当前位置: 仪器信息网 > 行业主题 > >

层间化合物

仪器信息网层间化合物专题为您整合层间化合物相关的最新文章,在层间化合物专题,您不仅可以免费浏览层间化合物的资讯, 同时您还可以浏览层间化合物的相关资料、解决方案,参与社区层间化合物话题讨论。

层间化合物相关的方案

  • 轧制复合铝_不锈钢界面金属间化合物的生长动力学
    对轧制复合铝合金/不锈钢双层复合材料进行不同温度和时间的退火,借助 Zeiss Ax10 金相显微镜、 扫描电镜、EDAX 能谱仪和 D-max X 射线衍射仪对复合界面结合区进行金相组织观察、元素成分线扫描分析、界面化合物EDS 分析及 XRD 物相鉴定,研究复合界面上金属间化合物的生长行为。结果表明:复合界面金属间化合物(IMC)主要为 Fe2Al5相,当退火温度达 773 K 时,Fe2Al5已在界面上生成;随退火时间的延长, Fe2Al5的增厚符合抛物线法则;界面金属间化合物Fe2Al5的生长激活能为162.3 kJ/mol,并获得其生长动力学模型,通过此模型可对化合物层厚度进行初步计算。
  • 力扬:磷脂类化合物的HPTLC含量测定
    磷脂类化合物的分析在生命科学及食品科学中非常普遍。磷脂是细胞膜结构的主要组成部分,也是靶向制剂的重要辅料。在食品工业作为乳化剂用以稳定天然或合成的混合物制品,如软饮料和肉类制品等等。通过鉴别乳化剂的组成成分,就可以根据该指纹图谱来确定产品的厂家品牌。磷脂和脂类的区别在于前者的分子中同时包含了疏水基团和亲水基团。与脂类一样,该类化合物的UV吸收很弱。采用薄层色谱法检测磷脂的优势在于可通过色谱后衍生化来对磷脂类成分进行显色观察。不同磷脂化合物的极性差异较大,且通常与复杂的基质杂质共存。而通过AMD全自动梯度展开系统并结合色谱后衍生化,可在500 nm吸收波长处或以荧光方式对该类成分进行专属性的基于薄层色谱扫描的含量测定。本文所采用方法的优点: 简便的样品前处理方法 AMD色谱可获得高分离度 待测成分的极性分布范围宽 可同板比较许多样品的图谱 灵敏的ng级定性/定量检测限 可用于任何来源的磷脂样品分析
  • 离子色谱在全氟和多氟化合物检测方面的应用
    全氟和多氟化合物(Per and Polyfluoroalkyl Substances,简称PFAS),是含有至少一个完全氟化碳原子的全氟烷基和多氟烷基的物质。这个家族成员庞大,由近5000种合成化学物质组成,在纺织、润滑、表面活性剂、食品包装、不粘涂层、电子产品、灭火泡沫等领域广泛应用。
  • 赛默飞新一代液质联用系统TSQ Altis 同时分析检测17种全氟化合物
    全氟化合物(PFCs)是一类具有特殊化学性质的人造化合物,其以表面活性、热稳定性、耐酸性以及疏水疏油性而广泛应用于生产与生活中,如纺织品涂层、染色剂、泡沫灭火器、皮革等行业。
  • 化合物半导体核壳结构纳米金属线的低加速电压SEM/STEM观察/EDX分析
    半导体纳米金属线,因其物理特性可控,所以未来有望应用于光学器件上。尤其是异相聚合机构或者核壳结构的材料,富有多重物理特性,应用范围也会变得更广泛。图1是化合物半导体核壳结构纳米金属线的SE/STEM观察结果。图1(a)是二次电子图像显示了纳米金属线的表面形貌。图1(b)(c)的BF-STEM/DF-STEM图像,可以清楚观察到纳米金属先端的内部构造,可以确认核,内壳层和外壳层的三层结构。图2是化合物半导体核壳结构纳米金属线的EDX面分布。核壳层和外壳层检测到Ga和As,内壳层检测到Al和As,能够清楚地分离出三层的结构的各种成分分布。SU9000与大立体检测角的X-MaxN 100TLE相结合,可实现超高空间分辨率的EDX面分布。
  • 食品接触材料中全氟化合物的测定
    在食品接触材料领域,全氟化合物广泛用于不粘锅、纸制品等防水防油涂层。随着科学技术的进步,发现FPAS尤其是PFOA和PFOS广泛存在于环境以及生物体中,包括人体的血清、母乳、肝组织中,相关的实验表明,全氟化合物对生物体具有肝脏毒性、遗传毒性、免疫毒性以及致癌性,而膳食摄入是人体全氟化合物暴露的主要途径,因此,食品接触材料中的PFOA和PFOS所带来的食品安全日益受到重视。本文参考《GB 31604.35-2020食品接触材料及制品 全氟辛烷磺酸 (PFOS)和全氟辛酸(PFOA)的测定》提供的方法,使用快速溶剂萃取仪和全自动固相萃取系统,对食品接触材料中的PFOS和PFOA萃取和净化,并用液相色谱分离,电喷雾离子源(ESI)电离,多反应监测模式(MRM)检测。方法中测试的PFOS和PFOA的标准曲线线性相关系数R分别为0.9998和0.9995,加标回收率分别为86.3%和90.7%,RSD分别为6.5%和4.2%,满足标准要求酚A的净化,且效果良好。
  • 多功能纤维固相微萃取分析洗衣粉中的芳香化合物
    固相微萃取纤维的选择是一个复杂的过程,与SBSE不同,SPME纤维涂层的可选范围很广,并且涂层的选择较为复杂。如何选择最佳的纤维涂层,取决于待分析物基质的复杂性。通常,当你研究一种新基质或类型的样品时,很难选择最合适的纤维涂层。所以,需要对不同的纤维进行测试,手动更换纤维将会耗费大量的实验时间。FLEX多功能进样平台中的MFX选项具有自动置换纤维的功能,大大节省了实验时间。本实验通过优化选择最佳纤维涂层来萃取洗衣粉中的芳香化合物。
  • 通过三重四极杆LC/MS/MS直接进样分析有机氟化合物(PFAS)
    全氟辛酸(PFOA)及全氟辛烷磺酸(PFOS)等有机氟化合物(全氟和多氟烷基化合物:PFAS)具有优异的疏水、防油性能,广泛应用于涂层剂等日用品中。但有报道指出,PFAS化学性稳定、残留性较高,可能会残留在人体血液中,是一种有毒物质。全氟辛烷磺酸(PFOS)是一种代表性的有机氟化合物,已列入《斯德哥尔摩公约》(持久性有机污染物公约)关于持久性有机污染物的附件B(限制)中,其生产和使用在国际上受到限制。根据《化学物质管理法》将其指定为1类指定化学物质,除某些例外,原则上禁止其生产和使用。通常情况下,需要进行固相萃取、浓缩预处理之后才可对多种有机氟化合物进行分析,这要求预处理简便。本研究使用三重四极型LC/MS/MS无需浓缩过程即可分析对PFOA和PFOS等有机氟化物。
  • 17种全氟化合物检测
    助力PFAS的检测,纳鸥科技积极开展相应的检测方案,采用高效液相色谱-串联质谱技术结合Anavo® PFC SPE小柱(全氟化合物专用,AN60F020),方法对猪肉、鱼肉中17种全氟有机化合物的定量测定进行了开发
  • 使用热电FlashSmart元素分析仪测定含氟有机化合物中CHN元素
    含氟有机化合物具有独特的性质,其在生命科学的各个领域,特别是在医药和作物保护领域得到越来越多的开发,市场潜力巨大。例如,许多含氟化合物,如氟硅酸盐(SiF6)-2,应用于杀虫剂和防腐剂等,较低浓度时用于牙膏和漱口水的制备。或用于制造特氟隆(Teflon® )(聚四氟乙烯),一种抗酸耐腐蚀的含氟聚合物材料,也可以应用于汽车工业和一些特殊容器的生产,例如不粘的器具的涂层。此外,一些氟碳氢化合物作为添加成分应用于润滑油,可以让润滑油性能更加稳定。此外,在过去的十五年中,含氟药物已经成为药物化学的一个重要组成部分,这一点可以从目前市场上可买到的广泛应用的药物中得到证明。许多氟化合物已经被开发和测试,用于提高代谢稳定性,影响人体内酸碱度的水平。
  • 热电FlashSmart元素分析仪-----含氟有机化合物中CHN元素的测定
    含氟有机化合物具有独特的性质,其在生命科学的各个领域,特别是在医药和作物保护领域得到越来越多的开发,市场潜力巨大。例如,许多含氟化合物,如氟硅酸盐(SiF6)-2,应用于杀虫剂和防腐剂等,较低浓度时用于牙膏和漱口水的制备。或用于制造特氟隆(Teflon® )(聚四氟乙烯),一种抗酸耐腐蚀的含氟聚合物材料,也可以应用于汽车工业和一些特殊容器的生产,例如不粘的器具的涂层。此外,一些氟碳氢化合物作为添加成分应用于润滑油,可以让润滑油性能更加稳定。此外,在过去的十五年中,含氟药物已经成为药物化学的一个重要组成部分,这一点可以从目前市场上可买到的广泛应用的药物中得到证明。许多氟化合物已经被开发和测试,用于提高代谢稳定性,影响人体内酸碱度的水平。
  • 新的聚乙二醇类气相色谱柱的工业应用——选择挥发性有机化合物
    市场对高灵敏度、高重现性且可靠的活性分析物分析法的需求日益增长,因此,对气相色谱的柱技术要求也越来越高。活性分析物之所以难以分析,是因为可能被气相色谱流路中的活性位点所吸附。安捷伦科技最近推出了一款 Agilent J&W DB-WAX 超高惰性气相色谱柱。这种惰性极高的毛细管柱涂覆了一层创新型聚乙二醇 (PEG) 固定相。本应用简报展示了该固定相在分析含极性官能团的化合物时出色的惰性。结果表明该色谱柱适用于多种棘手的工业应用。工业上重要的轻质烃可能既具有活性又具有吸附性,对这些分子进行分析非常困难,会出现拖尾峰和响应损失。要想准确定量,惰性色谱柱至关重要,而痕量组分分析更是如此。图 8 表明新型固定相对挥发性化合物具有高度的惰性,即使分析的是乙醛(峰 6)这类高活性化合物。使用该惰性色谱柱可以得到出色的峰形,即使在低浓度条件下(0.5–1 ppm,蓝色迹线)也是如此,这使得低浓度化合物的峰积分更容易,定量也更为可靠。
  • 固相萃取-气质法测定水中有机氯农药和氯苯类化合物
    有机氯类农药是含有氯元素的有机化合物,主要分为两大类,一类为以苯为原料的氯化苯类,如六六六、滴滴涕等;另一类为不以苯环为原料的氯化亚甲基萘制剂,如艾氏剂、狄氏剂等。有机氯类农药曾被广泛用于农业虫害等的防治,但因其大都化学性质稳定、难于分解、易残留,对环境有较大污染,所以现在逐渐禁止或减少了对其的使用。有机氯难降解,在环境中的残留量较大,持续破坏着生态环境。本文参考“HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法”使用LabTech Sepaths UP 柱膜通用全自动固相萃取系统对水中有机氯农药和氯苯类化合物进行固相萃取,并采用气质检测,建立了一套水中有机氯农药和氯苯类化合物的处理检测方法,且方法的回收率及平行性良好,适合水中有机氯农药和氯苯类化合物的检测。
  • 水质 硝基酚类化合物的测定
    本文 建立了 12种硝基酚类 化合物 测定的 GC-MS方法。 参照 HJ 1150-2020中色谱 方法 采用 色谱柱SH-I-5Sil MS对 12种硝基酚类 化合物 进行分析 ,岛津 GCMS-TQ8050NX气相色谱 -质谱联用仪 进行检测 。结果表明, 12种硝基酚类 化合物 峰形对称,重现性好,满足 标准 要求 。 本方法 可为 12种硝基酚类 化合物 的 测定提供参考 。
  • 高分辨率是自信地进行化合物检测的可靠保证
    分析实验室始终面对着这样的挑战,就是既要保证最高水准准确度,也要在数据充分可靠的基础上不断提高检测效率。此类实验室大多采用气相色谱、液相色谱和三重四极杆质谱仪(MS)联用来实现目标化合物检测。以上分析技术可在一定的灵敏度水平和选择性要求范围内检测性质差异较大的多种化合物,但是,其局限性在于需要确定的目标化合物列表并要求对每个化合物进行针对性的质谱实验参数的优化。而使用静电场轨道阱(Orbitrap)技术分析样本,得到高分辨全扫描数据可轻松解决以下挑战:• 针对数量迅速增长的化合物同时定性和定量分析的需求• 针对过去采集的数据进行有目的的回顾性分析• 针对化学元素组成及结构未知化合物进行定性鉴定分析的需求
  • 行业应用丨环境污染物中酚类化合物检测
    环境中酚类化合物主要来源于石油化工、塑料制造、颜料合成、制药、造纸等工业污水排放沉积,容易造成环境污染。酚类化合物的含量是表征环境中有机物污染程度的重要指标。如果环境中存在酚类化合物时,需要对其进行降解处理,否则会影响环境安全。但酚类化合物对污泥微生物的生长代谢具有显著抑制作用,严重影响处理单元的处理效果。
  • 对化合物库进行质谱引导的馏分收集
    化合物库含有需要筛查生物活性的一系列结构类似的化合物。虽然,组合化学和常规合成化学相比,简化了合成过程,但仍然需要从其杂质和反应副产物中对化合物进行纯化。
  • 水中硝基苯类化合物的测定
    本文参考HJ 716-2014 水质 硝基苯类化合物的测定 气相色谱-质谱法,使用Labtech Sepaths UP 柱膜通用全自动固相萃取系统对水中的6种硝基苯类化合物进行固相萃取富集,用高效液相色谱仪进行检测。经过试验,Labtech Sepaths UP 柱膜通用全自动固相萃取系统对水中6种硝基苯类化合物萃取富集后的回收率为72.06%~96.73%,重现性RSD为3.05%~9.69%。试验得到较高的回收率和良好的重现性,说明Labtech Sepaths UP 柱膜通用全自动固相萃取系统可靠稳定,适用于水中硝基苯类化合物分析的样品前处理。
  • 石油气和天然气中含硫化合物的分析
    众所周知,石油气和天然气在满足全球能源需求方面扮演着举足轻重的角色。监测这些产品中的含硫化合物不仅有利于保护昂贵的催化剂、保证产品质量,对保护环境及人类健康来说也极其重要。气态含硫化合物的分析非常困难,因为这些化合物具有极性和反应性,而且浓度差异很大。硫化学发光检测器 (SCD) 是分析含硫化合物的绝佳设备,因为它的响应是线性等摩尔响应,并且不容易受烃类化合物的干扰。例如,ASTM 方法D5504 [1] 中采用了 SCD 来检测汽油和天然气中的含硫化合物,但是,为了避免 SCD 陶瓷的污染以及灵敏度的降低,SCD 需要使用低流失气相色谱柱。此外,挥发性含硫化合物活性极高,具有吸附性及金属催化性。因此,为了确保结果的可靠性,分析含硫化合物时要求样品通道(尤其是气相色谱柱)呈惰性。
  • 水质中酚类化合物的测定解决方案
    本实验参考方法《HJ 744-2015水质 酚类化合物的测定气相色谱-质谱法》,简要介绍了利用睿科全自动固相萃取提取水质中的酚类化合物,并对萃取液进行衍生,结合气相色谱串联质谱联用法检测水质中的酚类化合物的解决方案。该方法简便、回收率较高且平行性良好,适用于水质中14种酚类化合物的检测。
  • 使用 GC/MSD 系统分析透皮贴剂中的可提取化合物/可浸出化合物棕榈酸
    运用两台 Agilent 5977A 系列气质联用系统,通过对利卡多因和离型膜的分析研究透皮给药系统中的可提取化合物和可浸出化合物。使用大体积液体进样技术确定了丙酮、二氯甲烷和己烷提取液中含有塑料和粘合添加剂。使用高温顶空和液体采样技术也鉴定出了药物成分。
  • 应用于糖类化合物的分离纯化
    糖类化合物是由碳、氢、氧三元素组成的有机物。从化学结构上看,糖类是多羟基醛酮以及它们的多聚体,在化学式的表现上类似于“碳”与“水”的聚合,故又称碳水化合物,根据其结构不同,可分为单糖、双糖和多糖。糖类化合物具有众多的用途,涵盖了食品、医药、能源、工业等多个领域。它们不仅在食品工业中用于调味和增加口感,还在医药领域用于药物生产和治疗疾病,同时也是能源和工业生产中的重要原料。糖类化合物的广泛应用为人类的生活带来了便利,也推动了相关产业的发展。近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。糖类化合物分离纯化检测由于缺乏发色基团,导致其无紫外吸收或紫外吸收很弱,常规快速液相制备色谱系统通常只配备紫外 (UV) 检测器,不能检测缺乏发色基团的目标化合物。而蒸发光散射检测器(Evaporative Light-scattering Detector)是通用型检测器,可以检测挥发性低于流动相的化合物,特别是没有紫外吸收的有机物质。本案例主要探讨使用SepaBean machine快速液相制备色谱系统搭配ELSD检测器(蒸发光散射检测器)对糖类化合物进行制备纯化,为糖类化合物的制备纯化提供了一种可行的方案。
  • 高分辨率是自信地进行化合物检测的可靠保证
    • 具备无可比拟的常规高质量分辨能力和稳定的亚 ppm 级质量精确度的Thermo Scientific Q Exactive GC 质谱仪是实现化合物检测、筛查、定量以及未知化合物鉴定、结构解析的独一无二的强大工具。• 将氯苯胺灵与背景干扰离子有效区别,要求质谱分辨率不低于 60,000 FWHM(m/z200)。这个分辨率要求对于检测其他化合物同样必要。• Q Exactive GC 质谱系统可为复杂基质样本中目标化合物检测提供高灵敏度分析结果,更重要的是,在不同质谱分辨率(在 m/z 200,标准质量分辨率为 15–120K FWHM)模式下,仪器始终保持高灵敏度。• 卓越的亚 ppm 级质量准确度可通过缩小质量偏差范围有效加快未知物的鉴定进程。
  • 水中挥发性化合物检测产品配置单
    由一台安捷伦 7697A 顶空自动进样器、一台安捷伦 7890A 气相色谱和一台 5975C 质量选择检测器组成。对环境水体中的挥发性有机化合物进行了测定。所有化合物都符合欧盟 98/83/EC 指令中报告要求的限值规定。本研究对0.10ppb~20ppb 浓度范围的标准溶液进行了标准曲线的绘制,对曲线zui低浓度点进行了再现性测定,RSD10%。大多数化合物峰形完美,早流出化合物的峰形也在可接受的范围内。
  • 合成化合物的质谱信息的确认
    Chromaster5610质谱检测器与大型质谱分析仪(Mass Spectrometer)不一样,它是为了LC用户推出的新概念质谱检测器(MS Detector)。使用注射泵将样品溶液直接导入质谱检测器,就可以简便的获得质谱信息,从而就可以做合成化合物的质谱信息的确认,或是在探讨合成条件之际的化合物确认的简单监控
  • 环境空气 醛、酮类化合物的测定
    醛、酮类化合物大多有刺激性和毒性,对人的眼睛、鼻子、皮肤、肺、呼吸 道有强烈刺激作用,且有“三致” 作用。实验室研究表明,高浓度的甲醛环境对老鼠有致癌作用;研究还表明,甲醛容易与细胞亲核物质发生化学反应,导致DNA 损伤,甲醛对神经系统、免疫系统、肝脏等都有损害,长期吸入含甲醛的空气可导致慢性呼吸道疾病、妇科疾病患病率增加。其他的一些醛、酮类化合物,尤其是丙烯醛和丙醛,即使在浓度很低的情况下也可引起眼睛皮肤和上呼吸道黏膜刺激作用。因此国际癌症机构已将甲醛列为一类致癌物,乙醛和丙烯醛已被联合国卫生组织认定为可疑致癌物。丙烯醛是 EPA 优先控制污染物。醛酮类化合物是城市大气中主要的污染物之一,会对人体产生重大危害。因此检测醛酮类化合物在大气、室内,车内以及其他场所的含量是十分重要的。
  • 水质中硝基苯类化合物的测定
    硝基苯类化合物是水环境的主要污染物之一,气相色谱法是测定水质中硝基苯类化合物的常用方法,其前处理的常规方法有液-液萃取法和固相萃取法,对于普通水源中硝基苯类化合物的检测,常用固相萃取法进行前处理,其检测下限低,重复性好。
  • T3为你提供完美的极性化合物保留
    为分离极性化合物而设计的反相T3色谱柱,有卓越的孔径及键合C18的浓度使其能100%兼容水相又对极性化合物有很好的保留。
  • 使用 GC/MSD 系统分析透皮贴剂中的可提取化合物/可浸出化合物
    运用两台 Agilent 5977A 系列气质联用系统,通过对利卡多因和离型膜的分析研究透皮给药系统中的可提取化合物和可浸出化合物。使用大体积液体进样技术确定了丙酮、二氯甲烷和己烷提取液中含有塑料和粘合添加剂。使用高温顶空和液体采样技术也鉴定出了药物成分。
  • 使用在线和离线 TD–GC 分析含硫化合物
    含硫化合物具有难闻的刺鼻气味,在低浓度下也可闻到。这些化合物很难分析,因为遇热易分解(对高温敏感),特别是遇到金属类更不稳定。另外,一些目标含硫化合物的挥发性很强,例如硫化氢和甲硫醇。对痕量含硫化合物的检测在许多空气监测应用中至关重要,包括:• 工业排放测试• 环境异味监测,例如来自污水处理厂和垃圾填埋场的异味气体• 毒性化合物如二硫化碳 (CS2) 暴露的健康和安全监测• 香精香料测试• 食品研究,例如食品保质期测试和异味分析热脱附 (TD) 是分析痕量气体样品的理想技术。其包括分析物的浓缩和有效转移/进样到 GC 分析系统内。样品可以通过吸附管或采样罐采集,然后在 TD–GC 上离线分析。也可以将空气/气体样品直接抽取到 TD–GC 系统内进行在线分析。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制