当前位置: 仪器信息网 > 行业主题 > >

磁电子材料

仪器信息网磁电子材料专题为您整合磁电子材料相关的最新文章,在磁电子材料专题,您不仅可以免费浏览磁电子材料的资讯, 同时您还可以浏览磁电子材料的相关资料、解决方案,参与社区磁电子材料话题讨论。

磁电子材料相关的资讯

  • 863项目“高密度存储与磁电子材料关键技术”取得突破
    p   阻变存储器、相变存储器、磁存储器、高灵敏度磁传感器和隔离耦合器件等是具有良好应用前景的新型存储和磁电子技术,在移动通信、个人电脑、数码相机、电子标签等领域具有广阔的市场价值。“十二五”期间,863计划新材料技术领域支持了 “高密度存储与磁电子材料关键技术”主题项目。近日,科技部高新司在北京组织专家对该主题项目进行了验收。 /p p   该项目开展了与CMOS工艺兼容的阻变与电极材料组合体系研究,研发的TaOx阻变存储器 芯片制造基于中芯国际集成电路制造有限公司8英寸0.13um标准逻辑生产工艺线,芯片级读取时间达到十纳秒级,写操作电压满足0.13um或0.11um技术代标准逻辑工艺IO承受电压 研发了低热导率的新型超晶格相变材料,研发了非对称环状微电极结构相变存储器单元,制备出了相变存储器阵列;开展了磁性隧道结等磁电子材料研究,制备了基于磁遂道结的磁传感器原型器件,完成了基于磁电子材料的具有非易失性锁存功能的双芯和三芯两种单通道数据隔离耦合接口芯片。该项目的实施突破了先进的高密度存储与磁电子材料器件的关键技术,培养了高水平信息存储与磁电子器件研发队伍,对于我国新型电子材料技术与信息产业的发展具有支撑作用。 /p p   “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,并将“战略性先进电子材料”列为发展重点之一,重点围绕第三代半导体和微电子材料的研发,着力解决半导体及微电子产业面临的重大共性问题,在核心半导体材料的设计、生产工艺流程的优化以及关键技术的开发等方面形成突破,力争推动跨界技术整合,抢占先进电子材料技术的制高点。 /p p /p
  • Advanced Materials:高压制备首个兼具大电极化和强磁电耦合的单相多铁性材料
    磁电多铁性材料是指同时具有磁有序与电化有序的一类多功能材料,利用两种有序的共存和相互耦合,可以实现磁场调控电化或者电场改变磁性质。多铁性材料作为具有重要应用前景的自旋电子学材料体系获得了广泛研究,有望用于实现下一代信息存储器、可调微波信号处理器、超灵敏磁电传感器等领域。而实际应用要求材料同时具备大的电化强度以及强的磁电耦合效应,且这种兼容性在以往的单相多铁材料中很难存在。因此,寻找兼具这两种优异性能的单相多铁性材料是十分迫切但又具挑战的科学问题。 近期,中国科学院物理研究所/北京凝聚态物理实验室龙有文研究员(Quantum Design公司用户)团队,利用特的高温高压技术,次成功制备了具有A位有序钙钛矿结构的BiMn3Cr4O12体系,并罕见地发现该单相材料同时具备大电化强度以及强磁电耦合效应。 图1 BiMn3Cr4O12的一系列磁电测试结果(a)磁化率及其居里-外斯定律拟合;(b)比热与介电常数;(c)热释电与电化强度;(d)磁化曲线;(e)低温热释电;(f)低温电化强度 通过磁化率、磁化强度、比热、介电常数、电化强度、电滞回线、高分辨电镜、同步辐射X光衍射与吸收谱、中子衍射等一系列综合结构表征与物性测试,龙有文团队发现,随着温度降低,BiMn3Cr4O12在135 K经历了一个铁电相变,在该铁电相变温度以下可观察到显著的电滞回线,并导致大电化强度的出现。 图2 BiMn3Cr4O12不同温度下的电滞回线,展示了大电化强度 当温度降低到125 K时,BiMn3Cr4O12经历了一个反铁磁相变,中子衍射证明该反铁磁转变源于B位Cr3+离子的G-型长程反铁磁有序,而A' 位的Mn3+离子仍未形成磁有序。在125 K以下,长程磁有序与铁电化共存,但该反铁磁序不能诱导电化相变,因此材料进入到具有大电化强度的类多铁相(电化强度可能会比较大,但磁电耦合很小)。 图3 磁场对BiMn3Cr4O12电化的调控,展示了强的磁电耦合效应 当温度继续降低至48 K时,A' 位的Mn3+离子也实现G-型长程反铁磁有序,并且A' 位Mn3+离子与B位Cr3+离子一起组成的自旋有序结构导致化磁点群的形成,可以打破空间反演对称性。因此,48K时的反铁磁相变诱导另一个铁电相变,伴随强的磁电耦合效应的出现,此时材料同时呈现二类多铁相(材料具有较强的磁电耦合,但电化强度往往很弱)。由此可见,低温下BiMn3Cr4O12既包含类多铁相又包含二类多铁相,从而大的电化强度与强的磁电耦合效应在这一单相多铁材料中同时实现,突破了以往这两种效应在单相材料中难以兼容的瓶颈,大大推进多铁性材料的潜在应用。 相关研究结果于近期发表在Adv. Mater. 29, 1703435(2017), 并被该期刊选为Inside Cover。该工作获得了国内外同行的广泛合作,同时获得了科技部、自然科学基金委、中国科学院等项目的支持。 文章来源:(中国科学院物理研究所 | 北京凝聚态物理实验室,终解释权归中国科学院物理研究所 | 北京凝聚态物理实验室官网所有) 相关产品:SuperME 多铁材料磁电测量系统:http://www.instrument.com.cn/netshow/SH100980/C148929.htm TEGeta 多功能热电材料测量系统:http://www.instrument.com.cn/netshow/SH100980/C277658.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htmMPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/SH100980/C17089.htm多功能振动样品磁强计 VersaLab 系统:http://www.instrument.com.cn/netshow/SH100980/C19330.htm
  • 高精度光学浮区炉助力单晶样品在磁电领域取得重要进展
    在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,就我们中国而言,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也开始认识到了相关材料的磁性并将其运用于实践当中,比较有代表性的就是司南的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随着而来的是人们对材料的更高要求。在诸多材料当中,由于多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在应用价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了仔细的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]. 以上图片引自文献[4]. 我们非常荣幸将Quantum Design Japan公司(以下简称QDJ)生产的高精度光学浮区法单晶炉安装于哈尔滨工业大学,并助力W.Q.Liu等学者研究制备出Mn4Nb2O9单晶样品。QDJ公司生产的光学浮区法单晶炉适用于超导材料、铁电材料、磁性材料、半导体材料、光学材料等多种领域材料的晶体制备工作。 该设备主要的技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 采用镀金双面高效反射镜,加热效率更高,温场更加均匀■ 可实现高温度2100°C-2200°C(验收依据为:熔融晶石标样)■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯日本QDJ公司推出的高精度光学浮区法单晶炉外观图 参考文献:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.
  • 创新工作:多铁性六角铁氧体中的巨磁电耦合效应
    多铁性是指铁电性、铁磁性、铁弹性等多种有序的共存。多铁性材料与磁电耦合效应不仅蕴含着丰富的基础物理问题,而且具有重要的应用前景,是近年来凝聚态物理和材料科学的一个研究热点。多铁性材料分为复合材料和单相材料两大类,复合材料的磁电耦合是利用界面效应实现的间接耦合,单相材料的磁电耦合是一种本征的体效应。在过去的十多年里,人们已经发现了种类繁多的单相多铁性材料。然而,已知的单相多铁性材料的磁电耦合效应(磁场控制电化或者电场控制磁性)通常比较微弱,这大地限制了单相多铁性材料在未来磁电子学器件中的应用。如何大幅度提高单相材料的磁电耦合效应成为该领域面临的一个重大挑战。近期,中国科学院物理研究所/北京凝聚态物理实验室孙阳研究员(Quantum Design产品用户)、柴一晟副研究员和博士生翟昆等在一种Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中实现了巨大的磁电耦合效应,获得了高达33000 ps/m的正磁电耦合系数和32000 ps/m的逆磁电耦合系数,创造了单相材料磁电耦合效应的新记录。图1. 六角铁氧体Ba2-xSrxMg2Fe12O22在 10 K下的正磁电耦合效应六角铁氧体是一类具有六角晶系的铁基氧化物,按照结构单元的不同,可进一步划分为M, W, X, Y, Z, 和U型六角铁氧体。由于存在多种磁性相互作用的竞争,在六角铁氧体中可以通过部分元素替换产生丰富的非共线螺旋磁结构。对于一些特定的螺旋磁结构,非共线的自旋之间可以通过逆Dzyaloshinskii-Moriya相互作用产生宏观电化,从而导致磁有序驱动的二类多铁性与磁电耦合效应。在以往的研究中,虽然人们已经在一些六角铁氧体中观察到较强的磁电耦合效应,但是,对于如何在六角铁氧体中进一步实现巨大的磁电耦合效应,还缺乏清晰的认识和思路。 图2. 六角铁氧体Ba2-xSrxMg2Fe12O22(x = 1.6)在 10 K下的逆磁电耦合效应为了理解Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中巨磁电耦合效应的物理起源,博士生翟昆合成出Ba2-xSrxMg2Fe12O22 (0.0≤x≤1.6) 一系列单晶样品,系统研究了其宏观磁性和磁电耦合效应随Sr含量的变化关系。同时,孙阳研究组与美国橡树岭实验室曹慧波博士等合作,利用中子散射技术详细研究了这一系列单晶样品的磁结构,给出了Ba2-xSrxMg2Fe12O22体系中圆锥状螺旋磁结构随Sr含量及外加磁场变化的相图。图3. 六角铁氧体中自旋锥对称性与磁电耦合系数的关系研究结果发现,六角铁氧体中磁电耦合效应的强度与自旋锥的对称性密切相关:当自旋锥的对称性从四重对称性降低到二重对称性时,在外加磁场驱动下自旋锥可以发生180度翻转;同时,自旋结构产生的电化也会随之发生180度反向。通过元素替换调控磁各向异性使得这一相变发生在零磁场附近,就会导致巨大的磁电耦合系数。因此,该项研究不仅获得了迄今为止单相材料中大的正逆磁电耦合系数,也为如何提高多铁性六角铁氧体中的磁电耦合效应指明了方向。以上研究成果发表于Nature Communications 8,519(2017)。该工作得到了自然科学基金(11534015,11374347),科技部(2016YFA0300701)和中国科学院项目(XDB07030200)的支持。文章来源:(中国科学院物理研究所磁学重点实验室,终解释权归中国科学院物理研究所磁学重点实验室官网所有) 相关产品: SuperME 多铁材料磁电测量系统:http://www.instrument.com.cn/netshow/SH100980/C148929.htmTEGeta 多功能热电材料测量系统:http://www.instrument.com.cn/netshow/SH100980/C277658.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htmMPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/SH100980/C19330.htm
  • 磁电阻特性测试仪
    成果名称 磁电阻特性测试仪(EL MR系列) 单位名称 北京科大分析检验中心有限公司 联系人 王立锦 联系邮箱 13260325821@163.com 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产 合作方式 □技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介: 本仪器专门为材料磁电阻特性测试而设计的,采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,极大地方便了用户的使用。 MR-150型采用电磁铁产生强磁场,高精度名牌仪表采集数据,精度高稳定性好适合科研中各类样品的磁电阻特性测试。 MR-4型采用亥姆霍兹线圈产生磁场,无剩磁。采用高精度名牌仪表采集数据,精度高稳定性好适合科研中AMR、GMR、TMR各类样品的磁电阻特性测试。 MR-2型采用集成化主机和多通道USB接口数据采集卡采集数据,稳定性好适合科研教学中性能较好的磁电阻样品测试。 MR-1型采用手动调节磁场和人工读数,适合与大中专院校本科生研究生的专业实验中使用。 主要技术参数: 一、系统控制主机:内含可1路可调恒流源(0.3mA~50mA)、2路4 1/2数字电压表和1块USB接口24bit数据采集卡;功耗50W。 二、自动扫描电源:0~± 5A,扫描周期8~80s。 三、亥姆霍兹线圈:0~± 160Gs。 四、测量专用检波与放大电路技术参数:输入信号动态范围为± 30 dB;输出电平灵敏度为30mV / dB;,输出电流为8mA;转换速率为25 V /&mu s;相位测量范围为0~180° ;相位输出时转换速率为30MHz;响应时间为40 ns~500 ns;测量夹头间隔10mm。 五、计算机为PC兼容机,Windows XP或Windows 7操作系统。 六、数据采集软件在Windows XP和Windows 7操作系统均兼容。 应用前景: 本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。目前该仪器已经应用在北京科技大学材料学院及哈尔滨工业大学深圳研究生院的研究生实验教学及课题组科研测量中,取得良好的成效。 知识产权及项目获奖情况: 本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 物理所通过光学二次谐波产生揭示磁电耦合演变
    磁电耦合通常存在于多铁性体系中,即铁电有序性可以由磁场调控,同时(反)铁磁有序性可以由电场来调控,因此这一基本物理特性在多场调控、自旋电子学、传感和能源等领域中具有重要的基础研究意义和应用价值。而由于自支撑多铁性氧化物薄膜或二维体系的不稳定性和易碎性,传统方法限制了相关探测和研究,而使这些同时发生的电磁有序和耦合的表征、机制研究及耦合效应调控变得颇具挑战性。   中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员金奎娟与中科院院士杨国桢课题组,致力于利用光学二次谐波产生(Second Harmonic Generation,SHG)表征及探测以揭示复杂氧化物薄膜的空间反演不对称、极化耦合和铁电有序演变等物理的研究。近年来,金奎娟带领的团队,先后围绕SHG探测异质结表面和界面的空间对称破缺,SHG探测氧化物铁电薄膜的铁电相态演变、具有超高热电性能(与华中科技大学张光祖团队合作)的ClO4分子的结构对称性破缺等开展研究。科研人员自主发展了宽温区、高真空度、多气体环境SHG光学探测平台,与清华大学教授林元华和中科院院士南策文团队合作,原位实时探测了弛豫铁电薄膜Sm-doped BiFeO3-BaTiO3中的极化耦合演变,发现并证实了具有超高储能密度的超顺电态。上述成果为发展更先进的SHG方法研究多铁体系中的磁电耦合奠定了基础。   近日,中国科学院物理研究所/北京凝聚态物理国家研究中心L03组博士研究生徐帅与毕业生王洁素(现为北京量子信息科学研究院副研究员)在金奎娟的指导下,使用脉冲激光沉积法制备了多铁性的外延BiFeO3(BFO)薄膜和自支撑BFO薄膜,并利用外加磁场的宽温区SHG技术研究了多铁性BFO薄膜中的磁电耦合效应。该团队系统地探究了不同应力调控下BFO薄膜中铁电有序和反铁磁有序随着外加磁场和温度的演化,并与物理所白雪冬研究员课题组博士陈潘合作,利用透射电镜给出不同应力调控下薄膜中铁电序的演变。   研究人员定义了一个光学磁电耦合常数——表示通过磁场控制多铁性材料中光致非线性极化的能力。研究显示,应变释放以后,自支撑BFO薄膜中光学磁电耦合常数的绝对值减小,且反铁磁有序和铁电有序均被抑制。研究发现,该光学磁电耦合常数在自支撑BFO薄膜中与在衬底上外延生长的薄膜中具有相同的量级,表明磁电耦合效应对于应变释放具有鲁棒性。研究观察到外延BFO薄膜中Néel温度(反铁磁-顺磁转变温度点)为618 K的一级相变和自支撑BFO薄膜中饱和磁矩,相较于外延BFO薄膜,发生了约7倍的增强,而后者主要归因于与电子自旋-轨道耦合相关的Dzyaloshinskii-Moriya相互作用的变化。进一步,研究发现,自支撑BFO薄膜中强大的磁电耦合效应在室温下仍然存在,预示着其未来在柔性多功能器件中的潜在应用。上述成果展示了SHG方法原位无损探测自支撑等多铁性薄膜或二维体系中铁电及反铁磁有序等物理性质的灵敏性和有效性。   近日,相关研究成果以Magnetoelectric Coupling in Multiferroics Probed by Optical Second Harmonic Generation为题,在线发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。北京大学科研人员参与研究。图1.自支撑BFO薄膜的制备及铁电性能表征图2.宽温区(各向异性)SHG和外加磁场(H)的各向异性SHG测试图3.M-H和外加磁场的SHG测试
  • 二维拓扑材料内发现新奇电子效应,为研发新型量子材料奠定基础
    德国尤利希研究中心领导的一个国际研究团队在最新一期《自然通讯》杂志上撰文指出,他们首次证明了在二维材料中存在一种奇异的电子态——费米弧,这为新型量子材料及其在新一代自旋电子学和量子计算中的潜在应用奠定了基础。  研究人员解释说,他们检测到的费米弧是费米面的一种特殊形式。费米面在凝聚态物理中用于描述金属内电子的动量分布。通常这些费米曲面代表闭合曲面,而费米弧等例外情况非常罕见,通常与超导性、负磁电阻以及异常量子传输效应等奇异性质有关。  科学家们目前面临的技术挑战是“按需”控制材料的物理特性,但这种实验测试在很大程度上仅限于大块材料,针对纤薄的拓扑二维(2D)材料开展相关研究是凝聚态科学领域的重大挑战。  由于电子和晶体结构的相互作用,拓扑材料具有特殊的性质,而且免受干扰的影响。另一方面,二维材料是仅由一层原子或分子组成的材料,其中大名鼎鼎的二维材料是石墨烯,其由单层碳原子组成。由于其拥有不同寻常的特性,科学家们目前正在对其开展深入研究。  最新研究使用的材料是二维铁原子层。与石墨烯相比,这些二维混合磁体也有其独特的特性,如它可以为设备内的手性异常找到潜在的用武之地;也有望为强关联拓扑材料开辟新的研究领域。  研究人员在位于意大利的Elettra同步辐射实验室进行了实验,发现了材料内新奇的电子效应——费米弧。这一发现表明,科学家们可以通过外部磁场对低维系统中的拓扑状态进行量子控制,未来可以利用外部磁场让二维材料在人工智能和信息处理领域“大显身手”。
  • 对话“磁王”——晶界缠绕铽的钕铁硼磁性材料
    导 • 读 近年来由于新能源汽车、风能发电及电子产品等领域对节能电机小型化、轻量化的需求,被誉为“磁王”的稀土钕铁硼永磁材料得到飞速发展。添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,并使合金化元素主要分布于主相晶界位置,是提高钕铁硼磁性性能的有效方法。岛津电子探针具有高分辨率和高灵敏度的特征,对于晶界改性钕铁硼磁性材料主相晶界中富集的铽(Tb)可以予以直观地表征。 磁王 • 钕铁硼 钕铁硼(NdFeB)是所有稀土类磁体中磁性特征最强的,可在同样的磁场强度下大幅减小产品的体积,用于制造的各种永磁电机马达具有体积小、比功率高、有助于节省能源等优点,故而在电动自行车、风力发动机、汽车发动电机等凡是涉及到电能和动能转化的领域,均有着广泛应用。 钕铁硼微区 • 测试难点 一、分辨率 稀土元素之间的特征X射线波长(能量)非常接近,这需要仪器能把波长非常邻近的特征峰区分开来(能量分辨率)。尤其当添加Tb时,在能谱上Tb与Fe、Co和Nd元素互相重叠,无法分析(如图1)。 二、超轻元素 硼(B)为超轻元素,因基体对超轻元素特征X射线的吸收效应很大,含有超轻元素的微区定量测试一直是电子探针分析领域的一大难题,而在含有稀土元素的重基体中问题更甚。 图1 掺杂Tb的钕铁硼样品能谱图 图2 掺杂Tb的钕铁硼样品EPMA波谱图 针对钕铁硼 • 岛津方案 一、全聚焦分光晶体兼顾稀土元素测试的分辨率和灵敏度问题;能完美地分辨Tb与Fe、Co等元素的谱峰。(如图2) 二、特征X射线52.5°高取出角,很好地解决超轻元素的测试问题。(如图3) 图3 超轻元素分析例——钕铁硼中B元素分布分析岛津EPMA-8050G场发射型电子探针 钕铁硼晶界改性 • 直观表达 添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,是提高钕铁硼磁性性能的有效方法,但传统的直接烧结对矫顽力的提升有限且会大幅降低剩磁,只有使合金化元素主要分布于主相晶界位置,降低反磁畴形核的可能,才能提高矫顽力又不致过多降低剩磁性能。 图4为某烧结钕铁硼磁体的元素面分析结果,从中可以看出有助于提高矫顽力的Tb缠绕分布于主相晶界处,而元素Co、Cu、Ga分布在富Nd相附近,磁体中烧结残余的O主要以Nd2O3形式存在于富Nd相晶粒,元素Pr总是和Nd对应共存。 图4 晶界改性的钕铁硼磁体主要元素分布特征 将Tb晶界扩散处理后的钕铁硼磁体的表面区域、距表面1/2处的中间区域以及心部放大后进行面分析,如图5~图7所示,结果显示Nd2Fe14B主相晶粒呈多边形,晶粒直径为5μm左右,Tb集中在主相晶粒附近,形成了薄而均匀且连续的富Tb壳层。研究表明,获得这样的微结构,可以提高磁性材料的矫顽力,同时不会降低其他磁学性能。 图5 Tb晶界扩散处理后表面区域元素面分布图图6 Tb晶界扩散处理后距表面1/2处元素面分布图图7 Tb晶界扩散处理后心部的分布特征 小 • 结 岛津电子探针可以便捷、直观地钕铁硼磁性材料晶界改性情况进行表征,测试结果可为磁性材料开发专家提供稀土元素渗透情况、晶界富集微结构等关键指导信息。
  • 磁性二维材料领域取得重要进展!致真精密仪器助力高水平科研工作者发表SCI!
    二维铁磁材料因其薄层结构和独特的物理特性,在电子、自旋电子学和磁性存储等领域具有广泛的应用潜力。这些材料的研究对于推动相关技术的发展至关重要。低温强场微区激光克尔显微成像系统在研究二维铁磁材料时具有独特的优势。近日,山西师范大学的许小红教授和薛武红教授合作,利用致真自主研发的低温强场微区激光克尔显微成像系统进行实验研究,报道了二维铁磁Cr5Te8材料的亚毫米级可控制备,并发现该材料具有畴壁成核控制的磁化反转过程和非单调磁场相关的磁电阻,研究成果以“Controlled Growth of Submillimeter-ScaleCr5Te8 Nanosheets and the Domain-wall Nucleation Governed Magnetization Reversal Process”为题,在国际顶级期刊Nano Letters(SCI一区TOP,影响因子:10.8)上发表。论文原文:https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04200亚毫米级二维Cr5Te8及其磁畴演化和非单调磁电阻低温强场微区激光克尔显微成像系统对该研究助力具体表现在:1. 磁化反转过程的直接观察:高分辨率的克尔显微镜结合真空制冷台,对Cr5Te8纳米片的磁化过程进行了全面的研究。通过首先用大磁场饱和样品的一个方向,然后施加相反方向的磁场,观察到了磁化反转的详细过程。2. 磁畴结构和演化的分析:克尔显微镜用于捕捉Cr5Te8纳米片的磁畴演化过程,包括磁畴壁的传播。文章中指出,通过逐步增加磁场,清晰地捕捉到了磁化反转过程中的磁畴壁传播。3. 磁畴壁传播的最小场强确定:通过克尔显微镜的观察,确定了在样品中磁畴壁传播所需的最小场强大约是30-45 mT,无论是对于两个磁化方向中的哪一个。4. 磁化反转机制的理解:克尔显微镜的观察结果揭示了磁畴壁成核在控制磁化反转过程中的主导作用,这为优化相关设备的性能(如效率、稳定性等)提供了重要的参考。6. 温度依赖性研究:通过在不同温度下使用克尔显微镜,研究了Cr5Te8纳米片的磁化过程随温度变化的行为,发现了居里温度(Curie temperature, TC)随样品厚度变化的倾向。低温强场微区激光克尔显微成像系统是研究Cr5Te8纳米片磁化过程、磁畴结构和演化、以及磁化反转机制的关键工具,为深入理解材料的磁性能和优化磁电子器件的性能提供了重要的实验数据和见解。二维铁磁材料磁性能表征利器低温强场微区激光克尔显微成像系统,能够将高分辨率磁畴成像与高精度磁滞回线扫描结合,常温垂直强磁场(1.4 T)与面内强磁场(1 T);样品处温度范围:5K-420 K,温度稳定性±50 mK;激光功率可调;磁铁及样品托采用滑道设计,方便不同需求测试的切换;预留扩展接口,将磁场及低温环境平台化,方便兼容其他类型的光学测试;运用差分放大和锁相技术可实现二维材料磁性的精确探测;适用于自旋器件或微米尺寸材料的磁性精确测量,集电学、磁学、光学、变温测试于一身,是专为二维磁性材料研究打造的专家级科研设备。微米级光斑和精确定位在样品待测区域,实现微区的磁滞回线精确探测弱磁薄膜测试结果对比致真激光克尔显微镜测试结果↑↑↑某国际顶尖公司产线级设备测试结果↑↑↑研究背景:以电子自旋为主要信息载体的自旋电子器件具有体积小、速度快、功耗低等优势,是后摩尔时代信息存储器件的有力竞争者。特别是,二维磁性材料的发现为构建新功能的磁电子器件提供了材料基础。二维磁性材料在原子层厚度依然保持长程磁序,具有表面无悬挂键、弱层间耦合、可进行“原子乐高”功能异质集成、易于调控等优势,在高密度磁信息存储和自旋电子学领域具有重要应用前景,成为国际上的前沿热点。然而,二维磁性材料目前存在居里温度较低、环境不稳定、难以大尺寸可控制备等困难,极大地限制了其应用和发展。因此,探索稳定性更好的新型二维磁性材料,并用简便、经济可控的方法实现其大尺寸超薄制备,对于推动二维磁性材料的应用具有重要的意义与价值。此外,磁性二维材料的磁畴及其演变能够为相关器件的性能优化提供重要参考。结论:基于此,该团队开发了一种简单、经济、可扩展、氢修饰的化学气相沉积方法,可控合成了亚毫米级超薄高质量Cr5Te8磁性纳米片。值得一提的是,纳米片横向尺寸最大可达450μm、空气稳定性好且居里温度较高。此外,通过对Cr5Te8纳米片的磁畴演化的直接观察,揭示了畴壁成核在控制磁化逆转过程中的主导作用。有趣的是,Cr5Te8纳米片表现出非单调磁电阻特性。该工作在CVD法制备大尺寸二维磁性材料领域实现了重要突破,为在二维尺度理解和调控磁相关性质提供了理想平台,有望推动二维磁性材料在自旋电子学器件中的应用和发展。致真精密仪器拥有核心专利四十余项,研发的多款产品曾多次助力国内优秀的科研工作者取得高水平科研成果。我们拥有一支专业且经验丰富的研发、销售、技术支持和本地化服务的团队,团队中大多数人员为高学历专业硕博人才,致力于为先进材料科学与技术创新领域的科研及企业客户提供个性化、专业化的产品、服务和整体解决方案,让先进材料领域的科研与创新更加简单、高效。致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。致真精密仪器通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“产品包含原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 雷磁电化学2021年度市场营销工作会议成功召开举行
    2021年2月27日,上海仪电科学仪器股份有限公司(简称上海仪电科仪)雷磁电化学2021年度市场营销工作会议在上海市瑞立酒店浦江厅召开。上海仪电科仪董事长兼总经理汤志东,雷磁电化学党总支书记纪小军,雷磁电化学常务副总经理唐建华、副总经理金建余、总经理助理赵品杰和毕海玲等领导出席会议。会上各部门条线经理分别对商务中心、服务中心、市场分部、产品发展部的工作进行了总结和交流。同时,总经理助理毕海玲给大家带来了“经营道德准则”的主题培训,要求员工要牢固法治意识、责任意识、担当意识,继续加强学习,提升素质,恪尽职守,依法履职;副总经理金建余给大家带来了“雷磁产品发展”的主题培训,让大家对雷磁的产品结构以及未来发展有了更清楚的认知。随后,常务副总经理唐建华对市场营销部的2021年度工作做了详细部署,强调工作重心和安排规划。总经理助理毕海玲:“经营道德准则”主题培训副总经理金建余:“雷磁产品发展”主题培训常务副总经理唐建华讲话2020年是极不平凡的一年,但是“雷磁”实验室电化学仪器、自动滴定仪/水分仪、比色法水质分析仪、在线水质监测仪等各系列产品线均实现“逆势上扬”,这些离不开每位员工的辛苦付出,会上为获得2020年度最|佳销售奖、最|佳拓展奖、最|佳风控奖、最|佳应用工程师、最|佳服务奖、最|佳新人奖、最|佳服务奖的员工颁发了荣誉证书并给予嘉奖。最|后,董事长兼总经理汤志东对本次工作会议进行了总结指导,充分肯定了2020年疫情当前攻坚克难所取得的成绩,分析了当前的市场形势,指出了2021年发展重点,我们不仅要凝心聚力、承压奋进,更要积极开拓市场新局面、迎接新挑战、创造新的高度。董事长兼总经理汤志东讲话2020年,我们“防疫”“经营”两手抓,共克时艰,逆势上扬;2021年,我们践行初心、担当使命,扬帆起航再出发!
  • 2500万!南京大学团簇离子束磁电双聚焦质量能量分选系统采购项目
    一、项目基本情况项目编号:ZH2024020190(2440SUMEC/GXGG1196)项目名称:团簇离子束磁电双聚焦质量能量分选系统项目预算金额:2500.000000 万元(人民币)采购需求:本项目采购内容为团簇离子束磁电双聚焦质量能量分选系统,具体详见招标文件第四章招标技术规格及要求。合同履行期限:合同签订后5个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年08月19日 至 2024年08月26日,每天上午9:00至11:30,下午13:30至17:30。(北京时间,法定节假日除外)地点:南京市长江路198号14楼方式:具体要求详见其他补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京大学     地址:南京市栖霞区仙林大道163号        联系方式:王老师 025-89688969      2.采购代理机构信息名 称:江苏苏美达仪器设备有限公司            地 址:南京市长江路198号            联系方式:文件发售:李婧怡025-84532580,技术咨询:徐嘉玟025-84531265、黄丹025-84531274            3.项目联系方式项目联系人:黄丹电 话:  025-84531274
  • 显微学启迪新希望|BCEIA 2021电子显微学及材料科学分会闭幕!
    仪器信息网讯 2021年9月27-29日,第十九届北京分析测试学术报告会暨展览会(简称BCEIA2021)在北京中国国际展览中心(天竺新馆)召开。BCEIA 2021展会同期,为期两天的“电子显微学及材料科学”分会于28-29日召开。会议现场分会以“显微学启迪新希望”为主题,分设原位透射电子显微镜技术及应用、球差透射电子显微镜表征、功能材料、合金及催化等四大专题,邀请多位业界资深科学家及青年才俊分享报告。会场集锦继分会首日开幕并分享16个精彩报告后,9月29日,分会日程第二日,“功能材料”和“合金及催化”专题报告继续展开,报告掠影如下。报告人:北京工业大学王金淑教授报告题目:钨基功能材料研究进展报告人:北京科技大学李志鹏副教授报告题目:铁电薄膜中的结构设计、磁电调控和透射电镜观测报告人:上海交通大学贾金锋教授报告题目:Topological superconductors investigated by in-situ STM报告人:GATAN陆畅报告题目:GATAN原位TEM表征技术新进展报告人:河北工业大学郑士建教授报告题目:全片层Ti-6AI-4V孪晶及扭折变形的原子尺度研究报告人:浙江大学王江伟教授报告题目:界面塑性变形动力学机制初探报告人:中科院物理所张庆华研究员报告题目:LaCoO3-x中氧空位有序演化的原子尺度研究报告人:岛津 龚沿东报告题目:用于表面分析的电子探针报告人:南京工业大学贾志宏教授报告题目:The evolution of precipitates in AI-Si-Mg allys报告人:清华大学陈震报告题目:New imaging capabilities enabled by electron ptychography报告人:上海交通大学邬剑波研究员报告题目:高活性低铂长寿命燃料电池催化剂从原位表征到材料设计报告人:上海交通大学刘攀教授报告题目:Atomic characterization of the interface between 2D-TMD semiconductor and 3D metal报告人:中科院物理所张颖研究员报告题目:The manipulation of topological magnetic domains via in-situ Lorentz TEM报告人:武汉大学郑赫教授报告题目:表/界面调控金属纳米材料的力学形变机理报告人:北京工业大学王立华教授报告题目:In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum南京理工大学周浩副教授线上分享报告颁发最佳POSTER奖参会代表合影留念至此,BCEIA 2021电子显微学及材料科学分会圆满闭幕!
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)
  • 市场监管总局发布《磁电式速度传感器检定规程》等38项国家计量技术规范
    根据《中华人民共和国计量法》有关规定,批准《磁电式速度传感器检定规程》等38项国家计量技术规范发布实施,现予公告。   市场监管总局   2023年7月3日
  • 直播预告!iCEM 2023之电子显微学技术在材料领域应用篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国电子显微镜学会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023 或扫描二维码报名“电子显微学技术在材料领域应用”专场预告(注:最终日程以会议官网为准)专场五:电子显微学技术在材料领域应用(上)(6月29日上午)材料专场召集人暨上半场主持人:明文全 海南大学 副教授报告题目演讲嘉宾LPBF成形高性能医用钴铬钼合金的组织与性能研究倪颂(中南大学粉末冶金研究院 研究员)拓扑磁结构原位观测及电操纵宋东升(安徽大学 教授)待定卡尔蔡司原子分辨的电子三维重构技术周继寒(北京大学 研究员)钛合金中的相变机制研究符晓倩(海南大学材料与工程学院 副研究员)专场六:电子显微学技术在材料领域应用(下)(6月29日下午)材料专场下半场主持人:周继寒 北京大学 研究员Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructuresFlorian Vogel(海南大学 研究员)纳克微束FE-1050系列电镜及其在材料表征中的应用卢毓华(纳克微束(北京)有限公司 高级应用工程师)氧化物薄膜畴界器件的探索及研究刘中然(浙江大学 助理研究员)稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究王双宝(云南大学 副教授)基于原位透射电镜的少层石墨烯场发射特性研究唐帅(中山大学电子与信息工程学院 副教授)嘉宾简介及报告摘要(按分享顺序)材料专场召集人暨主持人:明文全 海南大学 副教授 【个人简介】明文全长期从事先进电子显微学技术理论和方法学研究,并将其应用于研究先进铝合金纳米析出相结构和性能的关系。研究内容包括:(1)先进电子显微学理论和方法;(2)铝合金工艺、性能和微结构的关系调控。在Ultramicroscopy、IEEE Transactions on Image Processing、Acta Materialia、Journal of Material Science and Technology等期刊上发表研究论文30余篇,其中第一作者和通讯作者论文十余篇,授权发明专利3项,主持了国家自然科学基金创新联合发展基金重点支持项目课题、国家自然科学基金青年项目,并作为骨干成员参与了国家基金重大科研仪器项目和国家自然科学基金重点项目。倪颂 中南大学粉末冶金研究院 研究员【个人简介】倪颂,教授、博士生导师。湖南省湖湘青年科技创新人才,中南大学创新驱动青年人才。主持国家自然科学基金面上项目、青年项目、湖南省自然科学基金、中国博士后科学基金海外引进项目、特别资助等10余项。指导硕士、博士研究生10余名,多人获评国家奖学金、湖南省优秀硕士学位论文、中国冶金教育学会优秀硕士学位论文。研究方向包括金属材料(钛、钴、镁及其合金)的塑性变形机制、马氏体相变机制,3D打印制备高性能金属材料及组织结构表征。报告题目:LPBF成形高性能医用钴铬钼合金的组织与性能研究【摘要】Cobalt-chromium-molybdenum (CCM) alloy is an attractive class of metal materials for biological applications that require superior mechanical properties. The initial phase and in-situ precipitation have long been known as critical in determining their mechanical performances, yet they are still not well understood and further not feasibly manipulated. In this study, by applying additive manufacturing, i.e., laser powder bed fusion (LPBF), we successfully endowed a classical Co25Cr5Mo5W alloy with a single face-centered cubic (FCC) structure, and realized controllable precipitation behavior at 900 ℃ that leads to better strength-ductility combination than most known CCM alloys prepared by traditional routes. State-of-the-art characterizations show that in the as-built state, the Co25Cr5Mo5W alloy features integrated networks of dense cell boundaries and stacking faults, which together contribute majorly to the yield strength of ~820 MPa. The full FCC matrix, which is ductile and metastable, is responsible for the plausible ductility of ~22.3 % Upon heat treatment, the heavy decoration of solutes Cr, Mo, W, and Si at cell boundaries triggers heterogeneous nucleation of Laves precipitates, which in turn deteriorates the overall ductility. It is not until the global onset of the intercellular precipitation after 15 mins of heat treatment does the strength increase rapidly, further boosting the yield strength to ~1170 MPa at a decent ductility of ~7.5 % when heat treated for60 mins.宋东升 安徽大学 教授【个人简介】宋东升,安徽大学教授,博士生导师,国家海外高层次青年人才计划获得者(2021)。2012年本科毕业于北京科技大学材料学院,2017年博士毕业于清华大学材料学院,获评清华大学优秀博士论文,师从朱静院士。2017年-2020年先后在新加坡国立大学和德国于利希研究中心(Ernst-Ruska电镜中心),从事博士后研究,2020年11月任教于安徽大学。主要从事透射电镜磁性表征技术的开发,以及在磁性材料与器件中的应用。相关研究工作以第一和通讯作者发表在Physical Review Letters, Nature Communications, Advanced Materials, Advanced Functional Materials, Ultramicroscopy等期刊上。报告题目:拓扑磁结构原位观测及电操纵【摘要】拓扑磁结构(如斯格明子)是未来磁存储或磁逻辑器件的优良载体,因为它们具有纳米级尺寸、高稳定性和低临界电流密度。这里,我们利用高分辨定量透射电镜磁成像技术,研究并揭示了手性磁体中一些拓扑磁结构的形成和稳定机制。进一步,结合原位磁场-温度-电流的磁成像平台,研究了拓扑磁结构在电流驱动下的动力学行为,构建了拓扑磁结构速度、维度与电流密度、霍尔角之间的定量关系。周继寒 北京大学 研究员【个人简介】分别于2009年和2014年在北京大学获得化学学士和高分子化学与物理博士学位。其后在加州大学洛杉矶分校物理与天文学院从事博士后(2014-2019)以及助理项目科学家(2019-2020)研究。2020年11月加入北京大学化学与分子工程学院任助理教授、研究员,课题组组长(PI)。主要研究兴趣是发展高精尖的化学测量学技术,特别是原子分辨多维成像技术,用于精准获取物质在三维原子分辨尺度下组成、分布、结构与性质及其时空变化规律,从而解决物理、化学以及材料科学领域的传统难题。研究成果以第一作者或通讯作者发表于Nature (2),Nat. Mater.,Nat. Commun.等国际学术期刊。报告题目:原子分辨的电子三维重构技术【摘要】精确定位原子的三维位置,是认识物质原子分辨尺度结构与功能的关键。很多材料的功能直接与缺陷结构甚至完全无序的非晶结构有关。本报告将介绍原子三维重构成像技术,一种近期发展迅速的无需晶体学假设的通用重构成像技术。这种方法已经在研究晶体原子分辨早期成核以及非晶原子结构确定等领域取得了一系列的进展。符晓倩 海南大学材料与工程学院 副研究员【个人简介】符晓倩,海南大学材料科学与工程学院副研究员,硕士研究生导师。2020年毕业于浙江大学材料学专业,获博士学位,2020年10月至2022年9月在浙江大学电子显微镜中心进行博士后研究工作。主要从事先进结构材料的微观结构与性能研究,包括多尺度及多维度显微结构表征,显微结构演化等,揭示材料中缺陷结构、缺陷行为及其与材料性能的关联性。目前在Nature Materials、Materials Today Nano、Scripta Materialia等国际知名期刊发表论文十余篇;主持国家自然科学基金1项。报告题目:钛合金中的相变机制研究【摘要】利用原位电镜表征和计算机模拟技术研究两相TiMo合金中α-β相变过程,发现在相变初期α相中首先发生Mo的扩散形成纳米尺度的亚稳态超晶格结构团簇,其成分和结构既不同于α相,又不同于β相;随着超晶格结构中Mo浓度的升高,α相密排六方结构失稳,瞬间转变为体心立方结构,实现非经典形核导致的从α相到β相的结构转变。Florian Vogel 海南大学 研究员【个人简介】Dr. Florian Vogel为国家自然科学基金委外国优秀青年学者获得者,海南大学研究员。2014年获得德国柏林工业大学材料科学与工程博士学位,曾担任亥姆霍兹科学联合会-柏林材料与能源研究所三维原子探针(APT)实验室负责人。在三维原子探针、透射电镜等高分辨表征领域以及高温合金材料研究方面积累了13年多的经验。 以第一作者/通讯作者在 Nature Communications, Acta Materialia 等知名国际期刊发表SCI论文20余篇。主持有国家级项目3项,省级项目4项,参与1项三维原子探针(APT)国际标准的国际合作研究。报告题目:Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructures【摘要】Understanding phase separation phenomena enables tailoring microstructures of high-temperature structural materials to develop better materials with improved properties. High resolution characterization techniques are used to understand the link between structure-property relationships and the 3D nanochemistry of hierarchical microstructures in high temperature structural materials. Hierarchical microstructures form when additional γ particles form within γ’ precipitates and pose a novel concept to strengthen high-temperature structural materials. However, these γ particles are metastable and two possible metastability pathways have been indentified: (1) continuous growth and split of γ’ and (2) Growth and dissolution, both resulting in a loss of the strengthening effect. This talk presents how high-resolution characterization techniques such as TEM, APT and synchrotron XRD are used to gain insight into microstructural behavior and phase stability. The combined results inform alloy design strategies to tailor fundamental properties of γ particles to enhance their temporal stability and thereby retain the strengthening effect. APT offers unique insights into the 3D nanochemistry of phases in hierarchical microstructures with γ’ precipitates only ~100 nm in size and nanoscale γ particles (~8 nm). The results suggest that by phase targeted alloying, supersaturation and evolution of phase separation can be controlled to tune the properties of such materials. To create new materials strengthened by hierarchical micrsotructures, the phase stability of γ particles needs to be enhanced.卢毓华 纳克微束(北京)有限公司 高级应用工程师【个人简介】卢毓华,男,博士,就职于纳克微束(北京)有限公司,进行扫描电镜的研发应用及表征方法研究。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,方向为材料高通量表征方法的研究和应用,期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历。报告题目:纳克微束FE-1050系列电镜及其在材料表征中的应用【摘要】首先对纳克微束(北京)有限公司的基本概况展开报告,介绍了纳克微束这一品牌及公司的发展方向。随后重点引出纳克微束FE-1050系列国产旗舰电镜,围绕低电压下高分辨、兼容性强可扩展和操作智能易使用这三大特点对纳克微束FE-1050系列阐述,并展示了典型案例。最后以上市央企控股公司的担当和产品的稳定应用,体现安心稳定的服务质量。刘中然 浙江大学 助理研究员【个人简介】刘中然,浙江大学博士后,2015年本科毕业于浙江大学竺可桢学院、材料科学与工程学院,2021年博士毕业于浙江大学材料学专业。主要从事铁性材料的设计制备和微结构表征研究,针对铁性氧化物薄膜材料的微观机理,设计异质结构,开发原位观测、电荷探测等方法,研究铁电及多铁氧化物微结构变化与外场响应的耦合,调控薄膜中的铁电畴及畴壁。近5年发表SCI论文14篇,其中Nature第一作者1篇、Nature Communications共一作者1篇、Science 1篇、Advanced Materials 2篇;获批中国博士后科学基金第72批面上项目资助。报告题目:氧化物薄膜畴界器件的探索及研究【摘要】铁电、多铁等铁性材料,由于具有铁电、铁磁、压电、庞磁电阻等丰富可调的物理性质,在高性能存储领域展现了巨大潜力。结合异质结构与原位外场调控,带电畴壁等铁畴结构展现出了可被调控的导电性等物理特性,能够构筑新型量化晶胞级忆阻器,为高密度铁性存储器的设计提供了新的科学依据。王双宝 云南大学 副教授【个人简介】王双宝,博士,副教授,云南省“兴滇英才”支持计划-青年人才,硕士研究生导师。主要专长包括球差校正环境(原位)透射电子显微术及应用、轻质高强铝合金的微合金化、结构和性能调控、合金其催化剂表界面反应的原位电镜研究等。在Cell子刊CRPS、Acta Mater. 等核心期刊发表论文64篇 (第一/通讯作者31篇),他引1547次,H因子20,授权国家发明专利9件 (第一发明人7件)。报告题目:稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究【摘要】针对微合金化有效调控合金微观结构和性能的策略,设计开发了含稀土元素Sc的多组元轻质高强铝合金系统,研究了Sc对铝合金性能及析出强化的影响。以6000系Al-Mg-Si合金为例,研究结果表明:在时效硬化Al-Mg-Si(-Sc)合金中,B'相参与的β/β′相变,以及在硬化初期Sc时效动力学的加速。在无Sc合金中,随着时效时间的延长,峰值硬化β′′逐渐减少。B′相亚结构中Sc的存在有效地抑制了β′′/β′转变以及β′′和溶质团簇的横截面粗化,导致了峰值时效和过时效含Sc合金中以β′基针状物的主要析出组织。这最终导致在过时效含Sc合金中,针状物尺寸显著变长,析出物直径分布减小,热稳定性提高。唐帅 中山大学电子与信息工程学院 副教授【个人简介】唐帅,中山大学电子与信息工程学院副教授,光电材料与技术国家重点实验室—“微纳结构电子光子与器件”团队成员。分别于2012年和2017年在中山大学取得学士和博士学位。2018年4月-2022年5月任日本国立物质材料研究所博士后研究员。2022年6月加入中山大学。主要从事纳米结构场发射点电子源的制备与应用及基于原位TEM的纳米材料电学/场发射特性研究,近期开发的高亮度、低能散、超高稳定六硼化镧纳米锥场发射点电子源已在电子显微镜知名企业日本电子机器上取得应用验证。迄今发表36篇论文,其中以第一作者在Materials Today、Nano Research、Carbon等期刊发表论文17篇。申请国内外专利8项,其中2项已授权,另有1项申请中专利已获得相关企业使用许可预付费。多次在IVNC(国际真空纳电子会议)、中国电子学会真空电子学分会、中国电子显微学会等本研究领域国内外学术会议作邀请、口头及张贴报告,并获优秀报告奖和最佳张贴海报奖。2022年6月入选中山大学百人引进计划,兼任Nanomaterials期刊专题客座编辑,入选中国真空学会高级会员。报告题目:基于原位透射电镜的少层石墨烯场发射特性研究【摘要】石墨烯具有优异的导电、导热性能,原子级别的尖端以及二维结构的散热面积,有潜力应用在场发射器件中。但石墨烯的结构在高温、高电场下会发生变化,进而影响电子发射性能。我们实现了钨针尖衬底上单片直立少层石墨烯的可控生长,并基于原位TEM测试技术,揭示了焦耳热及强电场主导的少层石墨烯场发射过程的结构演化规律,厘清了实现场发射大电流的尖端单层及界面石墨层等关键结构因素及对应物理机制,获得了单个纳米材料最高级别的发射电流及电流密度,有效推进了石墨烯场发射器件的研究。会议联系会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会汪老师:13637966635,1437849457@qq.com会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 揭秘低维量子材料研究利器:无液氦低温强磁场CFM/AFM/Raman显微镜
    单个二维层之间的弱范德华(vdW)相互作用为探索二维准粒子行为提供了一个特有的平台。特别是通过堆叠具有精确角度取向的两个单层,可以创建莫尔系统。高磁场中激子/库伯对/极化激元等准粒子的磁相互作用揭示了隐藏的物理机制,加速了磁电、光电子和量子光子器件的进一步应用发展。这些物理机制的研究通常需要进行低温量子通信测试及磁光光谱测试等。德国attocube公司研发的低震动无液氦磁体与恒温器-attoDRY系统可有效结合矢量磁体、低温物镜(LT-APO)和attoAFMI,且具有无液氦、超低振动、超高温度稳定性等优异的性能,已成为低温低维材料研究的有力工具。量子通信的平坦地带单光子是应用于光子量子信息的重要资源。迄今为止探索的许多量子发射器平台中,新兴的二维材料系统有可能成为工程量子光源的低成本和可扩展平台。近期,TobiasHeindel小组(德国柏林理工大学)与ChristianSchneider小组(德国卡尔冯奥西茨基大学)合作发表了一项研究,该研究对基于WSe2单层的单光子源在量子安全通信中的部署进行了基准测试。在他们的量子密钥分布实验中,全自动操控的attoDRY800桌面式光学低温恒温系统为原子层薄的量子光源低温操作提供了一个可靠的平台。研究发现二维材料适用于量子密钥分发,其性能很容易与其他材料平台竞争[1]。图1:WSe2单光子源与以前的量子密钥分布实验结果对比。黑色曲线(实线)显示基于WSe2的源通过时间滤波进行优化的情况下的预期性能。范德瓦尔材料的多铁性多铁性材料中铁磁性和铁电有序的共存使这些材料有望成为下一代存储器件的候选材料。由多个中国课题组合作研究了范德华(vdW)多铁性CuCrP2S6材料,并在其中发现了具有相同易轴的平面内电各向异性和磁各向异性。中国人民大学的程志海教授课题组利用attoDRY2100全自动低震动无液氦磁体系统内部具有压电响应显微镜(PFM)的attoAFMI显微镜进行了PFM测量,表明平面外电偶极子来源于反铁电畴壁。研究发现可以通过电场、磁场和温度操纵CuCrP2S6中的磁振子[2],证明范德瓦尔多铁性材料在低功耗和高密度非易失性存储器中的应用潜力。图2:通过PFM在T=2K下获得的CuCrP2S6晶体块的相位-电压磁滞回线。莫尔超晶格中的激子极化激元光学指纹二维莫尔材料为研究强相关电子态提供了一个高度可调谐的平台。这种涌现的多体现象可以在通过堆叠两层过渡金属二硫族化合物半导体产生的莫尔条纹系统中进行光学探测:光学注入的激子可以与占据窄莫尔能带的流动载流子相互作用,形成对强相关性敏感的激子极化激元。BrianGerardot(英国赫瑞-瓦特大学)的小组研究了由莫尔超晶格局域化的费米海修饰的激子的行为。使用attoDRY1000-低震动无液氦磁体系统进行变温磁光光谱测量,确定了在强相关电子态的情况下激子极化子的性质,并揭示了MoSe2/WSe2平台的丰富潜力,用于研究费米-哈伯德和玻色-哈伯德物理。图3:MoSe2/WSe2二维莫尔材料中,5T外置磁场下的偏置电压调控光学信号的变化。无液氦低温强磁场CFM/AFM/Raman显微镜主要技术特点:☛ 闭路可循环系统,无需液氦☛ 独特设计,超低震动(0.12nmRMS)☛ 温度范围:1.7K-300K☛ 磁场强度:9T,12T,9/3T,9/1/1T矢量磁体☛ 多功能测量平台:RAMAN/AFM/MFM/PFM/ct-AFM/CFM☛ 超高温度稳定性:☛ 顶部进样,温度与磁场全自动控制,触摸屏控制☛ 应用范围:量子光学、二维材料光谱、拉曼/光致发光/光电流、磁畴成像图4.无液氦低温强磁场CFM/AFM/Raman显微镜参考文献:[1]TimmGAOetal.,Atomically-thinsingle-photonsourcesforquantumcommunication.npj2DMaterialsandApplications(2023)4.[2]XiaoleiWangetal.,ElectricalandmagneticanisotropiesinvanderWaalsmultiferroicCuCrP2S6.NatureCommunications,(2023)14:840.[3]BrianD.Gerardotetal.,Exciton-polaronsinthepresenceofstronglycorrelatedelectronicstatesinaMoSe2/WSe2moirésuperlattice.npj2DMaterialsandApplications(2022)79.相关产品:低震动无液氦磁体与恒温器-attoDRY
  • 南科大林君浩课题组在二维材料微观结构与力学、磁学性质的关联研究中取得系列进展
    近日, 南方科技大学物理系、量子科学与工程研究院副教授林君浩课题组与国内外研究团队合作,围绕二维功能性材料的微观结构,在力学与磁学性质中的构效关系研究中取得系列研究进展,相关成果分别在Advanced Science, Nature Electronics和Advanced Materials期刊上发表。二维材料由于其独特的结构和丰富的性质,不仅为探索奇异的物理现象提供了理想的平台,也为下一代电学、光学器件的研发提供了坚实的基础。在原子尺度上理解二维材料的构效关系,是深入理解其理化性质,推动器件研发的关键,另外,还能够指导材料设计,通过结构调控实现材料物性转变或者性能提升。比如,研究人员在蓬勃发展的缺陷工程研究中发现,有目的的在二维材料中引入特殊的缺陷结构,能够实现对二维材料载流子浓度、光学带隙、偶极矩等的连续调节。受益于微纳加工技术的发展,离子束和电子束处理可以在一定范围内实现缺陷尺寸和浓度的连续调控。然而,在周期晶格中引入的缺陷结构会如何影响二维材料的宏观力学性能,尤其是在施加载荷和应力工作环境下的材料失效机制等方面的研究相对匮乏。因此,建立缺陷结构、浓度与二维材料力学行为之间的相关性具有重要的意义。有鉴于此,林君浩研究团队使用氦离子电镜的氦和镓离子刻蚀,在悬浮的单层MoS2中分别产生高密度的硫(S)空位和MoSn空位,协同AFM纳米压痕技术与STEM原子结构表征,揭示了不同类型和浓度的点缺陷对单层MoS2杨氏模量、断裂强度等力学性能和原子尺度的断裂行为的影响。研究人员通过分析裂纹原子结构发现引入的原子缺陷加剧了裂纹的偏转或分叉,缩短了裂纹传播距离,结合分子动力学模拟发现这种改变源于缺陷引起的晶格对称性破坏,改变了角刚度和局域应变分布,导致键能的各向异性在断裂过程中出现众多不同转向的微裂纹,最终提高了断裂过程中的能量释放率,提升了MoS2的断裂韧性。基于以上结果,研究团队最终提出了一种通过缺陷诱导裂纹钝化、抑制裂纹扩展的断裂增韧机制。相关论文以“Engineering the crack structure and fracture behavior in monolayer MoS2 by selective creation of point defects”为题,发表在期刊Advanced Science上。南科大物理系博士生王刚,中南大学副教授王云鹏为论文第一作者,林君浩为唯一通讯作者,南科大为论文第一单位。图1. 单层MoS2分子膜中不同缺陷结构导致的力学参数和断裂行为差异。 二维材料的结构除了可以通过后处理调控外,也能通过改变生长参数,在合成时实现调控或新的结构组装。南科大林君浩团队和新加坡南洋理工大学教授刘政、北京理工大学教授周家东以及哈尔滨工业大学教授李兴冀团队合作,使用化学气相沉积 (CVD) 法,通过调控反应温度和降温速率,实现了新型二维磁性材料Cr5Te8的相调控,成功合成出三方相和单斜相的Cr5Te8纳米片。通过选区电子衍射以及高分辨HAADF-STEM成像,精确确定出Cr原子层间因插层位置不同而引起的相结构变化,从而证实了Cr5Te8自插层体系相结构的可调性。与此同时,研究人员结合磁性测试及理论计算,揭示了相结构对磁有序的显著影响,通过控制相结构和厚度,可以获得高达200K的居里温度。另外,研究团队还发现结构更无序的单斜相Cr5Te8存在巨大的反常霍尔效应(σAHE ~ 650 Ω-1cm-1,θAHE ~ 5%)。该研究为二维磁性材料的可控和规模化合成提供了一条新途径,并揭示了Cr5Te8纳米片在磁电和自旋电子器件应用方面的巨大前景。相关论文以“Phase engineering of Cr5Te8 with colossal anomalous Hall effect”为题发表在学术期刊Nature Electronics上,南洋理工大学汤碧珺、王小伟博士,南科大博士后韩梦娇(现为松山湖国家实验室副研究员),哈工大徐晓东博士为论文共同第一作者,刘政、周家东、李兴冀、林君浩为论文共同通讯作者。图2:三方相与单斜相Cr5Te8纳米片的成分及结构确定。此外,另一种调控二维材料结构的思路是借助基底晶格的束缚实现外延生长调控。传统的共价异质外延,对生长材料和基底材料的晶格匹配度有严格要求,且工艺兼容性差。林君浩团队与纽约州立大学布法罗分校教授曾浩、北京大学教授侯仰龙团队合作,提出了一种由界面配位键驱动的外延生长机制,使用CVD在六方晶格的单层WSe2上外延生长了二维磁性单晶Cr5Te8,得到公度匹配的3×3 (Cr5Te8)/7×7 (WSe2) 摩尔超晶格,并在界面处形成束缚力较弱的超周期Cr截止结构。该晶体表现出了几乎没有缺陷钉扎位点的锐利方形磁滞回线。合作研究团队提出二维界面的“配位外延”手段,作为一种概念上独特的薄膜外延范例,不但具有与vdW外延相似的充分灵活性,规避了共价外延严格的晶格匹配性要求;而且具有与共价外延相似的晶体取向约束力,避免了vdW外延中取向难以控制的难题。相关结果以 “Dative Epitaxy of Commensurate Monocrystalline Covalent van der Waals Moiré Supercrystal”为题在期刊Advanced Materials上发表,北京大学博士后卞梦颖,南科大博士后朱亮为论文的共同第一作者,曾浩、侯仰龙和林君浩为论文的共同通讯作者。图3. Cr5Te8/WSe2摩尔超晶体的结构表征。以上研究的开展和完成得到国家自然科学基金、广东省科技厅国际合作创新领域、“珠江人才计划”创新创业团队、深圳市高层次人才团队、高校稳定支持等项目以及南方科技大学皮米中心的大力支持。论文链接:1、http://doi.org/10.1002/advs.202200700 2、https://www.nature.com/articles/s41928-022-00754-6 3、https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202200117
  • 铁基高温超导材料研究取得重要进展
    近日,中国科学技术大学合肥微尺度物质科学国家实验室王征飞教授与美国犹他大学刘锋教授,清华大学薛其坤院士、马旭村研究员,中科院物理所周兴江研究员合作,首次发现了铁基高温超导材料中的一种新型一维拓扑边界态,该成果在线发表于《自然—材料》杂志。  自然界中至今还没有发现拓扑超导材料,如何设计寻找拓扑超导材料已成为研究人员关注的焦点。以往的研究思路是借助外延生长将拓扑材料放置在超导材料上或将超导材料放置在拓扑材料上,通过邻近效应实现拓扑超导体。但这种复合材料对于生长工艺的要求十分苛刻,阻碍了拓扑超导材料研究的发展。  研究人员以新型高温超导材料FeSe/SrTiO3为研究对象,结合理论计算、扫描隧道显微镜和角分辨光电子能谱,系统地研究了其反铁磁电子构型,并在实空间观测到自旋—轨道耦合所打开的拓扑能隙中一种新型一维拓扑边界态的存在。该研究工作揭示了FeSe/SrTiO3中同时存在的超导与拓扑两种特性,为探索单一材料高温拓扑超导体和马约拉纳费米子开辟了新途径。同时该工作也有助于进一步理解FeSe/SrTiO3的高温超导机制,对于推动铁基高温超导材料的机理研究具有重要意义。
  • 上科大团队在磁子电子学研究中取得突破性进展
    近日,上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子信息处理中的应用具有重要作用。该成果发表于物理学领域旗舰期刊《物理评论快报》(Physical Review Letters)。   芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。   宏观磁性的起源主要是材料中未配对的电子。电子有两个基本属性:电荷与自旋。前者是所有电子器件操控的对象。利用电子电荷属性发展的微电子器件,已经引发了信息产业的革命。   然而,面对难以抑制的欧姆损耗,以及信息产业对更高密度存储和先进量子计算的渴求,人们迫切希望进一步利用电子自旋作为信息载体,发展自旋电子学器件,进而继续推动信息技术的发展。   尤其是磁性绝缘体中的自旋,它们能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。   磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。   此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。   铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。   在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(图(a)),该自旋波可被称为“光诱导磁子态(pump-induced magnon mode, PIM)”。   光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b))。   光诱导磁子态的有效自旋数受激励微波调控,因此当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c)),展现出和常规Autler-Townes劈裂不一样的功率依赖关系。   此外,研究团队还发现光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳(图(d))。相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系, (d)光诱导磁子非线性效应引发的纯磁子频率梳   “常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示,“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”   本项研究工作由上海科技大学、中国科学院上海技术物理研究所和华中科技大学三家单位共同完成,上海科技大学为第一完成单位。论文第一作者是上科大物质学院助理研究员饶金威,通讯作者是上科大物质学院陆卫教授、中科院上海技物所姚碧霂副研究员和华中科技大学于涛教授。
  • 最新Science:二维材料内电子强关联证据首现
    来自美国麻省理工学院(MIT)的科研人员在最新一期《科学》杂志上撰文指出,他们首次直接探测到二维材料内电子之间的强关联作用,而且测量出了这种排斥力的大小。最新研究有望帮助科学家设计出奇异的功能材料,比如非常规超导体等。近年来,物理学家发现,包括“魔角”石墨烯等在内的一些二维材料可以根据施加的电压改变电子状态,从金属“变身”为绝缘体甚至超导体。尽管促使这种材料“变身”的潜在物理机制仍是未解之谜,但物理学家们怀疑与“电子关联”——两个带负电荷电子之间的相互作用有关。这种排斥力对大多数材料的性质几乎没有影响,但可能是影响二维材料性质的主要原因。了解电子关联如何改变电子状态,可以帮助科学家设计出奇异的功能材料(如非常规超导体)。现在研究人员首次揭示了一种名为ABC三层石墨烯的二维材料内电子关联的直接证据,最新研究主要作者、MIT助理教授鞠龙(音译)说:“更好地理解超导性背后的物理学,将使我们设计出能改变世界的设备,从零损耗能量传输到磁悬浮列车等。”墨烯类似于研究更深入的魔角双层石墨烯(由六边形排列的碳原子晶格制成)。在最新研究中,鞠龙团队首先合成了ABC三层石墨烯样品,创造出带有能阱的超晶格,随后使用自己开发的独特光学技术确认这种材料确实拥有一个“平带”结构——其间所有电子的能量几乎相同,他们认为正是这一结构影响了材料的性质。然后他们稍微调低电压,使晶格中每个阱中只有一个电子。在这种“半填充”状态下,材料被视为莫特绝缘体(一种奇特的物质状态),材料应该能像金属一样导电,但表现为绝缘体。在此过程中,他们首次直接检测到这种特定莫特超晶格材料中的电子关联,并测量其强度约为20毫电子伏。结果表明,强电子关联是这种特殊二维材料的物理基础。
  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • 宁波材料所在AI 材料计算模拟领域取得系列进展
    基于量子力学的原子层级模拟计算是材料学中一种直观有效且常用的研究方法,它可以研究材料的空间原子结构、电子结构,以及由此带来的各种宏观物理、化学性质。长期以来,材料计算模拟的发展受到计算尺度的严重制约,例如描述理想周期结构、完美晶格的密度泛函理论仅可求解百原子量级的体系。   然而真实的材料体系是不完美并且非常复杂的,材料中存在缺陷、晶畴界、表界面、非晶无序等结构特征,处于非平衡态的材料体系同时具有动力学演化行为,这些复杂体系的特征行为体现在更大的时间和空间尺度,因此需要大尺度的模拟计算才能描述。基于传统物理“规则驱动”的计算技术已难以从理论框架突破尺度限制。   针对这一问题,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队利用并发展了AI+材料计算模拟方法。基于“数据驱动”的AI是从数据和观测值出发,寻找数据之间的特征和关系,从而发现一些定理和规律。AI与科学的结合带来了新的科研范式,给材料计算模拟带来全新的思路和视角。Deep-Potential(DP)是一种具有代表性的AI技术,它运用深度神经网络技术,采用大量小原胞(数十个原子)的密度泛函理论计算数据作为训练集,训练完成的网络可以高效准确地预测出大原胞(最高可计算百万个原子)的总能以及原子受力,从而实现大时间空间尺度(微米/纳秒)的动力学模拟。   钟志诚研究员带领研究小组近期开展了一系列DP相关的研究:1)通过研究SrTiO3的结构相变,发现了DP模型具有超高精度,与密度泛函理论计算得到的能量误差可达到meV/atom以内[Phys. Rev. B 105,064104(2022)];结合DP势函数和位错解析理论,在大尺度下准确描述Cu的位错芯结构以及位错间的长程弹性相互作用[Comput. Mater. Sci. 218,111941 (2023)]。上述两个工作证实了DP在大尺度下的高精度以及描述位错等复杂结构的有效性。2)利用DP,解释了ZrW2O8的负热膨胀现象以及压力诱导的非晶现象[Phys. Rev. B 106, 174101 (2022)],该工作表明DP势函数能够有效描述复杂动力学行为以及非晶无序结构。3)晶格量子效应对热力学等性质的求解至关重要,而却往往因为其较高的计算成本在模拟计算中往往被忽略。团队以SrTiO3的量子顺电现象为例,提出了结合DP+QTB高效地研究材料中的晶格量子效应方案[Phys. Rev. B 106, 224102 (2022)]。   以上工作为未来材料计算模拟研究提供了全新范式,为复杂材料体系的高精度大尺度模拟提供了具体思路。此外,结合AI+材料计算模拟进行大尺度及复杂效应的计算,有望解决一系列复杂材料体系中的微观机制、宏观性能等问题。例如多元体系中的高熵合金、固液界面;机制复杂的摩擦、张力、非晶、表面重构;化学反应的表面吸附、催化、燃烧等问题。   以上工作参与者包括中科院宁波材料所博士后何日、邓凤麟,博士研究生吴宏宇,合作者包括南京大学物理学院卢毅教授,西湖大学理学院刘仕教授,深势科技首席科学家张林峰博士。以上工作得到了国家重点研发计划(2021YFA0718900和2022YFA1403000)、国家自然科学基金(11974365和12204496)、中国科学院前沿科学重点研究计划(ZDBS-LY-SLH008)以及王宽诚教育基金(GJTD-2020-11)的支持。图1 (a) 通过密度泛函理论所计算的大量空间构型(约百原子级别)的能量和力;(b)DP训练所得的深度神经网络;(c)和(d)训练好的深度神经网络能应用于预测超胞(约百万原子级别)的能量和受力,其精度和密度泛函理论一致图2 课题组近期各工作。左上:DP势函数的精度展示;右上:DP方法描述位错间对数形式的长程弹性相互作用;左下:ZrW2O8的压力诱导非晶现象;右下:DP+QTB预测的SrTiO3结构相变
  • 宁波材料所在高温非晶合金的腐蚀性能方面取得重要进展
    非晶合金具有组织均一、高强度、高硬度、耐磨蚀、热膨胀系数小、纳米级表面结构复写等特性,在其过冷液相区可快速实现从宏观至微米、纳米的多尺度一体化热塑成型,是制备高精密模具的理想材料。然而,传统非晶合金的玻璃转变温度低,高温强度及热稳定性差,使役温度难以超过600K,不能满足目前光学玻璃模压成型温度的要求。研发高温高强高稳定性块体非晶合金(简称“高温非晶合金”)有望将光学玻璃模压模具的磨削加工转变为热塑加工,突破磨削加工无法制备微纳米表面结构的先天限制,孕育变革性的光学玻璃元件“微纳模压成型”技术。基于此,在国家重点研发计划变革性技术关键科学问题专项的支持下,中国科学院宁波材料技术与工程研究所和中国科学院物理研究所、燕山大学、深圳大学、北京航空航天大学联合开展了“高温高强高热稳定性块体非晶合金新材料与应用基础”(项目编号:2018YFA0703600)的研究工作。其中,中科院宁波材料所非晶合金磁电功能特性团队主要负责课题“高温非晶合金的氧化与腐蚀机理研究”。近期,在王军强研究员和霍军涛研究员的指导下,该组课题生杨晓东等人围绕前期项目组开发的Ir-Ni-Ta-(B)高温非晶合金[Nature 569 (2019) 99–103]的腐蚀行为开展了深入系统的研究。研究发现在酸性溶液中Ir-Ni-Ta-(B)高温非晶合金相比于其它合金体系拥有更好的耐蚀性,归因于其可以形成由金属Ir以及Ni和Ta的氧化物组合而成的相对稳定的钝化膜。这种钝化膜具有较好的保护性,从而表现出很强的耐点蚀能力,因而腐蚀多发生于缺陷处。另外,研究发现微量添加类金属B元素可以显著提高Ir-Ni-Ta非晶合金的耐蚀性,Ir-Ni-Ta-B样品钝化电流要比Ir-Ni-Ta样品降低了一个数量级。在Ir-Ni-Ta和Ir-Ni-Ta-B非晶合金表面形成的钝化膜具有几乎相同的成分,但具有不同的厚度和孔密度。这些差异是由添加B引起的,B促进钝化膜的快速形成,同时抑制活性金属的溶解。金属Ir的表面富集和[BO3]3-的吸附进一步提高了Ir-Ni-Ta-B非晶合金的耐蚀性。相关结果表明,可以通过电化学钝化处理优先生成具有保护性的钝化膜以增加Ir基非晶合金作为模具材料的耐蚀性能,为增强高温高强高稳定性块体非晶合金在严苛服役环境中的使用寿命提供了重要实验基础和理论支撑。相关结果发表在Corrosion Science 200 (2022) 110227(https://doi.org/10.1016/j.corsci.2022.110227)。以上工作成果得到国家重点研发计划(2018YFA0703604、2018YFA0703602),国家自然科学基金(52001319、52071327、51922102、52171148),中科院青促会 (2019296), 浙江省自然科学基金 (LR22E010004、LR18E010002), 宁波市2025科技创新项目(2019B10051)和宁波市自然科学基金(202003N4354)等项目的资助。图1 左图为Ir-Ni-Ta-(B)非晶态合金与其他合金体系的晶化活化能对比图;右图为不同材料在硫酸溶液中的点蚀电位和钝化电流对比图图2 各种离子和电子在硫酸溶液中的传输和钝化膜形成示意图
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 直播预告|4.19生物医用材料研发与检测
    直播预告|4月19日生物医用材料研发与检测生物医用材料是一类用于诊断、治疗、修复或替换人体组织、器官或增进其功能的高技术材料,也称生物材料或生物医学材料。我国生物医用材料市场增速是全球的近4倍。由于生物医用材料与人体健康密切相关,因此,对其化学结构组成、物理机械等性能,以及其与人体接触时的生物相容性、安全性等指标进行分析检测和评估,具有非常重要的实际意义。为满足全国各地科研院所、医疗机构及生产企业等生物医用材料相关从业人员的交流需求,天津分析测试协会与仪器信息网将于2023年4月19日举办“生物医用材料研发与检测”主题网络研讨会。报告专家简介(点击专家名字可看介绍详情)张其清 中国医学科学院北京协和医学院清华大学医学部二级研究员(二级教授)、博导;福建吉特瑞生物科技有限公司任创始人、董事长;中国微纳米学会会士。致力创伤、肿瘤和退行性病变等导致的组织病缺损再生修复诊断和防治生物医学工程、食品工程及重大传染性和流行性疾病的防治等领域40余年,主持国家自然基金重大研究计划,国家杰出青年基金,863、973、科技支撑(攻关)、火炬和重点新产品计划,国家海洋示范项目等102项,开发出医用胶原膜、医用胶原修复膜、胶原基 神经修复导管等十余款产品;获三类医疗器械注册证6个,CE、ISO认证等7个;发表论文563篇,H因子68;论著12部;授权发明专利167项。获中国政府友谊奖(组织者),中国产学研合作创新成果一等奖,中国专利优秀奖,中华医学奖等45项,中国医学科学院北京协和医学院杰出贡献奖和成果转化奖等35项。与林巧稚、吴阶平等一起编入中国医学科学院北京协和医学院《协和精英》一书。黄显 天津大学精密仪器与光电子工程学院教授,浙江清华柔性电子技术研究院柔性可穿戴技术研究中心主任,天津大学生物医学柔性电子实验室负责人,博导。自然科学基金委“有机集成电路的核心材料基础”创新研究群体核心成员。2015年入选中组部第十一批青年千人计划,获天津大学北洋学者、天津市青年千人、天津青年创新能手称号。2016年在天津大学建立了生物医学柔性电子实验室,实现了天津市首个集柔性传感器设计、加工、测试和仿真为一体的综合研究平台。提出和研究了柔性磁电复合器件、高通量分布式柔性植入式器件、印刷瞬态电路技术和类皮肤多参数柔性传感器件等创新性柔性电子器件和技术。已在多本高水平期刊发表各类论文106篇,文章总引用达8000余次,获授权专利23项。其研究的植入式葡萄糖传感器获得美国糖尿病技术协会的研究金奖,MicroLED巨量检测设备获得第五届全国先进技术转化大赛优胜奖,并担任Advanced Material Technologies、BME Frontier等期刊的编委和青年编委。王蔚 南开大学高分子化学研究所副所长/副教授,现任南开大学化学学院党委副书记,高分子化学研究所副所长。研究领域为生物医用高分子材料,主要聚焦血管相关组织工程、阿尔兹海默药物研发以及肿瘤微环境调控等方向。主持参与国家基金委面上、青年基金,天津市自然科学基金面上、青年项目等科研项目十余项,在Acta Biomaterialia, Biomacromolecule等期刊发表SCI收录文章40余篇。钟成 天津科技大学教授/博士生导师,主持国家自然科学基金4项,国家重点研发计划子课题1项,以及农业部公益性行业专项、山东省重大科技计划、天津市自然科学基金重点项目以及企业委托开发课题20余项。兼任中国生化与分子生物学会工业生化与分子生物学分会理事,中国造纸学会纳米纤维素与材料专业委员会委员,中国化工学会生物化工专业委员会委员,中国微生物学会会员,2014年至今担任国际期刊Frontiers in Microbiology(影响因子:4.2)副编辑,以及二十多种国际期刊同行评议人。 申请发明专利60余项(其中授权发明专利20余项)。以第一完成人获2019年天津市科技进步二等奖1项,获天津市工程学位优秀教学成果奖1项(排名第一)。夏炎 南开大学化学学院教授、中心实验室主任,中国化学会高级会员,中国分析测试协会高校测试分会委员和青年部部长,天津市色谱研究会理事,实验室资质认定国家级评审员。主要从事样品预处理、色谱质谱分析研究和实验室资质认定管理工作。在多本专业期刊发表论文40余篇,主持国家自然基金、天津市自然基金及企业横向课题多项。会议日程报告题目报告人主持夏炎生物材料研发及转化的机遇和挑战张其清柔性永磁生物材料和柔性磁性生物医学器件黄显血管正常化新疗法及其在肿瘤治疗中的应用王蔚细菌纤维素纳米材料网状结构调控与应用钟成报名方式1、报名链接:https://www.instrument.com.cn/webinar/meetings/tjaia230419/ 2、扫码添加助教赞助参会目前赞助位置尚有剩余,欢迎感兴趣的厂商联系 刘经理:15718850776或者直接扫码添加刘经理微信号:
  • 超高品质单晶生长!高温可达3000℃,可胜任高熔点、高挥发性材料制备的高性能激光浮区法单晶炉LFZ
    激光浮区技术(LFZ),在过去的几十年里,作为一种简单、快速、无需坩埚的生长高质量单晶材料的方法,在高熔点材料的单晶生长领域取得进展。 LFZ与常规光学浮区技术OFZ大的区别是用于加热和熔化的光辐照源不同。OFZ通常是使用椭球镜将卤素灯或者氙灯光源聚焦到生长棒来实现晶体生长。LFZ则是采用激光作为加热光源进行晶体生长,由于激光光束具有能量密度高的特点,因此可实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。 随着技术的不断迭代,2020年Quantum Design Japan公司和日本理化研究所Yoshio Kaneko教授密切合作,联合设计开发了新一代高性能激光浮区法单晶炉LFZ,该系统采用了5束激光光路的设计方案,保证了激光辐照强度均匀分布在原材料的环向外围,并提供高功率分别为1.5 kW和2 kW两种规格的系统。此外,在新一代高性能激光浮区炉LFZ的光路设计中,采用了Yoshio Kaneko教授的温度梯度优化设计,能有助于改善晶体生长过程中的剩余热应变弛豫;除此之外,该系统还采用了Yoshio Kaneko教授的温度反馈控制闭环设计方案,实现了温度的实时监控与自动调节。实例讲解:1. 磁性材料Bi2CuO4 传统的磁性记忆合金依赖于双磁态,如铁磁体的自旋向上、自旋向下两种状态。增加磁态数量,且采用无杂散场的反铁磁材料,有望实现更高容量存储。近一篇发表于Nature Communications期刊题为Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism的工作表明磁电共线反铁磁Bi2CuO4中不仅具有四个稳定的Néel矢量方向,还存在引人注目的反铁磁三色现象,即在可见光范围内的磁电效应使得吸收系数随光传播矢量和Néel矢量之间的角度变化而取三个离散值。利用这种反铁磁三色性,该工作可实现可视化的场驱动Néel矢量的旋转甚至反转[1],为电场调控和光学读取的高密度存储器设计提供可能性。 在该篇工作中看,磁性材料Bi2CuO4的制备使用了Quantum Design LFZ1A 激光浮区法单晶炉。该材料表面张力较低,熔融区难以控制,早期研究多采用较快的生长速度,但生长速度过快往往会导致微裂隙的存在而影响样品品质。在此,利用LFZ1A,通过精细调节生长条件,实现了高质量单晶的生长,从而实现了更精细的磁电性质测量。 在晶体生长的初几个小时,为稳定熔融区域,激光电流手动调节在26.9 - 27.4 A范围,随后,便可以切换到自动恒温模式下,生长速度控制在2.0 mmh-1,进料棒和籽晶棒反向旋转10 rpm,实现晶体的超过24 h的稳定生长,而不需要其他的手动操作。晶体生长在流动的纯氧气氛中进行。图1. Bi2CuO4的磁性测量。SQUID面内面外磁化率的测量都表明材料是TN=44K发生了反铁磁转变。单晶棒非常容易从Z平面解理开,插图显示解理面非常光亮,表明了样品的质量很高[1]。 2. 烧绿石Nd2Mo2O7 烧绿石Nd2Mo2O7中,Mo子晶格呈现出自旋倾斜、近乎共线铁磁排布,其标量自旋手性诱导出巨大的拓扑霍尔效应,可应用于霍尔效应传感器。Nd2Mo2O7是一种高挥发性材料,单晶合成需要被加热到1630℃,MoO2等成分高度挥发,并在生长石英管内壁沉积,导致光源辐照受阻,进而导致熔融区域温度降低,生长不稳定。得益于LFZ设备高精度和快速响应的温度控制系统,在熔融区域失稳前,迅速增加激光功率,激光光通量密度比卤素灯高几个量,因而可以迅速将温度提升到1100℃,促进沉积到石英管内壁上的MoO2的再挥发,当沉积与再挥发达到平衡时,激光加热功率稳定下来,终实现晶体的稳定生长。 近发表在Physical Review B期刊题为Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7的工作中,Max Hirschberger等人通过Ca2+取代Nd3+来调控化学势,实现了对Mo子晶格倾斜自旋铁磁稳定性的调控[2]。 他们先利用Quantum Design LFZ制备了一系列不同组分的厘米尺寸单晶(Nd1−xCax)2Mo2O7(x=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.22, 0.30和0.40)。在氩气氛下,生长温度控制在1630-1700℃,生长速度为1.8-2 mm/h。对不同组分单晶的磁性研究证明了在x≤0.15时倾斜铁磁态以及自旋倾角具有稳定性。而在x=0.22以上,Mo-Mo和Mo-Nd磁耦合变号,自旋玻璃金属态取代倾斜的铁磁态。图2, (Nd1−xCax)2Mo2O7不同组分磁化曲线和相图。左图:x=0.01, 0.22和0.40的三个组分单晶的场冷曲线,可以清晰的判断出倾斜铁磁态和自旋玻璃态的转变温度。右图:不同组分获得的转变温度总结的相图,包括有倾斜铁磁态、自旋玻璃态和顺磁态[2]。高品质数据的采集得益于高质量的单晶样品和的成分控制。 3. 高熔点材料SmB6 SmB6是早发现的重费米子材料之一,其研究已经有五十多年的历史。随着拓扑领域的发展,近几年人们发现SmB6是一种拓扑近藤缘体。它的电缘性来自于强关联的电子相互作用,不仅如此,它的缘态存在能带反转,具有拓扑非平庸属性,表面会出现无能隙拓扑表面态。由于体态完全缘,这个表面态可以用来做新型二维电子器件[3]。 对SmB6拓扑和低温性质的准确探索,离不开高质量的材料,但因为该材料的高熔点(2350℃),很难通过常规手段获得。而Yoshio Kaneko等人应用Quantum Design LFZ实现了高品质SmB6的生长。生长条件:1标准大气压的氩气氛,气体流速2000 cc/m,生长速率20 mm/h。图3. SmB6单晶形貌图和劳厄衍射图。SmB6单晶表面如镜面般光亮,晶体(111)面的劳厄斑体现了很好的三重对称性,佐证了样品的高品质,适用于拓扑性质的精细测量[4]。 总结 综上,Quantum Design新一代高性能激光浮区法单晶炉(LFZ)与传统浮区法单晶生长系统相比,特的激光光路可实现更高功率、更加均匀的能量分布和更加稳定的性能。LFZ将浮区法晶体生长技术推向一个全新的高度,可广泛应用于制备红宝石、SmB6等高熔点材料,Ba2Co2Fe12O22等不一致熔融材料,以及Nd2Mo2O7、SrRuO3等高挥发性材料,为凝聚态物理、化学、半导体、光学等多种学科领域提供了丰富的高品质单晶储备,使得更精细的单晶性质测量和表征成为可能。图4. 新一代高性能激光浮区法单晶炉LFZ外观图(左)和原型机中被五束激光加热的原料棒(右)。 参考文献: [1]. K. Kimura, Y. Otake, T. Kimura, Visualizing rotation and reversal of the Neel vector through antiferromagnetic trichroism. Nat Commun 13, 697 (2022).[2]. M. Hirschberger et al., Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7. Physical Review B 104, (2021).[3]. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 121, 2780-2815 (2021).[4]. Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power laser of 1 kW composed of five smart beams. Journal of Crystal Growth 533, 125435 (2020).
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
  • 2023先进电子材料创新大会
    一、大会概况先进电子材料,作为信息技术产业的基石,是支撑半导体、光电显示、太阳能光伏、电子器件等产业发展的重要基础。近年来,随着5G、人工智能等新技术的发展,电子材料产业需求不断扩大,未来市场空间广阔。但先进电子材料如何发挥最大潜力?如何链接基础研究和产业应用?2023先进电子材料创新大会聚焦于“新材料与产业发展新机遇”,瞄准全球技术和产业制高点,紧扣电子信息产业关键基础环节的短板,不断延展,着力突破高端先进电子材料产业化发展难题,拓宽新兴市场应用。本次大会诚挚邀请国内外知名专家、学者、头部企业,多元视角共同探讨先进电子材料产业发展新机遇,从应用需求逆向开发,产学研联动,驱动先进电子产业协同创新发展,打造国际高端电子材料产学研交流对接平台。二、组织机构主办单位:中国生产力促进中心协会新材料专业委员会联合主办:DT新材料芯材协办单位:深圳先进电子材料国际创新研究院甬江实验室中国电子材料行业协会半导体材料分会深圳市集成电路产业协会浙江省集成电路产业技术联盟陕西省半导体行业协会浙江省半导体行业协会东莞市集成电路行业协会支持单位:宝安区5G产业技术与应用创新联盟粤港澳大湾区先进电子材料技术创新联盟承办单位:深圳市德泰中研信息科技有限公司支持媒体:DT新材料、芯材、DT半导体、热管理材料、化合物半导体、电子发烧友、芯师爷、PolymerTech、电子通、芯榜、材视科技、Carbontech、安全与电磁兼容、电子材料圈、仪器信息网三、大会信息论坛时间:2023年9月24-26日论坛地点:中国深圳 深圳国际会展中心希尔顿酒店(深圳市宝安区展丰路80号)论坛主题:新材料,新机遇四、特色活动与亮点通过产学研论坛、项目对接、需求发布,人才交流、创新产品展示、采购对接会等多种形式,激发创新潜力,集聚创业资源,发掘和培育一批优秀项目和优秀团队,催生新产品、新技术、新模式和新业态,促进更多企业项目融入产业链、价值链和创新链,助力加快建设具有全球影响力的科技和产业创新合作平台。1、创新展览(1)成果集市(新材料、解决方案的专利&成果展示区);(2)学术海报展区(墙报尺寸80cm宽×120cm高,分辨率大于300dpi);(3)创新应用解决方案展区;(4)实验仪器设备展区。2、Networking(1)闭门研讨会:From Idea To Market!剖析行业,深度思考,提出观点,接受灵魂拷问;(2)一对一服务,精准对接,高端赋能。3、特色产学研活动,形式丰富(1)成果推介会(创新技术、创新产品);(2)项目路演、项目对接、投融对接会;(3)人才推介会、需求发布&对接会;(4)地区政府、园区产业规划、政策解读;(5)招商/签约仪式;(6)校企合作。4、前瞻论坛:院士报告+青年科学家报告论坛开启“15分钟了解一个科研方向”模式,突破思维限制,重点讨论科学研究中存在的技术难题与科学问题,帮助广大青年科研者整理研究逻辑,思考为什么做研究?如何推进研究进展?如何解决目前遗留挑战以及未来的技术瓶颈?5、校企合作AEMIC 2023以打造国际高端电子材料产学研交流对接平台为目的,特设校企合作论坛等专题活动。本届校企合作论坛以“科研赋能产业、产学研联动”为主题,聚焦校企合作实际需求,通过打造联合实验室、开发课题等合作模式,拟邀国内外先进电子行业知名院校的相关学科带头人、院长、行业专家、产业链上中下游不同端口的企业高层、知名投资机构等多元角色,齐聚一堂,针对“如何助力科技成果转化,打通‘最后一公里’?”、“如何为产学研交流拆除阻碍发展的‘篱笆墙’?”等相关议题作深入探讨,强强对话,将来一场极具前瞻性、针对性和多维性的思想盛宴。旨在为先进电子行业,深化产教融合,促进教育链、人才链与产业链、创新链的衔接,打通人才培养、应用开发、成果转移与产业化全链条。五、日程安排(具体时间以会场现场为准)时间活动安排2023年9月24日 星期日12:00-22:00会议签到2023年9月25日 星期一09:00-09:30开幕式活动(主办方致辞、重要嘉宾、领导致辞地区产业规划、招商/签约仪式)09:30-12:00先进电子材料产业创新发展大会(主论坛)前瞻论坛12:00-14:00自助午餐14:00-18:00平行分论坛分论坛一:先进封装论坛分论坛二:新型基板材料与器件论坛分论坛三:电磁兼容及材料论坛分论坛四:导热界面材料论坛分论坛五:电子元器件关键材料与技术论坛前瞻论坛19:00-21:00欢迎晚宴2023年9月26日 星期二9:00-16:30平行分论坛分论坛一:先进封装论坛分论坛二:新型基板材料与器件论坛分论坛三:电磁兼容及材料论坛分论坛四:导热界面材料论坛分论坛五:电子元器件关键材料与技术论坛前瞻论坛16:30-17:00闭幕式&总结12:00-14:00自助午餐六、已确认嘉宾先进电子材料产业创新发展大会(主论坛)科技赋能:先进电子材料与器件最新进展状态确认嘉宾与报告方向已确认报告题目:TBDChul B. Park,加拿大多伦多大学教授、中国工程院外籍院士、加拿大皇家科学院和工程院双院士、韩国科学技术翰林院、韩国工程翰林院院士 已确认报告题目:TBD李树深,中国科学院副院长、中国科学院大学校长、党委书记、研究员、中国科学院院士、发展中国家科学院院士、已确认报告题目:TBD南策文院士,清华大学材料科学与工程研究院院长、教授、中国科学院院士、发展中国家科学院院士已确认报告题目:TBDHenry H. Radamson,中国科学院微电子研究所研究员、欧洲科学院院士、广东省大湾区集成电路与系统应用研究院首席科学家已确认报告题目:TBD孙 蓉,中国科学院深圳先进技术研究院材料所所长、研究员先进封装论坛主题一:先进封装关键材料与设备状态确认嘉宾与报告方向已确认报告题目:Fundamentals and reliability of Cu/SiO2 hybrid bonding in 3D IC packaging陈 智,台湾国立阳明交通大学教授已确认报告题目:TBD李明雨,哈尔滨工业大学(深圳)材料科学与工程学院院长已确认报告题目:TBD甬强科技有限公司已确认报告题目:微波等离子技术在先进封装的应用朱铧丞,四川大学副教授已确认报告题目:ALD在先进封装领域的应用庄黎伟,华东理工大学副教授已确认报告题目:电镀铜添加剂体系的研究现状及未来发展路旭斌,兰州交通大学副教授已确认报告题目:TBD广东聚砺新材料有限责任公司主题二:先进封装与集成电路工艺、设计、与失效分析已确认报告题目:三维chiplet等先进芯片封装材料与工艺郭跃进,南方科技大学教授已确认报告题目:TBD刘 胜,武汉大学教授已确认报告题目:集成电路晶圆级三维集成朱文辉,中南大学教授已确认报告题目:TBD黄双武,深圳大学教授已确认报告题目:TBD代文亮,芯和半导体科技(上海)有限公司联合创始人、高级副总裁已确认报告题目:TBD宁波德图科技有限公司主题三:先进封装行业应用解决方案TBD电磁兼容及材料论坛状态确认嘉宾与报告方向已确认报告题目:电磁防护材料王东红,中电33所副总工程师已确认报告题目:TBD张好斌,北京化工大学教授已确认报告题目:聚合物基电磁屏蔽复合材料王 明,西南大学教授已确认报告题目:PCBA板级电磁屏蔽材料研究进展与应用探讨胡友根,中科院深圳先进技术研究院研究员已确认报告题目:系统级封装SiP的电磁屏蔽效能测试与分析魏兴昌,浙江大学教授已确认报告题目:轻质碳基吸波复合材料及应用王春雨,哈尔滨工业大学(威海)材料学院副教授已确认报告题目:碳纳米管添加可控,突破材料性能徐建诚,广东帕科莱健康科技有限公司总经理已确认报告题目:EMI材料的选择和应用唐海军,苏州康丽达精密电子有限公司总经理已确认报告题目:TBD施伟伟,深圳市飞荣达科技股份有限公司实验室主任已确认报告题目:TBD张 涛,深圳天岳达科技有限公司总经理已确认报告题目:电磁屏蔽材料遇上的新机遇、新挑战(拟)美国派克固美丽(Parker Chomerics)公司已确认报告题目:TBD满其奎,中国科学院宁波材料技术与工程研究所研究员、宁波磁性材料应用技术创新中心有限公司总经理已确认报告题目:车用电磁功能材料王 益,敏实集团材料部门经理确认中报告题目:TBD车仁超,复旦大学教授、杰青确认中报告题目:TBD张延微,有研(广东)新材料技术研究院市场总监确认中报告题目:TBD李 伟,美国3M公司电磁专家确认中报告题目:TBD由 龙,深圳科诺桥科技股份有限公司研发总监新型基板材料与器件论坛状态确认嘉宾与报告方向已确认报告题目:TBD刘孝波,电子科技大学教授、俄罗斯自然科学院院士已确认报告题目:TBD闵永刚,广东工业大学教授、俄罗斯工程院外籍院士已确认报告题目:TBD于淑会,中科院深圳先进技术研究院研究员已确认报告题目:TBD宋锡滨,中生协新材料专委会主任委员已确认报告题目:低温共烧陶瓷(LTCC)材料与集成传感器研究马名生,中科院上海硅酸盐研究所研究员已确认报告题目:TBD张 蕾,中科院深圳先进技术研究院副研究员已确认报告题目:高性能陶瓷基板技术研发与产业化陈明祥,华中科技大学机械学院教授、武汉利之达科技创始人已确认报告题目:高频/高速覆铜板材料的现状和未来杨维生,中电材行业协会覆铜板行业技术委员会委员、中国电子电路行业协会科学技术委员会委员已确认报告题目:先进封装下的有机封装基板机会与挑战谷 新,中山芯承半导体有限公司总经理已确认报告题目:高频高速覆铜板用树脂的开发应用新进展(拟)黄 杰,四川东材科技集团股份有限公司,山东艾蒙特新材料有限公司总经理已确认报告题目:TBD鲁慧峰,厦门钜瓷科技有限公司已确认报告题目:低温共烧大尺寸叠层压电陶瓷致动器研发及产业化(拟)贵州大学已确认报告题目:TBD温 强,中兴通讯PCB专家确认中报告题目:TBD沈 洋,清华大学材料学院副院长、教授确认中报告题目:TBD何 为,电子科技大学教授确认中报告题目:TBD曹秀华,广东风华高新科技股份有限公司研究院院长确认中报告题目:TBD任英杰,浙江华正新材料股份有限公司通信材料研究院院长电子元器件关键材料与技术论坛状态确认嘉宾与报告方向已确认报告题目:高质量二维半导体材料的可控制备刘碧录,清华大学深圳国际研究生院材料研究院长聘教授、副院长已确认报告题目:高性能二次电池关键材料设计与界面科学王任衡,深圳大学研究员已确认报告题目:半导体功率器件与集成技术郭宇锋,南京邮电大学党委常委、副校长已确认报告题目:信息功能陶瓷和无源元器件李 勃,国家重点研发计划项目、新型陶瓷与精细工艺国家重点实验室首席科学家、研究员已确认报告题目:低维无机材料的精准合成与物性调控程 春,南方科技大学研究员已确认报告题目:电子级纳米材料王 宁,中国科学院深圳先进技术研究院副研究员已确认报告题目:半导体纳米材料及器件结构-性能关系的定量透射电子显微学研究李露颖,华中科技大学武汉光电国家研究中心教授已确认报告题目:埋入式电容材料开发柴颂刚,广东生益科技股份有限公司-国家电子电路基材工程技术研究中心所长已确认报告题目:TBD宁存政,清华大学、深圳技术大学集成电路与光电芯片学院院长、教授已确认报告题目:功能高分子复合材料的加工成型新方法及其在电子材料方面的应用邓 华,四川大学教授已确认报告题目:半导体碳纳米管的高纯度分离及其在集成电路中的应用邱 松,中国科学院院苏州纳米所研究员导热界面材料论坛状态确认嘉宾与报告方向已确认报告题目:TBD曾小亮,中国科学院深圳先进技术研究院研究员已确认报告题目:热界面材料在通讯基站上的应用及展望2023周爱兰,中兴通讯股份有限公司热设计专家已确认报告题目:六方氮化硼纳米片的新颖制备及作为导热填料应用毋 伟,北京化工大学教授已确认报告题目:TBD赵敬棋,中国科学院深圳先进技术研究院热管理专家(主持人)已确认报告题目:TBD钱家盛,安徽大学副校长、全国政协委员、教授已确认报告题目:面向高频通讯用高效热管理薄膜材料研发张 献,中国科学院固体物理研究所研究员已确认报告题目:碳纤维导热垫片曹 勇,深圳市鸿富诚新材料股份有限公司研发经理已确认报告题目:TBD冯亦钰,天津大学教授已确认报告题目:TBD徐 帆,美国霍尼韦尔公司亚太区市场总监已确认报告题目:TBD张莹洁,工业和信息化部电子第五研究所(中国赛宝实验室)经理已确认报告题目:德聚高导热界面材料解决方案钱原贵,广东德聚技术股份有限公司副总经理已确认报告题目:TBD万炜涛,深圳德邦界面材料有限公司总经理已确认报告题目:TBD汉高中国已确认报告题目:TBD美国3M公司前瞻论坛状态确认嘉宾与报告方向已确认报告题目:铁电材料的本征弹性化胡本林,宁波材料所研究员已确认报告题目:TBD张虎林,太原理工大学教授认已确认报告题目:TBD孟凡彬,西南交通大学教授已确认报告题目:柔性微纳器件与智能感知系统化麒麟,北京理工大学特别研究员已确认报告题目:半导体材料中的挠曲电电子学效应翟俊宜,中科院北京纳米能源与系统研究所所长助理,研究员已确认报告题目:压电能带工程和GaN HEMT胡卫国,中科院北京纳米能源与系统研究所研究员已确认报告题目:Active microwave absorber with reconfigurable bandwidth and absorption intensity罗衡,中南大学副教授七、同期论坛详细介绍(一)前瞻论坛(院士报告+青年科学家报告)前瞻论坛将邀请全球科研专家和青年学者,围绕先进电子材料基础研究、工艺创新、器件性能优化等领域,分享近阶段前沿的科技创新成果,并展开交流。旨在深入探讨先进电子领域所面临的新机遇、新挑战和未来发展方向,发掘和支持具有科学创新精神和未来影响力的青年先行者。论坛将“15分钟报告了解一个科研方向”模式,突破思维限制,重点讨论科学研究中存在的技术难题与科学问题,帮助广大青年科研者整理研究逻辑,思考为什么做研究?如何推进研究进展?如何解决目前科研难题的挑战以及未来的技术瓶颈?话题范围(包含但不局限以下方向):先进电子封装材料与工艺、热管理材料、电子级纳米材料、电磁屏蔽材料、电介质材料、第三代半导体材料与器件、新型显示、功率激光材料与器件,以及高端光电子与微电子材料……(二)开幕式暨先进电子材料产业创新发展大会论坛将瞄准全球技术和产业制高点,重点聚焦先进电子封装材料与技术路线、导热界面材料、电子元器件关键材料与技术、电磁兼容材料、电介质材料、柔性电子与传感、热电/光电材料、宽禁带半导体材料与器件等领域的核心关键技术,DT新材料联合深圳先进电子材料国际创新研究院、甬江实验室等知名科研院所,诚挚邀请国内外知名专家、学者、头部企业共同深入探讨先进电子材料产业发展新机遇,着力突破高端电子材料产业化发展难题,从应用需求逆向开发,寻找解决方案,驱动产业应用发展,推动先进电子材料的自主创新。主论坛(先进电子材料产业创新发展大会)将从产业发展进程、政策研判、行业洞察以及机遇与挑战等角度解读,设置院士报告、领袖对话、产学研连线等环节。同期举办产学研论坛、校企合作论坛、人才交流、创新产品展示、项目对接、需求发布,采购对接会等活动,内容丰富,激发创新潜力,同时,集聚创业资源,发掘和培育一批优秀项目和优秀团队,催生新产品、新技术、新模式和新业态,促进更多企业项目融入产业链、价值链和创新链,助力加快建设具有全球影响力的科技和产业创新合作平台。参考话题:(一)大咖报告1、全球先进电子材料产业政策分析与专利布局2、全球先进电子材料研发与工艺技术创新进展3、全球先进电子产业发展进程与未来趋势4、全球先进电子材料领域“卡脖子”技术的研判与对策分析5、“十四五”期间,先进电子材料产业重点发展方向6、双碳背景下先进电子产业发展机遇与挑战……(二)产学研连线:领袖对话1、未来五-十年,先进电子材料产业重点发展方向在哪?2、如何突破先进电子材料领域“卡脖子”技术?科研界和产业界的对策是什么?3、如何助力科技成果转化,打通‘最后一公里’?4、双碳背景下先进电子产业发展机遇与挑战(三)平行分论坛平行分论坛一:先进封装论坛集成电路是国之重器,是信息时代的命脉产业,严重影响国家战略和产业安全,封装是集成电路产业链中重要一环。随着半导体制程接近工艺物理极限,芯片制造面临物理极限与经济效益边际提升双重挑战。如何延续摩尔定律,芯片的布局成为新解方。另外,随着5G、自动驾驶、人工智能、物联网等应用正快速兴起,对芯片的性能要求更高,先进封装如何重塑半导体产业格局?半导体行业下一个十年方向在哪里?AEMIC先进封装论坛针对全球先进封装产业频现“软肋”的核心技术与产业问题,论坛从先进封装工艺、异构集成的前沿技术、关键材料与设备、可靠性与产品失效分析、最新市场应用、以及产业发展的新机遇与挑战等问题进行攻关,着力突破先进封装产业发展难题,实现原材料-材料-工艺-器件的原始创新性与产业平衡发展。参考话题:• 芯片封装趋势与新型市场应用1、芯片封装产业趋势与技术创新2、应用需求驱动下先进封装技术的机遇与挑战3、“后摩尔时代”下先进封装与系统集成4、先进封装的设计挑战与EDA解决方案5、先进封装在汽车电子和MEMS封装中的应用案例与发展趋势6、5G环境下的微系统集成封装解决方案7、先进封装对前沿计算的重要性8、射频微系统集成技术9、先进封装在功率电子与新能源及新型电力系统中的应用10、光电器件封装11、新兴领域封装与面向人工智能的电子技术应用……• 先进封装技术路线和产业生态发展趋势1、异质/异构集成、3D Chiplet技术、三维芯片互连与异质集成应用技术2、晶圆级封装(WLP)、板级封装、系统级封装技术(SiP)3、倒装芯片、硅通孔/玻璃通孔技术4、2.5D/3D堆叠、芯片三维封装、集成封装技术5、扇出型封装技术6、混合键合技术、先进互连技术……• 先进封装关键材料、工艺与设备1、关键设备:贴片、引线、划片、衬底切割、研磨、抛光、清洗等关键技术与设备2、先进制程:减薄、划片、引线键合、圆片塑封、涂胶显影等3、关键材料:先进光刻胶、聚酰亚胺、底部填充胶光刻、高端塑封料、电镀液、键合胶等4、导热界面材料、芯片贴片、封装基板材料的选择5、芯片互连低温烧结焊料、高端引线框架的选择6、半导体划片制程及精密点胶工艺7、封装和组装工艺自动化技术与设备8、测量与表征技术• 可靠性、热管理、检测、验证问题1、封装结构验证2、封装芯片厚度、几何结构的研究3、可靠性与热效应分析4、先进封装及热管理技术可靠性5、材料计算、封装设计、建模与仿真6、服役可靠性和失效分析……平行分论坛二:新型基板材料与器件论坛近年来信息和微电子工业飞速发展,半导体器件不断向微型化、集成化、高频化、平面化发展,对各种高性能高导热陶瓷基板、高频高速基板、电子功率器件的需求越来越大,各类以陶瓷和聚合物为代表的具有优异介电性能的材料、器件、基板不断问世,低温共烧(LTCC)陶瓷、片式电容、电阻、埋容、高端基板成型工艺设备等获得了广泛关注。基板材料如何在提升介电性能的同时解决导热问题?如何实现高度集成电路板的高性能与低成本问题?新能源汽车、高频通信、消费电子对产业带来了哪些新需求和挑战?新工艺迭代如何提升效率降低生产成本?论坛从先进基板材料、关键材料与器件、最新市场应用、产业发展技术路线和产业生态、可靠性与失效分析出发,围绕着产业发展的新机遇与挑战等问题展开,实现原材料-材料-工艺-器件-终端应用的全产业链创新与平衡发展。参考话题:• 材料、器件的趋势与进展1、基板材料与器件产业的发展现状及未来趋势2、高/低介电材料在基板领域的最新研究进展和应用3、电介质基板材料微观、介观、宏观等基础性能研究及最新进展4、介电损耗机理研究与优化5、集成电路材料的发展趋势与应用6、薄膜/厚膜材料器件的研发与创新应用7、高频与超高频通信的关键材料与器件8、无源器件,包括基板内部片式电容(MLCC)、电感、电阻,薄膜埋容埋阻埋感• 聚合物基板材料及器件1、高频高速覆铜板用新型特种树脂的结构设计与性能调控2、导热助剂的开发与商业化应用3、5G、6G高频及超高频段覆铜板基材的研发与应用4、复合材料在高频高速基板的创新应用5、FPC技术最新研究和创新应用6、高性能聚合物在IGBT行业中的应用……• 陶瓷基板材料及器件1、电子陶瓷产业现状与未来发展方向2、低温共烧(LTCC)与高温共烧(HTCC)陶瓷的高性能瓷粉研发、工程化与应用3、陶瓷基板与电容、电感、电容共烧4、先进陶瓷粉体(氧化铝、氧化锆、氮化硅、氮化铝等)的合成制备新技术、新工艺5、新型助剂(如表面、流变、分散、消泡、偶联等)在先进陶瓷的研究与应用价值6、陶瓷基板在大功率IGBT模块封装中的应用与金属化技术7、压电元器件、声表面波器件、超声与频率元器件、高容量多层陶瓷电容器、片式微波电容器、微波介质器件等• 新型市场应用机遇1、未来6G市场的关键材料与器件2、柔性介电电容器的微观结构、设计与商业化3、高性能基板材料的市场投资机会4、先进装备助力高性能低成本基板成型5、高性能低成本基板及材料案例分享平行分论坛三:电磁兼容及材料论坛电子元器件不向高功率化、小型化、集成化发展,在提升性能的同时也带来了大量电磁兼容的问题,电磁功能材料始终担任着抗电磁辐射和抗干扰的重任,以保障电子设备正常运行。但日益复杂的电磁环境下也对电磁兼容和材料提出了更高的要求。“电磁兼容及材料论坛”作为本届大会的主题论坛之一,旨在介绍该领域科学前沿的最新成果和技术工程应用的重要进展,探讨电磁防护技术发展趋势,促进交流合作。参考话题: 电磁屏蔽/吸波材料最新进展与应用1、电磁屏蔽/吸波材料的产业生态、研究与发展趋势;2、先进电子封装中的电磁屏蔽材料及封装方法、技术、结构设计考量;4、高分子基电磁屏蔽复合材料的最新进展及创新应用;5、吸波/屏蔽薄膜的设计与应用;6、碳材料(石墨烯、碳纳米管、MXene、碳纤维、石墨、碳化硅等)在屏蔽/吸波/导热材料的最新研究进展和应用;7、铁系吸波材料(铁氧体,磁性铁纳米材料等)的最新研究进展和应用;8、轻质多功能高性能吸波/屏蔽材料;9、电磁防护材料最新进展与商业化应用;10、吸波、电磁屏蔽、导热材料的合成与产业化应用技术。 电磁兼容及标准测试1、5G、6G带来的电磁兼容及材料问题思考;2、电子封装中电磁兼容设计解析及电磁密封性研究;3、高速电路中的电磁干扰分析;4、屏蔽/吸波材料的参数检测技术与方法。 新型市场应用机遇1、未来6G带来的电磁屏蔽/吸波材料市场需求预测;2、新能源汽车给电磁材料带来的产业机遇;3、电磁干扰/电磁污染给电磁兼容及材料产业带来的新机遇与新挑战;5、电磁超材料的进展与未来市场展望;6、产业化示范与创新应用;7、创新型产品推介。平行分论坛四:导热界面材料论坛电子器件的小型化、集成化和多功能化导致发热问题日益突出,为了保证运行性能和可靠性,高效散热已经成为电子器件亟待解决的关键问题。热界面材料是填充于芯片/器件与散热器之间以驱逐其中空气,使芯片产生的热量可以更快速地通过热界面材料传递到散热器,达到降低工作温度、延长使用寿命的重要作用。“热界面材料论坛”作为AEMIC 2023最重要的主题分论坛之一,旨在介绍热界面材料领域近些年科学研究的最新成果和工程技术应用的重要进展,探讨发展趋势,促进交流合作。参考话题:1、聚合物/导热填料材料的可控合成2、热界面材料可控制备3、界面热阻精确测量4、高功率密度电子器件集成热管理5、产业化示范与应用……平行分论坛五:电子元器件关键材料与技术论坛后摩尔时代,低维半导体材料及相关器件的研究将极大推动半导体行业的发展,为实现更高效、更可靠的电子元器件与产品提供更多可能。因此如何规划布局、如何推进政产研融合、材料和器件工艺如何突破、相关标准如何制定等,都将成为未来的重要研究内容。本次电子元器件关键材料与技术论坛将围绕低维材料在电子元器件中的应用、低维材料与硅基工艺的融合与创新、低维材料与器件的标准化进程等议题进行政、产、研多视角研讨,共同推动我国电子元器件关键材料与技术的发展、规划及相关标准的制定。参考话题:1、低维半导体材料制备与微纳加工2、低维半导体器件与工艺3、低维半导体材料与器件的测试与表征4、低维半导体材料应用与标准化……八、会议注册1、会议费(单位:元/人)参会类型学生参会科研代表企业代表通票注册费用(含全体大会,所有论坛均可参与)240026003800分论坛票(含全体大会+任选一个论坛)180022002600先进电子材料创新大会组委会参会,参展,或者需要其他分论坛资料请联系!联系人:童经理 电话: 19045661526(微信同号)
  • 2018-2022年中国新材料产业的预测分析
    p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/bfc84bac-73d5-45ca-bb00-87e647d64538.jpg" title=" 1(6199).png" / /p p style=" text-indent: 2em " 一、有利因素 /p p style=" text-align: left "   (一)新材料产业发展指南发布 /p p   在中国的产业升级中,新材料产业是战略性新兴产业的重要组成部分,是整个制造业转型升级的产业基础。工信部在2017年1月23日发布的《新材料产业发展指南》中,提出到2020年,新材料产业规模化、集聚化发展态势要基本形成,要突破金属材料、复合材料、先进半导体材料等领域技术装备制约,在碳纤维复合材料、高品质特殊钢、先进轻合金材料等领域实现70种以上重点新材料产业化及应用,建成与我国新材料产业发展水平相匹配的工艺装备保障体系,建成较为完善的新材料标准体系,形成多部门共同推进、国家与地方协调发展的新材料产业发展格局,具有一批有国际影响力的新材料企业。 /p p   《指南》还提出要完成的重点任务,包括突破重点应用领域急需的新材料,要布局一批前沿新材料,加快重点新材料初期市场培育,突破关键工艺与专用装备制约,完善新材料产业标准体系。同时实施“互联网+”新材料行动,培育优势企业与人才团队,促进新材料产业特色集聚发展。 /p p   (二)市场前景广阔 /p p   新材料产业市场前景广阔,一是由于技术进步以及新兴产业的发展,一些新材料相对于传统材料来说,在性能和成本方面有明显的优势;二是出于环境保护的考虑和资源的限制,一些新材料有较大的优势。当前中国新材料产业发展迅速,产业规模保持平稳增长;材料种类日益丰富,产品结构略有起伏;政策资金积极扶持,发展环境逐步优化;产业基地建设加快,区域特色逐渐形成。京津冀地区新材料企业发展迅速,产业投资及扩张意愿强烈。 /p p   (三)在部分领域达到国际先进水平 /p p   在部分先进基础材料、关键战略材料、前沿新材料等领域,我国实现了与国际先进水平“并跑”甚至“领跑”。例如,在关键战略材料方面,中芯国际前七大耗材中六类材料实现国产采购;南山集团铝合金厚板通过波音公司认证并签订供货合同;中船重工兆瓦级稀土永磁电机体积比传统电机减少50%、重量减轻40%;世界首座具有第四代核电特征的高温气冷堆核电站关键装备材料国产化率超过85%;液态金属在3D打印、柔性智能机器、血管机器人等领域实现初步应用等。 /p p   (四)国家重视培养新材料产业相关人才 /p p   除了市场需求的增长以外,高素质人才的培养也是推动产业的发展的关键因素之一。2017年1月24日印发的《制造业人才发展规划指南》提到在2015年新材料产业人才总量为600万人,预计到2020年人才总量为900万人,人才缺口为300万人,到2025年,人才总量为1000万人,人才缺口为400万人。但三部委在《制造业人才发展规划指南》中明确,要引导高校招生计划向本科电子信息类、机械类、材料类、海洋工程类、生物工程类、航空航天类和高职装备制造大类、电子信息大类、生物与化工大类、能源动力与材料大类中对应制造业十大重点领域的相关专业倾斜。同时注重专业设置前瞻性,主动适应新技术、新工艺、新装备、新材料发展需求,增设前沿和紧缺学科专业,强化行业特色学科专业建设。在教育部门的引导下,高校必定会着力培养大批的高素质新材料产业人才,来支持新材料产业的发展。 /p p   二、不利因素 /p p   (一)资金紧张 /p p   新材料产品的研发具有投入大、周期长、产业风险放大的特点,没有长时间的持续投入,很难开发出稳定的产品。我国新材料企业涉及金属新材料、复合新材料、化工新材料、信息新材料、纤维新材料等,多为中小型企业,年产值多在1亿元以下,多为初创型或发展期企业,现金流压力较大。 /p p   (二)技术水平低 /p p   新材料行业属于知识密集型、技术密集型、资金密集型新兴产业。新材料行业不靠大规模生产来提高竞争力,而靠独特优良性能取胜,与新技术、新技术密切相关,往往在极端条件制备形成,需要各学科与技术之间的相互交叉。我国新材料企业科技创新能力不强,跟踪仿制多,缺乏拥有自主知识产权的产品及技术,在高端产品领域缺乏竞争力。 /p p   (三)环保压力大 /p p   新材料产业对环境的破坏也比较常见,急需解决。例如稀土材料的开采和冶炼对环境的破坏程度已经严重制约行业的发展。一些为解决环境污染问题而开发的新材料在生产过程中也会对环境有极大的破坏。随着我国环保督查压力的增强,企业生产受到较大影响,而中小企业在环保投入上缺乏资金支持。 /p p   (四)产业结构不够合理 /p p   目前,我国部分新材料领域的产业结构不够合理,新材料产业投资支持的是一些“点”,尚未形成以点带线、以线带面的联动效应。国家更愿意把扶持资金投入到国有企业和科研院所,对民营企业虽然从政策上鼓励参与竞争,但从操作层面上看,民营企业进入国家大型项目壁垒重重。此外,作为发展主体的新材料企业普遍规模较小,产业发展缺乏统筹规划,投资分散,成果转化率低,产业链不够完整。有些行业的新材料企业大多集中在中下游环节,产业配套能力不强。 /p p   三、新材料产业市场规模预测 /p p   中国新材料产业总产值由2012年的1万亿元增加到2016年的2.65万亿元,年均增速27.6%。我们预计,2018年中国新材料产业市场规模将达到3.79万亿元,未来五年(2018-2022)年均复合增长率约为18.72%,2022年中国新材料产业市场规模将达到7.53万亿元。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/67ac9c26-0843-48e6-8097-3cb48762757f.jpg" title=" 2(3448).png" / /p p style=" text-align: center " 图表 2018-2022年中国新材料产业市场规模预测 /p
  • 第三届国际新材料大会在渝成功举办
    2014年6月6日至8日,由国家外国专家局国外人才信息研究中心、重庆市科委、市商委、市经济信息委、市人社局联合主办,重庆功能材料学会、重庆材料研究院有限公司等承办的&ldquo 2014第三届国际新材料大会&rdquo 在渝成功举办。   此次大会以&ldquo 无所不在的智慧之梦&rdquo 为主题,针对国际新材料领域的热点议题和高端技术,设置了科学技术、工业、青年研究者热点论文简报、博览会等内容,共12个模块、40个专场,近200个议题。有包括30多个国家和地区的近1000位代表出席,其中国外嘉宾约300位。引人注目的是,有3位嘉宾曾获得过诺贝尔奖,他们分别是2011年诺贝尔化学奖得主以色列工学院教授达尼埃尔· 谢赫特曼博士(发现准晶体)、2007年诺贝尔物理奖得主法国巴黎南大学科技总监艾尔伯· 费尔博士(发现巨磁电阻效应)、2006年诺贝尔物理奖得主乔治· 斯穆特博士(发现宇宙微波背景辐射的黑体形式和各向异性)。在主题论坛上,这3位诺贝尔奖得主分别就自己研究领域的新成果进行了阐述,让参与大会的新材料领域业内人士获益颇多。   国际新材料大会在北京、苏州成功举办两届之后,首次落户重庆,并与重庆国际博览中心签订协议,今后永久在重庆国际博览中心举办。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制