当前位置: 仪器信息网 > 行业主题 > >

医学分子影像

仪器信息网医学分子影像专题为您整合医学分子影像相关的最新文章,在医学分子影像专题,您不仅可以免费浏览医学分子影像的资讯, 同时您还可以浏览医学分子影像的相关资料、解决方案,参与社区医学分子影像话题讨论。

医学分子影像相关的资讯

  • 山东省医学影像研究会分子影像学分会在潍成立
    山东新闻网12月31日潍坊讯(记者王晓莉 通讯员田玉胜)山东省医学影像研究会分子影像学分会和山东省医学会放射学分会分子影像学学组成立大会暨潍坊市放射学会2008年年会于2008年12月27日至28日在潍坊召开。会议由潍坊医学院医学影像学系和潍坊医学院附属医院(影像中心)主办。潍坊医学院副院长王滨教授当选山东省医学影像研究会分子影像学分会主任委员(组长)。   全省各医疗和科研单位代表近200名代表出席会议。中华医学会放射学会前主任委员、天津医科大学第一中心医院副院长祁吉教授,全国高等医学影像教育研究会副理事长、黑龙江省医学影像学会主任委员、哈尔滨医科大学第四医院院长申宝忠教授,山东省医学影像学研究会理事长、山东省医学影像研究所副所长赵斌教授,山东省中西医结合学会影像学专业委员会主任委员、山东大学齐鲁医院马祥兴教授等专家到会祝贺并做学术报告。潍坊市卫生局张本水调研员到会祝贺。   会上祁吉教授、申宝忠教授分别作了《中国放射学发展现状及展望》、《分子影像学概论》的专题报告,潍坊医学院6位中青年专家及有关代表分别做学术报告,针对分子影像学的发展等进行热烈讨论。   据了解,分子影像学作为一门在基因组学、蛋白质组学和常规医学影像技术的基础上发展起来的新兴学科,其突出特点是采用影像学技术实现活体显示、可测量生化过程、明确病变性质与发展、及药效评估等,从而在临床上达到早期、更早期、及疾病前期的诊断治疗,干预阻断,评估疗效,预后估计等。因此分子影像学在临床医学、应用生物学及相关领域有重大应用前景。在我国尚未有成形的分子影像学学会组织的背景下,我省的分子影像学同仁在王滨教授的倡导下,率先成立山东省分子影像学学会组织。这对我省和全国的分子影像学发展和进步具有里程碑意义,同时标志着我省和潍坊医学院在分子影像学研究已到达国内领先水平,潍坊医学院分子影像学研究在此平台上将会有更大的突破和进展。
  • 昊诺斯关于RTCA技术的讲座在北京大学分子医学研究所成功举办
    昊诺斯关于RTCA技术的讲座在北京大学分子医学研究所成功举办本周三下午4点,昊诺斯在北京大学分子医学研究所举办了题为“RTCA 实时无标记细胞分析技术在细胞生物学研究中的应用”讲座,讲座邀请到了艾森生物技术公司燕博士,给大家做了专业、详细的讲述。听讲座的学生们都非常认真,并且在讲座过程中还跟燕博士进行了互动,讲座结束后有几位学生还专门就实验中遇到的问题跟燕博士进行了交流。说道RTCA 实时无标记细胞分析技术就不得不提一下xCELLigence RTCA S16实时细胞分析仪,它可以实时对细胞状态进行监控,实时了解细胞是否被污染,有以下亮点:● 细胞实时分析● 紧凑型设计,适用于各个型号培养箱● iPad无线操作模式,简单方便● 1个独立E-plate16模块,可满足不同研究者的应用需求● 支持细胞质控、细胞增殖、细胞粘附等应用●检测小分子、生物大分子及RNAi作用的细胞反应● E-plate16兼容于通用成像系统● 提供细胞反应曲线和参数分析功能,包括反应速率细胞最大影响值及反应时间 最后,感谢燕博士的精彩讲解以及北京大学分子医学研究所老师和学生们对本次讲座的支持!扫码关注昊诺斯微信公众号
  • 五洲东方在北京大学分子医学研究所成功举办技术交流会
    五洲东方公司在清华大学医学院成功举办技术交流会后,11月25日在北京大学分子医学研究所科研楼举办产品技术交流会。   本次技术交流会结合北京大学分子医学研究所实验研究方向设定了主题为&ldquo 细胞分析的创新技术-细胞培养过程中多参数质检和实时无标记分析系统的应用&rdquo ,同样特别邀请了罗氏公司应用科学部产品专家主讲。   来自于北京大学分子医学研究所多个实验室的近50名师生认真聆听了技术报告,并对此项生物前沿技术提出了大量感兴趣的问题并等到满意的回答。 公司为积极提问的老师准备了精美的纪念品,同时为参会的实验室老师提供了丰盛的工作午餐。
  • “100家实验室”专题:访国家生物医学分析中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第三十站:国家生物医学分析中心。   国家生物医学分析中心,是国家科技部(原国家科委)1994年正式批准成立的全国唯一的国家级生物医学分析中心,在药物毒物分析、新药研发、蛋白质组分析、代谢组学分析、细胞分析、环境和食品分析等领域拥有雄厚实力,是我国在上述领域科学研究、新药研发和社会经济活动的重要依托基地。与此同时,中心也是军事医学科学院生物医学分析中心、军事医学科学院仪器测试分析中心、全军环境保护研究监测中心和北京市生物医药分析测试中心。   中心已通过国家计量认证和“中国实验室国家认可”,可提供权威的分析数据和检测报告。中心主要任务是:研究和发展生物医学分析领域的新技术、新方法及其在生物医学中的应用,可承担生物医学领域中的核酸、蛋白质分析,有机药物,有机毒物分析,基因工程重组药物分析,微生物分析,致癌致畸致突变物分析,免疫分析,生物自由基分析,细胞分析,微区元素分析,放射计量分析等科研任务。2004年,国家科技部和北京科委决定在中心共建具有当前国际先进水平的“北京质谱开放技术平台”,为我国在上述领域的科学研究、新药产品开发和社会经济活动提供重要的技术支撑和服务。2009年,中心加入“首都科技条件平台”,面向全社会开放提供技术服务。技术服务项目包括:新药报批服务、科研技术平台、测试服务以及专项服务。     资质证书     国家生物医学分析中心主要由以下技术服务平台组成:代谢组学技术平台、蛋白质组技术平台、中药现代化技术平台、细胞生物学技术平台、结构生物学技术平台、环境和食品安全技术平台、微量元素分析技术平台、药物与毒物分析技术平台以及公共突发事件应急分析技术平台。   中心分为7大专业实验室:质谱实验室、核磁共振实验室、电镜实验室、色谱实验室、环境监测实验室、光谱和元素分析实验室,这些专业实验室拥有大量高尖端分析仪器支撑科研工作的进行:   质谱实验室主要核心仪器为9.4T超高性能混合型四极杆串联傅里叶变换离子回旋共振质谱(Q-FT-ICR-MS) ,配套仪器有:高性能多肽测序质谱、高通量飞行时间质谱、磁质谱、飞行时间质谱、电喷雾串联质谱、离子阱质谱、高分辨气质联用以及无机质谱等,已建立完善的一、二、三代生物质谱系统。     Bruker高性能混合型串联傅立叶质谱(Q-FT-MS):9.4T Apex Qe 仪器说明:全球最新版双离子源(DualSource),分辨率超过140万,准确度优于1.0ppm,主要进行小分子物质结构快速解析、蛋白质与核酸序列测定及翻译后修饰分析以及疾病多肽组学研究。   Waters Micromass 高解析离子淌度质谱Synapt HDMS 仪器说明:该仪器为亚洲第一台引进的,主要进行无标记定量蛋白质组学、蛋白质复合物研究以及复杂体系离子淌度分离分析。     Bruker 高速高灵敏多功能串联飞行时间质谱 Ultraflex III TOF/TOF 仪器说明:该仪器为全球第一台,主要进行蛋白质组学、多肽组学、质谱成像、物药报批、修饰分析以及寡核苷酸分析。   电镜实验室配备有透射电子显微镜、激光扫描共聚焦显微镜、原子力显微镜及活体动物体内成像系统等,为研究组织学、病理学、细胞生物学、遗传学及分子生物学提供了重要的测试手段和技术方法。 Bio-Rad Radiance2100 激光扫描共聚焦显微镜  仪器说明:可对细胞内各种荧光标记物及其组分进行定位、定性和定量分析;对细胞、细胞器进行三维图像重建与定量分析。  Hitachi H7650投射电子显微镜 仪器说明:主要对组织、细胞等进行高分辨率、高灵敏度、高对比度的形态结构观察和组分的定性及定量分析。 Varian 600MHz NMR核磁共振 仪器说明:主要进行核磁共振方法学、天然及合成小分子结构、毒物分析、活体核磁共振、代谢组学以及生物大分子空间构象等领域的研究。 国家医学生物分析中心充分发挥人才、设备和技术优势,在保证向社会提供公正、科学、可靠、准确的检测数据的同时,积极参与国家重大项目的研究攻关和国际合作,在国家科技创新体系中成为集研究、培训、咨询、仲裁、成果鉴定、技术服务为一体的生物医学分析中心。中心作为国家生物安全应急分析基地,多次出色完成事关国家安全的重大事件样品分析。 国家生物医学分析中心承担的课题: 课题来源 项目名称 “863”项目 蛋白质组学新技术在肿瘤泛素通路研究中应用 “973”项目 人类肝脏蛋白质组定位图新技术新方法研究 “973”项目 定位整合、原位修复技术及机理的研究 创新研究群体科学基金 人胎肝蛋白质组学及重要细胞调控因子的发掘 国家科技攻关计划项目 蛋白质定位技术平台建立及应用 北京市肝脏及重大肝病的蛋白质组学研究科技计划项目 肝再生中系列蛋白质复合体的研究 国家自然科学基金 阻断泛素通路中Bcl-2蛋白形成复合体的生物质谱分析 “863”项目 蛋白质组技术平台的建立及其在肿瘤细胞泛素通路与凋亡调控研究中应用 国家自然科学基金 阻断泛素通路对正常和肿瘤细胞影响的巨大差异机制研究 “863”项目 应用蛋白质组技术对白血病细胞凋亡相关蛋白的高通量鉴定 国家科技部 生物质谱技术对蛋白复合体的鉴定 “863”计划青年基金 基于Bcl-2蛋白结构的创新药物发现 北京市自然科学基金 微丝相关新蛋白Lca295的空间结构及其与蛋白质间的相互作用 国家自然科学基金重大研究计划 代谢组学方法在中药毒性研究中的应用 国家自然科学青年基金 寡糖溶液构象的核磁共振研究 国家自然科学基金 新型分子成像技术——质谱扫描成像及其应用 国家科技部 一维固相pH梯度等电聚焦结合生物质谱直接鉴定混合蛋白质的方法初探 国家科技部 质谱(MALDI-TOF-MS)扫描成像技术初探 国家科技部 蛋白质组学技术用于分析肿瘤组织特异性自身免疫性抗原   附录:国家生物医学分析中心   http://www.ncba.cn/   国家生物医学分析中心蛋白质组学网   http://www.proteomics.com.cn/
  • 浙大女教授当选世界分子影像学会主席
    田梅近日,世界分子影像学会(WMIS)宣布,浙江大学教授田梅当选世界分子影像学会主席,任期从2021年下半年开始。这是我国科学家首次担任世界分子影像学会主席职务。世界分子影像学会是国际分子影像领域唯一的全球性学术组织,也是全球五大洲分子影像学会的总会,每年主办分子影像领域规模最大、水平最高、影响力最广泛的学术会议——世界分子影像大会,并出版分子影像领域重要学术期刊《分子影像与生物学》。分子影像是一门新兴多学科交叉融合的学科,是对人体或活着的生命体内细胞和分子水平的生物化学变化过程进行无创、定性、定量、定位、并可时空动态反复精准测量的影像可视化技术。分子影像可以将精准医学可视化,极大提高我们对人体进行从微观到介观,再到宏观和整体的认识,极大推动精准医学发展。分子影像涉及的专业领域包括分子生物学、生物医学影像、临床医学、药物化学、生物化学、药学、信息技术、光电子技术、影像物理学等多学科综合交叉,这也是国际著名大学和科研院所近二十年来争相发展的重要标志性学科。浙江大学教师个人主页显示,田梅,影像医学与核医学专业教授,硕士生导师、博士生导师。教育部“长江学者”特聘教授、国家杰出青年科学基金获得者、科技部“重点领域创新团队”负责人。现任浙江大学医学中心副主任、浙江省医学分子影像重点实验室主任,浙江省科学技术协会副主席。研究方向为影像医学与核医学。
  • 新型“光学分子”片上光谱仪
    光谱仪用于分解和测量电磁波的谱信息,广泛应用于材料分析、天文观测以及生物医学成像等领域。传统台式光谱仪基于棱镜或光栅等空间色散元件,导致其结构尺寸较大,并对机械振动敏感,通常只能用于实验室环境。新型片上光谱仪有望克服这些缺陷。这类光谱仪基于集成光子回路,其中各类光学器件均由固态平面波导构成,因此可以实现芯片尺度的密集集成,并可以消除环境扰动的影响。片上光谱仪在智慧医疗、地质勘探以及片上实验室(Lab-on-a-chip)等领域具有应用价值,特别对于实现小型化、便携式,甚至可穿戴的智能传感设备具有重要使能意义。然而,目前已报道的片上光谱仪大多存在分辨率-带宽限制这一共性缺陷。具体来说,对于片上光谱仪,实现较高的分辨率需要较长的波导光程,而这往往会降低输出响应的自由光谱范围,进而影响工作带宽。虽然可以通过采用光子晶体微腔等特殊结构,在一定程度上扩展自由光谱范围,但是这类结构加工较为困难,并且调谐效率较低。目前尚无突破这一限制的通用解决方案。近日,香港中文大学电子工程学系曾汉奇研究小组,通过采用一种新颖的“光学分子”结构,结合计算重建方法,实现了一种同时具有高分辨率与大带宽的新型片上光谱仪。该成果以“Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule”为题发表于Light:Science & Applications.这一结构的基本组成是一对相同的可调谐微环谐振腔(图1a)。在热光调谐过程中,输入光谱被滤波采样,进而在输出端口生成包含谱信息的信号,最终通过计算重建方法将输入光谱还原(图1b)。此过程中,需要解决的核心问题是,如何分辨相隔自由光谱范围整数倍的波长通道。对于单谐振腔而言,各个自由光谱范围之内仅包含一个谐振模式,因此无法实现宽带谱重建。当一对谐振腔发生强耦合,各个谐振模式将劈裂为一个对称模式与一个反对称模式(图1c)。这一现象类似于双原子分子中存在的能级劈裂。值得注意的是,谐振模式的劈裂强度正比于谐振腔之间的耦合强度。因此,可以通过增强耦合强度的色散,使得“光学分子”谱线的劈裂强度随波长变化,并基于这一特征,识别位于不同自由光谱范围的波长通道。具体来说,当热光调谐经过一个自由光谱范围,各个波长通道对应的输出信号均包含一对尖峰;此时,即便对于相隔自由光谱范围整数倍的波长通道,其尖峰之间的间距仍然不同,因此不同波长通道得以去相关(图1d)。图1.“光学分子”片上光谱仪的工作原理。在该工作中,作者实验证实了40pm的谱线分辨率与100nm的工作带宽。同时利用单片集成滤波器生成测试光谱,实验验证了各类特征光谱的高精度重建。该工作的创新与亮点可以总结为:1.作者提出了一种完全区别于传统方案的片上光谱仪。不同于可调谐滤波器方案,这一设计不受自由光谱范围限制,因此得以保持高分辨率的同时,极大地扩展工作带宽。不同于计算“光斑”光谱仪,这一设计不依赖于复杂拓扑结构,具有结构简单、尺寸紧凑等优势。2.设计思路具有可扩展性。在满足特定条件情况下,可以进一步增加待分辨的自由光谱范围数目,进一步扩展工作带宽与通道容量,同时保证较低的功耗。3.该工作涉及的概念源于高品质微腔中一种极为常见的现象——模式劈裂。同时,结构完全基于集成光子回路中极为常见的单元器件——微环谐振腔。这使得这一方案具有加工简便、通用性强等优势。这一工作为新型片上光谱仪的研发提供了一种全新思路,同时对计算光谱学等研究方向具有启发意义,并可能用于单片集成的光谱传感系统。
  • 皖仪科技与爱湾医学在临床精准医学分析领域合作达成共识
    2023年7月28日下午,爱湾医学董事长杨江涛先生与研发中心高级总监吴莉萍女士受邀莅临安徽皖仪科技股份有限公司(以下简称皖仪科技),双方围绕在检测技术、优势赋能、项目合作、未来发展等方面展开深入交流探讨,并达成合作共识,携手开启国产分析仪器在精准医学分析应用的新模式。爱湾医学创始人董事长杨江涛先生出席会议并在致辞中表示,爱湾医学科技有限公司成立于2014年,致力于代谢及基因多组学研究,爱湾医学以临床质谱技术为核心,以多组学研究为驱动,构筑“筛-诊-疗-研”生态圈。   经过多年的跨越式发展,已成功连续突破临床质谱诸多难题,并取得多项国家专利和多项软件著作权,尤其是在遗传代谢病尿液检测方面有强大的深研能力。   杨江涛董事长肯定了皖仪科技离子色谱的仪器性能以及在该领域的应用价值,希望双方携手通过离子色谱仪在临床精准医学分析领域的应用检测,为泌尿结石患者提供诊断更加精准的数据支撑。   皖仪科技分析仪器事业部总经理程小卫对爱湾医学代表莅临交流表示欢迎与感谢。   程小卫先生在致辞中谈到:中国在向富强中国的奋斗道路上,人民对美好生活的向往已经让健康市场越来越活跃,其中和我们分析仪器高度相关的精准医学分析能够成为解决问题的创新手段,因此临床分析仪器的应用场景会更加地清晰。   作为全球精密科学仪器专业供应商,皖仪科技携手伙伴深耕临床精准医学分析,是我们助力健康中国的推进举措,也是我们皖仪科技的企业使命。   根据合作共识,双方将共同研发离子色谱仪在临床精准医学分析领域的应用,还将在离子色谱仪的分析方法、生产制造和行业销售等方面展开合作。   皖仪科技将继续整合自身资源,作为全球精密科学仪器专业供应商,可以为合作伙伴提供全生态体系的产品服务以及强大的技术服务;以共赢心态相互赋能,与爱湾医学一道将离子色谱仪应用到精准医学分析领域中,为国产分析仪器在该行业的突破和创新,携手贡献强大力量。
  • “十二五”项目“分子影像前沿技术和产品开发”通过结题
    “十二五”国家科技支撑计划项目“分子影像前沿技术和产品开发”通过了科技部近日组织的项目结题。  恶性肿瘤的早期检测效果会直接影响癌症病人的治疗效果和五年生存率,对于癌症病人临床诊疗具有十分重要的意义。该项目深入研究传统成像技术中探测肿瘤灵敏度高的核素PET成像和光学成像这两种模态的物理成像原理和关键成像技术,提出将两种成像方式在成像原理上进行深度融合的新型成像技术,即新型光学-核素多模融合放射性药物激发荧光成像。该成像技术弥补了PET成像的分辨率不足和光学成像的信噪比不足等缺陷,成功突破了常规单模态成像的灵敏度极限,将动物活体肿瘤无创成像检测的灵敏度,由5毫米的最小病灶探测直径缩小到了2毫米。相关研究成果发表在Nature Communications,Nature Protocols等国际著名科研期刊上。  发挥超高灵敏度的光学-核素融合成像技术在早期微小肿瘤病灶探测的优越性,该项目研究团队通过研发光学分子影像智能手术机器人,实现了该项新技术的临床医学转化和应用。研发的手术机器人系统将高灵敏度光学分子影像技术与智能手术机器人精准定位技术相结合,在手术实施的过程中,高灵敏度、高精确度地实时成像定位癌症病灶的位置和范围,客观导航医生对其进行精细切除,其成像空间分辨率达到了亚毫米级,时间分辨率可达30帧每秒以上,对于癌症的探测灵敏度达到了最小探测直径1-2毫米。项目还针对不同的癌症种类,先后研制了手持式、开放式和内窥式光学分子影像智能手术机器人系统,目前已获得了美国发明专利授权2项,国家发明专利授权20余项,构建了完整的核心自主知识产权体系。
  • “小动物光学多模融合分子影像成像设备”项目启动
    3月4日,由中国科学院自动化所田捷研究员担任项目负责人的基金委国家重大科研仪器设备研制专项“小动物光学多模融合分子影像成像设备”项目召开项目启动会,标志着该项目正式启动。   本项目由自动化所牵头,清华大学、北京协和医院以及第四军医大学、西安电子科技大学等四家单位共同参加,是迄今为止自动化所资助额度最高的国家基金委项目。   针对重大疾病防治和重大新药创制的国家战略需求,该项目拟研制小动物光学多模融合分子影像成像设备。该成像设备以光学分子成像模态为核心,同机融合核素和结构成像模态,从细胞分子、功能代谢和解剖结构等多个层面系统全面地提供生物体生理病理信息。围绕多模成像设备研制这一核心目标,该项目涉及到成像模型、重建算法、成像设备、融合平台、验证评价以及医学生物应用等多方面的研究。该设备将用于开展恶性肿瘤发生发展机理、早期精确诊断以及药物疗效定量评价的医学生物应用研究,为肿瘤早期精确诊断和药物定量疗效评价提供技术支持和设备保障。该项目的实施对推动生命科学和医学的科学研究、技术发展具有重要意义。   启动会上,田捷研究员还就项目总体情况、“小动物光学、结构、代谢三模态同机成像设备构建与研发”课题研究方案的报告、项目各子课题分别就课题定位、研究内容、实施方案、具体指标、研究计划等几个方面进行了汇报。   基金委医学部常务副主任董尔丹、综合计划局郑永和副局长、中国科学院计划财务局曹凝副局长、院高技术局杨永峰处长、基金委综合计划局谢焕瑛处长、医学部三处李恩中主任,中科院项目评估监理中心金启宏研究员、刘涛副研究员等领导和专家出席会议 美国医学科学院外籍院士戴建平教授、中国科学院吴培亨院士、沈绪榜院士等九位项目专家委员会委员莅临启动会。
  • 生物医学分析中心:康定情歌
    2013年1月10日,仪器信息网在北京举办了“‘仪器’同行,共创未来’-2013科学仪器行业新年联欢晚会”,200位行业专家、热心用户,与100位厂商朋友共聚一堂,喜迎新春。在联欢会上,业内同仁们同台献艺,其乐融融。 军事医学科学院国家生物医学分析中心为大家带来了一首经典名曲:《康定情歌》。
  • 上海药物所等绘制出肝内胆管癌的多组学分子特征全景
    肝内胆管癌(intrahepatic cholangiocarcinoma,iCCA)是原发性肝恶性肿瘤,当前手术切除率低,并缺乏有效的靶向/免疫治疗方案。肝内胆管癌具有高度异质性的基因组突变和肿瘤微环境,可能介导其高侵袭性和不良预后。因此,迫切需要对iCCA进行“鸟瞰式”研究,绘制其精确的分子图谱,为系统理解肝内胆管癌异质性及实现个体化治疗提供理论依据。  2021年12月30日,中国科学院上海药物研究所研究员周虎、中科院院士、复旦大学附属中山医院教授樊嘉、复旦大学附属中山医院教授高强,与中科院分子细胞科学卓越创新中心研究员高大明合作,在Cancer Cell上在线发表了题为Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma的研究成果。该研究对262例iCCA患者的肿瘤组织进行蛋白基因组学分析,通过整合基因组、转录组、蛋白质组、磷酸化蛋白质组等多维度数据,为肝内胆管癌的发生发展机制、分子分型、预后监测和个性化治疗策略提供了新思路。  科研人员分析了TP53、KRAS、FGFR2、IDH1/2、BAP1等肝内胆管癌主要驱动突变对蛋白质组和磷酸化蛋白质组的影响。研究发现,中国人群样本中特异性存在黄曲霉毒素突变指纹,与高肿瘤突变负荷和高NK细胞浸润等显著相关。FGFR2的融合和突变可能通过激活Rho GTPase通路来促进iCCA发展,其部分融合蛋白衍生肽具有较强免疫原性,是潜在免疫抗原靶点。科研团队进一步分析了肝内胆管癌染色质拷贝数变异对mRNA及蛋白的顺式和反式调控效应。研究根据蛋白质组数据,将iCCA患者分为炎症(S1)、间质(S2)、代谢(S3)、分化(S4)四种亚型,四种亚型具有差异化的临床特征、突变谱、通路富集以及免疫特征分布,且有显著预后差异。通过降维分析,研究找到了可特异性区分4个亚型的标志物,并验证证实了其用于临床样本分型的可能性。最终,研究确定HKDC1和SLC16A3是iCCA预后相关的生物标志物。  该研究是在国际癌症蛋白质基因组联盟(International Cancer Proteogenome Consortium,ICPC)及国际临床肿瘤蛋白质组学分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)高质量标准框架下,开展的针对肝内胆管癌大队列的蛋白基因组学分析。该研究全面揭示了肝内胆管癌中基因突变和染色质变异对蛋白质组和磷酸化蛋白质组的影响,从蛋白质组层次提出了四个分子分型和生物标志物,为探索肿瘤异质性和实现个体化治疗提供了线索。该研究所产生的高质量大数据将继续为肝内胆管癌基础与临床研究提供支持。  研究工作得到中科院院士贺福初、美国国立癌症研究院博士Henry Rodriguez、美国贝勒医学院教授章冰、美国华盛顿大学基因研究所教授丁丽、美国西奈山伊坎医学院教授王沛、加拿大渥太华大学教授Daniel Figeys的支持。  论文链接
  • 赛默飞世尔科技参加中华医学会病理学分会2009学术年会
    传递“一个品牌,多种选择”理念   赛默飞世尔科技参加中华医学会病理学分会2009学术年会   2009年11月,中国西安——中华医学会病理学分会2009学术年会于2009年10月30日至11月2日在古城西安召开,赛默飞世尔科技(纽约证交所代码:TMO)受邀参加,现场展出了最新的标记仪器,并进行现场打号演示。公司病理解剖学事业部多个产品线在同一平台上展出,意在传递赛默飞世尔科技 “一个品牌,多种选择(One Is More)”的品牌归一理念。   现场展出的新款组织盒书写仪与玻片书写仪以强大的软件功能、中英文书写功能、LIS兼容性以及耗材的通用性吸引了众多与会专家的眼球,展台前咨询与观看人群络绎不绝。Thermo Scientific Shandon、Thermo Scientific Microm、Thermo Scientific LabVision同台亮相,旨在进一步加强业内人士对“One Thermo Fisher”品牌理念的认识和认同。此外,赛默飞世尔科技还承担了此次学术年会代表证、路标指示牌以及通讯录制作工作,同时为大会提供部分交通服务。   赛默飞世尔科技病理解剖学业务部提供病理学、解剖学的仪器以及消耗品,适用的领域包括:组织学、细胞学、分子生物学、免疫组织学、尸体解剖学、法医学等实验室,以及在各院校、研究机构相关的实验室,如毒理实验室、动植物实验室、药厂、新药安评中心、疾控中心等。   此次学术年会这是中国病理学界一年一度的盛会,由中华医学会病理学分会主办、西安交大医学院、第四军医大学病理科和陕西省病理学分会协办。来自全国各地的600多名病理学专家和27家相关医疗器械供应商参加了这次盛会,包括来自上海国家工程研究中心的郜恒俊教授、MDACC的吴蕴教授、克利夫兰大学医学中心的杨斌教授、美国犹他州大学医学院的陈忠教授等业界顶尖专家。   图:赛默飞世尔科技参加中华医学会病理学分会2009学术年会,传递“一个品牌,多种选择”理念。      关于Thermo Fisher Scientific(赛默飞世尔科技)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)
  • 生物医学分析中心表演:《康定情歌》
    2013年1月10日,仪器信息网在北京举办了“‘仪器’同行,共创未来’-2013科学仪器行业新年联欢晚会”,200位行业专家、热心用户,与100位厂商朋友共聚一堂,喜迎新春。在联欢会上,业内同仁们同台献艺,其乐融融。 军事医学科学院国家生物医学分析中心为大家带来了一首经典名曲:《康定情歌》。
  • 开创生命科学的新时代--访国家生物医学分析中心魏开华博士
    随着被称为生物学史上划时代工程的人类基因图谱测序工作的完成,生命科学的研究进入了更为艰难和复杂的“后基因时代”。大规模的结构基因组、蛋白质组以及药物基因组的研究计划已经成为新的热点,而质谱分析法已成为蛋白质组学研究中不可缺少的工具。近日,本网(以下简称:Instrument)专门走访了国内最早应用该方法进行蛋白质组学研究的学者之一,中国军事医学科学院国家生物医学分析中心的魏开华博士(以下简称:魏)。  Instrument:魏博士,您好!目前,人类已经进入“后基因”时代, 蛋白质组学是生物技术领域的“新新事物”,那么究竟什么是蛋白质组学,能否请您简单地为其下个定义呢?  魏:好的。“蛋白质组”一词是澳大利亚Macquarie大学的Wilkins和Williams于1994年提出的,用以描述基因组编码的各种蛋白质成分。虽然给蛋白质组学下的定义因人而异,但大多数科学家认同其研究内容主要包括3个部分:了解某种特定的细胞、组织或器官制造的蛋白质种类;明确各种蛋白质分子是如何形成类似于电路的网络的;描绘蛋白质的精确三维结构,揭示它们结构上的关键部位---与药物结合并且决定其活性的部位。  Instrument:那么,研究蛋白质组学的最终目的是什么呢,或者换句话说,人类为什么要研究蛋白质组学呢?  魏:众所周知,所有生命现象(包括遗传、健康、疾病等)的执行体都是蛋白质。过去在基因、核酸水平分析生命现象,认为核酸水平的变化能代表蛋白质的变化,通俗地讲就是一个基因对应一个蛋白序列,但实际上蛋白质的变化远比核酸的变化要复杂得多。虽然人类基因组包含了我们身体的全部遗传信息,但那也只是制造蛋白质的原材料,而构成细胞并发挥各种功能则是由蛋白质来完成的。蛋白质也是机体各种不同类型细胞之间差异的决定因素,尽管所有的细胞都拥有同样的基因组,但在不同的细胞内会有不同的基因处在活跃状态,从而合成不同的蛋白质。同样,病变细胞和正常细胞的差异在很大程度上也是由功能基因及其合成蛋白质的不同来决定的。  而生物质谱技术的出现则提供了一种发现和鉴定在疾病作用下表达异常的蛋白质的方法。这种蛋白质可以作为药物筛选的作用靶点,即通过对疾病发生的不同阶段蛋白质的变化进行分析,发现一些疾病不同时期的蛋白标志物,这样不仅可以为疾病的早期发现提供重要的诊断指标,还对药物的发现具有指导意义。  以癌症研究为例,挽救病人的最有效的手段就是癌症的早期诊断和治疗。采用质谱技术的方法研究正常组织、癌组织和癌旁组织的蛋白质的表达谱,通过差异比较,可以发现与肿瘤早期发生相关的蛋白质,并经过进一步的临床验证,可以有效地发现肿瘤早期诊断的分子标志物。  值得一提的是,推动蛋白质组学发展的另一个重要动力是药物开发商。目前,在世界各大生物公司和生命科学界工作的科学家们正试图列出所有的蛋白质种类,并揭示他们之间的相互作用,其最终的目的是为了发明疗效更高、副作用更小的新药。  Instrument:相对于研究基因而言,为什么蛋白质组学的研究要困难得多?  魏:确实如此,这一点从2001年国际蛋白质组学大会的主题“人类蛋白质组计划:基因微不足道”就可以略见端倪。人类基因组计划经过艰苦努力已基本完成,围绕人类基因组计划的热闹喧嚣使人们以为一旦知道了人类基因组中大约30亿个编码子或DNA碱基对序列,特别是搞清了各种蛋白质的编码基因序列,就能对蛋白质本身有深入的认识了。但实际上,蛋白质组要远比基因组复杂得多。DNA只有4种不同的化学碱基,按它们的第一个字母分别称为:A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)和T(胸腺嘧啶)。而蛋白质组则不同,是由20种被称为氨基酸的物质组成的。由哪些氨基酸组成什么种类的蛋白质是基因决定的,但即使科学家知道了某种蛋白质的氨基酸序列,也不见得就能推断出其功能或与其它蛋白质的相互关系,同样也不一定能够完全准确地推断出其三维结构。与基因的简单线状结构不同,蛋白质会折叠成不同的形状,有时可能跟人们想象的情况完全相反。  不仅如此,细胞在合成蛋白质的过程中还常常通过增加糖基或/和脂质而对蛋白质进行修饰,其方式也是很难预料的。对于一个新发现的基因,科学家无法只靠基因结构和对应的氨基酸序列来推测它所编码蛋白质的结构,还必须明确其脂质和糖基的修饰情况。研究人员还要考虑到有些蛋白质是溶于水的,而有些则通常只在油性环境中才具活性,或者蛋白质的一部分结构域可能被包埋在充满脂质的细胞膜中。了解了所有这些,才可能对蛋白质的特性有一个较为全面的认识。  蛋白质的复杂性还不止这些,尽管大多数学者都认为基因组大约包括40000个基因,但仅仅单个细胞就能制造成千上万种不同的蛋白质。要认识蛋白质组,科学家就必须逐一研究所有这些蛋白质的特性。人类基因组计划所获得的数据最终还是没有摆脱一个基因编码一种蛋白质的局限性,只是简单地把那些数据拿来其实意义不大。一个基因在不同的情况下可以产生多种不同的蛋白质,这是显而易见的。  还有就是一个分析手段的问题,特别是在生物质谱技术出现以前,没有任何手段能对蛋白质进行快速、通量地分析,用传统方法分析、鉴定未知的蛋白质,必须先分离纯化,对一个蛋白质点的分析,就需要若干年的时间,这也极大阻碍了蛋白质组学的发展。  Instrument:您刚才谈到了生物质谱技术,那么该项技术的出现,对蛋白质组学的研究产生了哪些重要影响呢?  魏:生物质谱技术是2002年诺贝尔化学奖表彰的两项成果之一,你们网站也曾经就此作过相关报道。采用生物质谱技术对蛋白质的复杂性进行分析,较之传统方法更加准确,更加灵敏,所需样品量大大减少,而且,一天就能完成上千个样本的分析,这大大缩短了科研时间,从而对蛋白质进行大规模分析、鉴定成为可能。因此可以说,生物质谱技术的出现对于蛋白质组学的研究具有里程碑的意义。同时,生物质谱技术的出现也重新激发了传统的双向电泳技术,使之向与生物质谱技术兼容的方向发展。  另外,需要补充一点的是进行蛋白质组学的研究还有一个不可缺少的方面,这就是生物信息学。可以说搜索引擎技术和蛋白质数据库的完善与生物质谱技术的成熟对于蛋白质组学的研究具有同等的地位。因为人们想要知道的是我们究竟测得是什么蛋白,而不是一大堆实验数据,这时就需要借助于生物信息学来完成了,也就是通过软件对数据库中蛋白质序列数据进行计算所得到的理论肽“指纹”谱与实测的肽“指纹”谱进行逻辑比较,而不是简单的一对一比较,给出一个评判标准,从而判断蛋白质是否被鉴定。  Instrument:那么,生物质谱技术和传统意义上的质谱技术主要区别在哪里呢?  魏:我想区别主要体现在电喷雾质谱技术(ESI)和基质辅助激光解吸附质谱技术(MALDI)这两项诞生于80年代末期的软电离技术。生物大分子多为极性、难挥发化合物,不易气化,用传统质谱无法测定,传统的有机质谱只适合于分析小分子量的有机化合物。而随着生物质谱技术的出现和广泛应用,现已能高效地电离一些完整或片断的大分子生物化合物,从而进行质谱测定,获得整体蛋白质的分子量。在此基础之上,又开发出了一系列鉴定蛋白质的技术,其中最受关注的是肽“指纹”谱技术,简单说就是通过酶降解过程使蛋白质分子形成不同的片段,不同蛋白形成的片段不同,因而具有一定的“指纹”性,通过“指纹”谱来鉴定蛋白,而前面所说的MALDI技术是进行肽“指纹”谱鉴定蛋白最有力的工具。可以说,这两项技术的成熟标志着蛋白质组学研究工作真正的开始。  Instrument:最后,能否请您谈谈国内蛋白质组学的发展过程和近期的一些进展情况吗?  魏:就目前国内而言,用一句话概括,就是形势一片大好,欣欣向荣。尤其是过去的两年,蛋白质组学在国内受关注的程度到了一个快速上升的阶段。1995年,我院的贺福初院士和一些国内生物专家最先开始关注蛋白质组学这一新兴生命科学领域,到97年,国家“863”计划里有一个蛋白质组学的重点项目,我个人认为,这应该是标志着中国蛋白质组学的正式启动,我院是国内最早开展蛋白质组学研究的单位之一,也是最早建立蛋白质组学平台的单位之一。到了2002年,蛋白质组学在中国的发展进入了一个高潮阶段,尤其是以生物质谱在国内的需求量大大增加为一个重要标志。另外,从国家到地方申报蛋白质组学项目的单位也大大增加,特别是2001年正式启动的“973重大研究项目——人类重大疾病的蛋白质组学研究”涉及到了三十几个国内知名的大专院校和科研院所,该项目的启动极大推动了国内蛋白质组学的发展。像我们分析中心在这个项目中承担的主要任务是技术平台的建立,该平台包括电泳平台、生物质谱平台和生物信息学平台三个部分,2001年该平台已初具规模。随后,国内其他单位,像中科院上海生化所等也纷纷启动了类似的技术平台计划。  今后5年该项目研究的目标是:建立具有国际先进水平的高通量、高灵敏度、高准确性、高稳定性的蛋白质组学研究技术平台;选择与人类重大疾病和人类重要生命活动紧密相关的系统、器官、细胞,建立1~2种具有基因表达谱研究基础的重要生理、病理体系或过程的蛋白质谱和蛋白质连锁群,确认或发现500种以上人类新型蛋白质,探索蛋白表达的群集调控规律和蛋白质相互作用网络;以严重影响我国人群健康的重大疾病(如肝炎、肝癌、心血管病等)为对象,发掘与上述疾病发生发展密切相关的蛋白质群,为重大疾病的防诊治提供新的预警、诊断标志物和新的药物靶标;建立蛋白质组学研究的生物信息技术体系、蛋白质组系列数据库、蛋白质组功能连锁群分析的理论模型及相应的算法。通过对蛋白质组学的不断研究,使我国蛋白质组学基础和应用研究在国际同领域占有重要的一席之地,为我国生物医学的飞速发展提供强有力的蛋白质组学的学术、技术支撑。  整个采访的上午,魏博士的谈兴一直很浓,特别谈到蛋白质组学研究在蛋白质功能和人类疾病研究方面开辟了一个全新的领域,尽管它还处于刚刚起步的不成熟期,很多技术还有待完善和发展,但它的潜力是不可低估的,人类重大疾病防诊治措施的突破,需要蛋白质组学提供“全景式”的病理机制认识,人类蛋白质组的研究将可能导致一大批新型药物靶标与药物的问世,在将来,蛋白质组在人类疾病中的应用也必然会更加广泛和深入地开展下去。   联系方法:   联系电话:010-66931434   E-mail:wkh@proteomics.com.cn   单位地址:北京市海淀区太平路27号 100850
  • 第十届中华医学会病理学分会即将召开
    中华医学会病理学分会第十届全国病理学大会(2010年年会)暨IAP中国区学术会议将于2010年9月17日至19日在湖南长沙市湖南宾馆举行,这是一年一度我国病理学界**级别的学术盛会。 莱伯泰科的展台号34号,即将展示Histos 5微波快速组织处理仪和MacroPATH D大体标本数字成像系统,将有专业的工程师做现场讲解! 莱伯泰科诚邀各方来宾光临展台,交流指导!
  • 腾讯进军AI医学影像领域,正式发布AI医学影像产品——腾讯觅影
    p style=" text-align: left " strong br/ /strong /p p   8月3日,腾讯公司正式发布了AI医学影像产品——腾讯觅影。 /p p   这是腾讯公司首个应用在医学领域的AI产品。腾讯觅影包含有6个人工智能系统,涉及疾病包含食管癌、肺癌、糖网病、宫颈癌和乳腺癌。其中,其早期食管癌智能筛查系统最为成熟,实验室准确率在90%,现已进入临床前实验阶段。据了解,此系统在深圳南山医院部署一个多月的时间内,每天为几十位患者进行筛查。 /p p style=" text-align: center " img width=" 600" height=" 374" title=" 1.jpg" style=" width: 600px height: 374px " src=" http://img1.17img.cn/17img/images/201708/insimg/973d7c0d-8736-4c7e-a003-78ac6575b34e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   另外,此次腾讯公司还发起成立了人工智能医学影像联合实验室,并启动全球首个应用AI医学影像的食管癌早筛项目的临床预试验。中山大学附属肿瘤医院(广东省食管癌研究所)、广东省第二人民医院、深圳市南山区人民医院成为首批加入联合实验室的合作医院。 /p p    strong 连接六大AI医疗应用场景 /strong /p p   腾讯觅影一共包含6个医疗AI系统,分别是: /p p   早期食管癌智能筛查系统 /p p   早期肺癌筛查系统 /p p   糖尿病性视网膜病变智能筛查系统 /p p   智能辅助诊疗系统 /p p   宫颈癌筛查智能辅助系统 /p p   乳腺癌淋巴清扫病理图像识别系统 /p p    span style=" color: rgb(255, 0, 0) " 1、早期食管癌智能筛查系统 /span /p p   食管癌是我国常见的恶性肿瘤。根据2016年《中华肿瘤杂志》发布的调查结果显示,2012年中国食管癌新发病例数为28.67万,发病率为21.17/10万,食管癌已经成为我国5大癌症之一。 /p p   众所周知,癌症的早诊早治有利于患者康复。中山大学医院管理处处长、广东省食管癌研究所所长傅剑华教授表示,早期的食管癌内镜治疗高效微创,手术后3-5天就可以出院,手术费用仅为后期食管癌治疗费用的三分之一,术后并发症也很少,远期的疗效更是优越,但是由于缺乏足够的认知和有效的早期筛查手段,目前我国早期食管癌检出率低于10%。 /p p   觅影的早期食管癌智能筛查系统,筛查一个内镜检查用时不到4秒,对早期食管癌的发现准确率高达90%。它也是全球首款食管癌智能筛查系统。 /p p   span style=" color: rgb(255, 0, 0) "  2、早期肺癌筛查系统 /span /p p   觅影的这套系统与一些创业公司不同之处在于,它通过对可疑结节精准定位,对患者进行全方位良恶性判别。而部分创业公司只能识别结节,却不能判断良恶性。 /p p   据优图实验室高级研究员孙星介绍,目前这套系统正在研发,训练数据集、测试数据集样本数量是数千人的规模,疑似结节数量为50多万个,同时算法模型也准备好了,结合腾讯云强大的运算能力,相信很快就可以出结果。 /p p    span style=" color: rgb(255, 0, 0) " 3、糖尿病性视网膜病变智能筛查系统 /span /p p   为训练这套系统,觅影团队对数十万糖网分期数据进行学习分析,打造糖网病筛查工具,用于糖网病早期筛查。 /p p   span style=" color: rgb(255, 0, 0) "  4、智能辅助诊疗系统 /span /p p   这个系统基于海量医疗大数据的分析与学习,服务于广大医生,旨在提高医生诊疗效率和基层医生诊疗准确性。它大致分为三个步骤:医学知识图谱构建→机器去学习诊断能力和经验→专家校验。虽然腾讯AI Lab的高级研究员并没有透露他们的研究进度和医学数据,但是腾讯不缺AI人才和计算力,数据足够以后,出结果是早晚的事。 /p p   span style=" color: rgb(255, 0, 0) "  5、宫颈癌筛查智能辅助系统 /span /p p   觅影系统对近万张内窥镜分型数据进行数据分析,打造宫颈癌检测智能筛查工具,用于宫颈位置类型检测,辅助医生快速辨别宫颈癌的宫颈位置,从而制定对应的治疗方案。目前,觅影并没有报告这个产品的研发进度。 /p p   span style=" color: rgb(255, 0, 0) "  6、乳腺癌淋巴清扫病理图像识别系统 /span /p p   觅影系统主要是应用在乳腺癌的筛查。TEG架构平台部高级工程师颜克洲透露,他们在研发的过程中遇到了一些困难,例如数据量和标注量不足,乳腺癌图像“同影异并,同病异影”等问题,不过目前已经想到了解决办法,项目正在顺利进行中。 /p p   以上我们所看到6款产品定位大多数是与疾病筛查相关的,虽然腾讯互联网+医疗的负责人常佳此次没有透露他们的在商业上的想法,但是如此清晰的产品功能定位也为后期商业模式探索确定了基调。 /p p    strong 腾讯速度:2个月完成模型训练 /strong /p p   在发布觅影系统的同时,中山医院的主治医师罗孔嘉透露早期食管癌智能筛查系统从开始训练到产品发布,其准确率达到90%,只用了短短两个月的时间。这样高速的背后除了中山医院医生的有力支持(中山医院参与此次研发的医生有19名),还凸显腾讯在AI人才、医疗数据方面的实力。 /p p   据e成科技发布的《BAT人工智能领域人才发展报告》指出,腾讯AI人才储备占公司总人数的比例为2.03%,腾讯2016年员工总数是17446人,如此推算,腾讯约有354名AI人才。这相当于清华大学智能技术与系统国家重点实验室硕博总人数的1.5倍。 /p p   在数据方面,用于研发早期食管癌智能筛查系统的数据来自于6家三甲医院的48740例患者的60万张图片,这些图片由合作医院的医生负责标注,然后进行模型训练。另外,为了让产品更加准确,他们还有测试组的数据,这些数据都是拥有病理检查的金标准数据,用来测试模型的准确性。 /p p   据深圳市南山区人民医院信息中心主任朱岁送介绍,食管癌智能筛查系统已经中山医院试用1个多月,每天为几十名用户进行筛查,他们很期待该产品在临床的数据结果。目前常佳对于腾讯的产品充满了信心。 /p p    strong 商业模式还在思考中 /strong /p p   谈及商业化,常佳表示:“商业化应用方面,腾讯不太着急,因为本身腾讯对医疗AI是准备长期投入,我们认为AI到现在还是处于一个早期或者是早中期的阶段,经过一段时间的额沉淀、全路程产品研发之后会有更多的空间,我们在目前阶段还不考虑商业化的事情,现在我们主要做两个产品,一个是做科研,另一个是跟我们的基金会一起做公益普查。” /p p   strong  阿里、腾讯进军医疗AI,创业公司需要担心吗? /strong /p p   在2017年3月29日的阿里云栖大会.深圳峰会上,ET医疗大脑正式上线。如今腾讯也带着6个产品系统进入医疗AI领域。巨头的进入会对医疗AI的创业者造成致命打击吗?我们是这样思索的: /p p   首先,中国医疗市场巨大,不是一、两家公司就可以吃得下的 /p p   其次,虽然腾讯、阿里在AI人才、计算力等方面有巨大的优势,但是创业公司的创始人不是国家级实验室毕业的硕士、博士,就是海外留学归来的专家,均是独当一面的AI人才。他们早于AT布局医疗1-2年,在产品上也相对成熟一些 /p p   再者,医疗AI重要的参与者——医院方并不会只买AT的账,目前医疗AI创业公司已经和很多大型三甲医院达成了合作,有了医院这个合作伙伴就有源源不断的医疗数据,另外很多创业公司的产品已经在临床试验阶段甚至是认证阶段,他们的系统自身也在不断搜集数据,因此在数据上创业公司并不十分担心 /p p   最后,在资金方面,创业公司虽没有AT财大气粗,但是近期AI的投资热潮使得大多数AI人工智能企业获得了融资,且规模不小。国内目前已有公开披露的医疗AI融资事件达到93起,其中有57起明确公布了融资金额。仅在国内,千万级和亿级的融资项目就占到了65%以上。因此,短期内医疗AI公司并不缺钱。 /p
  • 我国自主研发的光学分子成像研究平台科学仪器通过验收
    日前,山西医科大学承担的山西省科技基础条件平台建设项目“光学分子成像研究平台科学仪器的自主研发”顺利通过专家组验收。  该项目是在山西医科大学现有实验室和科研团队的基础上,建设光学分子影像工程技术研究平台,同时依托该平台研制出了多光谱分光融合外科手术引导系统(光学分子影像技术设备)。  该系统能够激发体内靶向标记的荧光报告基团产生荧光,同时摄取荧光信号,将光信号转换为电信号,以数字化解剖性图像、光学分子功能性图像和两者的融合图像显示在计算机上,并结合图像处理技术精确定量、定性、定时、定位和示踪活体体内细胞和生物大分子的生物学特征,可实时识别活体肿瘤组织、淋巴结、淋巴管和血管。  据悉,该系统拥有我国自主知识产权,有助于解决生命科学研究中的一些重大科学和技术问题,提升我国在本领域的原始创新能力,并产生一定的经济和社会效益。
  • 细胞样本处理自动化、标准化成流式分析“刚需”——访陆军军医大学生物医学分析测试中心主任万瑛教授
    仪器信息网讯自20世纪70年代以来,随着流式细胞技术水平的不断提高,其应用范围也日益广泛。目前,流式细胞分析已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础研究领域,在生物学和医学研究、药物开发、临床检测和环境监测中均发挥着重要作用。近年来,流式细胞仪的标准化也取得了一定的进展,包括检测技术标准化以及数据分析标准化等。近日,仪器信息网在ACCSI2021现场采访了陆军军医大学生物医学分析测试中心主任万瑛教授,请他分享流式细胞术多色化发展以及多色流式样本处理标准化的进展。流式细胞术多色发展成“刚需”流式细胞术多色化发展的原因,主要是来自细胞生物学家的需求。细胞生物学家们在更细致地描述细胞表型,区分稀有细胞群体,筛选新的未知表型,解构复杂的细胞系统,实现节约稀有样本,提升通量等方面都有需求。与此同时,细胞学研究深度和广度的提升对于流式细胞仪参数数量或检测数据维度提出更高的要求,那么基于流式细胞仪硬件多参数能力的提升和新型荧光标记技术的快速发展,自然而然地对多色流式参数提升有了更大的需求。万瑛教授表示,从20世纪70年代流式细胞技术问世之初只能做单色水平分析,到2020年可最多实现60色的水平,流式多色技术的发展取得了很大的进展。多色流式的进展也为数据分析带来了变革,随着数据参数的增多,也从传统的级联分析方法(先根据目标细胞类型选择参数,再进行分析)转变为降维分析方法(使用全部参数进行降维计算,将细胞群体所有异质性展现在二维平面上,再进行分析)。多色流式发展趋势一览实现流式样本制备标准化、高通量化意义重大关于流式细胞的样品制备,万瑛认为该过程中因为人为操作因素会可能导致数据差异化影响,因此他长期专注于实现流式样品标准化制备不受人为因素干扰的研究。随之而来的,也会对一些标准品进行深入研究。他认为这方面的研究会对流式样本全自动制备过程,以及流式的精准检测在临床上广泛推广有很重要的发展意义。据万瑛教授介绍,样本处理是多色流式标准化的关键环节。他的团队针对样本处理中离心洗涤的缺点,设计了一种全新的基于液流速度梯度的细胞洗涤技术。和同类技术相比,该技术具备洗涤效率高、细胞丢失少、状态影响小、重复性好的优势。结合自动化移液技术,可实现样本处理全过程的自动化、标准化和高通量化,为多色流式标准化提供了新的技术选择。
  • 干货|多模态分子影像探针研究进展,尽在第一届小动物活体成像网络会iSAI2024
    分子影像技术的发展除了需要先进的医学成像设备外,开发多功能的分子影像探针是实现分子成像的先决条件。分子探针作为分子影像中的重要组成部分,也是确保分子成像灵敏度和特异性的关键。分子影像探针包括多种纳米材料,根据成像设备的不同,分子探针分为光学、核医学、磁学、声学、光声材料等不同种类。目前,基于纳米材料开发的分子影像探针已逐渐应用于临床,在对肿瘤进行成像的同时,又实现了精准的癌症治疗和疗效评估。仪器信息网将于2024年6月6日举办“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024),全日程现已公布(点击查看)。本文为【成像探针篇】,大会当天将由首都师范大学周晶教授、上海科技大学研究员朱幸俊博士、中山大学附属第八医院(深圳福田)副研究员李萝园博士、上海交通大学长聘副教授熊丽琴博士、 上海科技大学研究员罗宗化博士、东华大学副教授魏鹏博士共6位嘉宾,围绕稀土近红外二窗(NIR-II)成像探针、正电子发射断层扫描(PET)分子探针、活性氧探针、微循环系统成像探针开发及应用展开分享,欢迎踊跃报名参加在线直播!会议链接/扫码报名:https://www.instrument.com.cn/webinar/meetings/sai240606.html ——02分子影像探针篇——关键词:稀土近红外二窗(NIR-II)成像探针、微循环系统成像探针、正电子发射断层扫描(PET)分子探针、活性氧探针。周晶 教授首都师范大学个人简介:教授,博士生导师,北京市青年拔尖人才。主持国家、省部级科研项目10项。在国际高水平学术期刊共发表学术论文70余篇,以通讯作者身份在国际高水平学术期刊Nat. Commun.、Adv. Mater.、Angew. Chem. Int. Ed.等发表论文50余篇。累计他引6000余次,单篇最高他引1400余次,5 篇为 ESI 高被引论文。获中国国家发明专利授权27项。入选全球学者库公布的“全球学者库顶尖前10万科学家”及全球前2%顶尖科学家科学影响力排行榜单。担任《中国稀土学报》(中、英文版)和《稀土》首届青年编委会委员。大会报告:稀土纳米近红外二区发光材料实现疾病精准成像稀土元素具有丰富的4f电子能级结构,基于稀土元素构建的稀土纳米荧光材料是一种极具应用潜力的荧光探针。值得一提的是,以特定的稀土元素作为发光中心,可实现波长大于1000 nm的近红外二区荧光发射。鉴于此,我们设计开发了系列近红外二区稀土纳米荧光成像探针,基于该类材料实现了体外和活体内重大疾病标志物的精准检测。朱幸俊 研究员上海科技大学个人简介:上海科技大学物质科学与技术学院研究员/助理教授,博士生导师。2017年博士毕业于复旦大学生物医学研究院,师从李富友教授。之后于斯坦福大学医学院和材料科学与工程学院进行博士后研究工作。研究领域包括稀土发光纳米材料、纳米递送系统与治疗探针、医学影像造影剂、神经调控材料与器件等。目前课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。已在Nature Communications, Chemical Society Reviews, Nano Letters, PNAS等国际知名期刊上发表研究论文30余篇,他引3000余次,多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文。大会报告:发光纳米功能材料的生物医学应用在疾病的诊断与治疗过程中,病变的动态观测、药物的选择性递送和治疗措施的有效调控在提升疗效和减少副作用方面具有十分重要的意义,然而目前的诊疗方式在生物体内应用时仍然存在侵入性高、检测精度不足和时空可控性差等问题。为了应对这些挑战,我们发展了一系列具有光、热、声等刺激源响应的新型纳米复合材料(包括光学纳米探针、纳米治疗剂和纳米递药系统),并通过生物相容性和仿生化修饰,实现疾病生物微环境变化的精确诊断、非侵入性可控治疗和早期疗效监测,为未来的疾病诊疗技术提供新的思路。李萝园 副研究员中山大学附属第八医院(深圳福田)个人简介:李萝园,中山大学附属第八医院副研究员、硕士生导师,深圳市高层次专业人才,中山大学“百人计划”引进人才。主持多项国家自然科学基金项目、省部级科学基金,并获得清华-北大生命科学联合中心杰出博士后资助项目。共发表学术论文20余篇,以第一/通讯作者身份在国际高水平学术期刊Adv. Mater.、Adv.Sci.、ACS Nano等发表论文15篇(影响因子大于10.0的11篇),课题组长期刺激响应水凝胶、多功能给药系统和近红外光学成像探针的开发以及它们在生物医学领域的应用研究。大会报告:动态光响应近红外二窗成像在生物医学领域中的应用研究利用刺激响应水凝胶与稀土近红外二窗(NIR-II)成像探针构建局部动态光学成像(LDDI)技术用来诊断炎症进展状态。纳米探针可以通过原位NIR-II光激活监测炎症因子的波动,并随着波动产生信号的变化,提高靶向治疗的准确性。熊丽琴 长聘副教授上海交通大学个人简介:上海交通大学长聘副教授、博导。已发表学术论文50余篇,引用共计超过5000次(Google Scholar),主持国家自然基金委项目5项,授权中国发明专利3项、美国发明专利1项。主讲本科生课程《分子影像学与疾病早期诊断》、研究生课程《分子影像学技术与探针》,主编教材《分子影像探针》。曾获上海市浦江人才(A类),获上海市级教学成果奖,获蒋大宗青年论文竞赛一等奖,获上海交通大学“李兰馨青年教师奖”,获生物医学工程学院教学竞赛青年教师组二等奖,获80103班奖教基金,获“双一流”研究生优质课程建设项目。大会报告:微循环系统的分子影像学研究微循环主要包括微动脉、微静脉和毛细血管间的微血管循环和淋巴循环。如何构建性能稳定,与管壁作用力强,不易渗漏的探针,实现对小尺寸管道的高分辨成像是一个关键科学问题。针对此科学问题,我们建立了淋巴管及组织微血管的结构与功能成像新方法,极大地提高了分子影像在疾病诊断和治疗中的灵敏度和准确性。罗宗化 研究员上海科技大学个人简介:罗宗化,任上海科技大学生物医学工程学院助理教授、研究员、博导、上海科技大学分子影像与核素药物实验室主任。在中山大学药学院获得有机化学专业博士学位,随后在美国圣路易斯华盛顿大学做博士后研究,及担任该校回旋加速器中心核心研发科学家。主要致力于神经炎症和肿瘤相关疾病的 PET 分子影像技术的研发及应用。在分子探针开发研究领域具有丰富的经验,以第一作者或通讯作者发表SCI论文和摘要50余篇。入选上海高层次海外人才计划,主持国家自然科学基金青年项目和多项企业研发项目,担任Frontiers in Organic Chemistry, iRadiology, View Medicine等期刊副主编或青年编委。大会报告:PET分子影像技术在动物疾病模型中的应用研究正电子发射断层扫描(PET)分子影像技术在动物疾病模型中的应用日益受到关注。本研究旨在评估PET技术在动物疾病模型中的应用潜力,并探讨其对疾病机制和诊断效果的评估。通过开发合适的PET分子探针,利用PET分子影像技术实现对动物模型中生物学过程的定量测量,如受体结合、蛋白质表达等,为疾病研究和药物开发提供有力的工具和支持。魏鹏 副教授东华大学个人简介:魏鹏,2019年1月博士毕业于复旦大学化学系,随后进入东华大学化学与化工学院工作至今。近年来聚焦于活性氧激活型控释体系的构建。截止2024年4月底,累计以第一或通讯作者身份发表SCI文章25篇,其中包括Angew. Chem. Int. Ed.(4篇)、Adv. Mater.、Chem. Sci.(2篇)、Adv. Sci. (2篇)、Anal. Chem.等。同时,授权发明专利7项,包括美国专利、PCT专利各一项。基于前期研究成果,获得2022年度上海市自然科学奖二等奖(第二完成人)。主持的项目包括国家自然科学基金面上基金项目、青年科学基金项目、上海市青年科技英才扬帆计划等。大会报告:特定类型疾病区域活性氧的原位检测活性氧已被明确与多种类型的疾病密切相关,可以作为疾病诊断的重要标志物。因此,可以借助对特定疾病区域活性氧的原位监测,实现对疾病的早期诊断或研判疾病的进展。但是,如何使探针只在特定的疾病区域工作,以实现与特定类型的疾病相关联成为当前亟需解决的问题。针对这一问题,报告人开通过引入靶向基团或调控探针关联疾病微环境等方式,开发了多种类型的仅在特定类型疾病区域工作的活性氧探针,为相关疾病的诊断提供了分子工具。点击获取稿件提纲为帮助广大实验室用户及时了解小动物活体成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“小动物活体成像技术” 主题约稿活动。欢迎投稿,投稿文章一经采纳,将收录至【小动物成像技术】专题并在仪器信息网相关渠道推广.投稿邮箱:刘编辑liuld@instrument.com.cn电话联系:13683372576(同微信)。SkyView小动物活体CT多模态融合成像系统品牌:博鹭腾型号:SkyView勤翔小动物活体成像系统IVScope8500品牌:CLINX型号:IVScope纽迈分析小动物核磁共振成像仪NM42-040H-I品牌:纽迈分析型号:NM42-040H-I
  • 十五周年庆典:采访国家生物医学分析中心研究员杨松成
    仪器信息网讯 2014年12月19日,科学仪器行业门户仪器信息网在京隆重举办了&ldquo 感恩十五载,点亮新未来-仪器信息网十五周年庆典暨北京信立方成功登陆新三板庆祝活动&rdquo 。来自业界各位领导、专家、用户、仪器厂商及仪器信息网全体员工等300余人欢聚一堂,庆贺仪器信息网十五周岁生日的同时,共叙未来,共望发展。   活动期间,部分企业负责人、业内资深专家和热心网友接受了仪器信息网编辑的采访,畅谈了近年来科学仪器行业的发展情况和对仪器行业年轻人的期望。   来自国家生物医学分析中心研究员杨松成对国内质谱行业的发展给出了自己的看法,他认为,最近几年国家政策已经从原来的不重视趋于重视,但与国外相比,还有差距,对在行业奋斗的年轻人,他希望年轻人能够在努力的基础上积极创新,推动科学的发展,做出有中国rese的质谱仪器。
  • 精彩诚约 | 新羿生物在“中华医学会病理学分会第二十四次学术会议暨第八届中国病理年会”等您
    会议介绍由中华医学会、中华医学会病理学分会主办,四川省医学会、四川省医学会病理学分会承办,四川大学华西医院、国际病理学会(IAP)中国分会、中国医师协会病理科医师分会、中国医疗保健国际交流促进会病理学专业委员会、中国抗癌协会肿瘤病理专业委员会、CSCO肿瘤病理专家委员会、中华病理学杂志、北京精鉴病理学发展基金会协办的中华医学会病理学分会第二十四次学术会议暨第八届中国病理年会将于2018年10月11~14日在四川省成都市成都世纪城新国际会展中心举行。新羿生物是数字PCR的领导者,将携中国第一套自主知识产权的数字PCR系统“新羿TD-1”亮相展会,期待您的光临!新羿生物的产品涵盖数字PCR的芯片、材料、试剂、仪器和软件,已申请相关专利50项。展会详情★展会时间:2018年10月12日--14日★展会地点:成都市世纪城国际会展中心1号展厅(四川省成都市武侯区世纪城路198号)★展会展位:世纪城国际会展中心1号展厅B15
  • 小分子大科学|第三届中国生物物理学会代谢组学分会年会在鹭岛成功召开!
    仪器信息网讯 2023年10月27-29日,第三届中国生物物理学会代谢组学分会暨2023代谢组学国际研讨会在厦门召开,会议共为期2.5天,特别设置了半天非靶向代谢组学数据分析培训班。会议由中国生物物理学会代谢组学分会主办,厦门大学医学与生命科学学部承办。为促进我国代谢组学发展,会议就代谢组学领域最新研究成果及发展动态进行了探讨,吸引了5个国家、800余位代谢组学领域的专家用户及厂商代表参会。会上,近80位专家学者进行了代谢组学技术及应用方面的研究进展报告分享,报告内容涉及疾病代谢组学、药物代谢组学、环境代谢组学、脂质组学技术、代谢组学数据分析等方面,覆盖了代谢组学的各应用领域。 大会现场中国科学院上海有机化学研究所 朱正江研究员 主持大会厦门大学医学与生命科学学部委员 黄烯教授 致辞代谢组学分会会长/复旦大学唐惠儒教授致开幕辞唐教授首先代表代谢组学分会全体会务人员对不辞辛劳前来参加会议的各位专家学者表示最热烈的欢迎和最诚挚的谢意。之后,唐教授在致辞中介绍了代谢组学分会的目标,表示分会将致力于推动中国代谢组学领域研发、教育、科普、项目立项、合作及国内外交流。最后,唐教授也呼吁,代谢组学作为一个“年轻的”学科,领域中还存在很多“难啃的骨头”,希望所有从事代谢组学的学者能够瞄准“难点”问题,勇担学科发展重任,共同促进代谢组学蓬勃发展。大会报告环节由复旦大学唐惠儒教授、帝国理工学院 Jia Li教授、丹麦奥尔堡大学/芬兰图尔库大学Matej Oresic教授以及中国科学院大连化学物理研究所许国旺研究员四位专家带来精彩的报告分享。唐惠儒教授就代谢组学所面临的“种类繁多”“性质各异”“形式多样”“浓度差别大”“功能所知少”等挑战进行了介绍,同时也向与会者介绍了代谢组学定量分析的新技术与策略。Jia Li教授报告了通过代谢表型探索营养和肠道健康相关的研究进展。Matej Oresic教授报告了胆汁酸与肠道微生物组学研究的相关进展。许国旺研究员详细介绍了小分子分析化学的新方法以及代谢组学和暴露组学相关的研究进展,对疾病风险因子和疾病标志物的发现提供了有利工具。复旦大学 唐惠儒教授帝国理工学院 Jia Li教授丹麦奥尔堡大学/芬兰图尔库大学 Matej Oresic教授中国科学院大连化学物理研究所 许国旺研究员大会同期还举办了多个主题研讨会,共邀请了80位专家学者及行业专家针对代谢组学技术与应用、疾病代谢组学、药物代谢组学、脂质代谢组学技术、环境代谢组学、代谢组学数据分析进行学术探讨与交流。为促进优秀青年科技工作者的成长,拓宽视野,增长知识和才干,提高学术水平,大会还特别举办了青年科学家论坛,邀请了20位青年学者进行了学术交流。从多位青年科学家的报告可以看出,中国代谢组学研究的团队近些年在不断扩大,关于单细胞代谢组学、基于质谱成像技术的空间分辨代谢组学以及人工智能分析等新技术新应用的研究进展日新月异。在大会闭幕式环节,海南大学罗杰教授、中央民族大学再帕尔阿不力孜教授、黑龙江中医药大学王喜军教授以及上海交通大学/武汉大学邓子新院士带来了精彩的报告分享。罗杰教授报告了植物次生代谢调控和代谢组学研究的最新进展。再帕尔阿不力孜教授报告了质谱成像技术与空间分辨代谢组学研究的最新进展。王喜军教授向与会者详细介绍了中医方证代谢组学(Chinmedomics)以及其团队基于该内容的研究进展,包括方证代谢组学驱动的中药有效性等内容。邓子新院士以模拟和重塑代谢秘诀的合成生物学创新之路为题作报告,并从自然筛选驱动、途经工程驱动、学科交融驱动以及源头发现驱动等角度全方位阐释了代谢与合成生物学研究的现状以及未来趋势。海南大学 罗杰教授中央民族大学 再帕尔阿不力孜教授黑龙江中医药大学 王喜军教授(线上报告)上海交通大学/武汉大学 邓子新院士闭幕式上,本次大会的联合主席厦门大学林树海教授作闭幕式致辞,他表示,代谢组学的宗旨要围绕“测得全”“测得准”“测得透”“测得快”“测出活力”全面发展,同时时空成像技术和人工智能技术为代谢组学注入新的发展动能。最后,林树海教授再次感谢参与组织大会的学术委员、莅临现场的报告专家以及众多志愿者。厦门大学 林树海教授中国生物物理学会代谢组学分会委员合影会议期间还进行了墙报展示交流及优秀墙报评选活动,闭幕式上举行了优秀墙报的颁奖环节,邓子新院士与唐惠儒教授为获奖者颁奖。墙报展示区优秀墙报获奖者合影本次大会还得到了多家展商的大力支持,可以看到代谢组学在产业界的快速发展。展商包括质谱仪器设备企业如SCIEX、赛默飞、布鲁克、Waters、安捷伦等,还有众多提供代谢组学科研服务的企业如迈理奥代谢、英盛生物、迈维代谢、百趣生物、凯莱谱、拜谱生物、中科新生命、华大基因、诺米代谢、诺禾致源、百迈客、鹿明生物等,还有代谢组学研究相关的产品耗材及分离设备供应商如睿科、青岛腾龙、大连达硕等公司。展商掠影大会志愿者合影扫描二维码查看大会照片墙
  • 发展我国电子显微镜产业需循序渐进——访军事医学科学院国家生物医学分析中心张德添教授
    由于光具有波动性,其衍射现象限制了光学显微镜分辨本领的进一步提高,所以观察尺度在200nm以下的物体几乎是光学显微不可逾越的鸿沟,这时就需要波长更短的发射源来“照亮”被观察物体。1932年德国柏林工科大学的年轻研究员卢斯卡率先想到利用电子束进行成像并制成了世界上第一台电子显微镜,50多年后终于得到科学界的认可并因此获得了诺贝尔奖。电子显微镜的发明为人类探索微观世界开启了一扇大门。 近年来各种病毒如SARS冠状病毒、禽流感(H5N1)病毒、以及目前正在蔓延的甲型H1N1型病毒等不断威胁着人类的健康和生命。人类在抗病毒过程中关键要研究病毒、了解病毒,才能够采取进一步应对措施;电子显微镜是目前研究病毒的最有效工具。 张德添教授1965年从中国科技大学核物理专业毕业后进入军事科学医学院工作,先后10次参与了我国核爆炸实验。80年后从事了两年教学任务,然后组建电子显微镜实验室,一干就是29年,大部分时间在进行常规细胞生物学观察。期间张教授还研究了肌细胞中钙流失的分析,例如研究爪蟾、小鼠、大鼠以及兔子等在超负荷运动过程中骨骼肌细胞中钙离子浓度变化规律,主要是利用超低温快速冷冻超薄切片技术及电子显微镜X射线微区分析方法,获得了大量宝贵的数据;并从肌膜受损、肌浆网调控以及线粒体调控理论等方面对实验结果进行了分析。当时世界上只有少数发达国家的肌肉研究所在进行这方面的研究,该工作对极端条件下肌细胞中钙离子分布情况进行了探索性研究,在科学地设定运动量、保护骨骼肌以及预防高原缺氧引起的猝死等方面具有重要意义。 军事科学医学院国家生物医学分析中心张德添教授 这次我们很荣幸采访了军事医学科学院在电子显微学一线工作近30年的张德添教授,请他来谈谈电子显微镜相关的一些问题以及我国电镜产业化的一些情况。 一、提高分辨率一直是电子显微镜的主要发展方向 透射电镜(TEM)照片:冠状病毒(SARS) 扫描电镜(SEM)照片:支气管上皮细胞及其纤毛 张德添教授首先为我们讲述了目前电子显微镜的一些特点、种类、应用领域及前沿技术。 目前电子显微镜主要应用的两个领域是材料科学和生命科学。在材料科学领域主要是进行成份与结构分析以及纳米材料的形貌观察,要求高分辨率的电子显微镜;在生命科学主要研究细胞、病毒、生化物质定位、生物大分子等,要求中等分辨率的电子显微镜。 电子显微镜具有很高的分辨率,比如目前的透射电子显微镜(TEM)和扫描电子显微镜(SEM)的分辨率分别达到0.07nm和0.4nm;另外电子显微镜放大倍数范围宽,透射电子显微镜(TEM)和扫描电子显微镜(SEM)的放大倍数范围都能达到几十~几百万倍以上。 电子显微镜的种类很多,根据不同功能和特点有各自的实用范围。按照大类分目前市场上主要有扫描电子显微镜、透射电子显微镜、扫描透射电子显微镜等。 扫描电子显微镜主要是观察物体的表面形貌,能够直接观察样品表面的结构,也可以从各种角度对样品进行观察,样品制备过程简单。扫描电子显微镜有普通电子显微镜、分析型扫描电子显微镜和场发射枪扫描电子显微镜。 透射电子显微镜是电子束透过样品经过聚焦与放大后产生物像,由于电子易散射或被吸收,用于透射电子显微镜的样品必须经过专业的手段使样品厚度在100纳米范围内,透射电子显微镜可以直接观察重原子的像。 透射电子显微镜有像差校正电子显微镜、原子尺度电子全息显微镜、超高压电子显微镜、场发射枪扫描透射电子显微镜等。 张德添教授谈到,“目前电子显微镜的发展方向基本都是针对提高电子显微镜的分辨率,比如努力发展新一代的单色器、球差校正器、发展高性能的场发射枪电子显微镜以及电子显微镜的小型化等;在生物电子显微学方面一是使用低温冷冻技术,使分子在含水的状态下,观测分子的结构,更加接近真实状态;其次可利用计算机三维像重构技术,直观的研究蛋白的三维结构图像。”二、我国电子显微镜产业化现状 1、电子显微镜市场稳步增长 纳米技术、材料科学、制药、生命科学、化学等领域的快速发展推动了电子显微镜市场近年来的稳步增长;虽然高分辨率的电子显微镜单台价格达两三千万元,但是相关单位仍然希望得到高分辨电子显微镜用于科学研究,比如:FEI公司生产的Titan Krios冷冻透射电子显微镜一上市即被新加坡国立大学、清华大学和中科院生物物理研究所订购进行结构分子生物学方面的研究。所以,电子显微镜在科研和生产过程中的重要性不言而喻。 张德添教授说“全国目前能够使用的各种电子显微镜大概是3500-4000台,其中扫描电子显微镜约2500台,其余的是透射电子显微镜;在材料学领域拥有量约3000台,生物医学领域拥有1000台左右,而且每年以大约超过100台的数量在增长,显然电子显微镜在材料科学和生命科学领域已经是不可或缺的工具。” 张德添教授还提到,欧美很多国家的医院已经在使用电子显微镜作为诊断工具,患者不仅仅要求知道诊断结果,同时还要求电子显微镜测试结果,所以电镜将来的前景非常看好,我国目前已经建立了部分电子显微镜测试方法的国家标准,今后对于电镜的需求肯定会增加。 2、我国电子显微镜产业化情况 1958年由中国科学院长春光机所研制的我国第一台透射电子显微镜 1956年王大珩、钱临照等在制定我国《12年科学技术发展远景规划》时提出了研制电子显微镜,黄兰友、郭可信、姚骏恩等老一辈科学家都参与了我国电子显微镜的研制。1958年,中国科学院长春光学精密机械研究所研制成功了我国第一台透射电子显微镜,分辩率达2.5 nm;1975年中国科学院北京科学仪器厂(KYKY)成功制成了我国第一台DX-3型扫描电子显微镜,分辨率达10nm。我国对于电子显微镜的研制起步不算晚,也曾经取得了辉煌的成绩。 在八十年代以前,我国的国产电子显微镜数量基本与进口电子显微镜数量相当,其原因之一是由于当时电子显微镜的需求量相对较小,每年约三四十台。进入九十年代,对于电子显微镜的需求大增,而且在市场的带动下电子显微镜技术的发展突飞猛进,尤其是在像差校正方面获得了重要的进展;加之生物技术的发展,促使更加先进的电子显微镜出现;同时国外电子显微镜大举进入中国市场,而我国电子显微镜的研发投入严重不足,这样的多重因素导致我们的电子显微镜产业和国外的差距越来越大。 张德添教授认为,“以我国目前的技术实力是完全能够制造出中低端电子显微镜的(包括透射电子显微镜和扫描电子显微镜),但是由于我国整个工业基础薄弱,制造出来的电子显微镜在稳定性和可靠性方面与进口电子显微镜相比还有不小差距,加上我国还没有形成一定的电子显微镜产业链,一台电子显微镜从头到脚都要靠一个厂家独自完成,这也是发展国产电子显微镜的瓶颈所在。” 3、发展我国电镜产业需要做好打持久战的准备 张德添教授认为,发展我国电镜需要依照我国国情,实事求是,从基础做起,不能好高骛远。 (1)加强基础学科的建设是长久之计 十年树木,百年树人,所以人才的培养必须走在前面;而目前我国在“电子光学”方面的研究几乎处于停滞状态;例如,中国科学院北京科学仪器厂为了培养电子光学人才,只能把员工送到德国去学习。 (2)逐步建立我们自己的产业链 80年代初期由于我国市场上电子显微镜需求量小(每年三四十台),“企业要生存,员工要吃饭”,而电子显微镜研发所需的投入又非常大、研发周期长,导致国内的仪器公司不敢上电子显微镜项目。没有相关产业的带动,一方面使企业的生产成本增加;另一方面,研发投入少,导致一些专家转行干其他方面的工作。 张德添教授告诉笔者,现在需要逐步建立起我们自己科学仪器产业链,有很多东西是可以共享的,比如很多科学仪器都用到真空设备、电子电路、精加工等。没有仪器产业就谈不上仪器的研发。 (3)把发展我国科学仪器提高到国家战略层面 张德添教授告诉我们,国家对于这样重大科研设备的研制需要多投入、持续不断的投入才能见效,不可能一次投入就希望造出一台合格的仪器来,即使是仪器生产出来了,后期还有很多应用的工作需要做。我国在“十一五”规划期间电镜研发方面的投入是2200万,其实这个数目只相当于进口一台高档电镜的价格。我们国家“神州”系列飞船之所以能够取得这样的成功除了投入大之外,还有一个重要的因素就是经过了长时间的积累才有今天的这样的结果。 (4)整机的研发以企业为主导 整机的研发需交给企业来做,因为一方面企业具备机械加工的硬件设备,另一方面由于涉及到生存的问题,企业更加有动力和决心做出符合市场需求的产品来;借鉴国外经验,凡是涉及到实际的产品,必是有企业的参与。 (5)采购过程中应该优先采购国产仪器 张德添教授曾多次参加并负责过大型仪器设备采购和招标活动,感受最深的就是国内单位在采购仪器时候的大手笔,对于采购仪器的指标求高、求全,实际上对于常规检测单位,仪器购买回来之后,很多功能都用不着,也没有能力开发,造成巨大的浪费;采购仪器的时候希望能够真正的听取专家组的意见、以符合实际需要为准。 张德添教授说,“我曾到日本田中耕一先生(与美国科学家约翰芬恩共同发明了“对生物大分子的质谱分析法”而获得2002年诺贝尔化学奖)所在的实验室参观过,结果令我十分震惊。田中耕一先生所在的实验室并不如我们想象的那么高级,也没有很多高级的仪器设备,完全是一个普通的实验室,却做出了如此娇人的成绩;给我们的启示就是我们是否真的每个实验室都需要配备那么高端的科研设备,我们目前购买的仪器设备是否得到了充分的利用? 所以在采购过程中优先采购国产仪器,特别是对于这一条需要详细的规定,使其具有切实可行、具有可操作性的条款,而不是仅仅作为一个可有可无的规定。 三、培养综合型科研人才 对于我国科学仪器人才培养的问题,张德添教授向我们表达他自己的观点: 仪器研发人才是复合型人才,需要对于多个学科都有很好的理解,并长期工作在第一线;所以仪器人才的培养和仪器研发本身的特点一样:投入大、周期长。发展自己的科学仪器产业,系统地培养人才必不可少;而我国近十来年培养出的仪器研发人才却非常有限。 张德添教授指出,在重视研究系列人才的同时,同样要重视工程系列的人才,对于仪器研发这样针对性、实用性都非常强的工作,工程系列人才的介入是非常必要的;不简单以文章作为工作的评价指标,建立更加合理的人才评价制度;我们通过验收的项目很多,专利也不少,而由此导致的新产品却很少,这样的局面值得我们反思。另外,仪器整机的研发涉及到方方面面,需要既有很强的专业背景,又能够整合各方面资源的人才,我国目前急需这方面的人才。 四、不论多么困难,我国的电镜产业一定要坚持做下去 张德添教授曾参与了我国“十一五”计划中关于电子显微镜项目的起草,针对我国的现实情况,和透射电子显微镜的研发难度,张教授提出优先发展中低档电子显微镜,夯实基础然后再发展中高档电子显微镜。 最后当被问道“‘十一五’即将结束,您对‘十二五’有什么期待”时,张德添教授表示,不论多么困难,我国的电镜产业一定要坚持做下去,像电子显微镜这样的大型仪器,既要有资金的支持,又要先进的管理措施,系统地整合各方面的资源才能够实现国产化。 采访手记 作为认识微观世界的必备工具,电子显微镜的重要性已经无需赘述。我国的电子显微镜产业其实和其他科学仪器产业如质谱,光谱等相似,由于基础薄弱,目前还处于学习和模仿阶段,需要一点一点地攻克某个部件、某个技术;必须有一个积累过程。 我们的航天事业、汽车工业、飞机工业,不仅有三四十年的积累,并且还需要长时间持续不断地投入,才有今天这样的成绩;比起这些产业,我们科学仪器以往不论在重视程度,还是在产业化方面显然要弱一些,但是已经不能再等。 发展我们自己的科学仪器产业,尤其是像电镜这样的大型仪器设备,正如张德添教授所说,“需认清客观现实,循序渐进,以市场为驱动,系统地加强我国各个方面的能力,比如微加工、电子电路、真空系统、软件平台等;各方面的条件成熟了,生产出和跨国公司同样水平的科学仪器自然会是水到渠成。” 采访编辑:刘向东 附录:张德添教授简介 1965年毕业于中国科学技术大学近代物理系原子核物理专业。 1965-1979年,军事医学科学院二所工作,主要从事电子学、光学、生物医学工程及放射医学等方面的研究工作。期间曾十次参加了我国的核武器爆炸试验工作。 1980-至今,在军事医学科学院国家生物医学分析中心,从事电子显微学(包括透射电镜、扫描电镜、电子探针、能谱仪等)、生物医学工程及相关学科(如原子力扫描显微镜(AFM)、激光共聚焦扫描显微镜)等方面的研究工作;任教授级高级工程师。 1991年-2000年期间,曾承担国家科技部关于“分析测试新技术新方法专题研究”,“生物样品电镜X射线微区分析技术方法的建立与研究”等基金课题。 2001年以来,多次参加并负责过“东方国际招标有限责任公司”组织的大型仪器设备采购招标活动;多次参加国家科技部组织的多项评审项目。 2007年1月,被国家科技部条件财务司、国家教育部科技司和国家质检总局科技司三部门聘任为“十一五”国家科技支撑计划科研条件领域相关项目、课题实施管理咨询专家。 共获得军队科技进步奖、中国分析测试协会奖“CAIA奖”、体育科学技术进步奖等九项。发表的论文、论文摘要共计50余篇。 现任中国电镜学会理事,北京市理化测试学会副理事长,北京市电镜学会理事长,“现代科学仪器”编委等社会职务。
  • 马尔文帕纳科:创新GCI、ITC技术,打造动力学与热力学分析一体化分子互作平台
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到马尔文帕纳科生命科学业务发展经理、微量热技术&分子互作技术产品经理韩佩韦谈一谈马尔文帕纳科的创新分子互作分析技术及他对该技术应用及市场的看法。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。韩佩韦:马尔文帕纳科公司不断致力于为基础科研与药物研发领域提供更先进的分析仪器和解决方案,在分子互作分析领域我们公司主推的产品是一种将动力学分析与热力学分析整合为一体的非标记分子互作平台,包括Creoptix WAVE系列分子相互作用仪和MicroCal PEAQ-ITC系列等温滴定量热仪等。众所周知,深入全面研究分子间相互作用需要借用多种原理互补的技术进行多角度分析,其中,动力学分析技术能够准确描述分子间的识别能力与结合的稳定性和半衰期,是一种实时、动态检测的手段;而热力学分析则深入探究分子互作的能量学本质,即分子间互作的机理,包括特异性相互作用驱动、疏水相互作用以及构象变化驱动。我们Creoptix WAVE分子相互作用仪拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)的光学生物传感器,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。另外,Creoptix WAVE产品采用了waveRAPID动力学检测方式和创新性微流控技术。不同于传统力学的检测方式,只需一个浓度的样品,无需稀释,能够更快地得到动力学数据(waveRAPID 比传统动力学检测约快10倍),解决了市面部分分子互作技术的低灵敏度、无法捕获快速动力学、表观亲和力偏离、流路易堵塞以及动力学分析中需要配制大量浓度梯度等问题。Creoptix WAVE 分子相互作用仪MicroCal PEAQ-ITC 是一款高灵敏度、低容量的等温滴定量热仪,可用于生物分子相互作用的无标记溶液内研究。它可以在单次实验中直接测量所有结合参数,并且可使用低至10μg容量的样品对无论是高亲和力还是低亲和力的结合剂进行分析。MicroCal PEAQ-ITC可用于多种应用,包括表征小分子、蛋白质、抗体、核酸、脂质和其他生物分子的分子间相互作用等。MicroCal PEAQ-ITC 等温滴定量热仪仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。韩佩韦:分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。其中,采用热力学代表技术的MicroCal ITC系列成立于1977年,是最早商业化的微量热技术品牌,在业界拥有众多粉丝,其先后多款经典产品如VP-ITC, ITC200以及PEAQ-ITC都有众多的用户群和文献支持;动力学代表技术Creoptix WAVE系列则成立于其他技术如SPR/BLI等相对成熟的时期,正是在发现了现有技术的某些局限和不足后,Creoptix开发并成功商业化了新一代动力学分析技术——光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)。目前,MicroCal和Creoptix品牌都是马尔文帕纳科旗下分子互作分析的中坚力量,与MicroCal DSC和Light Scattering一起打造了从样品质量控制直至动力学与热力学全面分析的Label-Free分析平台。仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?韩佩韦:马尔文帕纳科旗下的非标记分子互作平台几乎应用于分子互作相关研究的各个领域:在药物研发领域包括药靶确认,片段药物、小分子药物、肽段和核酸药物的筛选、表征与优化,抗体药物筛选、表位分析、结构改造,制剂开发、稳定性、可比性和生物相似性研究等;诊断试剂开发与优化、生理条件下(如血清、血浆等复杂体系)测试等等;在基础科研中则包括癌症、神经科学、免疫科学、膜蛋白、环境科学等领域。目前,研究者应用我们的技术和产品组合来研究分子互作相关的定性与定量信息,包括有无结合、结合特异性和选择性、结合强弱、结合快慢与稳定性以及部分非生物和非水相体系,如超分子组装、有机溶剂环境等。比如在冠状病毒(COVID-19)疫苗研发过程中,Creoptix WAVE system为病毒蛋白和抗体的结合动力学研究提供了有力支持。WAVE system系统将高信号和高时间分辨率与ELISA(酶联免疫吸附测定)才能实现的样品稳定性结合起来。实时分析广泛的生物流体样品的相互作用,提供完整的动力学数据,包括亲和力和高精度的结合和解离常数。由于整个微流体都包含在外置的传感器芯片WAVEchip中,可将实验中交叉污染的风险降至最低。WAVE system可用于表征病毒样颗粒(VLPs)的动力学,为研发疫苗的诱导免疫反应提供一个有效的平台。一种单克隆抗体结合嵌入VLPs中的蛋白质仪器信息网:您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?韩佩韦:我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。我的个人观点是当今的分子互作分析市场百花争艳,百家争鸣。各种不同原理的技术和产品层出不穷,研究者可以更好的根据自己的需求和问题来找到适合的技术,这对于技术发展和研究者而言都无疑是件好事,无论是进口的还是国产的技术,每种技术都有其各自的优点和局限,能够解决自己问题的才是最好的。随着市场的竞争,我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。马尔文帕纳科 韩佩韦韩佩韦,中科院生物物理所生物物理学博士,马尔文帕纳科生命科学业务发展经理、微量热技术和分子互作技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC,ITC,SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & MicroCal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。
  • 1147万!伍连德生物医学创新研究院细胞与分子影像研究平台和柳州市人民医院科研仪器设备采购项目
    一、项目一(一)项目基本情况项目编号:[230001]LTGC-[GK]20240005项目名称:伍连德生物医学创新研究院细胞与分子影像研究平台二期仪器采购采购方式:公开招标预算金额:7,508,500.00元采购需求:合同包1(细胞与分子影像研究平台二期仪器采购包1):合同包预算金额:3,980,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表小动物活体X射线断层成像系统1(台)详见采购文件3,980,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日合同包2(细胞与分子影像研究平台二期仪器采购包2):合同包预算金额:3,528,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他仪器仪表高分辨激光共聚焦显微镜1(台)详见采购文件2,650,000.00-2-2其他仪器仪表倒置荧光成像系统1(台)详见采购文件320,000.00-2-3其他仪器仪表双色红外激光分析仪1(台)详见采购文件400,000.00-2-4其他仪器仪表成像型多色细胞分析仪1(台)详见采购文件158,500.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起90个日历日(二)获取招标文件时间: 2024年08月13日 至 2024年08月20日 ,每天上午 08:30:00 至 12:00:00 ,下午 12:00:00 至 16:30:00 (北京时间,法定节假日除外)地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可方式:在线获取售价: 免费获取(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名称:哈尔滨医科大学地址:黑龙江省哈尔滨市南岗区保健路157号联系方式:0451-866232802.采购代理机构信息名称:黑龙江省蓝图工程项目管理有限公司地址:黑龙江省哈尔滨市道里区群力第四大道1479号B3栋C单元23层1号联系方式:0451-510607683.项目联系方式项目联系人:黑龙江省蓝图工程项目管理有限公司电话:0451-51060768二、项目二(一)项目基本情况项目编号:LZZC2024-G1-990797-GXDD项目名称:小动物活体成像系统等一批科研仪器设备采购预算金额:397.600000 万元(人民币)最高限价(如有):355.600000 万元(人民币)采购需求:标项名称:小动物活体成像系统等一批科研仪器设备采购数量:1预算金额(元):3976000简要规格描述或项目基本概况介绍、用途:具体内容详见附件。最高限价(如有):3556000备注:本项目为全流程电子化采购项目,采用远程异地评标,有意向参与本项目投标的潜在投标人应当做好参与全流程电子招投标交易的充分准备。合同履行期限:自签订合同之日起60日内安装调试完毕,验收合格并交付使用。本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年08月13日 至 2024年08月20日,每天上午8:00至12:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)方式:在获取招标文件截止时间前登录广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)在线办理报名:“项目采购”→“获取采购文件”。(注意事项:1.潜在投标人应当在获取招标文件截止时间前通过广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)注册登记后再获取招标文件,未通过广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)注册登记获取招标文件的投标人,采购代理机构将拒绝接收其投标文件。2.已获取招标文件的投标人不等于符合本项目的投标人资格。)售价:¥0.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:柳州市人民医院     地址:柳州市文昌路8号        联系方式:葛瑛0772-2662036      2.采购代理机构信息名 称:广西大德项目管理有限公司            地 址:柳州市潭中东路17号华信国际B座910            联系方式:梁斌雄、余明华0772-2120191            3.项目联系方式项目联系人:梁斌雄、余明华电 话:  0772-2120191
  • 天美公司参加天津大学分子聚集态科学论坛
    4月23日,天津大学分子聚集态科学论坛在天津大学科学图书馆隆重召开。这是天津大学分子聚集态研究院自成立以来,第一次举办专业的学术论坛。本次论坛邀请了天津大学的相关领导和来自清华大学、北京大学、复旦大学、浙江大学、中科院化学所、长春应用化学研究所等60余名的国家“杰青”、多名“优青”、“青千”学者及多家知名杂志编委参加论坛。  开幕式上,分子凝聚态研究院院长李振首先致欢迎辞并向与会嘉宾具体介绍了学院的发展情况。研究院成立以来,展示出强有力的发展态势,科研平台建设、人才引进工作等都取得了卓越的成绩。本次论坛围绕分子聚集态,举办了16场学术报告和多场专家座谈,向到场师生介绍化学、材料、生物等多学科前沿科技成果,对推进学术发展、人才引进等具有深远的影响。  天美公司作为本次论坛的赞助方之一全程参与了会议,天美公司的主打产品爱丁堡荧光光谱仪也顺利刊印在会议手册中;主办方在会场外的休息区专门准备了四个宣传区,并安排天美等四家厂商携带公司及产品宣传资料进驻宣传区;在晚宴期间还安排了每家厂商两分钟的宣讲时间。上述安排可谓非常周到,让赞助方可以最大限度的发挥赞助商的权利,起到了很好的宣传广告效应。  本次论坛的到场嘉宾来自全国各地,其中很多都是AIE领域的顶尖专家,会议期间有数位爱丁堡的老用户和潜在用户咨询了爱丁堡产品的相关问题,借助这样一个专业性的学术论坛作为我们的宣传窗口,起到了很好的品牌和市场推广作用。 参加论坛的部分代表合影留念 16场学术报告的详细安排 学术报告现场情况 会议休息区及厂商展示区 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 走进中国质谱成像研究前端——访中国医学科学院/北京协和医学院药物研究所再帕尔阿不力孜教授
    医学成像技术是能够提取生物体内组织或器官的形态、结构以及某些生理功能的信息,为生物组织研究和临床诊断提供影像信息的一门科学。随着科学技术的进步,医学成像技术所涉及的范围越来越广,有X-射线成像、超声波成像、磁共振成像、红外线成像和放射性核素成像等。  近年来,质谱分子成像(MSI)技术引起了国内外科研工作者的关注,进行MSI研究的科学家也越来越多,有关MSI的新技术、新方法不断涌现。中国医学科学院/北京协和医学院药物研究所(简称药物研究所)再帕尔阿不力孜教授带领项目攻关组,这几年致力于开发MSI新技术,并积极开展在新药研发和临床病理诊断的应用研究。近日,仪器信息网编辑采访了再帕尔阿不力孜教授。药物研究所贺玖明博士陪同采访。再帕尔阿不力孜教授 什么是MSI?  MSI (Mass Spectrometry Imaging,质谱成像)是新兴发展起来的基于质谱检测技术的一种成像方法,在药学和医学领域的应用还处于起步阶段。与其它影像技术相比,MSI技术无需标记,是一种深入到分子层面的成像技术,不局限于一种或者几种分子,可以对一些目标和非目标性分子同时进行成像分析 它不仅可同时反映多种分子在空间上分布的信息,还能够提供分子结构信息。因此,其在新药研发、原位生物标志物的发现、医学临床病理诊断等方面有非常值得期待的应用前景。  对于MSI成像设备,由关键的两部分组成:离子化探针技术和质谱分析器(含检测技术)。目前质谱分析器已经非常成熟,涉及到的仪器主要有飞行时间型质谱(TOF)、离子阱质谱(IT)以及四极杆-飞行时间型质谱(Q/TOF)等。待测样品被离子化并按区域依次导入质谱分析器,进一步通过软件对质谱数据进行重构获得成像图,离子化效率和区域大小关系到后续成像的灵敏度和分辨率。近二十多年质谱离子化技术的突破和多样化发展,促进了质谱成像的发展。  根据成像原理及其离子化技术的不同,MSI技术可以分为探针型和面阵型,其中面阵型对检测器硬件的要求高,尚未有商业化的面阵型MSI装置,目前主要是探针型MSI技术在发展。探针型MSI技术按照离子化方式进行分类,主要包括以下三大类型:需要在真空条件下进行离子化的二次离子质谱( SIMS)成像、基质辅助激光解吸电离(MALDI)质谱成像以及近几年发展起来的以解吸电喷雾电离(DESI)为代表的常压敞开式离子化质谱成像技术等。  SIMS技术的优势是不需要复杂的样品处理,具有很高的空间分辨率,可达到纳米级的空间分辨率,主要应用于样品表面的元素以及有机小分子的成像分析。MALDI-MSI是目前最成熟、应用最为广泛的MSI技术,尤其适合于蛋白质、多肽等生物大分子的质谱成像分析。然而,在MALDI-MSI成像分析中需要添加基质辅助电离,基质的加入会导致小分子目标物的分析受到影响,而且需将样品引入高真空的封闭有限空间,操作不方便。纳米结构启动质谱(NIMS)是近几年发展的与MALDI类似成像技术,它能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单细胞进行分析。  常压敞开式离子化质谱成像技术,其特点是不需要真空环境,样品前处理方式及实验操作较为简便。它主要包括解析电喷雾(DESI)、等离子体探针(LTP)、解析大气压化学电离(DAPCI)、空气动力辅助离子化(AFAI)和多种辅助方式的大气压激光解析离子化方法等。  在了解了MSI的分类之后,再帕尔教授深入浅出的讲解了质谱成像的样品处理方法。对于生物组织来说首先需要制作成冷冻切片,通过扫描切片检测分子在组织内不同区域的分布情况。MALDI-MSI需要将冰冻切片固定在导电载玻片上,还需要添加适当的基质 常压敞开式离子化MSI,只需将冰冻切片固定在防脱的载玻片上即可。另外,如果是整体大鼠切片则需要采用大型冰冻切片机,尽可能获得包含所有器官的整体切片。扫描一个组织器官切片获得成像一般需要几十分钟,而扫描整个大鼠切片有可能要用近十小时。AFAI解决了什么问题?  提到再帕尔教授和MSI,就不能不说空气动力辅助离子化(Air Flow Assisted Ionization ,AFAI)技术。AFAI技术是由再帕尔教授牵头,其实验室与清华大学王晓浩教授课题组共同研制成功的新型常压敞开式离子化技术,并于2011年在《Rapid Communication in Mass Spectrometry》期刊发表的论文中首次提出。随后,再帕尔团队采用AFAI技术研发出AFAI-MSI新方法,并于2013年在《Analytical Chemistry》上发表了介绍AFAI-MSI技术的论文,详细描述了基于该技术的整体大鼠体内药物成像分析方法,2015年在同一期刊上又发表了可获得与药物作用机制直接相关的内源性功能小分子及其分布特征的成像代谢组学分析方法最新研究成果。  再帕尔教授讲到AFAI的时候,饮水思源的谈到了美国普渡大学Cooks教授课题组的发明:2004年Cooks等人在《Science》上发表论文介绍了新的解析电喷雾电离方法“DESI”。ESI本来就是常压下可电离的离子源,Cooks化繁为简的给ESI离子源去掉了封闭外壳,实现了无需复杂前处理的样品表面分析。这十年来,在DESI这种常压敞开式离子化技术的研究基础上,发展出了近40种不同原理或不同类型的常压敞开式离子化技术,AFAI就是其中之一,也可称之为AFA-DESI。AFAI实景仪器图  接着,再帕尔教授讲述了AFAI的研发经历:“原本我们实验室的主要研究方向是基于质谱技术的天然产物及药物分析方法及其新药研发应用研究工作。DESI这种新型离子化技术的出现给我们团队带来了新的想法”。从2005年开始,再帕尔带领清华大学精密仪器系的王晓浩课题组、东华理工大学的陈焕文课题组等组成研发团队,共同开展了新型的敞开式场解析离子化技术的研发工作。开始阶段,他们也曾走过弯路,例如,最初提出的离子化模型理论虽被证明,但实用性不强。在不断探索中,他们发现在大气压条件下,空气流能很好地传输离子或带电液滴并促进离子化,提高了常压敞开式离子化技术质谱分析的灵敏度和稳定性。这项技术被不断完善,最终命名为空气动力辅助离子化(AFAI),而且AFAI离子源可以与具有大气压接口的多种质量分析器匹配,兼容性很好。  与DESI相似,AFAI不需要真空也不需要复杂的样品前处理。AFAI的最显著特点是可以实现较远距离或较大体积样品的高灵敏分析,扩展了待测样品的空间和操作灵活性。简单来说,AFAI技术的原理是:传输管内有高流速空气及外加电场,样品离子通过传输管传输至质谱分析器的采样锥孔富集。此过程能提高离子采集与传输效率,还具有促进带电液滴脱溶剂、增加样品离子产生的作用。它解决了常压敞开式电离中面临的灵敏度低、检测样品空间小的问题。再帕尔教授用简单的话语通俗的说明AFAI的优势:“DESI等离子化技术需要被测样品与采样锥孔之间非常近,这样才能保证灵敏度。这个特点限制了成像分析的实施,对于较大的组织样品(如大鼠切片),无法放进离子化探针所在位置,难以实现离子的有效传输到质谱分析器进行高灵敏分析。而AFAI借助0.5米或更长的传输管,实现了远距离离子传输,放置样品的空间非常充裕,且可轻松调整位置,用这样的方法,包括大鼠切片等较大组织的成像分析难题就解决了。”  由于再帕尔教授从事的工作需要,他时刻考虑用新技术来解决药物分析中面临的难题。药物在整体动物体内的靶向作用、分布特征及其动态变化是新药研发成功的必需关键信息。目前,主要的技术手段之一是放射性自显影技术(WBA),它能够实现整体动物体内的药物成像分析,但这种技术需要同位素标记,成本高昂,而且不能区分药物和代谢产物。在AFAI技术成功研制以后,再帕尔教授首先想到利用AFAI从动物实验入手进行药物成像方法研究:“因为AFAI几乎不需要样品前处理,还适合远距离大体积样品检测,非常适合发展成为新的质谱分子成像技术。”于是,再帕尔团队沿着该研究方向积极推动基于AFAI的质谱成像技术研究工作,就这样AFAI-MSI技术平台逐渐建立了起来,并首先应用于药物及其代谢产物在动物体内的成像分析,其“整体动物体内药物分析的质谱分子成像新方法”也在这个过程中应运而生。整体动物体内药物分析的质谱分子成像(AFAI-MSI)方法  在追问用AFAI这种新型离子化技术用于成像的优势时,再帕尔教授回答编者:“前面提到了AFAI具有离子传输管这种特殊装置,将这种技术用于质谱成像时,远距离和大体积样品的成像如整体大鼠体内分子的成像问题便迎刃而解了,针对整体动物切片无需进行切割即可实现体内药物成像分析,做到了真正意义上的整体动物分子成像。另外,AFAI实现了常压敞开式离子化技术灵敏度的提高,在用AFAI-MSI技术进行动物体内药物分析时,不仅可以检测药物及其代谢产物,也可检测多种内源性代谢物在体内的分布。由于以上两个特点的支持,我们这几年开展了基于AFAI-MSI技术的代谢组学分析方法与应用研究工作,并提出了成像代谢组学新方法,在药物作用机制及癌症临床病理诊断方法研究方面取得了一些新进展。”AFAI在质谱成像技术中的优势比较明显,但是再帕尔教授也表示,常压敞开式MSI技术的主要缺点是空间分辨率不高,这是我们面临的重大技术挑战问题。因此,一方面需要继续改进技术,另一方面今后一段时期的重点研究方向是基于AFAI-MSI技术的原位代谢组学方法研究,并致力于新药研发相关的药效及毒性的预测与评价、药效作用机制和恶性肿瘤的临床分子病理诊断研究。MSI距实际应用还有多远?  MSI技术发展的十几年来,在生命科学、材料科学及生物医学等领域的应用研究取得了许多突破。但作为一种新兴的分子影像技术,其有待进一步发展和创新。谈到MSI技术的研究难点和发展方向时,再帕尔教授说:“目前MSI的发展难点之一是空间分辨率有待提高,只有提高到一定程度才能实现单细胞水平的成像分析。二是灵敏度有待提高,除了生物组织中高含量脂质类物质之外,更需要实现低丰度分子的成像检测。难点三是发现与疾病相关的生物标志物难度大,目前还没有成熟的质谱成像仪器实现临床医学的应用,这个难题如果能有突破进展将对临床分子病理诊断及早期诊断有很大帮助。”  到目前为止,MSI技术已经为药学和医学研究领域带来了一些新的视角。再帕尔教授总结到:“质谱成像技术的发展已经实现了整体动物成像和同时对体内数百种的内源性代谢物进行成像分析。将来的成像技术还将在分子作用机制研究方面有更广阔的发展,不仅仅针对药物本身分析,而且还有助于研究药物的作用机制和药效毒性预测,这将推动新药研发的进度。也希望活体在线质谱成像检测技术能在未来的研究中取得突破。同时使MSI技术真正应用于临床分子病理诊断、恶性肿瘤的早期诊断和术中的实时指导等需求中。”再帕尔阿不力孜教授课题组成员合影 再帕尔阿不力孜教授(左)、贺玖明博士(右)与本网编辑合影   采访后记:通过对再帕尔教授的采访,编者对MSI技术特别是AFAI有了明确而直观的了解。对于新药研发和临床诊断与治疗而言,不仅需要关注药物本身在体内的分布及其变化,更需要了解药物干预下动物体内功能分子的动态变化,从而为药物的作用机制和毒性评价等提供整体、全面、原位的分子信息。此外,通过发现原位标志物,了解其在疾病发生发展中的变化规律,可以帮助癌症等重大疾病的临床早期诊断或疗效评价,甚至实时指导临床手术。愿MSI这双“眼睛”能给生物医学等领域带来更多新发现。  自主研发我们自己的新技术甚至新装置是我国科技领域任重道远的重大任务。除了AFAI-MSI技术以外,我国还有许多科研工作者致力于质谱成像技术的研发,并相继发明了大气压介质阻挡放电电离(DBDI)、等离子体探针(LTP)、解吸大气压化学电离(DAPCI)和等离子体辅助激光解析离子化(PALDI)等新型离子化及其质谱成像技术。我国的MSI技术研发与应用已经步入世界先进行列,愿我国的科学家们能够凭借这些先进的MSI技术、结合世界前沿领域来开发更多属于我们自己的新成果。采访编辑:郭浩楠附录 再帕尔阿不力孜 简历  维吾尔族,理学博士,无党派人士。现任中央民族大学副校长 中国医学科学院/北京协和医学院(简称院校)药物研究所研究员、博士生导师,院校学术委员会执委会委员,药物研究院副院长,国家药物及代谢产物分析研究中心主任,天然药物活性物质与功能国家重点实验室副主任。国务院学位委员会第七届学科(药学)评议组成员,“863”计划项目首席专家,首批“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴专家。中国分析测试协会常务理事,中国物理学会质谱分会副理事长,北京质谱学会理事长,中国化学会质谱分析专业委员会副主任委员。北京市政协常委。  教育背景  1979.09-1983.07 新疆大学化学系分析化学专业学士学位  1985.09-1988.03 日本明星大学化学系硕士研究生,理学硕士  1991.04-1993.05 日本东邦大学理学院化学系招聘研究员,并获得理学博士  工作经历  1983.08-1985.09 新疆大学化学系助教  1988.04-1991.04 新疆大学化学系助教、讲师、副教授  1993.05-1994.07 日本东邦大学药学院客座研究员  1994.10-1996.11 中国医学科学院药物研究所博士后  1996.12—至今 博士后出站后作为引进人才,在药物研究所工作至今。1997年2月被聘为研究员,2000年被评为博士生导师,1998年至今担任所学术委员会委员  2001.10-2002.03 日本科学技术振兴事业团及日本千叶大学分析中心客座研究员  2002年起先后担任药物研究所仪器分析中心主任、“国家药物及代谢产物分析研究中心”副主任、主任  2004.06-2009.05 中国医学科学院/北京协和医学院(院校) 院校长助理  2009.05-2013.04 院校科技管理处处长  2013.04-2014.09 研究生院常务副院长  2011年—至今 兼任天然药物活性物质与功能国家重点实验室副主任、中国医学科学院药物研究院副院长 2013年当选院校第六届学术委员会执委会委员。  2014.09起担任中央民族大学副校长。
  • 珀金埃尔默医学影像业务将出售给瓦里安医疗
    珀金埃尔默(PerkinElmer)今天宣布,有意将医学影像业务以2.76亿美元出售给瓦里安医疗系统。  珀金埃尔默的医学影像业务是为工业、医疗和牙科x光成像系统提供关键部件——平板x射线探测器。  “将我们的医学影像业务和瓦里安的能力相结合,能够更好地支持客户、继续创新和开发新的成像系统,”珀金埃尔默董事长兼首席执行官 Robert Frie说,“此外,业务的适当剥离让我们能够更加聚焦投资、在一些优先项目领域加快增长速度。”  收购完成后,瓦里安将对旗下成像部件业务(Varex)进行拆分上市。预计该交易将在2017年上半年完成。
  • 东胜创新分子影像技术进展与应用研讨班邀请
    诚邀出席: 为推动国内分子影像技术应用的发展,继2008年Carestream Health公司与东胜创新公司首次成功举办之后,组织者今年特邀请更多位国内外著名的分子影像领域专家带来精彩报告,介绍分子影像领域最新技术进展和应用。 如果您对于使用分子影像最新技术开展研究感兴趣,我们诚挚地邀请您出席本次研讨班,与报告专家开展研讨。 主办单位:美国Carestream Health公司分子影像部(原Kodak公司分子影像部) 北京东胜创新生物科技有限公司(Kodak活体成像系统中国总代理) 时间/地点/议程: 【第一站】:2009年4月7日 上海 13:30—16:30 上海好望角大酒店宗洛厅 主讲人1:特邀美国专家——Dr.Ke Shi (美国Baylor医学院教授) 报告主题: 分子影像技术在生物基础研究和临床个体化用药研究方面的应用 主讲人2:Bill Mclaughlin (Kodak资深应用专家) 报告主题:Kodak活体成像系统及其应用概览 主讲人3: 本站特邀中国专家——彭江教授(解放军总医院(301医院)骨科研究所) 报告主题:分子影像技术在组织工程研究中的应用 【第二站】:2009年4月9日 武汉 9:00—12:00 武汉洪广大酒店湖光厅 主讲人1、2:同第一站 主讲人3: 本站特邀中国专家——张福君教授(中山大学附属肿瘤医院影像介入科) 报告主题:分子影像学在临床研究和基础研究中的价值 【第三站】:2009年4月10日 北京 (会后安排参观Kodak活体成像仪) 9:00—12:00 清华大学医学院科学楼B323会议室 主讲人1、2:同第一站 主讲人3: 本站特邀中国专家——史春梦教授(第三军医大学全军复合伤研究所) 报告主题:纳米技术在肿瘤造影中的应用 席位有限,请提前与我们联系预约确认。【参会须知】 如您希望参会,请将以下回执填写后发送电子邮件至:marketing@bio168.net,或填写后交给东胜创新公司的联系人,我们将优先向预约的老师提供会议资料(报告人幻灯片等)。 如您不能亲自参会,但又需本次研讨班的资料,请告知东胜创新公司的联系人,我们将在会后提供。 咨询电话:010-51663168-转市场部闫小姐
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制