当前位置: 仪器信息网 > 行业主题 > >

遗传风险图谱

仪器信息网遗传风险图谱专题为您整合遗传风险图谱相关的最新文章,在遗传风险图谱专题,您不仅可以免费浏览遗传风险图谱的资讯, 同时您还可以浏览遗传风险图谱的相关资料、解决方案,参与社区遗传风险图谱话题讨论。

遗传风险图谱相关的资讯

  • 《细胞》发表史上最全癌症遗传风险图谱
    p   由西安交大计算机科学与技术系、陕西省医疗健康大数据工程研究中心教授王嘉寅团队与圣路易斯华盛顿大学、哈佛大学—麻省理工学院Broad研究所、贝勒医学院、梅奥临床医学院等13家世界顶级研究机构历时近三年合作完成了迄今为止最全面的癌症遗传风险图谱,相关成果近日发表于《细胞》。 /p p   该研究基于33种常见癌症类型、共计1万多名肿瘤患者的多组学大数据,全面应用了目前最优的生物信息学分析和实验手段,优化设计了面向多组学的数据处理流程,累计分析了超过14.6亿个候选基因变异,首次系统性报道了871个罕见易感/疑似易感变异和拷贝数变异,且较大比例地存在与基因表达异常、丧失异质性等体细胞突变的耦合。这些结果为下游研究特别是遗传变异分类和检测奠定了基础。同时,大数据分析明确展示了不同癌症类型的一些病例具有共同或类似癌症遗传风险的关键证据,这些共性模式及其与体细胞突变的相互作用能够为异癌同治提供临床辅助决策依据。 /p p   现代肿瘤学研究理论认为,肿瘤的发生、发展是肿瘤患者的内因和外因耦合作用的结果,其内因主要是癌症遗传风险。基于多组学大数据,挖掘癌症遗传风险,不仅是肿瘤研究的前沿领域和热点方向,而且能够广泛应用于肿瘤风险筛查、肿瘤分子预警、肿瘤精准体检和早诊。而基于大数据绘制癌症遗传风险图谱是癌症遗传风险图谱研究的热点和难点,风险图谱是临床辅助决策的重要基线之一。 /p p & nbsp & nbsp 论文题目:Pathogenic Germline Variants in 10,389 Adult Cancers /p
  • 免费基因检测乳腺癌风险 建立中国女性特有的基因图谱
    p    strong 我国正研究女性乳腺癌基因图谱 /strong /p p   唾液取样进行基因检测,可发现自己有无携带乳腺癌易感基因——BRCA1和BRCA2,并结合生活方式和饮食习惯等评估乳腺癌风险。中国妇女发展基金会女性肿瘤预防基金正与全国30多家三甲医院合作,为全国万名女性免费测试与乳腺癌发生最为相关的基因突变点,希望建立中国女性特有的乳腺癌基因图谱。 /p p    strong 易感基因突变更易患乳腺癌 /strong /p p   近年来中国乳腺癌发病愈演愈烈,数据显示,全球每18秒就有一位女性被确诊为乳腺癌。而在中国,近十年来乳腺癌发病率增长37%,乳腺癌事实上已经成为城市中死亡率最高、增长最快的癌症。 /p p   上世纪90年代,科学家发现了两种直接与遗传性乳腺癌相关的易感基因,简称为BRCA1和BRCA2。BRCA1和BRCA2有害突变可以通过父亲或母亲遗传下来。父母一方携带突变,任一子女都有50%的可能性遗传突变。在整体人群中,女性一生患乳腺癌的风险为12%,而携带BRCA1突变的女性的患癌风险高出5~6倍以上,携带BRCA2比例为4倍以上。 /p p   如何知道自己有没有发生这些基因突变呢?吐口水就可检测出来。专家介绍,只需采集2毫升的唾液细胞,就可以对BRCA1、BRCA2这两个基因进行多达1.6万个位点的全长检测,获得准确度99.95%以上的检测结果。 /p p   而这样的基因检测和我们常见的乳腺癌体检又是什么关系呢? /p p   根据美国NCCN肿瘤临床指引,普通人群建议从40岁开始进行一年一次的乳腺钼靶检查,而检测出基因突变的高危人群则完全不一样,从25岁开始就要进行乳腺核磁共振或者钼靶,到30岁开始每年进行钼靶+核磁共振联合检查。 /p p   近日成立的乳腺癌防治联盟提出了“精准预防”的四部曲:第一是基因检测,准确解析遗传风险;二是评估问卷,全面测评生活和环境风险包括家族因素、过往病史、药物因素、饮食因素等;三是体检建议,根据基因检测和风险评估的结果,给出个性化的影像检查和专科检查建议 四是健康指导,由专科医生给出日常生活健康指导。 /p p    strong 建立万名女性参与的基因图谱 /strong /p p   中国妇女发展基金会女性肿瘤预防基金主任沈天宇介绍,该基金正牵头开展中国女性特有的乳腺癌基因图谱科研项目。项目将在全国30多家三甲医院展开,这些医院分布在全国不同地区,包括东北、西北、华南、华中、东南沿线,计划收集万名女性的基因检测样本,通过大数据分析和样本研究,最后得到整个中国女性特有的基因图谱完善计划。项目预计两到三年完成,参与的女性都可免费进行基因检测。 /p
  • 解读“生命之书” 新发现填补人类基因组图谱空白
    美国加州大学圣地亚哥分校(UCSD)的研究人员制作了一份人类基因组的单细胞染色质图谱,确定了240种多基因特征和与疾病特征相关的细胞类型,并注释了非编码DNA变异的风险,有利于更好地理解遗传学与疾病之间的联系。这一发现发表在12日的《细胞》杂志在线版上。  此前,科学家在公布最新的被称为“生命之书”的人类基因组图谱时称,更为精确的计算表明,人类基因数量实际在2万到2.5万之间。然而,这个估计并不能真正解释蛋白质编码基因构建过程的确切工作方式,或者不适用于患有疾病的情况。  UCSD细胞和分子医学教授、路德维希癌症研究所成员、表观基因组学中心主任任兵(音译)博士是DNA元素百科全书项目成员之一。他表示,人类基因组在20年前就已被测序,但解读这本“生命之书”的意义仍然很有挑战性。一个主要原因是,人类DNA序列中超过98%是非蛋白质编码的,我们还没有遗传密码来“解锁”这些序列中嵌入的信息。  DNA携带细胞的遗传指令。染色质中的主要蛋白质,称为组蛋白,有助于将DNA紧密包装成适合细胞核的紧凑形式。染色质捆绑DNA方式的变化与DNA复制和基因表达有关。  在对小鼠进行研究后,任兵及其合作者将注意力转向人类基因组中染色质的单细胞图谱。他们对来自多个供体的30种成人组织类型中取样的60多万个人类细胞进行了分析,然后将这些信息与来自15种胎儿组织类型的类似数据结合,揭示了222种不同细胞类型中约120万个候选顺式调控元件的染色质状态。  顺式调控元件是非编码DNA区域,调节相邻基因的转录。过去十年的研究已经证实,非编码DNA的序列变异是人类群体中多基因特征和疾病的关键驱动因素,如糖尿病、阿尔茨海默氏症和自身免疫性疾病。然而,解锁非编码DNA变异功能的一个主要障碍是缺乏人类基因组中转录调控元件的细胞类型特异性图谱,而新图谱填补了这一空白。  总编辑圈点  人类基因组图谱,被称为生命之书。那些关于人类生长、发育、衰老、遗传病变的秘密,随着基因组图谱的绘制,得以展现。人类不知道的很多事,基因都知道。但是,它是“生命之书”,也是“生命天书”,写出书很难,读懂书同样难。这本书的字里行间暗藏玄机。读者需要对基因这门语言足够了解,才能破译“天机”。此次,科研人员制作了一份人类基因组的单细胞染色质图谱,算是“天书”的辅导读本,有利于更好地理解遗传学与疾病之间的联系。
  • 基因测序揭示12种癌症的遗传易感性(含具体数据)
    p   12月22日《Nature Communications》杂志上的一项研究阐述了12种癌症的遗传性,意外发现胃癌遗传概率与乳腺癌等同,同时还揭示了乳腺癌易感基因BRCA1和BRCA2突变对其他癌症的影响。 /p p    strong 12种癌症的遗传性(遗传性易感性) /strong /p p   长期以来,众所周知癌症的部分风险因素为遗传,且遗传突变在不同肿瘤中的重要性也不一致。华盛顿大学医学院研究人员析了4000多个癌症病例的基因信息,以研究癌症的遗传性。这些4000多个病例均来自美国国立卫生研究院(NIH)组织的癌症基因组图谱项目。 /p p   过去的癌症基因组研究主要是比较健康组织与癌变组织的测序结果,帮助研究人员确定哪些基因在癌症的发展过程中扮演重要的角色,但这种分析不能区分遗传突变是天生的还是后天形成的。 /p p   为了梳理癌症的遗传分量,研究人员在该研究中加入了包含患者胚胎信息的正常细胞相关测序数据的分析。患者生殖细胞系来自于父母,可揭示先天性的遗传信息,判断与癌症相关的突变是否与生俱来。 /p p   本文资深作者,华盛顿大学McDonnell基因研究所医学教授Li Ding博士说,“总体而言,我们已经知道卵巢癌和乳腺癌有一个重要的遗传因素,但其他类型的癌症,如急性髓系白血病、肺癌等的遗传性小一些。” /p p   研究人员在所有的分析病例中寻找已知的与癌症相关的罕见生殖系突变。若出生时其中一个亲本的一个基因中的一个拷贝发生了突变,来自另一个亲本的正常拷贝通常可将该缺陷掩盖,但携带这种突变的个体更容易受到“第二次攻击”,随着年龄的增长,正常拷贝的基因发生突变的风险值越高。 /p p   在与癌症相关的已知的114个基因中,研究人员发现了12种癌症的种系突变,但突变频率取决于癌症的类型。研究人员专注于一种称为“截断(truncation)”的突变类型,因为大部分的截短基因(truncated gene)是不发挥功能的。这12种癌症的遗传性如下表所示: /p p style=" text-align: center " img width=" 600" height=" 400" title=" 201512231615324365.jpg" style=" width: 600px height: 400px " src=" http://img1.17img.cn/17img/images/201512/noimg/adc72687-e812-4bef-99f5-8a4b4285ae2e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center "    strong LUNG1为肺鳞状细胞癌,LUNG2为肺腺癌 /strong /p p   在本次调查中,19%的卵巢癌病例携带罕见的生殖系“截断”突变,相比之下,仅有4%的急性髓系白血病患者携带这种突变,同时研究人员发现胃癌患者携带这种突变的概率为11%,与乳腺癌患者相当。该研究结果可提高癌症风险基因检测的准确性。 /p p    strong 乳腺癌易感基因BRCA1和BRCA2可能影响其他癌症的形成 /strong /p p   BRCA1和BRCA2基因对DNA修复很重要,且一直以来被认为与乳腺癌风险相关,但该研究揭示了这两个基因可能有更广泛的影响。 /p p   “我们发现大量的BRCA1和BRCA2基因生殖系’截断’突变发生于乳腺癌以外的肿瘤,包括胃癌和前列腺癌”,Ding说,“这表明我们应注意这两个基因可能潜在地参与了其他类型癌症的发展。BRCA1基因发生生殖系截断突变的患者,90%的BRCA1截断突变在肿瘤组织中扩增,且与癌症类型无关。” /p p   对已知乳腺癌风险高的女性进行BRCA1和BRCA2基因检测可提供重要的预防信息。例如,当基因型正常时乳腺癌遗传风险值不会升高,但如果其中一个基因发生了一些可使另外一个基因失效的突变,那么乳腺癌风险会大大增加。 /p p   突变的类型多种多样,基因测序还可揭示这些基因突变的许多未知结果,且目前这些突变对癌症风险的影响也是无法预测的。为了弄清临床实践中的灰色地带,Ding及其同事俄亥俄州立大学计算机生物学和生物信息学家Jeffrey Parvin博士和华盛顿大学医学教授Feng Chen博士研究了BRAC1基因中意义不明确的68个种系非截断突变体。对于每一种突变,研究人员均测试了BRAC1蛋白如何执行其DNA修复的功能,结果发现其中6个突变体表现出了完全截断效应——使基因完全失效,且这些突变在肿瘤中含量非常丰富,在癌症发展中可能扮演着不同的角色。 /p p   Ding表示,“揭示这六个未知突变的临床意义非常重要(实际上它们是导致基因功能丧失的突变)。但同时我想强调结果的对比性,许多类型的突变(至少在我们的研究中)是中性的,我们想将其识别出来使卫生保健提供者能给患者提出更好的建议。但将此研究结果纳入临床之前还需更多的研究来证实。” /p
  • 威斯康星大学葛瑛PNAS最新成果:自上而下蛋白质组学研究揭示共有蛋白指纹图谱可简化遗传性心脏病治疗
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是一种常见的遗传性心脏病,是年轻人心脏猝死的主要原因。 肥厚型心肌病与肌肉蛋白的编码基因突变有关,但不同的突变如何导致相似的临床表型尚不清楚。迄今已发现令人眼花缭乱的1400多个基因突变可能导致这种疾病,也使得医生们非常困惑如何治疗如此复杂的遗传性心脏病。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 近日,在威斯康星大学麦迪逊分校葛瑛教授的一项新研究中,团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。 /span span style=" text-indent: 2em " 该研究成果“ /span Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics span style=" text-indent: 2em " ”已于2020年9月23日发布在《美国科学院院报》(PNAS)。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 317px " src=" https://img1.17img.cn/17img/images/202009/uepic/4307809a-5b4e-4070-9e8f-8fddd25830ef.jpg" title=" 222.png" alt=" 222.png" width=" 600" height=" 317" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " (原文链接: /span a href=" https://www.pnas.org/content/early/2020/09/22/2006764117" target=" _blank" style=" text-indent: 2em color: rgb(0, 112, 192) " span style=" text-indent: 2em " https://www.pnas.org/content/early/2020/09/22/2006764117 /span /a span style=" text-indent: 2em " ) /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 研究团队从梗阻性肥厚型心肌病患者接受矫正手术以修复心脏血流受损的患者中收集了患病心脏组织的样本。尽管潜在的遗传突变有所不同,葛瑛团队发现患者心脏的许多关键肌肉蛋白有非常近似的蛋白质指纹图谱,表明这些梗阻性肥厚型心肌病患者具有共同的信号途径。虽然具体机制尚需进一步研究,但这些关键肌肉蛋白质磷酸化改变很可能导致心脏失调,从而导致心肌增厚。这对心脏病医生来说是个好消息,因为这证明可以用研发一种共通的疗法治疗这种梗阻性肥厚型心肌病,而不是针对患者个别基因突变的治疗方法。 span style=" text-indent: 2em " 该研究也进一步证明了基因突变并不总是足以解释疾病。这些基因编码的蛋白质对健康有最终影响,但在疾病期间,人体的蛋白质可能会以微妙但相应的方式改变。蛋白质水平的变化可能比其基因更好地反映了患者的疾病,并且如果我们可以在蛋白质水平上检查患者的样本,则可以帮助我们提供精准医学治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 葛瑛教授团队希望接下来继续扩大研究范围,研究数百名潜在的肥厚型心肌病患者,以了解类似的蛋白质指纹趋势是否成立,此外,团队还计划研究具有致病突变的心脏干细胞,以期利用蛋白质指纹的深入研究为将来的疾病治疗提供指导。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 研究团队:& nbsp a href=" https://labs.wisc.edu/gelab/" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://labs.wisc.edu/gelab/ /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 450px " src=" https://img1.17img.cn/17img/images/202009/uepic/a1b6fd05-398f-4f1c-8e9a-23434294fa82.jpg" title=" ge.jpg" alt=" ge.jpg" width=" 300" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 葛瑛教授 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/524db4d6-af69-46ed-b7f7-f4bb9a8ec57a.jpg" title=" ge group.jpg" alt=" ge group.jpg" / /p p style=" line-height: 1.75em text-indent: 2em text-align: center " 团队合照 /p
  • 华大基因研究成果再上《自然—遗传学》
    南方日报讯 笔者从深圳华大基因研究院获悉,昨日,笔者从深圳华大基因研究院获悉,昨日,由中国农业大学玉米中心、华大基因研究院、美国爱荷华大学、明尼苏达大学等单位合作的研究成果&ldquo 基因丢失与获得的多态变化揭示玉米中的杂交优势的机制&rdquo 在国际权威科学杂志《自然&mdash 遗传学》上发表。文章指出,目前的玉米育种对遗传资源的组合利用很有限,还存在着巨大潜力。   据了解,该研究报道了中国重要玉米骨干亲本的全基因组的单核苷酸多态性、插入/缺失多态性以及基因获得和缺失变异图谱,对玉米的遗传学研究和分子育种提供了非常有价值的资源。研究人员选择了中国历史上和目前广泛流行的高产杂交组合骨干亲本,并且根据多态性追踪了这些骨干亲本育成过程中基因组的变化方式。该研究还发现这些骨干亲本组合基因组的组合可以弥补另一方功能元件的缺失,这种基因丢失与获得的多态变化和其他无义突变的互补作用可能与杂种优势有关。   该项研究对6个中国重要玉米杂交组合骨干亲本进行全基因组重测序,利用SOAP软件v2.18比对获得的12.6亿75bp的双末端片段与玉米的参考基因组序列,发现了100多万个单核苷酸多态性位点(SNPs)和3万多个插入缺失多态性位点(IDPs),建立了高密度的分子标记的基因图谱。同时研究还发现了101个低序列多态性区段,在这些区段中含有大量在选择过程中与玉米性状改良有关的候选基因。   此外,通过将玉米自交系Mo17及其他自交系的基因序列与玉米自交系B73的基因序列比对,研究人员对玉米自交系中基因丢失与获得的多态性进行了研究,发现在不同的自交系中存在不用数量的基因丢失与获得性变异 利用SAOPdenovo软件对在其它自交系中存在而在B73中缺失的序列进行组装,研究人员发现了很多目前公布的B73参考基因组序列中丢失的基因。这些发现不仅为高产杂交玉米育种骨干亲本的培育提高了重要的多态性标记,同时也补充了玉米基因数据集,为进一步挖掘玉米基因组和遗传资源提供了大量数据。
  • 华大基因人类遗传与疾病研究技术实现新突破
    中国经济网记者今日从华大基因获悉,华大基因正推出一种新型人类基因组区域捕获技术,即超级序列捕获技术(简称Allinone),该技术主要通过对特定群体设计探针集,从基因组水平上对人类全基因组的外显子区域、群体特异的tagSNP(标签SNP)区域和MHC区域(人类白细胞抗原系统区域)实现同步捕获,然后再进行高通量测序分析。 据悉,Allinone所捕获的这些DNA区域与人类疾病的发生发展紧密关联,且具有简便、经济、高效、覆盖范围广等优点,因此该技术将成为人类遗传和疾病研究领域的一种新型高效的基因组研究工具。 据了解,Allinone探针集将会覆盖整个基因组的5%-10%,不但可以捕获基因编码区域,还可以捕获很多非编码区域。目前广泛应用的外显子测序技术可以捕获基因编码区,但是基因组中的很多功能区域是非编码的,这些非编码区虽然不能够转录信使RNA,但是能够调控遗传信息的表达,所以了解非编码区域的遗传信息将提供更加完整的基因表达控制信息,而Allinone平台可轻松解决这个问题。 Allinone探针集覆盖了群体特异的tagSNP区域,所以通过该技术可以高效、快捷的了解群体的特异性变异情况,这对复杂疾病研究具有非常重要的意义。单核苷酸多态性(SNP)是人类基因组中最丰富的遗传变异,其中少量的标签SNP(挑选出的SNP集合)就能够提供与全部SNP位点大致相同的图谱信息。由于各种群之间存在遗传差异性,所以每个种群也拥有代表该种群基因图谱的标签SNP,只需通过这些标签SNP便可以对大量样本或整个种群的变异情况进行研究。 Allinone目标捕获区域还整合了华大基因最近研发的MHC区域捕获探针集,即可对人类MHC区域实现高度覆盖及有效富集。MHC区域广泛参与免疫应答的诱导与调节,与已发现包括自身免疫疾病、癌症、多种复杂疾病等至少百余种疾病密切相关。由于该区域和多种复杂疾病的发生以及人类免疫系统活动具有密切关系,因此Allinone对该区域的覆盖无论对人类疾病的机理研究还是药物研发都具有非常重要的意义。 华大基因执行院长王俊称:“目前,我们已经开始使用中国疾病患者的样本对汉族人群的Allinone捕获技术进行测试评估。只要建立一个‘种群特异性’的参考基因组,就可以应用Allinone捕获技术对其他更多的样本进行重测序研究。除了针对汉族人群的Allinone,华大基因还将针对世界其它主要人群设计及推出相应人群的Allinone研究工具,从而推动全世界的基因组学研究的快速发展。” 华大基因研究人员高玉池表示:“目前,我们所研发的Allinone的总体目标区域大小为180M左右,可以广泛应用于以汉族人群或汉族近缘群体为研究对象的基因组学研究。”对该技术的测试评估结果表明,目标区域覆盖度达到97%以上,检测的SNP位点与高深度全基因组测序结果一致性率在99.5%以上。此外,华大基因还在研发更加多样化的高级信息分析内容,以更好的解释基因组数据的生物学意义。高玉池表示:“我们相信Allinone凭借其数据全面性、操作灵活性、高性价比等多方面优势将成为人类疾病基因组学、表型-基因型关联研究及其它人类遗传学研究的最佳工具。”
  • 不靠谱的遗传病基因筛查:阴性的检测结果,为何生出患病的孩子?
    孩子出生后确诊患有一种罕见的遗传疾病,这给温先生的家庭带来了巨大的磨难,而这一切本完全可以避免。2022年,即将迎来第一个孩子的温先生夫妇,在产检医院长宁区妇幼保健院的极力推荐下,选择了华大基因的一款遗传病携带者筛查产品,来筛查孩子母亲是否携带有遗传病致病基因。这款产品宣称检测范围覆盖了155种单基因隐性遗传病,检测结果显示,155种疾病都是“阴性”。去年2月5日,温先生的孩子出生。仅仅2个月后,孩子开始出现莫名的发烧、血小板降低、脾脏巨大等一系列症状,最终在复旦大学附属儿科医院确诊为“家族性噬血细胞性淋巴组织细胞增多症3型”。这是一种遗传疾病,也是上述华大基因检测的155种疾病之一。明明是阴性的检测结果,为何生出患病的孩子?“可以检测的,都包含在内了”温先生回忆,他们是在2022年7月的一次产检时,被医生推荐进行基因筛查。他提供了当时拍下的一张医院的宣传页,上面称“单基因病综合发病率高达1/100”“至少有1/3的人携带致病基因”等等。尽管医院称该项目是自愿选择,但温先生认可医生“应当进行单基因病携带者筛查”的说法,随即支付了2400元筛查费用,先行筛查温先生妻子的基因。尽管由长宁区妇幼保健院收费并抽血,但实际该项筛查由华大基因提供,样本是送至武汉华大医学检验所检测进行检测。过程中,温先生妻子按照医院要求签署了一份华大基因的“送检单及知情同意书”。△温先生提供的长宁区妇幼保健院针对基因筛查的宣传页。这是一款怎样的筛查产品?华大基因的官方网站显示这款产品名为“安孕可”,“基因数目全面,测序覆盖度95%以上,准确率99%”是其技术特点,且由“全球最大的基因组研究中心”负责检测。记者拨打了华大基因的“400”电话,咨询该款产品的详情,客服解释,所谓的95%测序覆盖度,指的是基因在制备成样本时得到保留的区域部分达到95%以上,剩余一些区域现有的技术手段还检测不了,但客服强调,“已经研究透彻的疾病点位都是可以检测的,都包含在内了”。△华大基因的官方网站显示这款产品名为“安孕可”。△“基因数目全面,测序覆盖度95%以上,准确率99%”是其技术特点,且由“全球最大的基因组研究中心”负责检测。也正因此,尽管华大基因在知情同意书中写有“本检测仅针对范围内疾病相关的目标基因的目标致病及疑似致病变异位点进行筛查,不包含对检测范围外疾病的生育风险评估”条款,但温先生认为这只是常规的提法,对于155种疾病的筛查结果是全面且值得信赖的。2022年8月12日,华大基因出具了检测报告,报告显示“未检测出致病或疑似致病变异”。去年2月5日,温先生夫妇迎来儿子的诞生。去年4月初,孩子突然持续发热,合并血小板降低、脾脏巨大,病因不明。去年5月初,孩子被送入复旦大学附属儿科医院治疗。由于始终不能确诊,儿科医院抽取了3人的血液,再次进行了全面基因检测,最终确定“检测到可以解释患者表型的致病变异”,也由此确诊温先生孩子患有的是“家族性噬血细胞性淋巴组织细胞增多症3型”。事实上,华大基因的筛查也包含了该疾病,报告中称该疾病的遗传生育风险小于100亿分之四。△华大基因的筛查也包含了该疾病,报告中称该疾病的遗传生育风险小于100亿分之四。从只有100亿分之四的风险,到百分之百的结果,问题出在哪?儿科医院分子医学中心检测中发现,孩子的UNC13D基因上,在“C.118-308CT”这个点位上出现了变异。对温先生夫妇的基因进一步检测发现,孩子的变异遗传自父母双方,是一种“纯合变异”。简单来说就是夫妻双方都携带了这个点位的致病基因,但都是隐性的,到了孩子身上变成了显性遗传。△儿科医院分子医学中心检测中发现,孩子的UNC13D基因上,在“C.118-308CT”这个点位上出现了变异。为什么华大基因的检测结果没有揭示出大人存在着致病基因?华大基因的筛查送检单上有一个附录,里面写有检测范围,包括155种单基因遗传病相关的147个基因的11806个变异。扫描下方的二维码,可以具体查看到这10000多个变异。记者在154号疾病“家族性噬血细胞性淋巴组织细胞增多症3型”的点位列表里,没有找到“C.118-308CT”点位。即华大基因竟没有检测该点位,这正是问题产生的原因。△记者在华大基因筛查产品的154号疾病“家族性噬血细胞性淋巴组织细胞增多症3型”检测点位列表里,没有找到“C.118-308CT”点位。为什么华大基因不检测这个点位?华大基因这款筛查产品的实际情况和客服介绍并不一样。作为一款风险筛查产品,为什么华大基因没有将这个点位列入相应疾病的检测点位列表,留下了这么大的隐患?是检测技术上还有障碍吗?并不是。复旦大学附属儿科医院的检测说明,现有的技术检测出该变异完全没有难度。华大基因的知情同意书声称,其产品检测依据的是2022年1月的变异位点信息数据库。是不是因为这个变异点位没有收入疾病的变异点位数据库吗?记者查阅了相关文献发现,该“C.118-308CT”点位与“家族性噬血细胞性淋巴组织细胞增多症3型”之间的关联早有研究,该突变会影响到相应基因的转录水平。记者又进一步咨询了其他的几家基因筛查机构,其中一家的工作人员明确告知,该变异点位被收录进了国际通用的基因突变点位数据库,其公司的同类筛查产品包括了该变异点位。△该C118-308T点位与“家族性噬血细胞性淋巴组织细胞增多症3型”之间的关联早有研究。在浏览相关论文时,一种说法可能解释了华大基因未将该点位列入检测范围的原因,即“C118-308T”点位于这条基因上的位置比较特殊。一条基因有很多区域,有外显子区域、内含子区域、调解元件等等。85%的致病突变都集中在外显子区域,通常被称为“编码区”。很多基因检测产品都会着重对外显子区域进行检测。而导致温先生孩子疾病的“C.118-308CT”点位,恰好是位于比较冷门的内含子区域,是传统意义上基因检测的“非编码区”。一家基因检测企业的负责人告诉记者,目前市面上的检测产品大多数是基于外显子区域的基因位点设计的,认为检测了这部分就可以排除绝大多数的风险。只有做科研或更深度挖掘的检测,才会用全基因组或某些基因全序列检测的方法,才会得到覆盖全基因的外显子和内含子位点的检测结果。华大基因的筛查产品属于上述情况吗?记者再次致电华大基因的客服询问,客服这才说了实情:155种遗传疾病涉及的内含子变异点位极少,一般不会去做。而之所以这样设计筛查产品,客服解释与产品定位有关,即华大基因的筛查产品“并不是一个诊断性的产品”“不作辅助确诊”,因此它只筛查患病率高的疾病,只能提供风险参考。业内人士认为,作为风险筛查,这样设计产品会导致检测范围留有盲区,有很大局限性。尽管它可以排除大部分高发的遗传病,但不能排除小概率事件,提供的风险参考实际上也是“打折扣”的。华大基因筛查产品的局限性,让温先生夫妇付出了巨大的代价,甚至可能是孩子的生命。万幸,目前温先生的孩子已经进行了造血干细胞的移植,还比较稳定。但中间过程代价之大,过程之艰辛,平常人难以想象。基因筛查产品“乱象”应得到规范据记者了解,目前市场上基因筛查检测产品五花八门。每家检测机构会同时结合科学发现,临床检测的通用性、灵敏度、准确度,还有成本等因素来设计多样化产品,这些产品因为基因检测公司专业人士的认知水平或公司产品定位策略的不同,各有优点和缺陷。优点不难获知,对于产品的缺陷,消费者会被告知吗?温先生称,在基因筛查的全过程中,华大基因对于其产品的局限性没有任何告知。“只告诉你它检测什么,而不说它不检测什么”,温先生称,尽管其罗列出了检测点位,但对于普通人来说,这些点位信息堪比“天书”,根本没有能力去看明白。对此,华大基因客服则强调称,检测报告上对于局限性有过告知,即“阴性结果不能排除受检者携带检测范围外致病变异的可能性”。但这样的表述实则更像是免责条款:类似的免责条款在知情同意书和检测报告中反复出现,温先生夫妇多方投诉,都因为这些条款而维权无门。△类似的免责条款在知情同意书和检测报告中反复出现。3月7日,记者前往长宁区妇幼保健院查看。在其愚园路总部,记者一走进门诊大厅,就看到了一台“华大基因自助报告”终端摆在了一排自助机器的尾部。在东诸安浜路的“特需部”,一款“脐带血新生儿遗传病基因检测”产品的易拉宝广告设置在产检区域入口处。据称华大基因通过长宁区妇幼保健院在售多款筛查产品,价格高低不一。记者随即走入一间诊室,听闻记者咨询基因筛查产品,医生反复强调筛查的必要性,并宣称筛查准确率高达99%。“基本上都会做的”,医生告诉记者。△长宁妇婴保健院门诊大厅里,一台“华大基因自助报告”终端摆在了一排自助机器的尾部。可见,医院在推广时,也对华大基因产品的局限性只字不提,只去强调能排除什么,而没有给像温先生夫妻这样的新生儿父母亲解读相应的产品不能排除什么,还有的风险究竟在哪,市场上是否还有更好的产品,或者说父母亲是否还需要进一步做其他的检测。业内人士指出,华大基因和长宁妇婴保健院在销售这款基因筛查产品时,某种程度上利用了老百姓对基因筛查产品的不了解和不专业,这是一种很不负责任的做法。△在东诸安浜路的“特需部”,一款“脐带血新生儿遗传病基因检测”产品的易拉宝广告设置在产检区域入口处。近年来,新生儿基因筛查产品越来越流行,市场广阔,意义重大。因此,其推广销售中目前普遍存在的放大优点、对缺陷避而不谈的乱象必须要得到纠正;与此同时,相关医院作为直接面向新生儿父母的销售方,也要尽到严格审查产品是否合格有效、充分告知产品缺陷不足等义务,尽到责任。同时,由于基因筛查产品专业性强,也提醒广大市民在选择相关筛查产品时也要多方了解、充分知情,必要时可以咨询下专业人士。
  • 惊人发现:基因测序揭秘脑瘫的遗传因素
    脑瘫是导致儿童残疾的最常见原因。一直以来,它被认为是由出生窒息、中风、婴儿大脑发育受感染等因素引起。脑瘫患儿在早期运动发育中遇到障碍,症状表现为癫痫、学习、演讲、听觉和视觉障碍等。平均每1000个新生儿中有2个受脑瘫的影响,其中一些孩子受到轻微影响,而另一些则不能独立行走或交流。一般对于寻找残疾根源,只有在无法确定其他因素的情况下,才会进行基因测试寻找遗传因素的影响。  加拿大研究揭示脑瘫的遗传因素  近日,加拿大病童医院及麦吉尔大学医疗研究中心的研究人员揭示了脑瘫的遗传因素,改变了专家对脑瘫成因的理解。该研究结果8月3日在线发表在《 Nature Communications》杂志上,此研究结果可能对未来脑瘫的预防和治疗产生重大的影响。  研究人员对加拿大115名脑瘫儿童与其父母进行了基因检测(之前已明确这些脑瘫儿的成因)。结果发现10%患者与脑瘫有关的基因发生了突变。在一般人群中,这些基因的突变率小于1%。与脑瘫有关的DNA发生突变,包括碱基的增加、缺失或重组都可导致此病。  该研究还揭示多种不同基因与脑瘫有关。多伦多大学麦克劳克林中心主任 Scherer说,这很像自闭症,多种不同基因的突变都能导致该疾病,这就解释了为何这两种疾病的临床表现多样化。该研究结果打开了对脑瘫了解的新大门。  麦吉尔大学神经病学与神经外科专家Maryam Oskoui教授表示,该研究结果揭示了一种比之前认识的更强大的脑瘫遗传因素,这些遗传因素如何与其他已知风险因素相互影响还有待进一步研究。  专家呼吁将基因检测整合到脑瘫的诊断与评估实践中  加拿大瘫痪注册中心主任Michael Shevell博士表示,寻找一个残疾孩子的病因对管理孩子十分重要。找到一个精确的原因是打开儿童脑瘫具体治疗、预防以及康复大门的关键。本研究推动基因测试应用于脑瘫诊断与评估中。  本研究的首席研究员及基因组学应用中心主任Stephen Scherer博士说,“当我向遗传学家揭露该研究结果时,他们感到很震惊。基于该研究结果,我们建议将基因组分析整合到脑瘫诊断与评估的标准实践中。”
  • 对4500万美国人研究发现:40%疾病由遗传引发,25%由环境造成
    p style=" text-indent: 2em " span style=" text-indent: 2em " 据英国《每日邮报》1月14日报道,美国 strong 哈佛大学 /strong 的科学家们通过对 strong 4500万美国人进行长达24年的跟踪调查 /strong ,研究哪些疾病是由基因引起的,而哪些疾病更容易受到环境的影响,是迄今为止同类研究中规模最大的研究。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c3ecca16-6445-44e3-b73b-35eb2a461d1d.jpg" title=" 00.jpg" alt=" 00.jpg" width=" 300" height=" 200" border=" 0" vspace=" 0" style=" width: 300px height: 200px " / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 据其最新发表在《自然遗传学》(Nature Genetics)期刊上的研究结果显示,在 strong 调查研究的560种疾病中,疾病中40%是由遗传导致,而至少有25%的疾病是由环境造成的,其中,认知问题与遗传基因关系最为密切,而眼疾则受环境的影响最为严重 /strong 。 /span /p p   一般来说,大多数疾病是先天基因与后天环境相互作用的结果。 strong 环境可以改变基因排序方式,基因可以影响人们身体对环境的反应 /strong 。而每个人的DNA都是独一无二的,所处的环境更是独一无二且不断变化的。而基因与环境的相互作用也因疾病而异。 /p p   哈佛大学的研究人员通过保险信息数据库收集了4500万人的数据,将基因数据、疾病诊断以及诸如身高、体重等生命医学统计数据与受试者的邮政编码进行了比较,从而推测出社会经济地位等环境对于疾病的影响。尽管所有信息对他们的分析都很重要,但 strong 受试者中5.6万对双胞胎的数据为他们的研究提供了一些最为关键的信息 /strong 。尤其是同卵双胞胎,可以为遗传学家观察不同环境下相同DNA发生的变化提供难得的机会。 /p p   哈佛大学的科学家们开始研究哪些因素对哪些疾病影响最大。通过对6000多粒遗传性疾病研究发现,遗传性疾病均是由某些基因序列缺失而导致的基因缺陷。而在研究检测的疾病中,包括 strong 肌肉骨骼疾病、认知疾病、眼部疾病、呼吸系统疾病和生殖疾病等,有近40%的疾病由遗传导致。 /strong /p p   该研究团队共对560种疾病进行了研究,发现至少 strong 有25%的疾病是由环境造成 /strong 的。其中,42种眼病中,有27种是由环境因素引起的 除眼病外,呼吸系统疾病是与环境因素联系最密切的疾病 生殖障碍受环境影响最小。在认知疾病中,五分之四是遗传的 而结缔组织疾病,如类风湿关节炎等,受DNA影响最小。 /p p   通过遗传倾向性,还可以预测每人每月在医疗保健上约60%的花费。因为,遗传因素甚至可能改变环境因素(社会经济地位),从而进一步改变疾病风险。总的来说,环境因素对疾病的预测能力弱于遗传因素。 /p p   但环境因素对疾病风险的影响极大。该研究显示,社会经济地位影响了145种不同的疾病,其中,肥胖最易致病。研究结果也表明,气候变化已经并将继续对人们的健康产生重大影响。气温变化使117种不同疾病的风险发生变化,甚至高于空气污染的风险。 /p p   该研究的作者帕特尔博士表示:“我们研究的核心问题是‘先天与后天的关系’。这种大规模分析的价值在于,它将揭示基因相对于共同的大环境在许多疾病中的影响,将有助于疾病更好的预防和治疗。” /p
  • 中国帕金森病遗传因素特征研究,测序技术是关键
    记者2月15日从中南大学湘雅医院获悉,该院神经内科、国家老年疾病临床医学研究中心(湘雅医院)教授唐北沙科研团队于2月10日在《npj-帕金森病》(npj Parkinson's Disease)上发表原创性论文“基于全基因组测序的全基因组关联研究鉴定了中国帕金森病人群的风险基因位点”,这是首个大型中国帕金森病人群全基因组关联研究,揭示了中国帕金森病的遗传因素特征。唐北沙和西湖大学教授杨剑为论文并列通讯作者,湘雅医院神经内科博士研究生潘宏旭、副教授刘振华为共同第一作者,湘雅医院为第一单位兼第一通讯单位。PD是常见的神经变性疾病之一,病因和发病机制仍不清楚,主要认为与年龄老化、环境因素和遗传因素及其相互作用有关。遗传因素在PD中的作用越来越得到重视。截至目前,世界上已发表多个PD全基因组关联研究成果,揭示了90余个风险基因位点;但对人口众多、人口日趋老龄化的中国人群而言,PD人群的遗传背景仍不明确。为系统解析中国PD人群的遗传因素特征,唐北沙牵头联合众多国内专家,构建了中国帕金森病及运动障碍疾病多中心数据及协作网(PD-MDCNC),建立了大型中国PD病例-对照的临床队列;应用全基因组测序技术在发现队列完成了首个全基因组关联研究,随后利用多重PCR扩增子捕获测序技术在验证队列进行了验证研究。最终,该团队鉴定了1个新的PD风险基因位点,明确了53个与中国PD相关的风险基因位点,其中12为全基因组显著相关的风险基因位点、5个为中国PD人群特异性风险基因位点;绘制了中国PD人群易感基因变异谱;基于全基因组数据,发现中国PD人群的遗传度为0.18,稍低于欧洲血统人群(为0.22)。该研究还利用中国PD人群相关风险基因位点构建了多基因风险预测模型,发现携带多个风险基因位点的人群PD发病风险是没有携带风险基因位点的3.9倍,可为PD高危人群的早期预警、早期筛查、早期诊断提供指导。该研究得到了首都医科大学宣武医院教授陈彪、上海交通大学医学院附属瑞金医院教授刘军、北京医院教授陈海波、广东省人民医院教授王丽娟以及新加坡南洋理工大学教授Jia Nee Foo、美国国立卫生研究院教授Andrew B Singleton各团队的大力支持,也得到了PD-MDCNC平台的有力支持,得到国家重点研发计划、国家自然科学基金重点项目等基金资助。论文审稿人认为,该研究采用两阶段设计,利用全基因组测序技术进行了中国PD人群的全基因组关联研究,研究思路严谨,报告了新的风险基因位点与中国PD人群遗传因素特点,对帕金森病遗传因素研究做出了重要贡献。
  • 全球第一套烟草全基因组序列图谱完成
    12月9日,由中国农业科学院烟草研究所参与规划设计与实施的全球第一套烟草全基因组序列图谱&mdash &mdash 绒毛状烟草和林烟草全基因组序列图谱完成,这是继马铃薯和番茄基因组之后,全球完成的第三种茄科植物全基因组序列图谱。   烟草是重要的科研模式植物,绒毛状烟草和林烟草是栽培烟草的两个祖先种。这两个品种的全基因组序列图谱是目前已知植物基因组序列图谱中基因组最大、组装精度最高、组装结果最好的2个图谱。此项工作的完成标志着烟草研究从此全面进入基因组时代。   绒毛状烟草和林烟草全基因组序列图谱测序是中国烟草基因组计划的一部分。中国烟草基因组计划于2010年12月启动,由国家烟草基因研究中心、中国农业科学院烟草研究所等单位承担。目前,重大专项已在多个领域取得突破性进展,烟草突变体库创制已达27万份并正在进行大规模鉴定和分析,烟草分子遗传图谱构建和重要突变基因定位克隆也取得了突破。在此基础上,科研人员将有序开展绒毛状烟草和林烟草的遗传图谱和物理图谱绘制,并启动大量四倍体栽培烟草的基因组测序工作。
  • 安捷伦科技创造出一款独具特色的细胞遗传学工具
    安捷伦科技将 CGH 和 SNP 分析结合到同一芯片上, 创造出一款独具特色的细胞遗传学工具 2010 年 10 月 11 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日推出 SurePrint G3 Human CGH+SNP 芯片平台,这一创新型的系统能够同时分析染色体拷贝数改变和不改变的染色体畸变。该系统可以帮助科研人员研究发育性疾病以及多种癌症的遗传机理。 这是目前市场上唯一检测杂合性丢失和单亲二倍体(LOH/UPD)的双色 CGH 分析平台,分辨率可达 5 至 10兆碱基。 贝勒医学院分子人类遗传学系主任 Arthur Beaudet 博士说,&ldquo 我们终于拥有一款芯片,它不仅具有最佳的拷贝数检测能力,可以覆盖所有外显子,而且还具有 SNP 分析能力,可以检测由 UPD 或近亲结婚引起的杂合性缺失 [LOH]。&rdquo 安捷伦 CGH 芯片产品经理 Anniek De Witte 表示,&ldquo 我们将 SNP 探针加入到已经被广泛使用的 安捷伦CGH 芯片设计中,开发出一款可以同时有效检测拷贝数变化及无拷贝数变化的 LOH/UPD 的强大工具,进而获得更详细和完整的基因组畸变图谱,对此我们相当兴奋。相比我们以前推出的 CGH 芯片,这一新产品的分辨率、准确性和灵敏度同样出色,绝不会让研究者失望。&rdquo 安捷伦 SurePrint G3 CGH+SNP 芯片提供目录版和定制版,与我们目前的芯片形式类似。您可通过安捷伦免费的eArray在线工具或eArray XD 单机版轻松完成定制芯片的设计。 SurePrint CGH+SNP 4x180K 和 2x400K 两款型号的芯片均可检测大约 60000 个 SNP,因此,检测整个基因组的 LOH/UPD 时分辨率可达到约 5 至 10 兆碱基。4x180K芯片上的约 120000 个 CGH 探针,由包括细胞遗传学芯片国际标准联合会 (ISCA,http://isca.genetics.emory.edu) 推荐的8x60K 检测芯片中所有的探针以及额外的 60000 个骨架探针组成。2x400K 芯片上的约 300000 个 CGH 探针覆盖了基因组最重要的区域,侧重于基因和外显子。 SurePrint G3 CGH+SNP 芯片使用与现有的CGH单一检测芯片相同的高通量工作流程,因此能够简单高效地应用于细胞遗传学研究。安捷伦的Genomic Workbench软件采用创新算法,利用 CGH 探针计算拷贝数变化,通过 SNP 探针测定等位基因特异性拷贝数以及定位 LOH/UPD 区域,弥补了现有芯片分析的不足。该软件可以同时分析 CGH 和 SNP 数据,计算QC参数,并以此确保高可信度的数据评估。 关于安捷伦 SurePrint CGH+SNP 芯片的更多信息,请访问www.agilent.com/genomics/cgh_snp 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,500 名员工在 100 多个国家为客户服务。在 2009 财政年度,安捷伦的业务净收入为 45 亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn
  • Science | 空间组学开启新时代 – 樊荣团队发布空间分辨的表观遗传分析新技术
    空间转录组测序在去年一月被Nature Methods选定为年度创新生物学技术以来,已经成为了组织样本基因表达和组学分析的最前沿利器。但是现有的多种空间组学技术基本局限于对转录组的研究。2020年底,耶鲁大学的樊荣教授团队首次报道了利用组织样本原位编码方法同时分析空间转录组和蛋白组。以此开启的空间多组学分析 (spatial multi-omics)成为了今年 Nature 杂志看好的2022年最值得期待的七个技术领域之一。但是到目前为止, 还没有任何技术能够实现对基因表达机制方面的高空间分辨率的分析。染色质状态决定基因组功能,并以细胞类型特异性的方式进行调节。同时,细胞在组织中的组织方式与它们的功能之间又存在很强的相互联系。因此空间分辨的表观遗传测序技术 (spatial epigenomics)将为这个最前沿的空间组学领域开启另一个全新的篇章。近日,耶鲁大学樊荣教授团队在Science上在线发表了题为Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level 的最新空间组学技术Spatial-CUT&Tag (第一作者邓彦翔博士)。Spatial-CUT&Tag技术能够在空间和全基因组水平上观察组织发育的表观遗传机制,实现了与发育和疾病相关的表观遗传调节的空间映射,是科学和医学应用领域的一项重大突破。图1 Spatial-CUT&Tag总体设计和实验流程在樊荣团队的研究中,研究人员专注于最重要的表观遗传变化之一,组蛋白修饰。Spatial-CUT&Tag利用微流控技术将组织进行空间二维编码,并与CUT&Tag技术进行结合,实现了全基因组尺度的空间组蛋白修饰分析。在对小鼠胚胎的空间表观遗传测序中,成功分辨出小鼠胚胎各个器官,测序结果与单细胞表观遗传数据进行比较,数据质量达到相同水平,同时与ENCODE数据库中bulk ChIP-seq测序数据进行比对,也实现了很好的匹配。图2 小鼠胚胎器官发育的空间表观遗传分析利用Spatial-CUT&Tag技术,首次实现直接在产后小鼠大脑中以高空间分辨率观察到特定的组蛋白修饰特征。通过亚型分析发现,H3K27me3在产后小鼠大脑中也可以控制或维持大脑皮质层的形成,与其在小鼠胚胎大脑中的作用相一致。图3 产后小鼠大脑组织空间表观遗传分析樊荣团队进一步测试把荧光染色成像后的小鼠嗅觉球组织切片做Spatial-CUT&Tag测序,然后关联空间表观遗传组到单个细胞核,首次证明可以在组织样品里原位获得单细胞表观遗传组测序数据。Spatial-CUT&Tag作为一项基于NGS的全新空间组学技术,实现了对于组织环境中表观遗传机制的全基因组图谱分析。Spatial-CUT&Tag作为一个全新的起点,可以在不同组织上实现更多类似的发现。从长远来看,樊荣团队希望利用该技术了解不同疾病状态的表观遗传起源,开发针对表观遗传的药物,开辟一条全新的疾病治疗途径。樊荣团队目前正在开发更多空间组学技术。原文链接http://doi.org/10.1126/science.abg7216
  • 单分子实时DNA测序技术问世 填补基因图谱空白
    外媒称,利用一种新式基因组测序技术,科研人员发现数万个以前未曾见到的遗传变异。这大大填补了人类基因组图谱上长期以来因难以测序而造成的空白。   据美国每日科学网站11月10日报道,华盛顿大学基因学教授、该研究团队带头人埃文· 艾克勒说,这种技术叫作单分子实时DNA测序技术(SMRT),它现在也许使得研究人员能够鉴别出许多疾病背后的潜在遗传变异。   艾克勒说:&ldquo 我们现在进入了一个全新的、以前无法看清的遗传变异领域。&rdquo   艾克勒与其同事把他们的研究结果发表在11月10日的《自然》期刊上。   目前,科学家仅能确定大约一半遗传性疾病的遗传致病因素。这个谜题被称为&ldquo 遗传性缺失问题&rdquo 。导致这一问题的一个原因可能是普通的基因组测序技术无法精确绘制基因组许多部分的图谱。这些方法是将数亿个长度约为100个碱基的DNA小片段排列出来,然后分析它们的DNA序列,构建基因组图谱。   这种方法成功确定了人类基因组中数百万个小变异。这些由单个核苷酸碱基置换造成的变异称为单核苷酸多态性。   但是,由于技术原因,科研人员此前无法可靠地检测到长度介于大约50至5000个碱基之间的片段变异。   新研究采用SMRT技术,使得测序和读取长度超过5000个碱基的DNA片段成为可能,远远超过普通基因测序技术所能测序的长度。这种&ldquo 长距离读取&rdquo 技术让研究人员能够绘制出分辨率高得多的基因组结构变异图谱。   用这种新方法对葡萄胎基因组进行研究,研究人员识别并测定出与基因组研究中常用人类参考基因组不同的26079个片段。艾克勒说,其中多数变异,约有2.2万个,从未被发现。他说:&ldquo 研究结果表明我们还有很多没有发现的遗传变异。&rdquo
  • 基因测序催生的“金领”职业 遗传咨询师
    随着基因组检测技术的迅猛发展,人们对疾病的认知提升到一个新的高度。对遗传物质的正确解读可为疾病的防治提供重要的信息,由此产生了一门新的学科——遗传咨询,新兴的金领职业“遗传咨询师”正在受到妇幼医生、儿科医生、生命科学院毕业生、分子诊断实验室、医院及第三方检验科室工作人员等群体的追捧。  《瞭望东方周刊》:解码遗传咨询师  不仅在医疗界受追捧,遗传咨询行业还受到了央级期刊的关注。日前,《瞭望东方周刊》以《解码遗传咨询师》为题详细解析了我国遗传咨询行业的发展现状。《瞭望东方周刊》以典型的孕前检测遗传咨询为例,强调了遗传咨询师的重要性。然而遗传咨询绝不仅限于孕前检测和产前诊断,遗传咨询技术应用极为广泛,遗传咨询所针对的人群也不尽相同。可以是婴幼儿群体和育龄成人,例如对于新生儿代谢缺陷疾病的生化遗传检查;也可以是成年群体,比如各种用药筛选的诊断,常见的如肿瘤用药 甚至可以是健康群体,比如针对某些常见隐形遗传疾病的筛查,以及其他领域的特殊群体,如亲子鉴定、法医学鉴定等。  遗传咨询师是产业发展的必然,也是人类健康所需  随着人类基因组计划的完成,基因行业的发展可谓是日新月异。随着基因二代测序技术的兴起与成熟,测序成本大幅减低,基因测序因此从单纯的科研走向了大规模临床应用,迎来了广阔的市场空间。2014年,基因测序设备领域龙头企业Illumina将人类全基因测序的价格降低至1000美金,今年我国一些企业也开始推出自主研发测序系统,目的是降低测序成本,构建良好的行业生态系统。  与如火如荼的行业生态相比,目前基因消费市场还处于冰海之中,基因测序临床化还存在很多疑点,主要表现在:不了解什么是基因测序?看不懂基因测序结果报告?读懂了检测报告也不知道接下来该怎么做?基因检测要真正惠及全人类,这些问题必须要解决。那么解决这些问题,需要一群专业人士的帮助,他们就是传说中的遗传咨询师。  遗传咨询师的角色  遗传咨询师作为揭秘基因密码的专业人士,是链接临床门诊和遗传诊断实验室的桥梁。遗传咨询师必须具有丰富的专业知识、长期工作积累的经验、优秀的沟通能力等。遗传咨询师的工作包括:根据用户的家族史、医疗史和检测目的,给出最适合客户的基因检测产品建议 综合检测报告和所有能获得的信息,评估疾病发生或复发的几率 进行疾病遗传、检测、管理、预防等知识的传授 帮助受试者做出正确的选择,理性面对致病风险,同时疏导检测结果对受试者可能产生的心理问题。  我国培训体系已建立:遗传咨询分会已举办四届遗传咨询师培训班  遗传咨询行业在美国已有很多年,但在中国才刚刚开始。基于基因测序技术的迅猛发展以及巨大的临床需求,2015年2月9日中国遗传学会成立了中国遗传学会遗传咨询分会(简称遗传咨询分会),由著名遗传学家贺林院士出任主任委员。今年8月,贺林院士带领团队与美国两大权威遗传咨询机构的代表——美国遗传咨询师认证行会(ABGC)代表委员、美国遗传咨询认证委员会(ACGC)代表委员在波士顿进行了正式的官方会谈,商讨建立了中美双方在遗传咨询领域的官方合作机制。这意味着我国将出现一批与国际标准接轨的经过专业培训的认证遗传咨询师。  自成立遗传咨询分会以来,我国举办了四届遗传咨询师培训班。2015年4月22日由中国遗传学会遗传咨询分会主办,复旦大学生命科学院承办的第一届遗传学会遗传咨询师培训班在上海正式开班。此次培训班面向医院的医生、从事临床诊断的实验室人员(出生缺陷和遗传病、遗传综合症、复杂疾病、儿科、产科、肿瘤等科室)、检验师、相关科研和教学工作者,共开设三门课程,分别是医学遗传学(基础篇),临床医学遗传咨询(各论篇)和遗传检测分析与诊断方法,共8天,72个学时。内容涉及遗传病、出生缺陷、复杂多基因病、个体化用药和基因组转化医学等各方面,并详细介绍基因组时代可用于基因检测和分子诊断的多种技术手段,特别是利用新一代测序仪和基因芯片进行全基因组SNP、CNV、基因表达和突变分析等,同时,进行分子诊断临床实践、报告解读以及遗传咨询等情景案例教学。  2015年7月14日,中国遗传学会遗传咨询分会在中国遗传学会遗传咨询分会主席贺林院士的牵头下,联合了国家辅助生殖与优生工程技术研究中心暨山东大学附属生殖医院于济南开办了第二届遗传学会遗传咨询师培训班。此次培训班在第一次成功开班的基础上,引进了美国和香港中文大学遗传咨询师培训课程和教学模式,实现与国外相关领域的全面接轨,以主题演讲、病例讨论、学术互动等形式,使学员们通过本次培训,可以获得最新的医学遗传知识,掌握处理存在遗传病风险的患者及其家庭的医学策略,理解包括单基因病、多基因病在内的分子机制,并能解释疾病的遗传机制,理解分子遗传方法的原理,建立发现致病基因的科学策略。  2015年11月5日中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)在美丽的广西南宁市(邕城)盛大开幕。此次培训班面向具有临床资质的临床医生 医学院或生命科学院本科毕业生 分子诊断实验室,医院及第三方检验科室初级职称者 从事相关专业的科研教学、临床检验、遗传诊断,遗传咨询工作经历2年以上者。  2015年11月7日由遗传咨询分会主办,中国医科大学附属盛京医院承办的第四届遗传学会遗传咨询师培训班在辽宁沈阳市盛大开幕。内容包括遗传咨询基础理论、遗传咨询临床应用、遗传咨询检测技术和遗传咨询政策法规四个部分。此次培训班将在之前成功开班的基础上,进一步完善培训课程和教学模式,在7天的集中培训后,还设立了3个月的远程培训。远程培训的课件邀请ABGC的授课老师设计,包含多种临床案例的遗传咨询,汇聚了北美遗传咨询师教学的精华案例,使国内的遗传咨询培训第一次和北美遗传培训同步。  记者了解到,遗传咨询分会目前正在筹备下一届遗传咨询师培训班的召开,这意味着我国遗传咨询师培训体系已全面拉开。  结语  高通量测序技术的发展,为遗传病和癌症的预防、诊断和治疗带来了福音。在这些高新技术进入临床实践应用的过程中,逐渐暴露出目前医疗体制和医疗环境的不足,规范指南的缺乏,相关机构和技术人员短缺等问题。其中,最主要的问题体现在临床一线遗传咨询师的短缺和相关知识,尤其是对检测报告的解读、遗传学诊断和临床处理策略方面相关知识的匮乏。因此,加速增加遗传咨询师的培训、认证、岗位设定等内容迫在眉睫。随着国家的高度重视和支持力度的迅速增加,遗传咨询正成为基因测序转向临床应用必不可少的一环。
  • 遗传学大牛Nature Methods发表新成果 用CRISPR打造DNA条码
    细菌一直在与病毒或入侵核酸进行斗争,为此它们演化出了多种防御机制,CRISPR–Cas9适应性免疫系统就是其中之一。规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在引导RNA的指引下,靶标并切割入侵者的遗传物质。2012年研究者们利用这一特点,将CRISPR系统制成了强大的基因组编辑工具。哈佛医学院和加州大学的研究人员最近在CRISPR–Cas9的基础上,开发了在活细胞中快速演化的DNA条码。这项研究发表在Nature Methods杂志上,文章通讯作者是哈佛医学院的著名遗传学家George M Church和加州大学圣地亚哥分校的Prashant Mali。George M Church是哈佛医学院的遗传学教授、Wyss研究所的核心成员。他开发了首个直接基因组测序和DNA多重化方法,为1994年破译首个细菌基因组合2003年的二代测序技术奠定基础。他领导个人基因组项目,让公众参与进来分享基因组和健康数据。他想办法用DNA编码数据,暂时记录了活细胞中的事件。他将基因组读写技术结合起来,对细菌基因组进行迄今最大规模的重写。他还率先将CRISPR用于器官移植、逆转衰老和gene drive。研究人员构建了一种归巢引导RNA(hgRNA)。这种hgRNA会指导Cas9–hgRNA复合体到hgRNA自己的DNA位点。研究显示,归巢CRISPR–Cas9系统可以作为细胞内表达的基因编码,以可控的速度在体外培养的细胞中发生序列多样化。随后,研究人员在细胞群体中进一步评估这些条码。他们的研究表明,归巢CRISPR条码可以用来记录谱系历史,而且条码RNA能够原位扩增,符合原位测序的先决条件。研究人员指出,这个方法有广泛的应用前景,比如深度谱系示踪、细胞条码、分子条码,可用来分析癌症生物学机制和连接组(connectome)图谱。
  • 中科院遗传发育所税光厚团队发表单细胞脂质组学综述文章
    2023年2月,中科院遗传发育所、中科脂典的相关研究人员在《Trends in Analytical Chemistry》(IF: 14.9)上发表了题为“Embracing Lipidomics at Single-cell Resolution: Promises and Pitfalls”的综述文章,总结了单细胞脂质组学当前的技术进展和瓶颈,讨论了在单细胞水平分析脂质的独特技术挑战(特别是准确的脂质鉴定和定量的重要性),并例举了单细胞脂质组学在生物学和临床医学中的潜在应用。(中科院遗传发育所王泽华博士和曹明君博士为本文的第一作者,中科院遗传发育所税光厚研究员和中科脂典技术总监Sin Man Lam博士为本文的共同通讯作者。)  1、引言  脂质作为细胞膜和细胞内细胞器(如脂滴)的主要组成部分,发挥着一系列复杂的生物物理、能量储存和信号传导功能,这些功能是细胞机制正常运转的基础。脂质代谢失调涉及多种主要疾病,包括糖尿病、心血管疾病、代谢相关性脂肪肝(MAFLD)、癌症、神经退行性疾病、传染病等。近几十年来,随着脂质组学的蓬勃发展以及分析工具/技术的改进,脂质的结构和生物学复杂性才开始被解开。  质谱(MS)是广泛用于脂质组学领域的主要分析技术,相对于其它方法,它具有更高的灵敏度、更大的选择性、更强的稳定性和更高的特异性。质谱仪的快速发展,伴随着软件和数据库的进步,使得来自不同生物样本的各种生物液体(血浆、血清、尿液、唾液、泪液、痰等)、组织和亚细胞器中的脂质能够以前所未有的分辨率进行表征。脂质组覆盖范围的扩大极大地促进了疾病生物标志物的识别、表型验证以及假设的产生,并在脂质数据分析中提出了可能的系统方法,包括功能脂质模块的构建和脂质通路分析。  脂质组学的典型工作流程和应用  经典的脂质组学给出了构成生物样本的不同细胞群的“平均”图谱,这通常需要一个器官的代表性组织样本,使得最终构建的图谱能够反映一般的生物状态。然而,取一个有代表性的组织切片,忽略了脂质的空间分布,而脂质的空间分布往往具有重要的生物学意义。例如,该研究团队先前对金线鲃属洞穴鱼和地表鱼全脑切片的定量脂质组学研究发现,洞穴鱼中的硫苷脂(髓鞘的主要脂质成分)普遍减少。基质辅助激光解吸电离(MALDI)质谱成像(MSI)进一步揭示了洞穴鱼硫苷脂缺失的区域与中缝5-羟色胺能神经元的位置相对应。因此,金线鲃个体大脑脂质的空间分布图谱有助于证明5-羟色胺能神经元的脱髓鞘是洞穴鱼攻击性行为丧失的基础。  随着光学成像和细胞内电生理学的技术创新,人们得以在单细胞分辨率下深入研究组织的生物结构,细胞异质性的普遍性变得明显起来。单个细胞与邻近细胞以及它们的原生微环境动态地相互作用和交流,最终影响由不同的单细胞脂质组(和代谢组)所反映的细胞内生物化学状态。事实上,早期组学的单细胞革命揭示了细胞异质性在无数生物环境中的普遍性。例如,单细胞蛋白质组学揭示了循环系统中肿瘤细胞表面蛋白在单细胞水平的异质表达,这些蛋白预测了对药物治疗的不同细胞反应,而随着疾病的进展,患者体内这些相同蛋白的平均表达并不能确定真正的治疗效果。在这篇综述中,作者讨论了单细胞水平的脂质组学革命如何从早期的组学开始,揭示细胞内以脂质为中心的见解,以及其潜在的应用和独特的技术挑战。  2、单细胞脂质组学的新兴技术  与单细胞基因组学和单细胞转录组学相比,单细胞脂质组学(和代谢组学)提供了最接近实际表型的数据信息。脂质组学与代谢组学的区别主要在于其关注非极性疏水代谢物,这些代谢物需要不同的提取和分析方案(例如需要不同的溶剂系统)。与信号可以扩增数百万倍的单细胞转录组学不同,高灵敏度对于单细胞脂质组学至关重要。此外,脂质在细胞内和细胞外的不同作用使细胞脂质组具有动态性和多功能性,这需要在采样时极度谨慎和快速,以便收集的细胞能够反映其原始状态。  2.1 单细胞的取样  经典脂质组学侧重于批量分析,以最小化组内的异质性,而单细胞脂质组学则侧重细胞间的差异。因此,收集技术应努力保持细胞异质性,并尽量减少来自邻近细胞和细胞外基质的污染。许多现有的样品处理或细胞分离策略可以扩展到单细胞脂质组学的采样中,包括膜片钳、微量移液、流式细胞荧光分选(FACS)和微流控单细胞阵列等。这些采样技术有其独特的优势和技术瓶颈,应根据组织或细胞类型的性质以及要解决的生物学问题逐案考虑选择。例如,倾向于成团粘附和/或对操纵敏感的细胞在采样过程中可能表现出较高的细胞死亡率,这会混淆数据并导致生物学错误解读。通常,非粘附细胞,如循环中的各种类型的血细胞,更易于进行高通量单细胞处理。组织的细胞外基质(ECM)的组成以及细胞分布各不相同,因此需要获得单分散细胞的优化方案,例如机械切割、酶解或这些方法的组合。特别是,与正常组织相比,病变组织(例如纤维化组织)可能具有明显不同的解离动力学,因此,优化分离方法以确保收集单分散、完整和有活力的细胞用于单细胞脂质组分析是非常重要的。  膜片钳通常用于研究神经元、肌肉纤维和心肌细胞等易兴奋细胞,其优势是在相对原生状态下对细胞进行采样,通常来自新鲜的组织切片。然而,在膜片钳辅助的单细胞脂质组学分析中,在不破坏细胞膜的情况下分离完整的细胞是特别具有挑战性的。例如,使用膜片钳从灌注的小鼠大脑切片中捕获单个神经元细胞体不能完全保存轴突和相关终端的完整性,这可能会影响所得到的单个神经元脂质组数据。考虑到质膜是单细胞脂质组的重要组成部分,在单细胞分离过程中对质膜的损伤对单细胞脂质组分析尤为不利。此外,细胞损伤可能触发膜修复过程,这改变了原生细胞脂质组的特征,并混淆了下游分析。  如果谨慎操作,精密微量移液管可以获得完整的细胞,但它的低通量低且相对耗时,因此更适合于感兴趣的稀有细胞类型的取样。  FACS可将具有不同表型的单个细胞(由特定蛋白质(抗体)的荧光强度定义)排序到用户预定义的特定血管和缓冲液中,以实现相对高通量的单细胞分离,该方法错误率较低(低于1/100),且细胞质膜通常保持完整。FACS的一个主要缺点是需要大量的细胞(超过10,000个),因此不适合分离数量少的稀有细胞类型。悬浮细胞的要求也意味着细胞在采集样品之前不处于其原始状态,单个细胞的空间位置丢失。如果使用非质膜荧光标记物来标记细胞,则需要验证瞬时孔形成对特定质膜脂质和细胞内代谢产物的影响。  微流控装置包括使用阀门、油滴或纳米管对单个细胞进行微型分隔。基于液滴的策略可能不适合单细胞脂质组学,如果单个细胞的包封是在油滴中完成的,这干扰了下游的脂质分析。油包裹的水滴为下游单细胞脂质组学提供了更好的选择,但是在去除油相期间需要谨慎,以获得相对清洁的液滴内细胞提取物用于下游分析。虽然微流控芯片的处理量高,对原料数量的要求较低,但其后的样本处理通常是在现场进行,这限制了 MS 在选择脂质提取方案进行下游分析时的灵活性。此外,有效的脂质提取需要使用有机溶剂,例如氯仿和甲基叔丁基醚(MTBE) ,这些溶剂与大部分用于制造纳米芯片的塑料材料不太相容。  基于探针的电喷雾电离(ESI)也经常用于单细胞采样,这涉及使用直径足够小的探针尖端以插入单细胞(~3-9μm)。提取溶剂连续输送以进行原位代谢物提取,随后将提取物引导到质谱仪中进行直接分析。然而,这种取样策略不能确保每个细胞的完整质膜被输送到下游分析。质膜包括全细胞中一半的磷脂和90%的总胆固醇和鞘磷脂含量,基于探针的采样可能会导致单细胞脂质组学的大量信号损失。  与限制脂质提取程序选择的微流控芯片和基于探针的取样相比,激光捕获显微切割在为下游分析选择样品处理方案方面有更高的灵活性。微解剖的单细胞的空间信息被保留。然而,该方法事先必需用福尔马林或乙醇固定细胞,以确保在显微切割过程中划定单细胞边界时的形态清晰度,而在此过程中脂质和小分子代谢物会大量丢失。此外,即使事先固定,整个细胞的完整性也往往得不到保留,这也使得这种技术不太适合收集单细胞用于下游的脂质组学研究。  无论采用何种细胞采集策略,采集后都应立即对分离的单个细胞进行淬灭和灭活,以停止酶活性并尽量减少细胞脂质的人为改变。    单细胞脂质组学技术  2.2 单细胞脂质的获取  拉曼光谱具有非破坏性和非侵入性的优点,允许进行原位分析,在捕获单个细胞在其自然状态下的脂质方面具有优势,但其无法在分子水平上破译精确的脂质结构,这大大限制了其脂质覆盖范围。而MS由于在区分脂质异构体方面的卓越灵敏度和特异性,已成为单细胞脂质组学中的主要分析技术。除了结构解析,基于MS的方法还允许检查单个细胞内的空间和亚细胞脂质定位,如通过C60二次离子质谱(SIMS)分析海蜗牛Aplysia单个神经元上脂质的异质性分布。尽管与 MALDI-MS 相比,SIMS 的灵敏度较低,但其能够获得亚微米的横向分辨率,由于探针尺寸的限制,其横向分辨率限制在10μm。利用簇离子源的SIMS技术还具有更柔和的电离动力学,有助于检测完整形态的脂质,空间分辨率通常在100nm至1µm之间。  在各种基于MS的技术中,MSI方法在取样细胞的原生微环境方面具有选择性优势,并能保留对生物推断有用的空间信息。目前已经开发了图像引导的单细胞器MALDI-MSI,用以比较来自Aplysia的致密核心囊泡和透明囊泡中脂质含量差异。尽管 MALDI-MSI 具有诸多优点,但是它存在共采样的缺点,即从相邻的细胞产生混淆信号。一些脂质对 MS 扫描过程中可能出现的环境干扰很敏感,通常需要至少一个小时或更长时间才能完成组织切片的检查。此外,MALDI-MSI 单细胞分析也容易因离子抑制而降低灵敏度。最后,精确的脂质定量仍然是 MSI 方法中的一个主要技术挑战,因为同位素内标与内源性脂质均匀混合以进行标准化在技术上是具有挑战性的。  荧光成像在灵敏度以及空间/时间分辨率方面优于基于MS的方法,使其在单细胞成像中具有潜在的用途。然而,基于荧光的技术在单细胞脂质组学中的应用受到其脂质组覆盖范围的限制。在自然界中很少有脂质和小分子代谢物表现出自身荧光,这就需要使用荧光探针。与基于MS的方法不同,亲脂性染料通常可以标记特定的某一类脂质,但无法区分同一类脂质中具有不同酰基链组成的单个脂质种类,或不同的脂质异构体。另一方面,脂质的荧光标记极大地改变了脂质的生化性质,如有些脂质被优先分配到不同的膜微区中,而与荧光基团是在头基还是酰基链上引入无关。因此,目前的脂质荧光染料缺乏特异性,这限制了荧光光学成像在单细胞脂质组学中的更广泛应用。  虽然单细胞取样和基于质谱的技术革新已经实现了单细胞脂质组学分析的可能性,但仍存在一些技术瓶颈,包括:脂质覆盖面相对较窄(通常只有不到一百个具有高置信度的脂质) 缺乏准确的结构鉴定 缺乏可靠的定量数据 以及对单细胞水平的分析可重复性验证不足。为了解决这些技术瓶颈并推动该领域的发展,必须采用新技术来更好地描述细胞的异质性,并以更高的精度和更大的定量准确性来阐明其生物学意义。  3、单细胞脂质组学的技术瓶颈  3.1 迫切需要高覆盖率、准确的识别和定量测量  单细胞脂质组学的一个最终目标是构建单个细胞的精确脂质组图谱,以揭示细胞间的差异。即使在对大量的生物样本进行研究的经典的脂质组学中,与转录组水平的变化相比,具有生物学意义的脂质水平的定量变化通常较小。这使得准确的定量对于解读单细胞水平上微妙但有意义的脂质变化尤为重要。单细胞脂质组学的定量也具有相当大的挑战性,因为脂质的内源丰度会有很大的变化。一个细胞中内源性脂质的高动态范围意味着,在一个特定的样品浓度下,不是所有的脂质都能落入质谱检测器的线性范围。虽然这在大部分脂质组学中通常通过在另一个样品浓度下的额外进样检测来解决,但这又为单细胞脂质组学增加了另一个难度,因为来自单细胞的样品材料数量往往是有限的。内源性脂质丰度的巨大差异也需要色谱系统从其内源性丰富的对应物中有效分离微量脂质,以尽量减少离子抑制,提高次要脂质物种的敏感性,并扩大分析物的覆盖范围。重要的是,为了在单细胞脂质组学中进行准确的脂质定量,应加入稳定的同位素内标。如果没有适当的内标来归一化内源性信号,校正来自不同类别的脂质或携带不同酰基链的同一类别脂质的离子响应变化,产生的单细胞脂质组数据很容易出现错误。  基因组几乎整个区域都可以测序和注释,而仅基于MS/MS数据却很难最大限度地确定高置信度的脂质结构。这一瓶颈部分是由于自然界中脂质结构异构体的广泛存在,其中一些异构体在缺乏专门的预处理(如化学衍生)的情况下很难分离。例如,单个TAG的甘油主链被酯化为三个脂肪酰基链,从而为每个分子式产生无数脂肪酰基链组合。此外,不同脂质类别的结构异构物可能会使脂质鉴定过程更加复杂,例如双(单酰基甘油)磷酸酯(BMP)和磷脂酰甘油(PG),以及半乳糖神经酰胺(GalCer)和葡萄糖神经酰胺(GluCer)等。幸运的是,这些结构异构体中的一些物质在色谱上是可区分的。因此,适当的前期色谱分离的应用极大地促进了某些脂质结构异构体的准确识别和定量,从而实现了更大的脂质覆盖。  虽然脂质组学是组学家族中一个较年轻的分支,但在过去二十年中,它的发展速度很快。基于常规高效或超高效液相色谱(流速为100-1000μL/min)并结合质谱(HPLC/UPLC-MS)的各种经典脂质组学方法已被开发用于多种生物样品。近年来,基于微流量(流速为10-100μL/min)的LC-MS方法获得了更高的灵敏度,并能够以更少的起始材料(例如≈20-1000个细胞)实现全面的脂质代谢。可以想象,通过减小柱直径和流速进一步缩小色谱分离的规模可以提高分析物浓度,从而提高检测灵敏度。因此,基于纳米流(即流速1μL/min)的超灵敏脂质组学方法有望在单个细胞内实现亚微米级的脂质检测和定量。然而,迄今为止报道的纳米流方法的脂质覆盖率仍然相对较低,通常只覆盖一到两个主要类别的脂质,如PCs、PEs和/或TAGs,或者没有适当的结构标识。仅基于一级质谱分析的分子式水平的结构鉴定会导致不准确和低灵敏度,这极大地影响了单细胞脂质组学的分析范围和质量。因此,在单细胞脂质组学能够在基础生物学和转化医学中发挥更大作用之前,通过精确的结构鉴定和精确的定量分析来扩大脂质的有效分析范围是必不可少的。离子迁移率-质谱仪在脂质鉴定中的应用将碰撞截面(CCS)引入到脂类鉴定中,增加了m/z、保留时间和MS/MS谱图上的另一个维度的信息,有望增强单细胞脂质结构鉴定的可信度。  目前,单细胞脂质组学方法大多是低通量的,因此,与早期的单细胞组学研究相比,通常分析的细胞种类要少得多。鉴于与基因组/转录组相比,细胞脂质组的生物学动态范围要大得多,因此,在单细胞脂质组学实现更大速度和更高容量分析之前,建立健全可重复的方法、设定正确的技术基准和构建可靠的单细胞参考脂质组数据库至关重要。    基于LC-MS的单细胞脂质组学的不同模式  3.2 数据分析  正确分析大型数据集是从各种组学技术中收集有用的生物学见解的先决条件。由于单细胞脂质组学仅处于发展的早期阶段,尚未建立系统的数据分析体系。针对海量数据定制的方法通常不直接适用于单细胞数据。这是因为大量数据分析中的分布假设经常不成立,原因是单细胞数据集拥有更高的噪声和稀疏度,存在固有的额外异质性。目前,单细胞脂质组学的出现在某种程度上加剧了在分析和解释脂质组学数据方面的瓶颈。鉴于目前在单细胞脂质组学中脂质覆盖方面的局限性,在单细胞脂组学分析中收集生物学相关的途径改变之前,需要在单细胞脂肪组学的采集和数据分析方面进行长期努力。  4、单细胞脂质组学的生物学和转化前景  在过去的十年里,由于分析化学的技术创新和各种组学技术的出现,生物化学从传统的系综测量转向单分子测量。传统的集合分析可能导致静态异质性,当分子集合包含在观察期内保持稳定或变化不够快的亚群体时,就会出现这种异质性,从而导致“没有明显变化”的误导性结论。生物事件的平均分析数据不会捕捉到与整体行为不同的分子。同样,在任何细胞群体中,细胞间的差异总是不同程度的存在,基于整个群体的批量测量不能完全描述单个细胞的完整表型。通过在种群和单细胞水平上同时进行表型分析,可以破译潜在的有意义的生物学偏差,从而为很多生物学问题提供新的研究方向。  4.1 发育与细胞谱系追踪  多细胞生物体从一个受精卵发育成一个由不同细胞类型和器官系统组成的复杂组织,整个过程被记录在细胞谱系树中,它概述了在发展成多细胞生物体的过程中,从单个母细胞到其不同分支后代的细胞转换。目前已经开发了各种工具来构建单个生物体的细胞谱系树,但大多局限于绘制有限数量的克隆种群。细胞谱系树对于科学家解开生命的错综复杂的工程,以及加深我们对生物体发育、器官生成以及疾病进展和发病的理解非常重要。通过拼凑生物体内单个细胞的发育轨迹,单细胞谱系追踪以前所未有的细节捕捉到整个发育过程中不同的细胞命运,这扩展了我们对细胞分化机制、细胞异质性以及细胞间发育潜力差异的理解。  考虑到生物体的单个细胞携带着由DNA编码的相同的遗传物质,人们通常认为不同的细胞命运是由单个细胞中基因在空间和时间上的差异表达决定的。虽然乍一看,与单细胞转录组学相比,单细胞脂质组学与单细胞谱系追踪的相关性可能不那么直观,但许多科学证据阐明了脂质代谢在决定细胞命运中的作用。例如,脂肪酸氧化产生的乙酰COA是组蛋白乙酰化的前体,组蛋白乙酰化改变染色质结构,从而调节DNA对转录机制的可及性。在不对称细胞分裂过程中,脂筏(富含胆固醇的膜微域)的不对称遗传也被认为是胶质母细胞瘤子细胞不同治疗耐药的基础。真皮成纤维细胞中存在由不同种类的鞘磷脂组成的不同的脂类构型,这触发了不同的转录程序,进而驱动细胞间异质性的不同细胞状态的建立(例如,纤维形成或增殖)。因此,单细胞脂质组学可以增加另一个维度的有用信息,以识别不同细胞命运的分子控制。  4.2 了解肿瘤异质性  构成肿瘤块的细胞是异质性的,在基因表达、细胞代谢、运动性、增殖率以及转移潜能方面具有不同的形态和表型特征。这种现象被称为肿瘤内异质性,它延伸到不同的肿瘤(即肿瘤间异质性),可由遗传和非遗传因素共同引起。肿瘤的异质性可能在一定程度上解释了为什么癌症在临床上仍然难以攻克。研究肿瘤的异质性,特别是增殖能力和转移的来源,将有助于确定新的治疗靶点,以及指导免疫治疗和药物筛选。细胞间脂质代谢的差异对各种癌症的生长和预后有重要影响,如单个胰腺导管肾上腺癌细胞的脂质组学分析观察到胰腺癌特异性脂质代谢失调,这可能是由于介导脂质合成的关键酶ATP柠檬酸裂解酶表达减少所致。单细胞脂组学在加深我们对肿瘤异质性的理解方面有很大的希望。  4.3 剖析对疾病的免疫反应  除癌症外,传染病和新陈代谢疾病也是对公众健康的主要威胁。哺乳动物的免疫系统保护宿主免受各种病原体的入侵。构成宿主免疫系统的免疫细胞表现出巨大的细胞多样性,可以根据各种刺激进行动态调整。例如,对不同严重程度的新冠肺炎患者的单个外周血单核细胞进行scRNA-seq检测,发现存在一种具有增殖和代谢活性的自然杀伤细胞亚群,其代谢活动与疾病的严重程度呈正相关。有趣的是,这一亚群的自然杀伤细胞显示出神经鞘脂代谢的增强,这突显了单细胞脂质组学从以脂质为中心的角度阐明单个免疫细胞对新冠肺炎感染的差异反应的潜力。除感染性疾病外,对从人胰岛分离的单个细胞的scRNA-seq分析表明,在1型糖尿病患者中存在免疫耐受的胰腺导管细胞亚群。这一导管细胞亚群的转录特征类似于耐受性树突状细胞(即缺乏CD80和CD86),导致免疫耐受和抗原呈递时的T细胞抑制。值得注意的是,单细胞分析显示胰腺β-细胞的基因特征与抗谷氨酸脱羧酶(GAD)滴度相关。与GAD水平相关的基因通路富集丰富分析包括许多脂代谢途径,如鞘磷脂代谢和磷脂酰肌醇信号系统。虽然在这些研究中没有进行单细胞脂质组学,但上述结果强调了单细胞中的脂代谢对于破译不同疾病背景下宿主免疫反应的代谢基础的重要性。    单细胞脂质组学的应用  结束语  单细胞脂质组学的发展仍处于起步阶段,我们相信随着该领域的发展,将会有更多的生物学和临床应用。技术突破彻底改变了我们研究生物学的方式,其标志是从整体分析过渡到专注于单分子和单细胞。随着我们以更高的分辨率检查生物结构,细微的差异被揭示出来,这可能会为新的研究方向铺平道路,从而为生物学和临床医学中长期存在的问题提供独特的见解。
  • 科学家首次证实怀孕会诱导身体发生表观遗传变化
    p style=" text-align: left text-indent: 2em " 为啥拥有相同基因的同卵双胞胎却不能保证长的一致?这当中就是表观遗传学在“捣鬼”。表观遗传学告诉我们,环境因素如何影响人类的身体,如何改变我们的生理机能,改变基因表达可以跨代传播。 /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(102, 102, 102) " img width=" 600" height=" 359" title=" " style=" width: 600px height: 359px " alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/2f0b9a4b-497d-4b4d-bc94-339864643ba1.jpg" border=" 0" vspace=" 0" hspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(102, 102, 102) " /span strong span style=" color: rgb(102, 102, 102) " /span span style=" color: rgb(102, 102, 102) " span style=" color: rgb(102, 102, 102) " 来源: CC0 Public Domain /span /span /strong /p p style=" text-indent: 2em " 迪肯大学细胞与分子生物学中心主任和首席研究员Leigh Ackland教授说,虽然妊娠是荷尔蒙发生变化的关键时期,但很少人知道与生殖周期有关的表观遗传变化。 /p p style=" text-indent: 2em " 而最新发表在《Epigenomics》杂志上的这项研究,强调了怀孕的生理影响是如何持续的,以及一旦怀孕,身体就会在最微观的水平上发生改变。长期的表观遗传变化可能导致下一代疾病的风险增加。 /p p style=" text-indent: 2em " 此前研究就表明,女性的妊娠期糖尿病的风险会增加心血管疾病,而且,其后代患肥胖、葡萄糖耐受不良和2型糖尿病的风险也会增加。 /p p style=" text-indent: 2em " Ackland教授表示,这项研究对医学研究界具有重大意义,因为它首次证实,人们的表观遗传会因外部因素而改变。这种现象以前在实验室或动物身上看到过,而在人类身上却没有。 /p p style=" text-indent: 2em " 她进一步解释说,表观遗传标记就像一个开关,可以改变体内基因和细胞的活动。所有的个体细胞都有相同的遗传物质。但是在身体的不同组织中,基因的行为是不同的。这种行为可以由表观遗传因素决定,独立于基因的DNA序列。 /p p style=" text-indent: 2em " “这项研究是突破性的,因为它帮助我们了解生理是如何被环境所调节的,帮助我们了解癌症等更复杂的疾病,例如环境因素在其发展中起的作用。” /p p style=" text-indent: 2em " 表观遗传学对于理解、预防和对抗糖尿病和癌症等许多疾病具有重要意义,能够帮助人们理解包括生活方式等环境因素会导致疾病。一旦知道了因果路径,研究人员就能更好的找到治疗方法。 据了解,目前已有研究人员在研究表观遗传酶来改善癌症治疗。 /p p style=" text-indent: 2em " Ackland教授的研究对比了未怀孕的女性、孕妇以及产后20周的女性,以及对同一组孕妇进行产后8-10周和产后20周的比较,随后对2型糖尿病患者进行了类似的比较。 /p p style=" text-indent: 2em " 一个重要的发现是, 患有2型糖尿病的女性与非糖尿病女性有不同的表观遗传学特征,她们在怀孕期间也有不同的变化。 /p p style=" text-indent: 2em " 她说:“妊娠引起的表观遗传改变可能会导致这些糖尿病患者出现并发症,比如可能导致胰岛素抵抗的症状,以及妊娠高风险。” /p p style=" text-indent: 2em " Ackland教授表示:“孕期发生的表观遗传变化对未来的健康可能有积极和消极的影响。需要进一步的研究来确定长期影响。但是我们知道,孕妇的营养不良和其他不良事件可能会因为表观遗传而导致下一代的问题。” /p p style=" text-indent: 2em " strong 参考资料 /strong /p p style=" text-indent: 2em " Epigenetics study reveals environmental influences can change gene behaviour /p
  • 金领职业“遗传咨询师”受追捧,第三届遗传咨询师培训班盛大开幕
    p   随着基因组检测技术的迅猛发展,人们对疾病的认知提升到一个新的高度。对遗传物质的正确解读可为疾病的防治提供重要的信息,由此产生了一门新的学科——遗传咨询,新兴的金领职业“遗传咨询师”正在受到妇幼医生、儿科医生、生命科学院毕业生、分子诊断实验室、医院及第三方检验科室工作人员等群体的追捧。 /p p   基于遗传咨询巨大的临床需求,中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)于11月5日在美丽的广西南宁市(邕城)盛大开幕。这是中国遗传学会遗传咨询分会继上海和济南成功开班后,再次联合广西妇幼保健院和广西出生缺陷预防控制研究所,在南方地区继续扩大遗传咨询师队伍。 /p p   开幕式由广西妇幼保健院院长郑陈光主持。中国遗传学会遗传咨询分会主任委员贺林院士、委员陈少科、傅松滨、龚瑶琴、沈亦平、顾问马端、赵彦艳,秘书王磊、梁波出席了开幕式。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 1.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/2cb9f120-22fc-441c-bce6-e04e40708aca.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 贺林院士致辞 /strong /p p   贺林院士首先在开幕致辞中对中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)成功开班表示祝贺,对广西妇幼保健院和广西出生缺陷预防控制研究所的支持表示感谢,对来自全国各地的培训学员表示欢迎,并向热忱投身于遗传咨询工作的同仁们表示敬意。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 2.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/d1a91ca3-f9fd-4f6d-846a-a2c89a139c79.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 广西妇幼保健院院长郑陈光主持开幕式 /strong /p p   接着郑院长代表广西妇幼保健院向百忙之中抽空参与教学的专家、教授们表示感谢,向远道来到邕城(南宁市)参加培训的学员表示欢迎,并介绍了广西妇幼保健院遗传代谢中心实验室的相关情况,广西妇幼保健院遗传科目前主要从事产前筛查、产前诊断技术服务以及新生儿遗传代谢病筛查、诊治工作,接收来自全区各地医疗机构递送的标本进行检测,是广西首批获得新生儿疾病筛查中心许可、产前诊断技术机构许可的机构。 /p p   随后大会举行揭牌仪式,中国遗传学会遗传咨询分会授权广西妇幼保健为遗传咨询师培训机构,这是继山东大学辅助生殖医院之后授权的又一遗传咨询师培训机构。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 3.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/418934c2-9e7b-4d52-aa40-70622868d345.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 揭牌仪式:贺林院士(左)和郑陈光院长(右) /strong /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 4.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/362314af-782b-42cb-af73-39b553054904.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 参加揭牌仪式后培训班成员的合影留念 /strong /p p   此次培训班面向具有临床资质的临床医生 医学院或生命科学院本科毕业生 分子诊断实验室,医院及第三方检验科室初级职称者 从事相关专业的科研教学、临床检验、遗传诊断,遗传咨询工作经历2年以上者。课程分为遗传咨询基础理论、遗传咨询临床应用、遗传咨询检测技术和遗传咨询政策法规四个部分,历时7天,邀请到了多位国内一流的遗传及临床专家授课,包括贺林、傅松滨、高媛、龚瑶琴、顾学范、管敏鑫、贺光、黄尚志、李金明、李亦学、廖世秀、卢大儒、马端、秦胜营、沈亦平、孙树汉、唐北沙、王红艳、王慧君、邢清和、徐湘民、杨正林、尹爱华、袁慧军、赵彦艳等(按音序排列)在内的院士、长江学者、杰青、973首席及各领域临床遗传学专家。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 5.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/5d9550a2-7f6f-4cbe-b599-928908f4ebee.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 贺林院士在做精彩报告 /strong /p p   揭牌仪式后,贺林院士以“遗传咨询的价值和意义 ”为题的做了精彩报告。 /p p   首先他介绍了中国遗传学会遗传咨询分会的组建和官网网址( a title=" " href=" http://www.cbgc.org.cn/" target=" _self" textvalue=" " http://www.cbgc.org.cn/ /a ),对比了中美遗传咨询师现状,总结了目前国内开展的遗传咨询课程,分析了中国遗传咨询走势与前景,强调现在形势急迫急需遗传咨询 /p p   随后,他分享了今年8月代表遗传咨询分会访问美国两大权威遗传咨询机构——美国遗传咨询师认证行会(ABGC)与美国遗传咨询认证委员会(ACGC)委员代表的经历,表示要向美国取经,合作共进,并同遗传咨询师培训机构建立了合作关系,因此此次培训班将会引进北美的教学资源,更大程度地同国际接轨。 /p p   最后,他再次阐述了他所倡导的新医学的概念,即“旧医学+(基因)组学+遗传咨询”。由于现有的医术水平很难看清疾病深层的问题,我国出生缺陷率居高不下,肿瘤、高血压、糖尿病等多种疾病发病率呈显著上升趋势。为了解决这一难题,世界启动了人类基因组计划,由此所带来了扑面而来的海量信息和数据。贺林院士呼吁业界同仁及全体学员把握新医学的机遇,利用遗传咨询这一强大的工具,将大数据与临床疾病特征有机结合,帮助人类更好地和病魔作斗争。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 6.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/c9a304b9-4092-4ebd-8540-6fc185d0b996.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 沈亦平教授在做报告 /strong /p p   第二个授课的是沈亦平教授,他是美国哈佛大学医学院病理系助理教授、美国波士顿儿童医院遗传诊断实验室、Claritas Genomics公司研发部主任。沈教授多年来从事遗传病基因诊断研究和实践,致力于为遗传病患者提供最佳的分子诊断和遗传咨询服务。作为美国医学遗传学专家委员会委员(FACMG),他对美国遗传咨询的体系非常了解。他以美国遗传咨询模式及经验为主题,重点向学员讲解了遗传咨询的发展和定义、遗传咨询的操作内容,对象和原则,还有遗传咨询师的培养及需具备的素质,通过分析美国遗传咨询师的状况及资源,讨论如何开展中国的遗传咨询服务。 /p p   学员们通过本次培训,不仅可以获得最新的医学遗传学知识,掌握处理存在遗传病风险的患者及其家庭的医学策略,理解包括染色体疾病、单基因疾病、多基因疾病在内的分子机制,还能将理论知识应用于实践,更好地解决临床问题。 /p p    strong 附:第三届遗传咨询师培训班(初级班)培训日程 /strong /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 794px" title=" 7.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/0086d71b-fce2-4657-a10c-f6cd99aaa11b.jpg" width=" 500" height=" 794" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 794px" title=" 8.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/73abf21f-a3b5-4bf7-a285-49a11af7282c.jpg" width=" 500" height=" 794" / /p p    span style=" FONT-SIZE: 14px" 备注:日程仅供参考,具体以现场参加培训班安排日程为准。 /span /p
  • 中国发布首个海洋生物全基因组序列图谱
    中国科学家31日在青岛宣布,他们绘制完成了牡蛎全基因组序列图谱,这是中国首次发布海洋生物的全基因组序列,也是世界上首张贝类全基因组序列图谱。   牡蛎全基因组序列图谱项目首席科学家张国范介绍说,根据绘制成功的牡蛎基因组序列图谱,发现牡蛎基因组由8亿个碱基对组成,大约包含2万个基因,基因组数据支持了海洋低等生物具有高度遗传多样性的结论。   据张国范介绍,牡蛎全基因组序列的完成对牡蛎养殖和减少牡蛎所带来的海洋生物污损具有重要应用价值,而且也标志着基于短序列的高杂合基因组拼接和组装技术获得重大突破。   牡蛎隶属软体动物门,共100余种,除极地地区的各大洲沿海均有分布,是目前人类世界上产量最大的海水养殖品种,年产值达到35亿美元,中国牡蛎年产量超过海水养殖产量的四分之一。   山东省科技厅副厅长李乃胜说,牡蛎全基因组序列图谱的绘制完成,使科研工作者可以在分子水平对生物的目标性状进行预先设计,有效解决常规育种方式中周期长和准确性低的问题,具有里程碑式的意义。同时,随着牡蛎基因组数据的深入挖掘,有可能改变牡蛎生活习性,使其更好地为人类所利用。   牡蛎全基因组序列图谱的完成也为研制和生产新材料奠定了基础。科研人员介绍说,牡蛎附着在礁石或者船舶上时的粘度很大,可能是世界上粘度最大的胶体,在牡蛎基因组中找到相关基因后,就可制成粘度很强的新材料。   基因组测序项目科技合作伙伴深圳华大基因研究院总监倪培相说,牡蛎全基因组序列图谱的完成也为高杂合物种的基因组测序奠定了基础。   张国范说,牡蛎全基因组序列图的绘制完成还可解答一系列科学之谜。&ldquo 例如,为何牡蛎具有极强的繁殖能力,但是绝大部分后代却都在出生后不久就死亡?这可从基因图中找到答案。&rdquo 他说。   牡蛎全基因组序列图谱绘制由中国科学院海洋研究所研究员张国范和美国新泽西州立大学教授郭希明于2008年5月发起,并成立了牡蛎基因组计划,历时两年,于今年7月底完成了绘制工作。   基因组是生物所携带遗传信息的总和,包括单倍体细胞核、细胞器或病毒粒子所包含的全部DNA分子或RNA分子。   人类基因组序列草图于2000年6月完成,发现人类基因由30亿个碱基对组成。从2000年至2009年,完成全基因组测序的物种从42个上升至1100个,每年平均增加118个。   目前,中国已完成了水稻、家蚕和家鸡等重要经济种类物种和大熊猫及藏羚羊等濒危物种的基因组测序。
  • 安徽首引串联质谱新技术 可测27种遗传性代谢病
    新生儿先天性遗传代谢疾病,不仅让孩子们身心俱损,也给患儿家庭造成了严重的经济负担。记者昨天从合肥市妇幼保健所获悉,合肥在全省首次引进&ldquo 串联质谱筛查&rdquo 技术,通过采集新生儿一滴足底血就能检测出27种遗传性代谢疾病,一旦确诊,就能及早干预治疗,帮助孩子恢复健康。 据了解,目前我国是人口出生缺陷和残疾高发国家之一,每年新增出生缺陷儿约80万~120万,约占每年出生人口总数的4~6%,每年因各种出生缺陷导致的治疗费超过120亿元,给患儿家庭带来沉重的经济负担。新生儿疾病筛查,作为出生缺陷三级预防的重要一环,对于提高患儿生存质量具有重要意义,也是改善民族生存状态的基础性人口质量工程。 根据《合肥市儿童发展纲要(2011-2020年)》,合肥明确提出要提高出生人口素质,逐步降低严重多发致残的出生缺陷发生率,减少出生缺陷所导致的残疾问题。因此,合肥将积极开展新生儿疾病筛查、诊断和治疗,确保新生儿疾病筛查率达到95%以上。 &ldquo 开展新生儿疾病筛查,旨在利用先进技术手段,让患有出生缺陷的新生儿实现早发现、早诊断、早治疗,在患儿没有出现症状之前进行有效干预,从而避免不可逆性的损害。&rdquo 市妇幼保健所新生儿疾病筛查中心主任胡海利说。据悉,串联质谱技术是近年来发展起来的一种直接分析复杂混合物的新技术,也是一种灵敏度很高的检验方法。&ldquo 串联质谱技术能够有效扩展筛查疾病谱,提高了筛查效率和筛查特异性、敏感性。&rdquo 市妇幼保健所有关负责人说,目前,美国、加拿大、日本、欧洲等国家和地区都已广泛推行串联质谱技术,国内也有浙江、上海、广州、深圳、南京等省市应用这项技术,用于筛查新生儿遗传代谢疾病。合肥推行这一先进筛查技术,意味着妇幼保健技术和水平逐步与长三角地区实现等高对接。 根据相关规划,全市助产机构串联质谱筛查覆盖率将达70%以上,城区助产机构及县级以上医院筛查覆盖率实现100%。
  • 珀金埃尔默覆盖40多种新生儿遗传代谢病的串联质谱检测试剂盒上市
    珀金埃尔默重磅推出新一代串联质谱检测试剂盒NeoBaseTM2。该检测试剂盒(国械注准20223400429)拥有独家的检测指标物和病种覆盖,可精准、快速、便捷地进行四十多种新生儿遗传代谢病的筛查,为及时有效的诊断和针对性治疗提供强有力的支撑。遗传代谢病是影响儿童智力和体格发育的严重疾病,其防治关键在于早筛查、早诊断、早治疗。目前通过采集新生儿足跟血进行串联质谱检测可以早期对这些危及生命的遗传代谢病进行筛查,通过早期诊断和治疗,大部分患儿可以控制病情,避免重要器官出现不可逆的损害,以保障儿童正常的身体发育和智力发育。珀金埃尔默此次发布的NeoBaseTM2可检测57种指标物,具有更出色的疾病筛查特异性和准确性。除了主要的三大类遗传代谢病(即氨基酸代谢病、有机酸代谢病和脂肪酸氧化代谢病)筛查外,新增了两种疾病类型,过氧化物酶体病——X连锁肾上腺脑白质营养不良(X-ALD)和嘌呤代谢病——腺苷脱氨酶缺乏症ADA-SCID(ADAD)。这两种疾病均为致死率很高的罕见病,通过早期诊断和干预,可明显提高患者存活率和生活质量,为罕见病群体带来福音。浙江大学医学院附属儿童医院主任医师,中华预防医学会出生缺陷预防与控制专业委员会新生儿遗传代谢病筛查学组组长赵正言教授指出:“新生儿疾病筛查作为出生缺陷防控的第三道防线,有效地促进和保障了儿童健康。在过去的多年里,通过同仁们在筛查、诊断和治疗上的努力,让无数的新生儿能够无忧无虑地成长,也让他们身后的家庭拥有幸福的生活。这些离不开每个家庭父母亲的全心付出,离不开同仁们对工作的高质量要求,也离不开工作中所使用到的质量过硬的各种设备和试剂。NeoBaseTM2试剂盒在全球和国内都是独家,希望新一代的串联质谱试剂盒能够让我们的新生儿筛查工作走得更远,让更多的孩子和家庭受惠,创造更好的未来。”上海交通大学医学院附属新华医院小儿内分泌、遗传代谢病研究室主任、上海市儿童罕见病诊治中心主任顾学范教授指出:“新生儿疾病筛查作为公共卫生健康的手段之一,是保证一个国家新生儿人群未来健康的重要措施。新华医院儿研所从上世纪80年代开始首次在国内开始新生儿疾病筛查的研究,从苯丙酮尿症到先天性甲低再到四病筛查,随着检测技术的进步,从这个世纪初开始,我们也用上了串联质谱技术进行多种遗传代谢病筛查,随着技术的更新换代,我们的工作更加高效,能够筛查的病种也是越来越多,这样就造福了越来越多有出生缺陷问题的新生儿家庭,通过新生儿疾病筛查尽量减少了因为疾病带来的伤害和家庭经济负担。珀金埃尔默本次推出的新产品NeoBase2试剂盒在筛查病种上更加丰富了,这无疑是为我们未来的工作提供了更有力的工具。”据了解,肾上腺脑白质营养不良(x-linked adrenoleukodystrophy,ald)是x染色体上(xq28)abcd1(adenosine triphosphate-binding cassette d1)基因突变引起的过氧化物酶体功能异常而导致的脂代谢异常的罕见病,发病率1/21 000~1/15 500。临床主要表现为大脑白质进行性脱髓鞘病变和肾上腺皮质功能不全。该病有两种遗传方式:①常染色遗传,新生儿期发病,较为少见;②x连锁隐性遗传,儿童或青年期发病,主要以听觉和视觉功能损害、智能减退、行为异常、运动障碍为主要表现,预后差。如果在患儿出现临床症状之前早期诊断、积极干预,可提高患者生活质量,延长患者生命。已有临床研究证实,早期患者经造血干细胞移植后5年生存率高达95%,而未经造血干细胞移植的患者5年生存率只有54%。腺苷脱氨酶缺乏症ADA-SCID(ADAD)是由腺苷脱氨酶(ADA)缺陷引起的免疫缺陷病,可导致重症联合免疫缺陷病(SCID),因为严重的复发性感染,在婴儿期通常是致命性的。如果在患儿出现临床症状之前早期筛查,则可实现早期诊断和早期干预治疗。已有的临床研究证实,患者在3.5个月内进行造血干细胞移植,可大大提高患者存活率。目前开展SCID新生儿筛查的方法以TREC分子检测为主,如将串联质谱技术与TREC分子检测相结合,可迅速指明是ADAD或其他类型的SCID,也更有利于检测晚发型ADAD(约占ADAD的~15%-20%)。珀金埃尔默大中华区诊断事业部总经理徐晔女士表示:“我们选择母亲节之际发布NeoBaseTM2串联质谱检测试剂盒,是希望给每个新生儿宝宝扫除成长路上的潜在风险,让宝宝们健康快乐的成长,更让妈妈们安心。我们期许在社会各界的努力下,在专家们的指引下,通过技术的进步造福更多的遗传代谢病患者。未来珀金埃尔默也将继续秉承为创建更健康的世界而持续创新的公司愿景和使命,坚持研发新的产品,为中国新筛事业贡献自己的力量。”
  • 第二届Illumina生殖与遗传系列(上海站) 暨“高通量时代的产前及儿童遗传学检测及咨询”圆满落幕
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/48b312a7-ca0e-4a6f-8e23-01dfa60db6ed.jpg" title=" 1.jpg" / /p p   天朗气清,金风送爽的八月,第二届Illumina生殖与遗传系列高峰论坛终点站于13日在上海拉开帷幕,与郑州站和西安站不同的是,本站主题将高通量芯片及测序技术的应用从产前检测延伸到了儿童遗传学检测及咨询领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/ac293152-ba14-4335-b3dd-c90fc79b813b.jpg" title=" 2.jpg" / /p p style=" text-align: center " ▲& nbsp 上海场会议现场 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/a2589c8d-c3ec-4008-9981-527ee23d4f81.jpg" title=" 3.jpg" / /p p style=" text-align: center " ▲& nbsp 欢迎辞& nbsp & nbsp Tom Berkovits 先生 Illumina亚太区市场发展部副主管 br/ /p p strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " 01 /span /span /strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " /span strong 高通量测序技术在儿童遗传病应用—— 瓶颈、挑战和突破 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/296b5673-b3cf-4af9-b3e5-5aa61a0345e3.jpg" title=" 4.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:余永国& nbsp 博士 /p p   余博士风趣详实地通过病例分享肯定了新一代测序技术的优势 —— 辅助临床明确遗传学病因、精准医疗,推动着临床诊断进入新模式。但高通量分子诊断技术在临床应用中也面临一些瓶颈和挑战,如:针对复杂的临床患者如何选择不同的分子诊断方案,如何规范实验室报告、缺乏大数据分享、基因芯片和下一代测序技术的选择等,针对以上困难,余博士认为,首先作为临床医务工作者,需要加强临床遗传基本功,规范遗传咨询流程,普及遗传学科普知识;医疗机构需要壮大遗传咨询师及遗传咨询医师的队伍;联合多学会建立规范的学组共识;最后余博士倡导医院、检测机构共同努力搭建可视化共享的出生缺陷及重大遗传性疾病的遗传数据库,进行新技术的大样本探索。 /p p span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " 02 /span 医学外显子组测序在遗传病患儿诊断中的应用介绍& nbsp /strong /span br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1bcb91ab-2ebc-4549-9d05-768e5ddf784e.jpg" title=" 5.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:赵薇薇& nbsp 教授 /p p   遗传因素是疾病发生的重要原因之一,据OMIM数据库统计,符合孟德尔遗传方式的疾病有8477种,其中表型有描述,基因明确的有5051种,如何针对发病率低,病种繁多,累计发病率高的遗传病进行检测,赵教授认为外显子测序能提供更精准的诊断。(医学外显子组技术是针对每个怀疑有遗传病的个体同时检测约5000个致病基因)从2009年至今金域分子遗传共收集患者及家系样本6万例,采用Illumina公司的TruSight One临床外显子 — Panel检测,突变检出率为37%。最后赵教授通过病例解析强调了高通量测序过程中质量控制、生物信息学分析中的过滤参数以及ACMG五分类法在变异注释时的重要性。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 03 /strong /span span style=" color: rgb(31, 73, 125) " strong Genetic counseling: Tool to Convey Complex Information /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/77eb1cdb-b1d8-4e8d-b5cd-d55ff7e54375.jpg" title=" 6.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:Sucheta Bhatt& nbsp 博士 /p p   Sucheta博士在这一站分享了更多有关儿童遗传疾病咨询的经验,她首先强调进行遗传咨询时首先获得病史及家族史的重要性,指导根据疾病的临床特征分析病因,如何提供遗传风险评估的专业意见,如何与临床医师紧密合作,以及如何在充分知情同意后帮助患者选择下一步诊断技术。随后Sucheta博士引入一个疑似Noonan综合征儿科病例,从问诊,搜集病史,到评估各项检测,再到与患者家人的咨询建议,把遗传咨询的流程及要点清晰地呈现给听众们。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 04 /strong /span span style=" color: rgb(31, 73, 125) " strong 高通量分子检测技术在出生缺陷三级防控中的应用 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/9a168f3a-2870-47b9-aea8-e80396b2fff4.jpg" title=" 7.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:熊丽& nbsp 博士 Illumina大中华区临床应用专家 /p p   出生缺陷是一个严重的公共卫生和社会问题备受关注,传统技术精度及通量受限,Illumina基因芯片和新一代测序为代表的高通量检测技术展现出实力。熊丽博士由出生缺陷三级防控入手,分别介绍各类分子诊断技术的应用范围: br/ /p p   一级预防:携带者筛查通过靶向测序技术得以实施;胚胎植入前遗传学筛查(PGS)采用低覆盖度全基因组测序优选二倍体胚胎。 /p p   二级预防:核型定位技术(Karyomapping)能够成为通用单基因病胚胎植入前遗传学检测解决方案;NIPT是新一代测序技术在临床广泛应用的典范,阳性预测值可高于90%;基因芯片技术作为核型分析的补充在染色体病的产前检测中广泛应用。 /p p   三级预防:目前国际多个研究项目正采用新一代测序技术进行新生儿筛查研究,而临床全外显子检测,全外显子或全基因组测序大大提高了检测力,也在逐步改变目前的遗传疾病低效诊疗模式。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 05 /strong /span span style=" color: rgb(31, 73, 125) " strong 案例讨论 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/54d054ce-945a-40b8-a8b2-bf866014a8d4.jpg" title=" 8.jpg" / /p p style=" text-align: center " ▲& nbsp Sucheta Bhatt 等 /p p   上海站的压轴环节,是由Sucheta博士带来的遗传咨询典型案例讨论,30分钟时间内,两个曲折精彩的病例,现场新华医院余博士、上海国妇婴徐晨明博士等均参与分享了见解及咨询经验。两个案例一个先天性多发畸形,通过全基因组测序找到了致病基因,指导后续的检测及再发风险;另一个为重度发育迟缓,经家系外显子测序后仅找到临床意义不明(VOUS)的变异,在场同仁们探讨这类变异的咨询重点,随访需求以及数据库积累更新的重要性。余博士在点评时特别强调了中西方文化差异以及在中国临床遗传咨询需重视的沟通技巧,面对类似案例的咨询思路,操作流程建议,收获全场掌声不断。 br/ /p p strong 后记: /strong 郑州,西安,上海,三场足迹让我们深深体会到了临床用户们对新一代测序的认可与需求: /p p strong 8月9日& nbsp & nbsp 郑州 /strong br/ /p p   Illumina与安诺优达公司、郑大一附院联合举办的郑州站论坛,以“碰撞& nbsp · & nbsp 融合& nbsp · 发展”为主题引入了高通量测序技术的遗传学热点应用。 br/ strong 8月12日& nbsp & nbsp 西安 /strong br/ /p p   Illumina与贝瑞和康公司联合举办的西安站引起了各个产前诊断中心同仁门的热切交流,将高通量测序技术带入了深入应用及临床转化的话题。 br/ strong 8月13日& nbsp & nbsp 上海 /strong br/ /p p   Illumina生殖与遗传高峰论坛的上海站主场,把学术与交流的主题从产前筛查、产前诊断、延伸到儿童遗传学检测,在众多专家们的学识碰撞及实战经验交流之间,赋予了高通量测序在遗传学领域应用更加明媚的前景。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p   不论是最为成熟的无创产前检测(NIPT),还是新兴引起广泛关注的植入前遗传学筛查(PGS),或是在遗传病检测实践中初步展露头角的产前CNV测序及遗传疾病外显子测序,医疗同行们对Illumina技术的愈加关注,通过各中心经验的分享,增添了对新技术的应用信心和期望。为此,Illumina从未停止过创新脚步,致力于通过科技的革新帮助更多用户改善检测流程,寻找遗传学答案,解开基因组学奥秘。 /p p span style=" color: rgb(255, 192, 0) " strong 关于Illumina /strong /span br/ Illumina公司通过解码基因组而改善人类健康。我们注重创新,这使我们成为DNA测序和芯片技术的全球领导者,并为科研、临床和应用市场的客户提供服务。我们的产品应用分布在生命科学、肿瘤学、生殖与遗传、农业及其他新兴市场领域。如欲了解更多信息,请访问Illumina中国官网。 /p
  • 科学家开发出一种新方法能快速纠正遗传性的基因突变 从而有望治疗多种人类遗传性疾病
    人类诱导多能干细胞(hiPSCs)允许对遗传性疾病进行体外研究,并且拥有个体化干细胞治疗的潜力,基因编辑技术(能够精确修饰特异性目标位点)代表了不同hiPSC应用的宝贵工具,这在单基因疾病中特别有用,其能帮助分析未知突变的功能,或创造遗传纠正且来自患者机体的hipsCs。近日,一篇发表在国际杂志Stem Cell Reports上题为“Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts”的研究报告中,来自赫尔辛基大学等机构的科学家们通过研究开发了一种新方法,其能精确且快速地纠正培养的患者机体细胞中的遗传改变。这种新方法能从患不同遗传性疾病患者2-3毫米的皮肤活检组织中产生遗传性纠正的自体多能干细胞,而纠正后的干细胞对于研究非常有必要,其对于开发治疗有关疾病的新型疗法也非常重要。这种新方法基于此前研究人员在干细胞和基因编辑领域的突破性研究(包括获得诺贝尔奖的技术),第一项技术就是诱导多能干细胞的开发,即来自分化细胞的ipsCs,其于2012年获得了诺尔贝生理学或医学奖。而另一项技术则是CRISPR-Cas9基因魔剪的创新,其于2020年也获得了诺贝尔奖。研究者所开发的新方法结合了这些技术来纠正引发遗传性疾病的基因突变,同时还能创造出功能齐全的新型干细胞。研究人员的长期目标就是产生具有治疗特性的自体细胞,使用来自患者机体纠正的细胞就能帮助避免来自供体的器官和组织移植所产生的免疫挑战。目前有超过6000种已知的遗传性疾病,其都是由不同的基因突变所致,其中一些疾病目前是利用来自健康供体所捐赠的细胞或器官移植来进行治疗(如果合适供体有的话)。所纠正的干细胞。图片来源:Sami Jalil研究者Kirmo Wartiovaara教授表示,我们所开发的新系统在纠正DNA错误方面要比老方法更快且更加精准,同时也减少了不必要变化的风险。在完美的状况下,如今研究人员已经达到了100%的功效,尽管研究人员需要记住的一点是,对培养的细胞进行修正距离已经证实的治疗应用还非常遥远,这或许就是一个非常积极的开始。综上,本文研究结果表明,研究者所开发的新方法能够产生几十个基因编辑的hipsC单克隆细胞系,其具有前所有为的效率和稳定性,同时还能大大减少细胞培养所花费的时间,并能降低其在体外发生改变的风险。原始出处:Sami Jalil,Timo Keskinen,Rocío Maldonado, et al.Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts, Stem Cell Reports (2021). DOI:10.1016/j.stemcr.2021.10.017
  • 招标!中科院遗传所预算358万采购3套仪器设备
    p   5月31日,中国政府采购网发布中国科学院遗传与发育生物学研究所2017年度修购项目之仪器设备(一)公开招标公告。 /p p   详细采购内容如下: /p table width=" 574" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 包号 /span /p /td td width=" 66" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 设备名称 /span /p /td td width=" 175" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 主要用途摘要 /span /p /td td width=" 47" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 数量(套) /span /p /td td width=" 47" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 预算 /span /p /td td width=" 66" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 交货期 /span /p /td td width=" 45" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 交货地点 /span /p /td /tr tr td style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 基因组光学图谱工作站 /span /p /td td width=" 175" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 基因组光学图谱工作站可用于基因组学中构建精细准确的基因组物理图谱,该物理图谱可以用于物种的鉴定、分型、基因组测序后期的数据组装和染色体结构的比较与分析。该工作站可在肿瘤细胞遗传学、产前诊断、遗传病研究、微生物学、动植物遗传育种等多个领域发挥作用,具体应用包括生物资源的保护、研究、开发、利用和结构基因组学研究。 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 250 /span span style=" line-height: 150% font-family: 宋体 font-size: 12px " 万 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 合同签订后并在免税文件办理好后2个月内 /span /p /td td width=" 45" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 3" p style=" text-align: left margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 中科院遗传与发育生物学研究所 /span /p /td /tr tr td style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 2 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 冷冻高速离心机 /span /p /td td width=" 175" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 主要用于研究及药物研发,病毒及纳米技术,蛋白质学,基因组学及分子生物学等。 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 24 /span span style=" line-height: 150% font-family: 宋体 font-size: 12px " 万 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 合同签订后3个月 /span /p /td /tr tr td style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 3 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 农作物单粒智能精准点播系统 /span /p /td td width=" 175" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left line-height: 115% margin-top: auto margin-bottom: auto " span style=" line-height: 115% font-family: 宋体 font-size: 12px " 用于小麦品种小区行距、株距可调式单粒精准播种。 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 47" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 84 /span span style=" line-height: 150% font-family: 宋体 font-size: 12px " 万 /span /p /td td width=" 66" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: left margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 合同生效后3个月内。 /span /p /td /tr /tbody /table p br/ /p p   项目名称:中国科学院遗传与发育生物学研究所2017年度修购项目之仪器设备(一) /p p   项目编号:OITC-G17031367 /p p   项目联系方式: /p p   项目联系人:王军 /p p   项目联系电话:010-68725599-8440 /p p   采购单位联系方式: /p p   采购单位:中国科学院遗传与发育生物学研究所 /p p   地址:北京市朝阳区北辰西路1号院2号 邮编:100101 /p p   联系方式:刘老师 010-64806525 /p p   代理机构联系方式: /p p   代理机构:东方国际招标有限责任公司 /p p   代理机构联系人:王军 68725599-8440 /p p   代理机构地址: 北京市海淀区阜成路67号银都大厦15层 邮  编:100142 /p
  • 重磅!我国首绘中国人泛基因组参考图谱 成果于《Nature》发布
    我国在基因研究方面的新突破日前由复旦大学西安交通大学等国内26个科研单位联合开展研究绘制出了基于36个族群的中国人泛基因族参考图谱。相关成果于北京时间6月14日23点在国际权威学术期刊Nature发表,这也是我国科学家首次自主进行本国人群全景图谱式泛基因组研究所取得的第一个重大成果。基因研究是当代生物学领域的重要方向。人类的基因组包含了3万个以上基因在内的30多亿碱基对,其纷繁复杂的作用关系我们目前还知之甚少。从上个世纪末开始科学家联合开展人类基因组研究,但鉴于当时的技术条件只能依据极少个体绘制出一种简单化基因组草图。复旦大学教授 徐书华随着科学进步,泛基因组研究目前成为生命科学的新方向,相比过去片段化、单一维度的局限,它相当于要绘制一幅包含人类全部遗传信息的全景式多维度图谱。我国科学家组团公关力争使中国在这一前沿领域不再落后于人。这次独立进行的本土人群泛基因组参考图谱绘制科研进度基本与国外持平,有利于建立自主可控的人类基因组资源培养自己的核心技术力量。在第一期参考图谱绘制中,我国科学家通过引入新技术新算法选取有代表性和覆盖性的样本,在原有人类基因组的基础上新获取了1.9亿个简基对新序列,包含近600万个变异。对于探究中国人群基因组核心特征具有重大意义。据介绍这项研究有助于更加清晰地揭示中华民族的历史发展脉络,对于华夏文明探源族群遗传演进等研究都有重要价值。而进一步掌握本国人群的遗传密码,则在发展精准医学和前沿生物技术保障人民健康维护国家安全等各个方面都有着基础作用和远景意义。
  • 科学家绘出首张“甜橙基因组图谱” 揭开甜橙“身世之谜”
    11月26日,在国家自然科学基金等项目的资助下,华中农业大学邓秀新院士领衔的柑橘团队在国际著名学术刊物《Nature Genetics》在线发表了题为“甜橙基因组图谱”(The draft genome of sweet orange)的研究论http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2472.html。甜橙基因组的完成将在理论上为柑橘基因功能研究提供框架,也将在应用上为果实品质包括色、香、味等重要性状基因的遗传选育发掘及品种改良提供重要平台。这也是世界上第一例芸香科植物基因组图谱,对柑橘基因及重要农艺性状的解析具有里程碑的作用。   我国是世界上重要的柑橘原生中心,我国栽培柑橘的历史悠久,4000年前已有经济栽培。甜橙品种"伏令夏橙"即可鲜食,同时也是全球最大的加工橙汁品种。华中农业大学的甜橙基因组研究团队对这一甜橙品种采用最先进的全基因组鸟枪测序法(WGS)及远程配对末端标记策略, 拼接组装所获得的基因组序列覆盖率近90%,获得注释的基因约3万个。通过结合遗传标记和染色体原位杂交分析,甜橙基因组序列被进一步整合到已知的9条染色体, 因此完成了对甜橙基因组接近完全的解码和基因定位。   通过对基因组数据的分析,该团队发现甜橙基因组中约有一半的基因处于杂合状态,并有显著的橘和柚的遗传特征,其中橘的遗传成分约占3/4,柚的遗传成分占1/4,据此提出了甜橙起源的新理论,即甜橙来源于柚做为母本和橘杂交,其后代再与橘杂交而形成的杂种。通过基因表达以及基因组比较分析,发现了一个可能在甜橙果实内大量合成维生素C的关键基因。该基因家族的扩增、快速进化、功能分化以及组织特异表达等可能与甜橙果实大量合成维生素C有关。
  • 《临床检验诊断学图谱》发布
    我国检验医学领域一部全面、系统、完美、精致的工具书和参考书——《临床检验诊断学图谱》近日由人民卫生出版社出版发行。该书提供了许多高分辨显微镜摄影图片,反映了临床形态学检验诊断的经典内容和最新进展。   本书由临床血液学检验诊断专家、北京大学第一医院教授王建中主编,临床尿液和体液检验专家、北京协和医院教授张时民,血液体液和实体瘤细胞学检验专家、中国中医科学院广安门医院教授刘贵建、血液病免疫治疗主任医师与诊断专家、北京道培医院教授童春容,临床微生物学检验专家、北京友谊医院教授许淑珍,真菌学检验诊断专家、北京大学第一医院教授李若瑜,临床寄生虫病检验诊断专家、北京友谊医院教授郭增柱任本书副主编。近百位特约专家、编委、编者和图片作者来自国内外。我国著名实验诊断学教育家、血液学家,上海交通大学医学院瑞金医院教授王鸿利为本书撰写序言。   据悉,《临床检验诊断学图谱》有以下特点:图幅数量多,包括彩色图、黑白图、模式图、散点图、大体图等多种形式的图谱,全书共有近8000幅精选图片。   专家及编者队伍强。编委会专家多为国内检验和临床专业学术团体成员,是相关专业学术带头人,作者多为国内知名专家和中青年学者。   编排新颖,突破以往的传统横竖编排模式,以大图小图交互穿插、嵌合图、组合图等各种国际流行方法编排,视觉感明显。   图文并茂,每幅图或组图都有细致的文字说明,包括病例介绍、形态特点、应用评析和临床意义等。   内容丰富,几乎包含了血液、骨髓、尿液、体腔液、排泄物、分泌物及相关组织标本的细胞学、血液学、免疫学、微生物学、寄生虫学、遗传学等的显微镜形态学全部和相关内容。   显微镜应用多样化。采用非染色、染色、暗视野、相差显微镜、荧光显微镜、偏振光显微镜、电子显微镜、数字图像分析设备等多种技术手段对细胞或被检验物形态进行细致表达,可看到不同角度的图像信息。   病例资料全面。临床血液病及其他疾病病例分析是该书的亮点之一,以66例临床病例为主体,以血液和骨髓形态学检查为基础,结合细胞化学染色、染色体分析和流式细胞免疫表型分析,对病例进行讨论分析。   据了解,编者们出版这部图谱的目的是为提高我国医学检验诊断水平,特别是对强调重视形态学检验,提升我国形态学检验和诊断水平而作的巨大贡献。本图谱可供检验医学专业人员、临床医师及相关专业人员在临床检验诊断工作中查阅参考 也可作为临床检验医师、技师规范化培训教材,也可由高等医学院校临床检验专业、临床医学相关专业的教师和学生在教学工作中参考和使用 更可作为图书馆和检验科室重要的参考工具书,供广大检验医师和检验技师随时查阅,解决临床检验工作中有关形态学检查的具体问题。
  • 重磅来袭!华大基因基于DNBSEQ-G99平台的遗传性肿瘤基因检测正式发布
    据国家癌症中心数据,我国每年新增癌症患者约406万,每年因癌症死亡人数达241万,恶性肿瘤防控形势十分严峻。肿瘤与基因密切相关,部分基因突变可能增加患病风险。研究显示,遗传性肿瘤在所有肿瘤中占5%~10%,具有家族遗传特点。华大基因遗传性肿瘤基因检测的临床意义在于:检测个体潜在风险,辅助肿瘤相关遗传变异的风险识别,为临床治疗提供参考;评估直系亲属的遗传风险,提供风险管理和健康建议。根据最新NCCN指南的建议,遗传性肿瘤应进行相关的基因检测,以期筛查和预防肿瘤的发生。华大基因作为基因组科学和精准医疗领域的领军者,凭借自主研发的测序平台、尖端实验技术和生物信息算法,成功构建了肿瘤基因检测产品的“预筛诊监”闭环服务矩阵。在肿瘤预防领域,华大基因推出了遗传性肿瘤基因检测产品,旨在评估遗传性肿瘤风险,并辅助识别与肿瘤相关的遗传基因变异,为高风险人群制定个性化的健康管理方案提供有力支撑。华大基因基于最新获批的DNBSEQ-G99测序机型,推出遗传性肿瘤基因检测试剂盒。该试剂盒可检测男女各20余种肿瘤的90个遗传易感基因及HRR通路基因突变。它解决了高通量测序产品医院本地化运行时样本量少、需凑样、检测周期长等问题,助力医疗机构快速获取准确基因检测结果,实现3.5天极速交付,提升诊疗效率。同时,该试剂盒为医院提供优化的高通量测序实验室解决方案,推动肿瘤基因检测在院内的发展。随着精准医学的深入发展,国内医疗机构正加速建设精准医学中心,以推动其在医院内的研究与实践。医学平台建设作为精准医学发展的关键一环,显得尤为重要。针对此需求,华大基因依托自主研发测序平台,提供全面精准医学基因检测方案。其中,HALOS一体机以其独特设计,成为高通量测序实验室的首选。这款一体化平台集成了样本管理、实验管理、生物信息分析及报告解读等功能,与测序仪等设备无缝对接,实现临床样本测序数据的自动化分析、注释与解读。通过一键式操作,医院可轻松实现本地化报告出具,确保数据安全高效利用。预防胜于治疗,对于癌症而言更是如此。只有早期发现、早期诊断、早期治疗,才能更有效地降低癌症的发病率和死亡率。华大基因始终践行“以基因科技造福人类”的使命,致力于为更多癌症患者提供精准、普惠、可靠的基因检测服务以及安全有效的治疗方案,推动我国癌症精准防治水平的提升。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制