项目

    [quote]项目概况中国科学院动物研究所单细胞建库试剂盒采购项目 采购项目的潜在供应商应在北京市海淀区西直门北大街甲43号金运大厦B座1103室(西直门文慧桥西南角)。获取采购文件,并于2022年11月16日 14点00分(北京时间)前提交响应文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:HSZT2022HC/186项目名称:中国科学院动物研究所单细胞建库试剂盒采购项目采购方式:竞争性磋商预算金额:96.9193000 万元(人民币)最高限价(如有):96.9193000 万元(人民币)采购需求:1.1.4 采购内容:遴选1家供应商为采购人提供如下试剂采购[table][tr][td][align=center][font=inherit]包号[/font][/align][/td][td][align=center][font=inherit]采购试剂名称[/font][/align][/td][td][align=center][font=inherit]数量[/font][/align][align=center][font=inherit](台/套)[/font][/align][/td][td][align=center][font=inherit]最高投标限价[/font][/align][align=center][font=inherit](人民币:万元)[/font][/align][/td][td][align=center][font=inherit]是否允许采购进口产品[/font][/align][/td][td][align=center][font=inherit]项目用途[/font][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]单细胞建库试剂盒[/align][/td][td][align=center]可做80个样本,含80次单细胞基因表达的全部试剂[/align][/td][td][align=center]96.9193[/align][/td][td][align=center]是[/align][/td][td][align=center]科研[/align][/td][/tr][/table][b][font=inherit]附件:采购内容及要求[/font][/b][align=center][font=inherit]单细胞建库试剂盒采购内容及要求[/font][/align][b][font=inherit]1.工作条件:参照中国科学院动物所实验室相关要求。[/font][font=inherit]2.试剂功能:[/font][/b]试剂盒可以完成80个反应的单细胞基因表达测序文库构建,提供从悬浮细胞到构建完成的测序文库的全部相关试剂。[b][font=inherit]3.技术指标:[/font][/b]#3.1 每份凝胶微珠反应试剂可以通过10x Genomics仪器在微流控芯片中为每个样本提供不少于200万个独立的液滴反应体系,凝胶微珠含有75万个独特的序列标签(每个标签由14个碱基构成);3.2 一张芯片实验可处理样本数量不少于8个。[font=inherit]#[/font]3.3 试剂捕获细胞的效率:在每份样本的细胞群体中捕获大于50%的细胞,每1000个捕获细胞中含有双细胞的比例低于0.8%;[font=inherit]#[/font]3.4 反应时间及通量:在30分钟内完成独立样本的细胞包裹裂解等过程,针对单个样本可同时完成1000-10000个细胞的制备;[font=inherit]#[/font]3.5 提供单细胞建库全部应用试剂;3.6 系统提供Illumina兼容测序文库;[font=inherit]#[/font]3.7 在100k reads/cell测序深度下,检测293T细胞的基因数量不少于3000个[font=inherit]*3.8[/font]试剂到货验收后,有效期不少于3个月。[b][font=inherit]4.产品配置要求[/font][/b]单细胞建库试剂盒:数量要求——可做80个样本,含80次单细胞基因表达的全部试剂[b][font=inherit]5.技术文件:[/font][/b]5.1 试剂详细配置清单、各项技术参数及技术证明文件。5.2 技术服务条款、技术培训条款及售后服务承诺。[b][font=inherit]6.报价方式:[/font][/b]以免税单价报价,对原产于美国的产品,进口时在正常的科创免税之外,中国政府加征的特殊关税由中标人承担。[b][font=inherit]7.延误到货处罚:[/font][/b]超过约定的时间到货或发货(非免税试剂在合同签订后1个月内到货,免税试剂在拿到免表通知后2周内发货),罚金为当批次货款的5%,之后每延后5个工作日,增加1%的当批次货款罚金,罚金不超过当批次货款的15% 。[font=inherit]8. [/font][font=inherit]订货数量:可做80个样本,含80次单细胞基因表达的全部试剂[/font][font=inherit]9.交货地点:[/font][font=inherit]中国科学院动物研究所用户指定地点[/font][font=inherit]。[/font][font=inherit]10.交货日期:非免税试剂在合同签订后1个月内到货,免税试剂在拿到免表通知后2周内发货。[/font]合同履行期限:非免税试剂在合同签订后1个月内到货,免税试剂在拿到免表通知后2周内发货。本项目( 不接受 )联合体投标。

  • Nature Communications |PiSPA平台:单细胞蛋白质组分析新工具

    近日,[b]科创中心生物与分子智造研究院分子智造研究所所长方群教授团队[/b]再出新成果!团队[b]开发了“点取式”单细胞蛋白质组分析(PiSPA)工作流程和基于纳升级微流控液滴操控机器人,实现了单细胞的精准捕获、前处理以及自动进样,并首次在单个哺乳动物细胞中实现了高达3000种蛋白质的超高定量深度[/b]。目前,相关研究成果以“ Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell ”为题在国际权威期刊《自然通讯》上发表。[b]这项成果也再次向我们证明了单细胞蛋白质组学在诊疗和预防、药物开发、癌症基因组学等精准医学研究中的应用潜力。[/b][align=center][img=,700,444]https://img1.17img.cn/17img/images/202402/uepic/a2bc5a12-447c-42f5-901c-d7cd2ada8821.jpg[/img][/align][align=center]团队自研的探针式微流控液滴操纵机器人系统[/align][color=#0070c0][b]更强大的单细胞蛋白质组分析工具:PiSPA工作流程[/b][/color]单细胞蛋白质组学技术是近年来生命科学领域研究的热点。因单个细胞中的蛋白质含量极微(仅约0.2 ng)且无法扩增,单细胞蛋白质组分析极具挑战性。目前传统蛋白质组分析技术仅能在每个细胞中鉴定1000种左右的蛋白质,而这在单细胞分析领域显得有些“力不从心”。此外,传统的样本前处理操作大多在微升级反应器中进行,在样品处理和转移的过程中会出现明显的样品损失,这会限制单细胞蛋白质组学的鉴定深度,难以满足生命科学研究的迫切需求。“想要突破单细胞蛋白质组学鉴定深度的障碍,有两种策略。一是在足够小的微反应器中进行样品前处理,利用微尺度效应提高反应效率;二是将所有操作整合在一起,降低样品损失,但这两种策略对技术与设备的要求都很高”,本项成果第一完成人王宇博士解释道,“我们利用微流控技术将商品化的内插管改造为阵列化的纳升级微反应器,解决了纳升级样品反应与自动进样的问题。PiSPA平台可自动完成细胞捕获、样品前处理、色谱分离、质谱检测、数据处理等操作,进一步降低了样品损失。”[align=center][img=,700,303]https://img1.17img.cn/17img/images/202402/uepic/63b80008-6467-4583-b1b7-147e9680c481.jpg[/img][/align][align=center]“点取式”单细胞蛋白质组分析流程示意图[/align][b]PiSPA工作流程使得高精度的液体操控、单细胞的精确处理以及先进的LC-TIMS-QTOF MS技术融为一体,重新定义了单细胞蛋白质组学分析。[/b]“在研究中,我们将该平台应用于三种哺乳动物细胞(HeLa、A549和U2OS细胞)的单细胞蛋白质组分析,以及HeLa细胞迁移过程中的细胞异质性研究中,均实现了超高深度定量分析”,王宇博士说。同时,迁移细胞的单细胞蛋白质组分析也证实了PiSPA平台具有识别细胞迁移关键分子以及有价值靶点的应用潜力。[align=center][img=,700,394]https://img1.17img.cn/17img/images/202402/uepic/b4d136ba-e078-4fc6-b59d-911f8f0abfcc.jpg[/img][/align][align=center]哺乳动物细胞的单细胞蛋白质组分析结果[/align][color=#0070c0][b]单细胞的定量深度:从3000+走向全蛋白质组测序[/b][/color]PiSPA平台集成了基于序控液滴(SODA)技术的自动化液滴操纵机器人,能够在“点取式”操作模式下实现纳升级的细胞分选、多步样品前处理和自动进样操作。相比于其他单细胞分析方法,[b]PiSPA平台的优势主要体现在与成像技术结合,能够灵活地选择任意单个细胞进行分析,目标细胞的捕获指向性强,具有很高的捕获准确性和成功率,并可保留目标细胞的表观和空间信息,显著增加了单细胞分析的信息维度[/b]。其次,PiSPA平台采用针对单细胞样品的“定制化”分析条件,实现了蛋白质鉴定深度的大幅提升,能够为生物医学研究提供更多有效的基础数据。这些优势对推动单细胞蛋白质组分析的实际推广应用具有重要意义。“目前的单细胞定量深度只是一个起点”,方群教授分享道,在该项研究中,可从单个哺乳动物细胞中可定量多达3000种蛋白质,约占人类基因编码蛋白质总数(约20,000种)的15%,其鉴定深度已经达到10年前单细胞转录组测序技术的相近水平。类比单细胞转录组测序技术的发展历史,可以预见当前已处于单细胞蛋白质组分析技术的爆发阶段,随着技术的快速革新,单细胞的定量鉴定深度还将得到史无前例的提升。“这意味着单细胞蛋白质组学技术已进入在广泛的生物医学研究领域中实际应用的阶段。”[align=center][img=,700,315]https://img1.17img.cn/17img/images/202402/uepic/0ff9f496-19a8-4d58-a0de-a5d54a37ad74.jpg[/img][/align][b]团队表示,未来,他们将进一步提高单细胞蛋白质组分析的鉴定深度和通量,以持续推进该技术实用化和应用拓展的水平[/b]。此外,在上述成果基础上,目前团队还在利用iChemFoundry平台的自动化机器人技术和机器视觉技术构建能够完成单细胞蛋白质组分析全部流程操作自动化的分析平台,很快会有新的成果发布,这些都将为人们了解生命活动中细胞异质性的变化带来更有力工具。[来源:浙大杭州科创中心][align=right][/align]

  • 2022细胞产业大会8月深圳,11月武汉,期待您的加入!(官网)

    [b][b][font=&][size=18px]会议咨询:[font=inherit]顾成刚13621995193(微信同号)[/font][/size][/font][/b][font=&][size=18px][color=#404040]2022深圳细胞产业大会[/color][/size][size=18px][color=#404040]第九届(深圳)细胞与肿瘤精准医疗高峰论坛[/color][/size][size=18px][color=#404040]2022年8月深圳 11月 武汉[/color][/size][/font][font=&][size=18px]深圳会议时间:2022年8月21-22日[size=16px][/size][/size][/font][font=&][size=18px][size=16px]深圳会议地点:深圳湾万丽酒店(深圳市南山区科技南路18号)[/size][/size][/font][font=&][size=18px][size=16px][/size][/size][size=18px][color=#404040][/color][/size][size=18px][color=#404040]同期举办:[/color][/size][size=18px][color=#404040]细胞与基因治疗前沿技术应用峰会 外泌体技术转化与疾病研讨会[/color][/size][size=18px][color=#404040]单细胞多组学研究与临床应用峰会 3D细胞培养与类器官临床应用峰会[/color][/size][/font][color=#404040]细胞外囊泡前沿与转化峰会[/color][color=#404040][img]https://img-user-qn.hudongba.com/upload/_oss/userarticleimg/202207/28/31658988346866_article3_1579.png?image/auto-orient,1/quality,q_80[/img][/color][color=#404040]招展联系人:顾先生13621995193(微信Wechat)[/color][size=14px][color=#404040]大会概况:[/color][color=#404040]2022细胞产业大会 2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛将于8月在深圳举办,本次峰会紧密围绕政策规范、监管、工艺与产业化进展、细胞与基因治疗、外泌体临床研究与疾病治疗、外泌体临床检验与肿瘤免疫治疗、细胞外囊泡领域的机制研究、体外诊断及疾病治疗、单细胞多组学、单细胞测序、3D细胞培养与类器官、溶瘤病毒药物的开发与产业转化、干细胞临床前研究与临床应用转化、干细胞存储与治疗、肿瘤免疫治疗、通用型CAR-T细胞治疗、基因治疗及溶瘤病毒、实体瘤治疗及药物开发、临床研究与治疗进展等话题,特邀来自国家药品审评监管机构、科研院所、医疗机构、创新药企、生物治疗、生物技术和服务企业、产业链上下游企业、产业园区、投资机构、行业协会等多位权威专家与产业先锋进行分享交流及产品展示。组委会竭诚搭建优质对话合作平台,诚邀您八月深圳相聚,共襄盛会![/color][color=#404040]近年来,现代生命科学与生物技术取得了一系列重要进展和重大突破,尤其是以干细胞、免疫细胞为核心的细胞治疗技术更是迅猛发展,在多种难治性疾病的临床研究上获得了许多成绩,在未来展现出了巨大的应用前景细胞治疗受到前所未有的重视,国家和地方层面也密集出台相关政策,支持干细胞、免疫细胞研究的发展。[/color][color=#404040]2009年单细胞测序技术强势问世,发展至今,单细胞测序技术已经在肿瘤、临床诊断、免疫学、微生物学、神经科学等领域占有重要的应用地位,是目前研究和应用的点。研究范围也不再只是基因组、转录组学,而扩展到了表观基因组、空间转录组学、代谢组、免疫组、蛋白组谱系。这些“多组学”技术允许研究人员更仔细地观察细胞之间的异质性,更清楚地识别特定细胞及其功能。[/color][color=#404040]细胞与基因治疗改变了人类治疗遗传疾病和疑难杂症的方式,并正在撬动整个制药生态圈。在各种适应症需求的推动下,细胞与基因治疗快速发展,多种细胞免疫疗法、干细胞疗法、基于腺相关病毒及慢病毒载体的基因疗法相继问世,为复发难治性肿瘤及严重的基因遗传缺陷类疾病提供了重要的治疗选择。随着CAR-T免疫细胞疗法在国际以及国内获批上市,细胞和基因疗法进入了全新的赛道,整个行业进入了技术突破和产业化的快速演进。[/color][color=#404040]2022细胞产业大会 2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛将于8月在深圳举办,本次峰会紧密围绕政策规范、监管、工艺与产业化进展、干细胞临床前研究与临床应用转化、干细胞存储与治疗、肿瘤免疫治疗、细胞与基因治疗、通用型CAR-T细胞治疗、单细胞多组学、单细胞测序、细胞外囊泡分离及检测、3D细胞培养与类器官、基因治疗及溶瘤病毒、实体瘤治疗及药物开发、临床研究与治疗进展等话题,特邀来自国家药品审评监管机构、科研院所、医疗机构、创新药企、生物治疗、生物技术和服务企业、产业链上下游企业、产业园区、投资机构、行业协会等多位权威专家与产业先锋进行分享交流及产品展示。组委会竭诚搭建优质对话合作平台,诚邀您八月深圳相聚,共襄盛会![/color][color=#404040]专题会议[/color][color=#404040]1、干细胞临床研究与转化应用峰会[/color][color=#404040]干细胞临床前研究与转化应用[/color][color=#404040]干细胞临床前研究与临床应用转化[/color][color=#404040]干细胞治疗技术与临床研究[/color][color=#404040]干细胞与免疫细胞临床研究的制剂质量评价[/color][color=#404040]干细胞治疗质量控制管理的现状与未来[/color][color=#404040]干细胞与类器官研究[/color][color=#404040]干细胞外泌体的应用[/color][color=#404040]干细胞与再生医学[/color][color=#404040]间充质干细胞外囊泡治疗难治性疾病[/color][color=#404040]新型干细胞治疗新冠肺炎[/color][color=#404040]2、肿瘤免疫治疗产业转化领袖峰会[/color][color=#404040]细胞免疫治疗研发突破与商业化进程[/color][color=#404040]通用型CAR-T细胞免疫治疗[/color][color=#404040]细胞免疫治疗质量控制&产业化[/color][color=#404040]细胞治疗药物研发与商业化生产[/color][color=#404040]细胞治疗产品开发与工艺优化[/color][color=#404040]TIL细胞在实体瘤治疗中的技术挑战与发展趋势[/color][color=#404040]iPSC来源的CAR先天性免疫细胞及其在肿瘤免疫细胞治疗中的应用[/color][color=#404040]细胞外囊泡的多组学研究[/color][color=#404040]细胞外囊泡RNA组分解析及其应用[/color][color=#404040]外泌体技术的开发与临床转化[/color][color=#404040]3、单细胞多组学研究与临床应用峰会[/color][color=#404040]单细胞多组学研究与临床应用[/color][color=#404040]单细胞转录组技术致力于大脑发育及神经干细胞调控的研究[/color][color=#404040]单细胞多组学科学创新前沿及最新技术[/color][color=#404040]单细胞空间组学的开发与应用进展[/color][color=#404040]单细胞技术助力精准医学研究[/color][color=#404040]单细胞组学研究技术在肿瘤免疫与个性化治疗中的应用[/color][color=#404040]单细胞技术在肿瘤微环境及肿瘤细胞异质性探究中的应用[/color][color=#404040]单细胞测序结合多组学技术的应用[/color][color=#404040]4、细胞与基因治疗前沿技术应用峰会[/color][color=#404040]细胞及基因治疗的临床研究与产业转化[/color][color=#404040]细胞与基因治疗的国内外最新研究进展[/color][color=#404040]细胞与基因治疗CDMO[/color][color=#404040]基因治疗及溶瘤病毒产品的开发[/color][color=#404040]AAV基因治疗药物大规模生产工艺研究及成本控制[/color][color=#404040]基因治疗GMP病毒载体规模化生产[/color][color=#404040]基因工程化外泌体用于肿瘤靶向治疗的研究[/color][color=#404040]溶瘤病毒及RNA疗法[/color][color=#404040]5、3D细胞培养与类器官临床应用峰会[/color][color=#404040]3D细胞培养与类器官前沿进展[/color][color=#404040]3D类器官培养技术发展及其应用[/color][color=#404040]类器官基础研究与技术开发[/color][color=#404040]类器官临床医学研究与应用[/color][color=#404040]类器官药物筛选与生物制造[/color][color=#404040]类器官技术的科研应用和临床转化[/color][color=#404040]类器官在肿瘤精准医学研究中的应用[/color][color=#404040]类器官在伴随诊断和新药研发中的应用和进展[/color][color=#404040]微流控器官芯片在精准医疗及药物研发中的应用[/color][color=#404040]* 最终议程以现场为准,发言企业可自行命题[/color][color=#404040]更多嘉宾邀约中,欢迎各单位推荐自荐![/color][color=#404040]* 最终以现场为准[/color][color=#404040]谁将参与[/color][color=#404040]全国各大医院的院长、医院管理者、肿瘤内科、肿瘤外科、生物治疗科、血液科、病理科、辅助生殖科、检验科等各科室主任医师、副主任医师、主治医生及从相关领域研究的专家、科研人员、医药企业等;[/color][color=#404040]科研院所、生物医药企业、技术服务代理商及投资机构、临床医生等;[/color][color=#404040]知名高校的教授、研究员、副研究员及生命科学专业、药学专业、医学专业、免疫学专业等;[/color][color=#404040]细胞及肿瘤抗体免疫治疗上游供应商、诊断试剂及设备服务商、技术与设备仪器提供商、IT大数据解决方案提供商等;[/color][color=#404040]基因治疗、基因编辑、基因测序、基因检测公司、生物技术公司研发人员等技术人员、研发总监等;[/color][color=#404040]精准医疗方面的机构、企业、细胞存储与治疗上、中、下游产业链的企业以及CRO、CMO等;[/color][color=#404040]CEO及药厂研发负责人:抗体免疫治疗药物研发、免疫细胞治疗及制品开发、溶瘤病毒、治疗性疫苗、小分子免疫治疗药物、细胞治疗与再生医学领域的专家、临床研究人员、从业医师、研究生以及细胞治疗与再生医学领域的医疗用品科研人员与厂商等;[/color][color=#404040]政府机构与代表、产业园区、招商局、投资孵化机构、咨询与培训机构、银行、律师、知识产权、证券公司等。[/color][/size][size=14px][color=#404040][img=2021.9嘉宾集竖版.jpg,1047,1177]https://img-user-qn.hudongba.com/upload/_oss/uePasteUpload/202206/2315/1655968748942_2757.jpg?image/auto-orient,1/quality,q_80[/img][/color][/size][size=14px][color=#404040]2021细胞产业大会 2021第六届(上海)细胞与肿瘤精准医疗高峰论坛伴随着为期两天的会议和三天的展览于4月25日在上海展览中心(上海市静安区延安中路1000号)落下帷幕!本次大会集聚60+行业大咖到场分享精彩演讲,现场参观参会人数高达1800多人,共有100多家优质展商和60多家行业媒体列席,呈现出一场学术与产业紧密交融的盛宴。细胞产业大会成熟的“会议+展览”的模式得到了参会嘉宾、参展企业及参会代表的一致好评![/color][/size][size=14px][color=#404040][img=2021.4嘉宾集竖版.jpg,1047,1266]https://img-user-qn.hudongba.com/upload/_oss/uePasteUpload/202206/2315/1655968747557_2756.jpg?image/auto-orient,1/quality,q_80[/img][/color][/size][size=14px][color=#404040]2021细胞产业大会 2021第七届(深圳)细胞与肿瘤精准医疗高峰论坛/2021基因与精准诊疗(深圳)高峰论坛/2021肿瘤精准诊疗(深圳)论坛伴随着为期两天的会议和展览于10月27日在深圳会展中心落下帷幕!疫情特殊时期,本次大会采用了“线上(约12万人观看)+线下(600多人参加)”相结合的方式同步进行的,专家们以专业的视角分享行业动态,以战略的眼光探讨产业发展,共商细胞治疗、基因治疗及肿瘤精准诊疗的未来发展之路![/color][color=#404040]活动预告[/color][color=#404040]2022细胞产业大会[/color][color=#404040]2022第九届(深圳)细胞与肿瘤精准医疗高峰论坛[/color][color=#404040]时间:2022年8月[/color][color=#404040]地点:深圳[/color][color=#404040]2022细胞产业大会[/color][color=#404040]2022第十届(武汉)细胞与肿瘤精准医疗高峰论坛[/color][color=#404040]时间:2022年11月[/color][color=#404040]地点:武汉[/color][color=#404040]展位及论坛赞助[/color][color=#404040]赞助商及演讲收费标准:[/color][color=#404040]套餐一:2个开放式展位+40分钟演讲+大会电子版会刊封三+资料入袋 RMB 100,000[/color][color=#404040]套餐二:1个开放式展位+30分钟演讲+大会电子版会刊彩页1P RMB 50,000[/color][color=#404040]套餐三:1个开放式展位+20分钟演讲+大会电子版会刊彩页1P RMB 40,000[/color][color=#404040]套餐四:20分钟演讲 RMB 20,000[/color][color=#404040]套餐六:1个开放式展位 RMB 22,800[/color][color=#404040]套餐七:光地展位每平方米 RMB 2,000[/color][color=#404040]听众参会代表收费标准:[/color][color=#404040]2022年8月1日前注册RMB 1,000/人,8月1日后注册RMB 1,200/人(深圳) [/color][color=#404040]2022年11月1日前注册RMB 1,000/人;11月1日后注册RMB 1,200/人(武汉) [/color][color=#404040]团体注册:3人以上可享受9折优惠(深圳、武汉两地均享此政策)[/color][color=#404040]费用包含:会议资料、大会入场资格、授权老师的PPT、午餐、茶歇等。[/color][color=#404040]上海顺展展览服务有限公司[/color][color=#404040]联系人:顾先生13621995193(微信Wechat)[/color][color=#404040]邮箱:[/color][/size][size=14px][color=#404040][email]2498299886@qq.com[/email][/color][/size][size=14px][color=#404040]地址:上海市松江区沪松公路1221号星晨大厦801室[/color][/size][size=14px][color=#404040][img]https://img-user-qn.hudongba.com/upload/_oss/userarticleimg/202207/28/11658988287538_article1_1574.png?image/auto-orient,1/quality,q_80[/img][/color][/size][/b][font=仿宋][/font]

  • 【原创大赛】肿瘤细胞分泌的外泌体在机体内的作用

    [align=center][font='times new roman'][size=21px]肿瘤细胞分泌的外[/size][/font][font='times new roman'][size=21px]泌[/size][/font][font='times new roman'][size=21px]体在机体内的作用[/size][/font][/align][font='times new roman'][size=16px]摘要[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]肿瘤细胞通过产生,释放和利用外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体来促进肿瘤发生发展。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在肿瘤中的作用机制以成为目前的研究热点。外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体作为信息载体,可将遗传信息从肿瘤细胞传递到位于近处或远处的正常或其他异常细胞。所有体液中[/size][/font][font='times new roman'][size=16px]均[/size][/font][font='times new roman'][size=16px]发现了肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体,与靶细胞接触后,[/size][/font][font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]会改变受体[/size][/font][font='times new roman'][size=16px]细胞[/size][/font][font='times new roman'][size=16px]的表型和功能属性,[/size][/font][font='times new roman'][size=16px]起到促进[/size][/font][font='times new roman'][size=16px]血管生成,血栓形成,免疫抑制,肿瘤转移和耐药的作用。[/size][/font][font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]在抑制宿主抗肿瘤反应和[/size][/font][font='times new roman'][size=16px]介导[/size][/font][font='times new roman'][size=16px]耐药中发挥重要作用。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可能会干扰癌症患者的免疫治疗。它们在癌症进展以及癌症治疗中的生物学作用表明肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体是致癌转化的关键组成部分。[/size][/font][font='times new roman'][size=16px]关键词[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体;肿瘤转移;耐药;免疫抑制;血栓形成[/size][/font][font='times new roman'][size=16px]多细胞生物[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]中相邻细胞之间的通讯通常包括细胞内物质的交换和共享,这些[/size][/font][font='times new roman'][size=16px]过程[/size][/font][font='times new roman'][size=16px]是通过细胞间连接、突触或通过吞噬作用形成的,都需要细胞接触并且在短距离内进行。相反,外[/size][/font][font='times new roman'][size=16px]泌体代表[/size][/font][font='times new roman'][size=16px]了信息传递的独特形式,既可以在短距离传递,也可以在长距离下进行信息交流。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可以将信号从肿瘤细胞转移到远端组织和器官。[/size][/font][font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]存在于机体循环中,并可以随时进入身体的各个部位。它们带有能够与内皮细胞接触并促进外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体进入血管和组织的表面成分[/size][/font][font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]1,2[/size][/font][font='times new roman'][size=16px]][/size][/font][font='times new roman'][size=16px]。但是肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体仅占患者血浆中总外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的[/size][/font][font='times new roman'][size=16px]一[/size][/font][font='times new roman'][size=16px]小部分,且该部分的含量可根据肿瘤进展而改变。[/size][/font]1. [font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在肿瘤转移中的作用[/size][/font][font='times new roman'][size=16px]肿瘤[/size][/font][font='times new roman'][size=16px]细胞[/size][/font][font='times new roman'][size=16px]的转移过程[/size][/font][font='times new roman'][size=16px]开始[/size][/font][font='times new roman'][size=16px]于肿瘤细胞经历[/size][/font][font='times new roman'][size=16px]了[/size][/font][font='times new roman'][size=16px]上皮间质转化([/size][/font][font='times new roman'][size=16px]Epithelial-to-mesenchymal transition[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]EMT[/size][/font][font='times new roman'][size=16px])。肿瘤细胞[/size][/font][font='times new roman'][size=16px]获得[/size][/font][font='times new roman'][size=16px]迁移[/size][/font][font='times new roman'][size=16px]能力,并[/size][/font][font='times new roman'][size=16px]进入血液[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]淋巴系统[/size][/font][font='times new roman'][size=16px],逐渐[/size][/font][font='times new roman'][size=16px]转移[/size][/font][font='times new roman'][size=16px]到其他组织[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]这些[/size][/font][font='times new roman'][size=16px]肿瘤细胞产生具有独特分子特征的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体,[/size][/font][font='times new roman'][size=16px]主要包含[/size][/font][font='times new roman'][size=16px]EMT[/size][/font][font='times new roman'][size=16px]相关的蛋白质与迁移和侵袭所需的分子,[/size][/font][font='times new roman'][size=16px]如[/size][/font][font='times new roman'][size=16px]前列腺癌释放的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中的α[/size][/font][font='times new roman'][size=16px]v[/size][/font][font='times new roman'][size=16px]β[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]整联蛋白[/size][/font][font='times new roman'][size=16px][3][/size][/font][font='times new roman'][size=16px],白血病[/size][/font][font='times new roman'][size=16px]或[/size][/font][font='times new roman'][size=16px]乳腺癌衍生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的[/size][/font][font='times new roman'][size=16px]Wnt[/size][/font][font='times new roman'][size=16px]通路[/size][/font][font='times new roman'][size=16px]成分[/size][/font][font='times new roman'][size=16px][4,5][/size][/font][font='times new roman'][size=16px],以及胃肠道间质瘤([/size][/font][font='times new roman'][size=16px]GIST[/size][/font][font='times new roman'][size=16px])产生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中的[/size][/font][font='times new roman'][size=16px]KIT [/size][/font][font='times new roman'][size=16px][6][/size][/font][font='times new roman'][size=16px]。这些外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中缺氧诱导因子[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]HIF[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]的含量增加,[/size][/font][font='times new roman'][size=16px]促炎因子[/size][/font][font='times new roman'][size=16px]的含量也增加[/size][/font][font='times new roman'][size=16px][7][/size][/font][font='times new roman'][size=16px]。准备迁移的肿瘤细胞产生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可与机体的血管、基质成分和免疫细胞相互作用,完成转移前的准备[/size][/font][font='times new roman'][size=16px][8][/size][/font][font='times new roman'][size=16px]。黑色素瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体显示在前哨淋巴结中积累,刺激血管生成,重塑细胞外基质并诱导黑色素瘤细胞富集到淋巴结中[/size][/font][font='times new roman'][size=16px][9][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]Peinado[/size][/font][font='times new roman'][size=16px]研究团队证明了,从高度转移的鼠类黑[/size][/font][font='times new roman'][size=16px]色素瘤细胞衍生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体能够将骨髓重编程为转移前的生理状态。现在已有研究支持肿瘤细胞分泌的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体与高度侵袭性的黑色素瘤细胞的发展有关,与空白对照组相比,实验组小鼠先前外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体进行过注射处理,其体内黑色素瘤细胞的增殖和转移速率明显提高[/size][/font][font='times new roman'][size=16px][10][/size][/font][font='times new roman'][size=16px]。在许多有关鼠类和人体肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的近期研究中,已证明这些外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体还携带微小[/size][/font][font='times new roman'][size=16px]RNA[/size][/font][font='times new roman'][size=16px]分子,将其转移至正常细胞并诱导其遗传和蛋白质谱发生变化,从而有利于转移形成[/size][/font][font='times new roman'][size=16px][11,12][/size][/font][font='times new roman'][size=16px]。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体已被证明带有[/size][/font][font='times new roman'][size=16px]CD39[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]CD73[/size][/font][font='times new roman'][size=16px],它们是催化腺苷产生的外核苷酸酶[/size][/font][font='times new roman'][size=16px][13][/size][/font][font='times new roman'][size=16px]。腺苷在机体内可[/size][/font][font='times new roman'][size=16px]介[/size][/font][font='times new roman'][size=16px]导免疫抑制,发挥促进血管生成并驱动细胞基质重塑的重要作用,所有这些功能都促进肿瘤细胞迁移及其进入淋巴结。肿瘤外[/size][/font][font='times new roman'][size=16px]泌体支持[/size][/font][font='times new roman'][size=16px]转移的能力可以通过腺苷参与不同类别的分子途径[/size][/font][font='times new roman'][size=16px][14][/size][/font][font='times new roman'][size=16px]。[/size][/font]2. [font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在肿瘤耐药性中的作用[/size][/font][font='times new roman'][size=16px]肿瘤对放射和化学药物的抵抗作用是肿瘤患者临床治疗中面对的严重问题,至今尚未得到解决。值得注意的是有研究指出肿瘤分泌的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在肿瘤的耐药性中起重要作用;肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体通过多种机制促进耐药性的发展,例如肿瘤细胞可以将化学治疗性药物(例如顺铂)浓缩并通过外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体从细胞质中去除[/size][/font][font='times new roman'][size=16px][15][/size][/font][font='times new roman'][size=16px];此外肿瘤细胞还可以简单地将化疗药物包装到外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中以保护自己免受细胞毒性作用。耐药性肿瘤细胞可以通过外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体将抗性传递给敏感细胞,从而产生新的耐药性肿瘤细胞株。例如,已显示某些[/size][/font][font='times new roman'][size=16px]RNA[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]miR-100[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]miR-222[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]miR-30a[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]miR-17[/size][/font][font='times new roman'][size=16px])在外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中从抗阿霉素和多[/size][/font][font='times new roman'][size=16px]西他赛[/size][/font][font='times new roman'][size=16px]的乳腺癌耐药细胞系转移至敏感细胞[/size][/font][font='times new roman'][size=16px]系[/size][/font][font='times new roman'][size=16px]赋予抗药性[/size][/font][font='times new roman'][size=16px][16][/size][/font][font='times new roman'][size=16px]。有研究报道,在乳腺癌中,由[/size][/font][font='times new roman'][size=16px]HER2[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]细胞系或[/size][/font][font='times new roman'][size=16px]HER2[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]的肿瘤患者[/size][/font][font='times new roman'][size=16px]产生的[/size][/font][font='times new roman'][size=16px]携带[/size][/font][font='times new roman'][size=16px]HER2[/size][/font][font='times new roman'][size=16px]的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]可以[/size][/font][font='times new roman'][size=16px]清除特异性抗肿瘤药[/size][/font][font='times new roman'][size=16px]物曲妥珠单[/size][/font][font='times new roman'][size=16px]抗[/size][/font][font='times new roman'][size=16px][17,18][/size][/font][font='times new roman'][size=16px]。多[/size][/font][font='times new roman'][size=16px]西他赛[/size][/font][font='times new roman'][size=16px]耐药性已在前列腺癌中进行了研究,发现其抗药性是通过多药耐药蛋白[/size][/font][font='times new roman'][size=16px]-1[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]MDR-1 / P-[/size][/font][font='times new roman'][size=16px]gp[/size][/font][font='times new roman'][size=16px])的外[/size][/font][font='times new roman'][size=16px]泌体转移[/size][/font][font='times new roman'][size=16px]而赋予的,多药耐药蛋白[/size][/font][font='times new roman'][size=16px]-1[/size][/font][font='times new roman'][size=16px]是一种[/size][/font][font='times new roman'][size=16px]P-[/size][/font][font='times new roman'][size=16px]糖蛋白转运蛋白,通常在耐药肿瘤中过表达[/size][/font][font='times new roman'][size=16px][19][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]顺铂耐药[/size][/font][font='times new roman'][size=16px]的卵巢癌产生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中富含其他转运蛋白,例如[/size][/font][font='times new roman'][size=16px]MDR-2[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]ATP-7A[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]ATP-7B [/size][/font][font='times new roman'][size=16px][15][/size][/font][font='times new roman'][size=16px]。最近的研究表明,耐药性部分归因于外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中的[/size][/font][font='times new roman'][size=16px]miRNA[/size][/font][font='times new roman'][size=16px]从耐药性癌细胞向敏感性癌细胞的细胞间转移[/size][/font][font='times new roman'][size=16px][16][/size][/font][font='times new roman'][size=16px]。黑色素瘤动物模型的体内研究表明,质子泵抑制剂([/size][/font][font='times new roman'][size=16px]PPI[/size][/font][font='times new roman'][size=16px])和低[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]剂的联合使用可有效降低外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]对顺铂的[/size][/font][font='times new roman'][size=16px]耐药性[/size][/font][font='times new roman'][size=16px][20][/size][/font][font='times new roman'][size=16px]。尽管现有的研究表明外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体与肿瘤的耐药[/size][/font][font='times new roman'][size=16px]性转移有关,但更详细的分子和遗传学分析对于确认上述研究并确定该过程中的潜在机制是十分重要的。[/size][/font]3. [font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体对宿主免疫功能的影响[/size][/font][font='times new roman'][size=16px]肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体[/size][/font][font='times new roman'][size=16px]不仅仅在[/size][/font][font='times new roman'][size=16px]肿瘤微环境[/size][/font][font='times new roman'][size=16px]起[/size][/font][font='times new roman'][size=16px]免疫抑制或免疫刺激作用,与循环[/size][/font][font='times new roman'][size=16px]系统[/size][/font][font='times new roman'][size=16px]以及各种淋巴器官中的免疫细胞也[/size][/font][font='times new roman'][size=16px]可以[/size][/font][font='times new roman'][size=16px]相互[/size][/font][font='times new roman'][size=16px]作用[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]例如,[/size][/font][font='times new roman'][size=16px]白血病胚泡衍生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在血浆中[/size][/font][font='times new roman'][size=16px]聚集[/size][/font][font='times new roman'][size=16px]并直接与免疫细胞作用[/size][/font][font='times new roman'][size=16px][21][/size][/font][font='times new roman'][size=16px]。在肿瘤存在的情况下,外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体与周围免疫细胞的相互作用会导致免疫抑制[/size][/font][font='times new roman'][size=16px][22][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]实验性小鼠模型的体内研究表明,注射肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体后,外周免疫细胞的功能发生改变,这些改变[/size][/font][font='times new roman'][size=16px]导致[/size][/font][font='times new roman'][size=16px]肿瘤生长和更短的生长周期[/size][/font][font='times new roman'][size=16px][23][/size][/font][font='times new roman'][size=16px]。将离体分离的人[/size][/font][font='times new roman'][size=16px]T[/size][/font][font='times new roman'][size=16px]细胞、[/size][/font][font='times new roman'][size=16px]B[/size][/font][font='times new roman'][size=16px]细胞或[/size][/font][font='times new roman'][size=16px]NK[/size][/font][font='times new roman'][size=16px]细胞与肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体共同孵育,导致[/size][/font][font='times new roman'][size=16px]其[/size][/font][font='times new roman'][size=16px]介[/size][/font][font='times new roman'][size=16px]导的抗肿瘤功能部分或完全丧失,其机制与上述中外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的机制相同。癌症患者血液和淋巴器官中常见免疫抑制因子,并且似乎与血浆中外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的水平相关。循环肿瘤源性外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的分子和遗传特征部分反映了在肿瘤细胞中发现的分子和遗传特征,这些特征正在作为鉴定癌症进展的非侵入性生物标志物的潜在方法被广泛研究[/size][/font][font='times new roman'][size=16px][24][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]肿瘤源性外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的免疫抑制机制之一是癌症患者循环中活化的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]效应细胞的凋亡。癌症患者循环中几乎所有的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]淋巴细胞都表达表面[/size][/font][font='times new roman'][size=16px]CD95[/size][/font][font='times new roman'][size=16px],同时有许多表达[/size][/font][font='times new roman'][size=16px]PD-1 [/size][/font][font='times new roman'][size=16px][25][/size][/font][font='times new roman'][size=16px]。因此,它们分别受到携带[/size][/font][font='times new roman'][size=16px]FasL[/size][/font][font='times new roman'][size=16px]膜形式[/size][/font][font='times new roman'][size=16px]的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体或携带[/size][/font][font='times new roman'][size=16px]PD-L1[/size][/font][font='times new roman'][size=16px]的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的凋亡影响。这些凋亡诱导分子在外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体中的表达水平与癌症患者循环中对细胞凋亡敏感的活化[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞的频率相关。此外,循环中的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞的“自发凋亡”与疾病分期和预后之间存在显着相关性[/size][/font][font='times new roman'][size=16px][26][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]TEX[/size][/font][font='times new roman'][size=16px]介[/size][/font][font='times new roman'][size=16px]导的导致活化[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞凋亡的信号与靶细胞中的早期膜变化([/size][/font][font='times new roman'][size=16px]即膜联蛋白[/size][/font][font='times new roman'][size=16px]V[/size][/font][font='times new roman'][size=16px]结合)、半[/size][/font][font='times new roman'][size=16px]胱天冬酶[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]裂解、线粒体细胞色素[/size][/font][font='times new roman'][size=16px]C[/size][/font][font='times new roman'][size=16px]释放、线粒体膜电位([/size][/font][font='times new roman'][size=16px]MMP[/size][/font][font='times new roman'][size=16px])的损失以及最后的[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]片段[/size][/font][font='times new roman'][size=16px]化有关[/size][/font][font='times new roman'][size=16px][27][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px] PI3K / AKT[/size][/font][font='times new roman'][size=16px]途径成为活化的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞中肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的主要靶标。有研究发现调节[/size][/font][font='times new roman'][size=16px]PI3K-AKT[/size][/font][font='times new roman'][size=16px]信号的[/size][/font][font='times new roman'][size=16px]PTEN[/size][/font][font='times new roman'][size=16px]是外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的组成成分,并[/size][/font][font='times new roman'][size=16px]介[/size][/font][font='times new roman'][size=16px]导受体细胞中的磷酸酶活性。将活化的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞与肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体共同孵育会导致严重的时间依赖性[/size][/font][font='times new roman'][size=16px]AKT[/size][/font][font='times new roman'][size=16px]去磷酸化,并同时下调抗凋亡蛋白[/size][/font][font='times new roman'][size=16px]Bcl-2[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]Bcl-xL[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]MCl-1[/size][/font][font='times new roman'][size=16px]的表达水平,同时,肿瘤细胞分泌的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体会上调促凋亡蛋白[/size][/font][font='times new roman'][size=16px]Bax[/size][/font][font='times new roman'][size=16px][28][/size][/font][font='times new roman'][size=16px]。这些研究表明,肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体通过参与外在和[/size][/font][font='times new roman'][size=16px]内在的凋亡途径来诱导活化的[/size][/font][font='times new roman'][size=16px]CD8[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px] T[/size][/font][font='times new roman'][size=16px]细胞凋亡[/size][/font][font='times new roman'][size=16px][22][/size][/font][font='times new roman'][size=16px]。体外数据与癌症患者循环[/size][/font][font='times new roman'][size=16px]T[/size][/font][font='times new roman'][size=16px]细胞中促凋亡或抗凋亡家族成员表达的类似变化的报道一致[/size][/font][font='times new roman'][size=16px][7][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可能会激活宿主的免疫系统。由于发现了肿瘤相关抗原([/size][/font][font='times new roman'][size=16px]TAA[/size][/font][font='times new roman'][size=16px])、[/size][/font][font='times new roman'][size=16px]MHC[/size][/font][font='times new roman'][size=16px]分子、伴侣蛋白(例如热休克蛋白[/size][/font][font='times new roman'][size=16px]HSP-70[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]HSP-90[/size][/font][font='times new roman'][size=16px])等,因此,研究人员对肿瘤衍生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的免疫刺激作用进行了详细的研究。实际上,肿瘤细胞释放并被免疫系统内化的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体是开发抗肿瘤疫苗中[/size][/font][font='times new roman'][size=16px]TAA[/size][/font][font='times new roman'][size=16px]的良好来源[/size][/font][font='times new roman'][size=16px][29,30][/size][/font][font='times new roman'][size=16px]。有研究报道在鼠类肿瘤模型中进行的疫苗接种研究证实,使用肿瘤衍生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体进行有效的疫苗接种可诱导小鼠产生强大的抗肿瘤免疫力和肿瘤排斥反应[/size][/font][font='times new roman'][size=16px][31][/size][/font][font='times new roman'][size=16px]。基于这些报告,在人类临床试验中,肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体分别被认为是疫苗佐剂和治疗性疫苗的设计的免疫激活剂和免疫原性抗原的贡献者。[/size][/font]4. [font='times new roman'][size=16px]外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体在血栓形成过程中的作用[/size][/font][font='times new roman'][size=16px]晚期恶性肿瘤患者可能会产生足以危及生命的血栓。有研究指出,携带转移因子([/size][/font][font='times new roman'][size=16px]Tf[/size][/font][font='times new roman'][size=16px])的肿瘤来源外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可以诱导癌症相关的血栓形成[/size][/font][font='times new roman'][size=16px][32][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]Tf[/size][/font][font='times new roman'][size=16px]也被称为凝血因子,其在患者体内的过表达与肿瘤的进展和转移密切相关[/size][/font][font='times new roman'][size=16px][33][/size][/font][font='times new roman'][size=16px]。当癌细胞发生[/size][/font][font='times new roman'][size=16px]EMT[/size][/font][font='times new roman'][size=16px]过程时,它们开始释放含有高水平[/size][/font][font='times new roman'][size=16px]Tf[/size][/font][font='times new roman'][size=16px]的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体。这些富含[/size][/font][font='times new roman'][size=16px]Tf[/size][/font][font='times new roman'][size=16px]的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可以被内皮细胞内化,并诱导其快速转化为促凝血表型。癌症患者血浆中存在大量促凝囊泡是一种不良预后因素[/size][/font][font='times new roman'][size=16px][32][/size][/font][font='times new roman'][size=16px]。但是,目前尚不清楚外[/size][/font][font='times new roman'][size=16px]泌体转移[/size][/font][font='times new roman'][size=16px]Tf[/size][/font][font='times new roman'][size=16px]及其促血栓作用如何促进癌症进展和转移形成。[/size][/font][font='times new roman'][size=16px]总结[/size][/font][font='times new roman'][size=16px]在过去的[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][size=16px]年里,外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体作为细胞间传递信息的载体而被熟知。虽然信息传递可能是外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的主要生物学作用,但这种囊泡通讯机制似乎超越了几乎所有的细胞功能,并调节所有正常和异常细胞的分子和遗传特征。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体引起了人们的兴趣,因为人们认为它们不仅能将肿瘤的信息传递给附近或远处的正常细胞,而且还能改变这些靶细胞的表型和功能,从而促进肿瘤的进展。在[/size][/font][font='times new roman'][size=16px]TME[/size][/font][font='times new roman'][size=16px]中,这些外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体直接或间接有助于肿瘤的发生发展。在癌症中,循环外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体的负荷和功能与健康供体不同。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体是血浆内容物的重要组成部分,它们的分子和基因图谱在疾病或治疗过程中发生变化,并且部分反映了母体肿瘤细胞的特征。此外,通过自分泌或旁分泌信号,肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体调节肿瘤生长,驱动新生血管形成、细胞分化、迁移和生存,并协调转移性肿瘤扩散。肿[/size][/font][font='times new roman'][size=16px]瘤来源的外[/size][/font][font='times new roman'][size=16px]泌体似乎[/size][/font][font='times new roman'][size=16px]在整个癌变过程中发挥作用,并被肿瘤细胞设定为促进癌变的过程。它们还能抑制抗肿瘤免疫反应。此外,它们还可以将癌基因和致癌蛋白或其转录本从肿瘤细胞中转移到正常细胞。有趣的是,正常造血或组织细胞产生的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体可以[/size][/font][font='times new roman'][size=16px]介[/size][/font][font='times new roman'][size=16px]导抗肿瘤反应并维持体内平衡。区分好的和坏的外[/size][/font][font='times new roman'][size=16px]泌体成为[/size][/font][font='times new roman'][size=16px]未来沉默肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体疗法的主要挑战。肿瘤来源的外[/size][/font][font='times new roman'][size=16px]泌[/size][/font][font='times new roman'][size=16px]体作为治疗靶点或癌症生物标志物进入这个领域之前,还需要进行更多的基础和临床工作。[/size][/font][align=center][font='times new roman'][size=21px][color=#000000]参考文献[/color][/size][/font][/align][1] [font='times new roman']Skog J, W[/font][font='times new roman']ü[/font][font='times new roman']rdinger[/font][font='times new roman'] T, Van Rijn S, et al. Glioblastoma [/font][font='times new roman']microvesicles[/font][font='times new roman'] transport RNA and proteins that promote [/font][font='times new roman']tumour[/font][font='times new roman'] growth and provide diagnostic biomarkers[/font][font='times new roman'][J].[/font][font='times new roman'] Nature Cell Biology, 2008, 10(12):1470-1476.[/font][2] [font='times new roman']Al-[/font][font='times new roman']Nedawi[/font][font='times new roman'] K, Meehan B, [/font][font='times new roman']Kerbel[/font][font='times new roman'] R S, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived [/font][font='times new roman']microvesicles[/font][font='times new roman'] containing oncogenic EGFR[J].[/font][font='times new roman'] [/font][font='times new roman']Proceedings of the National Academy of Sciences,[/font][font='times new roman'] [/font][font='times new roman']2009, 106(10):3794-3799.[/font][3] [font='times new roman']Bretz[/font][font='times new roman'] N P, [/font][font='times new roman']Ridinger[/font][font='times new roman'] J, Rupp A K, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling[J]. The Journal of biological chemistry, 2013, 288(51):36691.[/font][4] [font='times new roman']Chalmin[/font][font='times new roman'] F, [/font][font='times new roman']Ladoire[/font][font='times new roman'] S, Grégoire M, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells[J]. Journal of Clinical Investigation, 2010, 120(2):457-471.[/font][5] [font='times new roman']Gross J C, Chaudhary V, [/font][font='times new roman']Bartscherer[/font][font='times new roman'] K, et al. Active [/font][font='times new roman']Wnt[/font][font='times new roman'] proteins are secreted on exosomes[J]. Nature Cell Biology, 2012, 14(10):1036-[/font][font='times new roman']10[/font][font='times new roman']45.[/font][6] [font='times new roman']Yang C, Kim S H, Bianco N R, et al. Tumor-Derived Exosomes Confer Antigen-Specific Immunosuppression in a Murine Delayed-Type Hypersensitivity Model[J]. [/font][font='times new roman']PLoS[/font][font='times new roman'] ONE, 2011, 6(8):1-11.[/font][7] [font='times new roman']Hoffmann T K, [/font][font='times new roman']Dworacki[/font][font='times new roman'] G, [/font][font='times new roman']Tsukihiro[/font][font='times new roman'] T, et al.[/font][font='times new roman'] Spontaneous Apoptosis of Circulating T Lymphocytes in Patients with Head and Neck Cancer and Its Clinical Importance[J]. Clinical Cancer Research, 2002, 8(8):2553-2562.[/font][8] [font='times new roman']Zhang H G, Grizzle W E. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions[J]. The American Journal of Pathology, 2014, [/font][font='times new roman']184( 1[/font][font='times new roman']):28-41.[/font][9] [font='times new roman']Hood J L, San R S, Wickline S A. Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis[J]. Cancer Research, 2011, 71(11):3792-3801.[/font][10] [font='times new roman']Peinado[/font][font='times new roman'] H, [/font][font='times new roman']Aleckovic[/font][font='times new roman'] M, [/font][font='times new roman']Lavotshkin[/font][font='times new roman'] S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nature Medicine, 2012, 18(6):883.[/font][11] [font='times new roman']Yu S, Liu C, [/font][font='times new roman']Su[/font][font='times new roman'] K, et al. Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells[J]. Journal of Immunology, 2007, 178(11):6867-6875.[/font][12] [font='times new roman']Altevogt[/font][font='times new roman'] P, [/font][font='times new roman']Bretz[/font][font='times new roman'] N P, [/font][font='times new roman']Ridinger[/font][font='times new roman'] J, et al. Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation[J]. Seminars in Cancer Biology, 2014, 28:51-57.[/font][13] [font='times new roman']Schuler P[/font][font='times new roman'] [/font][font='times new roman']J, [/font][font='times new roman']Saze[/font][font='times new roman'] Z, Hong C[/font][font='times new roman'] [/font][font='times new roman']S, et al. [/font][font='times new roman']Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells[J]. Clinical & Experimental Immunology, 2014, [/font][font='times new roman']177[/font][font='times new roman'](2)[/font][font='times new roman']:531[/font][font='times new roman']-5[/font][font='times new roman']43.[/font][14] [font='times new roman']Muller-[/font][font='times new roman']Haegele[/font][font='times new roman'] S, Muller L, Whiteside T L. Immunoregulatory activity of adenosine and its role in human cancer progression[J]. Expert Review of Clinical Immunology, 2014, 10(7):897.[/font][15] [font='times new roman']Safaei[/font][font='times new roman'] R, Larson B[/font][font='times new roman'] [/font][font='times new roman']J, Cheng T[/font][font='times new roman'] [/font][font='times new roman']C, et al. Abnormal lysosomal trafficking and enhanced [/font][font='times new roman']exosomal[/font][font='times new roman'] export of cisplatin in drug-resistant human ovarian carcinoma cells[J].[/font][font='times new roman'] Molecular Cancer Therapeutics, 2005, 4(10):1595-1604.[/font][16] [font='times new roman']Mrizak[/font][font='times new roman'] D, Martin N, [/font][font='times new roman']Barjon[/font][font='times new roman'] C,[/font][font='times new roman'] [/font][font='times new roman']et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. [/font][font='times new roman']Journal of the National Cancer Institute,[/font][font='times new roman'] 2015[/font][font='times new roman'], [/font][font='times new roman']107(12):363.[/font][17] [font='times new roman']Ciravolo[/font][font='times new roman'] V, Huber V, [/font][font='times new roman']Ghedini[/font][font='times new roman'] G[/font][font='times new roman'] [/font][font='times new roman']C, et al.[/font][font='times new roman'] Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy[J]. Journal of Cellular Physiology, 2012, 227(2):658-667.[/font][18] [font='times new roman']Amorim M, Fernandes G, Oliveira P, et al. The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular [/font][font='times new roman']vesicles[/font][font='times new roman'].[/font][font='times new roman'][[/font][font='times new roman']J]. Proteomics, 2014, 14(12)[/font][font='times new roman']:1472-1479[/font][font='times new roman'].[/font][19] [font='times new roman']Claire C, Sweta R, O’Brien Keith, et al. Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes[J]. [/font][font='times new roman']Plos[/font][font='times new roman'] One, 2012, 7(12[/font][font='times new roman']):e[/font][font='times new roman']50999-.[/font][20] [font='times new roman']Federici C, Petrucci F, [/font][font='times new roman']Caimi[/font][font='times new roman'] S, et al. Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin[J]. [/font][font='times new roman']Plos[/font][font='times new roman'] One, 2014, [/font][font='times new roman']9(2[/font][font='times new roman']):e[/font][font='times new roman']88193[/font][font='times new roman'].[/font][21] [font='times new roman']Szczepanski[/font][font='times new roman'] M[/font][font='times new roman'] [/font][font='times new roman']J, [/font][font='times new roman']Szajnik[/font][font='times new roman'] M, Welsh A,[/font][font='times new roman'] et al[/font][font='times new roman']. Blast-derived [/font][font='times new roman']microvesicles[/font][font='times new roman'] in sera from patients [/font][font='times new roman']with acute myeloid leukemia suppress natural killer cell function via [/font][font='times new roman']membraneassociated[/font][font='times new roman'] transforming growth factor-beta1[J]. [/font][font='times new roman']Haematologica[/font][font='times new roman'], [/font][font='times new roman']2011[/font][font='times new roman'], [/font][font='times new roman']96[/font][font='times new roman'](9)[/font][font='times new roman']:1302[/font][font='times new roman']-130[/font][font='times new roman']9.[/font][22] [font='times new roman']Whiteside T[/font][font='times new roman'] [/font][font='times new roman']L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs ([/font][font='times new roman']tumour[/font][font='times new roman']-derived [/font][font='times new roman']exosomes)[[/font][font='times new roman']J]. Biochemical Society Transactions, 2013, 41(1):245-251.[/font][23] [font='times new roman']Curtale[/font][font='times new roman'] G, [/font][font='times new roman']Citarella[/font][font='times new roman'] F, [/font][font='times new roman']Carissimi[/font][font='times new roman'] C, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and [/font][font='times new roman']activationinduced[/font][font='times new roman'] cell death in T lymphocytes[J]. Blood[/font][font='times new roman'], [/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman'] 115[/font][font='times new roman'](2)[/font][font='times new roman']:265[/font][font='times new roman']-2[/font][font='times new roman']73.[/font][24] [font='times new roman']Dinarello[/font][font='times new roman'] C A. Interleukin-1 and interleukin-1 [/font][font='times new roman']antagonism[/font][font='times new roman'].[/font][font='times new roman'][[/font][font='times new roman']J].[/font][font='times new roman'] Blood, 1991, 77(8):1627.[/font][25] [font='times new roman']Schuler P[/font][font='times new roman'] [/font][font='times new roman']J, Schilling B, [/font][font='times new roman']Harasymczuk[/font][font='times new roman'] M, et al. Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients[J]. [/font][font='times new roman']European Journal of Immunology,[/font][font='times new roman'] 2012[/font][font='times new roman'],[/font][font='times new roman'] 42[/font][font='times new roman'](7)[/font][font='times new roman']:187[/font][font='times new roman']6-18[/font][font='times new roman']85.[/font][26] [font='times new roman']Kim J[/font][font='times new roman'] [/font][font='times new roman']W, [/font][font='times new roman']Wieckowski[/font][font='times new roman'] E, Taylor D[/font][font='times new roman'] [/font][font='times new roman']D[/font][font='times new roman'], [/font][font='times new roman']et al[/font][font='times new roman']. [/font][font='times new roman']Fas[/font][font='times new roman'] ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes[J]. [/font][font='times new roman']Clinical Cancer Research,[/font][font='times new roman'] 2005[/font][font='times new roman'],[/font][font='times new roman'] 11[/font][font='times new roman'](3)[/font][font='times new roman']:1010[/font][font='times new roman']-10[/font][font='times new roman']20[/font][font='times new roman'].[/font][27] [font='times new roman']Czystowska[/font][font='times new roman'] [/font][font='times new roman']M, Han J, [/font][font='times new roman']Szczepanski[/font][font='times new roman'] M J, et al. IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death[J]. Cell Death & Differentiation, 2009, 16(5):708-718.[/font][28] [font='times new roman']Czystowska[/font][font='times new roman'] M, [/font][font='times new roman']Szczepanski[/font][font='times new roman'] M J, [/font][font='times new roman']Szajnik[/font][font='times new roman'] M, et al. Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic[J]. Cancer Immunology Immunotherapy, 2011, 60(4):495-506.[/font][29] [font='times new roman']Li W, Kong L[/font][font='times new roman'] [/font][font='times new roman']B, Li J[/font][font='times new roman'] [/font][font='times new roman']T, et al. MiR-568 inhibits the activation and function of CD4(+) T cells and Treg cells by targeting NFAT5[J]. International Immunology[/font][font='times new roman'],[/font][font='times new roman'] 2014[/font][font='times new roman'],[/font][font='times new roman'] 26(5):269–[/font][font='times new roman']2[/font][font='times new roman']81.[/font][30] [font='times new roman']Gracias D T, [/font][font='times new roman']Katsikis[/font][font='times new roman'] P D. MicroRNAs: key components of immune regulation[J]. [/font][font='times new roman']Advances in experimental medicine and biology,[/font][font='times new roman'] 2011[/font][font='times new roman'],[/font][font='times new roman'] 780:15[/font][font='times new roman']-[/font][font='times new roman']26[/font][font='times new roman'].[/font][31] [font='times new roman']Baxevanis[/font][font='times new roman'] C[/font][font='times new roman'] [/font][font='times new roman']N, [/font][font='times new roman']Anastasopoulou[/font][font='times new roman'] E[/font][font='times new roman'] [/font][font='times new roman']A, [/font][font='times new roman']Voutsas[/font][font='times new roman'] I[/font][font='times new roman'] [/font][font='times new roman']F, [/font][font='times new roman']et al[/font][font='times new roman']. Immune biomarkers: how well do they serve prognosis in human [/font][font='times new roman']cancers?[[/font][font='times new roman']J]. Expert review of molecular diagnostics[/font][font='times new roman'],[/font][font='times new roman'] 2015[/font][font='times new roman'],[/font][font='times new roman'] 15[/font][font='times new roman'](1)[/font][font='times new roman']:49–59.[/font][32] [font='times new roman']Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling[J]. Journal of Immunological Methods, 2009, 340(1):55-64.[/font][33] [font='times new roman']Dai R, Ahmed S A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases[J]. Translational Research, 2011, 157(4):163-179.[/font]

  • 【求助】Beckman P/ACE MDQ如何实现单细胞进样及缓冲液问题

    我是毛细管电泳仪方面的新手,将做单细胞分析方面的工作,期盼高手指教。我们这边的是Beckman P/ACE MDQ毛细管电泳仪。但是,我始终弄不清该如何进样比较好,不知是否有高手做过这方面的工作,希望您能给我一些宝贵的建议。问题 1. 如何实现单细胞进样(之前试过,用PBS重悬细胞后,进行进样,电流很高,且未出峰) 2. 缓冲液用哪种比较好 3. 如果提细胞总DNA后再进样,缓冲液之类的问题该如何解决

  • 全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    近年来,单细胞测序技术成为生命健康领域追逐的热点,可应用于肿瘤异质性研究、干细胞分化以及组织器官发育研究、神经系统发育研究、免疫方向研究、疾病分型和药物机制以及用药指导等方向。随着研究的深入和技术的不断发展进步,市场对单细胞产品提出了新的要求:从单组学到多组学、从基本到高通量、从哺乳动物到微生物。墨卓生物即将推出MobiNova-100高通量单细胞测序建库系统助力科学研究,MobiNova-100是墨卓团队过去数年磨一剑的结晶,是一个真正稳定、精准、可信赖的技术平台,在关键的性能指标上接近甚至部分超越了国际一流水平。一次可探索最多数十万单细胞,实现极高的细胞捕获率,精准捕获细胞信息;单次运行仅需十分钟,最大程度保证数据质量,给用户提供可信赖的解决方案。 “新星”升越 ,创新不止,创新是墨卓生物不断向前发展的内在引擎,新星NOVA—MobiNova-100高通量单细胞建库系统全球首发仪式将正式进行线上发布! [b] [color=#ff0000]2022年4月15日14:00[/color][/b]诚邀各位莅临MobiNova的世界,一同解锁细胞的无限可能! [img=,442,348]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141904574225_9730_2507958_3.png!w442x348.jpg[/img][img]file:///C:/Users/wangqy/AppData/Local/Temp/企业微信截图_16499342329421.png[/img] [b][size=18px] [img]https://simg.instrument.com.cn/bbs/images/brow/em20.gif[/img] 直达会场:[/size][/b][url=https://www.instrument.com.cn/webinar/meetings/mobinova20220415/][b][size=18px]https://www.instrument.com.cn/webinar/meetings/mobinova20220415/[/size][/b][/url][img=,480,1600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141901011128_219_2507958_3.jpg!w480x1600.jpg[/img][font=&][size=16px][color=#333333]14:08--14:45[/color][/size][/font][font=&][size=16px][color=#333333]新星NOVA—MobiNova-100高通量单细胞测序建库系统 全球首发仪式[/color][/size][/font][font=&][size=16px][color=#333333]裴颢[/color][/size][/font][font=&][size=16px][color=#333333]墨卓生物 CEO[/color][/size][/font]

  • 肿瘤细胞三维培养技术研究进展

    【序号】:4【作者】:关冀弛1刘丹1陈艳阁【题名】:肿瘤细胞三维培养技术研究进展【期刊】:沈阳医学院学报. 【年、卷、期、起止页码】:2022,24(06)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=jDUTNXVfqCoielzE7h4t-am9E_oe5xlONsBgDY0mru9ikUWnSCWY-vAr_o11tuIPp8SE-GcSkchfkDV9lHEHuYxiCn8FEd3Lbjmjqrittf1kZtDlew_w2B3buwZk8Pby6mtVJrb8XkZlCD0rkc_znw==&uniplatform=NZKPT&language=CHS

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制