当前位置: 仪器信息网 > 行业主题 > >

医学媒介生物

仪器信息网医学媒介生物专题为您整合医学媒介生物相关的最新文章,在医学媒介生物专题,您不仅可以免费浏览医学媒介生物的资讯, 同时您还可以浏览医学媒介生物的相关资料、解决方案,参与社区医学媒介生物话题讨论。

医学媒介生物相关的论坛

  • 有没有做港口媒介生物监测的老师

    [font=&][size=12px][color=#444444]想问一下港口媒介生物的治理模式,包括商业模式,业务层面,以及实验室建设等要求,又没有资料标准可以提供一下参考学习的,实验室资质认定有相关的文件资料吗[/color][/size][/font]

  • 揭开美国顶尖生物医学实验室成功的法宝

    揭开美国顶尖生物医学实验室成功的法宝 --- 仅以此文奉献给我的母校哈尔滨医科大学2005年3月我有幸加盟了哈佛医学院布里根妇女医院(Brigham and Women’s Hospital)Stephen Elledge 实验室,在Elledge 教授直接领导下工作了整整六个年头。Stephen Elledge (后文皆称Steve)是美国生物医学界天才级科学家,他博士毕业于麻省理工学院(MIT)生物学系,在斯坦福大学生物化学系做的博士后。1989年成为著名的贝勒医学院(Baylor Medical College )生物化学系的助理教授。短短几年后便于 1993年当选为霍华德休斯医学研究所的研究员(HHMI Investigator)。2003 年他当选为美国科学院院士。2003年初,他被美国哈佛医学院布里根妇女医院特聘为遗传学冠名终身教授。他在多个研究领域,如细胞周期调控、DNA 损伤应答机制、肿瘤细胞生物学、泛素连接酶的组成与调控、新型生物技术的开发与利用以及病毒的感染机制方面均有杰出贡献。他发现肿瘤抑癌基因TP53的直接下游靶点为P21,他发现DNA 损伤后ATM、ATR蛋白激酶激活下游CHK1、CHK2等信号传导通路,他发现抑癌基因REST、PTPN12等,揭示泛素连接酶F-box 家族,优化了酵母双杂交系统(Yeast two hybrid system)、Magic DNA 载体高通量转换系统、全蛋白组水平分析蛋白稳定性的GPS 系统及与Gregory Hannon 首创小发卡核苷酸干扰文库(shRNA library)。50岁出头的他,光在Cell 、Nature 、Science 杂志上就已经发表了二十几篇文章,其数量与质量就是在哈佛医学院这样大师云集的地方也名列前茅。Steve 的科研思维与科研能力当属超一流,他堪称科学家中的科学家。在Steve 手下先后工作的中国同胞为数不少,其中很多人颇有成就,但能够回归祖国并将Steve 实验室成功经验总结出来的人不多。现在我就将我在他实验室工作的感受写出来,呈献给国内广大的生物医学科技工作者,特别是正在成长的、肩负承上启下重任的轻年科学家们。希望我的文章能对他们的成长有所启迪和帮助,这样便达到了我写作此文的初衷。下述内容很多都是我的亲历亲为,所有证据皆出自已经发表的文献,所有的观点仅代表我个人的观点,如有争议,本人因时间和精力有限,恕我不能回应。成功法宝之一,选择最重大的科研方向。第1,研究对人类健康危害最严重的重大疾病,如恶性肿瘤、HIV感染,探索它们发生发展的机制、寻找新的药物治疗靶点。揭示肿瘤细胞周期调控、DNA 损伤与修复、细胞转化因子、影响HIV 、HBV、HCV等病毒感染的宿主因子是Steve实验室正在探索的关键性问题。研究上述课题还有一个比较实际的好处就是,美国的科研经费大部分是投在上述领域,这样就保证了他的实验室在经费资助方面有一个比较持续和稳定的态式。第2,功能筛选是关键。生物学研究有很多方式和方法,Steve 最推崇遗传学功能筛选(Functional Genetic Screen)。为了达到课题的新颖性和原创性,他一般不去做别人已经领跑的项目, 而是通过测定细胞周期检测点、细胞老化、病毒感染率等指标,筛查全基因组中的相关调控因子,然后从待选基因中,选择有价值的进行功能性验证。他所发表的文章多数是此种研究套路的结晶。第3,善于开发并利用新的生物技术。Steve 有一个观点,他认为新生物技术的创立是基础科学研究和应用技术创新的原动力。近几十年来,以获得过诺贝尔奖的生物技术为例,从单克隆抗体杂交瘤技术、PCR技术、核磁共振技术、GFP荧光蛋白示踪技术、蛋白质谱测序技术到RNAi干扰技术均充分证明生物技术的每一次飞跃都会大大推动科学技术的发展,并形成了一系列的相关产业,对人类的经济与社会发展做出重大贡献。他研发的三项标记酵母双杂交系统大大降低了筛选相互作用蛋白质时的假阳性率,他研发的Magic DNA 载体转换系统彻底改变了传统的一对一的、费时费力的限制性内切酶方法,使得DNA载体高通量转换变得轻而易举。GPS 系统使得在全基因组水平筛选泛素连接酶的底物成为现实.。他研发的shRNA 文库已成为功能缺失型筛选的首要工具。最近,他又在开发全蛋白组水平的噬菌体多肽表面展示技术,用它来筛选人体血浆中的肿瘤特异性蛋白,以期发现肿瘤特异性生物标记,为肿瘤的早期发现提供诊断学上的理论依据。成功法宝之二,选用优秀的人才并合理配置。每年都有很多人发电子邮件给Steve, 要求加入他的试验室团队。我发现他在用人方面有三个特点:第1,名门之后一定要录取。如诺贝尔奖的门生、各领域中大师们的学生。这些人一般都出自美国一流学府,受到很好的科学熏陶。一旦加盟,Steve 均给予苗头较好的课题,使他们在较短的时间内可能有高质量的产出。看来我们老祖宗的名师出高徒,强将手下无弱兵的道理在美国的科学界也是行得通的。第2,后起之秀的门徒,这些人一般出自各类青年才俊的实验室,虽然学校牌子可能不太亮,PI名头不太响,但这些青年才俊正在引领各领域研究的新潮流,部分人正在成为领军性科学家。出自这些实验室的学生们还有另外一个特点,就是大多数都发表过很好的文章,而且他们在实验技能方面的训练也比较正规和系统。最后一类人,既没有美国的学校教育背景,也没有经大师或后起之秀的熏陶,但有却几篇像样的文章,并有丰富的实验经验,Steve 也会将他们纳入门下,让他们承担一些周期长、风险大的课题,主要是为实验室的可持续性发展提供潜在性课题,并为苗头好的项目进行技术方面的配合及支持,使该课题得以快速推进。成功法宝之三,严密而科学的管理模式。他的实验室配备有行政秘书(Administrative Assistant)一名,一般仅有高中以上学历,对科学了解甚少,主要负责日常的人事安排、试剂订购、财政预算及与管理部门之间的沟通。还配备有实验室主任一名(Lab Manager)一般是由本土资深博士后担当,此人主要负责特殊试剂的订购,仪器的使用与维护,及与试剂公司、仪器公司进行沟通。这样Steve 本人基本不过问这方面的问题,从而使得他可以全身心地投入到与科研相关的工作中。在科研管理方面,每周二上午9:30-11:00是文献阅读活动时间(Journal Club),每次出两个人各自讲解一篇文章,文章的选择上以跟本人课题相关的,发表在Cell、Nature、Science杂志上的文章为主,也可选择一些非相关性领域但有重要理论指导意义或技术应用价值的文章。每个讲解人均要回答Steve及其他同事的提问。这个文献阅读活动的好处是促使讲解人认真阅读文章内容并整理有关背景知识,是一种很好的科学训练过程,当然Steve本人及实验室的其他同事们也获得一次学习交流的机会。实验室每周四上午12:00-13:00是实验室会议时间(Lab Meeting),每次出一个研究生或博士后报告其课题的最近进展情况,包括基础背景知识、近期数据汇报和下一步发展方向,每个人大约不到半年就要轮上一次。这种实验室会议对课题的进展具有极大的促进作用,每个人都得非常认真的准备,并加班加点以期增加阳性数据,希望能够通过Steve及周围同事的检验。一般在每次实验室会议结束之时会有一个不到五分钟的实验室管理上的讨论,这时多数是实验室主任提几个试验或者仪器方面的注意事项,但一般非常简短,Steve一般不会过多干预,仅问问解决方案是什么。因此Steve实验室会议主要是课题进展汇

  • 2024年全国农业、林业、医学生物电镜应用技术及学术交流大会圆满召开

    [b][color=#000000]仪器信息网讯[/color][/b][color=#000000] 2024年3月27日-29日,[b]“2024年全国农业、林业、医学生物电镜应用技术及学术交流大会”[/b]在南京恒大酒店圆满召开,大会由[b]南京农业大学作物遗传与种质创新利用全国重点实验室[/b]主办,[/color][color=#000000][b]现代作物生产省部共建协同创新中心、江苏省电子显微学学会[/b][/color][color=#000000]协办,[/color][color=#000000][b]江苏博东检测科技有限公司[/b][/color][color=#000000]承办。[/color][color=#000000]电子显微镜技术已广泛应用于农业、林业、医学生物等研究领域,成为生命科学基础研究工作中必不可少的实验手段。据介绍,该会议每两年举办一届,由于疫情等原因,今年是该系列会议空窗7年后再次重启,为期三天的会议汇聚了国内近400位专家学者、一线电镜工作者及相关仪器企业代表出席,共同探讨电子显微技术在农林、生物医学等诸多领域的前沿应用与发展趋势。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/1df5962e-1785-4624-acf1-9453b1dc45c7.jpg[/img][/align][align=center][color=#0070c0]大会现场[/color][/align][color=#0070c0][img=1.jpg]https://img1.17img.cn/17img/images/202404/uepic/07122383-0285-4cdf-b18c-d7d43eb7be80.jpg[/img][/color][color=#0070c0][/color][align=center][color=#0070c0]浙江大学 教授 洪健 介绍参会领导及嘉宾[/color][color=#0070c0][/color][/align][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/736c049a-98ba-4f65-bd8f-60f94ff907e7.jpg[/img][/align][align=center][color=#0070c0]南京农业大学 教授/党委副书记/纪委书记 吴荣顺 致欢迎词[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/6ad1a7ef-25cc-42d5-b5cf-89b7662fdb60.jpg[/img][/align][align=center][color=#0070c0]海军军医大学 教授 杨勇骥 致辞[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/0add79f8-8fa1-487c-9330-39d82a22025f.jpg[/img][/align][align=center][color=#0070c0]南京工业大学 教授 吕忆农 致辞[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/2b467b98-3bcc-4c0a-9b91-eaeda43c4849.jpg[/img][/align][align=center][color=#0070c0]大会学术报告集锦(一)[/color][/align][color=#000000]本次大会邀请到19位来自全国高校和科研院所的知名专家学者报告了最新的电子显微镜理论以及在农林、生物医学领域的研究应用成果,一些电镜主机及附件厂商介绍了最新发展的仪器和技术。以低温电镜、体电子显微术为代表的前沿新技术在生命科学中广泛应用,传统电镜制样技术和医学电镜诊断也得到进一步发展,这一切均体现在如下报告中。[/color][b][color=#000000]杨勇骥教授[/color][/b][color=#000000]应用冷冻固定-电子显微镜tomography技术,观察研究了骨骼肌肌浆网膜上钙离子通道蛋白RyR1的结构与排列,获得其原位三维结构信息。该技术显示RyR1的完整三维结构,RyR1主要以跨膜方式分布在肌浆网膜上。通过IMOD软件重构分析,建立了相关结构的三维图像。该技术对研究膜镶嵌蛋白,特别是离子通道蛋白与膜关系具有重要意义。[/color][b][color=#000000]王益华教授[/color][/b][color=#000000]分享了实验室的高压冷冻包埋/冷冻替代技术,结合GFP-目标蛋白融合材料,实现了目标蛋白的精准亚细胞定位。同时,该技术还成功应用于成熟水稻种子的包埋与细胞壁观察。未来,实验室计划进一步探索光电子结合成像与三维重构技术,以拓展电镜在稻米品质研究中的应用范围,推动相关领域的发展。[/color][b][color=#000000]蒋争凡教授[/color][/b][color=#000000]应用光镜-电镜联合技术结合免疫电镜研究STING蛋白的结构和功能,多种电镜技术的应用很好地支持了立方体膜结构的形成可能受相关跨膜蛋白相分离的驱动,而由膜蛋白相分离形成的这类膜结构是细胞正常生命活动的一部分,并在多种生理、病理过程中扮演重要角色。[/color][color=#000000]体电子显微技术(vEM)是近年来快速发展的生物样品三维结构研究技术。然而,其各向异性分辨率和截面损失是技术挑战。[/color][b][color=#000000]孙飞研究员[/color][/b][color=#000000]开发了IsoVEM算法,提升了轴向分辨率并实现各向同性重建,成功修复丢失/损坏切片,提高分辨率,已在模拟和实验数据集上验证。IsoVEM优化了超结构分割效率和统计精度,实现了大规模生物结构的各向同性重建,增加了vEM研究吞吐量。孙飞研究员在报告中还介绍了首台国产120kV场发射透射电镜的研发成果。[/color][b][color=#000000]陶小荣教授[/color][/b][color=#000000]利用冷冻电镜解析了TSWV RNA聚合酶的三维结构,揭示了其结构特征和与病毒RNA的相互作用。TSWV L蛋白结构独特,其C端结构域模拟eIF3亚基,促进转录与翻译耦合。该研究是首个解析植物病毒全长复制酶结构的工作,有助于理解sNSVs聚合酶的RNA合成调控和转录机制,为抗病毒药物研发提供新思路。[/color][b][color=#000000]张仲凯教授[/color][/b][color=#000000]介绍了布亚尼病毒目的负义单链RNA植物病毒正番茄斑萎病毒属(Orthotospoviruses)的研究成果,其种子和果实传播是新发或早生区Orthotospoviruses的主要来源,为源头与绿色防控提供依据。病毒在寄主细胞中的分布特征因病毒种类不同具有明显的差异,可能与N或NSm与寄主蛋白互作的差异相关。病毒以RNPs在细胞间形成系统侵染,同时可能存在溶解细胞壁的发生到达相邻细胞。[/color][b][color=#000000]刘铮教授[/color][/b][color=#000000]采集了5例临床长新冠并发心血管疾病患者的心肌活检样本,开展病理学、免疫组化和电镜超微结构研究。结果显示心肌纤维化、肌丝束损伤及间质水肿,线粒体肿胀空泡化、内嵴扭曲破裂。应用新型体电镜技术FIB-SEM对线粒体损伤进行3D分析,推测损伤由新冠感染所致,并在小鼠模型中得到验证。研究为新冠并发心血管疾病提供了病理基础,有望为治疗策略提供新思路。[/color][b][color=#000000]魏太云教授[/color][/b][color=#000000]介绍了多种水稻病毒在媒介昆虫叶蝉中的侵染机制,综合运用常规电镜技术、免疫胶体金标记和免疫荧光标记技术,利用电镜和共聚焦显微镜,从不同尺度对水稻病毒在媒介昆虫中的垂直传播、水稻病毒与昆虫共生菌互作,以及水稻病毒与媒介昆虫免疫机制的博弈进行了解析。并在报告中对体电子显微学未来在生物研究中的应用给予了肯定。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/470cf751-a563-49d1-9c26-07ce79e85d45.jpg[/img][/align][align=center][color=#0070c0]大会学术报告集锦(二)[/color][/align][b][color=#000000]常云杰研究员[/color][/b][color=#000000]利用冷冻断层扫描技术首次解析了哺乳动物PDC完整结构,发现其外周装配的E1四聚体和E3二聚体数量不一。并解析了PDC中底物传递机制,揭示其结构不具有单一化学配比,外周组成高度动态。据此,提出PDC可通过调整外周组装的E1、E3多聚体及参与底物传递的LD数量来调控催化活性,以适应不同糖酵解需求。[/color][b][color=#000000]沈庆涛教授[/color][/b][color=#000000]应用冷冻电镜解析了对虾白斑综合症病毒(WSSV)杆状核衣壳的高分辨结构,发现WSSV核衣壳以环状堆叠的结构形式存在,在侵染过程中核衣壳会出现椭球状和杆状两种结构形式的转变,核衣壳由椭球状变为杆状会释放病毒基因组,伴随着内部容积变小、压力丧失。该研究有助于更好地认识WSSV侵染过程,为其防治提供理论借鉴。[/color][b][color=#000000]李霞教授[/color][/b][color=#000000]在研究中使用基于聚焦离子束扫描电子显微镜(FIB-SEM)的体电子显微技术(vEM)来生成大体积附睾上皮细胞不同节段的3D重建。3D重建首次揭示了附睾上皮细胞之间的横向细胞间隙(LIS)中存在细胞间细胞器库(IOR)。确定了自噬体和线粒体残留物是IOR的主要成分。[/color][b][color=#000000]王亚林教授[/color][/b][color=#000000]研发了一种可以用于冷冻替代仪的震荡装置,可以更好地控制冷冻替代过程中的温度变化并提高可重复性。另外,也尝试了更为便捷的冷冻替代方法,用极短的时间达到与常规冷冻替代相近的结果。这些方法可以大大减少样品制备的时间,而不会牺牲样品的超微结构的质量。[/color][b][color=#000000]颜梦雨高工[/color][/b][color=#000000]提到低温透射电镜技术可以保持样品的天然状态,突破传统透射电镜技术易造成辐照损伤的缺点和样品需要完全脱水的限制,从而实现对生物类电子束敏感材料的表征。为医药、农业、食品等领域的应用研究提供了重要支撑。此外,在材料、化工等领域,结合电子衍射和tomography技术实现了对MOF/COF、薄膜等样品的表征。[/color][b][color=#000000]孙异临教授[/color][/b][color=#000000]谈到作为超微病理医生在诊断一个病例时,首先要有整体观念(病和人两字缺一不可),一定要详细了解该患者的全部临床资料,包括症状、体征、影像学特点、取材部位、光镜病理和免疫组织化学等检查结果;并对送检电镜病理标本的组织学、解剖学和普通病理学以及相对应组织的正常超微结构特点要了如指掌,这样才能在电镜下观察超微病理变化时做到心中有数、发现问题。[/color][b][color=#000000]朱燕华高工[/color][/b][color=#000000]介绍了X射线显微镜的成像原理以及在生命科学中的应用,作为一种无损的显微成像分析技术,其分辨率可以达到亚微米级,适用于植物组织、昆虫、骨骼、软组织、器官等,与传统电镜技术和体电子显微术配合,将在农林医学生物领域发挥重要作用。[/color][b][color=#000000]於修龄博士[/color][/b][color=#000000]在研究中以X射线显微镜为主要研究方法,结合数字图像处理和基于深度学习的图像识别技术,对土壤新生体及不同农田管理措施下土壤的三维微结构开展了研究。深入揭示了土壤的形成过程和环境意义,同时也为农田合理施肥以及农田土壤结构的精细化管理提供了科学依据。[/color][b][color=#000000]刘莹莹教授[/color][/b][color=#000000]应用SST和NK1R免疫电镜双标记技术,结合线粒体细胞色素氧化酶(CO)组化技术,进行了pre-B?tC神经元超微形态学三标记。SST分布于pre-B?tC神经元胞体和突触前神经终末,NK1R分布于胞体和树突,二者形成非对称(兴奋性)和对称(抑制性)突触联系。[/color][b][color=#000000]毛倩卓副研究员[/color][/b][color=#000000]以辣椒轻斑驳褪绿病毒为例,对免疫标记技术在植物病毒研究中的应用进行了探讨。运用负染标记、超薄切片胶体金标记以及免疫荧光标记,对经基因改造携带了绿色荧光蛋白(GFP)标签的辣椒轻斑驳褪绿病毒的形态、分布和侵染能力进行了评估,并在此基础上对植物样品电镜制样过程中遇到的问题进行了讨论。[/color][b][color=#000000]刘峰副教授[/color][/b][color=#000000]创建了含19种植物叶片电镜照片的大型注释数据集,并开发了OrgSegNet识别管线,能精确识别叶绿体等细胞器。其嵌入的数字指标可量化细胞器形态。发布的Plantorganelle Hunter工具可用于精细考察植物亚细胞表型,该自动分割方法也适用于体电镜图像识别,提高3D重构效率。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/1ee2d0c3-73f2-435d-89e2-e9676e9fb307.jpg[/img][/align][align=center][color=#0070c0]农林分会场与医学分会场集锦[/color][/align][color=#000000]在3月28日下午及29日上午,大会还分别设置了农林分会场和医学分会场,数十位代表发言,深入地探讨电子显微技术在这两个领域的最新应用与进展。此外,3月28日晚上特别设置的生物电镜技术答疑解惑专场,吸引了与会代表尤其是年青师生的踊跃参与。为时两小时的面对面交流讨论,针对代表们平时所遇的各种问题和心中疑惑,专家们一一解答,悉心赐教,大家畅所欲言,会场气氛达到高潮。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/4f121835-65d4-41d5-958e-0997593c2343.jpg[/img][/align][align=center][color=#0070c0]生物电镜技术答疑解惑专场集锦[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/34509bce-a634-4815-90f9-97ebc8f18cb8.jpg[/img][/align][align=center][color=#0070c0]大会合影[/color][/align][color=#000000]致此,本届大会圆满结束,丰富的会议内容让参会者们满载而归,正如一位参会者这样表达参加此次会议的收获:如果说白天的每一场报告是帮助大家了解到生物电镜技术的最新进展,而晚上颇具特色的答疑解惑则是切实帮助大家解决掉很多长久以来的困扰,让大家期待而来,满意而归。最后,经研究决定,[b]下届大会将于2026年在云南举办。[/b]2026年,全国生命科学电镜领域的同行们将在云南再相聚![/color][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 2017第六届分子医学大会

    一、大会介绍2017第六届世界分子医学大会将于9月25-27日在西安举办。分子医学的核心任务是阐明人类疾病在分子、细胞和整体水平的生理、病理机制,并通过综合集成, 将有关成果转化为临床预测、诊断、干预和治疗的有效手段,增进人类健康。分子医学以“从分子到人”、多学科综合交叉、研究与应用并重为特色,是功能基因组时代生命科学发展的大趋势。本届分子医学大会是一次国际性的专业会议,对于推动分子医学在中国的发展必将起到积极的促进作用,也为中国生物医学基础研究、技术转化和临床医学研究融入全球化的努力提供了一个交流的平台。在此,我们诚挚地邀请相关领域各界人士参加此次盛会,期待与您相聚在西安!大会诚征参会者、参展商、赞助商、战略合作伙伴、媒体合作伙伴! 二、主要内容 分析医学基础研究新突破 标记物的创新研究 分子诊断:技术和应用 精准医疗 三、会议日程第一部分:分析医学基础研究新突破论坛1-1:利用基因组学和蛋白质组学方法发现疾病基因论坛1-2:细胞凋亡与细胞周期调控论坛1-3:信号转导和基因调控论坛1-4:数据分析和生物信息学论坛1-5:基因编辑 第二部分:标记物的创新研究论坛2-1:诊断标记物论坛2-2:预后生物标志物论坛2-3:生物标志物:临床开发与临床试验论坛2-4:生物标志物:检测与发现、验证与验证论坛2-5:药物研发中的生物标志物论坛2-6:生物免疫治疗论坛2-7:肿瘤标志物论坛2-8:神经系统的生物标志物论坛2-9:心脏生物标志物第三部分:分子诊断:技术和应用论坛3-1:先进的分子诊断技术论坛3-2:分子遗传学和基因组学论坛3-3:分子成像突破研究论坛3-4:生物芯片和微阵列技术论坛3-5:点护理诊断的进展第四部分:精准医疗论坛4-1:精准医疗论坛4-2:癌症免疫治疗论坛4-3:转化再生医学论坛4-4:纳米医学最新进展五、展览展示1、科学仪器区 分析测试仪器:光谱仪器、色谱仪器、质谱仪器、频谱仪器、波谱仪器、光学分析仪器、热分析仪器、表面分析仪器、元素分析仪器、成份分析仪器、过程分析仪器、图像分析仪器、射线分析仪器、气相色谱、液相色谱、显微镜、光学影像处理和其他通用分析仪器等。 通用实验室仪器:热量装置、反应装置、剂量称重系统、自动化装置、独立技术、实验室家具、实验室用品、实验室医疗设备、实验室数据系统、实验室图像分析及处理、实验室工艺及设备、输送设备与连接装置、清洁、烘干设备、超洁净环境工程设备等。 生化仪器、生命科学及微生物检测仪器、实验动物设施:多肽合成仪、氨基酸测试仪、DNA合成仪、诊断仪器、生物生化技术设备、生物培养箱、发酵罐、酶标仪、生物传感器、生物工程过程控制与生产工艺装备。 行业专用分析仪器与设备:电子光学仪器、生化仪器、生命科学及微生物检测仪器、生物反应器、实验动物设施。 2、生物技术和服务 分子诊断技术、基因工程、细胞工程、蛋白质工程、发酵工程、干细胞治疗、合成服务、CRO服务、动物模型、基因测序、GMP生产等。 3、试剂/消耗品区 通用试剂、仪器专用化学试剂、标准物质、实验室用化学品、电子试剂 、光化学试剂、生化和分子生物学试剂、医学/诊断/检验试剂、细胞/血清/培养基抗体、实验室消耗品。 4、生物医药产业园区 疫苗、抗体、诊断试剂、创新药物、基因药物、多肽药物、现代中药、生物医学工程、基因芯片、蛋白质芯片、分子诊断、临床测试、基因治疗、干细胞治疗、组织工程、多肽合成、海洋生物医药等方面的技术与产品等。 5、媒体展区 六、展位价格 展位 3M*3M标准展位(含1套餐饮票) 10000元起 (预定两个展位以上有优惠,详情请联系会务组) 特装展位净场地(18m2起租,含2套餐饮票) 700元/m2 七、参会注册1、网上报名:http://www.bitcongress.com/molmed2017/cntemp/2、电话报名与咨询:0

  • 【转帖】英国生物医学图片奖揭晓:苍蝇站在冰糖上

    【转帖】英国生物医学图片奖揭晓:苍蝇站在冰糖上

    [color=#DC143C][size=4][center]英国生物医学图片奖揭晓:苍蝇站在冰糖上[/center][/size][/color][center][img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803121636_81288_1622715_3.jpg[/img]获奖作品之一:站在冰糖上的苍蝇/拍摄者:麦卡锡和卡瓦纳[/center]据英国《卫报》报道,日前,备受关注的2008年维康基金(Wellcome Trust)图片奖已经出炉,获奖图片均是在具有突破性的科学研究过程中拍摄的,其中包括一只站在冰糖上的苍蝇、一个艾滋病病毒细胞内部结构以及一只蚕的气管。英国维康基金会是世界上最大的医学研究慈善机构,以人和动物的健康为研究方向。 以下就是2008年维康基金图片奖获奖图片。(杨孝文) 特别奖得主: [B] 1. 老鼠晶胚 [/B][center][img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803121637_81289_1622715_3.jpg[/img]老鼠晶胚/拍摄者:詹姆斯夏普[/center]借助于新的光学投影X线断层摄影技术,科学家无需进行切片便可对整个晶胚和小组织染色,揭示它们的内部结构。

  • 当转化医学邂逅生物质谱

    转化医学是一种崭新的生物医学\基础医学研究模式,是在人类基因组计划和作为其延续的HapMap计划基础上诞生的,而后期的各种组学研究则促使转化医学这一时髦概念吸引了科研发烧友和科技主管部门的挑剔眼球。总之,转化医学有助于解决长期以来基础研究投入过多、产出过少的困境。也在某种程度上改善了很多单位科技主管部门对于科研科室“华而不实”,对于单位实际效益没有实质意义的偏激态度。 转化医学的研究过程始于临床,生物样本库是关键,临床是核心。由临床提出科学问题,建立生物样本库并提供给基础研究者,通过基础研究的新方法、新手段回答问题,发现新的生物标志物或易感基因,反馈到临床进行验证,获得肯定后开发出新的诊断技术或干预靶点。转化医学研究团队应包括分子医学和细胞学研究者、动物实验者、临床医师、社区医师及公共卫生科学家等多学科成员,成员之间更好地互动对于转化医学的意义尤为重大。 转化医学的典型含义是将基础研究的成果转化成为实际患者提供的真正治疗手段,强调的是从实验室到病床旁的联接,这通常被称为“从实验台到病床旁”定义。从IVD中的POCT,到目前流行的干细胞治疗。无处不体现出基础医学/生命科学在临床医学舞台上扮演的越来越重要的角色。 对于广大科研分析工作者来说,与转化医学结合最为紧密的无非是多肽及生物标记物的定性定量,同时也需要考虑样品制备过程中痕量分析的问题,或者痕量分析过程中如何解决样品富集的问题。 而实际工作中临床医师也很在意测试结果的假阳性率,也很在意试验的高通量和高重现性,同时也需要面对样品的痕量分析要求,而所有问题的前提就是,方法学如何建立。对于生物质谱,我们更关注的其实就是:在一次进样分析时,可以使用简单的蛋白质组学方法对大量的蛋白质进行定量分析,而且每次运行时都能得到相同的结果。HOW TO DO IT?

  • 【资料】进行基因遗传因子生物技术和医学生物研究的仪器

    进行基因遗传因子生物技术和医学生物研究的仪器俄罗斯科学院西伯利亚分院细胞遗传研究所特性:已经研究完成和正在制造用于进行分子遗传、医学物理和生物技术的工作:用于死骨基因的、在丙稀酰胺的和凝胶拟琼的电离子透入法的、真空迁移断列体和其它箱、室(请阅仪器的清单表)。目前正和瑞士Guest Elchrom Scientific公司有关电离子透入法设备的制造进行合作。这些仪器在工作中使用方便和简单,它们不低于类似Bio-Rad(美国)和LKB(瑞典)国外公司制造生产的模拟装置。设备是由可得到的材料(基本上是由有机玻璃)制造的并在价格上便宜50%。目前大部分仪器已准备成系列生产。已与科学委员会有关人的基因”签订了供应仪器设备的协议书。俄罗斯科学院和俄罗斯医学科学院大学已向我们订了货,同样瑞士Guest Elchrom Scientific公司也已向我们订了货。仪器明细表:1.用于在琼质凝胶中、10/20个样品的电离子投入法的小屋;2.用于在淀粉中的电离子投入法的小屋;3.用于在丙稀酰胺中的电离子投入法的小屋;4.电迁移室;5.逻辑运算室;6.48~96间隔的窗口室;7.真空迁移室;8.电动洗提器;9.装50 ml试管的离心杯;10.装10、25和50 ml的梯度器;11.用于10~15~22样品的聚四氟乙烯清除梳刀;12.用于清洗滤清器的漏斗;14.装吸移管的旋转式支架;13.磁混合器用的整套磁铁;15.在无菌操作室工作室用的滴液管支架把手;16.电极把手—“第三个手”;17.逻辑运算用的П型玻璃;18.夹玻璃用的紧定器;19.带冷却的在淀粉凝胶中(很小的)用于电离子透入法的小屋;20.用于SEA2000电离子透入法的小屋;21.用于玻璃滴液管的消毒器;22.切淀粉用的小桌;23.灌凝胶用的带有水准的小桌;24.用于染色、冲洗和察看УФ琼质凝胶的小槽。实际实施的情况:样品(24件样品的名称已列出明晰表)正在进行鉴定并在莫斯科、圣• 彼得堡、伊尔库茨克、符拉迪沃斯托科(海渗威)、克拉斯诺亚尔斯克、新西伯里亚、乌克兰、哈萨克斯坦医学和医学生物专业大学研究所中使用。专利的保护:没有。合作意向:提供产品;寻找投资者。单位名称:俄罗斯科学院西伯利亚分院细胞遗传研究所;单位地址:630090俄罗斯新西伯利亚州新西伯利亚市拉夫琳捷夫大街10号;单位电话:007 (3832) 33-35-26;单位传真:007 (3832) 33-12-78;单位电子信箱:E-mail: icg-adm@bionet.nsc.ru 单位网站:http://www.bionet.nsc.ru/。

  • 《现代生物医学进展》杂志介绍及投稿指南

    《现代生物医学进展》杂志介绍及投稿指南欢迎大家投稿到《现代生物医学进展》,我刊是一个以生物医学为主的综合性期刊。《现代生物医学进展》是国家科技部中国科技论文统计源期刊,中国科技核心期刊。国内统一刊号: CN 23-1544/R 国际标准刊号:ISSN 1671-2285 月刊 邮发代号:14-12 定价:9元/期 本刊网址: http://swcx.chinajournal.net.cn http://swcx.periodicals.net.cn本刊原刊名为《生物磁学》,(详见科技部信息所网站:http://cstpcd.istic.ac.cn),据科技部信息所2005年版的中国科技期刊引证报告,本刊影响因子0.734,在本学科(生物学)排名列第9位,在1608种统计源核心期刊总排名列第169位.刊名变更是本刊的自然过渡,已经国家新闻出版总署新出报刊[2006]4号批准。本刊已经经国务院新闻办、国家新闻出版总署审核备案,已被科技部中国科技论文与引文数据库(CSTPCD)、中国科技文献数据库(CSTDB)、中国期刊全文数据库(CJFD)、中国学术期刊综合评价数据库、《中国期刊网》、《中国学术期刊》(光盘版)、科技部中文科技期刊数据库,《中国生物学文摘》,中国生物学文献数据库,中国生物医学文献数据库(CBM disc)、中文生物医学期刊文献数据库(CMCC)等权威数据库收录。《现代生物医学进展》办刊宗旨:生物医学是本世纪生命科学的研究热点和前沿,可以说生物医学发展代表着一个时期生命科学发展的主流和方向,起着带动性和变革性的重大作用,并对人类社会发展和科学本身产生革命性影响。当前,生物医学的发展异常迅猛,不断出现新的研究领域,而且有的正处于取得重大突破的边缘。我们变更刊名的目的和任务就是顺应生物医学发展的形势需要,更好的适应新的历史时期生物医学领域面临的机遇和挑战,及时报道国内外具有前瞻性、创新性和有较高学术水平的生物医学进展(包括基础实验研究和临床实践应用)的原著,以此来传播现代生物医学的新理论,新方法和前沿领域的科研成果,反映生物医学的学术水平与发展动向,有效地促进生物医学领域的学术交流,提高国内生物医学的研究水平,引导研究人员的科研活动与研究方向,推动生物医学的进步,为广大科研人员提供一个发表、交流的平台,为冲刺世界一流杂志打好基础。读者对象:承担生物医学领域国家“863”计划、攻关计划、国家自然科学基金项目的课题负责人和研究人员,大专院校生物系教师、研究生、高年级本科生,国家和省部级重点实验室与生物技术研究开发机构的科研人员,医疗卫生单位医务人员,制药、化工、轻工食品、农业、环境、海洋等相关领域的企业管理人员与专业技术开发人员,与生命科学相关的仪器试剂生产经营者,生物技术管理部门和相关学术团体的领导和专家、生物医学技术投资与金融研究专家以及其他相关人士等。栏目设置:本刊除一些常规栏目固定外,其他栏目均不固定,栏目的安排完全按照当期收录的优秀论文进行科学的设置,固定栏目如下:1.述评:对当前研究的新动向、新趋势进行前瞻性评论;对当前研究热点、焦点问题进行导向性的分析和探讨;对传统或新流行的治疗方法及研究进行权威性综论和概括;对有争议的论题及论点进行争鸣或商榷等。要求述评具有权威性。2. 研究快报:具有“高、尖、新”的创新性科研成果。实行速审快发,承诺在一个月内发表,确保第一时间发布最新研究成果。3.基础研究:为生物医学基础理论研究与实验研究的成果,要求具有先进性。报道有重要学术价值、数据完善、有原始性和创造性的科研成果4.临床研究:具有推广和实用价值的临床研究及经验总结,中西医结合研究,预防和康复研究等,侧重实用性。5.专论与综述:深入评介生物医学领域研究的最新进展。要求选题重要新颖、评述精辟、注重时效性,作者应在所评介领域具有较深厚的造诣,并结合所从事的研究工作进行撰稿。或对当前某一研究专题进行全面的、客观的、有见解的精辟论述,对一些新理论和新观点进行系统的、条理化的、深入浅出的阐述,力求选题新颖、实用。6技术与方法:报道对生物医学领域某一研究方法或某项实验技术的重要改进,或对国际上重大前沿技术作最新介绍.,在基础研究或临床研究中总结出来的新技术、方法以及新发明的技术专利等。7.研究简报:抢先发表的科研新发现,以简报形式发表。要求有客观证据以及相关证明材料,力求简短精辟。8.生物磁学:变更刊名后,本刊将保留生物磁学的主要栏目,刊载与生命科学相关的生物磁学领域研究论文与科研成果。9.编读往来:对本刊已发表的文章进行追踪,提出读者的不同结果或看法;对编辑工作提出建议及意见等。订阅方式:本刊每期定价9元,今年本刊全年10期(今年因刊名变更的时间因素)订费90元,全国各地邮局均可订阅,邮发代号:14-12,国际标准大开本,月刊,96页。也可在本刊编辑部直接订阅(免收邮寄费),汇款时请详细写明订阅单位(发票抬头)、收件地址、邮政编码、收件人姓名、电话、传真、电子信箱、汇款金额与汇款日期等,收款后即寄出正式发票。汇款地址:黑龙江省哈尔滨市54号信箱《现代生物医学进展》编辑部(150001)联系电话:0451-53658268,传真:0451-53671582,电子信箱:liudhui_21@126.com,biomagnetis@163.com。征稿范围:凡是和生物医学有关或者是生物科学最新研究领域的论文均可投稿,因为我们旨在办一个以生物医学为主的综合性生命科学杂志。我们会在最短时间内对来稿作出录用与否的答复,欢迎从事自然科学领域的各个专业科研人员、研究生踊跃投稿,我们将为广大的研究人员提供相对较高的稿酬。同时本刊为了鼓励新思想、新思路的产生和促进创新性思维,为中国科技进步作贡献,对一些优秀的本科生论文也会酌情予以刊载,对特别优秀的本科生论文的版面费可以予以优惠或减免,也欢迎广大的本科生踊跃投稿。本刊“快通道”承诺下列稿件可优先发表★首席科学家项目课题;★国家及省部级各项基金资助项目;★国家及省部级重点科研课题;★国家及省部级重点科研项目中心及实验室课题;★国家及省部级专利技术项目;★博士后流动站课题,博士、硕士优秀答辨论文;上述项目中与生物医学相关的研究原著及专论与综述,尤其是多个项目、多单位联合协用联合资助的稿件,需要领先在国际、国内发表时,本刊承诺收到稿件后2个工作日内与您联系。本刊网址:http://swcx.periodicals.net.cn http://swcx.chinajoumal.net.cn联系方式:E-mail:liudhui_21@126.com, biomagnetis@163.comTel:+86-0451-53658268,刘冬晖。也可直接发到本刊中南区通联部编委处进行预审:E-mail:whitewolf1101@gmail.com,whitewolf1101@qq.com

  • 请问有人了解生物医学工程这个专业吗?

    (1)生物医学工程这个专业毕业后主要能从事什么职业?在国内发展比较好的医疗器械公司和事业单位有哪些?我已经知道生物医学工程本科毕业后一般去向主要有以下:医院设备科医疗仪器公司销售/售后、培训、安装工程师(2)研究生毕业和本科生毕业选择的职位种类差别大吗?(3)生物医学工程有好几个方向,从开始时间来说,哪几个方向是开展比较早的?谢谢各位的回答。

  • 医学SCI论文的实验材料与方法写作问题

    医学SCI论文的实验材料与方法写作问题  在SCI论文的写作中实验的研究贯穿着整篇SCI论文,是整篇SCI论文的主心骨,因此在SCI论文的写作中,对实验的探究便成了SCI论文的侧重点。  在进行实验探究时,对于材料与实验方法的写作必然要体现出此次实验工作的科学性和在科研工作中的可行性的重点。因此在对SCI论文的审核中对实验过程的重复操作是必不可少的,而对SCI论文材料与方法的写作便是为了便于审核和读者的重复操作。因而我们在进行材料与方法的如何才能让读者清晰明了的了解实验过程?这就是这篇文章的意义所在。  关于材料与方法的基本内容描述与重点写作:  对于实验所用材料要清楚,心里要有一个清单,能对材料的结构、成份或重要特性、设备的功能做一个概述。  所有的物品清单中能清楚指出实验对象的数量、来源、准备方法。如果采用具商标名的仪器、化学试剂或药品时, 还应包括对仪器进行精确的技术说明, 并列出试剂或药品的主要化学和物理性质; 有些甚至要求仪器和样品制造商的名称及所在地。  对于材料的命名要使用国际同行所熟悉的通用名, 尽量避免使用只有作者的本国同行才知道的专门名称。然而, 如果已知有不同特性的产品, 并且相互间的有重要差别, 如特定的微生物媒介, 就需要使用商标和制造商的名称(商标名的首字母应大写, 如:Teflon), 以示与通用名的区别, 并将通用的描述紧接在商标名之后,  实验用的动物、植物和微组织应准确地标识出(通常按属、种和世系名列出), 并说明其来源和特殊性质(年龄、性别、遗传学和生理学状态)、抽样的要求或标准等.  当需要描述多种微生物种属或化合物的来源和特性时, 可采用列表的形式; 否则, 在正文、表注或图注中简单描述即可.  如果研究对象是人(志愿者或病人), 则应特别注意拟投稿期刊的具体要求, 应交代研究对象的选择标准, 并根据情况兼顾一般性的重要统计特征(年龄、性别和身体状况), 以及其他与SCI论文主题相关的统计信息(如体重、身高、种族等).  关于实验方法的描述应处理妥帖、突出重点:  实验方法的描述主要是以研究步骤的时间顺序为准, 其内容包括: 实验环境或条件(如温度、电压、辐射、特殊的光线等); 研究对象选择的方法; 选用特定材料、设备或方法的理由; 实验程序; 所应用的统计分析方法; 等等. 如果没有时间顺序, 就按重要性程度描述实验步骤.  在描述中给足细节信息以便同行的重复实验,但是相关结果或发现的内容切不可透出。如有必要, 还应完整描述你选用某种特定方法的理由。如是新启用的方法,还未发表,还需附了必需的所有细节;而方法已发表公开,则引用文献即可。如此方法进行了新的或实质性的改进,就要清楚地说明改进的理由。  一般在SCI论文中对数据统计分析方法作详尽解释就说明作者是新近设计或获得该方法, 并且作者相信读者需要这种解释; 普通的统计方法无需多做解释;先进或不常见的统计方法则适当引用文献。  方法描述的内容过多可按层次使用子标题, 并尽可能创建与结论中内容相“对应”的子标题, 这种写法可保持文章内部的一致唿应, 并且读者也可很快了解某特定方法和与其相关的结果。  拟期刊投稿的“作者须知”,先了解其对“材料与方法”的具体要求:  这是个十分必要的举措。例如, 有些在期刊的“作者须知”中要求作者提供研究对象(志愿者或病人) “授权同意”的声明和作者所在单位的同意函, 投稿时如果缺少这方面的材料, 稿件将不被受理。  对于SCI论文的语法表述的问题作者在这里不做复述了。主要要注意的就是表达清晰简洁且符合逻辑。写作能力不强的可找专业的SCI论文服务公司进行语言润色。本文源自:莱博医学

  • 【求购】紧急求购低温电镜技术在生物医学应用的教科书

    请提供书名及购买地址,此书详细讲述低温电镜技术在生物医学应用的教科书,包括样品制备技术,试验操作技术, 设备维修和维护技术。以下是参考书单,不知哪本合适。1.《生物显微镜原理与维修 》--------[罗必胜编著. ] [1997 ] 2.《生物医学电子显微镜技术 》--------[程时,彭学敏主编. ] [1997 ] 3.《生物电子显微镜观察与分析 》--------[陈柏林主编. ] [1997 ] (点击:210次) 4.《生物电子显微镜实验技术 》--------[曹汉民编著. ] [] (点击:61次) 5.《生物医学超微结构与电子显微镜技术 》--------[洪涛主编. ] [1980 ] (点击:49次) 6.《电子显微镜生物标本制备技术 》--------[黄立编. ] [1982 ] (点击:136次) 7.《生物学中的电子显微镜技术 》--------[朱丽霞等编著. ] [1983 ] (点击:57次) 7.《医学生物学电子显微镜图谱 》--------[中国医学科学院主编. ] [1978 ] (点击:59次)很感谢

  • 医学SCI论文的实验材料与方法写作问题

    医学SCI论文的实验材料与方法写作问题  在SCI论文的写作中实验的研究贯穿着整篇SCI论文,是整篇SCI论文的主心骨,因此在SCI论文的写作中,对实验的探究便成了SCI论文的侧重点。  在进行实验探究时,对于材料与实验方法的写作必然要体现出此次实验工作的科学性和在科研工作中的可行性的重点。因此在对SCI论文的审核中对实验过程的重复操作是必不可少的,而对SCI论文材料与方法的写作便是为了便于审核和读者的重复操作。因而我们在进行材料与方法的如何才能让读者清晰明了的了解实验过程?这就是这篇文章的意义所在。  关于材料与方法的基本内容描述与重点写作:  对于实验所用材料要清楚,心里要有一个清单,能对材料的结构、成份或重要特性、设备的功能做一个概述。  所有的物品清单中能清楚指出实验对象的数量、来源、准备方法。如果采用具商标名的仪器、化学试剂或药品时, 还应包括对仪器进行精确的技术说明, 并列出试剂或药品的主要化学和物理性质; 有些甚至要求仪器和样品制造商的名称及所在地。  对于材料的命名要使用国际同行所熟悉的通用名, 尽量避免使用只有作者的本国同行才知道的专门名称。然而, 如果已知有不同特性的产品, 并且相互间的有重要差别, 如特定的微生物媒介, 就需要使用商标和制造商的名称(商标名的首字母应大写, 如:Teflon), 以示与通用名的区别, 并将通用的描述紧接在商标名之后,  实验用的动物、植物和微组织应准确地标识出(通常按属、种和世系名列出), 并说明其来源和特殊性质(年龄、性别、遗传学和生理学状态)、抽样的要求或标准等.  当需要描述多种微生物种属或化合物的来源和特性时, 可采用列表的形式; 否则, 在正文、表注或图注中简单描述即可.  如果研究对象是人(志愿者或病人), 则应特别注意拟投稿期刊的具体要求, 应交代研究对象的选择标准, 并根据情况兼顾一般性的重要统计特征(年龄、性别和身体状况), 以及其他与SCI论文主题相关的统计信息(如体重、身高、种族等).  关于实验方法的描述应处理妥帖、突出重点:  实验方法的描述主要是以研究步骤的时间顺序为准, 其内容包括: 实验环境或条件(如温度、电压、辐射、特殊的光线等); 研究对象选择的方法; 选用特定材料、设备或方法的理由; 实验程序; 所应用的统计分析方法; 等等. 如果没有时间顺序, 就按重要性程度描述实验步骤.  在描述中给足细节信息以便同行的重复实验,但是相关结果或发现的内容切不可透出。如有必要, 还应完整描述你选用某种特定方法的理由。如是新启用的方法,还未发表,还需附了必需的所有细节;而方法已发表公开,则引用文献即可。如此方法进行了新的或实质性的改进,就要清楚地说明改进的理由。  一般在SCI论文中对数据统计分析方法作详尽解释就说明作者是新近设计或获得该方法, 并且作者相信读者需要这种解释; 普通的统计方法无需多做解释;先进或不常见的统计方法则适当引用文献。  方法描述的内容过多可按层次使用子标题, 并尽可能创建与结论中内容相“对应”的子标题, 这种写法可保持文章内部的一致唿应, 并且读者也可很快了解某特定方法和与其相关的结果。  拟期刊投稿的“作者须知”,先了解其对“材料与方法”的具体要求:  这是个十分必要的举措。例如, 有些在期刊的“作者须知”中要求作者提供研究对象(志愿者或病人) “授权同意”的声明和作者所在单位的同意函, 投稿时如果缺少这方面的材料, 稿件将不被受理。  对于SCI论文的语法表述的问题作者在这里不做复述了。主要要注意的就是表达清晰简洁且符合逻辑。写作能力不强的可找专业的SCI论文服务公司进行语言润色。本文源自:莱博医学

  • 【分享】生物芯片之电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

  • 【资料】医学微生物学常用英语词汇

    医学微生物学常用英语词汇[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=129095]医学微生物学常用英语词汇[/url]

  • 碳纳米管的若干生物医学应用

    过去人们一直关注碳纳米管,特别是其电学和力学特性以及在未来半导体工业中的应用前景。但是,碳纳米管还有另一种诱人的应用没有被人们广泛的认识——这就是碳纳米管的生物医学应用。在生物上的应用,在于碳纳米管是碳材料所以碳纳米管具有生物亲和性,从而和人体的组织器官形成友好的界面。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=23727]碳纳米管的若干生物医学应用[/url]

  • 【转帖】缘何诺贝尔化学奖钟爱生物医学方面的成果??

    再过一个月, 即十月4日,今年(2010年)的诺贝尔奖将陆续揭晓(生理与医学奖将率先揭晓),每年这个时候,国内的媒体又免不了一年一度的讨论:什么时候有来自中国大陆的科学家实现这一国际科技界顶级奖项零的突破?这一话题,已经被讨论了N年,今天谈个新的话题:即题目中所示的:缘何诺贝尔化学奖钟爱生物医学方面的成果?我说这是一个新的话题是由于我从来没有看到过有关报道和讨论(恕俺孤陋寡闻)。我关心这一个话题的另一个原因就是我是学化学出身的,但是现在从事的工作却是属于生物医学领域的。我们先来诺贝尔化学奖是否果真钟爱生物医学方面的成果,先用事实说话:下面是自2000年近十年来,诺贝尔化学奖的获奖人和获奖原因或者说主要贡献。2009, Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonathfor studies of the structure and function of the ribosome"2008, Osamu Shimomura, Martin Chalfie, Roger Y. Tsienfor the discovery and development of the green fluorescent protein, GFP2007, Gerhard Ertlfor his studies of chemical processes on solid surfaces"2006, Roger D. Kornbergfor his studies of the molecular basis of eukaryotic transcription2005, Yves Chauvin, Robert H. Grubbs, Richard R. Schrockfor the development of the metathesis method in organic synthesis2004, Aaron Ciechanover, Avram Hershko, Irwin Rosefor the discovery of ubiquitin-mediated protein degradation2003, Peter Agre, Roderick MacKinnonfor structural and mechanistic studies of ion channels2002, John B. Fenn, Koichi Tanaka, Kurt Wüthrichfor his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution2001, William S. Knowles, Ryoji Noyori, K. Barry Sharplessfor his work on chirally catalysed oxidation reactions2000, Alan J. Heeger, Alan G. MacDiarmid, Hideki Shirakawafor the discovery and development of conductive polymers红色标注部分就是生物医学方面(至少不是经典意义上的化学)的成果,一共占了十项中的6项,超过了一半,其中200年的奖项是关于NMR(核磁共振)的,说是化学还说的过去,但是,在此之前,Rabi已经与1944年由于开创性的提出NMR的概念、理论而获诺贝尔物理奖,2年之后,, Felix Bloch和Edward Mills Purcell 于1946年将NMR首次应用于液体和固体,两人分享了1952的诺贝尔物理奖。近40年后,Richard Ernst又由于发展了傅里叶变换NMR(FT NMR)而获1991年的诺贝尔化学奖,11年后,即2002年John B. Fenn, Koichi Tanaka和Kurt Wüthrich三人共享了2002年诺贝尔化学奖。所以NMR可能是世界上颁发诺贝尔奖最多的一个领域,以后NMR在医学中的应用,即核磁共振成像也可能有诺贝尔奖获得。2002的NMR的诺贝尔化学奖主要是:,正如诺贝尔化学奖提名委员会所述:"development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution",也就是发展了用NMR测定生物大分子(尤其是蛋白质)的三维空间结构,这其实应该算是生物物理的范畴。另外上述几项奖项,至少有两项是属于结构生物学方面,即2009和2003年有关核糖体和离子通道(都很难解的结构)的三维空间结构,另外华裔钱永健(Roger Y. Tsien)共享的2008年的化学奖(关于绿色荧光蛋白GFP),也和结构生物学有些关系,钱永健在GFP的结构解析和一系列的各种功能的突变体的构建方面有很多原创性的工作。值得一提的是这位华裔钱永健(顺便说一下,去年底,他曾来我所在的学校,本打算去追星,可惜错过 ),正如我在博文中(http://www.dxyer.cn/loveinmichigan/article/i74635.htm)提到的,其发表的有关GFP的论文引用次数最高的是1998年发在ANNUAL REVIEW OF BIOCHEMISTRY 的一篇综述,迄今已被引用2202次,关于GFP的他的引用次数最高的原创论文是1997年发在Nature上的一篇论文,迄今已被引用1198次,但是他的引用次数比这两篇文章高的多的文章确实有关1985年发在JBC上的一篇有关钙离子指示剂的原创(article)论文,引用次数高达:18,068! 很抱歉,上面有点跑题,重回正题:缘何诺贝尔化学奖钟爱生物医学方面的成果?我觉得原因时多面的:1)经典化学的发展速度没有生物医学的发展快;2)化学领域的支持强度远没有生物医学大,光美国NIH一年就要散出去300亿美元的银子用于生物医学研究,这一数字超过了所有其它科学领域受资助的总和; 3)……. 但是我个人觉得另外一个原因很可能是和诺贝尔化学奖提名委员会委员的研究领域有关。下面是诺贝尔化学奖提名委员会委员的名单和各自的研究领域Nobel Committee for Chemistry 2010Lars Thelander (Chairman)Professor Emeritus in Physiological ChemistryAstrid Gräslund (Member, Secretary)Professor of BiophysicsJan-Erling Bäckvall (Member)Professor of Organic ChemistryMåns Ehrenberg (Member)Professor of Molecular BiologySven Lidin (Member) Professor of Inorganic Chemistry 其中的Lars Thelander是主席,是瑞典一知名大学的一退休教授,我在瑞典做博士后时,由于是同一个系,又在同一个楼层,所以经常看到他,该教授虽然从未获得过诺贝尔奖,但他本人的学术水平绝对是一流的,我2001年刚到瑞典不久,系里就开了个party,是专门为庆贺他发了篇Cell (发CNS在国外也很不容易)。他那时就是诺贝尔化学奖评委,上面虽然说他是生理化学教授,但是他的研究方向和经典化学相去甚远,实际上,我们当时所在的系的名字为:Medical Biochemistry and Biophysics. 其余四位评委,只有两位是真正搞化学(一有机、一无机),事实上上述评委的研究领域和近十年来的诺贝尔化学奖的获奖者的研究方向还是大致一致的,我觉得这不应该是偶然的巧合。这样的评奖委员会偏爱生物医学方面的成果,是非常令人理解的,我们不难推测,Lars Thelander教授还继续任主席,今年和今后的今年,这种趋势还会继续下去,1个月后10月6日,让我们拭目以待今年的诺贝尔化学奖花落谁家。另外,顺便说一下,瑞典本国尽管历史上也有不少人获得过诺贝尔奖(如下所示),但是1982年就一直没有来自瑞典本国的获奖者,这可能一定程度上反映了近几十年来瑞典本国的经济、科技等方面的相对衰落。• Physicso 1912 Gustav Dalen o 1924 Manne Siegbahn o 1970 Hannes Alfven (shared) o 1981 Kai Siegbahn (shared) • Chemistryo 1903 Svante Arrhenius o 1926 The Svedberg o 1929 Hans von Euler-Chelpin (

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 【文献进展】纳米技术在生物医学中的应用

    摘 要 纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。  关键词 纳米技术;纳米生物学;DNA纳米技术  20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100 nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术[1]。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。  1 纳米生物学的研究对象  有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1 nm~100 nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。

  • 《时代》杂志评出2012年十大生物、医学突破

    美国《时代》杂志评选的各领域年度“十大”排名已于近日陆续出炉,医学领域“十大”突破也深入人心。涵盖了生命基础研究、艾滋病与癌症治疗突破、干细胞与再生医学、青少年健康等多方面公众关心的热点。1.“垃圾DNA”才是掌控者http://img.dxycdn.com/cms/upload/userfiles/image/2012/12/06/481231273_small.jpg“垃圾DNA”有大作用人体基因组中98%是没有编码的基因,以往它们被当作无用的“垃圾”。如今,人们发现这些被忽视的“垃圾”更有大用处。事实上,它们才是真正地基因掌控者和新陈代谢开关!它们调节着基因何时以何种方式发挥作用,怎样高效生产出不同的蛋白质。没有它们,基因就像是一堆连不成句子的杂乱单词。科学家正在探索这一新发现的生物信息宝库,以期找到能控制、甚至治愈某些疾病的基因开关。2.人体微生物有"大作为"http://img.dxycdn.com/cms/upload/userfiles/image/2012/12/06/318169875_small.jpg体内微生物作用机理人体中最多的成分是什么?细胞?基因?都不对,是微生物!它们的数量与人体细胞的比例达到10∶1。最近,研究人员刚刚完成了"人体微生组计划"的第一阶段,该计划旨在最广泛地了解人体内微生物的种类和作用。大部分微生物是人类的朋友,比如帮人们消化食物,或增强免疫系统功能。但是随着研究深入,科学家发现体内微生物在许多慢性疾病和症状中,如炎症、肥胖等也起了关键作用。它们非但不是令人讨厌的闯入者,甚至还能帮我们攻克某些最难解决的健康难题。3.抗HIV药“包揽全程”http://img.dxycdn.com/cms/upload/userfiles/image/2012/12/06/959343596_small.jpg新型艾滋病药物“特鲁瓦达”(Truvada)已经成为抗艾滋病(HIV)的强大武器,它结合了两种抗病毒药物。而现在,它进一步成为第一款预防健康人群感染HIV的药物。经过基础性实验显示,未感染的人使用该药能降低其感染HIV的风险。美国食品与药品管理局(FDA)扩大了Truvada的许可范围,可能感染HIV的高风险人群也能使用该药。研究显示,高风险的男同性恋者及其HIV阳性伴侣,使用该药物后感染风险降低了42%到75%。不过也有人担心,该药可能会导致无保护性行为等高风险行为增加,公共卫生专家则欢迎这种抗艾滋病的新方式——从第一步开始预防感染发生。4.身体部分“实验室制造”http://img.dxycdn.com/cms/upload/userfiles/image/2012/12/06/765017846_small.jpg实验室生成人体组织气管和肾脏或肝脏不同,并不属于常规的移植器官之列。但通过干细胞技术,也能给需要的病人培养出自己的气管。卡罗林斯卡研究院就用合成微纤维和从病人骨髓采集的干细胞,制作了一幅人造气管,并成功地连接了病人的鼻子、口腔和肺部,病人的气管因癌症而破坏。在首次病例中,一位死者捐献了气管,为一位西班牙妇女的干细胞提供了生长支架。而在最新进展中,科学家用生物医学基质来培养细胞。这项技术代表了再生医学的未来,在此所有类型的干细胞,包括来自病人自己的皮肤细胞,都能作为生长任意类型细胞或组织的基础,供病人替换或修复。

  • 【讨论】稳定同位素δ13C在生物医学研究中的应用

    稳定同位素δ13C因其具有安全、无损伤和非侵害性等特点己被广泛应用于生物医学等研究领域。尤其是应用不同的δ13C标记物所进行的呼气试验,更是在生物学、临床医学的诊断与研究中发挥了重要作用,应用前景广阔。热忱欢迎广大版友对此相关问题展开积极讨论![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=141293]稳定同位素δ13C在生物医学研究中的应用[/url]

  • 【原创】胆固醇媒介体电子传递

    以下是胆固醇生物传感器的反应过程,其应用的applied potential 是一负电压(-0.4V)。我的问题是,该反应的后两步的电子是如何在一三电极体系中传递的? 同时血糖检测采用加入Ferricyanide [Fe(CN) 6]3- ,是不是刚好相反,采用的是正电势。该原理到底是怎么进行的? 不甚感谢!A. Cholesterol ester + Cholesterol Esterase→ Cholesterol + fatty acid B. Cholesterol + O2 + Cholesterol Oxidase → Cholest-4-en-3-one + H2O2 C. Ferrocyanide 2[Fe(CN)6]4 - + H2O2 + 2H+ + HRP→ Ferricyanide 2[Fe(CN) 6 ]3- + 2H2O D. Ferricyanide [Fe(CN) 6]3- + e- + applied potential→ Ferrocyanide [Fe(CN)6]4-

  • 大学高校医学院生物实验室污水处理设备介绍

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407010943348102_4160_5604214_3.jpg!w690x690.jpg[/img]  大学高校医学院生物实验室在日常的教学和科研工作中,会产生大量的污水,这些污水可能包含有害的微生物、化学物质、药物残留等。为了保护环境,防止污染,必须使用高效的污水处理设备对这些污水进行处理。  现在,让我们更深入地探讨这些污水处理设备的核心组件和技术。  首先,预处理系统是污水处理设备的重要组成部分。它主要负责去除污水中的大颗粒杂质,如实验器材碎片、纸屑等,防止这些杂质对后续处理设备造成损害。预处理系统通常包括格栅、沉砂池等设备。  接下来是生物处理系统,这是污水处理设备的核心部分。它利用微生物的代谢作用,将污水中的有机物质转化为无害物质。生物处理系统可以采用活性污泥法、生物膜法等多种技术,具体选择哪种技术取决于污水的性质和处理要求。  然后是深度处理系统,它主要负责去除生物处理系统未能完全去除的污染物,如色度、浊度、重金属离子等。深度处理系统通常采用物理法、化学法或物理化学法等技术,如混凝沉淀、活性炭吸附、离子交换等。  最后,是消毒系统。由于医学院生物实验室的污水中可能含有各种病原微生物,因此必须对处理后的污水进行消毒处理,以防止其对环境造成污染。消毒系统通常采用物理法或化学法,如紫外线消毒、氯消毒等。  总的来说,大学高校医学院生物实验室的污水处理设备是一个复杂的系统,它必须能够有效地去除污水中的各种污染物,保护环境和人类健康。

  • 【分享】中国土壤重金属污染严重 土壤环境立法迫在眉睫

    这期报道是中国重金属污染调查系列报道的延续,我们选择关注邻国的经验。上世纪六七十年代,日本经济快速增长,各地环境污染事件不断,其中被称为四大公害的环境病症,就有三起和重金属污染有关。  除了南都记者特赴日本带来的报道,我们还关注了中国本土的土壤污染修复案例。中国正在经历和日本上个世纪同样迅速的经济增长期,污染也在同步增长,新世纪以来,和重金属有关的环境事件愈见频繁。而中国的土壤污染治理也在不断摸索的过程当中。记者从环保部了解到,全国的土壤污染调查已经完成,重金属治理的规划(2010-2015)修编也已上报国务院并于近期公布。土壤的环境立法已经迫在眉睫,我们采访了两位参与立法研究的专家,他们的急迫背后是严峻的现实。  不管是空气中的铅,还是污水里的镉、砷,在逐渐沉淀之后,最后的归属都是土地。科学研究表明,水稻的根系生长于25厘米之上的土壤表层中,而这一层也正好是重金属最富集的所在。  公害病患者相继离世,河流逐渐自我净化,土壤的污染却不会自动解除,即使过千百万年,它仍然稳定地存在,这正是重金属污染的特殊之处。我们可以看到,即使是不乏技术和财力的日本,修复土壤的任务仍未完成。而对于中国,它在未来又会成为怎样困难的一个任务呢?  ■第二页·日本的教训 世纪之“痛”   ■第三页·日本的教训 庶民抗争  ■第四页·中国探索·寻找土地的解药  ■第五页·访谈·土壤污染立法迫在眉睫

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制