当前位置: 仪器信息网 > 行业主题 > >

重大科技设施

仪器信息网重大科技设施专题为您整合重大科技设施相关的最新文章,在重大科技设施专题,您不仅可以免费浏览重大科技设施的资讯, 同时您还可以浏览重大科技设施的相关资料、解决方案,参与社区重大科技设施话题讨论。

重大科技设施相关的资讯

  • 我国拟出台重大科技基础设施管理办法
    国家发展改革委6月30日就《国家重大科技基础设施管理办法(暂行)(征求意见稿)》向社会公开征求意见。 据了解,国家重大科技基础设施由国家统筹布局、依托高水平创新主体建设,其建造技术难度大、系统复杂性高,具有领先的科学技术目标、广泛的应用领域、较长的科学寿命和较高的国际影响力。 国家发展改革委表示,拟出台这一办法,是为加强和完善国家重大科技基础设施管理,更大程度地发挥国家重大科技基础设施的科学效益和社会效益,提高创新驱动发展能力。 根据征求意见稿,国家发展改革委是国家重大科技基础设施的牵头管理部门,与财政部、科技部、自然科学基金委等部门各司其职、分工协作,协同负责设施的建设、运行和退役以及依托设施开展的科研工作。
  • “从0到1”“从1到多”广东打造重大科技基础设施群
    7月22日,广东东莞松山湖科学城中子源路,中国散裂中子源的科研人员正在紧张地忙碌着。不久前,中国散裂中子源与英国散裂中子源续签了谅解备忘录,双方在联合实验室的基础上,将进一步加强先进强流质子加速器技术、高功率靶站技术、中子散射技术及应用研究等方面的合作交流。中国散裂中子源的建设意义特殊,它实现了广东在国家重大科技基础设施领域零的突破。以此为起点,广东推动重大科技基础设施实现了“从0到1”“从1到多”的跨越,一批国家重大科技基础设施先后落地建设。按“十四五”规划,广东将布局建设人类细胞谱系等5个设施,数量位居全国首位,助力粤港澳大湾区打造重大科技基础设施集群。①中国散裂中子源(新华社记者 刘大伟摄)②中国散裂中子源靶站(中国散裂中子源供图)③中国散裂中子源快循环同步加速器(中国散裂中子源供图)“安营扎寨”建设一批“国之重器”6月24日,江门中微子实验地下700米的实验大厅内,中心探测器不锈钢主结构最后一个拼装单元吊装合拢,标志着中心探测器不锈钢主结构安装工作顺利完成。江门中微子实验核心探测设备——中心探测器位于地下实验大厅内44米深的水池中央,其不锈钢主结构设计采用直径约41米的球形网壳结构形式。不锈钢主结构的合拢,意味着有机玻璃球现场安装即将开始。中心探测器结构中的有机玻璃球直径35.4米、壁厚120毫米、重600多吨,是世界上最大的单体有机玻璃结构。江门中微子实验位于广东省江门市,计划于2023年建成运行,以测定中微子质量顺序、精确测量中微子混合参数为主要科学目标,还将进行其他多项科学前沿研究。如今,国家重大科技基础设施在广东多点开花。除了江门中微子实验外,一批“国之重器”也正在谋划、推进中。在广东惠州,加速器驱动嬗变研究装置和强流重离子加速器建设现场热火朝天;在广州,冷泉生态系统研究装置配套科研综合楼等正在有序建设中;在东莞,中国散裂中子源旁,由中建五局华南公司承建的南方光源研究测试平台项目已进入工程最后阶段,项目将围绕南方光源项目及相关技术,开展前瞻性和系统性研究工作… … 今年的广东省政府工作报告提出,要加快惠州强流重离子加速器、江门中微子实验建设,开工建设中国散裂中子源二期、人类细胞谱系,打造世界一流的重大科技基础设施群。“沿途下蛋”涌现优秀科技成果重大科技基础设施是为探索未知世界、发现自然规律、引领技术变革提供极限研究手段的大型复杂科学技术研究装置或系统。“中国散裂中子源就像‘超级显微镜’,是研究物质材料微观结构的理想探针,为我国材料科学技术、物理、化学化工、生命科学、资源环境和新能源等领域的研究提供了一个技术先进、功能强大的科研平台。”中国科学院院士、中国散裂中子源工程总指挥陈和生说。自2018年正式投入运行以来,中国散裂中子源共完成了来自国内外约700项用户课题研究,在国内外核心期刊发布文章百余篇,研究成果涵盖航空航天、磁性、量子、能源、合金、高分子、信息材料等前沿领域。“中国散裂中子源在东莞的成功建设,充分展示了广东省引进大科学装置、推动科技创新的决心和成就,吸引了国内许多一流的科研机构落户广东,共同建设大科学装置。”陈和生说。此外,依托中国散裂中子源,中国科学院高能物理研究所成功研制出我国首台自主研发的硼中子俘获治疗(BNCT)试验装置,为我国医用硼中子俘获治疗装置整机产业化奠定了技术基础。1月25日上午,位于广东惠州的强流重离子加速器和加速器驱动嬗变研究装置总部园区正式启用。中国科学院近代物理研究所副所长胡正国介绍,强流重离子加速器项目将成为国际上脉冲束流强度最高的重离子加速器装置;加速器驱动嬗变研究装置项目将成为国际上第一个加速器驱动次临界系统研究装置。依托这两个项目,中国科学院近代物理研究所和惠州市将在放射性同位素药物研制生产、重离子肿瘤治疗、重离子微孔膜应用、辐照育种等领域开展合作。“推动重大科技基础设施建设,将为前沿领域基础研究和应用基础研究提供重要支撑。”广东省发展改革委二级巡视员赖茂华向科技日报记者介绍,广东充分发挥重大科技基础设施在基础研究和应用基础研究中的重要作用,推动在前沿领域基础物理、信息、材料等领域涌现一批优秀科技成果。“搭桥铺路”联动湾区科技创新香港大学教授黄明欣长期从事材料研究,其研究需要散裂中子源的支撑。以前,黄明欣需向国外的散裂中子源申请机时,设计好实验步骤,然后把材料寄到国外。国外做好实验之后,再把数据传给黄明欣团队。2018年,广东东莞有了中国散裂中子源,这对黄明欣来说是个好消息。“在自家门口做实验,太方便了。”黄明欣说。利用中国散裂中子源的粉末衍射仪,黄明欣团队发现了强度高而且韧性好的“超级钢”微观机制,为改进这种钢的断裂、韧性和腐蚀性等问题提供了关键数据支撑。作为粤港澳大湾区首个国家重大科技基础设施,中国散裂中子源已成为粤港澳大湾区科技创新的“桥梁”。中国科学院高能物理研究所东莞研究部副主任王生介绍,该装置自2018年8月通过国家验收并投入正式运行以来,注册用户超过3800人,其中粤港澳大湾区的用户占1/4以上,吸引了许多创新研究落地粤港澳大湾区。此外,在广东省科技厅的支持下,中国散裂中子源科学中心还与东莞理工学院、香港城市大学、澳门大学共建了“粤港澳中子散射科学技术联合实验室”。记者梳理发现,在广东布局的国家重大科技基础设施,纷纷将目光瞄准了粤港澳大湾区。依托加速器驱动嬗变研究装置和强流重离子加速器,惠州将有望形成国际领先的核物理研究中心,助力粤港澳大湾区建设国际科技创新中心;冷泉生态系统研究装置的建设,将优化粤港澳大湾区大科学装置配置和科技布局,推动粤港澳大湾区科技创新… … 中国科学院南海海洋研究所副所长张长生表示,粤港澳大湾区具有独特的区位优势,汇聚了一批国家重大科技基础设施平台,集聚了国内顶尖科技创新人才。正是这些平台的支撑作用和科研人员之间的相互合作,不断推动粤港澳大湾区的科技创新迈上更高台阶。
  • 首个转化医学重大科技基础设施在沪揭牌
    近日,上海转化医学研究中心首届学术委员会和国际咨询委员会第一次工作会议和国际转化医学论坛举行。当日,转化医学国家重大科技基础设施(上海)在沪揭牌,标志着首个转化医学国家重大科技基础设施正式落户上海,并进入实质性建设阶段。   据介绍,上海转化医学研究中心第一届学术委员会和国际咨询委员会分别由中科院院士陈竺、诺贝尔奖获得者J. Michael Bishop教授和美国科学院院士王晓东等30多位知名科学家组成。委员会第一次工作会议对转化医学国家重大科技基础设施(上海)的建设规划、组织机构、队伍建设和科研体制机制等重大事项进行了审议,并组织了首次面向全球的转化医学高端人才招聘面试会。   在国际转化医学论坛上,活跃在国内外医学科研一线的科学家们纷纷介绍各自在转化医学领域的最新工作进展及先进科学理念。论坛报告议题覆盖肿瘤、心脑血管、代谢性、感染与免疫性疾病等四大类疾病的转化医学研究,内容精彩纷呈。   据悉,此次由上海转化医学研究中心与系统生物医学协同创新中心联合举办的学术活动,标志着转化医学国家重大科技基础设施(上海)建设项目已进入实质性运作,一个国际一流的系统性、规模化、集成化、开放共享的转化医学公共技术平台将正式落户上海。
  • 湖北省:推进重大科技基础设施建设
    湖北省科技厅按照科技创新基地平台功能定位和深化科技改革要求,进一步聚焦重点、择优择需、创新机制,部署新建和优化整合一批高水平科技创新基地平台,为战略性、前瞻性、基础性、应用性等不同类型科技创新活动提供体系化保障。一是加快培育战略科技力量。找准国家和湖北省重大需求战略结合点,分类推进重大科技基础设施建设,继续推进脉冲强磁场、精密重力测量等重大设施提升功能、开放运行;稳妥推进新建武汉光源、生物医学成像等重大设施;聚焦优势领域,加快推进光谷实验室、珞伽实验室、江夏实验室、洪山实验室等6个湖北实验室建设,积极争创国家实验室。二是优化提升基础研究创新体系。围绕区域产业发展和学科建设需求,在优势领域争创国家重点实验室。布局建设湖北省重点实验室,优化整合湖北省重点实验室体系。加强基础研究,统筹基础研究创新平台、人才团队和重大项目一体化布局。推进自然科技资源库和野外观测研究站等条件平台建设,加强实验动物管理,优化完善科技资源开放共享和科研条件保障机制。三是加快构建技术创新体系。积极争建国家智能设计与数控技术创新中心、国家数字建造与安全技术创新中心,麻醉、血液、呼吸、泌尿等领域国家临床医学研究中心。新建一批省级技术创新中心、临床医学研究中心、乡村振兴科技创新示范基地,凝练储备一批国家级技术创新中心、临床医学研究中心培育对象。四是大力发展新型研发机构。突出体制机制创新,发挥企业主体作用,调动社会各方参与,强化产学研深度合作,推进组建3-5家平台型、网络型、高水平产业创新联合体,通过重大科技任务带动,构建跨领域、跨区域、多主体协作的创新合作机制,加快关键核心技术攻关和转化。推进校地合作、校企协同,促进在事高校与县(市、区)科技合作全覆盖。
  • 重磅 长春机械院成功中标国家重大科技基础设施“重大工程材料服役安全研究评价设施”项目
    近日,在北京科技大学重大工程材料服役安全研究评价设施(简称MSAF)国家材料服役安全科学中心-蠕变试验机采购项目中,长春机械院再次凭借强大的综合实力,在与国内外著名的试验机厂家的激烈竞争中脱颖而去,成功中标“十一五”国家重大科技基础设施项目。中标金额高达1111万,中标项目有:常规电子式蠕变试验机(4套)、常规机械式蠕变试验机(78套)、长时连续工作蠕变试验机(12套),这在长春机械院蠕变试验机发展史上具有里程碑意义。 签约仪式于2016年1月23日在重大工程材料服役安全研究评价设施项目建设指挥部举行,北京科技大学副校长、国家材料服役安全科学中心总指挥、总工程师孙冬柏、长春机械科学研究院有限公司董事长庄庆伟、总经理马敬春、试验机事业部副总经理李劲松等相关人员出席签约仪式。 ??北京科技大学副校长、国家材料服役安全科学中心总指挥孙冬柏(右)与长春机械科学研究院董事长庄庆伟(左)签署协议?? 自获悉此项目,长春机械院自上而下高度重视,专门成立了由院领导、资深技术专家、业务骨干组成的应标专题项目组,通过深入学习国务院关于印发国家重大科技基础设施建设中长期规划(2012—2030年)等相关文件,了解到MSAF是围绕我国国民经济建设发展的重大需求,探索在大尺寸、长时间、复杂环境下工程材料服役性能的演化规律及损伤失效机理,建立重大工程服役安全的预测、预报理论与方法,对提升我国工程材料服役性能研究试验能力起到至关重要作用,将为重大工程安全设计与安全评价提供服务,在一定程度上代表国家科技水平和综合实力,是党和国家高度重视的重大科技基础设施建设,对于我国抢占未来科技发展制高点,实现科技强国伟大目标具有重大战略意义。 “该项目关系到重大工程材料和大型工业装备的服役安全问题,是为我国重大工程安全运行、降低经济损失提供保障的,战略意义重大,长春机械院作为中国工程试验设备领域规模最大,最具竞争力和影响力的科研院所企业,是国家试验机行业归口管理单位,是工程试验设备领域的“国家队”,对我国材料试验研究能力和安全评价技术实力的提升有着义不容辞的责任,我们一定要拿下个这个项目,做民族试验机品牌的捍卫者,”马敬春总经理在院重大项目研讨会上如是说。 经过全院上下历时两年多的不懈努力,经历了史上最严格的招标历程。值得高兴的是在2016年新年伊始我们就收到了中标的消息,虽然全院对此次中标充满信心,听到这个消息,还是令我们欢欣鼓舞,为之振奋。 这是一场真正的较量,是强手之间技术与实力的较量,是荣誉之战,我们凭借强大的品牌优势,雄厚的技术实力,稳定的产品性能,良好的客户口碑,领先的市场占有率最终赢得了胜利。 中标,只是一个开始,创新,才能越走越远 长春机械院将以服务国家重大科技基础设施为契机,不断加大自主研发的资金投入,加快完善技术开发体系,紧跟世界前沿技术,引领国内工程试验行业的发展潮流,重点在传统机型升级换代、个性化专机研发、重大科技项目攻关、产业链配套等方面攻坚克难,不断提高试验装备自主品牌产品的综合竞争能力,持续快速提升自主品牌在全球范围内的销量和业务规模,实现长远的战略规划目标。 中标设备介绍: 中标设备既包括常规标配蠕变试验机(300-1100℃)、低温蠕变试验机(70℃~400℃)、高温蠕变试验机(1000-1250℃),还包括长时连续工作蠕变试验机、配套环境及更换装置(其中水蒸气发生器及环境控制系统与设备“高温水蒸气+H2S环境蠕变试验机”及设备“高温水蒸气管道蠕变试验机”共用) 蠕变加载主机可与感应变温环境装置、高温H2环境装置任意组合成不同功能的高温环境蠕变持久试验系统,这种主机+环境配套装置的模块化组合方式,使试验测试方案更加多样化满足不同试验的需求,有效降低了设备成本,是试验设备领域标准化的新形式,开创国内试验设备发展新方向,具有广阔的发展空间及重大的行业推广意义。 近年来在持久蠕变领域的典型客户: 中国钢研科技集团有限公司(北钢院) 14台 宝山钢铁股份有限公司 169台 中国特种设备检验研究院 114台 合肥通用机械研究所 91台 哈尔滨汽轮机有限公司 72台 天津重型装备工程研究有限公司 70台 东方电气集团东方汽轮机有限公司 63台 中科院沈阳金属所 61台 沈阳飞机工业(集团)有限公司 10台 成都发动机(集团)有限公司 10台 史上最严招标流程 2012年12月成立调研专家组,进行招标前期摸底。 针对此次重大科技项目采购招标组成项目调研专家组,对国内外一流试验机厂商进行了实地考察。 2013年4月,对设计方案与招标文件进行专家评审 。 试验装置详细设计方案与招标技术文件专家评审会召开。会议围绕子项目试验装置的详细设计方案与招标技术文件进行了专家评审。????评审会主会场 2013年10月,完成招标文件撰写,进行严格审查,详细论证、集中修改。 2015年5月国家科学中心五人专家组赴上海、北京、太原、哈尔滨等地调研。 技术部负责人陆永浩教授等一行五人先后访问上海宝钢集团、上海电气电站汽轮机厂、上海锅炉厂、北钢院、山西太钢集团、哈尔滨汽轮机厂、东方锅炉等单位并开展调研。进一步明确了高温高压、蠕变持久试验装置建设的行业需求并确定了装置运行初期的目标定位。 国家材料服役安全科学中心(筹)介绍 “国家材料服役安全科学中心(筹)(以下简称NCMS)”于2008年12月由国家发展改革委员会批复组建,依托于我国“十一五”期间规划建设的十二个重大科技基础设施之一,被编入《中华人民共和国国民经济和社会发展第十一个五年规划纲要》——“重大工程材料服役安全研究评价设施”(以下简称MSAF) NCMS位于国家自主创新基础能力建设“十一五”规划研究实验体系的最高层,是首个由教育部部属高校承建的国家科学中心,位于北京市昌平区的中关村国家工程技术创新基地,共占地475亩,建设总投资约12亿元,建成后将达到研究人员(含客座研究员、访问学者、博士后)500人,研究生(含博士、硕士研究生)2000人的规模。 什么是“重大工程材料服役安全研究评价设施”项目 “重大工程材料服役安全研究评价设施”项目主要围绕典型工程材料、典型服役环境、共性失效形式和关键失效问题,通过自主设计和集成创新,建设可近似模拟服役环境、可有效再现失效过程的试验研究装置群,开展重大工程材料服役安全领域的尺度域、环境域、时间域以及安全评价方法等四大关键科学问题研究,全面提升大/全尺寸材料及构件的试验研究能力和安全评价技术的整体实力,建立我国自主的工程材料安全服役标准和规范,为重大工程材料的安全设计、安全评价和失效控制奠定坚实的科学基础。该项目建成后将成为工程材料服役安全领域世界一流试验研究装置群,为全国乃至全世界研究者提供一流科技服务。 开展我国工程材料服役安全问题和风险评估研究具有突出的战略意义 重大工程是国民经济和社会可持续发展的基石和保障,是一个国家综合国力和科技水平的集中体现。目前,中国正处于经济发展的重要战略机遇期,原油战略储备库、长距离跨国输油管线、高硫油气田开发和储运、大规模核电站、超临界火电机组、高速铁路、大飞机项目等一大批重大战略工程相继立项、建设和运行。重大工程中的新建及拟建工程设施呈现出“结构尺寸超大”“材料性能超强”“服役环境极端化、多因素耦合化”和“多种失效形式共存、交互影响”等新特点,给保障工程材料和工业装备的安全服役带来新的挑战。 特别是近年来,国际上航天飞机解体坠毁、核电站泄漏、大型建筑倒塌等恶性事故频频发生。重大工程中存在着的重大安全隐患已经成为各国经济和社会发展的桎梏,并威胁到了公共安全。重大工程材料和大型工业装备的服役安全问题受到了国际社会的高度关注,因此,开展我国工程材料服役安全问题和风险评估研究具有突出的战略意义。
  • 国家系统布局未来20年重大科技基础设施建设
    国家发展和改革委员会同科技部等8部门编制的《国家重大科技基础设施建设中长期规划(2012—2030年)》(简称《规划》),目前已经国务院批准印发。其中,包括加速器驱动嬗变研究装置、上海光源线站工程、中国南极天文台等16项重大科技基础设施建设,成为我国“十二五”时期的建设重点。据悉,该《规划》是我国历史上第一部系统部署国家重大科技基础设施中长期建设和发展的指导性文件。   据介绍,我国设施建设总体处于由局部突破迈向整体推进的关键时期。目前我国重大科技基础设施的规模、技术水平和国际影响力都已迈上新台阶,为下一步全面推进设施建设储备了丰厚的人才、技术基础和建设经验。但同时尚存在总体规模偏小、数量偏少,学科布局系统性不够,开放共享和高效利用水平仍需提高,管理体制机制亟待健全等问题。   国家发展和改革委员会有关负责人今天就《规划》答记者问时指出,在兼顾传统大科学装置领域与学科交叉及新兴学科发展需求、国际发展趋势与国内基础、学科发展与国家战略需求的基础上,《规划》明确,未来20年能源科学、生命科学、地球系统与环境科学、材料科学、粒子物理和核物理科学、空间和天文科学、工程技术科学领域7个科学领域重大科技设施发展的主要方向。   值得关注的是,“十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,将优先安排16项重大科技基础设施建设。能源领域包括加速器驱动嬗变研究装置、高效低碳燃气轮机试验装置 生命领域包括转化医学研究设施、模式动物表型与遗传研究设施 地球系统与环境领域包括海底科学观测网、精密重力测量研究设施、地球系统数值模拟器 材料领域包括高能同步辐射光源验证装置、综合极端条件实验装置、上海光源线站工程 粒子物理与核物理领域包括强流重离子加速器、高海拔宇宙线观测站 空间和天文领域包括空间环境地面模拟装置、中国南极天文台 工程技术领域包括未来网络试验设施、大型低速风洞等。   该负责人介绍说,“十二五”时期的16项国家重大科技基础设施建成后,将在提升我国重大科技设施总体水平、提高我国科技前沿研发能力和推动新兴产业发展方面发挥积极的促进作用。一是促使我国重大科技基础设施总体技术水平进入国际先进行列,其中物质科学、核聚变、天文等领域的部分设施将跃居国际领先水平。如强流重离子加速器建成后,将成为国际上相同能区稳定核束流脉冲流强最高、脉冲功率最高、短寿命原子核质量测量精度最高的实验装置。二是将为我国空间、海洋等领域的部分前沿技术方向开展国际顶尖水平研究提供支持。如大型低速风洞将使流场品质达到甚至优于国际先进水平,实验模型能够准确模拟飞机实物,综合性能将达到世界先进水平。三是这些设施在建造和运行过程中将催生和衍生出大量新技术、新工艺和新装备,为培育战略性新兴产业和促进产业技术进步提供源源不断的强大动力。如未来网络试验设施在建造和利用过程中,需要高性能集成电路、量子通信、云计算等大量新兴技术的集成,将有力地促进相关技术水平的提升,带动相关产业的发展。   从国家重大科技基础设施建设的历程看,其从概念提出到付诸建设再到投入运行,往往需要历经十几年甚至数十年时间。美国每4年左右对科学装置规划进行修订,欧盟每两年对设施路线图进行一次更新。该负责人表示,考虑到当前科技和产业发展正孕育着新的突破,未来发展会不断产生新的需求,我国今后拟以5年为期对《规划》进行修订。   通知全文:   国务院关于印发国家重大科技基础设施建设   中长期规划(2012—2030年)的通知   国发〔2013〕8号   各省、自治区、直辖市人民政府,国务院各部委、各直属机构:   现将《国家重大科技基础设施建设中长期规划(2012—2030年)》印发给你们,请认真贯彻执行。   国务院   2013年2月23日   (此件公开发布)   国家重大科技基础设施建设中长期规划   (2012—2030年)   重大科技基础设施是为探索未知世界、发现自然规律、实现技术变革提供极限研究手段的大型复杂科学研究系统,是突破科学前沿、解决经济社会发展和国家安全重大科技问题的物质技术基础。当前,我国正处于建设创新型国家的关键时期,按照全国科技创新大会部署和深化科技体制改革要求,前瞻谋划和系统部署重大科技基础设施建设,进一步提高发展水平,对于增强我国原始创新能力、实现重点领域跨越、保障科技长远发展、实现从科技大国迈向科技强国的目标具有重要意义。为贯彻《国家中长期科学和技术发展规划纲要(2006—2020年)》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》,明确未来20年我国重大科技基础设施发展方向和“十二五”时期建设重点,制定本规划。   一、规划基础和背景   新中国成立特别是改革开放以来,国家不断加大投入,我国重大科技基础设施规模持续增长,覆盖领域不断拓展,技术水平明显提升,综合效益日益显现。“十一五”时期,启动建设重大科技基础设施12项,验收设施10项,目前在建和运行设施总量达到32项。设施的建设和运行为科学前沿探索和国家重大科技任务开展提供了重要支撑,推动我国粒子物理、核物理、生命科学等领域部分前沿方向的科研水平进入国际先进行列。依托设施解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾和生物多样性保护等方面发挥着不可替代的作用。设施建设带动了大型超导、精密制造和测控、超高真空等一批高新技术发展,促进了相关产业技术水平提高 凝聚和培养了一批国内外顶尖科学家和研究团队,以及高水平工程技术和管理人才。此外,设施还在深化科技国际合作交流、提升全民科学素质、增强民族自信心等方面发挥了独特作用。在快速发展的同时,我国重大科技基础设施也存在一些问题:总体规模偏小、数量偏少,学科布局系统性、前瞻性不够,技术水平有待进一步提升,开放共享和高效利用水平仍需提高,管理体制机制亟待健全,工程技术和管理队伍建设需要加强等。   当今世界,科技发展正孕育着一系列革命性突破,发达国家和新兴工业化国家纷纷加大重大科技基础设施建设投入,扩大建设规模和覆盖领域,抢占未来科技发展制高点,我国重大科技基础设施建设面临机遇和挑战并存的新形势。   (一)科学前沿的革命性突破越来越依赖于重大科技基础设施的支撑能力。现代科学研究在微观、宏观、复杂性等方面不断深入,学科分化与交叉融合加快,科学研究目标日益综合。科学领域越来越多的研究活动需要大型研究设施的支撑,要求不断提高科技基础设施的单体规模和技术性能,强化相互协作,形成大型综合性设施群。进一步加强我国重大科技基础设施建设,有利于在新一轮科技革命中抢占先机、有所作为。   (二)技术创新和产业发展越来越需要重大科技基础设施提供强大动力。当前,科学研究与技术研发相互依托、协同突破的趋势日益明显,技术创新和产业振兴的步伐不断加快。重大科技基础设施的建设和运行,越来越注重科学探索和技术变革的融合,可以衍生大量新技术、新工艺和新装备,加快高新技术的孕育、转化和应用。我国在若干重要领域超前部署一批重大科技基础设施,有利于更好地促进产业技术进步、破解经济社会发展中的瓶颈性科学难题,对加快培育战略性新兴产业、实现经济发展方式转变、支撑经济社会发展具有重要意义。   (三)国际科技竞争合作越来越需要重大科技基础设施的牵引和依托。近年来,在事关国家核心利益的科技领域,主要国家在重大基础设施建设方面的竞争日趋激烈。同时,随着气候变化、生态保护、人口健康等全球性问题不断增多,在事关人类共同利益和长远发展的科技领域,由于建造设施资金投入、技术难度等超出单个国家的能力,联合共建与合作研究越来越成为发展重大科技基础设施的重要方式。加快提升我国重大科技基础设施的水平,适时在重要优势领域发起合作建设计划,有利于在国际科技竞争合作中赢得主动,不断提高我国科技国际影响力。   党的十八大明确提出实施创新驱动发展战略,强调科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。这对国家重大科技基础设施建设和运行赋予了新的使命和责任。面对新形势新任务,我国必须加快重大科技基础设施建设,进一步突出设施建设在我国总体发展战略中的基础性、前瞻性和战略性作用,加强与相关规划、计划的衔接,强化支撑服务功能 优化设施布局,提升技术水平,加强人才培养,形成较为完善的重大科技基础设施体系,促进自主创新能力提升,有力支撑创新型国家建设。   二、指导思想、建设原则和建设目标   (一)指导思想。   以邓小平理论、“三个代表”重要思想、科学发展观为指导,落实全国科技创新大会部署和深化科技体制改革、加快国家创新体系建设的要求,以提升原始创新能力和支撑重大科技突破为目标,以健全协同创新和开放共享机制为保障,布局新建与整合提升相结合、自主发展与国际合作相结合、设施建设与人才培养相结合,加大投入力度,加快建设完善重大科技基础设施体系,全面提升设施建设水平和运行效率,为我国科技长远发展和创新型国家建设提供有力支撑。   (二)建设原则。   一是着眼长远、服务大局。突出重大科技基础设施建设的战略性,既要瞄准探索未知世界和发现自然规律的科技发展前沿方向,又要结合国情,聚焦影响未来经济社会发展和国家安全的重大科技难题,衔接好科技重大专项等相关规划和计划,强化设施建设对国家重大战略的支撑作用。   二是科学谋划、系统布局。把握科学技术发展的总体趋势,有机衔接现有科技资源,统筹考虑学科领域布局,加强国际合作,全面系统谋划重大科技基础设施建设与发展,形成“探索一批、预研一批、建设一批、运行一批”的发展格局。   三是重点突破、实现跨越。分清轻重缓急,优先选择具有相对优势、科技发展急需或科技突破先兆已经显现的科学前沿和学科交叉领域,选准主攻方向,集中优势资源,加快重大科技基础设施建设,实现重点领域跨越发展。   四是创新机制、持续发展。将重大科技基础设施建设作为深化科技体制改革的重要抓手,针对重大科技基础设施的基础性、公益性特征,建立完善高效的投入机制、开放共享的运行机制、产学研用协同创新机制、科学协调的管理制度,提高设施建设和运行的科技效益,形成持续健康发展的良好局面。   (三)建设目标。   到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。   “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。   三、总体部署   未来20年,瞄准科技前沿研究和国家重大战略需求,根据重大科技基础设施发展的国际趋势和国内基础,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,从预研、新建、推进和提升四个层面逐步完善重大科技基础设施体系。在可能发生革命性突破的方向,前瞻开展一批发展前景较好的探索预研工作,夯实设施建设的技术基础 在2016—2030年期间适时启动建设一批科研意义重大、条件基本成熟的设施,强化未来科技持续发展的能力 在我国具有一定基础和优势的领域,在“十二五”期间建设一批科研急需、条件成熟的设施,强化科技持续发展的支撑能力 对已经启动但尚未完成建设任务的在建设施,加大工程管理和技术攻关力度,力争早日建成投入使用 对已经投入运行但仍有较大发展潜力的设施,进一步完善提升技术指标和综合性能,最大程度发挥其科学效益。   (一)能源科学领域。   以解决人类社会可持续利用能源的科学问题为目标,面向我国中长期核能源开发与安全运行、化石能源高效洁净利用与转化、可再生能源规模化利用等方向,以核能和高效化石能源研究设施建设为重点,注重新能源、新材料、网络技术相结合,逐步完善相关领域重大科技基础设施布局,为能源科学的新突破和节能减排技术变革提供支撑。   核能源方面。完善提升全超导托卡马克核聚变实验装置的性能,积极参与国际热核聚变实验堆计划,保持我国在磁约束核聚变研究领域的先进地位 建设长寿命高放核废料嬗变安全处置实验装置,攻克核裂变能安全洁净发展的技术瓶颈 适时启动高效安全聚变堆研究设施建设,加快聚变能走向实际应用进程。   化石能源方面。建设高效低碳燃气轮机试验装置,支撑相关领域重大基础理论研究,解决煤炭清洁利用和高效转换关键科技问题 探索预研二氧化碳捕获、利用和封存研究设施建设,为应对全球气候变化提供技术支撑。   可再生能源方面。针对风能、太阳能、生物质能、地热能、海洋能等能量密度低、随机波动等问题,探索预研能量捕获、储能、转换、并网研究设施建设,促进可再生能源规模化高效利用。   (二)生命科学领域。   以探索生命奥秘和解决人类健康、农业可持续发展的重大科技问题为目标,面向综合解析复杂生命系统运动规律、生物学和医学基础研究向临床应用转化、种质资源保护开发与现代化育种等方向,重点建设以大型装置为核心、多种仪器设备集成的综合研究设施,完善规模数据资源为主的公益性服务设施,支撑生命科学向复杂宏观和微观两极发展并实现有机统一,突破生命健康、普惠医疗和生物育种中的重大科技瓶颈。   现代医学方面。建设转化医学研究设施,从分子、细胞、组织、个体等方面系统认识人类疾病发生、发展与转归的规律,促进生物医学基础研究成果快速转化为临床诊疗技术。   农业科学方面。建成国家农业生物安全科学中心,支撑农业危险性外来入侵生物、农业毁灭性高致害变异性生物和农业转基因生物安全的创新性理论、方法与防控新技术研究 建设模式动物研究设施,支撑表型及基因型关系、遗传信息高通量获取与工程转化、细胞和动物模型开发与应用等研究 适时启动农作物种质表型和基因、动物疫病、农业微生物研究设施建设,支撑我国农业生物技术和产业的持续发展及生物多样性保护。   生命科学前沿方面。建成蛋白质科学研究设施,支撑高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究 探索预研系统生物学研究设施及合成生物学研究设施建设,满足从复杂系统角度认识生物体的结构、行为和控制机理的需要,综合解析生物系统运动规律,破解改造和设计生命的科学问题。   生命科学研究基础支撑方面。适时启动大型成像和精密高效分析研究设施建设,满足生物学实时、原位研究和多维检测、分析、合成技术开发的需求 探索预研生物信息中心建设,为生命科学研究提供科学数据、种质资源、实验样本和材料等基础支撑。   (三)地球系统与环境科学领域。   以实现人类与自然和谐发展为目标,面向地球结构演化与变化过程、地壳物质组成和精细结构、地球系统各圈层间复杂作用及其耦合过程、太阳及其活动控制下各圈层的响应与耦合、人类活动影响环境的过程和机理等方向,重点建设海底观测、数值模拟和基准研究设施,逐步形成观测、探测和模拟相互补充的地球系统与环境科学研究体系。   现场探测与观测方面。建成海洋科学综合考察船,满足综合海洋环境观测、探测以及保真取样和现场分析需求 建成航空遥感系统,提高我国遥感信息技术与装备研发实验能力,为自然灾害和突发事件提供快速、实时、精确的遥感数据 建设海底科学观测网,为国家海洋安全、资源与能源开发、环境监测和灾害预警预报等研究提供支撑 适时启动地球系统科学航天航空遥感等技术监测、深海探测与调查、固体地球深部探测与动态监测、陆海地球环境观测等研究设施建设,实现多时空尺度全面长期连续监测与数据积累,逐步形成对地球系统的立体、动态监测分析能力。   基准系统建设方面。建设精密重力测量研究设施,获取高分辨率、高精度地球质量变化基础数据,支撑固体地球演化、海洋与气候变化动力学、水资源分布和地质灾害规律等研究,满足国家安全、资源勘探和防灾减灾的战略需求。适时启动包括地基基准、环境基准、深空基准等方面的基准系统建设。   数值和实验模拟方面。建设地球系统数值模拟装置,支撑气候变化、地球系统及各层圈过程模拟研究,认识地球环境过程基本规律,提高预测环境变化和重大灾害的能力。适时启动环境污染机理与变化研究模拟实验装置建设,支撑空气污染、流域水污染预测模型开发和气候变化模式研究,提高空气质量、流域水污染等预报预警能力。   (四)材料科学领域。   适应材料科学研究从经验摸索阶段到人工设计调控阶段转变的趋势,面向量子物质演生现象、纳米尺度量子结构、极端条件下材料物性与物质演变、重要工程材料服役性能等方向,以材料表征与调控、工程材料实验等为研究重点,布局和完善相关领域重大科技基础设施,推动材料科学技术向功能化、复合化、智能化、微型化及与环境相协调方向发展。   材料表征与调控方面。完善提升已有同步辐射光源,建成软X射线自由电子激光试验装置,建设高能同步辐射光源验证装置 探索预研硬X射线自由电子激光装置建设,适时启动高性能低能量同步辐射光源建设,满足以纳米空间分辨率、皮秒至飞秒时间分辨率、极高能量动量分辨率对材料多层次结构分析研究的需求,逐步形成布局合理的国家光源体系。建成散裂中子源和强磁场实验装置,建设极低温、超快、超高压极端条件研究设施,形成与大型同步辐射光源结合的格局,满足研究和发现新物态、新现象、新规律和创造新材料的需求。   工程材料实验方面。建成重大工程材料服役安全研究评价设施,支撑不同尺度及跨尺度的结构性能研究 探索预研超快光谱界面反应检测装置、极端和工业特殊服役环境模拟装置建设,支撑材料服役行为和规律研究 结合高能同步辐射光源,适时启动综合工程环境在线装置建设,支撑真实环境下工程材料实时、原位研究。   (五)粒子物理和核物理科学领域。   以揭示物质最小单元及其相互作用规律为目标,面向超越标准模型新粒子和新物理探索、暗物质和暗能量探测、中低能核物理与核天体物理研究等方向,建设相关大型研究设施,提高微观世界探索能力和自然界基本规律认知水平。   粒子物理方面。建设高能宇宙线研究设施,探索高能空间粒子起源和相关新物理前沿 适时启动用于中微子和其他高能粒子物理研究的非加速器实验设施建设,探索预研新型加速器实验设施建设。   核物理方面。建设高性能重离子束研究装置,使我国核物理基础研究在原子核层次上的整体水平进入国际先进行列 探索预研强流放射性束实验设施建设。   (六)空间和天文科学领域。   以揭示宇宙奥秘和解释物质运动规律为目标,面向宇宙天体起源及演化、太阳活动及对地球的影响、空间环境与物质作用等方向,按宇宙、星系、太阳系等不同空间尺度布局设施建设,提升我国天文观测研究能力、空间天气和灾害应对能力以及空间科学实验基础能力。   宇宙和天体物理方面。建成大口径射电望远镜,为宇宙大尺度结构及物理规律研究提供支撑 建设中国南极天文台,支撑暗物质、暗能量、宇宙起源、天体起源等前沿研究 探索预研先进多波段天文观测设施建设,逐步形成比较完善的天文观测及数据应用系统。   太阳及日地空间观测方面。建成空间环境地基监测网,揭示近地空间环境的时间和空间变化规律,并逐步形成覆盖更多重要区域的空间环境监测、预警能力 适时启动大型太阳观测研究设施建设,支撑太阳、行星际、磁层、电离层和中高层大气变化过程和规律研究,深化太阳变化及其对地球和人类影响的认识。   空间环境物质研究方面。建设空间环境与物质作用模拟装置,支撑近地空间环境与材料、元器件、结构、系统及生物体作用规律研究 探索预研空间微重力科学实验设施、南极气球站和引力波研究设施的建设,揭示空间微重力环境物质运动规律,提升我国深空探测、空间基础物理、空间利用等方面的研究能力。   (七)工程技术科学领域。   瞄准未来信息技术发展的基础和前沿、岩土地质体的动力特性及地质灾害过程等工程技术中的重大科技问题,以产生变革性技术为主要目标,以信息技术、岩土工程和空气动力学为研究重点,探索和逐步推进相关设施建设,为保障国家重点任务的实施、引领未来产业发展提供基础支撑。   信息技术方面。建设未来网络研究设施,解决未来网络和信息系统发展的科学技术问题,为未来网络技术发展提供试验验证支撑 适时启动新一代授时系统建设,支撑超精密时间频率技术开发,逐步形成高精度卫星授时系统和高精度地基授时系统共同发展的格局。   岩土工程方面。适时启动超重力模拟研究设施建设,揭示复杂岩土地质体的动力特性 探索预研大型地震模拟研究设施建设,开展地震动输入和工程地震灾害模拟研究 探索预研深部岩土工程研究设施建设,揭示深部岩体的力学特征。   空气动力学方面。建成多功能结冰风洞,支撑不同冰型和冰积累过程对飞行器空气动力特性的影响等研究 建设大型低速风洞,支撑气动噪声、流动分离与涡旋运动、流动控制、流固耦合、电磁空气动力学等研究 适时启动大型跨声速风洞、低温高雷诺数风洞、先进航空发动机研究设施建设,为我国航空航天、高速铁路建设等提供必要的研究试验手段。   四、“十二五”时期建设重点   “十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,综合考虑科学目标、技术基础、科研需求和人才队伍等因素,优先安排16项重大科技基础设施建设。   (一)海底科学观测网。   海洋科学研究正经历着由海面短暂考察到内部长期观测的革命性变化,这将从根本上改变人类对海洋的认识。围绕实现全天候、综合性、长期连续实时观测海洋内部过程及其相互关系的科学目标,建设海底长期科学观测网,主要包括:基于光电缆的陆架
  • 王贻芳院士:我国重大科技基础设施的现状和未来发展
    一、重大科技基础设施的内涵及分类国家重大科技基础设施,有时也称大科学装置,是指为提升探索未知世界、发现自然规律、实现科技变革的能力,由国家统筹布局,依托高水平创新主体建设,面向社会开放共享的大型复杂科学研究装置或系统,是为高水平研究活动提供长期运行服务、具有较大国际影响力的国家公共设施。按照不同的用途,重大科技基础设施一般分为以下三类:第一类是专用设施,这是为特定学科领域的重大科学技术目标而建设的研究装置,如北京正负电子对撞机、超导托卡马克核聚变实验装置、高海拔宇宙线观测站、“中国天眼”、武汉国家生物安全实验室等。专用设施有明确具体的科学目标,追求国际基础科学研究的最前沿,依托设施开展的研究内容、科学用户群体也比较特定、集中。第二类是公共实验平台,这类设施主要为多学科领域的基础研究、应用研究提供支撑性平台,例如上海光源、中国散裂中子源、强磁场实验装置等。这类装置为多个领域的不特定大量用户提供实验平台和测试手段,为相关基础科学研究及其应用提供关键支撑,追求满足用户需求,服务全面完整。第三类是公益基础设施,主要为经济建设、国家安全和社会发展提供基础数据和信息服务,属于非营利性、社会公益性设施,如中国遥感卫星地面站、长短波授时系统、 西南野生生物种质资源库等,追求满足国家和公众需求。重大科技基础设施是国家基础设施的重要组成部分,但它不同于一般的基本建设项目,具有鲜明的科学和工程双重属性,其设计、研制及相关技术和工艺具有综合性、复杂性、先进性,有时具有唯一性,知识创新和科学成果产出丰硕,技术溢出、人才集聚效益非常显著,因此往往成为国家创新高地的核心要素。同时,它也不同于一般的科研仪器中心或者平台,是需要自行设计研制专用的设备,体量大、投资大、能力强、技术复杂先进、生命周期长,具有明确的科学目标,体现了国家意志,反映了国家需求,是“国之重器”、“科技利器”,需要国家统筹规划、统一布局、统一建设、统筹运行与开放。重大科技基础设施也代表着国家的形象,是国家科技实力、经济实力乃至软实力的重要标志。1969年,美国费米实验室申请建造质子主环加速器,实验室主任罗伯特威尔逊在国会被询问建设该加速器对国防的作用。他回答说,“做这件事,不仅对基础研究有极其重要的意义,而且可以使这个国家更值得被保卫”。二、国际重大科技基础设施的发展态势国际上,重大科技基础设施建设起源于二战时期的美国,至今已有八十多年的历史。长期以来,欧美日等主要发达国家和新兴经济体都高度重视重大科技基础设施的建设与发展,将其视作本国科技的核心竞争力,持续加大投资力度,加强设施建设和战略布局,保持、培育和发展领先优势。美国在高能物理、核物理、天文、能源、纳米科技、生态环境、信息科技等领域布局了一批性能领先的大型设施,主要由能源部、国家科学基金会等部门进行资助和管理,据统计目前有60个左右,如先进光子源及其升级(APS,1996年运行,2022年完成升级)、激光引力波天文台及其多次升级(LIGO,2002年运行,2015年完成升级)、先进地震学设施(SAGE,2014年运行)、韦伯太空望远镜(JWST,2021年发射)、大型综合巡天望远镜(LSST,计划2022年运行)、深地中微子实验(DUNE,计划2026年建成)等,取得了发现引力波等一系列重大科学成果和相关核心技术的突破,在美国科技创新、国家安全和经济社会可持续发展等方面发挥了重要作用,巩固了其世界头号科技强国的地位。欧洲以英国、法国、德国等为代表,在能源、生命、资源环境、材料、空间、天文、粒子物理与核物理、工程技术等领域也布局建设了数量众多的研究设施。据不完全统计,英国约有40多个,德国约有60多个,法国有将近60个。除此之外,为了整合资源,提高整体竞争力,欧盟国家还联合建设了一批国际领先的大型研究设施,如欧洲同步辐射装置(ESRF,1994年运行,2015年完成升级,新升级今年完成)、大型强子对撞机(LHC,2008年运行,正在升级)、甚大巡天望远镜(VST,2011年运行)、欧洲自由电子激光(EXFEL,2017年运行)、欧洲散裂中子源(ESS,计划2025年运行)等,取得了发现希格斯粒子等一系列重大科学成果,发明了WWW网页技术,催生了互联网经济。这些设施不仅保持了欧洲在相关领域的科技领先优势,而且促进了全球经济社会发展,促进了欧洲国家之间的和平与合作,提高了技术市场的占有率,为欧洲在全球供应链、产业链中占据高位赢得了主动。三、我国重大科技基础设施建设发展历程我国重大科技基础设施建设起步于上世纪60年代,六十多年来,走过了从无到有、从小到大、从跟踪模仿到自主创新的艰难历程。目前,设施技术水平和性能不断提升,学科领域和地域布局不断优化,从一个侧面反映出我国科学技术事业发展的巨大进步和成就。下面从四个发展时期进行介绍。(一)上世纪五、六十年代的萌芽期新中国成立后,我国于1956年12月颁布了第一个科技发展规划——《1956—1967年科学技术发展远景规划纲要》。在这一规划指导下,围绕“两弹一星”的研制,国家布局建设了一些研究设施,如点火中子源、实验性重水反应堆、材料试验堆、粒子加速器等。这些虽然还不能算作“大科学装置”,但是重大科技基础设施的萌芽。上世纪六十年代,我国科学界开始酝酿基础研究设施,在国家计委等部门的支持下,部署并启动了高能加速器、短波授时、2.16米天文望远镜等装置的预先研究工作。在此基础上六十年代建设的长短波授时台,可以说是我国第一个大科学装置。(二)上世纪七、八十年代的成长期改革开放后,以经济建设为中心使国家对科学技术的需求急剧增加。邓小平同志在全国科学大会上提出“科学技术是生产力”的战略思想,我国进入了“科学的春天”。1979年1月,小平同志访美与卡特总统在华盛顿签订了《中美政府间科学技术合作协定》,并据此签订了高能物理等领域的34项合作议定书或备忘录。1983年12月,小平同志亲自批准建设北京正负电子对撞机,中央书记处决定将其列入国家重点工程。1984年10月7日,该项目在中科院高能物理研究所破土动工,小平同志亲临现场为工程奠基。1988年10月24日,小平同志又亲自出席了对撞机建成典礼。两次出席一个项目的奠基与建成,足见小平同志对国家重大科技基础设施的高度重视和亲切关怀。也正是在这次建成典礼上,他发表了影响深远的重要讲话:“过去也好,今天也好,将来也好,中国必须发展自己的高科技,在世界高科技领域占有一席之地。”北京正负电子对撞机的建成是我国重大科技基础设施建设的重要里程碑。这一时期,在国家计委的支持下,中国遥感卫星地面站、串列加速器、合肥同步辐射装置、东方红2号海洋综合调查船等设施相继建成,设施建设开始向多学科领域扩展。(三)上世纪九十年代以后的发展期九十年代以后,我国经济建设快速发展,国家提出科教兴国发展战略。在国家计委支持下,郭守敬望远镜、超导托卡马克核聚变实验装置、中国地壳运动观测网络等新一批设施项目启动建设。“十一五”之后,国家把重大科技基础设施建设作为提升创新能力的重要举措,形成了按五年规划推进建设的制度。“十一五”期间,散裂中子源开工建设,2018年通过国家验收,投入运行使用。这是世界第四台散裂中子源,填补了国内脉冲中子源的空白。更为大家熟知的“中国天眼”,也在“十一五”开工建设。通过多项自主创新,中科院国家天文台建成了目前世界最大单口径(500米)、也是最灵敏的射电天文望远镜。在这一阶段,在国家发展改革委支持下,强磁场实验装置、结冰风洞等设施也相继开工建设,设施建设和开放共享水平大幅提升,科研产出能力不断提高。上海光源的高水平建成,标志着我国进入国际一流水平的同步辐射光源俱乐部。(四)十八大以来的快速发展期党的十八大以来,以习近平同志为核心的党中央深入研判国内外发展形势,全面分析国际科技创新竞争态势,从把创新作为引领发展的第一动力到把高水平科技自立自强作为国家发展的战略支撑,从建设创新型国家到建设世界科技强国,从“三个面向”到“四个面向”,习近平总书记对科技创新提出一系列新思想、新观点、新论断和新要求,亲自谋划、部署和推动一系列重大战略举措,我国科技创新事业取得许多新的历史性成就。习近平总书记非常关心国家重大科技基础设施建设。2013年,他作为总书记视察科教单位,第一站就选择了我们高能物理研究所的北京正负电子对撞机。也就是在这次视察时,他对中科院提出了“四个率先”的目标要求。2016年9月,总书记为“天眼”落成启用发来贺信,要求高水平管理和运行好这一重大科学基础设施,早出成果、多出成果、出好成果、出大成果。这不仅是对“天眼”提出的要求,也是对所有重大科技基础设施提出的要求。2021年2月,总书记还在贵阳亲切会见项目负责人和科研骨干,视频连线装置现场,亲切慰问科研人员,听取建设历程、技术创新、科研成果、国际合作等情况介绍,指出“天眼”是国之重器,实现了我国在前沿科学领域的重大原创突破。这一阶段,我国对重大科技基础设施进行了前瞻部署和系统布局,投入力度持续加大。在国家发展改革委的规划组织和投资支持下,“十二五”期间,我国启动建设了高海拔宇宙线观测站、高效低碳燃气轮机试验装置等15项重大科技基础设施;“十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。这两个五年计划,累计项目数接近此前建设总数。根据国家发展改革委的规划,“十四五”期间,拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。我国重大科技基础设施建设迎来了实现历史性跨越的快速发展期。目前,我国在建和运行的重大科技基础设施项目总量达57个,部分设施综合水平迈入全球“第一方阵”。中科院是我国重大科技基础设施建设的最早发起者,也是设施建设和运行的主要力量,一代又一代科学家和工程技术人员,为此付出了长期艰苦的努力,做出了许多重大卓越的贡献。目前,共承担建设和运行重大科技基础设施30余项,超过全国的一半。中科院与国内科教界广泛合作,开展规划和建设,已建成运行的设施更面向国内外开放,吸引广大科研人员充分利用设施开展科学研究。在包括重大科技基础设施在内的大型科研设施和仪器设备开放共享方面,在财政部、科技部组织的评估中,中科院长期在全国科教单位中排名第一。当然,高校和其他有关科研单位也承担了很多重大科技基础设施建设任务,同样做出了重要贡献。四、我国重大科技基础设施建设运行成效几十年来,在国家有关部门的统一部署下,我国重大科技基础设施布局逐步完善、运行更加高效、产出更加丰硕,对促进我国科学技术事业发展起到了巨大的支撑作用,为解决国家发展中遇到的关键瓶颈问题做出了突出贡献,其技术溢出也显著促进了经济社会发展,并依托设施逐步形成了一批在国际上有重要影响的国家科技创新中心和人才高地。主要成效可以概括为以下几个方面:(一)原创性引领性科技成果的策源地重大科技基础设施为开展基础研究和应用研究提供了重要平台,推动我国粒子物理、凝聚态物理、天文、空间科学、生命科学等领域部分前沿方向的科研水平迅速进入国际先进行列。2011年以来,依托重大科技基础设施产生的成果就有22项入选国家科技“三大奖”,其中9项国家自然科学奖、3项国家技术发明奖、10项国家科学技术进步奖。总计29项成果入选年度“中国十大科技进展新闻”或“中国科学十大进展”,占上榜成果的13.2%。一些成果更是在国际上产生了重大影响力。例如,大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率。该结果是对自然界最基本物理参数的测量,对未来中微子物理的发展方向起着决定性作用。高海拔宇宙线观测站在银河系内发现大量超高能宇宙加速器,并记录到最高1.4拍电子伏伽马光子,这是人类观测到的最高能量光子,突破了人类对银河系粒子加速的传统认知,开启了“超高能伽马天文”的时代,为破解“宇宙线起源和加速”这一世纪之谜奠定了基础。快速射电暴起源是当今天体物理领域最前沿的科学问题之一,我国科学家利用“慧眼”卫星精准定位了快速射电暴对应的x射线天体,利用“中国天眼”第一次捕捉到了快速射电暴多样化的偏振信息,揭示了快速射电暴的来源和辐射机制之谜。超导托卡马克核聚变实验装置实现了可重复的1.2亿度101秒等离子体运行,再次创造托卡马克实验装置运行新的世界纪录,标志着我国在稳态高参数磁约束聚变研究领域引领国际前沿。(二)解决国家重大战略科技问题的主平台重大科技基础设施在解决重点领域和战略产品“卡脖子”问题等方面发挥了重要作用,推动解决了一批关键核心技术、引领带动了相关产业发展。众所周知,航空发动机核心部件——叶片的服役寿命,一直是制约我国航空领域发展的“卡脖子”问题,过去一直缺乏合适的检测手段,因中子不带电、穿透性强,可以在叶片等大型部件的内部结构和应力探测方面发挥独特优势。通过中国散裂中子源,科研人员首次获得了多种型号发动机的高温合金叶片、单晶叶片、3D打印叶片在不同工艺、不同服役状况下的内部应力数据,填补了国内深层高精度应力测试与评价的空白,支撑解决国产叶片的材料设计、制备和加工工艺。2020年初,新冠肺炎疫情暴发之初,武汉国家生物安全实验室,也就是我们通常说的武汉P4实验室,在世界上首次检测出新冠病毒全基因组序列,首次分离出病毒毒株,为全球科学家开展药物、疫苗、诊断研究提供了重要基础。同时,该实验室在新冠病毒病原鉴定、快速检测、抗病毒药物筛选、疫苗研制等重要工作中也做了很多非常重要的工作,为抗击新冠肺炎做出了不可替代的贡献。(三)推动战略性高技术发展的新引擎重大科技基础设施技术溢出效应大幅提升,催生一批新技术、新产品,成为促进战略性新兴产业的科技创新驱动力,为国民经济和社会发展提供了科技支撑。比如,我国第二代中微子实验——江门中微子实验的核心部件叫做光电倍增管,之前几乎全部由日本公司垄断,对中国科学家来说自主生产这一核心器件,在十几年前还只是一个大胆的设想。2008年,中科院高能所提出全新设计方案,2011年联合北方夜视等国内企业组成产学研合作组,成功研制出20英寸微通道板型光电倍增管,综合性能达到国际先进水平,打破了国际垄断。2020年,15000只国产20英寸光电倍增管生产完成,将使用在江门中微子实验中。仅这一项,就比采购国外设备节省数亿元。该产品也成为“高海拔宇宙线观测站”的核心部件,让观测设备更加“耳聪目明”。再比如,癌症是当今社会对人类生命健康威胁最大的疾病之一。中科院近代物理所依托兰州重离子研究装置,于2021年实现我国首台医用重离子加速器——碳离子治疗系统的成功应用,使人类向攻克癌症又迈进了一步。这标志着我国成为全球第四个拥有自主研发重离子治疗系统和临床应用能力的国家,实现我国在大型医疗设备研制方面的历史性突破。(四)打造国家创新高地的强内核近年来,有关部门将重大科技基础设施作为国家创新高地建设的核心内容,加快推动北京、上海、粤港澳大湾区科技创新中心建设。特别是依托设施集群,建设上海张江、安徽合肥、北京怀柔和粤港澳综合性国家科学中心。这一战略举措不仅加快了重大科技基础设施的建设,也显著提升了这些国家创新高地的科技实力和创新能力。据不完全统计,“十二五”和“十三五”期间规划布局的24个装置中有15个项目整体或部分在综合性国家科学中心集聚,涉及总投资300多亿元。同时,重大科技基础设施有很强的外部辐射效应,不仅能显著提升所在区域的科技实力和创新能力,而且有利于提升所在区域的人才环境和形象,吸引大批高端人才和企业,持续支撑和促进地方经济社会发展。比如,散裂中子源落户广东东莞,显著改善了当地的人才环境,促进了高端产业落户,对东莞及大湾区的产业转型升级和经济发展起到了积极作用。正因为如此,许多地方党委政府都非常重视争取设施落户,对设施建设和运行给予大力支持。借此机会,我们也向有关地方的领导表示衷心感谢!(五)引才聚才和推动高水平创新合作的新高地重大科技基础设施在建设和运行过程中,集聚和培养了一大批懂科学、懂技术、懂工程、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以落户东莞的中国散裂中子源为例,中科院高能物理所在当地集聚和培养了一支400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。散裂中子源的高度开放共享,也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关。据统计,2018年以来,散裂中子源注册用户超过2600人(包括国外用户40余人),共完成600余项课题,有力推动了我国中子散射应用和关键技术的重大发展。五、我国重大科技基础设施建设的差距和不足在充分肯定成绩的同时,我们也清醒地认识到,由于我国的设施建设起步相对较晚,技术储备和人才队伍尚有不足,科技水平和产出效率还需提高,管理体制机制有待优化,对更高水平原始创新和核心技术产出的支撑作用亟待提升,整体水平与建设科技强国和高水平自立自强的目标要求还有较大差距。(一)世界领先、甚至独创独有的设施还不多当前,国际科技竞争空前激烈,世界科技强国经过长期积累,已经拥有相当规模、有重要影响力的重大科技基础设施。我国的重大科技基础设施建设在起步相对较晚、财力相对有限、水平相对不高的情况下,大多以跟踪模仿和追赶西方发达国家为主。近年来,我国陆续建设了“天眼”、全超导托卡马克聚变反应堆、高海拔宇宙线观测站、高能同步辐射光源、江门中微子实验等一批处于国际领先水平的设施。但总的来说,具备原创科学思想和科学设计、世界领先甚至独创独有的重大科技基础设施数量还很少;关键技术的源头主要来源于国外,性能指标还常常有差距。面对科学前沿研究不断向超微观、超宏观、超复杂方向发展的趋势,我们尤其需要加强战略研究,瞄准世界一流,高水平、高起点、有重点地选择建造一批国际领先的重大科技基础设施,以点带面,逐步实现从“占有一席之地”、到重点突破、再到引领创新的战略目标。(二)依托设施的建制化研究有待加强建设高水平、引领型的重大科技基础设施固然重要,但是运行好、使用好这些设施,发挥最大效益也很重要。我国重大科技基础设施不断推进开放共享,吸引了大批高水平用户开展科研工作,但我们也发现在公共实验平台类的设施上,科研用户自发申请使用设施,围绕国家紧迫的战略需求、开展定向性科学问题牵引的建制化研究不多,从而制约了依托设施开展高水平科学研究、产出重大原创成果、解决关键核心技术问题的能力。(三)依托设施的国际合作程度不够重大科技基础设施是国际合作的重要平台。我国重大科技基础设施在国际合作上还存在不足。一方面,我国主持的本土项目国际合作比重较低,且大部分停留在一般性的交流合作上,缺少实质性的外方经费投入和人员、技术贡献,导致我国专用研究设施国际领先性、国际影响和重大成果产出不足。另一方面,我国也较少实质性地、有显示度地参加别国的项目,国际影响不足,不易达到国际领先水平,也影响我们吸引国外投入参与本土项目。当前,美西方少数国家对我国的科技遏制和封锁持续升级,加上新冠肺炎疫情的影响,国际科技合作面临严峻挑战。重大科技基础设施在突破封锁、吸引合作,特别是开展科学家之间的科研合作、互通有无、进行深度科技交流合作上,具有独特优势,可以发挥更大的作用。六、我国经济社会发展和科技自立自强的新形势、新要求“十四五”是开启全面建设社会主义现代化国家新征程的第一个五年。作为国家创新体系的重要组成部分,我国重大科技基础设施建设发展面临着新的形势和要求。从新科技革命的历史机遇来看。现阶段我国建设科技强国的进程正好与知识经济演进中正在产生并日渐加速的新一轮科技革命相伴。科学研究的发展不断向广度拓展、向深度进军,多学科交叉融合汇聚日益频繁,重大创新突破需要依赖科学仪器来拓展人类的感知能力,必须依靠精度更高、功能更强的仪器设备,直至大科学装置。这就对装置的能力和水平提出了更高要求。从深刻复杂多变的国际形势来看。设施建设集科学技术、工业制造、材料加工、人才队伍优势于一体,代表了一个国家的综合科技实力。因此,各国都将设施的发展作为提升国家核心竞争力的重要举措,加强部署并大力实施。国家发展的激烈竞争也使设施的竞争日益激烈,在重大科技基础设施领域既要合作,也有竞争,各种困难交织,对我国设施的建设和未来发展提出了新的挑战。从我国加快建设科技强国战略目标来看。以习近平同志为核心的党中央高度重视科技事业,确立了加快建设科技强国、实现高水平科技自立自强的战略目标。这就要求我国重大科技基础设施发展要加速,只有加速才能实现从跟跑、并跑向领跑的转变,才能为原始创新和关键技术攻关提供更强力的支撑。新时代赋予新使命,内外因素叠加,对我国的设施建设提出了更高、更急迫的要求——要尽快建成布局完备、技术领先、运行高效、创新有力、综合效应显著的国家重大科技基础设施体系,设施建设水平、运行服务能力和重大成果产出要实现国际引领,以全面支撑原始创新能力提升、战略高技术研发、产业创新发展、区域创新高地建设,实现跻身创新型国家前列和世界科技强国的目标。七、几点思考和建议(三)加强高水平国际合作,发起国际大科学计划重大科技基础设施一直是国际科技合作的重点领域,世界上很多设施本身就是国际大科学计划和大科学工程的产物。我国的设施建设也是如此,一些关键技术从国外引进或国内外合作研发,不少关键器件从国外进口,一些本土项目获得国际参与与贡献。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。江门中微子实验获得国际实物贡献约3000万欧元,占比15%左右,共有境外16个国家和地区约300多位科学家参加。我们要坚定开放合作,围绕重大科技基础设施的建设和运行,努力拓展合作范围、方式和渠道。要在项目遴选、评估、建设上有更多的国际参与和贡献,同时积极参加国际项目,广交朋友,培养人才,扩大影响,争取国际支持。希望有更多的重大科技基础设施开展高水平国际科技合作,也希望国家围绕建设高水平重大科技基础设施,选取有重大影响的“硬科技”项目,尽快发起实施若干国际大科学计划和大科学工程。重大科技基础设施肩负着支撑科技强国建设的重要使命。我们相信,在党中央、国务院领导下,在国家有关部门的组织和支持下,我国将形成布局完备、技术领先、运行高效、创新有力、成果产出显著的国家重大科技基础设施体系,为建设世界科技强国、高水平实现科技自立自强做出更大的贡献。
  • 盘点“国之重器”!“十四五”重大科技基础设施建设名单出炉
    重大科技基础设施是探索未知世界、发现自然规律、突破关键核心技术的国之重器,也是体现一个国家科技创新能力和综合国力的重要标志。国务院于2013年发布的《国家重大科技基础设施建设中长期规划2012-2030》提出,未来20年,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,从预研、新建、推进和提升四个层面逐步完善重大科技基础设施体系;在可能发生革命性突破的方向,前瞻开展一批发展前景较好的探索预研工作,夯实设施建设的技术基础。“十三五”以来,我国大设施建设运行从以跟跑为主,逐步转到跟跑、并跑,有的已经实现了领跑,产生了一大批重大原创成果,催生了一批战略性产业技术。例如,通过上海光源实验手段,发现了外尔半金属,外尔费米子第一次展现在科学家面前;全超导托卡马克核聚变实验装置创造了101秒等离子体高约束持续放电、等离子体中心电子温度1亿度这样的世界纪录。进入“十四五”,《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提到,支持北京、上海、粤港澳大湾区形成国际科技创新中心,建设北京怀柔、上海张江、大湾区、安徽合肥综合性国家科学中心,支持有条件的地方建设区域科技创新中心;在战略导向、应用支撑、前瞻引领、民生改善方面建设一批国家重大科技基础设施。“十四个五年规划和2035年远景目标纲要”提出建设名单1 战略导向型建设空间环境地基监测网、高精度地基授时系统、大型低速风洞、海底科学观测网、空间环境地面模拟装置、聚变堆主机关键系统综合研究设施等。2 应用支撑型建设高能同步辐射光源、高效低碳燃气轮机试验装置、超重力离心模拟与试验装置、加速器驱动嬗变研究装置、未来网络试验设施等。3 前瞻引领型建设硬X射线自由电子激光装置、高海拔宇宙线观测站、综合极端条件实验装置、极深地下极低辐射本底前沿物理实验设施、精密重力测量研究设施、强流重离子加速器装置等。4 民生改善型建设转化医学研究设施、多模态跨尺度生物医学成像设施、模式动物表型与遗传研究设施、地震科学实验场、地球系统数值模拟器等。此外,仪器信息网注意到,各地积极响应国家号召,纷纷加快重大科技基础设施建设步伐,多省已在科技创新“十四五”规划中明确重大科技基础设施布局方向。如浙江提出,“十四五”时期加快推进智能计算、新一代工业互联网系统信息安全、重离子肿瘤精准治疗装置、多维超级感知、超高灵敏极弱磁场和惯性测量、社会治理大数据与模拟推演实验等重大科技基础设施(装置)建设,打造大科学装置集群。广东提出,围绕国家战略需求,以大湾区综合性国家科学中心建设为主要牵引,按照“学科集中、区域聚集”和“谋划一批、建设 一批、运行一批”的原则,聚焦信息、生命、材料、海洋、能源等重点学科领域,合理有序布局建设重大科技基础设施集群。河南提出,“十四五”期间新建优势农业种质资源库、国家园艺种质资源库、超短超强激光平台等7个重大科技基础设施,谋划建设“天蛛计划”应用分靶场,力争国家大科学装置在省内布局实现零的突破。各省份科技创新“十四五”规划中提出建设名单省份相关描述北京突破怀柔科学城。强化以物质为基础、以能源和生命为起步科学方向,深化院市合作,加快形成重大科技基础设施集群;加快推进现有重大科技基础设施和交叉研究平台建设,面对战略必争和补短板领域,预研和规划一批新的重大科技基础设施。上海加快推进硬X射线、上海光源二期、海底科学观测网、高效低碳燃气轮机等设施建设,推动钍基熔盐堆研究设施等重大科技基础设施落地上海。基本建成全球规模最大、种类最全、综合能力最强的光子重大科技基础设施集群。支持上海交通大学附属瑞金医院转化医学国家重大科技基础设施加快发展。重庆加快推进分布式雷达天体成像测量仪验证试验场等重大科技基础设施及研发平台建设。集中力量推动超瞬态实验装置建设,加快研究论证、启动培育长江上游种质创制科学装置、长江模拟器、积声科学装置、无线能量传输与环境影响科学工程、中国自然人群生物资源库重庆中心、超大分布孔径雷达高分辨率深空域主动观测设施、宏微纳跨尺度基标准与溯源科学装置、低重力科学研究基地、极端环境生命实验装置、强动载生物致伤模拟系统、多维态分子精密测量科学装置等后备项目。河北支持涿州国家模式动物表型与遗传研究重大科技基础设施建设,筹划布局氢冶金、先进材料、合成生物研究等以支撑实现碳达峰碳中和、新材料和新药研发为主要任务的重大科技基础设施。山西逐步推进12-14km的试验线建设,争取将高速飞行列车工程试验线列为国家重大科技基础设施。辽宁重大科技基础设施(争创):基于高亮度极紫外自由电子激光的前沿科技研究设施、未来工业互联网创新基础设施、高能射线多束源材料多维成像分析测试装置、超大型深部工程灾害物理模拟试验装置、海洋工程环境实验与模拟设施、智能制造重大科技设施群、特殊钢全生命周期研发测试平台。江苏提升未来网络试验设施、高效低碳燃气轮机试验装置建设水平,推进纳米真空互联综合实验装置、作物表型组学研究设施等建设,重点培育信息高铁综合试验装置、跨多介质复杂流体试验设施、极地环境与动荷载模拟设施、空间信息综合应用工程等重大平台。浙江加快建设超重力离心模拟与实验装置;推进智能计算、新一代工业互联网系统信息安全、重离子肿瘤精准治疗装置、多维超级感知、超高灵敏极弱磁场和惯性测量、社会治理大数据与模拟推演实验等重大科技基础设施(装置)建设。安徽全面提升拓展同步辐射、全超导托卡马克、稳态强磁场等大科学装置性能。建设聚变堆主机关键系统综合研究设施、雷电防护与试验研究重大试验设施、未来网络试验设施(合肥分中心)、高精度地基授时系统(合肥一级核心站)。推进合肥先进光源、空地一体量子精密测量实验设施、大气环境模拟系统等大科学装置开工建设。谋划聚变能紧凑燃烧等离子体装置(BEST)、G60高速磁悬浮通道合肥-芜湖试验工程。深化合肥、上海张江综合性国家科学中心“两心”同创。江西重点推进本草物质科学研究设施、轴承全生命周期研究评价设施、发酵工程基础设施、超高温材料基础设施、射电望远镜、超级计算、磁约束聚变与材料改性平台等重大科技基础设施建设。河南新建7个重大科技基础设施:优势农业种质资源库、国家园艺种质资源库、超短超强激光平台、交变高速加载足尺试验系统、量子信息技术基础支撑平台、智能医疗共享服务平台、智慧灌溉技术创新平台。谋划建设“天蛛计划”应用分靶场。湖北推进脉冲强磁场、精密重力测量、武汉生物安全(P4)实验室、作物表型组学、深部岩土工程扰动模拟、高端生物医学成像等重大科技基础设施优化提升或加快建设。统筹谋划磁约束氘氘聚变中子源、武汉光源、农业微生物、碳捕集利用与封存、沼山长基线原子观测等重大科技基础设施预研预制。加快超算中心、科技创新数据资源中心等新型基础设施建设。湖南升级国家超级计算长沙中心,建设国家IPv6应用创新研究院、中国南方区域域名解析研究中心。构建工程化基地、数据共用库、检测评价中心等基础设施。广东信息科学领域:推动国家超级计算广州中心、深圳中心扩容升级,加快建设未来网络实验装置(深圳)、鹏城云脑智能超级算力平台、珠海智能超算平台等。生命科学领域:加快建设国家基因库二期、合成生物研究重大科技基础设施、脑解析与脑模拟重大科技基础设施等,谋划建设人类细胞谱系装置、精准医学影像大设施等。材料科学领域:加快建设中国(东莞)散裂中子源二期,谋划建设先进阿秒激光设施、南方先进光源装置等。海洋科学领域:加快建设新型地球物理综合科学考察船、天然气水合物钻采船,谋划建设冷泉生态系统装置、极端海洋动态过程多尺度自主观测科考设备、海底科学观测网南海子网等。能源科学领域:加快建设强流重离子加速器、加速器驱动嬗变研究装置等。基础物理领域:加快建设江门中微子实验站等。航空航天领域:推进智能化动态宽域高超声速风洞建设。四川打造世界一流的先进核能、空气动力、生物医学、深地科学、天文观测等重大科技基础设施集群,建设科学数据和研究中心。加快建设高海拔宇宙线观测站、转化医学、大型低速风洞等国家重大科技基础设施。启动建设新型空间光学研究装置、超高速轨道交通试验平台等前沿引领创新平台。云南推进模式动物表型与遗传研究大科学设施建设,为医药研发、动物育种提供理论和技术支撑。建设景东120米全可动脉冲星射电望远镜,构建我国自主脉冲星时间体系核心装置;建设2米环形太阳望远镜,磁场测量精度达到国际4米太阳望远镜标准;建设云南省超算中心,支撑新材料、生物医药、数字经济等重点产业数字化转型和创新发展。陕西加快建设高精度地基授时系统、转化医学等国家重大科技基础设施。积极推进列入“十四五”国家重大科技基础设施专项规划的先进阿秒激光、电磁驱动聚变设施等项目前期工作。积极谋划二氧化碳捕集利用和封存、超精密跨尺度基标准与溯源、空天地海无人系统综合试验测试、超大规模复杂电磁特性模拟与表征、航空发动机及燃气轮机结构服役安全试验等重大科技基础设施项目。青海推进建设国家盐湖技术创新中心、天文大科学装置等重大科技平台和重大科技基础设施。广西加快建设“近海海床地基与工程结构系统安全创新平台”(海基一号),推动建设中国-东盟卫星应用中心等重大科技基础设施。
  • 国家重大科技基础设施建设“十三五”规划印发
    p   为加快推动“十三五”时期国家重大科技基础设施的建设布局,进一步强化国家重大科技基础设施对经济社会发展、国家安全和科技进步的支撑保障作用,国家发展改革委会同教育部、科技部、财政部、科学院、工程院、自然科学基金会、国防科工局和中央军委装备发展部联合编制并印发了《国家重大科技基础设施建设“十三五”规划》。 /p p   规划提出,到2020 年,重大科技基础设施建设和运行总体技术水平进入国际先进行列,运行和使用效率整体达到国际先进水平,一批设施的技术指标居国际领先地位 薄弱领域设施建设明显加强,优势方向进一步巩固和发展,支撑前沿科技领域开展原创性研究的能力显著增强。基本建成若干具有国际影响力的综合性国家科学中心,形成以开放共享为核心的运行机制,建立起符合设施自身特点与发展规律的管理制度。设施整体国际影响力和地位显著提高,为我国进入创新型国家行列提供有力支撑,为进入创新型国家前列和建设世界科技强国奠定坚实基础。 /p p   ——投入运行和在建设施总量55 个左右,基本覆盖重点学科领域和事关科技长远发展的关键领域。 /p p   ——依托设施开展一批国际顶尖水平的研究工作,取得一批重大原创成果,有力推动重要学科领域实现跨越发展。 /p p   ——通过设施建设,衍生出一批新技术、新工艺和新装备,催生出一批颠覆性技术和战略性产品。 /p p   ——通过设施高效运行,攻克一批产业关键核心技术,突破一批创新发展的瓶颈性科技难题。 /p p   ——依托设施凝聚一批全球顶尖科技人才,开展一批国际重大科技合作计划,显著提升我国科技国际影响力。 /p p   ——初步建成若干综合性国家科学中心,使其成为原始创新和重大产业关键技术突破的源头,成为具有重要国际影响力的创新基础平台。 /p p   聚焦“十三五”时期的重点任务,面向世界科技前沿、面向经济主战场、面向国家重大需求,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7 个科学领域为重点,从启动建设、筹备论证、探索预研、完善提升四个层面,推动国家重大科技基础设施布局建设和发展,形成循序渐进、滚动实施、动态调整、持续发展的良好局面。统筹布局综合性国家科学中心建设,打造具有世界先进水平的重大科技基础设施群。进一步完善体制机制,形成支持设施持续发展的良好政策环境。 /p p   “十三五”期间,优先项目包括:空间环境地基监测网(子午工程二期),大型光学红外望远镜,极深地下极低辐射本底前沿物理实验设施,大型地震工程模拟研究设施,聚变堆主机关键系统综合研究设施,高能同步辐射光源,硬X 射线自由电子激光装置,多模态跨尺度生物医学成像设施,超重力离心模拟与实验装置,高精度地基授时系统。 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201701/ueattachment/24f65188-e0b3-4798-97c9-f4f81626f37e.pdf" 《国家重大科技基础设施建设“十三五”规划》.pdf /a /p p br/ /p
  • 我国又一重大科技基础设施通过工艺验收
    记者9月26日从在云南昆明举行的“模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)”工艺验收会上获悉,由中国科学院昆明动物研究所主持建设的这一国家重大科技基础设施通过了工艺验收。位于昆明西郊花红洞的该设施,将成为全球灵长类动物前沿基础研究与大健康科学研究的高地。模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)外景。科技日报记者 赵汉斌 摄模式动物表型与遗传研究设施是国家“十二五”期间部署建设的国家重大科技基础设施项目之一,由中国科学院昆明动物研究所和中国农业大学作为共同项目法人单位,分别在云南昆明建设灵长类动物表型与遗传研究设施、河北涿州建设猪表型与遗传研究设施。灵长类设施是对灵长类动物表型与遗传进行全尺度研究、国际一流的大型综合研究设施,构建从分子到细胞,从组织到整体、从胚胎发育到成体行为等多方位研究的综合体系,包括模式动物生产和培育、表型分析、遗传分析、信息处理与智能自动化管控四个系统。设施将面向国家重大需求和学科前沿发展,支撑以灵长类动物为模型开展的脑科学、疾病机理与药物研发等前沿领域的研究,服务国家相关重大研究计划与人口健康领域重大需求。专家组在现场考察模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)动物手术模块。科技日报记者 赵汉斌 摄“设施集成了各种大型科学仪器和先进技术,强化自主创新,研制了一批用于灵长类动物研究的关键科学仪器设备和技术,带动了相关国产仪器设备研制,实现了技术引领。”中国科学院昆明动物研究所所长姚永刚研究员介绍,设施还研发了具有自主知识产权的国际领先或先进的灵长类实验动物测试研究设备,在集成性、规模化保障能力方面处于国际先进水平,实现了对灵长类动物表型与遗传进行标准化、规模化、自动化、智能化、精准化研究的建设目标。通过培养、合作、人才引进等方式,这里还凝聚了一支在国内外具有重要影响力的队伍,全面保障设施技术支撑能力。同时,设施建设为灵长类动物研究领域培养和储备了一批人才,构筑了国际合作与交流基地。据悉,设施边建设边运行,有效支撑了国家任务和重大科研成果突破。依托设施,科研人员已在灵长类动物模型构建与疾病机理解析、灵长类动物遗传图谱与基因组进化等相关基础研究和关键技术突破方面,取得系列重要进展。“随着建设指标的全面完成,设施有望在2024年通过国家验收,届时灵长类设施将成为我国以灵长类动物为模型的基础与应用研究的国之重器。”姚永刚说。灵长类设施的运行将有力提升我国在生命健康、生物医药等领域的研发能力,对我国在相关领域实现重大原创突破、加快创新驱动发展具有重要意义。
  • 国务院通过国家重大科技基础设施建设中长期规划
    国务院总理温家宝16日主持召开国务院常务会议,讨论通过《国家重大科技基础设施建设中长期规划(2012—2030年)》。   《国家重大科技基础设施建设中长期规划》明确了未来20年我国重大科技基础设施发展方向和“十二五”时期建设重点。未来20年,要以提升原始创新能力、支撑重大科技突破和经济社会发展为目标,针对科技前沿研究和国家重大战略需求,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,加快我国重大科技基础设施建设。“十二五”时期,选择我国科技发展急需、具有相对优势和建设条件较为成熟的领域,优先安排海底科学观测网、精密重力测量研究设施等16项重大科技基础设施建设。会议要求健全协同创新和开放共享机制,加大投入力度,完善管理制度,全面提升重大科技基础设施建设水平和运行效率。   会议决定对著作权法实施条例、信息网络传播权保护条例、计算机软件保护条例、植物新品种保护条例等四部行政法规关于罚款数额的规定作出修改,以加大对侵犯知识产权和制售假冒伪劣商品行为的打击力度。   会议决定,2013年春节前为全国城乡低保对象、农村五保对象、享受国家抚恤补助的优抚对象和其他符合条件的困难群众共8953.4万人发放一次性生活补贴。
  • 中科院与广东省共建国家重大科技基础设施
    6月28日下午,中国科学院与广东省共建国家重大科技基础设施领导小组第一次会议在广州举行。中国科学院院长白春礼、广东省省长朱小丹出席会议,并分别代表中科院和广东省政府签署了相关项目合作协议。   会议宣布,在前期相关具体项目领导小组的基础上,成立统一的中国科学院与广东省共建国家重大科技基础设施领导小组,共同推进在广东省落户的国家重大科技基础设施项目建设工作。会议听取了相关项目关于建设和筹建工作进展情况的汇报,并就有关问题进行了研究和协调。   白春礼在讲话中指出,在广东建设大科学装置,既是中科院落实习近平总书记有关科技工作系列重要讲话精神、实施&ldquo 率先行动&rdquo 计划的战略布局,也是通过院省合作支持建设创新型广东的重要举措。他强调,院省联合成立共建国家重大科技基础设施领导小组,进一步理顺中科院在粤建设的国家重大科技基础设施的组织管理体制,强化双方统一领导决策、统筹相关资源、整体部署推进的工作机制,将对广东国家重大科技基础设施建设的顺利实施起到重要保障作用。他希望领导小组加强顶层设计,合理统筹资源,密切沟通协调,完善工作机制,加强对筹建项目的指导和支持,有力推动大科学装置落户广东,支持广东逐步成为国家重要科技创新高地,引领和带动区域创新体系加速发展。   朱小丹代表广东省委、省政府对中科院长期以来对广东科技创新特别是在粤科研平台建设的大力支持表示感谢。朱小丹说,中科院与广东的合作是近年来省部院产学研合作的典范。广东省与中科院共建国家重大科技基础设施项目,既是广东应该承担的一份带有重大战略意义的国家责任,也是广东更好实施创新驱动发展战略、提升区域自主创新能力、加快产业转型升级的迫切需要。朱小丹表示,广东将全力支持和配合在粤国家重大科技基础设施项目建设,按照会议决定和协议内容,建立紧密高效、反应迅速的协调机制,积极争取国家相关部门支持,严格按照质量要求、时间进度完成相关项目建设任务。希望院省合作进一步聚焦重点,共同推动院省合作再上新台阶。   会议由广东省副省长许瑞生主持。中科院副院长詹文龙、阴和俊、张亚平和秘书长邓麦村、副秘书长吴建国出席会议。中国科学院与广东省共建国家重大科技基础设施领导小组成员参加了会议。   又讯 中共中央政治局委员、广东省委书记胡春华此间会见了白春礼一行,并就中科院与广东省加强科技合作工作进行了会谈。在广东期间,白春礼还会见了广州市市长陈建华,就开展科技合作等问题进行了交流和探讨。
  • 发改委:明确未来20年重大科技设施发展方向
    17日上午,国家发展改革委有关负责人就《国家重大科技基础设施建设中长期规划(2012-2030年)》答记者问。国家发改委负责人表示,《规划》明确了未来20年能源、生命等7个科学领域重大科技设施发展的主要方向。   能源科学领域以解决人类社会可持续利用能源的科学问题为目标,以核能和高效化石能源研究设施建设为重点,逐步完善能源重大科技基础设施布局,为能源科学的新突破和节能减排技术变革提供支撑。   生命科学领域以探索生命奥秘和解决人类健康、农业可持续发展的重大科技问题为目标,突破生命健康、普惠医疗和生物育种中的重大科技瓶颈。   地球系统与环境科学领域以实现人类与自然和谐发展为目标,重点建设海底观测、数值模拟和基准研究设施,逐步形成观测、探测和模拟相互补充的地球系统与环境科学研究体系。   材料(行情 专区)科学领域以适应材料科学研究从经验摸索阶段到人工设计调控阶段转变的趋势为目标,推动材料科学技术向功能化、复合化、智能化、微型化及与环境相协调方向发展。   粒子物理和核物理科学领域以揭示物质最小单元及其相互作用规律为目标,面向超越标准模型新粒子和新物理探索、暗物质和暗能量探测、中低能核物理与核天体物理研究等方向,提高微观世界探索能力和自然界基本规律认知水平。   空间和天文科学领域以揭示宇宙奥秘和解释物质运动规律为目标,面向宇宙天体起源及演化、太阳活动及对地球的影响、空间环境与物质作用等方向,提升我国天文观测研究能力、空间天气和灾害应对能力以及空间科学实验基础能力。   工程技术科学领域以解决未来信息技术发展的基础和前沿、岩土地质体的动力特性及地质灾害过程等工程技术中的重大科技问题为目标,探索和逐步推进相关设施建设,为保障国家重点任务的实施、引领未来产业发展提供基础支撑。
  • 国家重大科技基础设施“仲华”热物理试验装置开建
    12月27日,“十四五”国家重大科技基础设施“仲华”热物理试验装置在青岛西海岸新区举行项目建设推进会,项目正式启动建设。“仲华”热物理试验装置是全国首个获得国家批复、首个启动建设的“十四五”国家重大科技基础设施项目。据悉,“仲华”热物理试验装置主要针对吸气式发动机开展复杂多变条件下的工程热力学及循环系统、气动热力学、燃烧学、传热传质学等热物理学科及其交叉学科基础理论和试验研究。该项目位于青岛西海岸新区古镇口核心区,总投资约29.2亿元,建设单位为中科院工程热物理研究所。“仲华”热物理试验装置的建设与运行,将有效支撑现有吸气式发动机设计体系的完善和未来新原理吸气式发动机设计体系的建立,为我国先进吸气式发动机自主创新发展提供坚实的条件支撑。2021年,经山东省、青岛市积极争取,“仲华”热物理试验装置成功纳入“十四五”国家重大科技基础设施,落地青岛西海岸新区。2022年以来,“仲华”热物理试验装置前期手续加快办理,可行性研究报告、初步设计及概算相继获得国家发改委批复。下一步,青岛市及西海岸新区将不断提升服务效能,推动“仲华”热物理试验装置早建成、早运营、早见效。
  • 科技部:加快硬X射线自由电子激光装置等重大科技基础设施建设
    12月29日,科技部公布《长三角科技创新共同体建设发展规划》(以下简称《规划》)。《规划》提出,共同打造重大科技基础设施集群,加快硬X射线自由电子激光装置、未来网络试验设施、超重力离心模拟与实验装置、高效低碳燃气轮机试验装置、聚变堆主机关键系统综合研究设施综合研究设施等重大科技基础设施建设。《规划》还提出,聚焦集成电路、新型显示、人工智能、先进材料、生物医药、高端装备、生物育种等重点领域,联合突破一批关键核心技术,形成一批关键标准,解决产业核心难题。除仪器设备领域的直接鼓励外,《规划》还指出,要“加强国家实验室、国家重点实验室、国家技术创新中心、国家产业创新中心、国家制造业创新中心、国家临床医学研究中心等重大科技创新基地布局建设。鼓励沪苏浙皖三省一市在科技前沿、共性关键技术和公共安全等领域集中优势科技资源,创新体制机制,共建一批长三角实验室,支持网络通信与安全紫金山实验室、材料科学姑苏实验室加快发展。“相关科研机构的建设也将促进仪器设备领域的大量采购。以下为规划详情:长三角科技创新共同体建设发展规划为贯彻落实《长江三角洲区域一体化发展规划纲要》和《国家创新驱动发展规划纲要》,推动长三角科技创新共同体建设,制定本规划。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届二中、三中、四中、五中全会精神,以加强长三角区域创新一体化为主线,以“科创+产业”为引领,充分发挥上海科技创新中心龙头带动作用,强化苏浙皖创新优势,优化区域创新布局和协同创新生态,深化科技体制改革和创新开放合作,着力提升区域协同创新能力,打造全国原始创新高地和高精尖产业承载区,努力建成具有全球影响力的长三角科技创新共同体。(二)基本原则。坚持战略协同。立足区域创新资源禀赋,以“一体化”思维强化协同合作,着力强化政策衔接与联动,破除体制机制障碍,实现优势互补,形成区域一体化创新发展新格局。坚持高地共建。发挥区域中心城市科技创新资源集聚优势,健全共享合作机制,联合开展重大科学问题研究和关键核心技术攻关,共建科技创新平台,提升原始创新能力,构筑有全球影响力的创新高地。坚持开放共赢。立足长三角地区创新特色,在更高水平、更广领域开展国际科技创新合作,以全球视野谋划和推动科技创新,集聚配置国际创新资源,塑造国际竞争合作新优势。坚持成果共享。推动优质科技资源和科技成果普惠共享,完善区域一体化技术转移体系,促进科技与经济社会深度融合,支撑长三角高质量一体化发展。(三)战略定位。高质量发展先行区。聚焦经济社会发展、民生福祉和国家安全的重大创新需求,依托国家重大科技创新基地和区域创新载体,推动科技、产业、金融等方面要素的集聚、融合,塑造经济社会发展的新空间、新方向,促进产业基础高级化和产业链现代化,支撑形成强劲活跃增长极。原始创新动力源。围绕科技前沿和国家重大需求,以国家实验室为引领,以重大科技基础设施集群为依托,联合提升原始创新能力,强化核心技术协同攻关,提高重大创新策源能力,推动长三角地区成为以科技创新驱动高质量发展的强劲动力源。融合创新示范区。深化体制机制改革,鼓励先行先试,推动区域科技创新政策有效衔接,科技资源高效共享,创新要素自由流动,创新主体高效协同,基础研究与应用研究融通发展,形成一批可复制、可推广的经验。开放创新引领区。对接国际通行规则,优化开放合作服务环境,联合打造一批高水平开放创新平台,实施一批重大国际科技合作项目,提升集聚和使用全球创新资源的能力,成为融入全球创新网络的前沿和窗口。(四)发展目标。2025年,形成现代化、国际化的科技创新共同体。长三角地区科技创新规划、政策的协同机制初步形成,制约创新要素自由流动的行政壁垒基本破除。涌现一批科技领军人才、创新型企业家和创业投资企业家,培育形成一批具有国际影响力的高校、科研机构和创新型企业。研发投入强度超过3%,长三角地区合作发表的国际科技论文篇数达到2.5万篇,万人有效发明专利达到35件,PCT国际专利申请量达到3万件,长三角地区跨省域国内发明专利合作申请量达到3500件,跨省域专利转移数量超过1.5万件。2035年,全面建成全球领先的科技创新共同体。一体化的区域创新体系基本建成,集聚一批世界一流高校、科研机构和创新型企业。各类创新要素高效便捷流通,科技资源实现高水平开放共享,科技实力、经济实力大幅跃升,成为全球科技创新高地的引领者、国际创新网络的重要枢纽、世界科技强国和知识产权强国的战略支柱。二、协同提升自主创新能力(一)统筹推进科技创新能力建设。共建一批长三角高水平创新基地。加强国家实验室、国家重点实验室、国家技术创新中心、国家产业创新中心、国家制造业创新中心、国家临床医学研究中心等重大科技创新基地布局建设。鼓励沪苏浙皖三省一市(以下简称“三省一市”)在科技前沿、共性关键技术和公共安全等领域集中优势科技资源,创新体制机制,共建一批长三角实验室,支持网络通信与安全紫金山实验室、材料科学姑苏实验室加快发展。加快建设长三角国家技术创新中心,对标国际最高标准、最好水平,围绕提升重点产业领域技术创新水平,打通重大基础研究成果产业化的关键环节,构建风险共担、收益共享、多元主体的协同创新共同体,提升能够引领未来产业发展方向的技术创新策源能力。对标国际标准和通行规则,强化数据治理和标准建设,积极推动长三角科学数据中心建设。共同打造重大科技基础设施集群。以上海张江、安徽合肥综合性国家科学中心为依托,加快构建世界一流的重大科技基础设施集群和区域重大科技基础设施网络,推动重大科技基础设施升级和联合建设,加快硬X射线自由电子激光装置、未来网络试验设施、超重力离心模拟与实验装置、高效低碳燃气轮机试验装置、聚变堆主机关键系统综合研究设施等重大科技基础设施建设,推进合肥先进计算中心建设,谋划筹建生物医学大数据、系统生物学、纳米真空互联、作物表型组学、光子科学、新一代工业控制系统、智能计算等前沿领域的重大科技基础设施,为突破世界前沿重大科学问题、取得重大原创突破提供有力支撑。(二)联合开展重大科技攻关。共同实施重大科技项目。鼓励三省一市立足优势学科和研究力量,瞄准世界科技前沿,聚焦国家重大需求,在基础研究、应用基础研究、关键核心技术攻关领域,主动发起和联合承担若干个国家重大科技项目。围绕三省一市高质量发展和民生改善的重大需求,创新组织管理机制,联合实施重大科技项目。加强三省一市科技计划的协调联动,建立统一的科技计划管理信息平台,促进科技报告和科技成果的信息共享。建立与科技创新区域协同攻关相适应的制度措施,完善各类创新主体充分参与、有效协同的机制,提高科技资源配置效率。协同开展关键核心技术攻关。推动长三角地区高校、科研机构、企业强强联合,面向产业创新需求,开展重大科技攻关。聚焦集成电路、新型显示、人工智能、先进材料、生物医药、高端装备、生物育种等重点领域,联合突破一批关键核心技术,形成一批关键标准,解决产业核心难题。共同打造集成电路共性技术研发、工业控制系统安全、多中心协同的生物医学智能信息技术等公共平台。在智能计算、高端芯片、智能感知、脑机融合等重点领域加快布局,筹建类脑智能、智能计算、数字孪生、全维可定义网络等重大基础平台。联合实施科技成果惠民工程。聚焦公共安全、食品安全、民生保障、生态环境、智慧城市、智慧医疗等社会发展领域,优化区域科研力量布局,完善民生领域科研体系。加大民生领域科技投入,加强检测试剂、疫苗和生物药物、新型化学药物制剂研制,共同加强传染病防治药物、罕见病药物和高性能医疗设备研发,提高疫病防控和公共卫生领域研发水平和技术储备能力。建立公共安全应急技术平台,加快共性适用技术的推广和应用。(三)协力提升现代化产业技术创新水平。强化区域优势产业创新协作。在电子信息、生物医药、航空航天、高端装备、新材料、节能环保、海洋工程装备及高技术船舶等重点领域,建立跨区域、多模式的产业技术创新联盟,支持以企业为主体建立一批长三角产学研协同创新中心。聚焦量子信息、类脑芯片、物联网、第三代半导体、新一代人工智能、细胞与免疫治疗等领域,努力实现技术群体性突破,支撑相关新兴产业集群发展,培育一批具有国际竞争力的龙头企业,建设一批国家级战略性新兴产业创新示范基地,打造若干具有国际竞争力的先进制造业集群。建设长三角国际标准化协作平台,增强企业为主体的国际标准竞争力。支撑循环型产业发展。以长三角生态绿色一体化发展示范区为依托,加强环境生态系统综合治理的科技创新供给,推进高新技术产业开发区工业污水近零排放、固废资源化利用和区域大气污染联防联控科技创新,开展整体技术方案与政策集成示范。积极推进绿色技术银行发展,推动在长三角地区布局建设绿色技术银行分行,打造跨区域的绿色技术协作平台和质量追溯体系。突破水—土—气协同治理和源头控制、清洁生产、末端治理与生态环境修复的成套核心技术群,协同构建循环型产业技术创新体系。三、构建开放融合的创新生态环境(一)共塑一体化科技创新制度框架。加强三省一市科技创新规划的对接。建立长三角科技创新规划会商机制,共同对区域性科技创新目标、重点任务、资源布局、国际合作等进行协商和统筹。针对重点领域和重大科技问题,联合编制科技创新专项规划,逐步形成长三角地区科技协同创新规划体系。鼓励开展创新政策先行先试。系统推进长三角区域全面创新改革,在推动人才、技术、资本、信息等创新要素跨区域自由流动方面先行探索经验。完善高新技术企业跨区域认定制度,鼓励长三角地区高新技术企业跨区域合作和有序流动。鼓励三省一市共同设立长三角科技创新券,支持科技创新券通用通兑,实现企业异地购买科技服务。建立科技创新人员柔性流动制度,深化区域科技交流与创新。共同加强科研诚信和学风作风建设。探索建立长三角地区科技伦理协作委员会和科研诚信信息共享协作与联合惩戒机制,促进区域内科研诚信案件联合调查,集中开展科研诚信宣传教育培训,积极营造长三角地区良好的科研生态和舆论氛围。(二)促进创新主体高效协同。强化各类创新主体的协同和联动。支持长三角地区建设一批世界一流大学和世界一流学科。依托“双一流”建设高校在集成电路等领域布局建设一批国家产教融合创新平台,为高校和企业协同开展人才培养、科学研究、学科建设提供支撑。充分发挥长三角高校协同创新联盟作用,整合高校优势科技资源,在重大基础研究和关键核心技术突破等方面形成联合攻关机制。建立长三角一流高校与科研机构的智库联盟,逐步形成引领型智库网络。鼓励有条件的高校、科研机构和企业牵头设立跨区域的新型研发机构。围绕产业创新链强化协同创新。围绕集成电路、人工智能、量子信息、生物医药、先进制造、物联网、互联网等高端高新产业,建立完善区域产业创新链。以重大科技创新基地为载体,以国家高新技术产业开发区为依托,以企业为技术创新主体,强化产学研用各类创新主体的跨区域跨领域协作攻关,构建基础研究、技术开发、成果转化和产业创新全流程的产业创新链。发挥长三角资本市场优势,构建有利于科技创新和高端产业孵化扩增的金融体系,支持一批中小微科技型企业创新发展。(三)推动创新资源开放共享和高效配置。依托上海科技创新资源数据中心等机构,建设长三角科技资源共享平台,完善利益分享机制,促进区域资源优势互补和高效利用。整合三省一市高校、科研机构、各类创新基地和专业化服务机构的科技创新资源,引入国家科技资源共享平台优质资源,形成科技资源数据池。不断完善长三角科技资源共享服务平台功能,完善财政奖补机制,支持成立科技资源开放共享服务机构联盟,推动重大科研基础设施、大型科研仪器、科技文献、科学数据、生物种质与实验材料等科技资源开放共享与合理流动。加大各省市人才支持政策的协调力度,建立一体化人才保障服务标准,实行人才评价标准互认制度,促进科技人才在各省市之间健康有序流动。允许地方高校按照国家有关规定自主开展人才引进和职称评定。推动三省一市科技专家库共享共用,完善人才交流、合作和共享机制。构筑长三角地区科普工作协同发展体系,完善科普资源开放共享机制,共同承办国家重大科普活动,进一步推进三省一市科普项目、展览、影视作品等优质科普资源交流共享。(四)联合提升创新创业服务支撑能力。构建一体化科技成果转移转化体系。充分发挥市场和政府作用,构建开放、协同、高效的共性技术研发平台,打通原始创新向现实生产力转化通道,推动科技成果跨区域转化,建立健全成果转化项目资金共同投入、技术共同转化、利益共同分享机制。以长三角地区四个技术交易市场为枢纽,建立完善长三角一体化技术交易市场网络。依托三省一市现有技术转移服务平台和长三角国际创新挑战赛等活动,建立面向全球的科技成果信息发布、转移、转让、授权的科技成果转移转化服务体系和科技成果交易中心。以上海闵行、江苏苏南、浙江国家成果转移转化示范区建设为引领,鼓励三省一市高校、科研机构建立专业化技术转移机构,发展社会化技术转移机构,多渠道培养技术转移经理人,提高技术转移专业服务能力。推动高校、科研机构选派拥有科研成果、创新能力强的科研人员担任“科技专员”,深入企业开展技术转移和科普服务。创新科技金融服务模式。探索建立长三角跨省(市)联合授信机制,推动信贷资源流动,服务长三角科技型中小企业创新发展。引导大型国有银行、股份制商业银行、保险公司以及地方金融机构等,开发优质科技金融产品,开展天使投资、知识产权质押、科技贷款、科技保险等活动,为长三角创新型企业提供全生命周期科技金融服务。支持长三角发展“数据驱动”的科技金融模式,研究制定数据化科技融资风险分担和补偿机制,建立促进科技创新的企业信用增进机制。共建长三角创业融资服务平台。加强上海证券交易所和三省一市证监局的协作交流,依托长三角资本市场服务基地,为长三角科技创新企业提供多层次融资服务。支持长三角探索建立区域创新收益共享机制,鼓励设立产业投资、创业投资、股权投资、科技创新、科技成果转化引导基金。发挥科创板对长三角科技创新共同体的支持作用,鼓励符合条件的长三角地区科技创新企业到科创板上市融资。支持科技型上市公司做强做大,发挥高质量上市公司对科技创新的带动作用。优化创业投资发展的制度环境和生态环境,培育一批具有国际竞争力的创业投资机构,吸引具有全球影响力的国际创投机构在长三角投资。(五)完善区域知识产权战略实施体系。推动知识产权创造与合作。制定与长三角科技体制改革相配套的知识产权政策,进一步完善科技创新知识产权激励机制、产学研协同创新机制、高价值专利培育联合推进机制,加强长三角产业知识产权布局谋划,超前布局前瞻性、战略性新兴产业专利,培育知识产权密集型产业。加快大数据确权立法探索与实践,建立健全数据交易机制,鼓励基于公共数据和社会数据的场景开发利用,促进数据要素市场化配置。在长三角跨省(市)联合授信机制下,推进跨区域的知识产权投融资服务。强化知识产权保护协作。加强知识产权法规体系建设,统筹制定知识产权保护政策,推动长三角知识产权地方立法和实施机制更加配套。联合加强知识产权保护工作,推行完善知识产权联合执法和跨地区执法协作的工作机制。加强上海知识产权法院与南京、苏州、杭州、宁波、合肥等地知识产权法庭之间的合作交流,在三省一市高级人民法院建立的司法协作机制框架内建立长效工作机制,提供更高质量的司法服务和保障,实现互利共赢,共同提升知识产权司法保护水平。完善知识产权服务体系。加快构建政府引导、多元参与的一体化知识产权公共服务体系。加强长三角地区协作,强化知识产权公共服务资源供给,建立长三角知识产权信息公共服务平台,形成跨行政区域的公共服务合作机制和知识产权信息共建共享机制,推动科技成果及知识产权信息的有效传播利用。完善一体化的知识产权教育培训、知识产权学科建设和高端人才培养机制,加强知识产权的宣传普及。四、聚力打造高质量发展先行区(一)一体化推进创新高地建设。瞄准世界科技前沿和产业制高点,充分发挥创新资源集聚优势,协同推动原始创新、技术创新和产业创新,共建多层次产业创新大平台,形成具有全国影响力的科技创新和制造业研发高地。提升上海创新能级和国际化水平,加快国际科技创新中心建设步伐,发挥辐射带动作用,引领长三角一体化发展。增强南京、杭州、合肥等区域中心城市创新能力,提升苏浙皖区域创新发展水平,与上海共同打造长三角科创圈,构筑形成优势互补、协同联动的科技创新圈和创新城市群。强化张江综合性国家科学中心、合肥综合性国家科学中心科技创新策源地的重要作用,统筹推进国家实验室、重大科技基础设施和科技创新基地建设。发挥长三角双创示范基地联盟作用,加强跨区域“双创”合作,联合共建国家级科技成果孵化基地和双创示范基地。充分发挥上海张江、苏南、杭州、宁波温州和合芜蚌等国家自主创新示范区集群在重大创新政策先行先试、创新型产业集群发展方面的示范带动效应,依托国家高新技术产业开发区,推动科技、产业、金融、人才等各方面创新要素汇聚融合、体系化发展,共同打造长三角高质量发展主引擎。(二)联合推进G60科创走廊建设。发挥G60科创走廊九城市的创新资源集聚优势,先行先试一批重大创新政策,协同布局一批科技创新重大项目和研发平台,促进科技资源开放共享和科技成果转移转化。在人工智能、集成电路、生物医药、高端装备、新能源、新材料、新能源汽车等领域,加快产业协同创新中心等创新基地建设,支撑打造若干具有国际竞争力的先进制造业集群,共建中国制造迈向中国创造的先进走廊、科技和制度创新双轮驱动的先试走廊、产城融合发展的先行走廊。(三)协力培育沿海沿江创新发展带。以上海为中心,沿海岸线向北、向南展开,分别打造北至南通、盐城、连云港的沪通港沿海创新发展翼和南至宁波、绍兴、舟山、台州、温州的沪甬温沿海创新发展翼。沪通港沿海创新发展翼重点协同推进先进制造、石油化工等领域共性技术研发和海洋科技创新,支撑引领精品钢、海洋工程装备和高技术船舶等高端制造业,临港化工、能源和新能源、港航物流等产业发展,辐射带动苏北皖北创新发展。沪甬温沿海创新发展翼重点协同推进新材料、生物医药和海洋科技创新,开展沿沪宁杭合产业创新带研究,谋划建设沪杭甬湾区经济创新带,引领支撑高端制造、医药健康、海洋高新技术产业和海洋服务业发展,打造生态绿色的海洋发展创新带,辐射带动浙江西南部衢州、丽水等地区创新发展。依托长江黄金水道,打造沿江创新发展带,支持环太湖科技创新带发展,充分发挥皖江城市带承接产业转移示范区的区位优势,建设科技成果转化和产业化基地,支撑跨江联动和港产城一体化发展,增强长三角地区对长江中游地区的辐射带动作用。五、共同推进开放创新(一)共建多层次国际科技合作渠道。鼓励各类区域创新主体积极拓展国际科技合作渠道和领域,积极开展多层次国际科技活动。支持长三角地区高校、科研机构、科技园区和企业在政府间科技合作联委会等机制下开展国际科技交流与合作,提升合作层次与水平。鼓励具备优势技术的高校、科研机构在海外开展联合办学、开设分支机构、实施国际援助项目等,开展技术示范与推广、技术培训、技术服务、联合研发等方面的合作。共同举办国际化、品牌性的展览展示与论坛活动。发挥三省一市华侨华商资本、人脉等资源优势,扩大民间交往、深化民心沟通。鼓励有关商会、产业联盟、企业等推进与国外有关组织和机构的科技创新交流合作。(二)协同实施或参与国际大科学计划。围绕生命健康、资源环境、物质科学、信息科学等领域,集中优势资源,适时牵头和参与发起全脑神经联结图谱等国际大科学计划和国际大科学工程。鼓励在生物医药、能源、先进材料、信息技术、空间天文与海洋等领域加强国际科技合作。依托重大科技基础设施,吸引全球科学家力量,开展联合研究,突破重大科学难题。建立国际大科学计划组织运行、实施管理、知识产权管理等新模式、新机制,通过有偿使用、知识产权共享等方式,吸引国际组织、国内外政府、科研机构、高等院校、企业及社会团体等参与支持大科学计划建设、运营和管理。(三)加快聚集国际创新资源。汇聚国际一流研发机构。加强长三角地区“放管服”改革联动,打造国内最优营商环境,充分发挥长三角对外开放整体优势,大力吸引海外知名大学、研发机构、跨国公司等在长三角地区设立全球性或区域性研发中心,积极争取科技相关国际组织在长三角落户或设立分支机构。促进国际技术转移。加深与欧盟创新驿站等国际机构的合作,加强中以上海创新园、中新南京生态科技岛、中日(苏州)地区合作示范园、中新苏州工业园区、中欧(无锡)生命科技创新产业园、中以常州创新园、杭州万向国际聚能城、中荷(嘉善)产业合作园、合肥国家中德智能制造国际创新园等合作园区建设,共享与国外技术转移机构的合作关系,开展国际技术转移服务,促进国际先进科技成果在长三角转化落地。加快聚集国际高端人才。加强各类创新平台建设,充分发挥浦江创新论坛、世界顶尖科学家论坛、世界互联网大会、世界制造业大会、世界青年科学家峰会的国际化效应,打造全球高端科技人才集聚、交流与合作平台。加大国际人才招引政策支持力度,共享海外引才渠道,加强“二次引进”,推动国际人才认定互认、服务监管部门信息互换,提高国际人才综合服务水平,吸引和集聚全球高层次科技创新人才。六、保障措施(一)坚持党的集中统一领导。把党的领导贯穿长三角科技创新共同体建设的全过程,在推动长三角一体化发展领导小组领导下,建立健全国家有关部门与三省一市的协同联动机制,协调解决有关问题。科技部牵头设立长三角科技创新共同体建设办公室,统筹本规划实施,推进各项任务全面落实。(二)建立完善专家咨询机制。建立长三角科技创新专家咨询制度,开展长三角地区科技创新重大战略问题研究和决策咨询,为科技创新支撑长三角一体化高质量发展提供咨询建议。(三)优化支持方式。加大对长三角科技创新共同体规划建设的支持力度,更好发挥财政资金示范引导作用。创新地方财政投入方式,加强对重大科技项目的联合资助,提升财政科技资金使用效率。(四)建立跟踪评估机制。建立健全长三角科技创新共同体建设发展指标体系。加强对规划实施、政策落实和项目建设情况的督促检查,定期对规划推进落实情况进行监测评估,确保规划取得预期成效。
  • 国家重大科技基础设施建设中长期规划(2012—2030年)印发
    3月4日,国务院办公厅下发关于印发国家重大科技基础设施建设中长期规划(2012—2030年)的通知,其中规划中指出:   到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。   “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。   具体详情如下: 国务院关于印发国家重大科技基础设施建设 中长期规划(2012—2030年)的通知 国发〔2013〕8号   各省、自治区、直辖市人民政府,国务院各部委、各直属机构:   现将《国家重大科技基础设施建设中长期规划(2012—2030年)》印发给你们,请认真贯彻执行。   国务院   2013年2月23日   (此件公开发布) 国家重大科技基础设施建设中长期规划 (2012—2030年)   重大科技基础设施是为探索未知世界、发现自然规律、实现技术变革提供极限研究手段的大型复杂科学研究系统,是突破科学前沿、解决经济社会发展和国家安全重大科技问题的物质技术基础。当前,我国正处于建设创新型国家的关键时期,按照全国科技创新大会部署和深化科技体制改革要求,前瞻谋划和系统部署重大科技基础设施建设,进一步提高发展水平,对于增强我国原始创新能力、实现重点领域跨越、保障科技长远发展、实现从科技大国迈向科技强国的目标具有重要意义。为贯彻《国家中长期科学和技术发展规划纲要(2006—2020年)》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》,明确未来20年我国重大科技基础设施发展方向和“十二五”时期建设重点,制定本规划。   一、规划基础和背景   新中国成立特别是改革开放以来,国家不断加大投入,我国重大科技基础设施规模持续增长,覆盖领域不断拓展,技术水平明显提升,综合效益日益显现。“十一五”时期,启动建设重大科技基础设施12项,验收设施10项,目前在建和运行设施总量达到32项。设施的建设和运行为科学前沿探索和国家重大科技任务开展提供了重要支撑,推动我国粒子物理、核物理、生命科学等领域部分前沿方向的科研水平进入国际先进行列。依托设施解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾和生物多样性保护等方面发挥着不可替代的作用。设施建设带动了大型超导、精密制造和测控、超高真空等一批高新技术发展,促进了相关产业技术水平提高 凝聚和培养了一批国内外顶尖科学家和研究团队,以及高水平工程技术和管理人才。此外,设施还在深化科技国际合作交流、提升全民科学素质、增强民族自信心等方面发挥了独特作用。在快速发展的同时,我国重大科技基础设施也存在一些问题:总体规模偏小、数量偏少,学科布局系统性、前瞻性不够,技术水平有待进一步提升,开放共享和高效利用水平仍需提高,管理体制机制亟待健全,工程技术和管理队伍建设需要加强等。   当今世界,科技发展正孕育着一系列革命性突破,发达国家和新兴工业化国家纷纷加大重大科技基础设施建设投入,扩大建设规模和覆盖领域,抢占未来科技发展制高点,我国重大科技基础设施建设面临机遇和挑战并存的新形势。   (一)科学前沿的革命性突破越来越依赖于重大科技基础设施的支撑能力。现代科学研究在微观、宏观、复杂性等方面不断深入,学科分化与交叉融合加快,科学研究目标日益综合。科学领域越来越多的研究活动需要大型研究设施的支撑,要求不断提高科技基础设施的单体规模和技术性能,强化相互协作,形成大型综合性设施群。进一步加强我国重大科技基础设施建设,有利于在新一轮科技革命中抢占先机、有所作为。   (二)技术创新和产业发展越来越需要重大科技基础设施提供强大动力。当前,科学研究与技术研发相互依托、协同突破的趋势日益明显,技术创新和产业振兴的步伐不断加快。重大科技基础设施的建设和运行,越来越注重科学探索和技术变革的融合,可以衍生大量新技术、新工艺和新装备,加快高新技术的孕育、转化和应用。我国在若干重要领域超前部署一批重大科技基础设施,有利于更好地促进产业技术进步、破解经济社会发展中的瓶颈性科学难题,对加快培育战略性新兴产业、实现经济发展方式转变、支撑经济社会发展具有重要意义。   (三)国际科技竞争合作越来越需要重大科技基础设施的牵引和依托。近年来,在事关国家核心利益的科技领域,主要国家在重大基础设施建设方面的竞争日趋激烈。同时,随着气候变化、生态保护、人口健康等全球性问题不断增多,在事关人类共同利益和长远发展的科技领域,由于建造设施资金投入、技术难度等超出单个国家的能力,联合共建与合作研究越来越成为发展重大科技基础设施的重要方式。加快提升我国重大科技基础设施的水平,适时在重要优势领域发起合作建设计划,有利于在国际科技竞争合作中赢得主动,不断提高我国科技国际影响力。   党的十八大明确提出实施创新驱动发展战略,强调科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。这对国家重大科技基础设施建设和运行赋予了新的使命和责任。面对新形势新任务,我国必须加快重大科技基础设施建设,进一步突出设施建设在我国总体发展战略中的基础性、前瞻性和战略性作用,加强与相关规划、计划的衔接,强化支撑服务功能 优化设施布局,提升技术水平,加强人才培养,形成较为完善的重大科技基础设施体系,促进自主创新能力提升,有力支撑创新型国家建设。   二、指导思想、建设原则和建设目标   (一)指导思想。   以邓小平理论、“三个代表”重要思想、科学发展观为指导,落实全国科技创新大会部署和深化科技体制改革、加快国家创新体系建设的要求,以提升原始创新能力和支撑重大科技突破为目标,以健全协同创新和开放共享机制为保障,布局新建与整合提升相结合、自主发展与国际合作相结合、设施建设与人才培养相结合,加大投入力度,加快建设完善重大科技基础设施体系,全面提升设施建设水平和运行效率,为我国科技长远发展和创新型国家建设提供有力支撑。   (二)建设原则。   一是着眼长远、服务大局。突出重大科技基础设施建设的战略性,既要瞄准探索未知世界和发现自然规律的科技发展前沿方向,又要结合国情,聚焦影响未来经济社会发展和国家安全的重大科技难题,衔接好科技重大专项等相关规划和计划,强化设施建设对国家重大战略的支撑作用。   二是科学谋划、系统布局。把握科学技术发展的总体趋势,有机衔接现有科技资源,统筹考虑学科领域布局,加强国际合作,全面系统谋划重大科技基础设施建设与发展,形成“探索一批、预研一批、建设一批、运行一批”的发展格局。   三是重点突破、实现跨越。分清轻重缓急,优先选择具有相对优势、科技发展急需或科技突破先兆已经显现的科学前沿和学科交叉领域,选准主攻方向,集中优势资源,加快重大科技基础设施建设,实现重点领域跨越发展。   四是创新机制、持续发展。将重大科技基础设施建设作为深化科技体制改革的重要抓手,针对重大科技基础设施的基础性、公益性特征,建立完善高效的投入机制、开放共享的运行机制、产学研用协同创新机制、科学协调的管理制度,提高设施建设和运行的科技效益,形成持续健康发展的良好局面。   (三)建设目标。   到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。   “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。   三、总体部署   未来20年,瞄准科技前沿研究和国家重大战略需求,根据重大科技基础设施发展的国际趋势和国内基础,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,从预研、新建、推进和提升四个层面逐步完善重大科技基础设施体系。在可能发生革命性突破的方向,前瞻开展一批发展前景较好的探索预研工作,夯实设施建设的技术基础 在2016—2030年期间适时启动建设一批科研意义重大、条件基本成熟的设施,强化未来科技持续发展的能力 在我国具有一定基础和优势的领域,在“十二五”期间建设一批科研急需、条件成熟的设施,强化科技持续发展的支撑能力 对已经启动但尚未完成建设任务的在建设施,加大工程管理和技术攻关力度,力争早日建成投入使用 对已经投入运行但仍有较大发展潜力的设施,进一步完善提升技术指标和综合性能,最大程度发挥其科学效益。   (一)能源科学领域。   以解决人类社会可持续利用能源的科学问题为目标,面向我国中长期核能源开发与安全运行、化石能源高效洁净利用与转化、可再生能源规模化利用等方向,以核能和高效化石能源研究设施建设为重点,注重新能源、新材料、网络技术相结合,逐步完善相关领域重大科技基础设施布局,为能源科学的新突破和节能减排技术变革提供支撑。   核能源方面。完善提升全超导托卡马克核聚变实验装置的性能,积极参与国际热核聚变实验堆计划,保持我国在磁约束核聚变研究领域的先进地位 建设长寿命高放核废料嬗变安全处置实验装置,攻克核裂变能安全洁净发展的技术瓶颈 适时启动高效安全聚变堆研究设施建设,加快聚变能走向实际应用进程。   化石能源方面。建设高效低碳燃气轮机试验装置,支撑相关领域重大基础理论研究,解决煤炭清洁利用和高效转换关键科技问题 探索预研二氧化碳捕获、利用和封存研究设施建设,为应对全球气候变化提供技术支撑。   可再生能源方面。针对风能、太阳能、生物质能、地热能、海洋能等能量密度低、随机波动等问题,探索预研能量捕获、储能、转换、并网研究设施建设,促进可再生能源规模化高效利用。   (二)生命科学领域。   以探索生命奥秘和解决人类健康、农业可持续发展的重大科技问题为目标,面向综合解析复杂生命系统运动规律、生物学和医学基础研究向临床应用转化、种质资源保护开发与现代化育种等方向,重点建设以大型装置为核心、多种仪器设备集成的综合研究设施,完善规模数据资源为主的公益性服务设施,支撑生命科学向复杂宏观和微观两极发展并实现有机统一,突破生命健康、普惠医疗和生物育种中的重大科技瓶颈。   现代医学方面。建设转化医学研究设施,从分子、细胞、组织、个体等方面系统认识人类疾病发生、发展与转归的规律,促进生物医学基础研究成果快速转化为临床诊疗技术。   农业科学方面。建成国家农业生物安全科学中心,支撑农业危险性外来入侵生物、农业毁灭性高致害变异性生物和农业转基因生物安全的创新性理论、方法与防控新技术研究 建设模式动物研究设施,支撑表型及基因型关系、遗传信息高通量获取与工程转化、细胞和动物模型开发与应用等研究 适时启动农作物种质表型和基因、动物疫病、农业微生物研究设施建设,支撑我国农业生物技术和产业的持续发展及生物多样性保护。   生命科学前沿方面。建成蛋白质科学研究设施,支撑高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究 探索预研系统生物学研究设施及合成生物学研究设施建设,满足从复杂系统角度认识生物体的结构、行为和控制机理的需要,综合解析生物系统运动规律,破解改造和设计生命的科学问题。   生命科学研究基础支撑方面。适时启动大型成像和精密高效分析研究设施建设,满足生物学实时、原位研究和多维检测、分析、合成技术开发的需求 探索预研生物信息中心建设,为生命科学研究提供科学数据、种质资源、实验样本和材料等基础支撑。   (三)地球系统与环境科学领域。   以实现人类与自然和谐发展为目标,面向地球结构演化与变化过程、地壳物质组成和精细结构、地球系统各圈层间复杂作用及其耦合过程、太阳及其活动控制下各圈层的响应与耦合、人类活动影响环境的过程和机理等方向,重点建设海底观测、数值模拟和基准研究设施,逐步形成观测、探测和模拟相互补充的地球系统与环境科学研究体系。   现场探测与观测方面。建成海洋科学综合考察船,满足综合海洋环境观测、探测以及保真取样和现场分析需求 建成航空遥感系统,提高我国遥感信息技术与装备研发实验能力,为自然灾害和突发事件提供快速、实时、精确的遥感数据 建设海底科学观测网,为国家海洋安全、资源与能源开发、环境监测和灾害预警预报等研究提供支撑 适时启动地球系统科学航天航空遥感等技术监测、深海探测与调查、固体地球深部探测与动态监测、陆海地球环境观测等研究设施建设,实现多时空尺度全面长期连续监测与数据积累,逐步形成对地球系统的立体、动态监测分析能力。   基准系统建设方面。建设精密重力测量研究设施,获取高分辨率、高精度地球质量变化基础数据,支撑固体地球演化、海洋与气候变化动力学、水资源分布和地质灾害规律等研究,满足国家安全、资源勘探和防灾减灾的战略需求。适时启动包括地基基准、环境基准、深空基准等方面的基准系统建设。   数值和实验模拟方面。建设地球系统数值模拟装置,支撑气候变化、地球系统及各层圈过程模拟研究,认识地球环境过程基本规律,提高预测环境变化和重大灾害的能力。适时启动环境污染机理与变化研究模拟实验装置建设,支撑空气污染、流域水污染预测模型开发和气候变化模式研究,提高空气质量、流域水污染等预报预警能力。   (四)材料科学领域。   适应材料科学研究从经验摸索阶段到人工设计调控阶段转变的趋势,面向量子物质演生现象、纳米尺度量子结构、极端条件下材料物性与物质演变、重要工程材料服役性能等方向,以材料表征与调控、工程材料实验等为研究重点,布局和完善相关领域重大科技基础设施,推动材料科学技术向功能化、复合化、智能化、微型化及与环境相协调方向发展。   材料表征与调控方面。完善提升已有同步辐射光源,建成软X射线自由电子激光试验装置,建设高能同步辐射光源验证装置 探索预研硬X射线自由电子激光装置建设,适时启动高性能低能量同步辐射光源建设,满足以纳米空间分辨率、皮秒至飞秒时间分辨率、极高能量动量分辨率对材料多层次结构分析研究的需求,逐步形成布局合理的国家光源体系。建成散裂中子源和强磁场实验装置,建设极低温、超快、超高压极端条件研究设施,形成与大型同步辐射光源结合的格局,满足研究和发现新物态、新现象、新规律和创造新材料的需求。   工程材料实验方面。建成重大工程材料服役安全研究评价设施,支撑不同尺度及跨尺度的结构性能研究 探索预研超快光谱界面反应检测装置、极端和工业特殊服役环境模拟装置建设,支撑材料服役行为和规律研究 结合高能同步辐射光源,适时启动综合工程环境在线装置建设,支撑真实环境下工程材料实时、原位研究。   (五)粒子物理和核物理科学领域。   以揭示物质最小单元及其相互作用规律为目标,面向超越标准模型新粒子和新物理探索、暗物质和暗能量探测、中低能核物理与核天体物理研究等方向,建设相关大型研究设施,提高微观世界探索能力和自然界基本规律认知水平。   粒子物理方面。建设高能宇宙线研究设施,探索高能空间粒子起源和相关新物理前沿 适时启动用于中微子和其他高能粒子物理研究的非加速器实验设施建设,探索预研新型加速器实验设施建设。   核物理方面。建设高性能重离子束研究装置,使我国核物理基础研究在原子核层次上的整体水平进入国际先进行列 探索预研强流放射性束实验设施建设。   (六)空间和天文科学领域。   以揭示宇宙奥秘和解释物质运动规律为目标,面向宇宙天体起源及演化、太阳活动及对地球的影响、空间环境与物质作用等方向,按宇宙、星系、太阳系等不同空间尺度布局设施建设,提升我国天文观测研究能力、空间天气和灾害应对能力以及空间科学实验基础能力。   宇宙和天体物理方面。建成大口径射电望远镜,为宇宙大尺度结构及物理规律研究提供支撑 建设中国南极天文台,支撑暗物质、暗能量、宇宙起源、天体起源等前沿研究 探索预研先进多波段天文观测设施建设,逐步形成比较完善的天文观测及数据应用系统。   太阳及日地空间观测方面。建成空间环境地基监测网,揭示近地空间环境的时间和空间变化规律,并逐步形成覆盖更多重要区域的空间环境监测、预警能力 适时启动大型太阳观测研究设施建设,支撑太阳、行星际、磁层、电离层和中高层大气变化过程和规律研究,深化太阳变化及其对地球和人类影响的认识。   空间环境物质研究方面。建设空间环境与物质作用模拟装置,支撑近地空间环境与材料、元器件、结构、系统及生物体作用规律研究 探索预研空间微重力科学实验设施、南极气球站和引力波研究设施的建设,揭示空间微重力环境物质运动规律,提升我国深空探测、空间基础物理、空间利用等方面的研究能力。   (七)工程技术科学领域。   瞄准未来信息技术发展的基础和前沿、岩土地质体的动力特性及地质灾害过程等工程技术中的重大科技问题,以产生变革性技术为主要目标,以信息技术、岩土工程和空气动力学为研究重点,探索和逐步推进相关设施建设,为保障国家重点任务的实施、引领未来产业发展提供基础支撑。   信息技术方面。建设未来网络研究设施,解决未来网络和信息系统发展的科学技术问题,为未来网络技术发展提供试验验证支撑 适时启动新一代授时系统建设,支撑超精密时间频率技术开发,逐步形成高精度卫星授时系统和高精度地基授时系统共同发展的格局。   岩土工程方面。适时启动超重力模拟研究设施建设,揭示复杂岩土地质体的动力特性 探索预研大型地震模拟研究设施建设,开展地震动输入和工程地震灾害模拟研究 探索预研深部岩土工程研究设施建设,揭示深部岩体的力学特征。   空气动力学方面。建成多功能结冰风洞,支撑不同冰型和冰积累过程对飞行器空气动力特性的影响等研究 建设大型低速风洞,支撑气动噪声、流动分离与涡旋运动、流动控制、流固耦合、电磁空气动力学等研究 适时启动大型跨声速风洞、低温高雷诺数风洞、先进航空发动机研究设施建设,为我国航空航天、高速铁路建设等提供必要的研究试验手段。   四、“十二五”时期建设重点   “十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,综合考虑科学目标、技术基础、科研需求和人才队伍等因素,优先安排16项重大科技基础设施建设。   (一)海底科学观测网。   海洋科学研究正经历着由海面短暂考察到内部长期观测的革命性变化,这将从根本上改变人类对海洋的认识。围绕实现全天候、综合性、长期连续实时观测海洋内部过程及其相互关系的科学目标,建设海底长期科学观测网,主要包括:基于光电缆的陆架和深海观测系统,基于无线传输的海底观测网拓展系统,基于固定平台的海底观测网综合节点系统,岸基站、支撑系统和管理中心等。该设施建成后,将为国家海洋安全、深海能源与资源开发、环境监测、海洋灾害预警预报等研究提供支撑。   (二)高能同步辐射光源验证装置。   高能同步辐射光源是前沿基础科学、工程物理和工程材料等研究不可或缺的手段,是世界同步辐射光源领域竞争的制高点。以具备建设全球最高亮度高能同步辐射光源的能力为目标,建设相关验证装置,主要包括:高能量加速器、光束线、实验站等方面的工程性预研和关键部件的工程样机试制,高精度特种磁铁系统、高精度束流位置测控系统、高性能插入件、纳米级硬X射线聚焦系统、超高分辨X射线单色器、纳米定位与扫描装置的试制。该设施建成后,将为我国建设高能同步辐射光源奠定坚实的基础。   (三)加速器驱动嬗变研究装置。   长寿命核废料的安全处理处置是影响核电持续发展的瓶颈。加速器驱动次临界反应系统利用散裂中子嬗变核废料,大幅降低核废料放射性寿命,具有安全性高和嬗变能力强等特点,是安全处理核废料的最佳手段之一。为深入研究核废料嬗变过程中的科学问题,突破系列核心关键技术,建设核废料嬗变原理实验研究装置,主要包括:强流质子直线加速器、高功率中子散裂靶、液态金属冷却次临界反应堆三大子系统。该设施建成后,将满足我国长寿命高放核反应堆废料安全、妥善处理处置的研究需求,为我国核能可持续发展提供技术支撑。   (四)综合极端条件实验装置。   极端物理条件是拓展物质科学研究空间,发现和研究新物态、新现象、新规律必不可少的手段。针对当前凝聚态物理、化学、材料前沿研究所需的极端条件向综合化、集成化和规模化发展的趋势,围绕为量子物质、功能材料和物态变化动力学过程等研究提供科学手段的目标,建设综合性的物质科学研究极端条件用户装置,主要包括:达到亚毫才,造就一批科研、工程和管理人才队伍。建立健全与设施特点相适应的人员分类评价、考核、激励政策,凝聚和稳定设施建设和运行专业人员队伍。   (六)促进国际合作。适应重大科技基础设施发展日益国际化的趋势,结合我国科技发展实际需求,积极参与享有知识产权和使用权的重大科技基础设施国际合作项目。积极探索以我为主的国际合作,吸引国外资源参与我国发起的重大科技基础设施建设和相关科学研究。注重引进国外先进技术和管理经验,提高我国重大科技基础设施建设、运行的技术和管理水平。
  • 顾祥林代表:需要特殊政策保障重大科技基础设施高效建设和运维
    今年政府工作报告提出,要加快推动高水平科技自立自强。高水平科技自立自强,必须加强基础研究,特别是原创性的技术创新与基础研究。作为基础研究的平台,重大科技基础设施是解决重点产业关键问题、支撑关键核心技术攻关、保障经济社会发展和国家安全的物质技术基础,也是抢占全球科技制高点、构筑竞争新优势的战略必争之地。目前,上海已建、在建和规划建设的重大科技基础设施共计20个。上海光源、国家蛋白质科学研究(上海)设施等8个大科学设施形成了基础研究创新生态,在支撑前沿基础研究、关键核心技术攻关等方面发挥了重要作用。全国人大代表,同济大学原副校长、教授顾祥林。受访对象供图然而,全国人大代表、同济大学原副校长顾祥林教授经过长期的工作和调研发现,重大科技基础设施建设和运维主体建制不明、定位不清,重大科技基础设施创新效能未能充分发挥,概算资金不足,难以构建多元化人才队伍等。“重大科技基础设施建设工程具有开创性和特殊性。一般都需要较大规模投入和较长时间的工程建设。进入运行阶段后,也必须保证其稳定性和持续性,才能支撑和实现重大科研目标。”顾祥林强调,这需要国家特殊的政策保障和持续的财政支持方能实现其高效建设和运维。为此,他建议:明确重大科技基础设施建设和运维主体的建制体系。由国家相关部委发文明确重大科技基础设施建设和运维主体作为独立的实体性科研机构的建制体系;逐步建立健全与重大科技基础设施工程和科研双重属性相匹配的运行管理和评价体系;有建制地组建一支稳定的建设运维一体化队伍,以确保重大科技基础设施的长期运维和不断升级,保持其国际先进性。同时,设立高水平科技研发重大专项,吸引顶尖科学家领衔高水平科研团队进行原创性、引领性科技攻关并产出高水平研究成果;谋划技术攻关创新行动计划,加快攻克重要领域关键技术;启动高端装备创新工程专项课题,将重大科技基础设施打造为具备新技术、新工艺、新设备和新材料的可靠性测试与验证平台,推动重大基础研究成果和关键核心技术的产业化,促进产业与科研平台的良性互动。对于分步建设的国家重大科技基础设施,顾祥林建议,予以分步匹配运维经费,以鼓励国家重大科技基础设施提前发挥创新效能并保障安全运行。由于重大科技基础设施建设周期长、难度大、风险高,且无工程先例参照,顾祥林建议,完善资金投入机制,适时开展阶段性评审和概算调整,并根据设施建设的实际需求,适当增加研发费用和工程验证经费。另外,不同的重大科技基础设施建设与运维环境存在极大差别,建议针对在海上、高海拔等极端环境下建设的大科学设施,予以超概算资金托底。针对人才建设难题,顾祥林还建议,给予稳定的人员经费支持和突破性的评价激励政策。
  • 上海:推动重大科技基础设施关键技术和核心设备研究,最高可支持3亿元
    近日,上海市发展改革委、市财政局、上海科创办、市科委、临港新片区管委会五部门联合印发《关于支持国家重大科技基础设施建设发展的若干政策措施(试行)》(以下简称《若干措施》)。《若干措施》提出,支持新开工设施根据需要联合企业组织实施市级科技重大专项,提前开展关键技术和核心设备研究,对符合条件的项目给予原则上最高不超过80%、总额不超过3亿元支持。《若干措施》全文如下: 上海市关于支持国家重大科技基础设施建设发展的若干政策措施(试行)为加快建设具有全球影响力的科技创新中心,充分发挥在沪国家重大科技基础设施的创新引领作用,保障设施高效建设与稳定运行,建立健全设施多元化投入机制,推动设施与地方经济融合发展,依据国家重大科技基础设施相关规划与管理办法,现制定支持国家重大科技基础设施建设发展的若干政策措施如下:一、指导思想以习近平新时代中国特色社会主义思想为指导,坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,依托国家战略科技力量加强布局,以高效建设、开放运行、优化评价、多元参与、融入地方为原则,坚持需求导向、坚持用户导向、坚持产业导向,打造开放共享的创新平台。围绕在沪国家重大科技基础设施全生命周期,本市相关部门加强政策协同,形成支持合力,全面提升在沪国家重大科技基础设施的建设与运行效率,持续保持领先的技术水平和服务能级,建立健全社会多方参与的设施投入机制,进一步增强设施服务地方产业发展和科技创新的支撑能力,在光子、生命、人工智能、能源、海洋等领域,加快打造一批世界级重大科技基础设施。二、适用范围本政策适用的设施是指已纳入国家重大科技基础设施规划且设施依托单位为在沪单位的新开工建设项目、优化提升续建项目、预先研究项目,以及稳定运行的项目。经市政府同意的其它设施项目可参照执行。三、促进设施多元化投入和高效建设(一)组建市级用户咨询委员会。组建上海市重大科技基础设施用户咨询委员会(以下简称“用户委”),主要在设施规划布局、可行性研究、运行评价、优化升级等阶段组织开展论证咨询,每年定期组织召开会议,公开征求用户意见,推动设施的规划、建设和运行能够充分体现用户需求,服务科技创新和产业发展。用户委围绕光子、生命、人工智能、能源、海洋等领域分设专委会,用户委成员每届任期五年,其中企业成员占比不低于30%。用户委的日常工作可依托第三方机构开展。(市发展改革委、市相关科技部门)(二)加快推进设施建设前期工作。将设施列入本市重大工程项目清单重点推进,协助设施依托单位开展可行性研究报告、初步设计和投资概算的编制和上报,协调落实用地选址、征地动迁、管线迁改等属地服务保障,加快办理规划许可、节能、环境影响评价、社会稳定风险等相关手续批复。(市相关科技部门、市发展改革委、市住房城乡建设管理委(市重大办)、市规划资源局、市生态环境局、临港新片区管委会、相关区政府)(三)鼓励多元化筹措设施建设资金。设施建设资金原则上应由中央预算内资金、地方配套资金、设施依托单位自筹资金构成。在积极争取中央预算内资金支持的前提下,对于设施依托单位自筹资金(含社会资本投入)不低于总投资20%的项目,本市积极予以配套支持。对于未达到上述标准的设施,本市依托用户委组织开展设施服务本市经济和科技创新能力评估论证,根据论证意见,按程序研究制订本市配套支持方案。(市发展改革委、市财政局、市教委、中科院上海分院)(四)支持开展关键技术和核心设备研究。本市支持新开工建设设施在启动建设阶段,围绕核心任务和目标,根据需要联合企业组织实施市级科技重大专项,开展关键技术和核心设备研究,对符合条件的项目给予原则上最高不超过80%、总额不超过3亿元支持。支持设施关键技术攻关的成果加快转移转化,进一步发挥设施溢出效应,组织重大科研成果向创投基金、产业基金进行集中推介,在重大装备和材料等领域培育孵化一批科技型企业。每个设施申报市级科技重大专项原则上不超过一项,申报时间不晚于开工建设后两年。纳入国家规划的储备项目,经报市政府同意后可参照执行。(市发展改革委、市相关科技部门、市科委、市经济信息化委、市财政局)(五)强化设施建设全过程跟踪协调服务。依托上海市推进科创中心建设相关协调工作机制,进一步完善设施建设进展月度跟踪和协调推进机制,及时协调解决设施建设中的重点难点问题,并协助开展设施专项验收相关工作。(市相关科技部门)四、保障设施稳定运行和开放共享(六)探索建立设施市场化收费和企业用户补贴机制。建立健全社会资本参与设施运行的长效机制,合理引导和带动全社会加大对设施的投入,支持设施按照“补偿成本、合理回报”原则制订市场化收费标准。加大企业用户使用设施的补贴力度,鼓励科技型中小企业用户通过“科技创新券”降低设施使用成本,研究进一步提高支持力度。对于未纳入“科技创新券”适用范围的企业用户,原则上给予每年最高不超过50%、总额不超过100万元补贴,所需资金根据企业用户单位所在地,分别由张江国家自主创新示范区专项、张江科学城专项、临港新片区管委会专项安排,对上述专项资金未覆盖的企业用户,由所在区给予补贴。(市相关科技部门、市科委、市财政局、临港新片区管委会、浦东新区等相关区政府)(七)建立设施分类评价和奖励制度。将设施根据主要功能和服务对象进行分类评价管理,评价内容主要包括支撑国家战略科技力量、服务重大技术攻关和企业科技研发、设施人才保障水平等方面。本市按年度分类开展设施运行情况评价考核,对于机时使用效率、企业用户比例等指标达到一定标准,对本市科学研究和企业技术攻关起到重要支撑作用的设施,原则上按照1500万元、1000万元、500万元三档分梯度给予奖励,按张江国家自主创新示范区专项发展资金管理办法予以支持,临港新片区项目由临港新片区管委会专项安排。(市相关科技部门、市财政局、临港新片区管委会)(八)支持设施提升服务能级及开展预研。充分发挥用户委在设施规划布局和升级改造环节的决策咨询功能。市科技创新计划设立重大科技基础设施关键技术提升相关计划,重点支持设施根据科技发展新趋势、产业发展新需求、设施运行新问题,开展实验新方法研究,优化提升装置和零部件技术。面向在建设施和规划设施,按张江国家自主创新示范区专项发展资金管理办法,支持开展重要科研工艺设备技术迭代和相关预研,推动设施纳入下一轮国家重大科技基础设施规划,临港新片区项目由临港新片区管委会专项安排。(市科委、市相关科技部门、市财政局、临港新片区管委会)五、加强设施支撑和服务本市产业能力(九)鼓励设施配套建设用户装置。为更好地发挥设施的技术外溢效应,服务地方产业和经济发展,经用户委推荐,本市支持设施面向产业发展需求布局用户装置。用户装置应同时满足以下四方面条件:(1)依托稳定运行的设施建设,用户装置的设备设施及相应改造由企业负责投资并完成投资备案手续。涉及规划、建管、环评、消防等专项审批的,由企业或设施依托单位按规定报批。(2)企业联合设施依托单位根据实际技术需求提出建设方案,方案应聚焦本市重点产业发展方向,以支撑关键技术攻关和科技成果转化为主要目标。(3)用户装置项目按规定经设施主管单位批复同意。(4)建成后由企业和设施依托单位共同自筹资金全额保障运行经费,实现长期稳定运行。(市发展改革委、市相关科技部门、中科院上海分院)(十)加强对用户装置建设的配套支持。对于符合本政策第九条规定的用户装置,本市给予投资补助,补助金额最高不超过核定后项目固定资产投资总额30%、额度不超过3000万元,同一企业不重复支持,相关资金由市级建设财力按照新基建项目安排,按照市级建设财力投资补助项目管理办法执行。(市发展改革委、市财政局、市相关科技部门)(十一)推动用户装置加强对外开放服务。用户装置的运行管理和开放共享由设施依托单位统筹管理,相关权责在设施依托单位与企业签订的运行管理协议中具体约定,原则上获得本市投资补助的用户装置应提供的公共机时不低于总机时30%。支持用户装置建立合理的市场化收费机制。(市相关科技部门)六、做好设施关键要素保障(十二)强化人才引育和服务保障。依托设施吸引和凝聚国内外高层次创新人才团队,鼓励设施依托单位完善建设和运行管理人才的晋升评定和薪酬绩效评价机制,形成以设施建设运维能力、工作实绩为导向的评价标准,设施依托单位应向设施建设和运行工程人才提供专门编制和职称评定名额。支持将设施依托单位纳入人才引进重点机构推荐范围。支持符合条件的设施科研和工程人才申报市级相关创新人才计划,并参照本市人才保障政策予以支持。(市委组织部、市科委、市教委、市人力资源社会保障局、临港新片区管委会、相关区政府、中科院上海分院)(十三)健全设施工程人才创新激励。本市设立“重大科技基础设施卓越工程师奖励计划”,对在设施建设和运行中做出突出贡献的工程人才,由设施依托单位推荐,原则上按照每年每个设施不超过3人、每人最高不超过20万元给予奖励,人员不得重复申报。所需资金根据设施依托单位所在地,分别由张江国家自主创新示范区专项、张江科学城专项、临港新片区管委会专项安排。(市相关科技部门、市财政局、临港新片区管委会、浦东新区政府)(十四)推进设施与产业的服务对接。建立健全设施依托单位与本市企业的常态化沟通机制,产业主管部门会同科创中心建设推进部门加强指导,依托本市有关产业技术创新联盟等机制,定期组织召开设施论坛、设施技术和应用研讨会,推动设施依托单位与本市领军企业加强服务对接及合作交流。(市经济信息化委、市相关科技部门、中科院上海分院)本办法自2024年1月1日起试行,有效期至2025年12月31日。
  • 全国人大代表杨学明:建设重大科技基础设施 构筑竞争新优势
    “近年来,由于日益复杂的国际环境和国家高水平科技自立自强的需求,我们科研工作者应当努力发展自主创新的高端科学仪器,避免陷入受制于人的被动局面。”全国两会前夕,全国人大代表、南方科技大学副校长、中国科学院院士杨学明在忙碌的工作之外,认真准备着相关领域的议案。“科技工作者要牢记初心使命,扎根前沿科学研究,勇攀科技高峰。”杨学明时常对同事和学生说。作为全国人大代表,他特别注重平时的调研和收集,想把科学界、教育界的声音带到全国两会上,为科技创新和人才发展做些实实在在的事。“重大技术创新已经成为我国未来战略博弈的主战场,事关我国现代化建设全局。而重大科学发现和技术突破越来越依赖于重大科技基础设施和先进科研仪器设备的支撑。”杨学明认为。作为国际知名的物理化学家,在推动极紫外自由电子激光(大连相干光源)在多个科学领域中的应用方面,近年来杨学明带领科研团队取得了令人瞩目的成绩。今年,研究团队利用这一独特的光源在分子高激发态漫游反应通道等方面取得突破性进展,研究成果发表在国际顶级刊物《科学》杂志上,引起了国内外同行的高度关注。此外,杨学明还积极组织科研力量有力推进新一代深圳中能X射线自由电子激光装置项目,为粤港澳大湾区综合性国家中心建设贡献力量。经过大量详细的调研,在去年的全国两会上,杨学明提交了关于建设重大科技基础设施、持续推动科技助力东北振兴、加大博士研究生培养力度等相关建议。“好声音”很快有了回应:国家相关职能部门对相关建议给出了反馈和回复,并重点回应了大连先进光源设施的建设事宜,组织专家论证,在项目建设目标和应用场景、方案技术路线、人才队伍等方面提出了进一步的工作要求。杨学明带领团队认真研读和学习这些要求,并在工作中进行深入探究,完善了项目建议书的相关内容。今年两会,杨学明的一个重要议题,是继续推动大连先进光源的立项建设。为了准备这个议案,杨学明带领团队做了大量的调研工作,结合新时代东北振兴的要求,在技术论证、应用场景、战略意义等方面进行了全面分析,并初步勾画了与哈长沈大创新链上相关科研院所开展合作研讨的计划,争取形成合力,全面推进大连先进光源项目的进程。“如今,国家又启动了新一轮的振兴东北实施方案,这是推动大连先进光源项目建设的一个新机遇。”杨学明说,希望抓住“十四五”窗口期,通过大连先进光源这一东北地区重大科技基础设施建设,打造重大技术创新策源地,把科教资源转化为东北振兴发展优势,助力我国实现高水平科技自立自强,在带动制造业转型升级,保障产业链、供应链安全方面,构筑竞争新优势。
  • "十三五"将建十大重大科技基础设施 科学仪器从中获利
    日前,国家发改委官网公布《国家重大科技基础设施建设“十三五”规划》。根据该规划内容,十三五期间将优先布局10个建设项目。  在大型科学仪器领域,大型光学红外望远镜、硬 X 射线自由电子激光装置、多模态跨尺度生物医学成像设施、超重力离心模拟与实验装置等值得期待。  一:空间环境地基监测网(子午工程二期)  空间环境地基综合监测网是开展空间天气研究、保障国家空间活动和空间安全 的重要设施。围绕综合性、多尺度、长期连续监测我国空间环境 区域性特征和研究日地空间天气变化规律的科学目标,在子午工程现有常规监测链的基础上,主要建设由相控阵非相干散射雷达、高频相干散射雷达群、大口径激光雷达、大规模太阳射电阵 等组成的先进探测系统,形成覆盖全国的“两横两纵”地基监测网,具备百公里级空间分辨、实时获取 30 余种空间环境要素的日地空间天气全过程探测能力。设施建成后,可成为国际上综合性最强、覆盖区域最广的先进地基空间环境监测网,促进我国空 间环境的认知水平和应用保障能力进入国际先进水平。  二:大型光学红外望远镜  大型光学红外望远镜是开展天体物理研究必备的核心基础设施之一。围绕宇宙各层次天体起源 和演化、极端宇宙条件物理、由宇宙结构形成揭示的暗物质和暗能量性质及引力波源光学对应体等重大前沿研究需求,优选台址,建设一架 12 米级口径光学红外望远镜,具备多目标、暗天体高分辨成像和光谱观测的精测能力,最暗天体成像极限亮度达 到 28 星等,最暗天体光谱极限亮度达到 25 星等。设施建成后,可使我国光学极限探测能力处于国际领先行列,大幅提升天文观测重大发现的综合能力,同时为相关领域的前沿研究提供重要支撑,带动我国先进光学技术的创新发展。  三:极深地下极低辐射本底前沿物理实验设施  极深地下极低辐射本底前沿物理实验设施,对开展暗物质直接探测、无中微子双贝塔衰变、宇宙重核形成等基础科学前沿研究具有重大意义。优选地址建设该设施,主要包括:垂直岩石覆盖大于2300米、宇宙线通量小于每年每平方米100个、容积大于30万立方米的实验空间 大型液氮低温辐射屏蔽与高纯锗反符合装置 大 型常温纯净水辐射屏蔽与液氙自屏蔽装置 组合式固体辐射屏蔽装置 微贝克每公斤量级的辐射本底测量与分析装置等。设施建成后,可为粒子物理与核物理及相关领域重要科学问题研究提供极低宇宙线通量和极低环境辐射本底的实验条件,为建设国际领先水平的研究中心奠定基础。  四:大型地震工程模拟研究设施。  建设大型地震工程模拟研究设施,开展复杂岩土介质与水环境中地震灾害及防控模拟,对揭示地震引起的自然环境和工程灾变机理,防范自然灾害,保障土木、水利和海洋等重大工程的安全具有重要意义。设施主要建设内容包括:移动组合式三向六自由度地震模拟振动台台阵系统、工程地震灾害数字仿真系统及配套设施等,单台最大载重 1350 吨以上,满载最大加速度 20 米每平方秒,具备可靠模拟多点多维地震差动、大比尺和足尺模拟工程地震灾害的能力。设施建成后,可大幅提升我国防灾减灾原始创新能力,为提高我国地震灾 害的防范水平提供重要支撑。  五:聚变堆主机关键系统综合研究设施  核聚变能是解决人类能源问题的根本出路之一。建设多场耦合环境下的聚变堆主机关键系统综合研究设施,对保障我国聚变堆的先进性、安全性 和可靠性,加快聚变能实际应用进程具有重要意义。设施主要建设最大粒子通量达到 1024每平方米每秒的偏滤器物理、材料和部件研究系统,以及最高背景场达到 15 特斯拉的超导导体和磁体研究系统,为聚变堆主机关键系统研究提供粒子流、电、磁、热、力等极端实验条件。设施建成后,可成为国际聚变领域参数最高、功能最完备的综合性研究平台,为我国开展聚变堆设计及核心部件研发、热与粒子排除关键问题研究、大规模低温和超导技术研究、强流粒子束与基础等离子体研究、深空推进探索等提供强大的技术支撑。  六:高能同步辐射光源  高能同步辐射光源是基础科学和工程科学等领域原创性、突破性创新研究的重要支撑平台。围绕航空材料、武器物理、工程材料全寿命周期等国家安全和工业应用相关研究,以及能源、环境、生命科学等基础研究对高亮度、 高能量 X 射线的紧迫需求,建设高能同步辐射光源,主要包括注入器、储存环、光束线、实验站以及辅助设施。储存环能量达6千兆电子伏,发射度优于0.1 纳米弧度,高性能光束线站容量不少于90条,提供能量达300 千电子伏的 X 射线,具备纳米量级空间分辨、皮秒量级时间分辨、毫电子伏量级能量分辨能力。设施建成后,可满足前沿科学和工程应用等领域的研究需求,成为国际领先的高能同步辐射光源试验平台,为提升我国科学、技术创新能力提供有力的支撑。  七:硬 X 射线自由电子激光装置  X 射线自由电子激光具有超高峰值亮度、超短脉冲、高度相干等优异性能,是实现科学突破与技术创新的研究利器。为满足材料、能源、环境、物理与化学、生命及医药等领域的创新研究对高亮度相干X 射线光源的迫切需求,建设硬 X 射线自由电子激光装置,主要包括: 高性能电子直线加速器、高亮度自由电子激光放大器、光束线和 四维探测综合实验站等,具备电子能量大于 6 千兆电子伏、光子能量高于 12 千电子伏、及飞秒级时间分辨和纳米级空间分辨的 能力。设施建成后,总体性能可达到国际领先水平,与现有同步辐射光源形成优势互补,为解决科学前沿和国家战略需求中的重 大科学问题提供有效手段。  八:多模态跨尺度生物医学成像设施  生命体结构与功能跨尺度的可视化描绘与精确测量对生物医学研究取得革命性突 破具有重大意义。以打通尺度壁垒、整合多模态信息、精准描绘 生命活动时空过程为科学目标,建设多模态跨尺度生物医学成像设施,主要包括:以亚纳米分辨光电融合技术为代表的多模态高分辨分子成像装置、以毫秒分辨显纳成像为代表的多模态活体细 胞成像装置、以超高场磁共振成像为代表的多模态医学成像装置以及全尺度图像整合系统,具备全景式揭示基因表达、分子构象、 细胞信号、组织代谢及功能网络的时空动态和内在联系的能力。 设施建成后,可通过光、声、电、磁、核素、电子等模态的融合,实现从埃到米、微秒到小时的跨尺度结构与功能成像,为我国生物医学研究提供先进的、全方位的观测手段,促进我国生物医学 成像技术的创新发展。  九:超重力离心模拟与实验装置  超重力环境可以增大多相介质体积力和相间相对运动驱动力,是研究岩土体大尺度演变和灾变、地下环境长历时污染必不可少的实验手段,也是研究材料相分离效应的极端物理条件。围绕实验再现岩土体大尺度演变和灾变及加速材料相分离的科学目标,建设超重力离心模拟与实验装置,主要包括:最大加速度 1500g、最大负载30吨、加速度和负载可控可调、容量 1500g吨的超重力离心机,以及深地与深海、场地地震、边坡与高坝、地下环境、地质构造、材料制备等超重力实验舱,具备单次实验再现岩土体千米尺度演变与灾变、污染物万年迁移及获取千个材料共晶成分的能力。设施建成后,可为深地深海资源开发、重大工程防灾、废弃物地下处置、 新材料制备等领域的研究提供有力支撑。  十:高精度地基授时系统  授时系统是国家重要科技基础 设施,对科学研究、国家安全和基础产业具有重要意义。为进一 步提高我国授时系统的安全性、可靠性和授时精度,建设与星基授时系统相对独立、互补增强、融合共用的高精度地基授时系统, 主要包括:增补完善增强型罗兰授时系统,实现长波授时信号的全国土覆盖,重点区域授时精度优于百纳秒 利用通信光纤网建 设覆盖主要城市和重要用户的高精度光纤时频传递骨干网,时间 传递精度优于百皮秒,频率传递精度达到 10 -19 量级。设施建成后,与星基授时系统一起构成我国星地一体化授时系统,可为精 密测量物理、精密时频技术等科学研究提供重要实验平台,支撑 经济社会和国家安全的长远发展。  值得注意的是,并不是这10个项目就一定会在十三五期间开建。在制定规划时,专家组确定了20项建设需求。规划将专家组投票排名前10位的建设需求列为优先项目,将排名11-15位的建设需求列为滚动调整的“后备项目”。  预计在2018年进行中期评估,届时将对不具备建设条件、无法按时开工的项目调出规划,并通过专家综合论证程序,及时从“后备项目”中择优替补。
  • 蛋白质科学研究(北京)国家重大科技基础设施通过国家验收
    p style=" text-indent: 2em text-align: justify " 近日,总投资12亿余元的蛋白质科学研究(北京)国家重大科技基础设施顺利通过国家验收。该设施的建成并投入运行,将为国内外生命科学和健康产业的发展再添强劲原动力。 /p p style=" text-indent: 2em text-align: justify " 该设施汇聚了生物质谱、生物大数据与超级计算、冷冻电镜等尖端技术平台,为深度解析蛋白质组及蛋白质复合体的结构和功能,全景式揭示人类、重要动植物与微生物等生理、病理、药理、毒理等相关分子机制,提供高通量分析、高时空分辨、高复杂度覆盖、大数据解析、智能化知识发现等一站式综合技术体系。 /p p style=" text-indent: 2em text-align: justify " 该设施将为通量发现与重大疑难病症的诊断、预防、治疗紧密相关的功能蛋白质和药物靶标提供独到的强大技术支撑。据不完全统计,该设施调试运行3年多来,已直接支撑了近400项国家级课题研究,产出了300余篇国际权威杂志的高水平科学论文、100余项发明专利和软件著作权。 /p p style=" text-indent: 2em text-align: justify " 项目首席科学家贺福初院士和王志新院士表示,蛋白质科学是生物科技与信息科技的交叉学科,是未来科技的战略制高点。该设施将努力建设成为国际生命科学领域高端人才的集聚和培养平台、国际生命科学重大发现的发射塔、国际化生命科学大数据中心、蛋白质组学驱动的精准医学(PDPM)的全球策源地。 /p
  • 盘点各省2024年重大项目:130个在建实验室/科技设施清单出炉!
    近日,各省(市)围绕国家战略需求和科技创新发展理念,聚焦本地重点方向及特色领域等,陆续印发了2024年度重点/大项目名单。实验室和科技设施,是开展应用基础研究和高水平科学研究的平台,也是聚集和培养科技人才、开展学术交流、产出科研成果的重要载体,被各省(市)纷纷列入2024年度重点/大项目中。值得注意的是,实验室和科技设施项目投入金额大,且在建设过程中势必会配备一批科研仪器,以支持相关人员进行技术攻关。如河南省尧山实验室项目提到,拟对已建成的平顶山学院实验大楼进行回购,装修,完善配套设施,购置仪器设备,搭建网络平台等;河南省金丹科技15万吨生物降解材料聚乳酸工程建设项目提到,主要建设生产车间、仓库及附属配套设施等,将购置真空脱水、催化合成、微界面反应、熔融结晶等先进设备仪器215台(套);甘肃省中国高水平放射性废物地质处置地下实验室建设工程项目提到,总投资272000万元,将建设地下工程及辅助系统、地下现场试验研究平台设施、场区地表实验设施及配套设施等。基于此,仪器信息网特对各省(市)2024年度重点/大项目中的实验室和科技设施进行梳理并列出清单,供业内人士参考、把握商机。 各省(市)2024年度重点/大项目清单 (节选实验室/科技设施部分)序号省(市)实验室/科技设施项目1北京人类器官生理病理模拟装置2创新细胞技术研发平台3太赫兹科学技术中心平台4人机物融合信息基础设施创新与测试平台5分子影像与医学诊疗探针创新平台6高能同步辐射光源7多模态跨尺度生物医学成像设施8金隅工研生命科学创新中心9上海张江实验室研发大楼10临港实验室临港园区项目11浦江实验室12上海硬X射线自由电子激光装置项目13高效低碳燃气轮机试验装置国家重大科技基础设施14国家海底长期科学观测系统15磁-惯性约束聚变能源系统关键物理技术项目16张江复旦国际创新中心(微纳电子与量子科技融合创新大楼、生物与医学科技融合大楼、3号科研楼)17同济大学上海自主智能无人系统科学中心18中科院在沪“十四五”科教基础设施项目19中国科学技术大学上海科教基地(一期)20中科院上海药物所原创新药发现能力提升项目21美迪西北上海生物医药研发创新中心产业基地项目22复宏汉霖生物医药产业基地23上海医药集团生物医药生产基地24昊海生物科技国际医药研发及产业化基地25中国生物抗体产业化基地建设项目一期26中国石化高性能弹性体项目27天津海河实验室细胞产业研发转化基地28渤海实验中心实验室项目29山西怀柔实验室山西研究院高质量运行项目30中科院山西煤化所2024年煤炭高效低碳利用全国重点实验室建设项目31太原理工大学2024年省部共建煤基能源清洁高效利用国家重点实验室建设项目32晋能控股2024年煤与煤层气共采全国重点实验室建设项目33中北大学2024年省部共建动态测试技术国家重点实验室建设项目34山西大学2024年量子光学与光量子器件国家重点实验室建设项目35太钢2024年先进不锈钢材料国家重点实验室建设项目36太重智能采矿装备技术全国重点实验室项目37太锅低碳能源与储能技术山西省重点实验室项目38山西大学2024年山西省黄河实验室建设项目39山西农业大学2024年山西省后稷实验室建设项目40云时代2024年太行山西省实验室建设项目41中电科“一带一路”联合实验室项目42太原第一实验室二期项目43智慧交通山西省实验室项目44运城地福来微藻固碳减排“智慧监测”与农牧渔业综合利用重点实验室项目45晋创谷—太原高性能制造技术与智能应用升级中试基地项目46晋创谷—中北大学科技创新基地项目47北方自动控制科技研发中心项目48长治金烨特种钢新材料中试基地项目49山西创新特区(太原)建设项目(前期)50江苏苏州实验室51航空科技扬州实验室52南京生物育种钟山实验室53中国电科院南京科研基地54南京江西电子高温超导应用研发中心55南京阳光电源研发中心56苏州国家生物药技术创新中心57苏州国家标识解析及协同制造产业创新基地58江苏省船舶与海洋工程装备技术创新中心59镇江蓬勃生物基因细胞治疗载体研发中心60南京理工大学盱眙科研试验基地61商飞大飞机结冰安全实验中心62福建宁德时代创新实验室建设项目(一期)63厦门生物制品科学与技术福建省创新实验室64福建台湾海峡海洋生态系统国家野外科学观测研究站东山实验场建设项目(暨厦门大学东山太古海洋观测与实验站改扩建工程)65山东中国科学院工程热物理研究所吸气式发动机关键部件热物理试验装置项目66河南龙门实验室项目67洛阳昇腾人工智能实验室项目68中原关键金属实验室中试基地建设项目69水利部黄河流域水治理与水安全重点实验室建设项目70洛阳市恒恩医学体外诊断试剂重点实验室项目71三门峡义马市鑫海新能源科技有限公司新型催化剂实验室及合成低碳醇中试项目72尧山实验室项目73中原电气实验室项目74天健先进生物医学实验室高新区一期建设项目75河南农业大学动物生物安全三级实验室建设项目76漯河市郾城区中原未来食品科技城项目(建设中原食品实验室及配套设施)77洛阳市航空装备产学研协同建设项目(建设航空热动力、新材料重点实验室、检测实验室、中试车间及配套设施)78多氟多新材料股份有限公司河南省氟基新材料产业创新中心项目(主要建设氟基新材料创新平台,包括研发实验室、中试生产线等研发设施)79周口临港开发区广西华仁医学科技项目(主要建设医学研究、细胞及基因疗法实验室)80洛阳市伊川县安耐克国家级耐火材料检测研发中心项目(主要建设国家级耐材检测中心、国家级冶金技术研发平台、实验室、博士站及其配套设施)81平原科技园项目(主要建设平原实验室、全国重点实验室、动物用房等生物医药研究平台和电波研究院、半导体离子束大科学装置研究院等科研院所和研究平台以及研发服务、孵化生产等相关配套设施)82国家(新乡)生物育种创新基地(主要建设种质资源保护利用中心、精准表型鉴定中心、多组学研究中心、分子育种研究中心、品质分析中心、生理遗传研究中心、细胞工程研究中心等实验室及配套基础设施等)83漯河市食品产业中试孵化实训基地建设项目(新建产品研发中心、科技转化中心、公共实验中心、省食品研发大楼、实训基地、中试基地、检验检测中心、配套管理用房等配套设施)84河南生物科技成果转化创新平台中试基地项目(主要建设实验室、研发中心、中试车间及动力站等配套设施)85鹤壁鸿鹤智造产业园(主要建设生产中心、研发中心、孵化中心、综合服务楼等)86河南箔朗铝业有限公司60万吨铝合金高端智造项目(主要建设生产车间、实验室、办公楼及公辅设施)87漯河市临颍县百亿南街食品产业生态建设项目(主要建设标准化厂房、研发大楼、实验室、综合办公楼、质检中心、仓库以及功能配套设施等)88宝丰酒生态智能产业基地(主要包括原酒酿造车间、自动化灌装车间、粮库、制曲车间、曲库、地缸发酵车间、原酒储存罐区、智能立体包材库、智能立体成品库、污水处理站、科研实验楼、勾调中心等)89河南京华食品科技有限公司食品产业园项目(主要建设预制菜车间、调料车间、速冻车间、方便食品车间等8栋,仓库、实验楼及其辅助设施)90河南水星家纺科技产业园建设项目(主要建设厂房、仓库、研发实验中心、展示中心及配套设施)91许昌市经开区许昌生物芯片研发制造基地项目(主要建设医学检验和核酸检测中心、司法鉴定中心、食品检测中心等实验室等)92新乡航空工业(集团)有限公司新航民机产业化建设项目(主要建设智能车间、实验室等)93许昌市经开区智能电梯产业链研发制造基地项目(主要建设电梯零部件自动化加工基地、直梯智能制造基地、电子集控智能制造中心、智能仓储发运中心、商务和研发中心、国家CNAS实验室及检测中心等)94洛阳市宜阳县赵保航空装备配套基地项目(主要建设标准化厂房、航空装备实验室、例试厂房、维护生产线、实验场及其配套设施)95济源纳米材料产业园(包括标准化厂房、实验楼、报告厅等)96海骊镁合金轻量化产业园(主要建设镁基新材料研发生产综合性基地、镁基新材料实验室、中试基地、产业研究院)97河南三虹新材料科技有限公司(嵩县)年产8000吨新型热塑性聚氨酯项目(主要建设研发实验室、质检中心、多功能生产厂房、原材料仓库等相关配套设施)98河南菁上帆科技有限公司智能医疗器械生产项目(主要建设标准生产车间、综合实验厂房、检测设备实验室等配套基础设施)99三门峡市湖滨区大健康生物制药产业园(主要建设配套实验室、制剂车间、细胞库、干细胞科普馆等)100焦作市马村区生物医药产业园区基础设施及研发智慧平台建设项目(三期主要建设15栋丙类标准化厂房、中试车间、仓储中心、研发实验室等设施)101安图生物体外诊断产业园(三期)项目(主要建设实验室、办公楼、仓储及配套,建设体外诊断产品研发基地)102维中新材料科技有限公司年产4.7万吨新材料及新药中间体项目(主要建设标准化厂房、研发中心实验室等)103兰考县弘辉医疗集团高分子医用材料制造产业园项目(主要建设生产净化车间、仓储、办公楼、研发楼、实验室、生物检测工作站及配套设施)104千红生命健康产业园项目(主要建设药用肝素钠研发中心、实验室)105华兰生物工程股份有限公司人免疫球蛋白类产品技术升级及配套设施建设项目(主要建设健康人血浆为主要原料的智能化生产线,检验检测实验室、仓储中心、供水系统等配套设施)106汝阳高端玻璃产业园(主要建设生产线、车间、研究中心、实验室及其配套设施)107河南大学国际学院建设项目(主要建设教室、图书馆、实验室及附属用房等)108信阳学院南湾校区项目(主要建设教学楼、综合楼、实验楼等)109中原科技学院项目(主要建设教学楼、实验实训楼、科技楼等)110信阳师范大学淮河校区(三期)建设项目(主要建设教学楼、实验室、产学融合基地及配套附属设施等)111阜外华中心血管病医院国家区域医疗中心二期建设项目(主要建设内容综合病房楼、实验室及附属设施等)112河北电科能源装备工程钠离子电池中试线及国家储能实证实验平台项目(泊头市)113湖北武当实验室储能系统项目114海南海南大学南海海洋资源利用国家重点实验室项目115亚崖州湾科技城国家热带农业科学中心综合实验室116天府种业创新重点实验室(部省共建)海南中心建设项目117三亚崖州湾科技城实验动物公共服务平台118万宁1000MW漂浮式海上风电试验项目119文昌国际航天城航天微重力重大试验设施120四川国家实验室(四川天府新区)121极深地下极低辐射本底前沿物理实验设施122光场调控装置及地方配套项目123多态耦合轨道交通动模试验平台124中国地震科学实验场(在川部分)125柔性基底微纳结构成像系统研究装置126红外太赫兹自由电子激光装置127成都高新区国家精准医学产业创新中心创新能力项目128甘肃中国高水平放射性废物地质处置地下实验室建设工程129兰州国家生物产业基地基础设施建设(三期)项目130宁夏宁夏海力电子有限公司绿色低碳电极箔项目(建设72条绿色低碳电极箔高速智能生产线,新建高性能电极箔研发实验室、智能制造控制中心等)本网针对多省份的重点建设项目将进行持续跟踪,欢迎关注后续报道。点击了解:2024年各省重大项目盘点:新建79个检测中心,半导体检测发展迅猛!点击查看更多资讯!  2024年4月17-19日,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、中国科学院高端光学显微成像技术联盟等单位协办的“第十七届中国科学仪器发展年会(ACCSI2024)”将在苏州召开。  本届ACCSI以“破壁融合,重启增长”为主题,汇聚“政、产、学、研、用、资、媒”等各方人士,力争把最新的产业发展政策、最热点的市场需求信息、最新的技术进展及成果等在最短的时间内呈现给各位参会代表。会议期间将颁发多项年度行业大奖,引领科学仪器产业及检验检测方向。欢迎报名参会!  联系方式:  (1)官网报名链接:https://www.instrument.com.cn/accsi/2024/index  (2)报告及参会报名: 17600646530 黄女士  (3)赞助及媒体合作: 13552834693 魏先生  微信添加accsi2006或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 蛋白质科学研究(北京)国家重大科技基础设施清华大学基地通过验收
    p   7月13日上午,由教育部组织的蛋白质科学研究(北京)国家重大科技基础设施清华大学基地单项验收会在清华大学生命科学馆召开。来自北京大学等14个单位的23位验收专家分组听取了设备、财务、档案和工艺总结报告,通过查阅验收资料、现场考察建设情况,经质询和讨论后,一致同意清华大学基地通过单项验收。 /p p   在验收会上,教育部科技司基础处处长方建慧充分肯定了清华大学基地在建设及试运行过程中为生命学科及相关领域研究做出的突出贡献,并为本次验收评审工作布置任务。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/13dafe8e-650b-4c78-9d10-3dca75ee83b9.jpg" title=" 1500946943532916_副本.jpg" / /p p style=" text-align: center " 教育部科技司基础处处长方建慧在会议上致辞。 /p p   蛋白质科学研究(北京)设施总工程师、清华大学副校长施一公院士介绍了基地项目概况,特别是基地“设施统一管理、科研成果井喷式爆发”的管理模式和试运行成果,希望在各方的继续大力支持下,保持清华大学基地冷冻电子显微镜等平台在国际上的领先地位。蛋白质科学研究(北京)设施首席科学家王志新院士和蛋白质科学研究(北京)设施副总经济师、清华大学财务处处长郝永红分别致辞。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/2c95fd80-950c-4ced-b5a9-5352da8416f2.jpg" title=" 1500946944933663_副本.jpg" / /p p style=" text-align: center " 施一公做项目概况介绍。 /p p   清华大学生命科学学院院长王宏伟对蛋白质设施整体建设情况做了详细汇报,随后验收工作分为设备、财务、档案和工艺四个分组进行。 /p p   清华大学科研院副院长邓宁主持会议,清华大学各部处代表、清华大学基地建设小组成员、北京京成会信会计师事务所代表等60余人参加会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/0f8dff73-dfcb-4988-b32f-874fbbe6ca21.jpg" title=" 1500946944227093_副本.jpg" / /p p style=" text-align: center " 蛋白质科学研究(北京)国家重大科技基础设施清华大学基地档案验收会场。 /p p   蛋白质科学研究(北京)设施是“十一五”、“十二五”期间重点建设的国家重大科技基础设施,于2012年正式启动,由军事医学科学院、清华大学、北京大学等单位共同建设,旨在建设成为国际领先的蛋白质科学研究核心基地。自2013年至今,清华大学基地已为134个国内外单位提供技术支撑,依托清华大学基地的设施,已在《细胞》《自然》《科学》等世界级刊物发表论文43篇。 /p
  • 蛋白质科学研究(北京)国家重大科技基础设施通过国家验收
    p style=" text-indent: 2em text-align: justify " 近日,蛋白质科学研究(北京)国家重大科技基础设施(简称“凤凰工程”)通过了国家发展和改革委组织的国家验收。凤凰工程是由国家发展改革委、北京市政府、总后勤部和教育部共同投资,军事医学研究院、清华大学、北京大学等单位共同建设的一项国家重大科技基础设施,以电镜为主的复合结构蛋白质组解析系统及功能蛋白质组研究系统的部分设施由清华大学(简称“清华基地”)负责实施。清华大学常务副书记姜胜耀,凤凰工程首席科学家、生命科学学院教授王志新院士,凤凰工程总工程师、生命科学学院教授施一公院士出席验收会并致辞。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/09c9b08e-41b0-4081-bf7e-ee310c952178.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em text-align: center " 验收会现场 /p p style=" text-indent: 2em text-align: justify " 姜胜耀充分肯定了清华基地试运行期间为生命学科及相关领域科学研究作出的突出贡献,并对验收会的召开表示祝贺。清华大学生命学院院长、清华基地主任王宏伟汇报了基地的建设及试运行情况。 /p p style=" text-indent: 2em text-align: justify " 验收专家组由来自国家发展和改革委、军事科学院、教育部、国家档案局、南京大学、复旦大学、中国科学技术大学、解放军总医院、北京师范大学等17家单位的19名知名专家学者组成。经现场考察建设情况、查阅资料及质询讨论,验收委员会一致认为,凤凰工程的各项指标均达到或优于国家发展改革委批复的设计指标,整体能力达到国际先进水平,在蛋白质组学与结构生物学平台等方面达到国际领先水平,蛋白质科学研究(北京)国家重大科技基础设施圆满完成建设任务。 /p p style=" text-indent: 2em text-align: justify " 清华基地于2012年-2016年完成设备采购、安装和调试工作,2017年7月顺利通过教育部组织的设备、工艺、财务、档案单项验收,2018年9月整体设施顺利通过军事科学院及教育部组织的主管部门联合验收。目前已发展成为世界领先的冷冻电子显微镜实验室及结构生物学研究平台,全部仪器已试运行并7天24小时面向校内外开放服务。截至目前,清华基地已为150余个国内外单位提供技术支撑,依托清华基地设施,科研用户取得了一系列尖端的原创性研究成果,在《细胞》《自然》《科学》等国际顶级期刊发表文章66篇,获得中国科学十大进展、高等学校十大科技进展5项,支撑项目获得省部级以上科技奖4项。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f6a70348-a62e-4729-bde1-d8dc507f61ae.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em text-align: center " 位于清华基地的Titan Krios 300KV场发射透射电子显微镜 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/bd333e95-1063-40b5-81d5-ce0a340c1dc3.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em text-align: center " 位于清华基地的蛋白质大分子单晶衍射仪 /p p style=" text-indent: 2em text-align: justify " 出席验收会的还有凤凰工程副总工艺师、生命科学学院教授李蓬院士,凤凰工程副总经济师、清华大学财务处处长郝永红,清华大学生命科学学院副院长、清华基地常务副主任王新泉,清华基地副主任潘勋等,以及清华大学科研院、实验室与设备处等相关部门的负责人。 /p
  • 国家重大科技基础设施建设项目FAST主体工程完工
    500米口径球面射电望远镜(FAST)的最后一块面板,3日上午在FAST工程大窝凼现场吊装完成。至此,这个世界上最大的射电望远镜的主体工程顺利完工。预计今年9月,工程将全部竣工。  记者在工程现场看到,随着工程总经理、中科院国家天文台台长严俊的一声令下,FAST工程的最后一块反射面板缓缓起吊,在完成了二次空中转接并用缆索吊下滑到指定位置后被顺利安装在索网上。  FAST是“十一五”国家重大科技基础设施建设项目。它于2011年3月开始动工,在完成台址开挖与边坡治理、圈梁钢结构安装、索网制造与安装、馈源塔制造与安装、索驱动制造和安装、馈源舱制造与安装之后,于去年8月2日开始吊装第一块反射面板。  工程总工艺师王启明告诉记者,主动反射面是FAST望远镜的重要组成部分,主要用于汇聚探测到的无线电波并提供给馈源接收机接收。整个FAST工程共有4450块反射面板,包括4273块基本类型和177块特殊类型。反射面面板边长为10.4—12.4米,每块单元重427.0—482.5公斤,厚度约1.3毫米。  反射面板是在地面经过拼装、测量、报验等严格的步骤后,通过塔吊、转运车、缆索吊等一系列复杂的高空工序将每一块面板运至指定位置安装。国家天文台副台长郑晓年说,FAST望远镜前10块面板的安装用了一个月,开始安装两个月后,每天可以安装20块,以后增加到37块。  反射面板的安装是FAST最后一个大型设备安装工程。据郑晓年透露,反射面板安装完工后,FAST望远镜将进入测试调试阶段。预计今年9月FAST将全面竣工。届时,FAST将努力完成它的科学目标:巡视宇宙中的中性氢,观测脉冲星,探测星际分子,搜索可能的星际通讯信号。
  • 国家重大科技基础设施高海拔宇宙线观测站(LHAASO)通过国家验收
    5月10日,国家重大科技基础设施高海拔宇宙线观测站(LHAASO)顺利通过国家验收。验收委员会认为,项目法人单位中国科学院成都分院和共建单位中国科学院高能物理研究所按期、全面、优质完成了国家发展改革委批复的建设任务,各项指标达到或优于批复的验收指标。LHAASO的1/4规模探测装置于2019年4月投入试运行,全规模探测装置于2021年7月投入试运行,整体性能可靠,具备长期稳定的科学运行能力。LHAASO充分利用特定地域4410米优越的高海拔条件和先进技术优势,成为目前世界上最灵敏的超高能伽马射线探测装置、世界上灵敏度最高的甚高能伽马射线源巡天普查望远镜,以及能量覆盖范围最宽的超高能宇宙线复合式立体测量系统。LHAASO的建成运行,使之成为目前国际粒子天体物理三大实验设施之一,对促进该领域实现重大原创突破、带动前沿交叉相关学科发展和国际合作具有重要意义。LHAASO是以宇宙线观测研究为核心的国家重大科技基础设施,2015年12月31日获得国家发展和改革委员会批复立项,项目由中国科学院和四川省人民政府共建,由中国科学院成都分院与中国科学院高能物理研究所承担建设,建设周期4年。LHAASO主体工程于2017年动工,于2021年全部完成建设,已先后通过由主管部门中国科学院组织的工艺、建安、财务、设备资产和档案五个专业组验收。此次国家验收会受国家发展和改革委员会委托,由中国科学院会同四川省组织,来自国家发改委、中咨公司、科研院所、高校等单位的近20位专家出席了验收会。LHAASO位于四川省稻城县海子山,平均海拔4410米,占地面积约1.36平方公里,瞄准的是当今最重要的科学前沿课题——高能宇宙线起源问题。它由5216个电磁粒子探测器和1188个缪子探测器构成的一平方公里地面簇射粒子探测器阵列、78000平方米的水切伦科夫探测器阵列、18台广角切伦科夫望远镜等三大阵列组成。LHAASO首席科学家曹臻介绍,LHAASO项目团队通过自主创新和国际合作,完成了多项关键核心技术攻关,首次在大视场成像切伦科夫望远镜中大规模使用新型硅光电管,改变了这类望远镜不能在月夜工作的传统观测模式,实现了有效观测时间的成倍增长;发展了基于“小白兔”技术、适应4000米以上高海拔野外工况的大面积、多节点、高精度时钟同步技术,远距离同步精度提升到0.2纳秒,达到国际领先水平;采用了国产20英寸超大型光电倍增管,将时间响应提高了3倍,观测阈能从3000亿电子伏降低到700亿电子伏,观测能力达到国际领先水平;在海量数据获取技术上取得显著进步,发展并实现了“无触发”数据获取,对宇宙线事例实现“零死时间”观测;采用特殊的数据筛选技术,对海量数据进行无损压缩,实现从海子山到高能所的实时数据传输。基于其超高的探测灵敏度,LHAASO在初步运行期间已经取得多项突破性的重大科学成果。LHAASO在银河系内发现了大量超高能宇宙加速器候选天体,并记录到人类观测到的最高能量光子,开启了“超高能伽马天文学”时代;精确测定了标准烛光蟹状星云的超高能段亮度,发现1千万亿电子伏伽马辐射,挑战理论极限。LHAASO在建设期间即开展观测,科学成果持续产出。截至目前,基于LHAASO项目发表的期刊论文累计约215篇、会议论文约156篇。LHAASO项目建设单位充分发挥中国科学院建制化研究的优势,依托设施开展观测与理论研究,并面向国内外全面开放共享。目前,已有28个天体物理研究机构成为LHAASO的国际合作组成员单位。合作组利用LHAASO的观测数据开展粒子天体物理研究,同时进行宇宙学、天文学、粒子物理学等众多领域的基础研究。LHAASO将成为以中国为主、多国参与的国际宇宙线研究中心,借助高海拔伽马天文、宇宙线的观测优势,成为独具特色、综合开放的科学研究平台。曹臻介绍,中国的宇宙线实验研究经历了三个阶段,1954年,中国第一个高山宇宙线实验室在云南东川海拔3180米的高山建成;1989至2000年,在海拔4300米的西藏羊八井相继启动了中日合作ASγ实验、中意ARGO-YBJ实验;LHAASO是我国第三代高山宇宙线观测站,目前已经成为世界上重要的粒子天体物理支柱性实验站之一,使我国在高能伽马射线天文领域的研究达到国际领先水平。
  • 投资7亿 蛋白质科学研究(上海)国家重大科技基础设施开工
    中国科学院上海高等研究院12月26日入驻浦东科技园,标志着中国科学院与上海市政府共同建设的中国科学院上海浦东科技园建设取得重大进展。上海市委副书记、市长韩正出席仪式。中科院副院长江绵恒、施尔畏、李家洋,上海市领导殷一璀、杨雄、徐麟、沈晓明,以及张学兵等出席仪式。   上海高等研究院筹备组长封松林介绍,在短短的一年多时间里,中科院上海高等研究院已经集聚了一支由50余位海内外高级人才领衔的蓬勃向上、富有活力的高水平科研团队,与企业开展了多种形式卓有成效的合作,成立了近20个研发中心和联合实验室,已经启动了一批重点方向和项目,并初步形成了由交叉前沿与先进材料、空间与海洋科技、信息科学与技术、能源与环境、生命科学与技术五大领域的科研战略布局。他表示,高研院人将再接再励,艰苦奋斗、励精图治、克难攻坚、努力创新,实现立足上海、服务中国、走向世界,成为“长三角”区域内独具特色,集技术创新、成果转化、科技服务、人才培育于一体的综合性工业技术研究机构的总体发展目标。   与此同时,蛋白质科学研究(上海)设施国家重大科技基础设施项目也在浦东科技园开工建设。该项目投资规模为7亿人民币,将在3年内建成。它将依托“上海光源”开展蛋白质结构生物学相关研究,建设蛋白质三维结构测定、蛋白质结构的动态过程研究和功能成像分析等5条光束线、6个实验站。开展蛋白质结构生物学相关研究,分析蛋白质修饰和相互作用,阐释蛋白质与化学小分子之间的相互作用机理 以新药物靶点的发现为突破口,研究蛋白质药物新靶标的功能活动的结构特征 支撑提升我国生命科学领域及生物技术领域的核心竞争力,促进我国生物技术与医药产业、农业与环境保护、重要生物资源的开发与利用等的快速发展。
  • 2024年四川省重点项目名单公布,一批重大科技基础设施在列
    近日,2024年四川省重点项目名单公布。聚焦基础设施、产业、民生工程及社会事业、生态建设及环境保护等领域,共列重点项目700个,年度预计投资7616.4亿元。仪器信息网注意到,该名单提到一批重大科技基础设施建设项目。从建设时间看,续建项目504个,包括极深地下极低辐射本底前沿物理实验设施、光场调控装置及地方配套项目、多态耦合轨道交通动模试验平台、中国地震科学实验场(在川部分)、柔性基底微纳结构成像系统研究装置、红外太赫兹自由电子激光装置等;新开工项目196个,包括电磁驱动大科学装置及地方配套项目、磁浮飞行风洞、准环对称仿星器等。
  • 多项重大科技基础设施建设集中“剧透”—— “大国重器”有哪些“秘密武器”
    3月25日,上海张江第九期“大国重器”发布会在张江药谷举行。张江科技创新的三个主力军“军长”—— 上海同步辐射光源主任、中科院上海应用物理研究所所长赵振堂,中科院上海生科院生化与细胞所副所长、国家蛋白质科学中心上海主任雷鸣,中科院量子信息与量子科技前沿卓越创新中心(上海)主任、中科院院士潘建伟“剧透”了这些国家级重大科技基础设施建设的进程和“秘密武器”。  上海光源:从分子照片到分子电影  “普通的X光就能清晰拍摄出人体的组织和器官,而上海光源释放的光,亮度是普通X光的一千亿倍。通俗说,上海光源就相当于一个超级显微镜集群,能够帮助科研人员看清一个病毒结构、材料的微观构造和特性。”赵振堂说。上海光源是目前世界上性能最好的中能光源之一,为我国材料、生命、环境、医药、物理、化学、地质等学科的基础和应用研究提供了重要支撑。  截至2015年12月,上海光源首批7条线站共开机提供182123小时用户实验机时,支持课题近7000个。  赵振堂介绍,上海光源目前能为科学家拍摄“分子照片”,正在加紧筹备的上海光源线站(二期)工程和X射线自由电子激光试验装置与用户装置,属于“第四代先进光源”,能够对生物活体细胞进行三维全息成像和显微成像,进入“拍摄分子电影”的时代。  蛋白质中心:认识一个蛋白质只要2分30秒  “以前一个科学家可能要花很多年才能认识一个蛋白质。但是在蛋白质中心,借助各式各样的先进设备和仪器,最短仅需2分30秒就能认识一个蛋白质。”雷鸣说,蛋白质中心是当今全球生命科学领域首家综合性的大科学装置。  雷鸣说:“不久前,利用蛋白质中心的冷冻电镜设施,蛋白质中心丛尧研究员与巴斯德所黄忠研究员合作成功分析揭示了手足口病病毒抗体的作用原理。”  就在前几天,蛋白质中心许琛琦研究员在肿瘤免疫治疗研究领域取得了突破性进展,发现了提高T细胞抗肿瘤免疫功能的新方法,为开发新的肿瘤免疫治疗方法奠定了重要基础。  自2014年5月起,蛋白质中心开始试运行陆续接待用户,至今已累计运行超过12万小时,执行用户课题1200多个。  量子卓越中心:100个粒子把全球计算能力甩几条街  “一个粒子在量子相干状态时,就好比让计算机电路同时处于0和1状态。如果利用100个粒子相干操作制造出的量子计算机,其计算能力达到2100,而目前全世界计算机加在一起的计算能力大约是280,未来一台量子计算机超过全世界的计算机。”潘建伟说,如何利用量子进行信息处理和传输,如何搭建起量子传输的“通道”、推进对量子的产业利用,已成为国际物理学争相研究的问题。  量子卓越中心已牵头承担了中科院战略性先导科技专项(A类)“量子科学实验卫星”、中科院战略性先导科技专项(B类)“量子系统的相干控制”、发改委量子保密通信“京沪干线”技术验证及应用示范项目等多项国家重大科技任务,均在顺利实施。今年,量子卫星将在7月发射,“京沪干线”将在下半年开通。  “量子卓越中心的战略目标是,力争15年左右,构建完整的空地一体广域量子通信网络体系,在国防、政务、金融和能源等领域率先加以广泛应用,形成具有国际引领地位的战略性新兴产业和下一代国家信息安全生态系统。”潘建伟说。
  • 3700万,中科院工热所国家重大科技基础设施项目公开招标
    p style=" text-align: left text-indent: 2em " 日前,中国科学院工程热物理研究所发布公告,预算3700万元,高效低碳燃气轮机试验装置国家重大科技基础设施项目-高效新型循环试验台燃气轮机及其辅助和配套系统公开招标。 /p p style=" text-align: left text-indent: 2em " 潜在投标人应在中航招标网(http://bid.aited.cn/)获取招标文件,并于2020年09月25日09点30分(北京时间)前递交投标文件。 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 一、项目编号及名称 /strong /span /p p style=" text-align: left text-indent: 2em " (1)项目编号:0730-206132020393/01 /p p style=" text-align: left text-indent: 2em " (2)项目名称:高效低碳燃气轮机试验装置国家重大科技基础设施项目-高效新型循环试验台燃气轮机及其辅助和配套系统 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 二、预算金额 /strong /span /p p style=" text-align: left text-indent: 2em " 3700万元(人民币) /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 三、采购需求 /strong /span /p p style=" text-align: left text-indent: 2em " (1)采购项目的名称:高效低碳燃气轮机试验装置国家重大科技基础设施项目-高效新型循环试验台燃气轮机及其辅助和配套系统 /p p style=" text-align: left text-indent: 2em " (2)采购项目的数量:1套 /p p style=" text-align: left text-indent: 2em " (3)简要规格描述或项目基本概况介绍: /p p style=" text-align: left text-indent: 2em " 采购 strong 高效新型循环试验台的燃气轮机及其辅助和配套系统1套,包括燃气轮机及其发电机、燃气轮机燃料系统、排气系统、控制系统等辅助与配套系统(含安装调试) /strong 。 /p p style=" text-align: left text-indent: 2em " 所采购燃气轮机功率等级10MWe级,以天然气为燃料。 /p p style=" text-align: left text-indent: 2em " 所采购的燃气轮机具备压气机出口空气抽气、湿空气燃烧等能力。 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 四、合同履行期限 /strong /span /p p style=" text-align: left text-indent: 2em " (1)合同签订后18个月内完成本包设备交付及安装调试。 /p p style=" text-align: left text-indent: 2em " (2)本包设备安装调试完成后预计12个月内完成高效新型循环试验台联合调试。 /p p style=" text-align: left text-indent: 2em " (3)联合调试成功且验收合格后,开始计算本包设备的质保期。 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 五、获取招标文件 /strong /span /p p style=" text-align: left text-indent: 2em " (1)时间:2020年09月04日 至 2020年09月11日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外) /p p style=" text-align: left text-indent: 2em " (2)地点:中航招标网(http://bid.aited.cn/) /p p style=" text-align: left text-indent: 2em " (3)方式:中航招标网线上购买(http://bid.aited.cn/) /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 六、提交投标文件截止时间和地点 /strong /span /p p style=" text-align: left text-indent: 2em " (1)截止时间:2020年09月25日 09点30分(北京时间) /p p style=" text-align: left text-indent: 2em " (2)地点:应物会议中心3号会议室(北京市海淀区花园路6号)现场递交。 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 七、采购人信息 /strong /span /p p style=" text-align: left text-indent: 2em " 名称:中国科学院工程热物理研究所 /p p style=" text-align: left text-indent: 2em " 地址:北京市海淀区北四环西路11号 /p p style=" text-align: left text-indent: 2em " 联系方式:徐祥 010-82543188 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 八、采购代理机构信息 /strong /span /p p style=" text-align: left text-indent: 2em " 名称:中航技国际经贸发展有限公司 /p p style=" text-align: left text-indent: 2em " 地址:北京市朝阳区慧忠路5号远大中心B座14层 /p p style=" text-align: left text-indent: 2em " 联系方式:常帅& nbsp 010-84892557 /p p style=" text-align: left text-indent: 2em " 项目联系人:常帅 /p p style=" text-align: left text-indent: 2em " 电话:010-84892557 /p p & nbsp /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制