当前位置: 仪器信息网 > 行业主题 > >

单细胞测序

仪器信息网单细胞测序专题为您整合单细胞测序相关的最新文章,在单细胞测序专题,您不仅可以免费浏览单细胞测序的资讯, 同时您还可以浏览单细胞测序的相关资料、解决方案,参与社区单细胞测序话题讨论。

单细胞测序相关的资讯

  • 单细胞测序:少量细胞和稀有细胞的解决方案
    单细胞测序:少量细胞和稀有细胞的解决方案做单细胞测序的时,您是否遇到下列情况: ü 细胞样本量较少,不够做一次高通量单细胞测序… … ü 没有简便易用的设备分选单个细胞… … ü 保护细胞的基因完整性难度大… … ü 分选到单细胞后,找不到合适的试剂进行下一步操作… … 如果这些问题曾给您带来困扰,4月28日由Namocell联合Qiagen带来的关于“少量细胞和稀有细胞的单细胞测序解决方案”的讲座,一定会让您有所收获。 近年来的单细胞研究表明,生物体由数千种独特且不可重复的细胞类型组成。由于单细胞中核酸数量有限,使用二代测序(NGS)方法进行单细胞分析(类似于低样本量测序)传统上具有挑战性。当研究群体较小时,这种限制变得更加明显,例如稀有细胞样本(阳性细胞占比0.1%以下)。高保真度(HiFi)和高质量的DNA扩增对于单细胞测序至关重要,这在很大程度上取决于分离细胞的质量。因此,用于分离单个细胞的方法对于确保细胞活力和核酸完整性至关重要。 美国Namocell公司专利的轻柔分选和细胞富集技术为您克服上述挑战,为单细胞测序提供了更高数量和质量的细胞样本,让您能够轻松获得细胞样品的完整且准确的遗传信息。 无论您是单细胞分析的初学者还是专家,相信都能在这个信息丰富的网络研讨会中有所收获。让我们一起了解和探讨少量样本和稀有单细胞测序的重要因素和新技术。 会议时间2022.4.28 16:00-17:00(注册时选择观看时间为Thursday, April 28, 2022, 10:00 AM CEST) 报名通道(点击) 主讲人介绍
  • 单细胞基因测序市场分析
    p    span style=" color: rgb(0, 112, 192) " 什么叫做单细胞基因测序(Single-Cell Sequencing)? /span /p p   一句话说,就是单个细胞水平上对基因组进行测序。2013年,自然杂志把年度技术授予了单细胞 a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 基因测序 /span /a (Single Cell Sequencing),认为该技术将改变 a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 生物界和医学界 /span /a 的许多领域。 /p p    span style=" color: rgb(0, 112, 192) " 我们为什么要进行单细胞基因测序? /span /p p   传统的测序方法,无论是基因芯片或者二代基因测序技术(Next Generation Sequencing,NGS)都需要从超过10万个细胞中提取一大堆(bulk)DNA或者RNA,而提供的信息是一大堆细胞的平均值。但是传统的方法,对于理解人体细胞的多样性有着明显的局限性。 /p p   在人体的每一个组织中,比如说,肾脏组织,拥有着大量不同的细胞类型,每一种细胞类型有着独特的起源和功能。每一个细胞的谱系和发展的状态又决定了每个细胞如何和周围的细胞和环境如何反应,把基因测序应用到单个细胞层面,对于我们理解细胞的起源,功能,变异等有着至关重要的作用。 /p p   关于二代基因测序已经详细在我们的前期两篇深度报告中进行了介绍,在本篇报告中,我们将详细解读单细胞基因测序,以及该技术对癌症,辅助生殖以及免疫学等领域带来的新的突破。 /p p    strong 一、单细胞基因测序行业:刚启程,面临引爆点 /strong /p p   BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。根据GENReports的报告,关于单细胞分析的文章发表在过去的几年也有着爆发性的增长。 /p p style=" text-align: center "   图2:单细胞分析的文章发表数量 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/006c9fd7-a2cd-46b2-a028-18b51b5ea3cd.jpg" / /p p style=" text-align: center "   资料来源:GEN,民生证券研究院 /p p   其中,传统的单细胞基因组学主要是由基因芯片和PCR主导的,随着二代基因测序的成本以超摩尔定律下降,目前单细胞基因组学逐渐由二代基因测序技术接棒。 /p p   和qPCR在90年代的发展一样,目前所有的刺激因素(高度的科研兴趣,生物医药巨头公司的关注等)正在解锁这个市场,单细胞基因测序行业正面临引爆点。 /p p   strong  二、单细胞基因测序的基本流程:单细胞分离--基因组扩增--测序和分析 /strong /p p   单细胞测序,简单地说,主要经过如下的步骤:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。 /p p style=" text-align: center "   图3:单细胞测序的步骤 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/782ee757-3c06-4a1b-9103-4c7336ac2929.jpg" / /p p style=" text-align: center "   资料来源:Recent advances and current issues in single-cell /p p style=" text-align: center " sequencing of tumors,民生证券研究院 /p p   2.1 单细胞的捕捉和分离 /p p   单细胞测序的第一步是单细胞的分离和提取,目前的方法主要有如下几种方法:流式细胞术,激光捕获显微切割技术以及微流控技术。 /p p style=" text-align: center "   图4:单细胞分离的三种方式:流式细胞术,激光捕获显微切割以及微流控技术 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/ea66e087-c9b2-4930-a4d3-50025543fe8b.jpg" / /p p style=" text-align: center "   资料来源:Technologies for Single-Cell Isolation,民生证券研究院 /p p   1)流式细胞术 (Flow Cytometry) /p p   是指通过对于悬浮于流体中的细胞或者其他颗粒进行定量分析和分选的技术。在各种流式细胞仪中,大家主要讨论的是荧光活化细胞分类计FACS(Fluorescence Activated Cell Sorting)系统分离单细胞。定量原理:待测细胞经特异性荧光染料染色后,加入样品管中,经过测量区,由染色后的细胞在激光照射下的荧光产生的电信号来进行定量分析 分选原理:通过流束形成含有细胞的带电液滴来实现的。 /p p   2)激光捕获显微切割技术Laser Capture Microdissection(LCM) /p p   LCM技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。其基本原理是通过一低能红外激光脉冲激活热塑模-乙烯乙酸乙烯酯(EVA)膜,在直视下选择性地将目标细胞或组织碎片粘到该膜上。 /p p   3)微流控技术(Microfluidics) /p p   微流控技术是一种用于精确控制微量液体的技术。微流控芯片是实施该技术的平台,通常通过细微的管道对液体实施操控,微流控对液体的操控尺度, 刚好适合于单细胞样品的处理操作。 /p p   2.2 全基因组扩增 (Whole Genome Amplification. WGA)/ 全转录组扩增 (Whole Transcriptome Amplification,WTA):单细胞测序的难点 /p p   2.2.1 主要的三种全基因组扩增技术,各有优势 /p p   由于在单细胞中的DNA和RNA的数量非常小(几个pg),用传统的测序仪无法检测,所以科学家们必须首先对这些分子进行扩增,同时尽量的减少错误。目前的全基因组扩增技术主要有三种:简并寡核苷酸引物PCR扩增(DOP-PCR),多重置换扩增(MDA) 和基于多次退火和成环的扩增循环(MALBAC)。 /p p   1)基于PCR技术的全基因组扩增技术,例如DOP-PCR(简并寡核苷酸引物PCR扩增) /p p   DOP-PCR是一种部分随机引物法, 其引物构成为3& amp #8242 -ATGTGG-NNNNNN-CCGACTCGAG-5& amp #8242 ;主要 利用3& amp #8242 端ATGTGG这6个在人体中分布频率极高的碱基作为引导, 以6个碱基的随机序列来决定特异的扩增起始位点,从而达到扩增整个基因组的目的。 /p p   2)多重置换扩增(MDA) /p p   MDA是一种等温的链置换扩增反应, 其使用随机的6碱基引物在多位点和模板链结合, 接着利用 phi29DNA 聚合酶很强的模板结合和置换能力实现对全基因组的扩增。 /p p style=" text-align: center "   图5:DOP-PCR和MDA全基因组扩增技术简介 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/d9b0aef0-e3b1-4c63-8313-c20796064bb3.jpg" / /p p style=" text-align: center "   资料来源:Single-cell genome sequencing: current state /p p style=" text-align: center " of the science,民生证券研究院 /p p   3)MALBAC(Multiple annealing and looping-based amplification cycles)基于多次退火和成环的扩增循环 /p p   通过采用特殊引物,使得扩增子的结尾互补而成环,从而达到近乎线性的扩增,该技术是哈佛大学谢晓亮教授团队发明的。 /p p style=" text-align: center "   图6:MALBAC全基因组扩增的示意图 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/83e2f828-d990-4b9c-afd6-bd692fc52888.jpg" / /p p style=" text-align: center "   资料来源:Single-cell sequencing by Doug Brutlag,民生证券研究院 /p p   表1:三种类型的全基因组扩增方式比较 /p p style=" text-align: center " img width=" 600" height=" 302" title=" QQ截图20160302115018.jpg" style=" width: 600px height: 302px " src=" http://img1.17img.cn/17img/images/201603/noimg/297e4e6e-a134-4101-a297-456cd703c3af.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center "   资料来源:Single-Cell Sequencing Technologies: Current and Future, /p p style=" text-align: center " 民生证券研究院 /p p   Navin 在研究报告中指出(来源:Cancer genomics: one cell at a time),对于检测CNV(Copy Number Variation)的时候,DOP-PCR以及MALBAC较有优势,另一方面, MDA方法一般用来检测点突变。Gawad et al., (2015)更是指出,三种全基因组扩增技术并没有明显的胜者,具体方法的使用取决于研究的目的。 /p p   2.2.2 全转录组扩增 /p p   一个哺乳动物的单细胞大约含有10pg的RNA,其中mRNA大约在0.1-0.5pg,并不能满足目前测序平台的要求,所以需要进行全转录组扩增技术。 /p p   单细胞中提取的RNA首先经过逆转录出cDNA,然后对逆转录生成的cDNA进行扩增。目前主要的转录组扩增技术主要包括如下几种:传统的PCR,改进的PCR,T7-in vitro 体外转录组扩增以及Phi29聚合酶扩增。 /p p   三. 单细胞测序的主要应用:癌症,辅助生殖以及免疫学领域 /p p   当单细胞被分离,细胞内的DNA/RNA被提取和扩增后,二代基因测序(Next Generation Sequencing)可以用来进行后续的测序。当把基因测序应用于单个细胞层面,在下游应用领域有着先天独到的优势。 /p p   3.1单细胞基因测序技术有助研究癌症起因和治疗 /p p   首先谈一下癌症的异质性:中晚期的肿瘤或由一系列的肿瘤克隆组成,每一种克隆有着独立的变异,形态和药物反应。对于肿瘤克隆精准的诊断非常重要,因为一个占据原发性肿瘤5.1%的亚克隆种群在复发的时候可能成为主要的致病因素。 /p p style=" text-align: center "   图7:肿瘤的异质性 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/88b49609-3a47-4577-ad2a-7e9b36b6a4dc.jpg" / /p p style=" text-align: center "   资料来源:Illumina,民生证券研究院 /p p   实体瘤由一系列不同的细胞组成,包括癌症纤维细胞,内皮细胞,淋巴细胞,巨噬细胞等。同时,实体瘤由多个肿瘤克隆亚种群构成,使得临床样本的分析更加复杂。当多个肿瘤克隆同时存在时,标准方法检测的要么是平均信号要么是主要的克隆群体(并不一定是最致病的)的信号。 /p p   而同时,肿瘤的异质性和癌症产生抗药性以及转移密切相关,所以,单细胞测序开始用来检测肿瘤内基因异质性,对于癌症起因以及后续治疗的研究非常关键和重要。 /p p   例如,Navin et al.(2011), 利用单细胞基因测序的方法(流式细胞术提取细胞-全基因组扩增-NGS),在某个乳腺癌肿瘤组织中检测了100个乳腺癌细胞的CNVs,覆盖度大约6%,发现了三种完全不一样的克隆亚种群。 /p p   除了肿瘤细胞,单细胞基因测序同样可以应用于循环肿瘤细胞(Circulating tumor cells)和外周血播散肿瘤细胞DTC(disseminated tumor cells),该部分内容将在后续的研究报告中深入讨论。 /p p   3.2 单细胞基因测序助力辅助生殖 /p p   PGS(Pre-implantation Genetic Screening)是胚胎注入前遗传学筛查,主要是通过检测胚胎的23对染色体结构、数目,来分析胚胎是否有遗传物质异常 PGD(Pre-implantation Genetic Diagnosis),主要用于检测胚胎是否携带遗传缺陷的基因,关于PGS/PGD的介绍,请参考我们之前的行业深度《基因+大数据的颠覆:从癌症基因测序到辅助生殖》。 /p p   PGD过程中,目前主要有三种方式获得活检材料:1)卵子的第一极体和第二极体 2)培养至第3天胚胎卵裂期的卵裂球细胞(一般取1-2个细胞) 3)培养第5天左右的囊胚细胞。 /p p   例如,牛津大学的Dr.Dagan Wells团队,通过对囊胚细胞进行单细胞基因测序,选择健康的胚胎植入。另外,谢晓亮教授团队通过对女方卵细胞极体细胞进行测序,结合胚胎选择,选择正常的胚胎移植。 /p p style=" text-align: center "   图8:卵母细胞减数分裂产生极体的过程 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/a1c2724b-0f2c-4b27-9eca-d304dccd613c.jpg" / /p p style=" text-align: center "   资料来源:Genome Analyses of Single Human Oocytes,民生证券研究院 /p p style=" text-align: center "   (注:其中PB1和PB2是第一极体和第二极体) /p p   3.3 单细胞基因测序打开免疫报多样性研究之门 /p p   用单细胞基因测序分析免疫细胞的原因是现存的多样的病原体导致了免疫细胞的高度异质性,传统的检测方法,取样来自一大堆细胞,低估了单个免疫细胞的多样性,所以我们需要更加精确检测单个免疫细胞的遗传物质,从而理解机体复杂的免疫机制。正如开篇提到的Juno收购的单细胞基因测序公司AbVitro致力于T细胞和B细胞的基因测序。 /p p   图9展示了对单个T细胞受体基因测序(TCR Sequencing)的流程。TCR & amp #945 和& amp #946 mRNA经过逆转录,扩增,重叠延伸,目的基因被选择性地进行PCR扩增以及后续的分析。 /p p style=" text-align: center "   图9:TCR Sequencing过程 /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201603/noimg/04e7c357-80bd-4709-89dc-92ee07a28fa9.jpg" / /p p style=" text-align: center "   资料来源:Pairing of T-cell receptor chains via emulsion PCR, /p p style=" text-align: center " Illumina,民生证券研究院 /p p   四. 单细胞基因测序未来的发展之路 /p p   在目前来看,单细胞基因测序还处在非常初级的阶段,也面临很多技术的挑战,包括:如何高效的分离细胞,全基因组无偏差的扩增,以及下游的数据分析等。但各大生物医药巨头都已经目光锁定了这个方向,除了今年初Juno收购AbVitro(单个T细胞和B细胞进行基因测序),去年八月BD公司收购了单细胞测序公司Cellular Research。Illumina也通过和Clontech合作,推出了单细胞RNA测序服务。 /p p   我们认为,未来的基因测序一定朝着更精准,更微观的方向前进,如今,单细胞测序正面临着一场革命,在单个细胞层面让我们在前所未有的水平理解基因组学,表观基因组学和转录组学的多样性。 /p p   背景案例: /p p   2016年1月,肿瘤免疫疗法的领头羊公司Juno宣布以1.25亿美金的股票和现金收购波士顿的一家单细胞测序公司:AbVitro Inc.。 AbVitro公司的技术起源于哈佛大学George Church的实验室,AbVitro的技术包括对单个T细胞和B细胞进行基因测序,帮助科学家们理解T细胞受体(T cell receptor & amp #945 和& amp #946 链的基因的复杂性。 /p p   图:Juno收购AbVitro之后的布局 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/6ef1eca1-dc46-4600-9c6d-d95f77a85f9e.jpg" / /p
  • 单细胞组学研究的里程碑式进展——活细胞单细胞测序技术
    单细胞测序在疾病诊断和细胞异质性研究中发挥着重要作用。然而目前的单细胞测序手段需要将细胞消化并裂解才能够进行,而细胞状态在这一操作中不可避免的会发生改变,因此很难掌握细胞真实的基因表达情况,尤其对于基因通路上表达变化的检测为不利。近期苏伊士理工大学使用FluidFM创建了一种原位活细胞基因测序方法,这种方法能够在不杀死细胞的情况下完成对细胞的测序工作。通过这种技术该团队成功完成单细胞RNA基因测序,并通过这种方法检测到了细胞的基因表达和细胞周期状态变化。下面本文就这项工作的具体内容进行阐述。1. Live-Seq测序技术简述由于单个细胞的RNA总量仅有10 pg。为了实现无损的单细胞测序,该团队先使用FluidFM对现有的scRNA-Seq单细胞测序的方法进行了优化。为了尽可能的接近Smart-Seq的测试条件,该团队采用了先将缓冲液吸入探针,然后再进行细胞提取的操作。这样可以确保所提取的RNA能够很快与缓冲液混合,从而避免RNA的降解。通过这一方法,该团队成功实现了IBA细胞的测序,证明了这种方法的可行性(图1)。图1. Live-Seq技术a. Live-Seq技术的示意图和代表图片,黑色箭头指代液面;b. IBA细胞测序的质量控制图(n=10)。2. Live-Seq技术分析细胞系和细胞状态为了证实Live-Seq的有效性,该团队对多种细胞系进行了测序,这其中包括IBA细胞、小鼠脂肪干细胞和祖细胞(ASPCs)以及脂多糖处理的RAW264.7细胞和Mock处理的RAW264.7细胞。通过对这些细胞系进行测序发现,该方法能够区分上述细胞系,并且在特征基因检测中能够找到每种细胞所对应的特征基因,证明了Live-Seq方法的有效性(图2)。图2. Live-Seq单细胞测序区分细胞型及细胞状态a. 实验方法示意图,使用LPS和PBS对RAW细胞进行处理;b. 前500个高度易变基因的tSNE图;c. 前十的细胞型、细胞状态差别基因的热图;d. 小鼠基因图谱预测,使用前100个标记基因的团簇;e. Live-Seq对比scRNA-Seq的锚点分析,显示两者没有显著差异。3. Live-Seq技术对细胞的活力基本没有影响Live-Seq技术的显著优势在于提取过程中不会破坏细胞。通过对提取前后的测序对比可以发现,提取组与空白组之间的团簇没有显著性差异。并且通过对细胞形态的观察,发现细胞的形态基本没有改变,并且多数细胞仍然能够正常分裂(图3)。图3. Live-Seq对细胞活力的影响a. 细胞实验的示意图;b. Live-Seq测序后不同时间点(1h,4h)的scRNA-Seq的tSNE图;c.不同时间点scRNA-Seq所有能够发现差异的基因(共12个);d.不同时间点的细胞形态图片。4. Live-Seq技术能够记录细胞下游分子表型事件由于Live-Seq对细胞生理状态影响小,因此能够监测在细胞代谢过程中的基因变化。通过对比LPS处理的巨噬细胞周期实验发现,Live-seq技术与对照组的细胞代谢水平相比没有明显变化,因此这种方法测量的数据十分接近细胞代谢中基因表达的真实水平。通过测序对比LPS处理与空白的测序结果发现Nfkbia与Tnf的表达为相关。这一结果也验证这种测序方法在检测细胞下游表型时的优势。图4. Live-Seq技术的单细胞纵向分析a. 实验示意图;b. 不同处理细胞的mCherry强度变化;c. 3~7.5h之间mCherry强度变化;d.Tnf-mCherry强度变化的线性回归模型;e. Nfkbia与Tnf在Live-Seq测序中的表达关系;f. Nfkbia与Tnf在scRNA-Seq测序中的表达关系;g. Live-Seq测序中细胞处于S期的评分;h. Live-Seq测序中细胞周期的mTnf-mCherry强度变化;i.Tnf-mCherry的荧光强度增量(3~7.5h)。5. Live-Seq技术对同一细胞多次测序Live-Seq技术的无损性甚至能够实现对单个细胞的多次测序。通过对单个细胞两次提取后细胞活力变化的观察中发现,细胞的活力即使在2次提取后仍没有发生明显的变化,基因型分析也没有发现明显的基因表型改变。图5. Live-Seq对细胞的多次提取j.连续测序的示意图和代表图像;k.Live-Seq的tSNE图;l.整合Live-Seq和scRNA-Seq的tSNE图。 6. 总结Live-Seq是一种十分具有前景的单细胞测序的新方法,得益于FluidFM技术的无损提取的优势,Live-Seq技术除了能够实现传统测序的功能外,还降低了细胞的损伤,能够提供更加原生和真实的测序信息。这种特点甚至让单细胞的基因表达动力学研究成为可能。相信随着这种技术自动化的提高,将为单细胞测序技术带来更多可能。 参考文献:[1]. Genome-wide molecular recording using Live-seq, Wanze Chen, Orane Guillaume-Gentil, Riccardo Dainese, Pernille Yde Rainer, Magda Zachara, Christoph G. Gäbelein, Julia A. Vorholt, Bart Deplancke, bioRxiv 2021.03.24.436752 DOI: https://doi.org/10.1101/2021.03.24.436752
  • PNAS:单细胞测序绘制大脑的细胞图谱
    斯坦福大学的著名学者Stephen Quake及其同事本周在《美国科学院院刊》(PNAS)上发表文章,介绍了人类脑细胞的单细胞转录组测序研究成果。   研究小组对近500个成人或胎儿脑细胞进行了单细胞RNA测序。利用这种方法,他们能够鉴定出大脑中所有主要的细胞类型,并确定神经元的亚型。他们还观察了神经元从早期发育到后期分化阶段的变化。   &ldquo 这些结果为构建人类大脑的细胞图谱奠定了基础,&rdquo 作者在文中写道。&ldquo 这种图谱将有助于我们确定神经元、胶质细胞和血管细胞的特定标志物,并将其与其他信息相关联,以便完全阐明人类大脑的细胞复杂性。&rdquo   人类大脑是极其复杂的。它含有许多种类的细胞,它们的基因表达模式存在差异。因标志物相对较少,传统的细胞分类方法存在限制,因此只能提供特定细胞类型的有限分子鉴定。   在这项研究中,研究人员使用了健康的神经元。它们是在癫痫的外科手术治疗过程中从人体中取得的。除了从8名成人中获得的样本,研究人员也研究了4个胎儿大脑样本中的细胞。他们总共对466个细胞进行单细胞RNA测序,以捕获成人和胎儿大脑中的细胞复杂性。   这些细胞的转录特征确定了10种类型的细胞,包括小神经胶质细胞、星形胶质细胞、少突胶质细胞、神经元、前体细胞,以及之前没有明确定义的细胞。同时,当研究人员通过特异表达的基因来分类细胞时,细胞的分类稍微少了一些。   在更精细的水平上,研究人员发现113个成体神经元细胞可分成7个子类,包括5类抑制性神经元和2类兴奋性神经元。   最后,研究人员还利用单细胞转录组学来区分小鼠和人类脑细胞的基因表达特征,以及区分成体神经元和胎儿大脑中新生的神经细胞的转录模式。例如,单个神经元的转录模式表明,胎儿大脑中的神经元细胞明显不同于成人大脑中的那些。   另一方面,一些成体神经元表达了主要组织相容性复合体I类的免疫相关基因,这些神经元因此可能有能力引起免疫应答,驳斥了神经元缺乏免疫活性的观点。   作者认为,这项工作证明了单细胞RNA测序适用于人类大脑的研究,也向构建人类大脑的全面细胞图谱迈出了第一步。
  • 温和细胞分选,开启单细胞测序成功的第一步!
    随着单细胞测序技术的快速发展,科研工作者们可对每个独一无二的单细胞进行分析,认识到细胞间的异质性,深入了解如胚胎发育早期的分化特征、肿瘤微环境中的非均质性、罕见循环肿瘤细胞的转录组等等以往传统高通量测序方法难以攻克的领域。单细胞分析的应用已进入百花齐放的时代,涵括神经生物学、癌症、免疫学、微生物学、胚胎发育、临床诊断等多个领域。单细胞测序分析的第一步,即是单细胞样品的制备,同时确保其生物完整性不被破坏。高质量的样品制备影响着后续单细胞分析成功与否。高活性、无细胞碎片且均一的单细胞悬液可使测序结果在完整性、真实性、数据可重复性得到提升。最常见细胞分离的方法可用MACS磁珠或流式细胞仪进行目的细胞分选与富集。单细胞测序流程利用流式细胞分选法富集目的细胞群体缩小研究范围,对单细胞群体可进一步精细化解读。尤其在研究罕见细胞族群,单细胞测序前先以流式细胞分选富集稀有细胞,可大大增加实验数据真实性与可靠性。现今已有愈来愈多单细胞测序研究结合流式细胞分选,筛选目的细胞、过滤死细胞减少样本中無效细胞的比例,提高单细胞文库构建的成功率以及后续的数据质量,让单细胞测序更有深度与广度分析实验数据,推动进一步研究范畴。传统高压液滴分选仪分选单细胞传统液滴式流式细胞分选(Droplet cell sorter),将目的细胞利用适宜的荧光标记。经荧光染色或标记的单细胞悬液,被高压压入流动室内,在鞘液的包裹和推动下,细胞被排成单列,以一定速度从流动室喷口喷出。通过相应荧光检测及充电,获得目的细胞,实现单细胞分离。然而操作过程中,分选的细胞相继受到高压、充电带有电荷、减压的刺激,常导致分选的目的细胞在分类过程中的损伤和溶解,活细胞回收率不高;即使回收的活细胞也因分选过程受刺激影响细胞基因转录图谱表现,无法维持其生物完整性。传统高压液滴分选仪进行单细胞分选Adapted from Technologies for Single-Cell IsolationInt. J. Mol. Sci. 2015, 16美天旎MACSQuant® Tyto® 革命性的细胞分选仪专利的微芯片技术,精准地控制阀门开合以进行细胞分选,该仪器的特性在于整个分选过程在一次性使用的全封闭样本舱(cartridge) 中进行,且无需鞘液、避免了样本污染和残留风险。上样简单、自动进行分选设置,无需操作人员进行高强度与长时间的培训就能轻松操作。由于实际分选过程都在样本舱进行,不会损失珍贵的样本材料;阳性和阴性分选组份均可在无菌洁净操作台内轻松回收。细胞不会受到高压、电荷及减压刺激,不同于传统的液滴分选仪,这种温和的分选方法可最大保持细胞活性和功能,即使经过多次分选,细胞活性也不会受影响,充分表明这种阀门介导的分选机制具有温和性质。美天旎MACSQuant® Tyto® 细胞分选仪与样本舱功能示意图。A. 美天旎MACSQuant® Tyto® 细胞分选仪;B. 样本舱;C.独特微芯片技术的分选示意图。单细胞测序前,使用美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)进行目的细胞分选富集。分选过程不受到高压、电荷、减压与剪切力刺激,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率。位于美国加州大学(University of California, Irvine- UCI)的Dr. Kai kessenbrock研究团队致力于研究机体正常组织内环境稳态和乳腺癌中的细胞通讯。他们在单细胞水平上系统性分析研究乳腺干细胞微环境(stem cell niche)中细胞通讯的机制和乳腺上皮組織内的异质性,进一步加深对早期肿瘤发生过程中系统性变化的理解;最终目的是开发用于早期检测的生物标记物以及改善乳腺癌的治疗策略。Dr. Kai kessenbrock团队在FVB小鼠取出小鼠乳腺组织,分别以美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)与传统液滴式流式细胞分选(Droplet cell sorter)分离乳腺上皮细胞(CD49f+/EpCAM+)后,标记建库并进行单细胞测序;比较两种不同的流式细胞方法分选后,所获得的测序数据真实性与可靠性,也进行分选后的细胞培养,观察细胞存活与功能。小鼠乳腺上皮细胞分离与单细胞建库 (Data kindly provided by Quy Nguyen, UCI)1. MQ Tyto可有效分选出不同乳腺上皮细胞亞型(Luminal 1, Luminal 2, Basal-like subtypes),基因转录图谱完整呈现。聚类分析与差异基因热图展示2. 经由MQ Tyto分选,每个单细胞可捕获更多的mRNA数量(UMI),获得更多可分析的基因数(Genes);显示MQ Tyto保留了细胞的完整性。质控图3. 传统液滴式流式(Droplet cell sorter)细胞分选后细胞应激基因表现明显上调。这主要是来自于细胞分选操作过程中所受到的外力刺激,而非原始组织环境细胞的真实表现。应激基因表现量展示4. 细胞分选后,持续培养七天乳腺上皮细胞并形成乳腺球(mammosphere formation)进行计数。结果显示MQ Tyto组形成更多的乳腺球,表示其MQ Tyto分选后的上皮细胞维持其功能性与高存活率。综上,利用MQ Tyto对目的细胞进行分离与富集,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率,开启单细胞测序成功的第一步。
  • 浅谈单细胞测序:相关概念及发展历程
    近期我们梳理了分子诊断技术中测序部分,测序技术根据样本类型不同包含:DNA测序、RNA测序、单细胞测序、甲基化测序等。本期开始我们将从以下几个方面逐一介绍单细胞测序技术:单细胞测序技术概念及发展历程、单细胞测序技术操作流程、单细胞全基因组测序技术、单细胞全转录组测序技术、单细胞测序技术的应用。单细胞测序技术单细胞测序(Single cell sequencing,SCS)技术是指在单个细胞水平上对转录组或基因组进行扩增并测序,以检测单细胞在基因组学、转录组学、表观组学和蛋白组学等多个组学的数据。主要涉及:单细胞基因组测序、单细胞转录组测序和单细胞表观基因组测序。单细胞基因组测序(图1A):是将分离的单个细胞的微量全基因组DNA进行扩增,获得高覆盖率的完整的基因组后进行高通量测序,用于揭示单细胞中的遗传变异,如单核苷酸变异(SNVs)、拷贝数变异(CNVs)和基因组结构变异(SVs),细胞群体差异和细胞进化关系。单细胞转录组测序(图1B):是将分离的单个细胞的微量全转录组RNA进行扩增后进行高通量测序,用于在单细胞中生成基因表达、基因融合和选择性剪接的图谱,此技术被认为是截至 2020 年定义细胞状态和表型的金标准。[1]单细胞表观基因组测序(图1C):是检测DNA序列不变的情况下表型的可遗传变化,包括DNA甲基化、组蛋白修饰、染色质可及性等。在真核生物中,5-甲基胞嘧啶(5mC) 在基因组中广泛分布,并通过抑制转座因子在调节基因表达中发挥重要作用[2]。通过对单个细胞中的 5mC 进行测序,可以揭示来自单个组织或群体的遗传相同细胞的表观遗传变化如何产生具有不同表型的细胞。单细胞亚硫酸氢盐测序是DNA甲基化研究的金标准。图1 单细胞测序技术应用范围示意图[3]A:单细胞基因组测序应用范围;B:单细胞转录组测序应用范围;C:单细胞DNA甲基化测序应用范围;为什么要做单细胞测序呢?多细胞生物在细胞的分裂和分化过程中必然会带来不同细胞间的差异,形成遗传信息的异质性。传统的检测方法获得的信息来自于数百万甚至更多细胞的混合样本,因此得到的结果反映的是一群细胞中信号的平均值,或者只代表其中占优势数量的细胞信息,导致不同细胞间异质性信息被忽视。而单细胞测序可以检测单个细胞异质性、识别稀有细胞、揭示细胞间差异情况。[4]图2 单细胞测序(上)与传统混合细胞测序(下)对比示意图单细胞测序技术发展2009年汤富酬等完成首例哺乳动物单细胞RNA转录组测序后,单细胞测序经历了十几年突飞猛进的发展,同时,随着测序技术的更新迭代,各厂商基于不同检测原理开发出的单细胞分析系统不断推陈出新,单细胞测序逐渐实现了从低通量到高通量检测的转变。2017年“人类细胞图谱计划(Human Cell Atlas,HCA)”的正式公布,是高通量单细胞研究产业化的重要里程碑。图3 单细胞研究发展重大历程[5]单细胞测序技术流程最初单细胞测序是采用不同方法将单个细胞分离出来,独立构建成文库进行测序。但此法分离细胞通量低(仅检测数十个细胞且不足以反应真实情况)且成本较高。随着测序技术的发展,出现了基于标签(barcode)的单细胞识别技术,即不需要分离单个细胞,仅需对每个细胞加上单独的标签序列,通过一次建库测序即可,此方法使得单细胞测序进入了高通量时代,单细胞分离和测序的成本大大降低。与传统混合细胞测序不同的是,单细胞测序起始样本中核酸含量极低,需要对筛选出的细胞扩增后才能满足后期测序实验,目标是在尽量减少序列扩增偏差的前提下增加核酸总量利于后续分析。单细胞测序技术操作流程包括:样本细胞筛选、核酸提取及扩增、测序文库构建、测序和数据分析。图4 单细胞测序(上)与传统混合细胞测序(下)技术流程对比示意图参考文献[1] Tammela,Tuomas Sage,Julien (2020). "Investigating Tumor Heterogeneity in MouseModels". Annual Review of Cancer Biology. 4(1):99–119.doi:10.1146/annurev-cancerbio-030419-033413.[2] Zemach A, McDaniel IE, Silva P, Zilberman D (May 2010). "Genome-wide evolutionary analysis of eukaryotic DNA methylation". Science. 328 (5980): 916-9. Bibcode:2010Sci...328..916Z. doi:10.1126/science.1186366. [3] Jialong Liang , Wanshi Cai , Zhongsheng Sun.Single-Cell Sequencing Technologies: Current and Future[J].Journal of Genetics and Genomics 41 (2014) 513-528[4] Eberwine J, Sul JY, Bartfai T, Kim J ,The promise of single-cell sequencing[J]. Nature Methods. 2014,11 (1): 25–7. doi:10.1038/nmeth.2769[5] 基因慧《2020单细胞行研报告》
  • 鸿星尔克900万跨界投资单细胞测序领域
    近日,有消息称鸿星尔克投资了某单细胞测序公司。事实上,是鸿星尔克旗下荣盛投资参与了德运康瑞的1.3亿元人民币A轮融资(荣盛投资跟投900万)。荣盛投资是由鸿星尔克品牌创始人吴荣光创立,专注于投资通过持续支持和投资可以改善人们生活的、具有革命性创新技术的生物医药公司,从而推动生命科学领域的发展。德运康瑞成立于2020年,是一家以“全链条单细胞多组学技术”为支撑的生物科技企业,依托自主创新的“单细胞富集与检测、单细胞测序、单细胞生信分析”平台,提供单细胞全场景应用解决方案。该公司通过创新上游方法学,成功突破了现有以10x Genomics和BD为代表的国际单细胞测序技术的泊松分布原理限制,有望打破国外技术的垄断局面,并助力这种精准医疗的颠覆性技术早日应用于科研、生物制药和临床等领域。该轮融资将用于加速公司多款单细胞测序技术平台(Paired-seq,Digital-seq,和Well-paired-seq)的深度研发与商业化推广落地,并通过在肿瘤、优生优育、以及生物制药领域的合作,持续挖掘基于单细胞技术的精准医疗应用潜力。德运康瑞创始人杨朝勇教授是全球最早参与开发单细胞测序核心技术和元器件的资深专家之一。杨朝勇表示:“在世界前沿科技领域,靠简单模仿国外技术的策略,往往难于获得持续发展动力并在国际竞争中立足,尤其在中国企业走向国际化和资本市场的过程中,也会面临专利上的挑战和各种风险。坚持自主创新发展模式,才有望实现中国在关键技术领域解决“卡脖子”问题,并实现超越。”德运康瑞CEO李嘉成表示:“非常感谢投资人对德运康瑞的认可和信心。本次融资后,会加大公司单细胞测序技术研发与商业运营上的投入,加快在不同应用领域的合作,推进单细胞技术在包括临床在内的不同应用场景上的数据积累。我们也即将在苏州工厂生产体系认证完成后,先期启动RareCaSt单细胞富集与检测产品的临床报证。公司还将陆续在主要中心城市建立实验室,创新性地开展一系列前所未有的基于单细胞的精准医疗应用探索,而此类用中国智慧造福人类健康的引领性工作,也是很多临床专家非常期待的事情。”单细胞测序作为可以高效检测不同细胞中基因异质性表达的工具,未来在疾病精准研究与治疗方面将具有十分广阔的应用前景。单细胞测序技术可以用于癌症、辅助生殖以及免疫学等领域,如研究癌症起因和治疗、检测胚胎是否携带遗传缺陷的基因、精确检测单个免疫细胞的遗传物质及理解机体复杂的免疫机制等。鸿星尔克投资集团选择投资单细胞测序公司,说明十分看好单细胞测序未来的发展前景和利润空间。BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。鸿星尔克投资旗下荣盛投资表示:“我们非常看好德运康瑞在单细胞测序领域的前景,其单细胞测序技术平台是国内少有的从源头创新实现突破,拥有自主专利,打破国外垄断局面并有机会实现赶超。非常荣幸能跟杨朝勇教授和李嘉成总经理为首的德运团队合作,将持续支持德运康瑞打造成为单细胞技术平台型公司,引领单细胞技术向临床市场迈进。”
  • 5家进口+N家国产,单细胞测序平台大盘点!
    2009年,单细胞测序技术问世。2013年被Nature Methods评为年度技术。2015年以来,10X Genomics、Drop-seq、Micro-well、Split-seq等技术的出现。2018年以来,以新格元为代表的国内单细胞平台如雨后春笋般涌现。Fig 0 单细胞平台一览图详细了解厂商和各家产品之前,预告一下“第六届基因测序网络大会”,会议上德运康瑞、墨卓等企业的专家代表将有精彩的分享。马上免费报名吧!报名页面:https://www.instrument.com.cn/webinar/meetings/geneseq2023/一、低通量单细胞平台低通量的单细胞平台主要是基于smart-seq2技术原理开发而来,典型代表有Fluidigm C1™ 单细胞全自动制备系统和WaferGen ICELL8® Single-Cell System两大平台。1、Fluidigm C1™ 单细胞全自动制备系统Fig1.1 富鲁达C1单细胞系统  2012年6月13日,Fluidigm 在日本横滨举行的国际干细胞研究学会 (ISSCR ) 上发布了C1™ 单细胞全自动制备系统,是真正第一个实现商业化的平台。  C1单细胞自动制备系统微流体技术,可以同时捕获多个单细胞(IFC:~96 cells;HT-IFC:~800 cells),在同一张芯片上完成细胞捕获、裂解、逆转录及预扩增的全过程,完成smart-seq全步骤的自动化。2、WaferGen ICELL8® Single-Cell SystemFig1.2 宝生物iCell8单细胞平台  2015年2月份,Wafergen公司开发出ICELL8 Single-Cell System单细胞分选平台,后被TaKaRa公司收购。  利用WaferGen Smart Chip TE平台筛选细胞,5184个反应孔,可进行单细胞RNA测序样本的制备、扩增、表达谱建库测序、生物信息分析,可快速得到样本间的基因表达差异。  每次运行可分离500~1800个细胞; 细胞的捕获效率大约37%; 细胞适用范围为5-100um; 样本通量为8(一枚ICELL8芯片上一次最多可以分析8种细胞样品); 没有整合试剂,使用Takara试剂,需进行试剂优化; 自动成像技术系统:可实现单细胞反应孔可视化; 单细胞挑选软件:只挑选活的单细胞进入后续的处理,从而可以节约反应试剂,缩短数据分析时间。[点评]:虽然低通量测序现在不是市场上的主流,但是由于其实验的精密度是非常高的,已依旧没有被社会淘汰。二、高通量单细胞平台(进口)  2017-2018年,两大商业化的单细胞测序平台(10X Genomics, BD Rhapsody)出现,最终让单细胞测序技术进一步达到更大商业化。1、 Mission bio:专注于高通量单细胞DNA测序的平台Fig2.1 Mission bio Tapestri Single-cell Multi-omics Solution  Tapestri平台基于微液滴的微流控装置,利用油包水体系对细胞进行捕获与封装。封装时,细胞和蛋白酶等会被一起装入微液滴中,每一个微液滴相当于一个微容器。之后,细胞在微液滴中进行裂解、加条形码(barcoding)等步骤,再结合靶向 PCR 扩增技术,对特定的DNA目标序列与蛋白产物进行单细胞水平的建库。建库完成后,即可进行高通量测序和后续的生物信息学分析。• 专注单细胞DNA测序。• 高灵敏度,可检测含量低至0.1%的罕见亚克隆,以及突变的合子型和突-变共发生情况。• 多种检测类型,可检测SNV、InDel及CNV等多种变异类型。• 高通量,每个样本可测量5,000~10,000细胞。• 灵活性强,可定制化设计疾病基因检测靶点及CRISPR靶点 。2、Illumina® Bio-Rad®:基于数字PCR的高通量单细胞平台  2017年1月17日,Illumina公司和Bio-Rad实验室公司在JP摩根健康大会上发布了Illumina® Bio-Rad® Single-Cell Sequencing Solution。Fig2.2 Illumina Bio-Rad Single-Cell Sequencing Solution该系统包含Illumina® Nextseq 500和Bio-Rad® ddSEQ™ Single-Cell Isolator;Bio-Rad最好的液滴分离技术,Droplet Digital™技术,可以对单细胞进行隔离和编制条形码,然后在Illumina的许多主要NGS仪器上进行下游测序。• 可一次性检测8个样本,每个样本可以得到500~10000个细胞。• 捕获效率低,仅为3%,但测序成本相对较低。3、10x Genomics Chromium 高通量单细胞平台(controller/connect/X series)10X面对市场不同的需求推出了三款仪器。最早的这一款就是chromium controller,这款仪器配备了是标准通量和低通用的两款试剂盒。2021年的时候,10X上又推出了chromium X series这款仪器,目前这款仪器也是市场主推的一款。它适配的试剂盒的规格也更丰富。Fig2.3 10x Genomics Chromium 高通量单细胞平台另外10X推出的chromium connect仪器最大特点就是它能够实现从单细胞分离以及到最后NGS文库构建的一个全流程的过程,因此更加适合于一些大通量的实验室。• 每次运行提供8个通道,每个通道可以收集100-10000个细胞。(注:Chip M是16个通道)• 每次细胞分装运行时间为18min左右;• 细胞捕获效率最高可达65%;• doublet比例为0.9%/1000个细胞;• 针对单细胞ATAC分析,线粒体污染率低于2%;4、BD Rhapsody™:基于微孔板法的高通量单细胞分析系统  BD Rhapsody™单细胞分析系统包括BD Rhapsody™扫描仪和BD Rhapsody™ Express单细胞分析系统。BD Rhapsody™ Express 系统配备的专有单细胞捕获技术,以微孔为基础,稳定,能够捕获数百到数千个单细胞并为其打上条形码,分析基因组和蛋白质组信息。BD Rhapsody™扫描仪旨在可视化单个细胞捕获工作流程中的所有步骤,为每个步骤提供详细的分析度量,以便用户在整个工作流程中做出关键决策。Fig 2.4 BD Rhapsody™单细胞分析系统• 单细胞捕获效率:最高可达~80%• 单细胞检测通量:100-40000• 双细胞比例: ~2-3% for 10k cells load; ~8-10% for 40k cells load[点评]:1)10x Genomics仍是主力军,在国内拥有众多代理商和服务商,占据着80%左右的国内科研市场份额。同时该平台近两年注重空间组学平台开发,2022年推出了一系列新产品;10x Chromium X系列产品有多种应用类型,支持低中高3通通量模式,在推广上又与之前的Controller进行联动(增加保修年限),是10x的主力机型。2)BD Rhapsody™平台坚持微流控微孔板的原理,配备有扫描仪,可以实时监测单细胞状态,保证细胞的分离捕获效率;同时其配套有抗体和流式平台,在单细胞实验的组合解决方案上有明显优势(混样、与流式仪器上下互动组合)。3)Mission Bio单细胞平台专注单细胞基因组测序,在血液肿瘤方向深耕多年,接触临床应用时间较早;近些年在逐步增加国内服务商的覆盖,已有多家知名服务商与之合作。4)Bio-Rad与illumina合作推出的单细胞建库平台捕获效率较低,市场占有率及市场声音较低。点击图片即可报名参会,8位嘉宾将带来单细胞测序内容!三、高通量单细胞平台(国产)截止到2022.12.31,国内的单细胞平台共有10个,分为微流控微孔平台(以新格元Matrix系统为代表)和液滴微流控平台(以华大C4系统为代表)。1、新格元Singleron Matrix® 自动化单细胞测序文库构建系统可完成将单细胞悬液分散到微流控芯片的高密度微孔阵列中,并自动完成细胞分离、细胞裂解、细胞标记至mRNA捕获步骤,无需实验人员干预。Fig3.1 Singleron Matrix自动化单细胞测序文库构建系统• 单个样本单张芯片可捕获细胞数量500-30000个 • 每份样本捕获效率最高可达75% • 检测1000个细胞中含有双细胞的比例低于0.2%;[点评]新格元生物是国内首家一站式全方位的单细胞整体解决方案提供商,在产品方面既有单细胞转录组、核转录组、免疫受体等常规产品,同时也有单细胞转录动态监测、单细胞糖基化、单细胞靶向基因检测试剂盒等特色产品,能够给科研者提供更加多样的组学研究选择。是国产单细胞的主要玩家之一。2、华大智造:DNBelab C4高通量单细胞平台DNBelab C4是华大智造推出的基于负压的微流控单细胞技术。小巧轻便(长230mm、宽42mm、高57mm),无需电源,重量不到220g,操作简单,可随时开始单细胞建库。Fig3.2 DNBelab C4 Pocket Single-Cell Lab• 有效捕获细胞数:1000~12000 cells/run;• 细胞直径范围:5µm-25µm ;• 多胞率(Multiplet Rate):8% ;• 捕获效率:30~60% ;3、寻因生物:SeekOne双平台体系(微孔板平台+液滴油包水平台)寻因生物有单细胞标记两大主流技术:油包水法SeekOne® DD和微孔芯片法SeekOne®MM(Microwell & Magnetic Beads)。1)微孔芯片法MM  SeekOne MM(Microwell & Magnetic Beads)高通量单细胞转录组试剂盒基于微孔技术原理,通过微孔芯片SeekOne Chip实现单细胞捕获,并利用核酸修饰的Beads 对不同细胞来源的RNA 进行分子标记,最终构建兼容Illumina及华大智造测序仪的高通量单细胞转录组文库。Fig3.3.1 SeekOne MM平台(手动法)• 单次可放置1-4张芯片,单人操作可同时处理1-4个样本;• 单张芯片微孔数:17w;• 单张芯片捕获细胞数:500-10000 cells;• 捕获率:最高可达60%;• 双胞率: 0.7% / 1000 cells;• 无需其他昂贵硬件配套2)油包水法DD  液滴油包水平台(DD)是寻因生物的主力平台,并基于该平台开发了相应试剂盒,其主要有单细胞3‘转录组试剂盒和单细胞5’免疫受体试剂盒。• 芯片通量:1~8个样本,可以拆卸不会有芯片浪费;• 运行时间:3 min生成15万个油包水液滴;• 单通道细胞捕获:500-12000 Cells;• 双胞率:0.3% / 1000 cells;[点评]寻因生物尽管对外宣称具有MM和DD双平台,但整体推广上仍侧重DD平台,并依托其可拆卸的芯片实现更加灵活的实验安排。目前该公司产品相对较单一,公司在推广上发力比较多,推出了相当多的视频专题进行客户教育,算是不错的行业先行者。4、墨卓生物在过去的2022年中,墨卓生物对外发布了单细胞液滴微流控平台及其试剂盒、微生物高通量单细胞基因组测序产品。其中单细胞液滴平台MobiNova-100引入了光激发分离(Light-CUT专利技术)原理,可以在单细胞核酸捕获阶段将分子标签与微珠进行分离,因此在实验中需要专门的配套设备。Fig4.1 墨卓生物单细胞仪器• 芯片通量:1~4个样本;• 试剂盒种类:目前仅有单细胞3‘转录组试剂盒;• 运行时间:10 min;• 单通道细胞捕获:500-20000;• 双胞率:5% / 10000 cells;此外墨卓生物还推出了MobiMicrobe 微生物高通量单细胞基因组测序解决方案及其仪器产品M1,主要是在菌株水平分析宿主-噬菌体关联信息及转录转移事件。• 样本通量:每次可处理1个样本;• 捕获通量:每个样本可捕获微生物细菌数量≥6000个;• 仪器配套高速相机,能够观测微芯片中微滴发生和融合;• 仪器配有低温存储模块能,可同时放置4个0.2 mL PCR反应管和4个1.5 mL离心管;• 仪器配有扩增模块(96x0.2ml,12x8连管或96孔 PCR板)• 仪器带有自检功能:仪器在开机和运行过程中会自动检测,遇到异常会发出报警提示。5、其他除了以上4个国产单细胞平台之外,在过去的两年中还出现过一些平台公司,他们均采用液滴法来作为技术源头,并处于早期产品阶段,以单细胞转录组、免疫受体等作为主推产品,为客户提供产品或者服务。这些厂家有万乘生物(10K genomics)、百迈克生物、跃真生物(m20 genomics)、德运康瑞、纯迅生物等。总结  截至2022年12月,目前国内市场共有2个低通量进口品牌、4个高通量进口品牌和10个国产品牌,均有各自的公司定位和产品体系以及对应领域解决方案。  纵览2022年国内市场单细胞信息,主要特点有:• 单细胞新平台频出。如墨卓,M20,百迈客均是2022年推出单细胞平台。• 单细胞平台特点突出,各有产品和市场定位,有从单品到一站式解决方法成长的趋势。• 单细胞市场更为成熟。各家单细胞平台对内完善了团队建设,对外加强服务商或产业端的合作。• 空间技术应用。10X主推空间原位,德运康瑞收购先能原位,华大和百迈客主推基于测序的空间技术。• 单细胞多组学,有单细胞平台的厂家基本在或计划开发单细胞多组学(免疫,表观,蛋白,突变,全长)产品矩阵。• 单细胞技术应用方向扩展到动物,植物,微生物。如联川,诺禾推出农口单细胞激励计划,BD联合华南农大推出经济作物单核文库构建方案。(信息来源于生物医学小站)第六届基因测序网络大会进入报名页面:https://www.instrument.com.cn/webinar/meetings/geneseq2023/点击图片报名
  • 北大教授开发单细胞全转录组测序新技术
    2014年4月29日,北京大学生物动态光学成像中心黄岩谊、汤富酬课题组在《美国科学院院刊》(PNAS)上发表题为&ldquo Microfluidic single-cell whole-transcriptome sequencing&rdquo 的论文。该研究利用微流控芯片技术实现了高质量单细胞的全转录组测序样品准备,全面提高了单细胞全转录组分析的准确性和可靠性。   细胞是生命活动的基本功能单位,而在生物体内没有任何两个细胞是完全相同的。传统的生命科学与医学研究,绝大多数情况下都是针对混合的大量细胞进行的,无法观察到单个细胞之间细微的差别。近年来不断发展的实验技术,提供了更加定量与客观的证据,表明在许多关键生命过程例如胚胎发育、细胞分化、疾病发生与发展等过程中,特定的单个细胞行为,以及其间的个体化差异与异质性,导致了极其重要甚至是决定性的结果。而之前基于大量细胞平均测量所获得的结果并无法正确反映复杂生物体系的全面真实信息,严重掩盖了独立个体样本的行为以及生命现象中大量存在的随机行为。针对单个细胞的研究,是细胞生命分析技术所追求的极限状态,是对传统技术极大的挑战。   单细胞测序利用新一代的测序技术来分析单个细胞内的基因信息,成为解读单细胞的最佳工具。单细胞全转录组测序是单细胞高通量测序需求量最大的应用,它所测定的是单个细胞内所有基因的表达量,同时还可以测定除了mRNA分子外,其他长非编码RNA(lncRNA)以及小RNA的含量,定量获取单个细胞完整的表达谱。目前采用的新一代测序技术中,绝大多数方法都需要特定的前处理过程,制备&ldquo 测序文库&rdquo 。而针对单细胞样品,已有的方法均存在很多缺陷,导致检测灵敏度不高、基因表达信息丢失严重、技术噪音高、操作失误率高、重复性差。   为了解决这一矛盾,两个课题组合作开发了新的文库制备方法,将最关键的单细胞转录组文库构建步骤集成在一个微流控芯片上,可以同时进行多个样品的操作。这一技术的开发,大大减少了试剂用量,在反应效率得到提升的同时极大地抑制了污染的发生,还减少了操作误差,实现了更高的可靠性和更好的平行性。   通过对几十个细胞的分析表明,这一方法可以有效地消除转录组高度动态特性所带来的测量差异,实现对单细胞异质性的分析和判断。通过多个细胞较低深度的转录组测序,可以获取比同等成本下单个细胞高深度测序更重要的细胞异质性信息,而更好地展现生物体系的复杂性、随机性和动态过程。而通过微流控芯片上的精确细胞操控和主动俘获过程,还可以摆脱其他类似方法中随机俘获的局限性,实现对极其少量细胞的完全俘获和反应前的表型观察,以更好地理解和验证单个细胞的异质性。与已有的技术相比,这一工作展示了目前最好的单细胞转录组测序检测灵敏度和平行性。   黄岩谊博士同时任北京大学工学院教授,汤富酬博士同时任北京大学生命科学学院研究员。黄岩谊组博士后Aaron Streets博士、赵亮博士和研究生张先念为论文的主要作者。这一工作得到了国家科技部973计划、863计划、国家自然科学基金委及霍英东教育基金会的资助。
  • 谢晓亮院士研发出单细胞测序新技术
    人类、草莓、蜜蜂、鸡和大鼠等许多生物体都已经进行过DNA测序。如果说测序个别物种具有挑战性,那么测序单个细胞的DNA无疑更难。    谢晓亮院士研发出单细胞测序新技术   为了获得足够的DNA进行测序,通常需要数以千计或甚至数以百万计的细胞。而找出哪种突变存在于哪种细胞中几乎是不可能的,只存在于少数细胞(如早期癌细胞)中的突变也基本上被掩藏。   发表在最新一期(12月21日)《科学》(Science)杂志上一项新技术为我们提供了一种拷贝DNA的途径,从而使得单细胞中90%的基因组能够被测序。这种方法使得检测单细胞中较小的DNA序列变异变得更容易,因此能够发现个别细胞之间的遗传差异。这样的差异可以帮助解释癌症恶化的机制,生殖细胞形成机制,甚至是个别神经元的差异机制。   领导这一研究是著名华人科学家、美国国家科学院院士谢晓亮(Sunney Xie)教授,谢晓亮教授出身于化学世家,其父为北大化学与分子工程学院著名教授谢有畅。谢教授毕业于北大化学系,1985年赴加州大学圣地亚哥分校攻读博士,1999年被聘为哈佛大学化学与生物系终身教授,是该校仅有的两位中国大陆的终身教授之一。目前其研究重点是单分子光谱检测及其在生命科学中的应用。谢教授曾获美国物理学会的青年光谱学家奖、以色列总统奖等多项殊荣,现已被聘为北大化学与分子工程学院客座教授。   为了测序单个细胞,研究人员必须首先利用包括PCR在内的技术生成大量的DNA拷贝。然而这些技术存在的一个缺点是:基因组的某些部分相比另一些会生成更大量的拷贝,这一问题被称作扩增偏倚(amplification bias),这会导致基因组最少拷贝的区域淹没,从而无法检测到它们。因此,大多数都尝试让单细胞测序覆盖达到平均大约为基因组的70%——而典型的大约为40%。   在新研究中,谢晓亮教授和同事们开发了一种称作多重退火和成环循环扩增(multiple annealing and looping-based amplification cycles ,MALBAC)的技术,使得他们能够测序单个人类细胞93%的基因组。在MALBAC中,研究人员首先分离出来自单细胞的DNA,然后添加称作引物的短DNA分子。这些引物可与DNA的随意部分互补,从而使得它们能够附着到DNA链上,充当DNA复制起点。   这些引物由两个部分构成——一个包含8个核苷酸的粘性部分变化多样,可与DNA结合,再加上一个包含27个核苷酸的共同序列。这一共同序列可防止DNA太多次拷贝,大大地降低了扩增偏倚。通过将自身掺入到新拷贝链,从而自身成环,防止了过度拷贝。   简易方法   “MALBAC开启了一扇通往许多重要问题的大门,”加州大学圣地亚哥分校任兵(Bing Ren)说。例如,可用它来检测突变累积的速度,寻找一个细胞群中的基因拷贝数变异和染色体异常。相比其他测序方法,它还可以帮助检测更多基因组的变异。   “我认为人们将会立即开始利用它,” James Eberwine说。Eberwine在宾夕法尼亚大学Perelman医学院从事单细胞遗传学研究。他补充说研究人员或许不得不调整条件,例如引物与基因组DNA的比率,从而能够开展实验工作。   不过,尽管MALBAC相比其他技术对基因组的覆盖更为完全,它并不完美。其仍然错过了大约三分之一的单核苷酸变异。此外,拷贝DNA的酶容易出错,因此拷贝过程本身可以引入不存在于细胞中的变异。   MD安德森癌症中心的Nicholas Navin说,谢晓亮需通过比较来自三个密切相关细胞的单个测序基因组,才能够除去所有的假阳性。这样将会增加成本,可能不适合某些组织样品。
  • 单细胞转录组测序的最新进展盘点
    单细胞转录组分析(scRNA-seq)尽管是一项相当年轻的技术,但商业化的scRNA-seq平台正在不断涌现,而生物信息学方案也越来越多。现在就让我们来盘点一下最新的研究进展。 SPLiT-seq:成本低至一美分 艾伦脑科学研究所的副主任Bosiljka Tasic指出,全基因组的单细胞分析目前很受欢迎。它让人们了解整个系统中的单个组分,也就是单细胞。与PCR和原位杂交等技术不同,全基因组分析无偏向地告知了细胞正在表达什么,而不需要你去选择分析什么。 现在有许多平台和技术可用于制备测序用的单细胞RNA。这些技术大体是在微孔板的各个孔中分离单个细胞,或者使用微滴来充当单个细胞的反应室。无论采用哪种方式,Tasic认为关键是在分析的某个时刻将细胞分离并添加条形码,这样才能将RNA序列分配到它们当初来源的那个细胞。 Bosiljka Tasic联合华盛顿大学的Georg Seelig团队开发出一种称为SPLiT-seq的技术,其中细胞本身作为反应室。这种技术将细胞或细胞核固定,以便捕获RNA,不过洗涤试剂可以进进出出。通过一系列合并和分离的步骤,它开展逆转录并连接条形码标签,最终进行裂解和PCR(使用条形码引物)。 SPLiT-seq技术于今年3月发表在《Science》杂志上。据Tasic介绍,这是一种低成本的技术,每个细胞的建库成本低至一美分(约合人民币七分钱),大大降低了实验室开展单细胞分析的门槛。“真正强大的是它几乎无需任何特殊仪器,”Tasic补充说。 研究团队利用SPLiT-seq技术对出生后第2天和第11天小鼠大脑和脊髓组织的细胞核进行分析。他们成功地鉴定出100多种细胞类型,其基因表达模式与细胞功能、区域特异性和分化阶段相对应。这些数据可用于创建基因表达图谱,与艾伦研究所的其他参考图谱互补。snDrop-seq:单核RNA测序 加州大学圣地亚哥分校的张鹍(Kun Zhang)团队则关注人体组织的单细胞分析。“你需要将细胞彼此分离,才能开展各种单细胞分析,”他说。不过,大脑组织很难解离,“这就使结果存在很大的偏向性,因为有些细胞分离,而有些细胞则彼此相连。相比之下,提取完整的细胞核则相对简单”。 他们采用了一种经过改进的snDrop-seq方案,希望破坏微滴中的核膜,并尽量避免RNA降解。“常规的Drop-seq或10X Genomics方案不行,因为膜不会破裂,”张鹍解释说。目前有几种方法可以完成这项任务,比如改变微流体芯片,让核膜在机械力作用下分解。“我们实际上提高了温度来破坏核膜。” 他们同时开展了snDrop-seq和scTHS-seq,后者为染色质开放性检测。“这使得我们能够在RNA水平和染色质水平上比较这些单细胞,”张鹍指出。他们能够重建各种脑细胞的表观遗传图谱,并利用单细胞多组学方法将风险因素与特定的细胞类型相关联,了解神经元、小胶质细胞和少突胶质细胞对阿尔茨海默病、自闭症或精神分裂症等病的贡献。Smart-seq2:处理少量样本 Wellcome Sanger研究所的Adam Reid及其同事想要了解疟疾生命周期中的遗传控制。 通过测序不同步的单细胞并分析转录组,他们发现寄生虫阶段的发育实际上有很大的变化。“如果对大量RNA进行测序,这一点并不明显,”研究人员谈道。 他们对低通量的Smart-seq2方案进行了修改,目标是分析每个阶段的100个细胞。 Reid表示,与高通量的10X Genomics或Drop-seq平台相比,“你可以获得更多关于哪些基因表达以及表达丰度如何的信息”。 引起疟疾的疟原虫非常小,含有极少量的RNA,并且基因组偏向性非常明显,GC含量 低至20%,而哺乳动物大约是35-40%。因此,建库的试剂往往不能很好地发挥作用,不过通过增加PCR循环次数和尝试不同的酶,研究人员还是很好地解决了这一问题。生物信息学工具:ASAP 人们也许会对scRNA-seq望而却步,因为需要购买复杂的仪器和掌握生物信息学流程。有时,生物学家和信息学家之间的沟通“非常糟”,瑞士生物信息学研究所的负责人Bart Deplancke回忆说。在准备开展脂肪组织的单细胞转录组学研究时,他们有许多数据集需要处理,却发现其合作者往往无法开展。 于是,他们着手安排合作,让两类研究人员能以更直观的方式观察和处理数据。他们开发出一个名为Automated Single-cell Analysis Pipeline(ASAP)的平台。这是一个基于Web的完整流程,提供了标准工具,包括过滤、降维、聚类、差异表达和功能富集。它能够与各种数据库交互,并以2D或3D显示结果。“对于每个步骤,我们都提供了基本教程,它将告诉你每种分析工具能做什么,”Deplancke说。 他指出,“即使是生物信息学家也很喜欢用,因为它能够快速处理和查看数据。然后他们与生物学家一起观察数据,提出一些新的假设,并通过实验或计算手段来进一步证明它。”
  • 一文读懂基于长读长技术的单细胞全长转录本测序
    单细胞全长转录本测序的价值单细胞测序技术为基础科研、临床诊断、药物研发等领域带来了诸多全新发现视角。现阶段主流的单细胞测序,大多是通过单细胞捕获设备获得cDNA文库后进行打断、扩增、建库,并用二代建库测序分析基因的整体定量。然而,基因在不同组织、不同细胞亚群中会使用mRNA的不同转录本,SNV、融合基因等结构变异也具有组织和细胞特异性,此外,科研界研究比较热门的lncRNA,在不同组织细胞亚群中也具有特异性的表达。这些基于全长序列方面的信息,是目前单细胞二代测序无法获取的。主要原因是目前基于二代测序的单细胞数据局限于3' 或5' 端的150-250bp,较难满足这类需求。而传统的Smart-seq虽然可以实现全长转录本覆盖,但需要经过拼接组装分析转录本结构,且通量较低,成本较高,研究单细胞可变剪切仍然较为困难。由于二代测序读长较短,三代测序如PacBio、Nanopore等技术以其长读长的优势解决了这一痛点,因此,如果能将二代测序与三代测序相结合,既能获得mRNA的全长序列,并通过Cell Barcode信息定位到细胞亚群,即可解决了这一单细胞研究领域的痛点。但是,在前期测试中发现,二代单细胞测序一般获得约3万个基因的表达矩阵,三代全长测序能获得超过10万个转录本的表达矩阵,两套数据的聚类图谱差异巨大,现有的分析流程并未很好地解决两套数据的一致性匹配问题。因此,如何能从庞大的二代+三代,也即基因+转录本的单细胞数据中,挖掘到有价值的特异性转录本,可以为单细胞临床转化、药物靶点发现带来更加细致的挖掘角度。及智医学团队出身单细胞科研服务行业,重点围绕单细胞富集与检测平台、单细胞测序技术平台和基于AI算法的单细胞数据分析算法平台,建立了单细胞转录组、空间转录组、单细胞联合Bulk多组学等多种独特的分析流程和方法,尤其擅长各类免疫细胞与基质细胞的分类、功能解析、细胞互作、药物靶点筛选等分析项目。最终通过积累的上百种单细胞分析方法与百万级别单细胞数据库,为单细胞临床转化类项目提供专业研发服务。及智医学团队生信专家通过高效的自动化分析脚本,并历时数月的二代+三代单细胞算法测试,目前已经解决了二代+三代单细胞聚类的诸多分析难点。伯豪生物基于十多年的单细胞组学服务经验,可提供从样品保存、运输、单细胞悬液制备,到单细胞分选、建库和数据分析的解决方案。及智医学与伯豪生物强强联合,正式推出单细胞全长转录本测序服务,即单细胞cDNA水平的转录、遗传变异研究,通过一次捕获,两种建库,同时获得单细胞聚类与转录本信息:目前,该技术方向为如下科研问题,提供了潜在的解决办法:发现携带特定突变的细胞,并与非携带突变细胞相比,挖掘基因表达规律挖掘功能基因,如膜蛋白、分泌蛋白、转录因子等的转录本使用情况,并发现全新功能转录本发现融合基因所在细胞亚群,研究它们与其他肿瘤细胞的拟时序分化关系发现亚群特异性全新IncRNA获得亚群特异性表达的转录本,能够辅助小核酸类药物开发企业,针对该特异性转录本设计siRNA干扰片段,提升小核酸干扰靶点的有效性。案例解析2021年11月11日,来自澳大利亚 沃尔特-伊丽莎霍尔医学研究所的Tian等人开发了一种基于Nanopore测序和10x Genomics的全长转录组单细胞测序方法,分析单细胞中的全长异构体、可变剪接和突变检测。研究成果发表在国际知名期刊Genome Biology(IF=13.6),论文题目为“Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing”。文章中,使用10x Genomics技术分选得到单细胞的全长cDNA后,将cDNA一分为二,一份进行打断建库用于二代测序,另一份进行全长扩增建库用于Nanopore三代测序。此时Nanopore的文库上也包含了细胞Barcode,后续可以通过分析流程将三代测序和二代测序结果通过细胞Barcode一一对应。通过这样的方式,即实现了获得全长转录本,分析亚群的特征性转录本使用,并同时拿到了突变所在细胞。文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)通过聚类分析发现,CLL(慢性淋巴细胞白血病)细胞相比正常免疫细胞具有更高比例的新型转录本,特别是新型剪接的转录本。同样,相比激活的干细胞,静态肌肉干细胞也有更高比例的新型转录本(图 D)。分析发现,约80%的基因可以表达多种转录本(图E),但是大多数基因主要表达1到2种转录本类型(图F),约30%的基因含有多于一种的可变剪接事件,意味着2个最高表达的异构体可能涉及多个外显子的复杂剪接变化而产生不同。文章通过分析CLL数据,检测到CD45的多种亚型(图G),CD45的表达通过CITE-seq进行验证。CITE-seq可以同时检测RNA和细胞表面蛋白,这种方法结合三代测序,可以对细胞表面蛋白进行更深入的分析和探索。对CLL数据集进行分析,寻找只存在于癌细胞中的,且在不同的CLL转录簇中具有不同等位基因频率的SNVs,通过经典的曼哈顿图最终发现四个变异在不同的CLL聚类呈现显著差异(图C,D)。其中发现的Gly101Val突变,此突变已被证实通过降低BCL2对venetoclax的亲和力而使患者对venetoclax治疗产生耐药性,通过分析发现患者CLL2携带约25%的Gly101Val突变,并发现该突变不仅属于亚克隆,而且与特定的转录簇相关(图E)。样品选择与实验细节由于单细胞全长测序需要对mRNA反转录后的cDNA全长进行测序,核心是需要将完整的全长cDNA扩增至2ug的 Nanopore建库起始量,而常规单细胞是将一链cDNA做基础扩增后全部打断用来做建库测序,因此,这一验细节就意味着单细胞全长测序需要额外质控。本文也从如下四个方面给出一些基础建议:样品选择悬液质控文库质控单细胞测序剩余样品用于新的科研发现一:样品选择常规单细胞测序样品来源分为新鲜采集与液氮速冻两种类型,两种类型的样品需要两种处理方式,新鲜采集样品需要在48h内制备悬液并上机,液氮速冻样品需要将细胞膜破碎,丢弃细胞质,分离提取细胞核,用单个核来做单细胞测序。不过,由于细胞核里面的RNA大多为初始RNA,包含有较多内含子,而从初始RNA加工为成熟mRNA的过程大多发生在细胞质中,因此,抽核类的项目并不太适用于单细胞全长测序。虽然在2022年7月份一篇Nature Biotechnology的文章是对人脑抽核后的单细胞样品进行三代全长测序,不过由于拿不到成熟mRNA,文章是站在了特定基因在不同亚群的外显子保留这样的科研角度统计规律(如下图)。文章角度非常新颖,也是科研界首次用单细胞全长测序发现人脑中,某些基因在不同亚群中,使用不同的外显子组合,生成多种编码蛋白。不过,由于最终拿到的仍旧是细胞核内的RNA,后续还需要大量验证工作,因此抽核后做单细胞全长测序的临床转化价值较小。所以,单细胞全长测序的项目最适宜采集新鲜样品制备细胞悬液,捕获成熟mRNA开展后续验证工作。经三代单细胞全长测序发现CADM1基因在人脑神经元(兴奋性、抑制性)、星胶、小胶、少突细胞亚群中,会使用不同的外显子组合。原文也有用蛋白质谱技术对这些外显子的多肽产物进行验证的工作二:悬液质控在收集到新鲜样品之后,可以使用商品化的新鲜组织保护液将样品在24h-48h内从临床运输至实验室进行悬液解离,并通过显微镜、细胞计数仪检测悬液质量。由于全长单细胞对RNA质量要求较高,比较建议悬液活率在85%以上,同时用台盼蓝、AO/PI双染鉴定,并用显微镜仔细观察细胞真实活率、红细胞比例(红细胞在光镜下,可以观察到圆饼状的亮圈,中间有黑色小点,有经验的单细胞实验员可以通过肉眼观察判断出来,而不少品牌的细胞计数仪有可能会把红细胞计算为碎片,甚至检测不到)。另外,现阶段二代单细胞测序,单个样品的数据量大多为100G,可以容纳5000-8000左右的细胞捕获量;而三代测序成本较高,站在节省经费的角度,建议一方面准确的对细胞悬液的浓度进行测定(不可单纯依靠细胞计数仪),来控制上机细胞总数(建议上机不超过1万个细胞);同时也要结合不同品牌单细胞捕获设备的真实捕获率(这点最好找成熟单细胞科研服务公司来完成)来进行综合判定(建议捕获不超5000个细胞,如果超过5000需要增加三代测序数据量)。三:文库质控单细胞全长转录本测序,只需要一次捕获,拿到一链cDNA之后要立刻进行全长扩增,如下图:因此,就需要将已扩增好的cDNA全长进行质控:如上图,cDNA条带主峰在1-1.5kb左右,下一步可以联系三代测序工厂寄送样品,由他们进行建库测序。但是,也要测序工厂及时反馈三代文库的质检图片,要求文库主峰与cDNA条带主峰一致,方可进行正式的Nanopore上机测序实验。四:单细胞测序剩余样品用于新的科研发现由于现阶段三代全长测序的准确性不够高,考虑到后续验证工作,比较建议在单细胞上机之后,将剩余的细胞样品进行冻存,从DNA、RNA、蛋白三个层面开展后续验证实验:01DNA水平:在我们前期测试中发现,三代原始数据中基因单核苷酸结构变异SNV(RNA层面的SNP、Indel)较多,为了拿到准确的,与DNA层面一致的突变信息,就需要结合DNA层面的检测来共同筛选核心突变。有两种做法:第一:同时将肿瘤患者的外周血和单细胞实验剩下的肿瘤细胞做全外显子测序(两个样品的市场价合计不超5000元),通过 肿瘤组织测出来 的突变 扣掉 自身PBMC 的胚系突变,可以得到体细胞突变,将这些突变 基因位点作为核心突变,利用自动化脚本,提取 三代数据中的原始 reads,这些reads都带有的 Cell barcode信息可以定位到突变所在的细胞与亚群!即可通过拟时序算法分析突变细胞vs非突变细胞的发育分化轨迹。第二:做全基因组重测序(可以根据具体课题决定是否还需收集PBMC),发现拷贝数变异CNV,以及融合基因信息,将这些信息与三代全长进行联合分析。后续分析内容也极为丰富,可以展开多个科研角度的解释。02RNA水平:在三代全长拿到特征性转录本之后,还需要做后续验证,如果序列较少,可以通过5' RACE、3' RACE实验拉全长获得准确序列;如果候选转录本序列较多,也可以通过Pacbio直接做 Bulk 测序(可以混样测一份即可,目的是拿到序列),再结合单细胞全长转录本的特异性表达规律,可以快速、低成本获得这些序列的完整信息,下一步即可通过构建动物模型,开展功能验证工作。03蛋白层面:现阶段的单细胞测序大多是以基因作为靶点,但是从已经发表的上万篇单细胞数据中,也经常发现基因的表达特异性并不强,这个是现阶段单细胞测序需要升级改进的核心关键点。而在真实组织中,基因在不同亚群中使用不同的转录本编码多种蛋白产物。有了单细胞全长转录本技术,也就意味着可以将靶点发现从基因细化为转录本,挖掘转录本的蛋白编码产物。因此,临床转化最核心的一步:膜蛋白层面,可以依靠全长转录本获得一些全新的发现。现有的蛋白质质谱技术无法做到 针对单个细胞进行广泛的蛋白质检测,但是蛋白质的编码序列都是从RNA层面的转录本翻译过来,转录本序列的检测比蛋白质的检测要容易很多。所以,这个里面就依托一套简单的逻辑:从DNA到RNA到蛋白的中心法则,即可做到通过单细胞全长转录本测序,发现亚群特异性转录本,再将转录本序列预测的多肽产物与蛋白质谱打出来的多肽产物进行匹配,发现一条潜在的转录本+编码产物,即为一条新型潜在靶点。其实,在肿瘤新抗原发现领域,这套序列预测+质谱检测的策略已经非常成熟并且较为实用,因此,可以基于中心法则将这套成熟策略转用到单细胞全长转录本发现新型蛋白编码产物领域。总结综上所述,单细胞全长转录本更适合做新鲜样品,整体实验过程并不复杂,基本上现阶段单细胞科技服务类公司都能实现,只需要在几个细节上稍加注意即可。总结下来,单细胞全长测序的本质只是对转录本加了 细胞亚群 的标签,方便从数万条转录本快速筛选到特异性表达的少数转录本。这个并不是一套全新开发的技术,只能算是从DNA到RNA到蛋白的一整套符合中心法则的单细胞多组学的技术方案。在我们前期拜访前沿课题组的过程中,有不少研究员曾想过这样的方法,只是行业内缺乏前人尝试。我们深入思考过这些细节后,发现这套方案从样品的选择、测序实验、数据呈现,均比现阶段的单细胞二代测序更加实用,更加贴近临床转化。从另外一个角度,转录本是基因功能实现的最小细分单位,针对转录本研究的单细胞全长测序,算得上是转录组研究领域的终点站。
  • 约稿|单细胞基因组测序技术及其在生物医学领域的应用
    人体组织器官由具有不同细胞类型的异质细胞群组成。传统批量测序(Bulk Sequencing)方法仅能捕获器官与组织群体细胞成分的平均水平,或者只代表其中占优势数量的细胞信息,单个细胞独有的特性常常被忽略。近年来,随着单细胞测序(Single-cell sequencing)技术的发展,实现了单个细胞水平上DNA或RNA的测序,从而能够特异和精准地探索单个细胞的基因变异水平,弥补了传统批量测序的不足[1]。图1. 单细胞测序与传统批量测序比较[1]单细胞基因组测序技术,是在单细胞水平对全基因组进行扩增与测序的一项技术,广泛应用于癌症研究、胚胎发育、辅助生殖、细胞分化、免疫机制、微生物等生物医学方向的研究。本期主要对单细胞基因组测序的技术原理、技术流程、技术平台及其在生物医学领域的应用实例做简单介绍。技术原理单细胞基因组测序的原理是将分离的单个细胞的微量全基因组DNA进行扩增,获得高覆盖率的完整的基因组后进行高通量测序,揭示细胞间异质性的基因信息。技术流程单细胞基因组测序主要包括四个步骤,即单细胞分离→全基因组扩增→高通量测序→数据分析。目前单细胞基因组测序技术的发展依然面临两方面的技术挑战:一是易于分离和操作的单细胞分离工具(即第一步);二是能够稳定复制单个细胞中微小核酸的方法(即第二步)[2]。2.1 单细胞分离从组织中将单个细胞分离出来是单细胞基因组测序的第一步。目前常用的单细胞分离方法主要有:有限稀释法、显微操作法、流式细胞分选术、激光捕获显微切割技术(LCM)、微流控芯片技术等,表1总结了上述提到的单细胞分离方法的原理和优缺点,在使用时可根据不同的科研需求及样品情况综合考虑选择适宜的分离方法[3,4]。表1. 单细胞分离技术分离方法原理优点缺点有限稀释法对细胞进行一系列的倍比稀释,最终使细胞处于单个状态,理论上每μL约1个细胞,然后用移液器吸取相应容积的细胞悬液进行单细胞分离。操作简便;成本低,一般不需要特殊的设备。分离效率低;需要研究人员排除大量空白孔和多细胞孔,费时费力;细胞分离过程依赖梯度计算,容易出现错误。显微操作法在高倍倒置显微镜下,利用显微镜操作器(手动或自动)实现单细胞分离。能够准确地控制单细胞的吸取与释放;可以从不同的发育阶段或多样化的群体分离单个细胞。通量低,需要大量的起始量;细胞特异性由显微镜决定,并利用微量移液管分离,可能不够准确。流式细胞分选术通过流式细胞仪,根据细胞特异性分子标志物或细胞光散射特性,分选出单个细胞或特殊细胞群,实现单细胞分离。通量高;基于细胞表面标志物的特异标记,能够确保特定细胞的分离;利用荧光标记可分离亚群。无法扩展到大规模项目;且需要流式细胞仪,设备昂贵。激光捕获显微切割技术(LCM)在显微镜下,从冰冻/石蜡包埋组织切片(或细胞固定在装配有可以激光脉冲激活的热塑膜的涂片)中分离某一类型细胞群或单个细胞,实现单细胞分离。无需解离组织,制备细胞悬液;能够直观准确、快速地获取单个细胞或单一细胞亚群;能够保留所分离细胞的完整性。需要适当的组织处理(冷冻保存或固定);显微切割可能存在挑战;小的细胞可能难以分离;可能存在污染。微流控芯片技术通过微流控芯片隔离流动通道中的单个细胞从而达到单细胞分离的目的。通量高;上样体积小;周期短;可根据细胞表面标志物分离特定细胞。细胞大小必须均匀;消耗品昂贵。2.2 全基因组扩增(Whole-Genome Amplification , WGA)全基因组扩增是单细胞基因组测序的第二步。由于单个哺乳动物细胞中DNA的含量一般少于10pg,达不到测序仪的检测要求,因此在测序之前必须进行全基因组扩增(WGA)以获得足够的材料用于后续的文库制备。目前常用的全基因组扩增方法按原理可分为三类(见表2)[5-7]:基于聚合酶链式反应(PCR)的WGA方法{主要是简并寡核苷酸引物PCR(DOP-PCR)}、多重链置换扩增法(Multiple Displacement Amplification , MDA)和多重退火环状循环扩增技术(Multiple Annealing and Looping-Based Amplification Cycles,MALBAC)等。表2. 全基因组扩增技术DOP-PCRMDAMALBAC原理基于PCR技术,通过加入部分简并的寡核苷酸引物与模板结合来实现扩增整个基因组的目的。基于恒温核酸扩增技术,恒温条件下,使用一条由6个随机碱基构成的随机引物与模板随机退火;紧接着在具有链置换活性的DNA聚合酶作用下发生链置换反应,并最终完成扩增。结合了MDA法和PCR扩增法的特点,即由一组随机引物启动扩增(每个引物具有通用引物序列和随机碱基),随机引物与模板均匀杂交,随后在具有链置换活性的DNA聚合酶作用下发生链置换反应,最终完成扩增示意图特点该方法实现了高度均匀的扩增,产物产量较高,操作较为简单;但仅产生基因组的稀疏覆盖,实验的条件需要较多优化。 MDA可以实现更好的基因组覆盖,产物片段长;但对模板质量要求高,可能产生非特异性产物。一种实现基因组广泛覆盖和均匀扩增的技术,灵敏度高,产物产量高。技术平台:目前,国内外研究机构使用的大规模单细胞测序技术平台主要有五种:Illumina® Bio-Rad® Single-Cell Sequencing Solution、BD Rhapsody™ Single-Cell Analysis System、10x Chromium Single Cell Gene Expression Solution、ICELL8 Single-Cell System和C1™ 单细胞全自动制备系统。国内也有多家企业进军单细胞测序领域,产品包括新格元自动化单细胞处理系统、万乘基因高通量单细胞测序平台、达普生物星海单细胞测序建库系统、墨卓生物高通量单细胞测序平台、德运康瑞痕量单细胞测序平台和原位测序平台等。各个平台各有特点,这里主要简单介绍一下两种应用较多的技术,即10X Genomics 公司的Chromium( 液滴法) 及 BD 公司的Rhapsody( 微孔法)。10x Genomics单细胞测序技术:10X Genomics单细胞测序起源自Drop-Seq技术,应用液滴微流体技术分选单细胞,将单个细胞与含有条形码(Barcode)和引物的凝胶珠一起包裹于油滴中;然后每个油滴中的凝胶珠溶解, 细胞裂解释放mRNA,通过反逆转录产生用于测序的带条形码的cDNA,cDNA在液体油层破坏后进行文库构建,使用测序平台对文库进行测序检测,即可一次性获得大量单细胞的基因表达数据。该平台具有“三高(high)两低(low)”的特点:即通量高,细胞捕获效率高,细胞活性要求高(大于90%),分析时长低,成本低。 图2. 10X Genomics Chromium Controller技术原理示意图3.2 BD Rhapsody单细胞测序技术:BD公司推出的这款Rhapsod™单细胞分析系统采用了Cytoseq分子标签技术,能为单细胞中每个转录本标记特异性分子标签,实现单细胞水平上基因表达谱的绝对定量。同时,将每个细胞标记上特异性细胞标签,实现了高通量平行建库。该技术在基因扩增和后续的测序部分等整体流程与10x Genomics单细胞测序技术相近,主要区别在于起始的单细胞分离和捕获技术。该技术并非基于微流控芯片技术,而是基于蜂巢板技术,基于微孔来保证单细胞的捕获,避免了10x Genomics单细胞测序技术中存在的概率碰撞对捕获效率从影响。细胞悬液经注入孔注入后,自然沉降到反应孔中,随后, 将磁珠同样由注入孔注入,即可在单个反应孔中捕获其中的细胞。微孔和纳米孔方法允许稀释的细胞悬浮液在每孔一个珠子和一个细胞的条件下与寡聚结合珠一起沉降到皮升大小的孔中,从而保证了单孔中是单细胞捕获。 图3. BD Rhapsody技术原理示意图4、应用实例:目前,单细胞基因组测序技术的应用可以归纳为两大类,即应用于人类细胞图谱研究和非细胞图谱研究。单细胞基因组学的优势就在于能够揭示单个细胞的基因结构和基因表达状态,反映细胞间的异质性。自2017年“人类细胞图谱计划”提出以来,单细胞测序技术已陆续揭示了多个组织器官的单细胞图谱,如通过对肾脏肿瘤进行单细胞测序,发现肾肿瘤细胞之间的突变频率和位置不尽相同,每个细胞的突变状态和转录情况也均不相同,表明肾肿瘤更加具有异质性,需要开发更加有效的细胞靶向疗法。2022年发表在Nature杂志上的研究,对人脑血管系统的单细胞图谱进行了分析,描绘出海马和皮质的脑血管细胞组成:内皮细胞、相邻的壁平滑肌细胞 (SMC) 和周细胞、血管周围的免疫细胞和星形胶质细胞等,这些细胞在大脑不同区域存在差异并沿动静脉轴变化,沿动静脉轴的细胞组成异质性产生了大脑健康所必需的功能分段的循环、代谢和渗透特性。揭示了人类大脑血管系统的细胞组成和分子特征,提示了阿尔茨海默病(AD)风险因素在人类中的进化转变,有助于对人类大脑健康基础的了解、疾病机制和治疗靶点的发现[8]。随着单细胞基因组覆盖范围扩大、通量提升以及多组学技术的不断进步,单细胞基因组学技术将为丰富发育谱系树、生殖细胞突变模式、癌症进化、基因组功能和微生物群落的分辨研究等提供策略[9]。参考文献:[1] Xia Y, Gawad C. Bringing precision oncology to cellular resolution with single-cell genomics[J]. Clinical and experimental metastasis, 2022(1):39.[2] Liang J, Cai W, Sun Z. Single-cell sequencing technologies: current and future. J Genet Genomics. 2014 Oct 20 41(10):513-28. doi: 10.1016/j.jgg.2014.09.005. Epub 2014 Oct 18. PMID: 25438696.[3] Wang Y, Navin N. Advances and Applications of Single-Cell Sequencing Technologies[J]. Molecular Cell, 2015, 58(4):598-609.[4] Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for Single-Cell Isolation. Int J Mol Sci. 2015 Jul 24 16(8):16897-919. [5] Gawad C, Koh W , Quake S R. Single-cell genome sequencing: current state of the science[J]. Nature Reviews Genetics, 2016.[6] Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015 Nov 5 163(4):799-810.[7] 徐晓丽 吴凌娟.单细胞全基因组扩增技术与应用.[J]生物化学与生物物理进展 .2019.46(4)[8] Yang A C , Vest R T , Kern F , et al. A human brain vascular atlas reveals diverse mediators of Alzheimer's risk[J]. Nature, 2022, 603.[9] Evrony G D, Hinch A G, Luo C. Applications of Single-Cell DNA Sequencing[J]. AnnualReview of Genomics and Human Genetics, 2021, 22(1).相关会议推荐:第六届基因测序网络会议来袭!六大会场,含单细胞和空间组学会场,点击下图免费报名!点击链接进入会议官网:https://www.instrument.com.cn/webinar/meetings/geneseq2023/
  • 墨卓生物“牵手”百奥智汇,专注单细胞测序技术
    6月24日,第六届清华校友三创大赛健康医疗全球总决赛天使组一等奖——墨卓生物与百奥智汇达成战略合作,两家校友企业基于“利用前沿技术,服务人类健康”的共同价值追求,充分发挥各自优势,为用户及合作伙伴提供高质量的服务和解决方案,共同推动单细胞测序技术在生物医学领域的应用与临床转化。墨卓生物今年4月15日已发布了高稳定、高性价比的MobiNova® 单细胞解决方案,方案包括MobiNova® -100自动化仪器、MobiCube® 单细胞转录组试剂盒和生信分析软件,全面覆盖单细胞测序上游实验和数据质控需求。MobiNova® -100平台上将搭载单细胞(核)转录组、免疫组、ChIP-seq、微生物单细胞等多组学解决方案。MOBINOVA-100单细胞测序建库系统(点击查看)百奥智汇凭借国际领先的单细胞大数据分析挖掘及强大的算法开发与运用能力,建立了国际上先进的单细胞组学数据库OmniDatasets、一站式单细胞数据分析软件OmniAnalyzer® Pro及单细胞大数据可视化分析&挖掘平台OmniBrowser™ ,可提供全球领先的单细胞测序技术一站式解决方案。基于本次合作,墨卓生物和百奥智汇整合双方优势,共同为全球范围内的科研用户提供从实验到数据分析的单细胞测序全流程科研服务。同时,百奥智汇成为墨卓生物全球首席数据分析战略合作伙伴。未来,双方还将利用单细胞测序技术,共同发起国际单细胞研究领域的合作项目,用单细胞测序技术助力人类健康研究。墨卓生物创始人兼CEO裴颢博士表示:“百奥智汇在单细胞数据分析方面拥有超强技术实力和丰富的经验,通过我们的测试发现一站式单细胞数据分析软件OmniAnalyzer® Pro产品操作简单,功能齐全,分析结果可靠,可以完美复现CNS文章结果,在很大程度上解决了广大科研用户的分析困扰。此次非常荣幸能有机会与百奥智汇深度合作,百奥智汇在单细胞数据分析方面的深厚积累和墨卓优越的单细胞测序平台的联合,一定将会让单细胞测序技术更好的助力人类健康、造福社会。”百奥智汇联合创始人、首席运营官洪涛先生表示:“百奥智汇在单细胞数据分析与大数据挖掘方面拥有核心竞争力,一直致力于将单细胞机理研究平台与生物信息学大数据/AI平台应用于人类疾病的诊断与治疗,为单细胞测序技术走向临床做先锋探索。”关于墨卓生物墨卓生物的单细胞产品性能优越,同时能显著降低单细胞测序成本,未来更将兼容FFPE样本。墨卓生物的微生物单细胞测序技术,也将在肠道微生物临床领域有巨大应用潜力。墨卓和百奥的合作能够发挥彼此在单细胞研究领域的优势,创造1+12的效果,为科研、临床工作者提供更强大的技术支持。”墨卓生物创立于美国波士顿,落地中国浙江,汇集了由国际一流科学家和跨国医疗器械公司高管等组成的一批优秀人才。墨卓致力于用创新微流控和单细胞测序技术赋能科学研究与精准医疗。目前已经成为拥有微流控、测序、生化、硬件开发、生信等关键技术,推出单细胞测序与数字PCR双技术平台,在液体活检、伴随诊断、生命科学研究等多领域并行发展的科研+IVD解决方案领跑者。关于百奥智汇百奥智汇是一家生命科学技术公司,致力于将单细胞机理研究平台和生物信息学大数据/AI平台充分应用于癌症等重大人类疾病的诊断和治疗。通过创建人类疾病的精准细胞图谱,充分利用自身强大的科研能力、自有平台和数据,百奥智汇将寻找具突破性的疾病诊断和治疗靶标、开发颠覆性的治疗方法。
  • 助力单细胞测序 清华张强锋团队开发出数据在线整合的AI算法
    随着单细胞测序技术的发展,单细胞科学研究不断深入,规模越来越大,所研究的对象也越来越复杂。整合来源不同的单细胞测序数据,消除批次效应,进行全面挖掘和解析,是现在单细胞测序数据分析的一个基础和核心环节。目前单细胞测序数据整合面临以下几方面难题:1)不同实验样本、实验平台、建库方法乃至操作等因素带来的批次效应会在单细胞测序数据中引入非生物学噪音,干扰细胞间生物学差异的提取和解析;2)单细胞研究的规模不断扩大,百万细胞数目级别的数据对整合算法的效率提出了更高的要求;3)单细胞测序样本的类型也在不断增加,不同的单细胞测序数据集通常包括高度异质的细胞亚群;4)最后也是最新最重要的一点,如何充分重复利用大量已有数据的旧知识,对新数据进行探索和解析。目前单细胞测序数据整合算法大多基于不同批次数据间的细胞相似性来矫正批次效应,存在过度整合(尤其是整合细胞异质性差异较大的数据集)、可扩展性差、无法直接将已有模型应用到新数据集上等弊端。10月17日,清华大学生命科学学院/结构生物学高精尖创新中心/清华-北大生命科学联合中心张强锋副教授课题组在《自然通讯》(Nature Communications)杂志在线发表题为“通过将异构数据集投影到统一的细胞嵌入空间中进行单细胞测序数据在线整合”(Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space)的研究论文。在该研究中,他们开发了基于变分自编码器(variational autoencoder)深度学习框架的人工智能算法SCALEX,可以对单细胞测序数据进行在线整合。SCALEX采用一个批次无关的编码器和批次特异的解码器组成的非对称自编码器结构,进行大量学习得到一个高泛化性的编码器,该编码器通过将高维单细胞测序数据投射到低维细胞嵌入空间(cell embedding space),在保留生物学差异的同时消除批次效应。SCALEX 模型框架SCALEX主要有以下四点主要特征:1)相较于目前已有的单细胞测序数据整合方法,SCALEX在整合准确性上具有明显优势;2)SACLEX在百万单细胞数据量下仍保持很高的计算效率,适用于超高通量单细胞测序数据整合分析工作;3)SCALEX有效避免了单细胞测序数据整合中的过校正情形,适用于异质性高、复杂样本的整合;4)支持单细胞RNA-seq,单细胞ATAC-seq等多组学整合数据整合。这些特征使得SCALEX适用于构建单细胞图谱。开发人员整合多项研究、多个组织的单细胞数据集构建了小鼠、人以及COVID-19等三套大规模单细胞图谱。SCALEX有一个特殊的优势,就是它的高泛化性的编码器。这个编码器可以通过单细胞测序数据投射,生成一个批次无关的统一低维细胞嵌入空间。对于新产生的数据,SCALEX不需要重新训练编码器,就可以将新数据投射到这个统一的低维细胞嵌入空间。这种整合方式被称为“在线整合”(online integration)。在线整合带来一个巨大的好处,就是很容易将新数据与原来生成的单细胞图谱等奠基性数据(需要由通过SCALEX数据整合生成)进行比较分析,从而从奠基性数据得到生物学知识方面的启发和指引,直接支持数据注释、规律验证等分析任务。另外,原有单细胞图谱的细胞内涵也在不断添加新数据的过程中,得到丰富和扩充,赋能新的生物学发现。综上所述,该研究中,研究者们开发了SCALEX单细胞测序数据人工智能分析工具,可以将不同批次细胞的基因表达谱映射到批次无关的统一低维细胞嵌入空间中,有效消除数据中的批次效应并保留细胞间固有的生物学差异,实现不同批次数据的有效整合。SCALEX适用于图谱级别的单细胞测序数据整合,将在整个生命科学和生物医学领域正在进行的超大规模单细胞图谱等研究计划中提供基础支持。清华大学生命科学学院张强锋副教授为本文通讯作者,清华大学生命科学学院2015级博士生熊磊(已毕业)和2018级博士生田康为该论文共同第一作者,2019级博士生李雨哲和2021级博士生宁微希对文章中的数据分析提供了重要帮助,百图生科(BioMap)研究院主任AI科学家、阿卜杜拉国王科技大学计算生物学家高欣教授参与合作研究。本工作得到国家重点研究发展计划专项、国家自然科学基金、北京市结构生物学高精尖创新中心、清华-北大生命科学联合中心、清华大学计算平台、上海期智研究院和阿卜杜拉国王科技大学研究管理办公室的支持。原文链接:https://www.nature.com/articles/s41467-022-33758-z
  • Illumina、Juno等技术巨头为啥同时下注单细胞测序?
    p   2016年头两个月,有一项技术受到了异乎寻常的关注。先后有多家生物技术公司将触手伸到在这一技术领域,包括测序巨头Illumina、CAR-T治疗巨头Juno、测序黑马10X Genomics、以及业务大而全的华大基因。 /p p   它们关注的这项技术叫单细胞测序。单细胞测序往简单了说就是对人体的单个细胞测序。 /p p style=" text-align: center " img width=" 450" height=" 344" title=" 1.png" style=" width: 450px height: 344px " src=" http://img1.17img.cn/17img/images/201602/noimg/ea717be4-8c55-4230-8cd6-d7d1ed8e89ee.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   早在160年前,德国著名医学家、科学家Rudolf Ludwig Karl Virchow就认为,疾病不是某种器官整体的病变导致的,单个细胞才是疾病的基本单位。然而,一直到现在,各种疾病检测和诊断还是基于一块组织或者一管血液,根本就没有顾及各种细胞之间的差异性。 /p p   现在的基因测序更是存在这种弊病。取一块组织提取总DNA,然后测序分析。实际上,这种测序过程得到是个平均结果,并没有反应身体的实际情况,那些含量较少的变异基本都被“平均掉了”。 /p p   单细胞测序能做的就是,把病变组织的所有细胞全都测一遍,这样一来,就可以全面掌握疾病的信息,甚至可以预测疾病的发展动向。这就是单细胞测序的使用价值。 /p p   在大概了解单细胞测序之后,再来看看这些生物技术巨头打算拿这项技术做什么。 /p p    strong Illumina携手Bio-Rad进军单细胞测序 /strong /p p   2016年1月11日是西历的“小光棍节”,就在这一天,Illumina和Bio-Rad宣布合作开发一项单细胞测序流程。 /p p   本次合作中双方优势互补,利用Bio-Rad一流的微滴分液技术和Illumina领先的NGS(next-generation sequencing)技术,开发出一款可以分析单个细胞遗传信息的新技术。 /p p   目前合作双方没有公布具体的合作细节,具体的解决方案将在2016年底或者2017年初公布。 /p p   实际上Illumina与Bio-Rad的合作更多的是希望将困难重重,费时又昂贵的单细胞测序技术提升到一个新台阶,使科研人员在认识人体发育和疾病发生上取得新的突破。 /p p    strong Juno为掌握单细胞测序收购AbVitro /strong /p p   还是在西历的“小光棍节”这一天,“不甘寂寞”的Juno宣布收购了AbVitro,理由是Juno看中了AbVitro世界领先的单细胞测序平台。 /p p   我们都知道Juno现在是CAR-T免疫治疗领域的一哥,它为什么想要掌握单细胞测序技术呢?Juno认为,装备了AbVitro世界领先的单细胞测序之后,它的CAR-T免疫疗法就可以称霸天下了。 /p p   传统的细胞免疫治疗在寻找结合靶点时也会忽略掉那些含量很低的靶点,然而最终可能就是这些被“平均掉”、“覆盖掉”的靶点,成为癌症复发转移的关键,正所谓“此消彼长”。 /p p   Juno打算利用AbVitro的单细胞测序技术尽可能多的分析癌细胞上的靶点。从理论上讲,如果可以找到癌细胞所有的靶点,免疫疗法就可以干掉所有的癌细胞,这样就可以有效的避免癌症的复发转移。这就是Juno的野心。 /p p    strong 10X Genomics推出单细胞测序新产品 /strong /p p   2月11日,基因测序领域的黑马10X Genomics宣布推出旗舰级测序新品Chromium,Chromium最为耀眼的功能是可以实现单细胞测序。Chromium是10X Genomics为大型专业实验室打造的一款测序设备,定价为12.5万美元,目前已经开始接受预定,预计7月底发货。 /p p   实际上早在2月9日,10x Genomics就跟Qiagen和Illumina达成了合作意向。Chromium平台正是10x Genomics与Qiagen先进技术结合的产物。 /p p   strong  华大基因获得一项单细胞基因组分析美国专利 /strong /p p   1月19日,美国专利局公布了华大基因申请的一项单细胞基因组分析技术专利,专利号为9238840。 /p p   早在2012年,华大基因在就在单基因测序上取得了不小的突破。当年3月份,华大在一期《细胞》杂志上同时刊登两篇单细胞测序的研究成果。华大的研究团队研发出了一种分析单细胞基因组的新方法,并将这种方法用于癌症的异质性研究。为从单核苷酸水平深入研究癌症发生、发展机制及其诊断、治疗提供了新的研究思路并开辟了新的研究方向。 /p p   从上述公司对待单细胞测序的态度中,我们可以看出,单细胞测序将促进我们对人体发育以及疾病生成的认识。这无疑将进一步提升未来疾病治疗的精确度。 /p p    strong 单细胞测序——精准医疗的入场券 /strong /p p   从1660年荷兰科学家列文虎克(Antony van Leeuwenhoek)发明显微镜以来,人类才对微观世界有了认识。直到1850年,德国医生Rudolf Virchow才将单细胞异常与疾病建立起联系(1)。然而,由于种种技术手段的制约,这种联系在随后的160多年间,并没有被有效的利用起来。 /p p   直到2005年,NGS技术的出现,单细胞测序技术才应运而生。2009年,现任北京大学研究员的汤富酬完成了世界首例单细胞RNA测序,两年后,冷泉港的Navin完成了世界首例单细胞DNA测序。汤和Navin等的研究直接促成了单细胞测序技术的诞生,在2013年单细胞测序技术全面爆发,被《科学》杂志评选为“2013年最具发展前景的六大科学项目之一” 2014年初,又被《自然方法》评为“2013年度技术”(2)。 /p p   哈佛大学终身教授、北京大学生物动力光学成像中心(Biodynamic Optical Imaging Center,BIOPIC)主任谢晓亮认为,从生物学和医学的角度讲,有四个问题需要单细胞测序解决(3):1)有些非常珍贵的研究材料数量非常少,例如卵细胞和循环肿瘤细胞(CTC) 2)有些细胞基因组差异非常大,例如精子 3)随着时间的推移,一些细胞在分裂中会发生变异,所以组成同一个器官的细胞基因也存在差异 4)同一个病变组织中的细胞存在异质性,例如癌组织的异质性是癌症复发转移的主要原因。 /p p style=" text-align: center " img width=" 600" height=" 258" title=" 2.png" style=" width: 600px height: 258px " src=" http://img1.17img.cn/17img/images/201602/noimg/d73cd00f-bfb3-4e94-a81c-9cb4d244f14a.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   随着人们逐渐意识到单细胞研究对认识人自身以及疾病的重要性,单细胞测序技术的诞生恰逢其时。目前单细胞测序已经广泛用于微生物学、神经学、人体发育、免疫、癌症、辅助生殖等领域的研究。其中癌症与辅助生殖研究已经用于临床。 /p p   在癌症诊治的临床应用中,利用单细胞测序分析癌组织遗传物质的变化可以更加准确的诊断癌症发生的原因,为治疗提供更加精准的靶点信息。同时,利用单细胞测序技术分析血液中罕见的CTC遗传信息的变化,可以有效监测肿瘤的变化。 /p p   在辅助生殖的临床应用中,结合了单细胞测序技术的胚胎植入前遗传诊断(preimplantation genetic diagnosis,PGD)和胚胎植入前基因筛查(preimplantation genomic screening,PGS),可以有效的避免试管婴儿的出生缺陷。我国在这一领域已经走在世界前列。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201602/noimg/18ea81fc-499e-4c14-b667-d5a9ebca7a07.jpg" / /p p   目前公认的最先进的单细胞测序技术为哈佛大学谢晓亮团队研发的MALBAC(multiple annealing and looping-based amplification cycles)技术。MALBAC技术由亿康基因科技有限公司引入中国。2014年9月19日,世界首例经MALBAC单细胞测序技术完成的单基因遗传病和染色体异常筛查的试管婴儿在北京大学第三医院诞生。截止目前已经有数个家庭受益与这一技术。 /p p   据北京大学报道,中国医学科学院院长曹雪涛认为,谢晓亮的MALBAC技术能够改变整个生物医学,其对未来精准医学的发展和应用的贡献是不可限量的。 /p p   实际上,单细胞测序是对精准医疗的一次纵深。这也是近期生物技术公司在该领域动作密集的主要原因。 /p
  • 青岛能源所发明简易高效的单细胞分选与测序对接技术
    为了满足考察自然界中细胞“原位功能”这一共性科学需求,“现场”、“实时”的单细胞分选与测序已成为生命科学装备研制领域的一个重要发展趋势。尽管第三代测序技术已实现仪器微型化,但与测序对接的单细胞精准分选装备却仍然相当笨重和昂贵,难以支撑各种科学考察中针对微生物组功能的现场分析。最近,中国科学院青岛生物能源与过程研究所单细胞研究中心研究员马波带领的微流控系统团队,通过设计简易高效的单细胞分选与测序对接装置,实现了每个试管有且只有一个细胞(One-Cell-One-Tube),有望服务于“现场”、“实时”乃至“便携式”的单细胞分选与测序。  与人体和高等动植物细胞相比,微生物细胞通常更小(0.1-10 微米),更加难于精准操纵,因此分离获取目标单细胞、并且实现测序反应要求的“One-Cell-One-Tube”是一个关键难点。目前的自动单细胞分离方法大多依赖于昂贵且体积庞大的荧光流式细胞分选仪(FACS),而现有的手动单细胞分离和测序方案在依赖于操作人员熟练程度的同时,同样需要显微单细胞移液平台、激光光镊等同样难以随身携带的大中型仪器。此外,单细胞分选及核酸制备过程极易受到环境中飘浮微生物及其DNA的污染,而且这种污染通常难以在测序数据处理环节完全去除。因此,尽管目前MinION等第三代测序仪已经实现了便携化,微生物单细胞分选和测序仍然操作繁琐、污染干扰严重,难以满足要求。  针对上述挑战,青岛能源所单细胞中心张强和王婷婷等发明了一种名为“FOCOT”(Facile One-Cell-One-Tube的缩写)的方法,能够精确、高速、低成本地分离、获取与分装单个微生物细胞,从而与单细胞测序直接对接。该方法具体为:首先,通过微流控技术,将细胞分散包裹在数十微米直径的油包水微液滴中 其次,基于液滴显微光学成像识别技术,分选出单细胞包裹液滴 第三,将单细胞包裹液滴顺序分布于系列试管中,从而快速实现单个细胞的分离,以及每个试管有且只有一个细胞,以实现与单细胞全基因组扩增与测序的直接对接。  FOCOT平台主要有三个特色。第一,在简易方便方面,FOCOT平台除自行设计的芯片之外,仅需要电磁阀、平板电脑和普通光学显微镜,不需外接任何高成本商品化仪器平台,具有易获取、易替换、低成本等优势。同时,模块化、小型化、操作简便的设计使得该装置适合在自然环境实地采样条件下的携带、装配和使用,也几乎不需要额外的人员培训和技术维护,因此尤其适用于面向各种极端自然环境的科学考察,也有利于在普通实验室的推广应用。第二,在分选高效方面,FOCOT平台通过显微镜下对包裹有单个细胞的液滴的准确识别和分选,能有效避免假阳性 而且其20秒/个的分选速度,与显微单细胞移液、激光光镊等现有的商品化分选装备相比具有明显优势。同时,单细胞获取率高于90%,培养成功比例至少80%,证明该方法能有效避免芯片表面吸附所导致的输运过程中细胞流失,而且对细胞活性没有或较小损伤。第三,在污染控制方面,FOCOT平台涉及部件少,体积小型化,相对封闭,因此在实验过程中能够方便地实现超洁净环境空间控制、芯片消毒等操作,严格控制环境DNA的污染。对分离获取的单个酵母细胞进行全基因组扩增与测序后结果显示,99%的有效序列可以与参考基因组匹配,表明该方法能有效避免环境中微生物带来的DNA污染,平均基因组覆盖率达到43.3%,与在昂贵的超净空间设施中采用FACS等大型仪器系统分离获取单细胞所获得的测序结果相当。  目前,通过耦合FOCOT与中心前期开发的单细胞拉曼成像、拉曼流式细胞分选等技术,单细胞中心正在构建一个服务于岸基、船基乃至手基等不同需求的非标记式单细胞分析装备体系,以服务于能源、环境、健康、海洋、土壤等诸多微生物组应用领域。  相关研究论文发表在《科学报告》上。研究工作由单细胞中心马波和徐健共同主持完成,获得了国家基金委科学仪器基础研究专项、面上项目和中科院生物高通量分析技术服务网络(STS)等项目的支持。  论文信息:Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep, 7:41192, DOI: 10.1038/srep41192。FOCOT方法示意图
  • 美国科学院院士谢晓亮:单细胞全基因组测序曙光初现
    谢晓亮   12月21日出版的美国《科学》杂志发表了题为《单细胞全基因组测序探索精子重组规律和遗传缺陷》的论文。同时,该期《科学》杂志也将单细胞全基因测序列为2013年六大值得关注的科学领域之一。   该论文由美国科学院院士、哈佛大学教授谢晓亮课题组与北京大学生物动态光学成像中心(BIOPIC)研究员李瑞强课题组等联合完成。谢晓亮在接受《中国科学报》记者采访时表示,这项工作首次实现了高覆盖度的单个精子全基因组测序,构建了迄今为止重组定位精度最高的个人遗传图谱,这一技术方法在男性不育症研究和肿瘤早期诊断及个体化治疗等生物医学领域有着广泛的应用前景。   谢晓亮指出,单细胞DNA扩增技术和高通量测序技术的发明,使得测序单个细胞(精子)的基因组成为可能,利用单细胞全基因组测序技术来研究人类的染色体重组规律,具有以往技术无法比拟的优势。   首先,精子是天然重组产生的单倍体,取材方便,而且一个人身上可取的精子数量几乎是无限的,可以很容易地研究个人水平的重组分布规律 其次,单细胞全基因组测序技术提供了最高的分子标记密度,减少了偏差,能够得到最为精确的片段交叉重组定位结果,可以非常清晰地揭示片段交叉重组的分布以及个人水平上重组率的分布规律 第三,测序技术本身具有高通量、自动化等特点,随着未来测序成本的进一步降低,可以对一个人更多的精子进行测序,从而获得精度更高的个体特异性的重组率分布图谱,也可以通过比较很多人的精子来研究重组率分布在不同个体之间的差异。   据谢晓亮介绍,以往对人类染色体重组的研究,由于受到实验技术的限制,分辨率一直都比较低,此外由于一个家庭内的孩子数目有限,以往的研究都是在群体水平上开展的,而无法开展个体水平的遗传重组规律研究。   需要注意的是,重组率在整个基因组中并非均匀分布,而是集中在一些散布的狭小区域内,且不同物种之间以及相同物种的不同个体之间都可能存在明显差别。其中,为什么基因区附近的重组率会降低,成为长期困扰学术界的一个难题。   研究人员使用新近发明的MALBAC扩增技术,对一个亚洲男性的99个精子进行了单细胞全基因组DNA扩增,并且利用HiSeq高通量测序技术对每个精子分别进行了一倍深度的测序,其定位精度远远超过几个月前斯坦福大学一个小组的报道。研究人员首次发现,基因区附近重组率的降低由分子机制所决定,而非自然选择的结果,从而一举解决了多年来困扰学术界的生物学难题。   谢晓亮强调,单细胞全基因组测序是一种先进的技术方法,在未来生物医学研究中大有“用武之地”。   例如,谢晓亮等人在此次精子测序结果中发现,有5%的精子基因组是非整倍体的,而非整倍体会造成严重的先天性出生缺陷。因此,利用单细胞全基因组测序技术,有望揭示更多的导致男性不育症的原因。   谢晓亮还指出,已有的研究表明,基因或基因组变异是肿瘤发生的根本原因,利用单细胞全基因组测序技术,可以对获取的肿瘤细胞进行更为精确和深入的分析,了解癌细胞的基因如何突变,以及肿瘤的来源、属于哪种基因型等,为早期检测和诊断肿瘤和肿瘤的个体化治疗提供指导。
  • 2018单细胞测序应用领域突破性成果盘点
    p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/62139129-db23-4bbb-8cbc-637d0cd43a9b.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-indent: 2em " 自2009年单细胞测序技术问世,2013年单细胞测序技术被Nature Methods评为年度技术以来,它越来越多被应用在科研领域。 strong 2015年以来随着10X Genomics、Drop-seq、Micro-well、Split-seq等技术的出现,彻底降低了单细胞测序的成本门槛 /strong 。自此单细胞测序技术被广泛应用于基础科研和临床研究,相应成果也备受CNS青睐,文章如雨后春笋般频频出现在高分杂志。2018年单细胞测序技术的研究成果涉及到 strong 肿瘤微环境、免疫治疗,动植物胚胎发育,心血管疾病的发生发展机制 /strong 等众多领域,单细胞检测新技术也是层出不穷,博奥晶典日前对该领域的突破与变革进行了盘点。 br/ /p p    span style=" color: rgb(192, 0, 0) " strong 单细胞测序之肿瘤微环境 /strong /span /p p    strong span style=" color: rgb(0, 112, 192) " 1. Nature及Nature Medicine两连发:北京大学张泽民教授课题组重磅解析结直肠癌和肺癌免疫微环境 /span /strong /p p   2018年6月、10月张泽民教授课题组分别在Nature Medicine和Nature发布重大研究成果,在单细胞水平绘制肺癌和结直肠癌T细胞免疫图谱,揭示了肺癌和结直肠癌T细胞的亚群分类、组织分布特征、肿瘤内群体异质性及药物靶基因表达情况,鉴定了跨组织分布的T细胞类群及亚群间潜在的状态转换关系,这对于肺癌和结直肠癌的诊断和治疗具有重大意义。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/7906f0e2-5b3c-41f4-99ad-85ed22ec68c2.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 258" border=" 0" vspace=" 0" style=" width: 600px height: 258px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 2. Cell:美国研究团队绘制目前规模最大免疫细胞图谱,探索乳腺癌免疫微环境 /span /strong /p p   2018年8月23日,美国纪念斯隆-凯特琳癌症中心团队,使用单细胞转录组测序,分析了人乳腺肿瘤以及配对的正常乳腺组织,外周血和淋巴结4个组织来源的共47016个免疫细胞的基因表达特征。揭示肿瘤内淋巴细胞和髓系细胞的异质性,与正常乳腺组织相比表现出显著的表型扩增。这种异质性通过各种环境刺激反应引起的组合基因的表达,且TCR的特异性参与了T细胞组合基因表达的形成。所观察到的T细胞状态的连续性变化颠覆了之前较少分化或激活离散状态形成的肿瘤微环境的经典概念。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1aec8376-6555-4e79-bf34-d215a679860b.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 3. Cell:以色列研究团队使用单细胞转录组测序揭示黑色素瘤肿瘤浸润T细胞的转录组异质性和分化途径 /strong /span /p p   2018年12月,以色列Ido Amit实验室李汉杰博士等通过对25名黑色素瘤患者肿瘤中免疫细胞的单细胞转录组测序和单细胞TCR测序分析,绘制黑色素瘤详尽的免疫细胞图谱。该研究发现尽管不同免疫细胞亚型存在于大多数患者中,但是它们的相对丰度在不同患者中存在很大差异。此外,尽管丰度不同,所观察到的CD8T细胞的的分化途径却是高度保守的。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/4bcc0345-c9ed-4d27-b43f-7651eb206877.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 单细胞测序之人脑“中央处理器” /span /strong /p p    strong span style=" color: rgb(0, 112, 192) " 1. Nature:中国科学家王晓群等人首次解析人脑“中央处理器”,领先美国脑计划 /span /strong /p p   2018年3月,中国科学家团队在国际顶级期刊Nature发表重要研究成果,研究团队使用单细胞转录组测序分析了2300多个来源于8~26孕周、尚处于发育阶段的人类前额皮质细胞。该研究明确了细胞构成、重构了这些神经细胞类型之间的发育谱系关系,比美国“脑计划中的细胞图谱部分”快了一步。 这为解答前额叶皮层如何参与“思考和思想形成”这一关键问题的后续研究提供了高精度的细胞图谱,是前额叶皮层发育研究史上的重要突破和重大进展。 /p p    strong span style=" color: rgb(192, 0, 0) " 单细胞测序之细胞图谱 /span /strong /p p   自2017年,“人类细胞图谱计划”开展以来,2018年进展神速,3月,Sanger研究所官网宣布,完成了25万个发育细胞测序。研究成果已经陆续Online,为我们后续使用单细胞测序开展研究提供了丰富的数据资源。 /p p   strong span style=" color: rgb(0, 112, 192) "  1. Science:7万个肾组织单细胞测序数据,揭示肾癌细胞身份标签 /span /strong /p p   2018年8月10日,英国剑桥大学韦尔科姆基金会桑格学院研究所在Science发表题为“Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors”的文章,该研究通过分析72501个肾组织细胞的转录组数据特征,并结合了对应肾癌组织的全基因组测序数据,鉴别了正常的肾细胞和癌变的肾细胞,精确地解释了人类肾癌各组分及对应的细胞特征。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/8896820f-d722-4fc0-b39e-f63910fef3e3.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p    strong span style=" color: rgb(0, 112, 192) " 2. Nature:7万个单细胞测序数据,绘制了人类妊娠6-14周胎盘最详细细胞图谱 /span /strong /p p   2018年11月15日,英国剑桥桑格研究所的研究人员在Nature上发表了题为“Single-cell reconstruction of the early maternal–fetal interface in humans”的研究成果,该研究对妊娠早期(6~14周)胎盘的约7万个细胞进行单细胞转录组测序并绘制了胎盘细胞图谱,为理解人类妊娠早期胎盘的细胞组成和细胞通讯带来了新见解。此外,这项研究还探索了对妊娠成功至关重要的维持生理环境稳定的机制。 /p p   该研究发现了个别细胞亚群的特化功能,并鉴定出了可能有助于使有害母体免疫反应最小化的调控互作。此外,该研究还鉴定出了蜕膜自然杀伤细胞(dNK,decidual natural killer)的三个主要亚群。在初次妊娠期间,dNK1亚群细胞与特定的胎盘细胞之间的互作可能使dNK1细胞能够更加有效地应答再次妊娠时的胎盘植入。这些发现为理解早期妊娠提供了重要信息,对提高妊娠相关疾病的诊疗具有一定意义。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/08298ac6-3361-4cbf-9217-6a11afe3c76c.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 3. Cell:1500个样品的单细胞测序数据,构建出人类迄今最详尽免疫细胞图谱 /span /strong /p p   2018年11月15日,美国拉霍亚免疫学研究所的研究人员在Cell发表了题为“Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression”的研究成果,并构建了DICE数据库(https://dice-database.org/)分享他们的数据,通过该数据库,全世界的科研学者可以探究这些数据,探究他们与基因、细胞类型或者疾病存在的关联。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/9da30748-f8a7-477a-abb6-0790852c2691.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p    strong span style=" color: rgb(192, 0, 0) " 单细胞测序之胚胎和组织器官发育 /span /strong /p p   一个受精卵,如何从单细胞发育分化为不同的细胞类型,一个成熟的组织或者器官又是如何一步步发育而来,一直是个未解之谜。单细胞测序的出现为解开这些谜团提供了强有力的工具。 /p p    strong span style=" color: rgb(0, 112, 192) " 1. PNAS:10X 平台国内首篇科研论文,发现肺泡发育和再生的新机制 /span /strong /p p   2018年2月,北京生命科学研究所的汤楠、蔡涛团队,使用单细胞转录组测序技术在肺泡发育和再生研究领域取得突破性进展,发现肺泡I型细胞(ATI)在肺泡发育和再生过程中存在异质性,lgfbp2是一种高度特异性的AT1细胞终末分化标记,为肺部疾病和肺再生功能的遗传和细胞机制提供了重大参考。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/6d766f8d-6e2d-489d-ad72-6ae591c3374e.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 600" height=" 257" border=" 0" vspace=" 0" style=" width: 600px height: 257px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 2. 3篇Science长文:揭开早期胚胎发育神秘面纱 /span /strong /p p   2018年4月26日,哈佛大学的科研团队在Science杂志同时发表三篇文章,用单细胞转录组测序技术绘制了斑马鱼和非洲蟾蜍胚胎发育过程的细胞图谱,研究成果为我们理解发育生物学提供了重大线索。 /p p   通讯作者之一Allon Klein在哈佛医学院官方新闻中表示,“通过单细胞测序技术,我们现在可以在一天的工作中重复出过去数十年来关于生命早期阶段细胞命运决定的研究(With single-cell sequencing, we can, in a day’s work, recapitulate decades of painstaking research on the decisions cells make at the earliest stages of life)”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/7199c918-8557-4804-a0b8-343c3ef1c1a0.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p    strong span style=" color: rgb(192, 0, 0) " 单细胞测序之单细胞转录组测序新技术 /span /strong /p p    strong span style=" color: rgb(0, 112, 192) " 1. Cell:浙江大学郭国骥团队创建基于Micro-well单细胞检测技术,绘制国际首张哺乳动物细胞图谱 /span /strong /p p   2018年2月23日,浙江大学医学院郭国骥团队在Cell杂志发表了题为“Mapping the Mouse Cell Atlas by Microwell-seq”的科研论文。该研究成果利用实验室自己开发的一套Microwell单细胞测序检测技术,对小鼠近50种组织器官的40多万细胞进行了单细胞转录组测序,绘制了国际首个哺乳动物的细胞图谱。该技术不仅提高了单细胞技术的检测丰度,检测费用相对于油滴包裹的单细胞测序技术降低了一个数量级。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b9f8b3e8-619e-4ac4-b9c6-65ac2dda25ff.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" text-indent: 2em " 基于Micro-well的单细胞转录组测序技术原理 /span /p p    strong span style=" color: rgb(0, 112, 192) " 2. Science:SPLit-seq将单个细胞的转录组测序建库成本降至1美分 /span /strong /p p   2018年3月16日,美国艾伦研究所和华盛顿大学的研究团队在Science发表科研论文,该技术通过成本低廉的组合条形码原理,将单细胞转录组测序成本降低到1美分,从而使单细胞转录组测序这个高大上的技术彻底“平民化”,再一次打破了单细胞检测的费用门槛。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1f6830ff-bda2-4278-aa44-55dbeea3ceb6.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 单细胞测序之单细胞其他组学检测技术 /span /strong /p p   2018年单细胞检测新技术频出,为我们更好认识细胞和开展单细胞水平的研究提供了丰富的解决方案。 /p p    strong span style=" color: rgb(0, 112, 192) " 1. BD公司单细胞靶向基因检测方案推出,灵活的订制体系为单细胞检测技术走向转化提供了温床 /span /strong /p p   2018年1月,BD公司基于Micro-well检测原理推出BD Rhapsody单细胞测序平台,靶向基因的检测更有利于低表达基因的检出。针对乳腺癌、免疫反应、T细胞、干细胞等设计了多个Panel,大幅降低了单细胞测序检测费用,使得单细胞测序技术走向临床转化成为可能。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c5ded522-4d7b-4c03-a023-d7c5fac06a79.jpg" title=" 12.jpg" alt=" 12.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p    strong span style=" color: rgb(0, 112, 192) " 2. 10X Genomics单细胞CNV解决方案推出,助力大规模单细胞基因组检测 /span /strong /p p   2018年6月,10X Genomics公司推出单细胞CNV解决方案,该方案基于Droplet的原理可以并行分析数千个细胞的单细胞DNA,并通过基因组比对获取每个细胞在基因组不同位置的倍性。该解决方案使单细胞基因组学研究得以加速,从单个细胞到群体单细胞研究。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/53fff5ce-65fd-4f2e-a9c1-a731846e73c3.jpg" title=" 13.jpg" alt=" 13.jpg" width=" 600" height=" 169" border=" 0" vspace=" 0" style=" width: 600px height: 169px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 3. BD公司Abseq检测技术,推动单细胞表面蛋白检测 /span /strong /p p   2018年9月,BD公司利用其多年在流式检测和抗体检测的经验,推出单细胞细胞表面蛋白解决方案,BD Abseq assay。该技术将高质量的抗体和寡核苷酸结合在一起,使得科研人员能够在BD平台开展单细胞表面蛋白的检测。此外,通过改进该技术还可以与单细胞RNA同时检测,完整揭示出单个细胞内基因和蛋白在生物学系统中的作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c066cdd1-360d-4789-b890-ab55f1299506.jpg" title=" 14.jpg" alt=" 14.jpg" width=" 600" height=" 300" border=" 0" vspace=" 0" style=" width: 600px height: 300px " / /p p    strong span style=" color: rgb(0, 112, 192) " 4. 10X Genomics单细胞检测技术与ATAC-seq强强联合:推出首个大规模单细胞表观遗传学解决方案——单细胞ATAC检测技术 /span /strong /p p   Science和Nature在2015年分别发表了《通过标记组合细胞研究单细胞染色质可及性》和《单细胞染色质可及性揭示转录调控机理》两篇文章。这两篇论文先后提出利用单细胞ATAC-seq技术对染色质可及性进行检测,探索细胞转录调控机制,解决了以往存在的细胞异质性难题,成为ATAC-seq技术的一大突破。 /p p   2018年10月,10X Genomics单细胞ATAC-seq解决方案正式推出,其基于10X Genomics Chromium平台,在单细胞水平对细胞染色质开放区域进行检测的新技术。可用于绘制细胞染色质开放区的单细胞图谱,是一种单细胞水平研究表观遗传学的有效手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/56d308fc-04d3-40fe-a076-aac1026893ba.jpg" title=" 15.jpg" alt=" 15.jpg" width=" 600" height=" 293" border=" 0" vspace=" 0" style=" width: 600px height: 293px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 5. The Scientist评选2018年十大创新技术,10X Genomics单细胞免疫组库检测技术荣获第4 /span /strong /p p   2018年12月,在10X Genomics公司先后推出针对人和小鼠的单细胞TCR+BCR检测方案后,科学家杂志对此给予高度评价,年底的十大创新技术评选中,该技术荣获第4。单细胞免疫组库检测除了可以获取单细胞的基因表达数据外,还可以获取编码免疫细胞表面受体(TCR/BCR)的基因序列信息,借此我们可以轻松地获取到一个细胞内的α链β链,以及重链轻链的组合信息,为我们更为全面的认识免疫细胞提供了精细准确的解决方案。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b35a2172-9071-4a63-995f-c7547c9019f5.jpg" title=" 16.jpg" alt=" 16.jpg" width=" 390" height=" 500" border=" 0" vspace=" 0" style=" width: 390px height: 500px " / /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 单细胞测序之细胞空间定位 /span /strong /p p   strong span style=" color: rgb(0, 112, 192) "  1. Cell:斯坦福大学科研团队首次发现肿瘤细胞和免疫细胞的结构化空间分布 /span /strong /p p   2018年9月6日,斯坦福大学科研团队在Cell发表题为“A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging”的研究论文,该文章改善了原位成像检测一两个蛋白这种低通量的检测手段,使用不同的同位素标记36个蛋白,然后通过离子束激发,产生对应的离子信息,从而获得多个蛋白在单细胞水平的信息。通过该技术,我们可以系统地理解乳腺癌肿瘤细胞和不同种类免疫细胞的空间分布特征,而获取到这些信息,也能更为精确地帮我们认识不同患者的细胞分布特征,进而评估免疫治疗的预后。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/798c3809-8e27-485b-b87d-e4cb1ab68ab2.jpg" title=" 17.jpg" alt=" 17.jpg" width=" 600" height=" 300" border=" 0" vspace=" 0" style=" width: 600px height: 300px " / /p p    span style=" color: rgb(0, 112, 192) " strong 2. 2018年12月,10X Genomics收购Spatial Transcriptomics,拓展“空间基因组学”业务 /strong /span /p p   该技术将组织学和基因表达分析相结合,结合显微镜成像技术和RNA测序技术,可以从一片完整的冰冻组织切片中,获取切片上不同位置细胞中的完整转录组数据。它不仅可以获取单细胞的基因数据,还可以比较组织不同部位的细胞基因信息变化,了解细胞间的相互作用,在肿瘤学、神经科学和免疫学等疾病领域提供了丰富的可能性和广阔的应用前景。 /p
  • 北大谢晓亮、黄岩谊教授开发单细胞测序新技术
    来自北京大学的研究人员报告称,他们开发出了一种基于乳液的扩增方法来抑制扩增偏移检测单细胞拷贝数变异(CNV),同时以高精确度检测单核苷酸变异(SNV)。这一方法能够与各种扩增实验方案包括广泛使用的多重置换扩增(MDA)相兼容。这一重要的成果发布在9月4日的《美国国家科学院院刊》(PNAS)上。  北京大学的谢晓亮(X. Sunney Xie) 教授及黄岩谊(Yanyi Huang)教授是这篇论文的共同通讯作者。  谢晓亮教授是单分子生物物理化学和相干拉曼散射显微成像的开拓者之一,其研究组在离体实验及活细胞内生物系统在单分子水平的动力学研究方面取得了不少重要的成果,尤其是单分子荧光显微技术,比如相干拉曼显微成像技术(CARS、SRS)等方面成果斐然。近年来,他又在单细胞测序技术上取得突破,发表了不少重要成果。黄岩谊教授课题组主要致力于发展应用于集成生物学研究的新技术。  过去二十几年里,随着基因测序技术水平的提高以及千人基因组计划、癌症基因组计划、Meta-Hit计划等重大国际合作项目的相继开展,基因组研究日渐被推向高潮。  然而,一直以来的测序材料都是数百万甚至更多细胞的混合DNA样本。这种方法能够得到全基因组序列信息,但是对其进行研究得到的结果只是一群细胞中信号的平均值,或者只代表其中占优势数量的细胞信息,单个细胞独有的特性被忽视。  另一方面,有些样品稀少无法在实验室培养,样品量不足以进行全基因组分析,例如肿瘤循环细胞、组织微阵列、早期发育的胚胎细胞等。这些都是全基因组测序遇到的难题。  作为“在单个细胞水平上对基因组进行测序”的单细胞测序技术能够解决上述难题。与传统的全基因组测序相比,单细胞测序不仅测量基因表达水平更加精确,而且还能检测到微量的基因表达子或罕见非编码RNA,其优势是全方位和多层次的。近年来单细胞基因组学揭示出了各种生物学过程,如肿瘤进化、胚胎发育和神经体细胞嵌合前所未有的细节。  下一代测序的全基因组扩增(WGA)技术已被广泛应用生物学和医学领域用于确定单细胞基因组特征。WGA的高度均一性和保真度是精确测定CNVs和SNVs等基因组变异的必要条件。扩增产量沿基因组波动及SNV识别假阳性及假阴性结果限制了当前流行的WGA方法。  在这篇新文章中研究人员报告称,他们开发出了一种乳液WGA (eWGA)方法来克服这些问题。他们将单细胞基因组DNA分到油溶液包裹的大量(105)微微升水滴中。每个水滴中只包含少量的DNA片段,在反乳化作用之前每个水滴便达到了DNA扩增的饱和,因此将片段间扩增的差异被降至最小程度。研究人员进而采用MDA对eWGA方法进行了原理证明。  研究人员表示,这种容易操作的方法可实现在单个人类细胞中同时检测CNVs和SNVs,大大改善了扩增均一性和精确度。
  • 单细胞测序技术助力科学家诱导出人类全能干细胞
    近日,中国科学院和深圳华大生命科学研究院等多家机构的科研人员,通过体细胞诱导培养出了类似受精卵发育3天状态的人类全能干细胞,这是目前全球在体外培养的“最年轻”的人类细胞,是继科学家成功诱导出人类多能干细胞后,再生医学领域的又一颠覆性突破。相关研究成果于北京时间3月22日凌晨在国际顶级学术期刊《自然》(Nature)上发表。 研究者们开发了一种非转基因、快速且可控的“鸡尾酒”细胞重编程方法,能够将人的多能干细胞转化为全能性的8细胞期胚胎样细胞,即相当于受精卵发育3天状态的全能干细胞。该成果将助力实现未来人体器官的体外再生,对解决器官短缺、异体和异种移植排斥反应等问题有着重大意义。 2012年,诺贝尔生理学或医学奖颁发给了成功将已经成熟的体细胞诱导成为囊胚阶段的多能干细胞的日本科学家山中伸弥 (Shinya Yamanaka)。人类囊胚期的细胞是受精卵发育5-6天的状态,其进一步发育的能力比较受限。 而这个研究将该领域往前推进了一大步,首次获得了受精卵分裂仅3天的胚胎细胞。在受精卵发育早期,每天都发生着巨大变化,正是这2-3天,使科学家第一次通过体外诱导得到了人类8细胞期胚胎样全能干细胞。这是迄今为止在体外诱导获得的“最年轻”的人类细胞,具备非常强的发育潜力。这项研究也将有助于解开人类胚胎早期发育的密钥。 “这些全能性的8细胞期胚胎样细胞重建了受精卵仅分裂3次后的胚胎状态,相比过去的多能干细胞,这种细胞可以分化为胎盘组织,并可能发育为更成熟的各类身体组织,为全世界数百万需要进行器官移植的患者带来了福音。”论文的通讯作者,中国科学院Miguel A. Esteban教授、Md. Abdul Mazid博士和李文娟博士表示。 “该进展也是再生医学和单细胞测序技术相结合的完美典范”,论文的另一位通讯作者、深圳华大生命科学研究院刘龙奇博士介绍说,“通过大规模单细胞多组学图谱的方法,对干细胞技术手段在体外或体内获得的细胞或组织进行高效鉴定和机制解析,将极大地加速再生医学领域的发展。” 这是研究人员首次在真正意义上将人多能干细胞“转化”为全能性的胚胎细胞,使得人们可以将“成年”版本的细胞,逆向转化为具有更多可能性的“婴儿期”版本的细胞。并且,由于这次得到的全能细胞更接近早期胚胎的原始状态,若将其用于再生医学,培育得到的器官也将更接近于真实器官的状态,更有利于移植。 这项研究的突破,得益于单细胞测序技术的进步。在过去,研究人员可能得对成千上万个细胞进行处理和培养,成功的概率只有不到百分之十。如今,基于华大自主开发的单细胞建库测序平台(DNBelab C4),结合华大智造的DNBSEQ测序技术,科学家可以以高灵敏度和准确性的方法进行多维的单细胞分析,快速得到具有重要发育潜能的细胞,并研究这些细胞的发育去向。 此外,研究团队还将诱导得到的全能干细胞分类并注射到小鼠体内进行进一步的发育,然后使用华大的单细胞测序技术进行大规模细胞图谱分析。最终,研究人员确定了实验得到的全能干细胞与人8细胞期胚胎细胞高度相似,证明了该细胞的全能性。这为未来使用患者本人细胞进行器官培养,并用于自身器官移植和替换,提供了科学依据。 该研究由中国科学院和深圳华大生命科学研究院牵头,由英国剑桥大学、吉林大学,以及孟加拉国拉杰沙希大学等多个研究团队共同参与。本研究已通过伦理审查,严格遵循相应法规和伦理准则。
  • 谢晓亮:从单细胞研究到高通量测序
    2011年7月第八期《自然&mdash 方法学》刊登了Monya Baker撰写的一篇人物特写,详细介绍了在当期发表的论文 &ldquo Fluorogenic DNA sequencing in PDMS microreactors&rdquo 的主要作者哈佛大学谢晓亮教授的高通量测序技术。全文翻译如下:   在科学界,合情合理的实验也可能会出现令人吃惊的结果。当谈到他的实验室时,谢晓亮把他的主要研究分成三个领域:活体细胞中的动态基因表达研究,单分子酶学和免标记显微成像技术,而现在,又多了一个由于意外而诞生的新领域&mdash &mdash 高通量测序。   目前常见的测序技术&ldquo 焦磷酸测序&rdquo 是通过边合成DNA边测序实现的,当加入新三磷酸核苷酸时,荧光素酶水解三磷酸键所产生的能量会以光的形式发出,然而光信号转瞬即逝,需要检测系统能够灵敏地捕捉到这一瞬间的光信号。 另一种常见的技术是基于荧光的测序,相比之下,它可以产生一个稳定的光信号,但需要很多额外的化学修饰步骤才能产生荧光。在这篇Nature Method的文章中(指Sims, P.A., Greenleaf, W.J., Duan, H. & Xie, X.S.. Nat. Methods 8, 575&ndash 580 (2011).),谢晓亮和他的同事们推出了一种新型的测序技术,这种技术兼顾焦磷酸测序的简单流程和荧光检测的稳定信号,这使得高精确度并循环周期短的测序成为可能。   单分子荧光酶学的开端要追溯到十多年前,当时谢晓亮作为美国太平洋西北国家实验室的一位研究员,正在研究表征单个酶分子活性的方法,为此,他和同事曾应用过一个含有可发荧光的吖啶黄素基团的酶。那时,诸如 Helicos和Pacific Bioscience等公司也刚刚宣布了他们的DNA单分子测序计划。谢晓亮对把单分子酶学应用于DNA测序领域很感兴趣,但由于他已经在哈佛就职,这个想法仅仅被搁置于专利层面。&ldquo 我需要学着做个教授&rdquo ,谢晓亮说。   谢晓亮偶尔会尝试把基于荧光基团测序的想法推荐给一些研究生或博士后,但是年轻的科学家们通常不大敢尝试这一想法。&ldquo 提些建议对我来说是很容易的,因为我有很多项目,总有一些会成功的&rdquo ,谢晓亮解释道,&ldquo 但是对学生来说这是个很大的赌注,并不是所有人都敢于接受这种挑战。&rdquo 一位四年级的研究生Peter Sims听说了这个想法,当即接受了这个挑战,尽管当时他完全可以由单分子马达在活细胞的研究来获得学位。 Sims表示这种潜在的高通量测序激发了他的浓厚兴趣,但是对于所需的在核酸上修饰荧光基团的化学工作,他还没有经验。&ldquo 他当时刚刚涉足于此,才开始学习&rdquo ,谢晓亮说。谢晓亮和Sims共同商定了一个期限,如果Sims在此之前还没有获得显著的成绩,他就退回到原来的课题上,开始写毕业论文。   捕捉荧光信号就像成功产生荧光一样重要。在博士后William Greenleaf帮助下,他们解决了这个难题。&ldquo 微反应容器和荧光化学二者的结合,便是这项测序新技术的精髓。&rdquo 谢晓亮说。Greenleaf设法加工出了这些含有微反应容器的芯片,它是由可以重复密封的聚二甲基硅氧烷(PDMS)聚合物制成。谢晓亮说,没有这种材料,他的实验室的研究人员不可能做出这种尝试。&ldquo 我想把推广PDMS的功劳归于George Whitesides(George也在哈佛大学工作)&rdquo ,他说,&ldquo 基于PDMS我们才能够制作出各式各样的芯片上的实验室,而且他们真的很好用。&rdquo   但是研究进展并非一帆风顺。在后来的实验中,含有荧光基团的分子总是会扩散到PDMS 中或是产生一些不可信的伪信号。实验室的另一位成员段海峰加入了他们的小组,负责合成新型的荧光分子。此时,Sims和谢晓亮定下的期限也快到了,但他们仍没有做出很好的结果。   Sims和Greenleaf制定了另外一项计划,但是仅仅是对多拷贝的DNA测序而并非单分子测序。当时谢晓亮正在苏格兰出差,一天深夜他和Sims进行了一次电话长谈,讨论Sims是否应该退回到原来的项目来写毕业论文。谢晓亮回忆道: &ldquo 那真费了我好大一笔电话费。我说,&lsquo Peter,请你再想想,我们再尽快地尝试一下,如果你真的做到了,学术界将对你的毕业论文产生极大的兴趣。&rsquo &rdquo 几周后,他们果真拿到了数据,并且Sims在他的答辩中成功地阐述了这种测序方法。谢晓亮富有哲理地说:&ldquo 你开始一直在对着一堵墙作战,后来你稍微改变了方向,这就大不一样了&rdquo 。Sims也有另外的动机,他曾和谢晓亮开玩笑说,&ldquo 我做这个只是想毕业。&rdquo   虽然这项测序技术本身还是基于DNA扩增的,但谢晓亮希望它能为通用单细胞基因组测序提供一条道路。谢晓亮说:&ldquo 尽管我们的技术并不是我最初希望的DNA单分子检测,但它依然为单细胞中DNA单分子测序提供了可能。&rdquo
  • 单细胞测序,你这么火大家知道吗?---记2015基因组学前沿研讨会之单细胞组学
    最近几年,关于单细胞测序的报道日益增多。事实上,单细胞测序是一个新兴的领域。据了解,单细胞测序萌芽于2010年,13年左右才真正发展起来。2014年,单细胞测序的应用被列为《自然—方法学》(Nature Methods)年度最重要的方法学进展。2015基因组学前沿研讨会将单细胞组学单独列为一个单元,可见单细胞测序在当前基因组学前沿研究中的热度。  本次研讨会上,报告主题涉及单细胞组学领域的报告人,包括美国哈佛大学终身教授谢晓亮博士,美国德克萨斯大学达拉斯分校张奇伟博士,厦门大学杨朝勇博士,中国科学院重庆绿色智能技术研究院王德强博士,北京大学汤富酬博士,美国贝勒免疫研究所林巍博士,华中科技大学宁康博士,南方科技大学贺建奎博士,华中农业大学李响同学等。  事实上,即使是来源相同的单个细胞,由于随机生物过程和环境扰动的原因,彼此在许多方面也存在差异,即细胞的异质性。常见的基因组测序技术避免不了这一现象带来的影响,基于这一原因,研究人员开启了单细胞测序技术的探索之路。此次研讨会的单细胞组学单元中也有多个报告涉及了单细胞/单分子测序技术的最新进展。  其中,谢晓亮教授,于2012年在Science发表的论文中推出了一项新技术,多重退火和成环循环扩增技术(Multiple Annealing and Looping-Based Amplification Cycles, MALBAC)。这项技术能从一个细胞的基因组中,分离出DNA。据了解,这种技术能降低PCR扩增偏倚,使得单细胞中93%的基因组能够被测序。从而使得检测单细胞中较小的DNA序列变异变得更容易,也能够发现个别细胞之间的遗传差异。这样的差异可以帮助解释癌症恶化的机制,生殖细胞形成机制,甚至是个别神经元的差异机制。目前,这项技术已经应用到体外受精以及肿瘤的个性化治疗中。谢晓亮  来自厦门大学的杨朝勇教授,运用液滴微流控技术进行高通量的单细胞检测,包括分离,处理和分析DNA、RNA和蛋白质,这种技术是在微流控芯片上发展起来的一种操纵微小体积液体的全新技术。在传统的液滴微流控技术基础上,将“油包水”改成“油包琼脂糖”,同时杨教授提出了一种琼脂糖液滴微流控技术。这项技术已经成功应用到蛋白结晶、酶分析、化学合成、单分子/单细胞研究等分子与细胞生物学及分析化学研究领域中。杨朝勇  据了解,上世纪90年代已有关于利用纳米孔进行核酸序列识别的报道,该方法存在DNA易位速率过快的问题。中国科学院重庆绿色智能技术研究院王德强博士,正在研发新一代单分子测序技术,在直径小于双螺旋的固态纳米孔中,通过拉伸双链DNA,减慢单个分子的双链DNA的易位速度。王德强  目前,单细胞的RNA或DNA测序方法不允许同时分析转录组和基因组序列。来自深圳南方科技大学的贺建奎博士介绍到,他们利用基于新一代测序技术的策略解决了这一问题。以小鼠卵母细胞为例,这种将单个卵母细胞DNA和RNA测序合并的方法可以达到基因组的高覆盖率和低偏好性转录组的可重复性。这项技术将有助于实现生物学和医学的核目标,即将生理或病理条件下单个细胞的基因型和表型完美地联系起来。贺建奎  从此次研讨会上单细胞组学的热烈讨论中,我们可以感受到,现在是单细胞测序的蓬勃发展阶段,相信在不久的将来,科学工作者们能解释更多的诸如遗传性疾病的成因、癌症恶化机制等问题,为精准医学和个性化医疗等临床应用提供更坚实的理论基础。 编辑:史秀明
  • 厦大杨朝勇团队开发新技术 极大提高单细胞测序性能
    单细胞全基因组测序(WGS)对于表征DNA中动态细胞间变化至关重要。当前用于单细胞WGS的样品制备技术复杂,昂贵,并且存在高扩增偏差和误差。  2020年12月9日,厦门大学杨朝勇团队在Science Advances 在线发表题为“Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics”的研究论文,该研究描述了Digital-WGS,这是一个样品前处理平台,可基于数字微流体的自动处理功能来简化高性能单细胞WGS。  数字微流控(DMF)是一种新兴的微流控自动化技术,可通过电介质上电润湿现象处理电极阵列上微升至纳升大小的液滴。该研究开发了Digital-WGS,这是一种基于DMF的单细胞样品制备平台,该平台集成了并行纳升体积多重置换扩增(MDA)的所有主要步骤,包括从单细胞分离到全基因组扩增(WGA)的自动处理。通过在DMF芯片上结合流体动力学和表面润湿性,无论细胞类型和输入如何,都可以通过液滴操作自动有效地(100%)分离单个细胞。Digital-WGS允许在所有步骤中对液滴进行可寻址的控制,以大大提高裂解效率和反应的均匀性。可寻址和非接触式工作流程减少了与污染物或内源性背景的竞争,从而提高了基因组模板的有效浓度。  该研究应用Digital-WGS进行了许多单细胞纳升体积的MDA反应,并使用低深度和深度全基因组测序将性能与其他已报道的MDA方法进行了全面比较。该结果表明,Digital-WGS在多个方面都优于现有的MDA方法,从而大大降低了放大偏差和指数放大误差。使用该方法,该研究能够以最小的150 kb bin和等位基因剔除(ADO)率为5.2%的单核苷酸变体实现出色的检测。因此,Digital-WGS提供了解决WGA当前问题的独特途径,从而为执行单细胞测序提供了一种有效而强大的方法。这种方法对于单细胞分析的任何化学方法都具有可扩展性和通用性,这对于单细胞基因组测序有广阔的应用前景。
  • 人类胚胎着床过程首获解析 单细胞测序技术功不可没
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 8月22日,《Nature》杂志上登载了北京大学汤富酬与中国工程院院士、北医三院院长乔杰联合团队研究的突破性进展,利用体外模拟人类着床策略和高精度单细胞测序技术,系统解析了人类胚胎着床过程中的基因表达调控网络和DNA甲基化动态变化过程。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " img title=" 微信截图_20190822101206.png" style=" max-height: 100% max-width: 100% " alt=" 微信截图_20190822101206.png" src=" https://img1.17img.cn/17img/images/201908/uepic/68d79771-843c-4dbe-ab62-343a98901e60.jpg" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 人类胚胎体外模拟着床生长过程(图片来源于网络) /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(0, 176, 240) font-family: 楷体,楷体_GB2312, SimKai font-size: 16px " 论文摘要: /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(0, 176, 240) font-family: 楷体,楷体_GB2312, SimKai font-size: 16px " 胚胎着床是包括人类在内的哺乳动物发育过程中的里程碑事件,生理状态下超过半数以上的人类胚胎由于无法顺利着床导致不孕。既往研究通常使用小鼠和食蟹猴等模式生物对这一过程展开探索,然而调控围着床时期胚胎发育的分子机制和形态学变化特征在不同物种之间存在较大差异,这使得在小鼠等模式生物研究中获得的调控规律较难为人类胚胎发育研究提供有价值的线索。然而,由于人类胚胎着床发生在受精卵形成后一周左右的时间点,这使得研究者们无法获得生理状况下的这一发育阶段的人类胚胎。长期以来,这一人类关键发育阶段一直成为发育生物学研究的黑匣子。为了深入探讨这一过程中的分子动态规律,挖掘调控胚胎着床过程中的潜在分子机制,2019年7月,北大-清华生命联合中心汤富酬课题组携手乔杰课题组合作在Nature在线发表了题为Reconstituting the transcriptome and DNA methylome landscapes of human implantation的研究论文。结合体外模拟人类着床策略和高精度单细胞多组学测序技术(single-cell RNA-seq, single-cell Trio-seq2),首次利用单细胞转录组和DNA甲基化组图谱重构了人类胚胎着床过程,系统解析了这一关键发育过程中的基因表达调控网络和DNA甲基化动态变化过程。 /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在此之前,汤富酬课题组和乔杰课题组长期紧密合作,致力于包括着床前胚胎在内的人类生殖系细胞发育过程中基因表达、表观遗传学调控特征和潜在的机制研究:利用单细胞转录组测序技术、微量细胞DNA甲基化组测序技术、单细胞DNA甲基化高通量测序技术、单细胞多组学测序技术(REF)等一系列单细胞技术对在此研究领域已取得多项研究成果。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 该课题主要依托的技术平台为北京大学生命科学仪器中心(成像平台)和北京大学高精尖中心高通量测序平台。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img title=" ICG官网-测序中心图片.jpg" style=" max-height: 100% max-width: 100% " alt=" ICG官网-测序中心图片.jpg" src=" https://img1.17img.cn/17img/images/201908/uepic/c0188744-623f-4c41-98af-4ea9f2bcf793.jpg" / /p p style=" text-align: center " 北京大学高精尖中心高通量测序平台(图片来源:ICG官网) /p
  • Dolomite Bio成功举办高通量单细胞转录组测序和单细胞液滴包裹技术交流会
    随着科学的发展,科学家们发觉许多群体细胞,完整个体水平的研究只是研究多种类细胞,多个细胞共同作用的“平均值”,淹没了细胞个体之间的差异。因此,针对单个细胞的研究技术,单细胞基因组学研究(Single Cell Genomics Study)成为生物学研究迫切的方向,并成为再生医学,发育生物学,肿瘤研究,免疫学研究必不可少的关键研究手段。 Dolomite Bio公司基于其已有的单细胞RNA测序模块系统和μEncapsulator单细胞包裹模块系统取得良好的销售业绩及客户反馈。2017年11月,Dolomite Bio公司隆重推出Nadia高通量单细胞建库仪,可平行运行1/2/4/8个样品, 每个样品18min内可生成6000个单细胞库;专为DropSeq方案设计;使用一次性试剂盒,防止污染;自动检测试剂盒状态,触摸屏控制,全自动运行。同时,添加Innovate新方法开发平台,可以使用自己的试剂,开发新的方法,可调节液滴大小、频率、温度、搅拌和时间等参数,一旦条件摸索成功,可通过Nadia高通量单细胞建库仪在相同条件下平行运行2/4/8个样品。 2018年4月24日-27日, Dolomite Bio公司在北京、上海、深圳和澳门成功举办了Nadia高通量单细胞转录组测序技术交流会,会议现场Dolomite Bio公司CEO Mark Gilligan先生详细介绍了液滴微流控技术应用在单细胞研究的优势,高通量单细胞RNA测序实验中遇到的问题以及B细胞和T细胞、FACS分选等应用,并现场利用Nadia单细胞建库仪和Innovate新方法开发平台演示了单细胞库制备的整个实验过程。现场部分客户被邀请亲自体验了实验过程,客户对实验结果非常满意,并对Nadia通量高、操作简单、Innovate灵活开放的特点给予了极大的肯定。清华大学会场中科院学术会议中心会场华大基因会场澳门大学会场Mark给客户演示Nadia样机
  • 强强联手 I 达普生物星海单细胞测序系统入驻百奥智汇,开启超高性价比单细胞服务通道
    NEWS近日,百奥智汇对实验步骤进行优化,完成了星海单细胞平台数据实测。高质量数据新鲜出炉,正式推出“海量单细胞测序性价比之王”——星海单细胞服务平台。平台简介百奥智汇星海单细胞服务平台依托于达普生物单细胞建库系统,以经验丰富的实验团队强势赋能搭建而成。对星海单细胞实验过程进行了全面的探索和优化,最终确定了多种样本类型的最佳实验运行条件,保证平台数据稳定产出。平台优势01 高 数据质量高质量数据稳定产出,数据可重复性高,为研究提供强大的数据支持。02 低 检测成本单个细胞检测成本低于1元,有效降低技术使用门槛。03 高 灵活性单次上样1~4个样本,灵活配置,更适合临床样本。04 高 运行效率单次实验油包水时间为7.5min,一天内可完成建库过程,为科研提速。高质量实测数据秉承科学严谨的态度,百奥智汇坚持“每推新品,必先测试”的原则,对平台的各项技术参数进行了详细的评估,现将高质量实测数据展示如下:物种类型:人物种类型:小鼠物种类型:大鼠以上实验结果表明,由星海单细胞服务平台产出的数据质量优异,在细胞检出、基因检出、细胞分群等维度均有很好的表现,足以满足数据深度挖掘的需求,且涉及了人、小鼠、大鼠等多物种的多种组织类型,可为各个研究领域的老师提供技术保障。 新品让利大促销除了在性能上的保证,百奥智汇也特别推出针对“星海单细胞服务平台”的让利促销活动,即日起,只需8000元即可实现一个样本的单细胞测序,包括组织解离、建库、测序(100G数据量)和基本分析。Tips:本次活动为限时促销,欢迎扫描以下二维码尽快锁定优惠名额,并于6个月内完成送样检测。
  • 2020万!武汉大学流式平台和单细胞测序平台采购项目
    一、项目基本情况项目编号:ZB0107-202304-ZCHW0367项目名称:武汉大学流式平台和单细胞测序平台采购项目预算金额:2020.0000000 万元(人民币)最高限价(如有):2020.0000000 万元(人民币)采购需求:本项目分成2个包,投标人可兼投兼中,如投两个包则需分开编制标书 ,本项目接受进口包号包号名称货物名称单位预算(限价)是否接受进口备注01包流式平台高端分选型流式细胞仪1套450万元接受核心产品高端分析型流式细胞仪1套350万元接受02包单细胞测序平台单细胞测序建库系统1套780万元接受核心产品高通量测序仪1套440万元接受合同履行期限:交货期:合同签订后90日内 ,质保期:验收合格后至少1年本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年04月19日 至 2023年04月24日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)方式:1.拟参加本项目的投标人须在阳光招采电子交易平台免费注册(网址:https://www.yangguangzhaocai.com ---【新用户注册】,相关操作帮助详见:帮助中心--- 投标人注册操作指南); 2.注册完成后,请于 2023 年 4 月 19 日至 2023 年 4 月 24 日17:00时止(北京时间)登录电子交易平台,点击【投标人】,在【公告信息】---【采购公告】栏下载采购文件,300元/份(包),售后不退。联合体参与响应的,由牵头人注册及下载采购文件。未按规定获取采购文件的,其响应文件将被否决; 3.本项目非全流程电子标,投标人无须办理CA数字证书; 4.在电子交易平台遇到的各类操作问题(登录、注册认证、报名购标、制作及上传标书等问题),请拨打技术支持电话010-21362559(工作日:08:00~18:00;节假日:09:00~12:00,14:00~18:00); 5.企业注册信息审核进度问题咨询电话:027-87272708; 项目具体业务问题请向代理机构联系人咨询(联系方式详见本公告第七条)。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:武汉大学本级     地址:武汉市武昌区八一路299号        联系方式:吴老师 027-68754589      2.采购代理机构信息名 称:湖北国华项目管理咨询有限公司            地 址:武汉市武昌区中北路109号中铁1818中心10楼            联系方式:杨楚君 王丹萍 王刚 刘晓栋 张靖佶 027-87271918            3.项目联系方式项目联系人:杨楚君 王丹萍 王刚 刘晓栋 张靖佶电 话:  027-87271918
  • 携手共进!墨卓生物 X 因美纳联名举办单细胞测序产业化论坛
    10月16日,墨卓生物与因美纳联名举办微流控单细胞产业化论坛,推动行业向多组学、高通量、高可及性迈进。论坛报告横跨科学研究、药物研发、临床诊疗三大领域,有助于推动单细胞测序技术在重大疾病中的研究和转化应用。这是因美纳首次与中国液滴微流控单细胞测序企业联名举办线下论坛,也是客户期待已久的墨卓生物MobiNova单细胞测序建库系统首次公开亮相,为产品发布进行预热。10月16日,为了促进高通量单细胞测序技术在重大疾病研究、药物开发、临床诊断等领域的应用,由墨卓生物与因美纳联名举办的“第一届微流控技术创新与应用高峰论坛“之“单细胞测序产业化论坛”在乌镇皇冠假日酒店举行。报告嘉宾和参会人员来自清华大学、华中科技大学、四川大学、南京大学等双一流高校,复旦大学附属中山医院、上海瑞金医院等顶级临床机构,因美纳、HiFiBio、墨卓生物等行业领军企业。“单细胞测序产业化论坛”现场论坛中,墨卓的MobiNova单细胞测序建库系统首次公开亮相,以出色稳定的性能表现,端到端、多组学的功能覆盖,赢得与会嘉宾的一致好评。目前MobiNova已支持早期用户发表了多篇高分学术期刊的学术论文,产品正在开展内测,明年年初将正式发布。本次论坛也是由墨卓生物与因美纳首次联手举办,深入探讨单细胞测序与多组学技术的最新成果和产业化的进展。因美纳是全球基因测序和芯片技术的领导者,并长期关注支持单细胞测序领域,墨卓拥有其中非常优秀的解决方案。本次论坛是双方合作的良好起点。未来,双方也将进一步就长期的深度交流与合作展开对话,期待实现单细胞多组学和二代测序技术的创新整合。重磅嘉宾莅临现场!解答单细胞测序技术应用场景因美纳大中华区资深测序专家余菽亮带来了“单细胞多组学分析拓展生物学多维度研究”的报告,为我们介绍了因美纳的NextSeq 2000,DRAGEN等分析系统在单细胞测序领域的解决方案与应用实例。华中科技大学李一伟教授进行了“力学挤压调控肿瘤单细胞异质性的研究”分享,从独特的角度研究了非小细胞肺癌受力学调控的皮质间充质转化;其中,单细胞RNA转录组建库测序工作由墨卓MobiNova完成。高诚生物总监沈冰清博士进行了“微流控在单细胞抗体发现中的应用”报告,分享了利用微流控进行高通量抗体筛选,液滴内完成抗体亲和力与生物学性能测试的经典应用。因美纳大中华区资深测序专家余菽亮作精彩报告华中科技大学李一伟教授作精彩报告高诚生物总监沈冰清博士作精彩报告单细胞测序技术发展之路:机遇与挑战并存!随后举行的圆桌讨论环节,贝克曼库尔特大中华区前总经理吴应光博士、高诚生物总监沈冰清博士、墨卓生物COO刘寒博士就“单细胞测序的发展与应用“进行精彩对话。“单细胞测序发展与应用”圆桌讨论环节吴应光:应用前景广阔,单细胞测序潜力巨大在现阶段生命科学工具的发展中,细胞已经成为基础研究、临床研究以及生物制药等领域非常重要的载体,单细胞技术作为最小颗粒度的新兴技术,未来可期。从商业转化的角度来讲,关键在于打破technology obsession的思维惯性,真正接地气的关注和解决用户的痛点,而非满足开发者对于技术的执着追求。 贝克曼库尔特中华区前总经理 吴应光博士沈冰清:新技术新平台,助力药物快速发现现有抗体筛选技术从小鼠免疫开始,时间长、流程复杂,免疫多样性丢失达到80-90%,在面对新冠等重大的公共卫生危机时捉襟见肘。基于微流控的通量和单细胞技术,HiFiBio的单细胞抗体药物筛选技术可以非常快速的从病人血清中筛选出亲和力高、生物性能好的稀有抗体,是解决公共卫生危机很好的手段。高诚生物总监 沈冰清博士领创单细胞测序全新时代,MobiNova产品预热最后,墨卓生物COO刘寒博士重点介绍了“MobiNova 高通量单细胞测序解决方案”,为产品的上市进行了预热。MobiNova解决方案由MobiNova-100 单细胞测序仪、MobiCube 转录组试剂盒、MobiVision 生信分析软件组成,拥有通量高、速度快、体积小、多胞率低(<5%)、细胞捕获率高(>60%)、可实现多样本同时检测等特点,是全球技术领先的、高质量、高性价比的单细胞测序解决方案,将在肿瘤、发育生物学、微生物学、神经科学等领域发挥重要作用。 墨卓生物COO 刘寒博士介绍MobiNova 高通量单细胞测序解决方案MobiNova单细胞测序平台即将开启内测,预计明年年初上市,将全面助力基因测序进入单细胞时代和走进千家 万户,欢迎关注公众号获取内测名额。
  • “三高”单细胞基因测序上游市场达5.19亿美元 各路玩家争相入场
    近年来,单细胞基因组学是十分热门的研究方向,以“三高”著名——高逼格、高门槛、高分文章。此外,对于下游测序公司来说,还存在高利润的优势。单细胞基因组学在免疫学、肿瘤学和神经学研究等各个科学领域发挥着关键作用。2013年,Nature杂志将年度技术授予了单细胞基因测序,认为该技术将改变生物界和医学界的许多领域。单细胞基因组研究主要技术单细胞基因测序主要步骤为:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。其中,单细胞的捕捉和分离是第一步,具有一定挑战性,目前主要包括流式细胞术、激光捕获显微切割技术和微流控技术。全基因组和全转录组扩增是单细胞测序的难点,近几年也取得了较大突破,目前扩增技术已逐渐成熟。全基因组扩增技术主要有:简并寡核苷酸引物PCR扩增(DOP-PCR),多重置换扩增(MDA);和基于多次退火和成环的扩增循环(MALBAC)几种技术。全转录组扩增技术,从PCR扩增(SMART-SEQ2等)到IVT扩增(CEL-SEQ2等),到现在的高保真DNA聚合酶扩增(SPLIT-SEQ等)。单细胞测序上游市场及主要供应商由于单细胞基因测序技术的应用前景被广泛看好,多家上游科技企业纷纷投入研发单细胞基因测序产品,2017年以后,更多商业化单细胞测序平台陆续走向市场。目前,国外品牌在单细胞基因组学技术中占主导地位,包括10x Genomics、伯乐、富鲁达、Illumina和凯杰、BD、安捷伦等。2020年,全球单细胞基因组学产品的销售额为5.19亿美元,预计到2025年将以高个位数的年复合增长率增长。富鲁达的 C1平台,是世界上第一个商业化的用于基因组学研究的自动化单细胞样本制备系统。通过采用创新的微流控专利技术,能够快速可靠地分离、处理、并对单细胞进行基因组分析。利用微流控芯片(IFC),可快速捕获并实现96或800个单细胞的核酸样本制备。一步法完成从捕获、裂解到逆转录和预扩增的过程,进行各类单细胞测序建库。该平台的商业化开始让更多人涉足单细胞测序领域,但该技术成本较高,通量相对较低,目前一些非RNA类单细胞测序仍会采用该技术。Fluidigm C1平台10X Genomics是一家年轻的公司,于2012年成立,2019年9月在美国纳斯达克上市,同年营业收入为2.46亿美元,一开始就专注于单细胞测序。2016年2月10X Genomics推出主要产品Chromium单细胞转录组测序平台,该平台利用微流控、油滴包裹和baecode标记等技术来实现高通量的细胞捕获技术,能够一次性分离、并标记500–10000个单细胞,从而获得每个细胞的3’端的转录组信息。10X Genomics 近两年也多次陷入专利纠纷的官司中,2020年后,其单细胞测序产品 Chromium开始全部使用Next GE微流控芯片。为了解决常规测序系统读长限制所带来的的无法满足组装、结构变异、多态性等问题,10X Genomics推出了GemCode平台,通过条形码信息将Illumina短序列再次连接,获得更有研究价值的长片段信息。10X Genomics还推出了升级版的Chromium系统,在GemCode的基础上整合单细胞测序。每次实验可分析1000至10000个细胞,增加了检测稀有细胞的灵敏度和准确度。10X Genomics Chromium单细胞测序产品BD Rhapsod单细胞捕获系统比10X晚一年推出,2018年3月进入中国市场。BD Rhapsod平台采用分子标签技术,为单细胞中每个转录本标记特异性分子标签,实现单细胞水平上基因表达谱的绝对定量。平台源于Cytoseq蜂窝板技术,采用20万+个微孔(远超过细胞数量,目的就是为了一孔一个细胞),因此可以叫做“微孔捕获”,效率更高。捕获后也是裂解细胞,再进行mRNA抓取。结合Rhapsody特有的单细胞分离技术,单次实验可制备100-10000个单细胞文库,用户可根据需求定制引物,将检测范围集中在目标基因,大幅降低后续测序成本。BD Rhapsody单细胞分析平台2017年1月,Illumina和伯乐在JP摩根健康大会上发布了Illumina® Bio-Rad® Single-Cell Sequencing Solution。该综合解决方案是单细胞分析的第一个新一代测序(NGS)工作流程。解决方案包括ddSEQ™ Single-Cell Isolator和SureCell™ WTA 3’Library Prep Kit。伯乐最好的液滴分离技术,Droplet Digital™ 技术,可以对单细胞进行隔离和编制条形码,然后在Illumina的许多主要NGS仪器上进行下游测序。全面的工作流程解决方案包括使用BaseSpace® Informatics Suite,Illumina的云端基因组学计算环境进行初级和中级数据分析,使用流式细胞分析技术的领先公司FlowJo, LLC所开发的SeqGeq™ 进行高级数据分析和可视化处理。该测序系统可一次性检测8个样本,每个样本可以得到500~10000个细胞,研究单细胞在组织功能、病情进展和治疗反应方面的协同作用。与其他高通量捕获平台相比:Illumina® Bio-Rad® 捕获效率低,仅为3%,但测序成本相对较低。Illumina® Bio-Rad® Single-Cell Sequencing Solution包括全新的ddSEQ Single-Cell Isolato(与NextSeq 500合照)宝生物(Takara Bio),是一家集试剂、耗材、仪器和服务为一体的生物技术公司,旗下的Clontech品牌拥有单细胞RNA-Seq文库构建的核心专利——SMART技术,由此发展处单细胞全基因组扩增技术、高通量单细胞捕获分选技术等。2015年2月份,宝生物收购的Wafergen公司开发出ICELL8 Single-Cell System单细胞分选平台,平台基于微流控芯片的技术,ICELL8利用WaferGen SmartChip TE平台筛选细胞,平台拥有5184个反应孔,可进行单细胞RNA测序样本的制备、扩增、表达谱建库测序、生物信息分析,快速得到样本间的基因表达差异。该平台具有通量高,周期快等特点,解决了传统单细胞扩增中通量低,价格贵的问题,为需进行大量细胞捕获筛选的研究提供了高效单细胞分选平台。该平台的细胞捕获效率为30%,成本相对较低。ICELL8 Single-Cell System2017年11月,英国Dolomite Bio公司推出Nadia单细胞自动制备仪,可平行运行1,2,4,8个样品, 每个样品18min内可生成6000个单细胞库;专为DropSeq方案设计;使用一次性试剂盒,防止污染;自动检测试剂盒状态,触摸屏控制,全自动运行。Nadia创新平台,可以使用自己的试剂,开发新的方法,可调节液滴大小、频率、温度、搅拌和时间等参数,一旦条件摸索成功,可通过Nadia单细胞自动制备仪在相同条件下平行运行2,4,8个样品。此前,该公司已推出单细胞RNA测序系统和μEncapsulator细胞包裹系统。Nadia单细胞自动制备仪Namocell是专注于单细胞分离分选技术的生物仪器公司,其自主研发的微流体单细胞分离平台,在单细胞基因组产前基因筛查方面已有所应用。 单细胞分选分离仪是集流式细胞术和微流控技术于一体的新一代细胞分离技术,仪器能够通过光电检测系统,识别标有荧光抗体的目的细胞,在激光照射的后的微流体通道中,设有电子开关,能够将目的细胞所在液体捕获,并且单个分离出来。Namocell单细胞分选分离仪除了细胞分选、建库和测序的仪器产品,凯杰、安捷伦等公司也在单细胞基因组研究领域有所布局,凯杰公司有单细胞全基因组扩增试剂盒,安捷伦公司除了之前的高通量寡核苷酸微阵列芯片和试剂盒等产品外,就在今天(1月26日)还宣布与一家叫新格元的分子诊断公司合作,共同开发针对单细胞测序的一站式解决方案,其中安捷伦将提供质量控制产品仪确保获得高质量测序文库,同时可改进样品处理和文库制备流程。此外,还有众多初创公司瞄准单细胞基因组学市场,以下为来源于某网站的不完全统计名单:国内也有科研团队正在从事相关领域的研究。如2020年12月,厦门大学杨朝勇教授团队研发的Digital-WGS样品前处理平抬,可基于数字微流控的自动化处理功能来简化高性能单细胞的WGS。该平台集成了并行纳升体积多重置换扩增(MDA)的所有主要步骤,包括从单细胞分离到全基因组扩增(WGA)的自动处理。通过在DMF芯片上结合流体动力学和表面润湿性,无论细胞类型和输入如何,都可以通过液滴操作自动有效地(100%)分离单个细胞。Digital-WGS允许在所有步骤中对液滴进行可寻址的控制,以大大提高裂解效率和反应的均匀性。可寻址和非接触式工作流程减少了与污染物或内源性背景的竞争,从而提高了基因组模板的有效浓度,为执行单细胞测序提供了一种有效的途径,对于单细胞基因组测序有广阔的应用前景。小结总体来讲,单细胞基因组学市场的快速发展,主要得益于政府及科研单位的重视和资金投入、测序技术成本的降低以及RNA测序技术的进步。此外还有多组学分析的专门技术,涉及利用各种“组学”学科,如基因组学、蛋白质组学和转录组学来收集和分析复杂、大量的生物数据。虽前景大好,单细胞基因组学市场目前仍面临诸多挑战,如相较于群体细胞测序,单细胞样品的分离、获取难度会大幅度增加,由于管理大量测序数据输出而导致的潜在数据分析错误,相关企业卷入了各种涉及知识产权、并购和其他商业交易的诉讼案件,以及新冠疫情导致2020年初产品销售中断等可能存在的持续影响。目前,单细胞基因测序更多应用还处于基础科研阶段,预计到2025年,单细胞基因组学将在整个科学技术市场占有重要地位。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制