当前位置: 仪器信息网 > 行业主题 > >

单分子检测

仪器信息网单分子检测专题为您整合单分子检测相关的最新文章,在单分子检测专题,您不仅可以免费浏览单分子检测的资讯, 同时您还可以浏览单分子检测的相关资料、解决方案,参与社区单分子检测话题讨论。

单分子检测相关的论坛

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 求助:分子蒸馏单甘酯含量的检测方法

    哪位同仁检测过分子蒸馏单甘酯的含量?可以把心得交流一下吗?我怎么老检测不出来?是不是检测要求的条件一定要达到?比如高碘酸的要求、三氯甲烷的要求等。

  • 【讨论】单分子探测或检测

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29448]单分子探测与操纵[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29449]hanjie单分子探测技术[/url]这些天对生物传感器的认识更深入一层,这里把单分子探测相关的一些资料和大家共享,希望能够有志同道合者一起讨论[em24] [em24] [em24][url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url]

  • 使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    [b]研究多结构域蛋白阶段性去折叠[/b]很多生物大分子的功能与其构象和构象动力学密切相关,如蛋白质的生物功能需要其正确折叠成自然形态。错误折叠或者未折叠的蛋白会(部分)失活或者产生毒性,如错误折叠的蛋白与神经退行性疾病有关。研究蛋白如何正确折叠并改变构象以实现生物功能对理解其机制与疾病发生至关重要。单分子力谱(SMFS)是研究这些分子现象的理想工具,因为其具有独特的分离个体生物分子和实时观察构象变化及去折叠过程的功能。由于SMFS具有高敏感度和施加机械力的能力,可以直接操纵单个蛋白并通过测量其长度变化(亚nm级)观察构象改变。接下来我们使用LUMICKS开发的高分辨率光镊-荧光显微镜C-Trap演示了对钙调蛋白(CaM)的折叠过程的研究。[img=,500,110]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021105519876_1986_981_3.png!w690x153.jpg[/img][img=,218,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021106425366_604_981_3.png!w217x199.jpg[/img]1 多结构域蛋白的去折叠实验图解。具有3个结构域的蛋白通过DNA连接至两个被光所捕获的微球。2 通过改变光阱之间的距离可以对蛋白施力并检测断裂的发生。使用层流微流控和自动装载功能,N-端和C-端连接有DNA的单个CaM蛋白可被两个微球捕获(图1)。[img=,227,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108116955_1942_981_3.png!w220x193.jpg[/img]3 10 mM Ca2+浓度下CaM的力-拉伸距离(蓝色)和力-收缩距离(红色)。拉伸与收缩的速度为100 nm/s。微球直径为1.0 μm,光阱的刚度为0.284 pN/nm。[img=,500,161]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108223351_3734_981_3.png!w638x206.jpg[/img]4 10 mM Ca2+浓度下CaM的多个状态下的动态平衡。图为50 kHz(灰色)和200 kHz(红色)下记录的数据。在右侧直方图中可以看到两个清晰的峰即表现为蛋白最常处于的两个状态。第一个实验,在10 mM Ca2+条件下对CaM的机械拉伸与收缩行为进行了记录。首先对100 nm/s的速度下的拉伸与收缩的相关数据进行了记录(图3)。随着施加的力增加,可观察到两个去折叠的阶段,表现为力的突然下降,与两个螺旋-环-螺旋结构域的去折叠相符合。由此可以得出结论,基于C-Trap设备的力和距离的高分辨率(100 Hz时误差在0.2 pN以下和0.5nm以下),去折叠的发生可以用力谱的力-距离曲线来确定。这种测量非常适合用于比较正常蛋白与发生了改变或损伤的蛋白的折叠的相关数据。接下来研究光阱位置固定时CaM的折叠、去折叠的动态平衡,对蛋白长度的变化进行测量并确定中间态的转变(图4)。对CaM分子施加7.5 pN的力,可以观察到三种状态之间的波动,反映了螺旋-环-螺旋亚结构域的折叠和去折叠,波动的数据图像与之前的研究1,2相符(图4)。仪器所获得的稳定的高质量数据为蛋白的折叠和去折叠之间的动态转变的检测提供了大量有效的信息。通过这种方法可以对不同状态的驻留时间和转变动力学进行测量。这些信息使得我们对特定蛋白的折叠、去折叠过程产生进一步的了解。对折叠和去折叠的动力学以及构象改变的研究表现了一种突破性的生物学和生物物理学研究方法。使用C-Trap光镊-荧光技术可以观察到折叠和去折叠现象还有动态平衡,使得科研人员可以研究去折叠的中间态并获得蛋白的结构与功能信息。对蛋白折叠和构象的进一步研究仰仗于C-Trap的高敏感度和多通道荧光单分子FRET功能,通过检测FRET效率信号与力的波动的变化来进一步检测蛋白构象,可以得到蛋白的机械性质与结构之间的关系。[b][/b]

  • 小分子水检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38017.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=&][size=16px][color=#333333]小分子团的水由5-8个水分子构成一个水分子团,具有高渗透力、高扩散力、高溶解力、高氧量、弱碱性。实际上,分子团的大小与健康无关。水中本来就存在大小不同的分子块,水分子块的大小也在不断变化。加热可以制造分子块小的水。一般情况下为了安全都是要进行检测的,下面是为大家带来的小分子团水检测报告,和小分子团水检测标准的介绍。[/color][/size][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]小分子团水检测小分子团项目采用方法晶核园共振氧谱法或是核森共振法。小分子团水检测所需样品量为100g.小分子团水检测所包含项目很多包括一些微量元素指标以及细围总数等指机。微量元素有:锂铝。三氧甲烷,砷。铁。铜:银等等项目。细聞总数方面包括:总大肠菌群等。

  • 【求助】Si-OH水和分子水的检测

    我现在知道我所要检测的物品中的水以Si-OH的OH水形式和H2O的分子水存在,含量总计3%~4%左右,我相看看两种分子状态的变化过程(也就是说能分别相对精确的检测出两者的含量-—至少相对量的多少能反应出来)请问采用什么方法可以鉴别?

  • 奶粉蛋白质检测仪检测样品处理简单吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]奶粉蛋白质检测仪检测样品处理简单吗,奶粉蛋白质检测仪的样品处理相对简单。奶粉蛋白质快速检测仪具有简单、快速、准确的优点,用于快速检测奶粉中的蛋白质含量。它采用进口超高亮发光二极管作为光路系统,内置工作曲线,无需配制标准溶液,只需使用配套试剂进行零点校准,即可实现样品的快速定量测定。同时,该仪器提供齐全的专用前处理设备及耗材,配备专用预制试剂,缩短试剂配制时间,操作使用方便。总的来说,奶粉蛋白质检测仪简化了传统检测方法中复杂的样品处理步骤,使得样品处理变得相对简单和快速。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161010150026_3092_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 建筑腻子检测|室内室外腻子粉放射性检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38957.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检拥有专业检测建筑材料放射性核素限量的检测设备低本底多道γ能谱仪。可以进行多种常见建筑材料的检测,出具的报告全国认可,为提升建筑材料的质量做依据。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]建筑腻子检测 室内室外腻子粉放射性检测检测机构:中钢国检检测范围:工业废渣和矿渣(炉渣、煤矿石、高炉矿渣、特种冶金渣、粉煤灰等),砂石、黏土、矿石等原材料(河砂、毛石、石灰、花岗石、回填土、三合土、艺术石、水泥、石子等)或制成产品(大理石、砖、人造花岗岩、饰品、石膏板等)检测依据:GB 6566-2010《建筑材料放射性核素限量》[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]腻子粉[/td][td]放射性核素限量[/td][td]GB 6566-2010[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]1、团队优秀为了保持持续的市场竞争力,中钢国检历来重视人才的引进和培养,打造了一支高素质、专业化、年轻化的人才队伍。现有正高级工程师8人,高级工程师21人,工程师100余人,助理工程师200余人;硕士及本科以上学历占比高达85%,。2、区域覆盖广自2008年全面参与京沪高铁工程检测以来,中钢国检将检测业务拓展到全国,创新一条龙服务模式,相继在全国各省市自治区等成立了34个服务网点及10个分子公司。此外,紧跟“一带一路”国家大战略发展,中钢国检也成功把检测业务拓展到海外市场。3、设备先进中钢国检配备有7200t、2000t大型支座动剪试验机、扫描电镜(蔡司)、电液式脉动疲劳试验机、框架电液伺服疲劳试验系统、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪、火花发电直读光谱仪、桥梁检测车、等离子体发射光谱仪等先进检测设备,并自主研发了锚具用夹片全自动洛氏硬度检测系统、混凝土试块智能养护及抗压全自动检测装备等众多检测重器,所具备检测实力优势格外显著。4、模式创新为了进一步提升检测效率,中钢国检持续加大在智能化和信息化方面的投入,开拓了以“CRM+电商+LIMS系统”为核心链的线上线下服务新模式,形成新的内驱竞争力。5、专业度高中钢国检主动承担行业和社会责任,主持或参与60余项国家/行业/团体标准制修订及审定工作,为行业发展做出了很多贡献。公司持续在科研方面投入资金和人力,取得了非常显著的成果,近5年获得相关专利100余项。

  • 橡皮蛋经检测为真蛋 专家认为或含有害物质棉酚

    番禺问题鸡蛋追踪  但专家认为其中或含有害物质棉酚  近日,新快报连续报道了番禺某超市销售“问题鸡蛋”,广州市工商局立即组织检查,并送检相关样品。昨日,记者从市工商局了解到,抽样送检的34个鸡蛋样品,经检测结论均为真鸡蛋。对此,业内人士称,对于鸡蛋蛋黄具有韧性且能弹跳,可能是饲料中含有棉籽粕导致。而华工副教授赵强忠认为,棉籽粕中常检出有害物质棉酚,“即使报告是真鸡蛋,我也不敢吃”。  检测是否为人造蛋  “在超市买的鸡蛋,煮熟后蛋黄韧性胜过乒乓球。”事件经新快报报道后,市工商局相关分局立即进行了检查,并将白云区槎头蛋品市场和番禺某超市的“问题鸡蛋”的34个样品,分别送往广东省制糖产品质量监督检验站和中国广州分析测试中心检测。  据了解,广东省制糖产品质量监督检验站采取特定项目排除法,对每个样品的三大类8个项目进行了检测,包括鸡蛋中含有的营养物质、假鸡蛋中可能含有的包括人工合成色素柠檬黄、用来假冒蛋白质的三聚氰胺、填充多糖物必然带来的海藻酸钠等。而中国广州分析测试中心采用“裂解色谱-质谱(PGC-MS)检测鉴别法”。  结果是真的鸡蛋  广东省制糖产品质量监督检验站、中国广州分析测试中心出具的《检验报告》显示,本次抽样送检的34个鸡蛋样品以及记者提供的1个鸡蛋样品,检测结论均为真鸡蛋。相关负责人表示,咨询了农业部门的检测专家,专家认为上述两种方法有针对性,可以用来辨别鸡蛋的真假。  工商部门表示,下一步将继续加强对包括蛋品在内的各类食品市场的巡查监管,积极督促经营者落实进货查验和索证索票制度,把好进货来源关。  养殖户  蛋黄有弹性是饲料造成的  广州市力尔胜禽蛋有限公司总经理连南辉告诉记者,他从事蛋鸡养殖超过30年从来没见过假(人造)鸡蛋,鸡蛋不是紧缺商品,市场售价又不高,形不成暴利,没必要冒着违法风险进行造假。  新快报上报道的“问题鸡蛋”,蛋黄富有弹性,可以从地上弹跳起来,连南辉认为是饲料的原因造成的。他说饲料中棉籽粕的含量过高时,蛋黄就会比较结实,富有弹性也不奇怪;此外,煮熟的鸡蛋蛋白呈灰白色而不是纯白色。  连南辉说广州是全国各地鸡蛋的集中地,冬季一些北方地区温度较低,零摄氏度以下,保温措施不到位,鸡蛋上冻凝固后,就会像皮蛋,也会导致蛋黄富有弹性。  市民说法  “能跳的问题鸡蛋我不吃”  报道持续三天来,不少市民持续关注着新快报的报道。家住番禺的施小姐表示,看了这么多天的报道,感觉这个鸡蛋肯定有什么问题,就算是鸡生下来的真鸡蛋,也可能在某个渠道上出了问题。她说,看着弹性这么好的蛋黄,如果是你,肯定不会放到嘴里去了。“能跳的问题鸡蛋,就算它是真鸡蛋,我也不吃。”施小姐补充说。  同样购买过类似鸡蛋的市民郑先生则表示,平时如果在超市买到有问题的鸡蛋,第一时间都会送回超市,要求超市赔偿,然后草草了事。自从看到报道之后,他觉得以后出现同样情况的话,应该让相关部门提起重视,多为老百姓的食品安全问题考虑。  专家说法  “问题鸡蛋”中或含有害物  昨天,记者把“问题鸡蛋”的相关检测结果呈给华南理工大学轻工与食品学院副教授赵强忠分析。赵教授仔细读完报告后说,检测项目中对鸡蛋的营养物质、假鸡蛋可能含有的成分、感官指标三大类进行了检测,但只给出“均为真鸡蛋”的结论,可是并没有给出详细的数据,“这份报告和我当时看到的鸡蛋根本不一样,即使报告是真的,我也不敢吃(这种鸡蛋)。”针对问题鸡蛋的蛋黄如此有弹性,赵教授对它的性质表示怀疑。  “棉酚对人体是有毒的,以前经常出现在棉籽榨油后留下的棉籽粕中。”赵教授说,在养鸡的饲料中可能含有未脱酚的棉籽粕。据了解,棉酚是毒性物质,可造成人体红肿出血、食欲不振、神经失常、体重减轻、影响生育力。因此,未经特殊处理的毛棉油不可食用。如果使用未脱酚的棉籽粕来饲养牲畜也可能带来相应的不良影响。(新快报记者 辛捷恺 冯艳丹 曹洪梅 实习生 胡春晖)  记者走访  蛋的品质饲料决定  近日,“问题鸡蛋”引发市民的关注,鸡蛋到底是怎样生出来的呢?昨天,记者专程来到广州地区最大的蛋鸡养殖基地,位于增城中新镇慈岭村的广州市力尔胜禽蛋公司,全程目睹从饲料加工配制、喂食、喂水到生蛋、拾蛋、挑拣、包装等一系列过程。  吃什么饲料生什么蛋  “喂什么饲料给鸡吃,鸡就会生什么蛋给你,饲料是决定蛋品的关键因素。”走进力尔胜公司的饲料仓库,首先映入眼帘的就是一大堆粒状干玉米,该公司总经理连南辉抓起一把玉米向记者展示道,“这是东北出产的红玉米,品质优于一般黄玉米,除了提供能量外,还是天然色素的提供者,鸡蛋中的蛋黄色素都是从玉米中提取的。”  “那么蛋白饲料又是什么呢?”连南辉指着一堆袋装品,“这个是鱼粉,可以为鸡提供蛋白营养,是从智利进口的,一吨就要1万多元。”  除了鱼粉,提供蛋白营养的还有豆粕,据介绍,豆粕蛋白质含量很高,价格高于菜籽粕、棉籽粕,有些蛋鸡养殖户为了缩减成本,就选用便宜的菜籽粕、棉籽粕,“但是蛋的品质就会下降”。  好的管理生出健康蛋  连南辉说防疫工作是每个养殖场不可忽视的重中之重,所以建鸡舍时,要跟办公区、生活区分开。记者直击的这间鸡舍共有11000多只鸡,鸡舍长110米,宽18米,四排高1.6米的三角形铁架子依次而立,鸡舍设有自动刮粪板,每天至少刮一次,保持鸡舍环境清洁。  鸡舍灯火通明,目前正值产蛋高峰期,一天日照时间不少于16个小时,一是方便鸡采食,二是光线可以刺激鸡生蛋。  那么鸡是如何生蛋的呢?连南辉回答说,“吃饱喝足,身体里各种营养达到均衡后,鸡才会生蛋,但是一只鸡一天最多只能生一只蛋,六七天后,鸡觉得累了,就会休息一两天,我们干预不了,能做的就是提供好的饲料、好的管理,定期注射各类疫苗,保证它健康地生出高品质的蛋。”  每只蛋都要精心挑选  上午11时,鸡舍里特别热闹,鸡咕咕叫着,踱着步子,寻找合适的位置生蛋,有些鸡趴下来悄悄地生蛋,有些鸡则干脆站着生蛋,“啪嗒”一声,蛋滑落出来。由于鸡笼具有一定的倾斜度,鸡蛋随即就会滚落到鸡笼下方的蛋槽中。  走进蛋库,只见地上堆满了一摞一摞的粉壳蛋、白壳蛋,几个工人正在忙活着,“每个蛋都要仔细检查,像这种带血的、粘了粪的污染蛋都要拣出来。”正在挑蛋的阿姨向记者说道,“还有这种破壳的、裂壳的以及畸形蛋也要挑出来,畸形蛋就是特大个的双黄蛋、软壳蛋、沙壳蛋等。”  “为了保证蛋的新鲜度,鸡蛋从生产到销售不会超过三天。”连南辉说道。(新快报记者曹洪梅)

  • 【分享】ZHD型紫外蛋白核酸检测仪使用说明

    ZHD型紫外蛋白核酸检测仪使用说明 一、系统简介 蛋白核酸检测仪是层析分析的主要装置,配上层析柱、恒流泵、部分收集器(根据需要选配)和电脑打印设备即构成一套完整的液相色谱分离系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。然而,目前国内生产的蛋白检测仪虽然种类繁多,但均采用记录仪描谱且预热时间较长。 ZHD型紫外蛋白核酸检测仪的研制成功,为科研和实验人员利用电脑系统实现核酸蛋白检测和分析提供了一种先进的手段,其特点是系统稳定、操作简便、电脑显示谱图、数据分析和打印谱图。 二、系统特点 本系列检测仪有别于其他检测仪,主要有以下特点: 1、预热时间短,一般做实验只要预热10分钟左右。 2、稳定性高,预热后每小时漂移一般小于0.001。 3、操作简洁,开机后仪器自动调整透光率(T)到100%,吸光度(A)调整到0.000。 4、透光率(T)和吸光度(A)对应准确,点两者误差小于1%。 5、双数据显示,仪器适时显示吸光度(A)和透光率(T)。 6、仪器带有电脑接口和记录仪接口(吸光度0—200mv)。 7、工作软件提供谱图采集、分析计算、保存、打印等功能,可将谱图插入文档(word)文件中。 8、一台电脑可配多台检测仪(由电脑有效端口数决定)。 三、 技术性能 1、通过测量选择菜单,在电脑屏幕上可描出吸光度(A)谱图,透过率(T%)谱图以及A-T%谱图。 2、通过图形平移、复读伸缩和压缩选择等菜单,可对谱图并进行幅度、宽度调整和谱图参数计算,预览满意后打印输出。 3、在描谱过程中,电脑会自动将图形左移(也可人工调整),电脑描谱最长时间为20小时。 4、采集数据自动保存。 四、主要参数: 1、波长:254nm,280nm(可根据用户需要调配)。 2、样品池100ul,光程3mm。 3、量程:吸光度(A):0--2.000 透光率(T):1%—100%。 4、分辩率:吸光度(A):0.001 透光率(T):0.1%。 5、电脑分析参数:峰高、峰宽、峰面积、峰面积比、保留时间、面积含量(归一化)、层析柱分辩率等。 6、电源220V±10%,50HZ。 7、主机重量:约3.5Kg。 五、系统安装与操作步骤 1、将仪器背板上的输出端通过一根串行口连接电缆与电脑主机的COM1或COM2串行口相连。 2、打开紫外蛋白核酸检测仪电源,仪器预热10分钟左右。 3、打开电脑后,将应用软件(ZHD.exe)复制到硬盘上。钦一下仪器面板上的复位按钮,待仪器显示0.000A和100%T后,双击ZHD.exe启动应用软件,系统进入采集(分析)状态。 4、在“测量选择”菜单下,用鼠标选择检测项目。 5、在“检测操作”菜单下点击“测量开始”,电脑开始采集。 6、要停止采集,点击“检测操作”下的“测量结束”菜单,然后关闭紫外蛋白酸检检测仪。 六、层析普工作站软件使用 1、 对硬件的基本要求: a、电脑在简体中文Windowsxp操作系统上运行; b、显示器分辩率为1024*768,小字体,256色配置; c、图形打印机; d、电脑系统必须正常工作,并保证串行口(COM2或COM1)有效; 2、系统连接无误后先让检测仪工作,再执行应用软件ZHD.exe; 3、 点击文件操作菜单下的“打开谱图”,出现文件操作对话框,打开随机盘上的数据文件(.ran),图形被打开,熟悉菜单操作。菜单介绍如下: a、“文件操作”菜单下有打开谱图、保存谱图、打印谱图、打印预览等; b、“检测操作”菜单下有测量开始、测量结束(测量结束后,系统在应用程序目录下生成“文件名.TXT”文件,此格式文件可在Excel软件中打开,并可转贴到Word文档中使用); c、“灵敏度选择”菜单下有A、T%、A-T%选项; d、“谱图平移”菜单后有向左慢移动 []和向右快移动[]; e、“谱图重绘”菜单:从起始点描谱;清理屏幕;释放压缩; f、“谱图全貌”菜单:在屏幕上观察全部谱图。 g、“参数选择”菜单:可对谱图进行参数分析计算。方法如下:在吸光度状态下,点击鼠标左键选取基线及时间范围(第一次点击选取第一点,第二次点击选取第二点),点击“选择参数”下拉菜单的峰高、标准差、半峰宽、峰底宽、峰面积、峰面积比、面积含量及保留时间等参数进行计算,还可间接计算出层析柱分辨率;双击鼠标左键,即可取消本次计算。 h、在吸光度(A)或透光率(T%)状态下,单击鼠标右键,屏幕显示该鼠标点的数值;双击鼠标右健,擦除屏幕显示数值。 七、注意事项: a、 更改波长方法:打开样品池挡板后,可见到滤光片的燕尾型支架和印字(245或280代表当前所使用的波长),用手将其轻轻抽出,换向后插入原位,再将样品池挡板装上,拧紧固定螺钉即可。 b、 在检测仪和电脑正常工作后才能运行应用软件; c、 应用软件执行后,十秒钟后不出现采集分析界面,说明电脑未收到数据,需检查系统连接是否正常; d、 在A—T%描谱过程中,开始1小时内,T%谱以实蓝线表示;1小时后(或点击“图形重绘” ),已描过的T%谱会以虚蓝线表示; e、 测量开始后(特别是出峰以后)不要按复位按钮。 f、 要停止采集,请点击“测量结束”后,先点击“EXIT”,再关闭检测仪。 g、 开始测量时,屏幕会弹出保存文件对话框,要求输入数据文件名及存放路径;之后,电脑自动保存数据。 I、基线选取要保证基线与所选峰必须要有两个焦点,并与其他峰无焦点。

  • 淀粉成分检测|淀粉含量检测

    [size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39502.html[/url]服务背景[/color][/size]淀粉是高分子碳水化合物,是由葡萄糖分子聚合而成的多糖,淀粉的基本构成单位为α-D-吡喃葡萄糖。淀粉的应用广泛,其中变性淀粉是重点,变性淀粉是指利用物理、化学或酶的手段改变原淀粉的分子结构和理化性质,从而产生新的性能与用途的淀粉或淀粉衍生物。淀粉检测范围纯淀粉、豌豆淀粉、木薯淀粉、玉米淀粉、大米淀粉、甘薯淀粉、土豆淀粉、地瓜淀粉、酸解淀粉、氧化淀粉、交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉、酶处理淀粉、酸变性淀粉、预糊化淀粉、功能性淀粉、淀粉制品等。[size=16px][color=#333333]检测内容[/color][/size]淀粉检测项目成分检测、淀粉含量检测、感官检测、膳食纤维检测、水分检测、漂白剂检测、细度检测、明矾检测、粘度检测、蛋白质检测、灰分检测、二氧化硫检测、微生物检测、白度检测、重金属检测、色度检测、氰化物检测等。[size=16px][color=#333333]检测标准[/color][/size][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]淀粉[/td][td]淀粉分类[/td][td]GB/T 8887-2021[/td][/tr][tr][td]淀粉[/td][td]预糊化淀粉[/td][td]GB/T 38573-2020[/td][/tr][tr][td]淀粉[/td][td]食用玉米淀粉[/td][td]GB/T 8885-2017[/td][/tr][tr][td]淀粉[/td][td]食用小麦淀粉[/td][td]GB/T 8883-2017[/td][/tr][/table][size=16px][color=#333333]我们的优势[/color][/size]淀粉检测流程1、沟通需求:了解待检测项目,确定检测范围;2、报价:根据检测项目及检测需求进行报价;3、签约:签订合同及保密协议,开始检测;4、完成检测:检测周期会根据样品及其检测项目/方法会有所变动,具体可咨询检测顾问;5、出具检测报告,进行后期服务;

  • 求助检测小分子有机原料的气相配置

    需要检测小分子的有机原料的纯度,比方说酒精,甘油,醋酸等,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]具体需要什么配置?没接触过用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]检测纯度的,能否简单讲述一下

  • “乒乓球鸡蛋”你测了吗?---不同基质食用油、饲料和鸡蛋中棉酚检测应用谱图分享

    新闻广角:东方网2月11日消息:据《新闻晚报》报道,煮熟的鸡蛋咬不动,蛋黄摔在地上还像乒乓球一样会跳跃起来。针对近期部分市民买回来的“问题蛋”事件,昨天市农委和市工商局分别表态,已要求本市家禽行业协会对该情况分析管控,加强禽蛋生产行业自律和管理,工商抽检中暂未发现鸡蛋存在食品安全问题,还将继续跟踪调查。专家意见:此前,科学松鼠会成员、食品工程博士“云无心”在果壳网撰文称,“橡皮蛋”不一定就是假鸡蛋,有可能是低温下保存时间过长所致,也可能是因为饲料中“棉酚”含量过高。棉籽饼是棉籽提取油之后的残渣,富含蛋白质,经常被用于加工鸡饲料。棉籽中含有一种色素叫做“棉酚”,低含量的棉酚对于鸡的生长产蛋没有不良影响,而其蛋白质含量和低廉的价格则具有很大的吸引力。有大量的数据发现棉酚含量过高会导致“橡皮蛋”,棉酚含量过高会对男性生殖系统造成一定影响。污染来源:棉酚是棉子、棉壳、棉子饼及棉粕中含有的一种有毒物质,它是萘的衍生物。如果在动物的饲料中只给很少量的棉子饼,并不会引发中毒。棉酚中毒主要发生在猪,但牛和羊也有中毒的记载。棉酚中毒是指长期饲喂大量的棉子、棉壳、棉子饼及棉粕。有毒的棉酚在体内特别是在肝中蓄积所引起的一种慢性中毒性疾病。其临床特征是消化紊乱、全身性水肿、肝炎、胃肠炎和酸中毒,出现神经症状或有黄疸。 在制油过程中,由于蒸炒、压榨等热作用。大部分棉酚与蛋白质、氨基酸结合而变成结合棉酚,它在动物消化道内不被动物吸收,故毒性很小。另一部分棉酚则以游离形式存在于饼粕及油品中,对动物毒性较大,尤其单胃动物过量摄取或摄取时间较长,可导致生长迟缓、繁殖性能及生产性能下降,甚至死亡。幼小动物对棉酚的耐受能力更低。游离棉酚的中毒量与饲粮中蛋白质水平、亚铁离子水平及钙离子水平有关。棉子中棉酚的含量占棉子饼干物质的0.03%~2%。子仁含蛋白质39%左右,含棉酚0.2%~2%。检测方法及安谱应用实验谱图(见附件)(参考方法:GB 5009.148—2011植物性食品中游离棉酚的测定):a.植物油中游离棉酚经无水乙醇提取,利用高效液相色谱法检测,保留时间定性,外标法定量。b.水溶性液体样品中的游离棉酚经无水乙醚提取,浓缩至干,再加入乙醇溶解,利用高效液相色谱法检测,保留时间定性,外标法定量。c.对于鸡蛋基质参考国标方法做出来的数据不理想,回收率非常低,因此“安谱”改进方法如下:将鸡蛋去壳后用组织捣碎机充分混匀,取样品2g,加入5 mL乙腈,剧烈振摇2 min,静置分层(或冰箱过夜),取上清液过滤,离心,上清液即为试样液。

  • 欢迎lifen4607担任食品检测-食品安全与风险评估版主

    欢迎lifen4607担任食品检测-食品安全与风险评估版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 【转帖】专家称毒奶粉中“三聚氰胺”可提高“蛋白”检测值

    专家称毒奶粉中三聚氰胺可提高蛋白检测值[em0804]http://news.QQ.com  2008年09月12日02:42   新京报  徐春柳  本报讯 (记者 徐春柳)昨天,中国家具协会副秘书长朱长岭介绍,三聚氰胺一般来说是用来制造板材的化工原料,怎么会出现在奶粉当中,不好推断。“用于家装上并无毒性,但口服就不好说了。” 一名不愿具名的化工专家介绍,[color=#DC143C]三聚氰胺其分子中含有大量氮元素。用普通的全氮测定法测饲料和食品中的蛋白质数值时,根本不会区分这种伪蛋白氮。添加在食品中,可以提高检测时食品中蛋白质检测数值。 [/color]有媒体此前报道,某些饲料加工厂,会往饲料中添加三聚氰胺这种化工原料。这样可以冒充成高蛋白饲料,还能大幅度降低成本。去年,在美国发生了猫狗宠物非正常死亡事件,美国有关部门经过调查确认是宠物食品的原料受三聚氰胺污染。 去年5月9日,国家质检总局在通报两家企业因其部分出口的小麦蛋白粉和大米蛋白粉中,蛋白含量不能达到合同的要求,违规添加了三聚氰胺。 [em0804]

  • 【简讯】我国动植物检疫性疫病的分子检测技术取得显著进展

    国家“863计划”现代农业技术领域在动植物检疫性疫病的分子检测技术取得突破,开发出一批适用于口岸检疫和野外诊断的快速、特异、灵敏检测技术产品,研究成果获得2007年教育部科技进步一等奖. 研制出动物水泡性疾病分子鉴别检测试剂盒,并进行了验证应用。该试剂盒适合于水泡性口炎病毒、口蹄疫病毒、猪水泡病病毒的鉴别检测,适用于动物肌肉和内脏组织、淋巴结、扁桃体、肉品、血液、水泡皮、水泡液及OP液等样品的检测,具有特异性高、敏感性强和简便的特点。建立了基于反转录等温扩增技术的BTV、VSV、EHDV、AKV四种病毒快速检测方法。通过试验证明RT-LAMP 扩增技术是一种检测程序简单、灵敏度和特异性较高的基因检测手段,在BTV、VSV、EHDV、AKV病毒的快速检测方面具有一定的开发潜力。目前正在进行LAMP快速检测试剂盒组装的研究工作。 采用AFLP、RFLP、RT-PCR、 PCR等分子生物学技术,分别以功能基因、核糖体 ITS等区域为靶标,筛选获得了大豆疫霉病、小麦矮腥黑穗病菌、水稻细菌性条斑病菌、瓜类果斑病菌和亚洲梨火疫病菌等10多种植物检疫性疫病检测的特异性分子靶标,并开发出PCR检测试剂盒。

  • 分子检测指导下的肺癌精准治疗策略

    [align=center]分子检测指导下的肺癌精准治疗策略[/align][size=16px]肺癌是最常见的恶性肿瘤,也是恶性肿瘤死亡的主要原因。随着肿瘤分子生物学研究的不断深入发展以及检测技术的提高,肺癌治疗开始进入分子检测指导下的精准治疗时代,更多免疫调控分子和新的免疫检查点的不断被发现,使免疫治疗成为未来肺癌等肿瘤治疗的重要发展方向。[/size][size=16px]目前,在肺癌中获批([/size][size=16px]FDA[/size][size=16px])或已写入[/size][size=16px]NCCN[/size][size=16px]指南的抗[/size][size=16px]PD-1[/size][size=16px]以及抗[/size][size=16px]PD-L1[/size][size=16px]药物主要包括以下几种:抗[/size][size=16px] PD-1[/size][size=16px]抗体包括:[/size][size=16px]Nivolumab[1][/size][size=16px],[/size][size=16px]Pembrolizumab[2,3][/size][size=16px];抗[/size][size=16px]PD-L1[/size][size=16px]抗体包括:[/size][size=16px] Atezolizumab [4,5][/size][size=16px],[/size][size=16px]Durvalumab[6][/size][size=16px]。整体来看,免疫治疗相对于传统的细胞毒性治疗,在治疗有效的人群中,能有效的减低副作用,并能长期获益。此外,相比于免疫单药治疗,联合治疗可提高疗效,延长患者的生存时间。目前免疫治疗单药在实体瘤中的[/size][size=16px]ORR[/size][size=16px]大都在[/size][size=16px]20%[/size][size=16px]左右,而采用联合治疗的策略比如联合化疗,抗肿瘤血管生成药物治疗等,其[/size][size=16px]ORR[/size][size=16px]则可提高至[/size][size=16px]50%[/size][size=16px]以上。[/size][size=16px]目前,关于免疫治疗疗效预测标志物,[/size][size=16px]PD-L1[/size][size=16px]表达、[/size][size=16px]MSI[/size][size=16px]状态以及[/size][size=16px]TMB[/size][size=16px]已被写入[/size][size=16px]NCCN[/size][size=16px]指南,作为一些免疫药物用药的伴随指标。然而,这几项指标亦不是免疫治疗的理想预测因子,比如并不是所有的[/size][size=16px]PD-L1[/size][size=16px]阳性患者均能从免疫治疗中获益,同时,部分[/size][size=16px]PD-L1[/size][size=16px]阴性的患者仍能从中获益。因此,免疫治疗的疗效预测标志物,特别是免疫联合治疗的生物标志物,仍需要进一步探索。[/size][size=16px]肺癌是世界范围内最常见的恶性肿瘤[/size][size=16px],[/size][size=16px] [/size][size=16px]免疫治疗引领了多个肿瘤治疗领域的变革,给肺癌患者带来了极大的生存获益。然而,不管是免疫单药还是联合治疗,仅有部分患者可以从治疗中获得持久疗效和长期生存。目前,针对如何实现精准免疫治疗,研究者开始了诸多尝试,探寻生物标志物。除去已被写入指南的免疫治疗生物标志物([/size][size=16px]PD-1[/size][size=16px]表达、[/size][size=16px]TMB[/size][size=16px]以及[/size][size=16px]MSI/[/size][size=16px]dMMR[/size][size=16px])外,肿瘤新抗原([/size][size=16px]TNB[/size][size=16px])、免疫微环境相关的肿瘤免疫浸润淋巴细胞([/size][size=16px]Tumor infiltrating lymphocyte, TILs[/size][size=16px])和[/size][size=16px]T[/size][size=16px]细胞炎性基因表达谱([/size][size=16px]GEP[/size][size=16px])等,以及其它一系列与免疫治疗疗效相关的正、负驱动基因突变、[/size][size=16px]免疫超进展[/size][size=16px]的相关的因子等都分别已有相关研究报道。[/size]

  • 奶粉蛋白质快速检测仪适用范围

    奶粉蛋白质快速检测仪的适用范围主要包括但不限于以下方面:  牛奶及其相关产品:包括纯奶、核桃奶、燕麦奶、红枣牛奶、牛初乳等各种类型的牛奶,以及奶粉(包括牛初乳粉)等。  豆制品:如豆浆粉、豆奶粉等,这些产品中的蛋白质含量也是检测的重要内容。  鸡蛋等其他食品:对于含有蛋白质的其他食品,如鸡蛋等,也可以使用该仪器进行检测。  此外,该仪器在测定过程中,能够真实反映样品中蛋白质的含量,并且不受非蛋白氮(如三聚氰胺、甘氨酸、尿素、化肥等)的干扰。同时,它适用于实验室的快速定量检测,每个样品的检测时间通常只需5~10分钟,大大提高了检测效率。  因此,奶粉蛋白质快速检测仪在食品生产和质量控制中发挥着重要作用,能够帮助生产厂家快速、准确地检测产品中的蛋白质含量,确保产品质量符合标准。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151304429851_1379_4214615_3.jpg!w690x690.jpg[/img]

  • 浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    [align=center][b][font=宋体]浅谈单分子荧光检测技术的原理及其在生命科学中的应用[/font][/b][/align][align=center][font=宋体]吴晶[/font][sup][font='Times New Roman',serif]1[/font][/sup][font=宋体],刘皎[/font][sup][font='Times New Roman',serif]1,*[/font][/sup][/align][align=center][font='Times New Roman',serif]1. [/font][font=宋体]北京大学医药卫生分析中心,北京,[/font][font='Times New Roman',serif]100191[/font][/align][align=center][font='Times New Roman',serif]* [/font][font=宋体]通讯作者[/font][/align][b][font=宋体]摘要[/font][/b][font=宋体]由于单分子检测([/font][font='Times New Roman',serif]SingleMolecule Detection, SMD[/font][font=宋体])特有的[/font][font=宋体]高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体],使其[/font][font=宋体]有望发现其他常规实验中难以发现的实验现象,因此[/font][font=宋体]成为了生物学、医学及药学等生命科学领域重要的科研工具。本文结合作者所在的北京大学医药卫生分析中心生物成像平台的工作经验,概述了单分子荧光检测技术的原理以及在生命科学中的应用,以期为相关科研技术人员提供参考。[/font][b][font=宋体]关键词[/font][/b][font=宋体]单分子荧光检测,荧光互相关光谱,荧光寿命成像,应用[/font][b][font='Times New Roman',serif]Abstract[/font][/b][font='Times New Roman',serif]Single Molecule Detection (SMD)has become an important scientific research tool in the fields of biology,medicine and pharmacy due to its unique sensitivity, resolution and signalquality. Based on the author's work experience in the biological imaging lab ofPeking University Medical and Health Analysis Center, this paper summarizes theprinciple and applications of SMD in the life sciences, in order to providereference for related scientific researchers and technicians.[/font][b][font='Times New Roman',serif]KeyWords [/font][/b][font='Times New Roman',serif]SMD, FCS, FLIM, Application[/font][b][font='Times New Roman',serif]1 [/font][font=宋体]引言[/font][/b][font=宋体]单分子检测([/font][font='Times New Roman',serif]Single Molecule Detection, SMD[/font][font=宋体])技术是一种能够在单分子水平上检测分子的技术,它具[/font][font=宋体]有高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体]。[/font][font=宋体]它不但实现了某种意义上可称之为最高灵敏度的分子检测,而且有可能实时监测反应途径和追踪大分子在执行生理功能时的结构变化,因此有望发现其他常规实验中难以发现的实验现象。[/font][font=宋体]在单分子检测技术发展之前,大多数的分子实验是探测分子的综合平均效应([/font][font='Times New Roman',serif]Ensemble Averages[/font][font=宋体]),即探测大量由一种(或多种)对象组成的一个整体所表现出的平均响应和平均值[/font][font='Times New Roman',serif][1][/font][font=宋体]。这一平均效应掩盖了许多特殊的信息,尤其是生物学里很多小概率事件的发生。相比之下,单分子检测可以逐个地对体系中的单个分子进行研究,通过时间相关的方法,得到某一分子特性的分布状况。[/font][font=宋体]这对于了解机体细胞的物理、化学性质及其参与细胞正常功能的机制是十分必要的。它快速、卓越的进展无疑将影响许多科学领域,为医学、生物学、化学、物理[/font][font=宋体]学和纳米材料等领域提供新的检测手段,目前已成为当今科学研究的热点之一。[/font][font=宋体]在过去的几十年里,科研人员开发和设计了各种技术和实验来检测单个分子。例如上个世纪五十年代使用透射电镜拍摄了[/font][font='Times New Roman',serif]DNA[/font][font=宋体]和蛋白质等单分子的第一张图像;六十年代,有学者开展了间接检测水溶性生物分子的荧光研究,获得了含有高浓度底物的低浓度酶的液滴中存在的分子数量;七十年代,膜片钳被用于研究单分子,此后被广泛应用于离子通道蛋白的研究;八十年代,利用可扩散的多重荧光标记技术检测了单脂质分子;九十年代,应用宽场单荧光成像技术对单荧光团分子进行检测和成像,并且利用单分子荧光定位技术获得了大约[/font][font='Times New Roman',serif]30nm[/font][font=宋体]的分辨率;进入二十一世纪,研究人员开始在单分子水平上只使用一种荧光染料标签,对活细胞进行直接成像,并通过荧光显微镜进行观察[/font][font='Times New Roman',serif][2][/font][font=宋体]。[/font] [font=宋体]单分子荧光检测技术是实现单分子检测的手段之一,它利用单个荧光分子的荧光发射特性,对其进行精细控制和观测。[/font][font=宋体]本文拟通过对单分子荧光检测技术,包括荧光相关光谱[/font][font='Times New Roman',serif]/[/font][font=宋体]荧光互相关光谱([/font][font='Times New Roman',serif]Fluorescence Correlation Spectroscopy/ Fluorescence Cross-CorrelationSpectroscopy, FCS/FCCS[/font][font=宋体])及荧光寿命成像([/font][font='Times New Roman',serif]Fluorescence Lifetime Imaging Microscopy, FLIM[/font][font=宋体])技术的特征、原理及这些技术在生命科学领域的应用等方面进行阐述,以其为相关科研技术人员提供参考。[/font][b][font='Times New Roman',serif]2 [/font][font=宋体]单分子荧光检测技术概述[/font][/b][font='Times New Roman',serif]2.1[/font][font=宋体]荧光发射原理[/font][font='Times New Roman',serif][3][/font][font=宋体]荧光作为一种发射光,它的产生涉及对光子的吸收和再发射两个过程。简单的说,荧光产生有四个步骤(图[/font][font='Times New Roman',serif]1[/font][font=宋体]):[/font][align=center][img=,337,387]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241358038590_3596_3237657_3.png!w337x387.jpg[/img][/align][align=center][font=宋体]图[/font]1 [font=宋体]荧光发射循环示意图[/font][/align][font='Times New Roman',serif](1)[/font][font=宋体]电子吸收入射光子后由基态向激发态跃迁,其跃迁速率在一定范围内与激光功率成正比;[/font][font='Times New Roman',serif](2)[/font][font=宋体]电子跃迁到不同电子能级或同一电子能级的不同振动能级上,经内转换和振动弛豫降落到最低激发单重态的最低振动能级上,这一过程需[/font][font='Times New Roman',serif]1x10[sup]-11[/sup]~1x10[sup]-13[/sup]s[/font][font=宋体];[/font][font='Times New Roman',serif](3)[/font][font=宋体]电子由激发态经发射光量子跃迁到基态的不同振动能级上,这一过程称为荧光发射;[/font][font='Times New Roman',serif](4)[/font][font=宋体]电子基态的内弛豫。[/font][font=宋体]物质发射荧光的能力用荧光量子产率来衡量。[/font][font='Times New Roman',serif]2.2 [/font][font=宋体]单分子荧光检测的基本要求[/font][font=宋体]对单分子荧光的检测必须满足两个基本要求[/font][font='Times New Roman',serif][1][/font][font=宋体]:[/font][font='Times New Roman',serif](1)[/font][font=宋体]在被照射的体积中只有一个分子与激光发生相互作用。这一点可以很方便地通过调整研究体系的浓度(密度)来达到;[/font][font='Times New Roman',serif](2)[/font][font=宋体]确保单分子的信号大于背景干扰信号([/font][font='Times New Roman',serif]background signal[/font][font=宋体]),其中关键的问题是要有效减少拉曼散射、瑞利散射及其杂质荧光所造成的干扰。[/font][font=宋体]因此,要获得理想的信噪比,需要将激发体积最小化。因显微镜物镜的焦点最小体积约[/font][font='Times New Roman',serif]1μm[sup]3[/sup][/font][font=宋体],故激光扫描共聚焦显微镜([/font][font='Times New Roman',serif]laser scanning confocalmicroscopy, LSCM)[/font][font=宋体]是探测单分子荧光的主要方法之一。[/font][b][font='Times New Roman',serif]3 [/font][font=宋体]单分子荧光检测技术在生命科学中的应用[/font][/b][font='Times New Roman',serif]3.1 [/font][font=宋体]荧光相关光谱[/font][font='Times New Roman',serif]/[/font][font=宋体]荧光互相关光谱([/font][font='Times New Roman',serif]FCS/FCCS[/font][font=宋体])技术[/font][font='Times New Roman',serif][4-7][/font][font='Times New Roman',serif]FCS[/font][font=宋体]和[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]都是在涨落光谱技术的基础上衍生而来的,通过检测某一微小区域内荧光信号的瞬时涨落变化,分析分子的密度、扩散以及分子之间的相互作用,是一种新兴的单分子检测技术。由于[/font][font='Times New Roman',serif]FCS/FCCS[/font][font=宋体]的高灵敏性可以用来检测生物系统中发生的小概率时间,因此此技术主要用于分子之间相互作用、活细胞分析、核酸分析、蛋白质的寡聚化、蛋白质的动力学研究以及纳米制剂粒径测量等研究,在检测物质浓度、扩散速度、分子结合速率等方面体现出巨大的优越性,亦可用于肿瘤的早期诊断以及高通量药物筛选等。[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术,即在[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]焦点的微小测量区域内,通过对荧光强度随时间变化的自发性波动分析和其时间函数自相关的分析,并通过计算机统计与拟合运算,在活细胞内单分子水平给出分子的扩散系数、分子数目、分子浓度及分子之间结合与分离状态等动力学参数的检测方法。其实质是监测带有荧光基团的物质在激光作用体积内的扩散情况,可揭示异质群体中的每个个体,并对各自的亚群进行鉴定、分类、定量比较,亦可对复杂的生化反应提供详细、确定的动力学参数。例如,张强课题组就通过[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术测定了负电蛋白与不同电荷的纳米颗粒结合情况不同,导致扩散系数呈显著性差异,从而判断出纳米颗粒与血浆中蛋白结合情况[/font][font='Times New Roman',serif][8][/font][font=宋体]。而薛采宁等人也使用[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术实现了无标记小分子药物筛选[/font][font='Times New Roman',serif][9][/font][font=宋体]:[/font][font='Times New Roman',serif]FCS[/font][font=宋体]可以根据荧光标记的蛋白分子的特征扩散时间的变化来区分蛋白质的聚集程度,定量评价蛋白质与药物的相互作用,如荧光标记蛋白聚集体的特征扩散时间越短,蛋白质与药物之间的相互作用越强。[/font][font=宋体]发明[/font][font='Times New Roman',serif]FCS[/font][font=宋体]的最初目的是在生物系统中研究非常稀的样本浓度的化学动力学特征。随着探测手段、自相关电子学等方面的技术进步,[/font][font='Times New Roman',serif]FCS[/font][font=宋体]在生物化学中的研究和应用越来越广泛,如经典的细胞膜中脂质扩散研究就是通过[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]整合了[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术后所取得的巨大进展。[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]技术,确切来说是[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术的一种延伸应用。其既保持了[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术的灵敏性,又可以解决[/font][font='Times New Roman',serif]FCS[/font][font=宋体]对两种粒子的扩散速度要有明显不同的要求(至少相差[/font][font='Times New Roman',serif]2[/font][font=宋体]倍,即二者质量差相差[/font][font='Times New Roman',serif]8[/font][font=宋体]倍)。该技术在实验中通常将两种粒子用不同的荧光进行标记,荧光分子被激发后,产生两种互不干扰的荧光信号,分别被两个独立的检测器探测,然后将探测到的信息进行交叉函数分析。如果分子间存在相互作用,那么两种不同的荧光信号将同时经过检测通道,这时两个检测器就会产生同步的信号波动,从而产生互相关信号;而当单色荧光分子独立在微区域内运动时,则不会产生互相关信号。这样,相互作用的荧光分子和独立运动的荧光分子就被区分开来。由于[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]技术直接反映分子间的相互作用,而不像[/font][font='Times New Roman',serif]FRET[/font][font=宋体]技术那样受分子扩散或聚集的影响,因此在生物分子互作、蛋白寡聚化、酶活性研究领域中有重要的应用前景。[/font][font='Times New Roman',serif]3.2 [/font][font=宋体]荧光寿命成像([/font][font='Times New Roman',serif]FLIM[/font][font=宋体])技术[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是指分子受到光脉冲激发后返回基态之前在激发态的平均停留时间,是荧光团的固有性质(表[/font][font='Times New Roman',serif]1[/font][font=宋体]),取决于荧光分子所处的微环境,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术可提供细胞自身荧光寿命信息,亦可被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、[/font][font='Times New Roman',serif]pH[/font][font=宋体]值的分布和动力学变化、局部氧气浓度测量、活细胞内钙浓度测量等,这在生物医学研究中具有非常重要的意义。目前[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。如[/font][font='Times New Roman',serif]Melissa C Skala[/font][font=宋体]等人[/font][font='Times New Roman',serif][10][/font][font=宋体]及李慧等人[/font][font='Times New Roman',serif][11][/font][font=宋体]均报道了通过[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]手段无标记测量肿瘤细胞或组织内[/font][font='Times New Roman',serif]NADH, FAD[/font][font=宋体]和其他内源性光学生物标志物的荧光特性,来实现对正常细胞或组织与肿瘤细胞或组织之间代谢途径差异的检测。[/font][align=center][font=宋体]表[/font][font='Times New Roman',serif]1 [/font][font=宋体]荧光寿命特性[/font][/align] [table][tr][td] [align=center][font=宋体][color=black]取决于[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]不依赖于[/color][/font][/align] [/td][/tr][tr][td] [font=宋体][color=black]染料浓度[/color][/font] [/td][td] [font=宋体][color=black]染料固有特性(如异构化、质子化、蛋白质折叠等)[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]光漂白[/color][/font] [/td][td] [font=宋体][color=black]微环境(如[/color][/font][font='Times New Roman',serif][color=black]pH[/color][/font][font=宋体][color=black]、离子浓度、环境氧浓度、温度等)[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]样品厚度[/color][/font] [/td][td] [font=宋体][color=black]分子结合[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]激发光强度[/color][/font] [/td][td] [font='Times New Roman',serif][color=black] [/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]光源噪声[/color][/font] [/td][td] [font='Times New Roman',serif][color=black] [/color][/font] [/td][/tr][/table][font='Times New Roman',serif]3.3 [/font][font=宋体]荧光寿命成像[/font][font='Times New Roman',serif]-[/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif](Fluorescence Lifetime Imaging Microscopy- Fluorescence Resonance EnergyTransfer, FLIM-FRET[/font][font=宋体])[/font][font='Times New Roman',serif][12][/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif](Fluorescence Resonance Energy Transfer, FRET) [13][/font][font=宋体]是指两个荧光基团间能量通过偶极[/font][font='Times New Roman',serif]-[/font][font=宋体]偶极耦合作用以非辐射方式从供体传递给受体的现象。目前[/font][font='Times New Roman',serif]FRET[/font][font=宋体]技术可广泛用于单个固定细胞、亚细胞或活细胞原位生理环境下检测生物大分子的构象变化和分子间的直接相互作用,如检测配体[/font][font='Times New Roman',serif]-[/font][font=宋体]受体、蛋白分子共定位、转录机制、蛋白折叠以及蛋白质二聚化等,亦可用于检测酶活性变化、细胞凋亡以及膜蛋白的研究等[/font][font='Times New Roman',serif][12][/font][font=宋体]。[/font][font=宋体]在[/font][font='Times New Roman',serif]FRET[/font][font=宋体]体系中,常用的荧光能量供体、受体对主要有:[/font][font='Times New Roman',serif]CFP/YFP[/font][font=宋体]、[/font][font='Times New Roman',serif]BFP/RFP[/font][font=宋体]、[/font][font='Times New Roman',serif]CY3/CY5[/font][font=宋体]等。进行[/font][font='Times New Roman',serif]FRET[/font][font=宋体]实验时,需要满足以下几个条件:[/font][font='Times New Roman',serif]① [/font][font=宋体]所检测样品包含两个荧光分子,能量的提供者叫做供体,能量的接受者叫做受体;[/font][font='Times New Roman',serif]② [/font][font=宋体]供体与受体的距离在[/font][font='Times New Roman',serif]10nm[/font][font=宋体]之间;[/font][font='Times New Roman',serif]③ [/font][font=宋体]供体的发射波长与受体的激发波长一致。当供体的激发波长照射样品时,若没有[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效应产生,只会检测到供体的发射光;反之,如果有[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效应发生,则[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]可检出供体发射的荧光减弱,而受体的发射光增强。[/font][font='Times New Roman',serif]FRET[/font][font=宋体]本身不是一种成像技术,而是一个物理过程。传统的[/font][font='Times New Roman',serif]FRET[/font][font=宋体]过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术应用于[/font][font='Times New Roman',serif]FRET[/font][font=宋体]过程分析,利用了[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程,目前被认为是测量[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效果的金标准。[/font][font=宋体]当受体分子与供体之间的距离[/font][font='Times New Roman',serif]10nm[/font][font=宋体]时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生[/font][font='Times New Roman',serif]FRET[/font][font=宋体]的供体分子的荧光寿命降低。因此,[/font][font='Times New Roman',serif]FLIM-FRET[/font][font=宋体]联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白[/font][font='Times New Roman',serif]-[/font][font=宋体]蛋白,蛋白[/font][font='Times New Roman',serif]-[/font][font=宋体]核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[/font][b][font='Times New Roman',serif]4 [/font][font=宋体]结论和展望[/font][/b][font=宋体]近年来,研究人员应用了多种技术来检测单分子,如从传统的技术到最近发展的生物传感技术。而荧光检测越来越受欢迎,并且在等离子体共振、全内反射荧光、多光子激发荧光显微镜和近年来发展起来的生物传感技术等改进形式中仍然受到关注。随着近场扫描显微镜、光激活定位显微镜、受激发射损耗显微术或超分辨率荧光显微镜等先进显微技术的发展,单分子的超分辨率成像亦成为可能。此外,随着纳米生物技术的发展,几种先进的纳米技术也对单分子检测在更大程度上发挥着指导作用。[/font][font=宋体]总之单分子检测特有的[/font][font=宋体]高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体],[/font][font=宋体]经过近几十年的发展,在[/font][font=宋体]生物学、医学及药学等生命科学领域已经成为不可或缺的科研工具。[/font][font='Times New Roman',serif] [/font][b][font=宋体]参考文献[/font][/b][font='Times New Roman',serif]1. [/font][font=宋体]周拥军[/font][font='Times New Roman',serif], [/font][font=宋体]陈德强[/font][font='Times New Roman',serif], [/font][font=宋体]夏安东[/font][font='Times New Roman',serif], [/font][font=宋体]黄文浩[/font][font='Times New Roman',serif]. [/font][font=宋体]单分子的荧光特性及其在生物学上的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]物理[/font][font='Times New Roman',serif], 2000, 29(11): 657-661[/font][font='Times New Roman',serif]2. [/font][font='Times New Roman',serif]NidhiChauhan, Kirti Saxena, Utkarsh Jain. Single molecule detection from microscopyto sensors. 2022. doi: https://doi.org/10.1016/j.ijbiomac.2022.04.038[/font][font='Times New Roman',serif]3. [/font][font=宋体]盖宏伟[/font][font='Times New Roman',serif]. [/font][font=宋体]单分子荧光成像检测及其应用研究[/font][font='Times New Roman',serif][D]. [/font][font=宋体]大连[/font][font='Times New Roman',serif]: [/font][font=宋体]中国科学院大连化学物理研究所[/font][font='Times New Roman',serif], 2005, 2-3[/font][font='Times New Roman',serif]4. [/font][font=宋体]曲绍峰[/font][font='Times New Roman',serif], [/font][font=宋体]林金星[/font][font='Times New Roman',serif], [/font][font=宋体]李晓娟[/font][font='Times New Roman',serif]. FCS/FCCS[/font][font=宋体]技术及其在植物细胞生物学中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]电子显微学报[/font][font='Times New Roman',serif], 2014, 33(5): 461-468[/font][font='Times New Roman',serif]5. [/font][font=宋体]张普敦[/font][font='Times New Roman',serif], [/font][font=宋体]任吉存[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱及其在单分子检测中的应用进展[/font][font='Times New Roman',serif]. [/font][font=宋体]分析化学[/font][font='Times New Roman',serif], 2005, 33(6): 875-880[/font][font='Times New Roman',serif]6. [/font][font=宋体]黄茹[/font][font='Times New Roman',serif], [/font][font=宋体]周小明[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱在生物化学领域中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]激光生物学报[/font][font='Times New Roman',serif], 2013, 22(4): 289-293[/font][font='Times New Roman',serif]7. [/font][font=宋体]游俊[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱([/font][font='Times New Roman',serif]FCS[/font][font=宋体])在生物活细胞中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]湖北大学学报[/font][font='Times New Roman',serif]([/font][font=宋体]自然科学版[/font][font='Times New Roman',serif]), 2005, 27(1): 53-56[/font][font='Times New Roman',serif]8. [/font][font='Times New Roman',serif]ZibinZhang, Junji Ren, Wenbing Dai, etc. Fast and Dynamic Mapping of the ProteinCorona on Nanoparticles Surfaces by Photocatalytic Proximity Labeling. Advancedmaterials, 2023, 35: 2206636[/font][font='Times New Roman',serif]9. [/font][font='Times New Roman',serif]CainingXue, Wenxin Yu, Haohan Song, etc. A study of protein-drug interaction based onsolvent-induced protein aggregation by fluorescence correlation spectroscopy.Analyst, 2022, 147: 1357[/font][font='Times New Roman',serif]10. [/font][font='Times New Roman',serif]MelissaC Skala, Kristin M Riching, Annette Gendron-Fitzpatrick, etc. In vivomultiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes,and cellular morphology in precancerous epithelia. PNAS, 2007, 104(49): 19494-9[/font][font='Times New Roman',serif]11. [/font][font='Times New Roman',serif]Hui Li,Jia Yu, Rongli Zhang, etc. Two-photon excitation fluorescence lifetime imagingmicroscopy: A promising diagnostic tool for digestive tract tumors. Journal ofInnovative Optical Health Sciences, 2019, 12(5):1930009 1-16[/font][font='Times New Roman',serif]12. [/font][font=宋体]罗淋淋[/font][font='Times New Roman',serif], [/font][font=宋体]牛敬敬[/font][font='Times New Roman',serif], [/font][font=宋体]莫蓓莘[/font][font='Times New Roman',serif],[/font][font=宋体]等[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif]-[/font][font=宋体]荧光寿命显微成像([/font][font='Times New Roman',serif]FRET-FLIM[/font][font=宋体])技术在生命科学研究中的应用进展[/font][font='Times New Roman',serif]. [/font][font=宋体]光谱学与光谱分析[/font][font='Times New Roman',serif], 2021, 41(4): 1023-1031[/font][font='Times New Roman',serif]13. [/font][font=宋体]肖忠新[/font][font='Times New Roman',serif], [/font][font=宋体]张进禄[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光共振能量转移技术在激光共聚焦显微镜中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]中国医学装备[/font][font='Times New Roman',serif], 2014,8(11): 73-75[/font]

  • 【求助】苏丹红检测中SPE柱子洗脱问题

    最近开始做辣椒中的苏丹红检测,使用标准是:GB/T19681-2005,标准中使用的柱子是要自己做,现在我使用的是商品柱:中性氧化铝500mg,6ml。各个浓度的标准品出峰没问题,但是具体做到辣椒样品加标时,苏丹红的四个峰却不见了,我想是否在过SPE柱洗脱时出问题了?洗脱液是5%丙酮的正己烷液,洗脱后用氮吹仪吹干,再用丙酮定容到5ml,用有机虑膜过滤后上机。这里用氮吹仪吹干洗脱液有没有影响啊?或者是其他的原因?请做过苏丹红检测的老师指教。

  • 关于水解蛋白粉中三氯丙醇的检测

    如题做过调味品中三氯丙醇的检测的朋友来说一下你所用方法吧。先说说我自己做三年了一直沿用GB/T5009.191-2006的方法自己买硅藻土填料装柱子,正己烷-乙醚(9:1)净化,乙醚洗脱浓缩后衍生化。处理起来繁琐耗时且成本高有机溶剂用量大对身体也不好。最近打算用商品柱,但试了几种柱子后发现以下几个问题。首先做水解蛋白粉称样溶解有问题,方法要求用氯化钠溶液溶解,但调味粉中本身含盐量很高,导致其不溶于氯化钠溶液,上柱后会堵住商品柱不能进行后续处理。其次参考一些地方质检所检测方法,减少正己烷-乙醚用量会导致结果偏差很大,含量为20ug/kg的样品处理后检测结果能达到200ug/kg,定量离子253有杂质干扰,即使改用其他离子也有干扰。再有就是有的文献采用乙酸乙酯洗脱,我也尝试了干扰更大。发现只有加大正己烷-乙醚用量才能净化完全。最后提一下空白试验问题,天冷空白值低,天一热就高了。结果从2-15ppb不等。我们产品要求在20ppb以下,这空白值太高且找不到原因很揪心!有没有朋友遇到这样的问题啊?是不是调味粉比较复杂,商品柱开发时没有考虑这些情况在内啊?希望有经验的朋友提出自己的宝贵意见。

  • 饲料检测_饲料水分检测_饲料粗蛋白检测

    [font=&][size=16px][color=#333333][url=https://www.woyaoce.cn/service/info-39790.html]点击打开链接:https://www.woyaoce.cn/service/info-39790.html[/url][/color][/size][/font][font=&][size=16px][color=#333333]服务背景[/color][/size][/font]饲料是一种以大豆、豆粕、玉米、鱼粉、氨基酸、杂粕、添加剂、乳清粉、油脂、肉骨粉、谷物、甜高粱等十多种不同的饲料原料制成的饲料。饲料安全在动物产品中占有举足轻重的地位。通常情况下,只有植物的饲料才是饲料,包括草、各种谷物、块茎、根等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]物理指标:感观(外观及气味)、粒度、水分、灰分、pH、混合均匀度营养成分:钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸等微生物:细菌总数、霉菌数、沙门氏菌、乳酸菌、大肠菌群、酵母菌数等有毒有害物质:黄曲霉毒素B1、水溶性氯化物、挥发性盐基氮、氰化物、亚硝酸盐、三聚氰胺、重金属残留、农药残留[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]饲料[/td][td]钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸[/td][td]实验室方法[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]菲优特检测服务形式委托检测:环境检测、食品/医药/保健品检测、化工检测、水产养殖检测、微生物检测等。科研服务:高校科研服务(氨基酸类、维生素类、脂肪类、糖代谢类、有机酸类、动/植物激素类、核苷酸类、生物胺类、花青素类、黄酮酚酸类、皂苷类、氮代谢类、植物提取物类、神经递质类等。生物项目研发(毒理测试、动物饲养、动物模型构建、保健食品功能性评价服务、动物实验技术服务等)。仪器共享:HPLC检测平台、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]检测平台、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]检测平台、动物实验服务平台。方法开发及咨询:实验室检测方法开发和应用、实验室管理咨询和培训、质量控制咨询与培训、实验仪器配置和选型等

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制