当前位置: 仪器信息网 > 行业主题 > >

物理评论快报

仪器信息网物理评论快报专题为您整合物理评论快报相关的最新文章,在物理评论快报专题,您不仅可以免费浏览物理评论快报的资讯, 同时您还可以浏览物理评论快报的相关资料、解决方案,参与社区物理评论快报话题讨论。

物理评论快报相关的资讯

  • “人造原子”近日成国际物理学界大明星
    俄日科学家用“人造单原子”制成量子放大器   “人造原子”这两天成了国际物理学界的“大明星”。就在《物理评论快报》宣告这项成果之前,最新一期《自然—纳米技术》刚刚发布了世界上最小的晶体管——由7个原子在单晶硅表面构成的一个“量子点”,它是另外一种人造原子。接踵而至的这些“不可思议”尤其让我们对人造原子啧啧称奇。完全可以期待,科学家在人造原子这个微型实验室里必将制造更多的惊喜,引领人类走向未知的新天地。   相关新闻:世界最小晶体管问世 仅由7个原子构成   俄罗斯和日本科学家利用“人造单原子”方法,成功研制出量子放大器,使在芯片上建立量子放大器等量子元件的技术向前推进了一步,该科研成果将在电子和光学等领域得到广泛应用。相关研究报告发表在近期出版的《物理评论快报》上。   作为利用量子效应来放大信号的设备,量子放大器以多种不同形式呈现在人们眼前。其中最普遍的形式应该是激光,借助受激辐射过程将光子从原子中激发出来。而实现量子放大器可调可控的一种途径就是利用单个原子或分子建立相关系统。然而,由于自然的原子与需放大的电磁波的耦合性很弱,单原子的量子放大器迄今为止都难以制成。   俄罗斯科学院列别德物理研究所和日本电气公司(NEC)纳米电子研究实验室组成的研究小组,利用“人造单原子”方法成功解决了这一问题。   研究人员介绍说,所谓“人造单原子”,就是一种在普通硅基芯片上人工制成的金属薄膜,它由多个单元组成,包括高频辐射传输线、共振器和一个纳米超导结构等。这一“单原子”能与一维空间的电磁模式强烈耦合,从而可实现电磁波放大过程的可调可控。   研究人员表示,研究的关键在于粒子数反转的准备,这在激光中也是一样。实验中所用的“人造单原子”具有三个分立能级,研究人员通过向该“人造单原子”发射特定频率的电磁信号,可使其从基态激发至第二受激态。此后,“人造单原子”将部分恢复至基态,部分恢复至第一受激态。当处于第一受激态的光子数多于处于基态的光子时,就会发生粒子数反转。随后科研人员将另一个需放大的脉冲信号传递给“人造单原子”,这时,就会与基态粒子和第一受激态的粒子状态转换产生共振,刺激这一转换使光子从“人造单原子”中释放出来,从而实现了信号的全面放大。   研究人员计算出的放大器的最大增益可达1.09,相当于平均每100个入射光子就会释放109个辐射光子,而理论最大增益为1.125。研究人员称,如果使用更多的原子,则可获得更大的增益。   研究人员表示,“人造单原子”为制造基本的量子放大器提供了新思路,其可被用作大规模、可调整的量子放大器组件,也为实现量子太阳能电池的量产带来了希望。
  • 我国科学家中红外强场物理前沿研究获重要新发现
    我国科研人员近日在中红外强场物理前沿研究领域获得重要成果:利用上海光机所强场激光物理国家重点实验室新近建成的可调谐中红外波段的超强超短激光平台,开展了强场原子阈上电离的实验与理论的深入研究,从实验中发现了中红外新波段(例如,2000nm波长)强光场中,原子的阈上电离电子能谱在低能端出现了令人惊异的峰状(甚至双峰)新结构,并进而揭示了长波长条件下长程库仑相互作用起了重要作用。 这项成果是中国科学院上海光机所强场激光物理国家重点实验室徐至展院士、程亚研究员,中科院武汉物理与数学研究所波谱与原子分子物理国家重点实验室研究员柳晓军,以及中国工程物理研究院北京应用物理与计算数学研究所副研究员陈京等,通过卓有成效的合作研究取得的。该项原创性发现发表在新近一期国际学术期刊《物理评论快报》上。审稿人对该工作作出了高度评价:“……这是一个十分有趣并引人关注的课题,因为我们目前大部分关于强场电离的知识都是基于800nm波长的测量结果。而在长波长条件下,仅仅有非常少量的数据存在。这项工作的主要成果是令人惊异地发现了电子能谱低能端的峰状结构……作者令人信服地解释了他们的实验结果……作者报告了在长波长条件下强场电离中发现的一个令人瞩目的新效应……该效应的发现具有重大意义……毫无疑问,该稿件和我们最近在Nature Physics上发表的论文报告了同样的效应……和我们几乎是同时投稿……我认为编辑有强有力的理由决定尽快发表该篇论文。” 强场物理是当今物理学研究的重要前沿领域,强光场中原子、分子的电离动力学研究则是强场物理领域的基础与研究热点。长期以来,因现有超快激光增益介质(如钛宝石)等的限制,事实上绝大多数强场电离物理的实验研究都局限于800nm附近的可见—近红外波段(或经倍频后波长进一步缩短至谐波波段)。直至最近,由于可调谐中红外波段的超强超短激光技术领域的突破性发展,中红外波长条件下的强场电离等重要实验研究才得以深入开展。当前,中红外强场物理的前沿开拓已在国际上引起极大关注。 值得一提的是,美国著名强场物理学家L. DiMauro教授研究组与上述中国科学家研究组几乎同时并各自独立地发现了该重要现象。美国研究组的结果已经在近期的《自然—物理》上发表,而中国科学家研究组的结果也已在近期的《物理评论快报》上发表。 此项研究得到国家“973”计划、国家自然科学基金、中科院重要方向性项目、中国工程物理研究院科学技术基金等的支持。
  • 中国科大在基于原子器件的精密测量物理方面取得进展
    中国科学技术大学工程科学学院教授盛东与物理学院教授卢征天联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。6月10日,相关研究成果以Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer为题,发表在《物理评论快报》上。   原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,因而共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用由诺奖得主维尔切克(Franck Wilczek)提出,它可由一种至今尚未被探测到的“轴子”粒子来传播。  为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法【Phys. Rev. A 102, 043109 (2020)】;同时,发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11-0.55 mm的作用程范围里(对应的传播子质量范围为0.36-1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm附近,本工作的实验精度比前人结果提高了30倍。  研究工作得到国家自然科学基金和中科院战略性先导科技专项的支持。  论文链接 核子(左)与极化氙原子(右)的单极-偶极相互作用示意图
  • 微电子所在半导体器件物理领域获进展
    半导体器件存在缺陷态等无序因素,其载流子的输运往往表现为跃迁形式。半导体中的缺陷态种类较为复杂,准确认识并描述半导体器件中的载流子输运及宏观电学特性是本领域内的难点和重点。   低温下半导体器件所广泛表现出的非线性伏安(I-V)特性的具体物理原因是备受关注的话题之一。此前,多数研究将非线性I-V特性归因于电场对半导体材料中的电子跃迁速率的均匀调制效应。这一解释没有解决非线性输运的问题,反而引发了更激烈的争论。   中国科学院微电子研究所微电子器件与集成技术重点实验室刘明院士团队从理论方面提出了载流子的“集体输运效应”(collective transport)的物理机制。该理论认为外电场所导致的非均匀分布的渗流路径生长产生了collective transport效应,进而在器件尺度上导致非线性的I-V特性。在实验方面,该团队进一步在聚合物器件中,通过巧妙控制半导体的维度实现了对器件渗流阈值的控制,在此基础上通过对器件I-V非线性程度的控制直接证实了非线性输运来源于collective transport这一假设。该工作实现了关于上述话题互存争议的各种假设的统一,为发展操控半导体器件I-V特性的方法提供了理论依据。   相关研究成果以Collective Transport for Nonlinear Current-Voltage characteristics of Doped Conducting Polymers为题,发表在《物理评论快报》【Physical Review Letters 130, 177001 (2023)】上。a.collective transport模型,b.电场驱动渗流路径的形成,c.实验观测到维度控制的非线性输运,d.基于collective transport理论仿真维度控制的非线性输运。
  • 中科大盛东教授与卢征天教授团队在基于原子器件的精密测量物理上取得进展
    中国科学技术大学工程科学学院盛东教授与物理学院卢征天教授联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。相关成果以“Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer”为题于6月10日发表在《物理评论快报》[Phys. Rev. Lett. 128, 231803 (2022)]上。原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,所以共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用是由诺奖得主维尔切克(Franck Wilczek)提出的,它可由一种至今尚未被探测到的“轴子”粒子来传播。为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法[Phys. Rev. A 102, 043109 (2020)];同时也发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11 - 0.55 mm 的作用程范围里(对应的传播子质量范围为0.36 -1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm 附近,本项工作的实验精度比前人结果提高了30 倍。图1核子(左)与极化氙原子(右)的单极-偶极相互作用示意图。物理学院博士生丰宇焜为论文第一作者,盛东和卢征天是共同通讯作者。该研究工作得到了国家自然科学基金委和中科院先导项目的资助。论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.128.231803
  • 2004年太赫兹物理及超快过程国际研讨会在上海召开
    2004年5月11日,“太赫兹物理及超快过程”国际研讨会在上海召开,来自国内外专家学者汇聚上海。   在上海召开的“太赫兹物理及超快过程”国际研讨会上,中国科学院上海微系统与信息技术研究所所长封松林正在做大会致辞。    中科院上海微系统与信息技术研究所的曹俊诚研究员正在介绍我国太赫兹技术研究的相关情况。   太赫兹(THz)频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的THz产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的THz空隙。近年来由于自由电子激光器和超快技术的发展,为THz脉冲的产生提供了稳定、可靠的激发光源,使THz辐射的物理机理、检测技术和应用技术研究得到蓬勃发展。THz技术之所以引起人们广泛的关注,是由于物质的THz光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,它在物体成像、环境监测、医疗诊断、射电天文、宽带移动通讯、尤其是在卫星通讯和军用雷达等方面具有重大的科学价值和广阔的应用前景。THz技术被认为是改变未来世界的十大技术之一。   由于THz电磁波的重大应用前景,美国等发达国家投入了大量资金和人力开展研究。目前,世界上约有100多个研究机构,陆续开展了本领域的科学研究工作。如:美国Rensselaer理工学院,美国麻省理工学院,加拿大国家研究院等。许多微波及光学的研究所都把研究重心转到THz领域。   我国国家科技部、自然科学基金委、中科院也对THz研究给予了高度的关注,先后在“973”计划、基础研究重大项目前期研究专项、基金委重大项目做了相关项目的安排。中科院上海微系统与信息技术研究所、中科院物理研究所、中科院紫金山天文台、上海交通大学、首都师大、中国电子科大、中科院应用物理所、西安光机所、西安理工大学以及中山大学等是国内较早开展THz研究的单位。中科院上海微系统与信息技术研究所自2001年已把THz研究列为中科院知识创新工程项目。目前在有关THz物理与器件研究方面,他们已获得多项十分有意义的成果。其中曹俊诚研究员等关于THz辐射在低维半导体中吸收方面的研究工作,被认为是THz非线性动力学这个凝聚态物理界被广泛关注的领域取得的重要进展。研究结果发表在2003年12月的《美国物理评论快报》上。
  • 物理所高次谐波光谱中的全量子轨道映射研究获进展
    原子内部电子动力学行为的演化是物理、化学、生物以及材料等学科研究中最基本的过程。精密测量电子的动力学特性,实现对其物理性质的理解,进而控制原子内电子的动力学行为是人们追求的重要科学目标之一。具有阿秒(10-18秒)时间分辨的高次谐波由于光子能量高(10eV~keV量级)、脉宽短(亚飞秒~几十阿秒)等特点,使得它在物理、化学和生物等领域有着广泛的应用。通过其与物质的相互作用,人们不仅可以研究原子、分子和固体中的超快动力学过程,而且还可以对纳米尺度的物质进行时间分辨的衍射成像。此外高次谐波也是自由电子激光装置、具有时间分辨的极短波长角电子能谱仪等科学装置中理想的种子脉冲及光源。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究员领导的研究组近年一直致力于阿秒激光高次谐波产生的研究,他们不仅观察到了高次谐波光谱中的复杂结构【Opt. Express 19, 17408 (2011)】,并且首次在国内测量到了单个阿秒激光脉冲 【Chin. Phys. Lett., 30(9), 093201 (2013), Opt. Express 21, 17498 (2013)】。   高次谐波的产生是一种超快超强激光场驱动下的极端非线性现象,可以看作是电子波包和母核的碰撞过程。在强激光场作用下,物质中基态电子波包被电离出母核到自由态后先得到加速,随着激光场的反向振荡,电子波包被拉回和母核碰撞,从而释放出高次谐波。根据自由态的电子在激光场中运动的时间,电子的运动可分为长轨道和短轨道,由于长短轨道的相位匹配条件不一样,在以往的实验中不能同时获得长短轨道产生的高次谐波。最近,该研究组的博士研究生叶蓬在滕浩副研究员、贺新奎副研究员及魏志义研究员的指导下,利用他们自己组建的阿秒激光装置,实现了电子波包在自由态的各条量子轨道上的直接定位,获得了全量子轨道分辨的高次谐波谱,研究结果发表在近期出版的《物理评论快报》【Phy Rev Lett, 113, 073601 (2014)】上。他们的研究结果表明,使用短于2个光振荡周期的驱动激光脉冲,通过调节驱动激光的空间相位分布和原子偶极相位的空间分布,可以令不同量子轨道产生的高次谐波在光谱中完全分开。图1为他们获得的长短轨道对应的高次谐波随驱动激光场载波包络相位CEP的调节变化而变化的实验结果,其中A、B、C对应驱动激光场的不同半周期激发出的高次谐波辐射分布角,所对应的长短轨道随发散角而分开,这样就形成了一个高次谐波谱到量子轨道的全映射图,通过该图也可以找到不同轨道对应的高次谐波光谱。这样通过改变驱动激光的CEP,就实现了利用激光场对长短轨道的控制。图2为长短轨道高次谐波谱的理论模拟与实验结果对比图。   由于驱动激光的时空分布、电子波包的时空演化和物质内部的结构信息通过碰撞过程被传递到高次谐波中,高次谐波的光谱也直接映射了电子的量子轨道信息,因此该研究结果对于深入了解高次谐波光谱所反映的物理图像,促进其在阿秒物理、原子分子物理和凝聚态物理等学科中的应用都有着重要意义。   该工作得到国家重大研究计划(量子调控)项目、自然科学基金项目和中科院科研装备项目的支持。   论文信息:P. Ye, X.-K. He, H. Teng*, M.-J. Zhan, S.-Y. Zhong, W. Zhang, L.-F. Wang, and Z.-Y. Wei*. Full Quantum Trajectories Resolved High-Order Harmonic Generation. Phys. Rev. Lett. 113, 073601 (2014). 图1. 全量子轨道分辨高次谐波空间分布随不同载波包络相位变化的关系   图2. 理论模拟与实验测量结果比较图,(a)理论模拟,(b)实验测量
  • 量子物理学促进电镜技术两大新成果:敏感样品高分辨成像和原子级粒子相互作用测量
    作者:俄勒冈州大学Laurel Hamers   UO CAMCOR工厂的扫描电子显微镜。物理学家Ben McMorran和他的团队想出了一种改进研究工具性能的方法。图片来源自俄勒冈州大学  量子怪诞正在为电子显微镜打开新的大门,成为高分辨成像的强大工具。  UO物理学家Ben McMorran实验室的两项新进展正在改进显微镜。这两种方法都源于量子力学的一个基本原理:电子可以像波和粒子一样同时运动。这是许多奇怪的量子级怪诞的例子之一,在这些怪诞中,亚原子粒子的行为似乎往往违反了经典物理定律。  其中一项研究发现了一种在显微镜下研究物体而不与之接触的方法,从而防止显微镜损坏易碎样品。第二种方法设计了一种同时对一个样本进行两次测量的方法,提供了一种研究该物体中的粒子如何跨距离相互作用的方法。  McMorran和他的同事在两篇论文中报告了他们的发现,这两篇论文都发表在《物理评论快报》杂志上。  “通常很难在不影响它的情况下观察到一些东西,尤其是当你观察细节时。”McMorran说道:“量子物理学似乎为我们提供了一种在不破坏事物的情况下更深入地研究它们的方法。”  电子显微镜被用来近距离观察蛋白质和细胞以及非生物样本,比如新材料。电子显微镜将电子束聚焦在样品上,而不是传统显微镜中使用的光。当光束与样品相互作用时,其某些特性会发生变化。探测器测量光束的变化,然后将其转换为高分辨率图像。  但这种强大的电子束会对样品中的脆弱结构造成破坏。随着时间的推移,它可能会削弱科学家试图研究的细节。  作为一种解决方法,McMorran的团队使用了20世纪90年代初发表的一项理想实验,该实验提出了一种在不触碰敏感炸弹、不冒引爆风险的情况下探测敏感炸弹的方法。  这个技巧依赖于一种叫做衍射光栅的工具,衍射光栅是一种带有微小缝隙的薄膜。当电子束击中衍射光栅时,它被一分为二。  McMorran实验室的研究生Amy Turner是第一项研究的主导人,她解释说:“在这些分束衍射光栅正确对准的情况下,电子进入并分裂成两条路径,但随后重新组合,使其只流向两种可能输出中的一种。其原理是,当你放入样品时,电子与自身的相互作用会被打断。”  在这种装置中,电子不会像传统的电子显微镜那样击中样品。相反,电子束重组的方式揭示了范围内样本的信息。  在另一项研究中,McMorran的团队使用类似的衍射光栅装置同时在两个地方测量样品。他们将电子束分开,使其在一个小金粒子的两侧通过,测量电子传递到每一侧的粒子的微小能量。  这种方法可以揭示样本在原子水平上的敏感细微差别,了解样本中粒子相互作用的方式。  劳伦斯伯克利国家实验室的博士后研究员Cameron Johnson在McMorran的实验室做了博士研究,并领导了这项研究。他认为:“这项研究的特殊之处在于,你可以观察它的两个独立部分,然后将它们结合在一起,看看这是一种集体振荡,还是它们之间不相关。我们可以超越显微镜的能量分辨率和通常无法达到的探针相互作用的极限。”  虽然这两项研究进行了不同类型的测量,但它们使用的是相同的基本设置,即所谓的干涉测量法。McMorran团队的成员认为,他们的工具可能在他们自己的实验室之外有用,可以用于各种不同类型的实验。  Turner自豪道:“这是第一台此类电子干涉仪。人们以前使用过衍射光栅,但这是一种功能灵活的版本,可以根据不同的实验进行调整。”  McMorran谈到,如果有合适的材料和说明,这种装置可以被添加到许多现有的电子显微镜上。他的团队已经引起了其他实验室研究人员的兴趣,他们希望在自己的显微镜中使用干涉仪。参考资料:Amy E. Turner et al, Interaction-Free Measurement with Electrons, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.110401Cameron W. Johnson et al, Inelastic Mach-Zehnder Interferometry with Free Electrons, Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.147401
  • 中科院物理所|氧离子输运动力学的原位电镜研究取得进展
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究员白雪冬课题组利用像差矫正透射电子显微镜实时原子成像技术和分子动力学模拟方法,揭示了CeO在激活条件下氧原子各向异性扩散的原子机制。该工作以Visualizing Anisotropic Oxygen Diffusion in Ceria under Activated Conditions& nbsp 为题发表在《物理评论快报》(Physical Review Letters)上。 /p p style=" text-align: justify text-indent: 2em " 该研究利用像差校正电镜对CeO2纳米颗粒进行表征,实现了Ce原子和O原子直接原子分辨成像,同时发现透射电镜高能电子束传递给氧化铈中氧原子足够多的能量导致氧原子析出并伴随氧化铈产生萤石相CeO2和铁锰矿相Ce2O3的相转变(图1)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/0eb98acd-9ef6-4be9-a733-b5c8381dabca.jpg" title=" 图1:CeO2结构演变的原子分辨TEM成像。.png" alt=" 图1:CeO2结构演变的原子分辨TEM成像。.png" / /p p style=" text-align: center " strong 图1:CeO2结构演变的原子分辨TEM成像 /strong /p p style=" text-align: justify text-indent: 2em " 利用电子束进行动态观察表征,同时作为诱导氧离子迁移的手段,捕获了反应中的氧原子和它的实时扩散路径(图2)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b0a3291d-134c-458c-b79f-9f8bb5785e8f.jpg" title=" 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png" alt=" 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png" / /p p style=" text-align: center " strong 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟 /strong /p p style=" text-align: justify text-indent: 2em " 原位实时观察到氧化铈中氧原子扩散的优先路径,通过实验观测和分子动力学模拟,发现了萤石结构氧化铈中氧原子以& lt 001& gt 方向作为优先传输通道。结合第一性原理计算,揭示了其物理原因在于氧原子扩散过程中伴随的电子重新分布使局域库仑作用力发生改变,导致晶格扰动,氧原子扩散路径选择扰动能量最低的方向(图3)。 !--001-- /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/add1c0c8-118d-40ef-8cc3-3f1c93518814.jpg" title=" 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg" alt=" 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg" / /p p style=" text-align: center " strong 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟 /strong /p p style=" text-align: justify text-indent: 2em " 这种氧原子扩散过程中伴随的配位价态的变化也得到了原位电子能量损失谱分析结果的佐证(图4)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/013a5cd5-05ec-41c9-91c0-71f9524f160e.jpg" title=" 图4:电子能量损失谱揭示中间化学键状态的变化.png" alt=" 图4:电子能量损失谱揭示中间化学键状态的变化.png" / /p p style=" text-align: center " strong 图4:电子能量损失谱揭示中间化学键状态的变化 /strong /p p style=" text-align: justify text-indent: 2em " 本研究揭示的萤石结构二氧化铈中氧原子各向异性传输机制对于其各向异性相关的性质和功能调控具有指导作用。 /p p style=" text-align: justify text-indent: 2em " 上述工作得到中科院、科技部、国家自然科学基金委、北京自然科学基金委和中科院青促会的资助。表面室SF1组研究生朱亮和纳米室N04组研究生金鑫是该文章的共同第一作者。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/download/shtml/934197.shtml" target=" _self" span style=" color: rgb(0, 112, 192) " 文章链接 /span /a /p
  • 安捷伦Seahorse 11月XF出版物快报 查阅最新80篇细胞分析文章
    p style=" margin-right: 0 margin-left: 0 font-size: medium font-family: Arial, sans-serif white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255)" span style=" font-size: 13px line-height: 16px font-family: SimSun" 欢迎访问 /span span style=" font-size: 13px line-height: 16px font-family: Helvetica, sans-serif" 2017 /span span style=" font-size: 13px line-height: 16px font-family: SimSun" 年 /span span style=" font-size: 13px line-height: 16px font-family: Helvetica, sans-serif" 11 /span span style=" font-size: 13px line-height: 16px font-family: SimSun" 月最新版安捷伦 /span span style=" font-size: 13px line-height: 16px font-family: Helvetica, sans-serif" Seahorse XF /span span style=" font-size: 13px line-height: 16px font-family: SimSun" 出版物快报。本期发行列出了包含 /span span style=" font-size: 13px line-height: 16px font-family: Helvetica, sans-serif" Seahorse XF /span span style=" font-size: 13px line-height: 16px font-family: SimSun" 数据的最新发表文章精选。 /span /p p style=" margin-right: 0px margin-left: 0px font-size: medium white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255) " span style=" font-family: SimSun font-size: 13px line-height: 16px " 来自中国的科研人员和院所发表的文章已用 strong 粗体 /strong 突出显示。 /span i style=" font-family: Arial, sans-serif " span style=" font-size: 13px line-height: 16px font-family: Helvetica, sans-serif" br/ br/ /span /i span style=" font-family: SimSun font-size: 13px line-height: 16px " 安捷伦 /span span style=" font-family: Arial, sans-serif font-size: 13px line-height: 16px " Seahorse XF& nbsp /span span style=" font-family: SimSun font-size: 13px line-height: 16px " 技术通过同时实时测定活细胞的两种主要代谢途径——呼吸和糖酵解,提供对细胞功能的重要洞察力。这些测定方法提供了深入了解细胞功能的窗口,这在一系列研究领域中非常宝贵。出版物快报每月进行更新,提供内含 /span span style=" font-family: Arial, sans-serif font-size: 13px line-height: 16px " Seahorse XF& nbsp /span span style=" font-family: SimSun font-size: 13px line-height: 16px " 数据的新知出版物的讯息。这对研究人员来说是一种能助其了解更多关于 /span span style=" font-family: Arial, sans-serif font-size: 13px line-height: 16px " Seahorse XF& nbsp /span span style=" font-family: SimSun font-size: 13px line-height: 16px color: rgb(34, 34, 34) " 技术应用信息的宝贵资源。 /span /p p style=" margin-right: 0 margin-left: 0 font-size: medium font-family: Arial, sans-serif white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255)" span style=" font-size: 13px line-height: 16px font-family: DengXian" 人类棕色与白色脂肪细胞对比研究: br/ /span span style=" font-size: 12px line-height: 14.4px" Markussen, L. K /span span style=" font-size: 12px line-height: 14.4px font-family: & #39 Segoe UI& #39 , sans-serif" .& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 等人。 strong 同一位捐赠者的永生化人类棕色和白色前脂肪细胞模型特征研究。 /strong /span span style=" font-size: 12px line-height: 14.4px" PLoS One. 2017. 12: e0185624 /span span style=" font-size: 12px line-height: 14.4px font-family: & #39 Segoe UI& #39 , sans-serif" . br/ br/ /span span style=" font-size: 12px line-height: 14.4px" Seahorse XF& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 细胞线粒体压力测试表明 /span span style=" font-size: 12px line-height: 14.4px font-family: & #39 Segoe UI& #39 , sans-serif" & nbsp CRISPR& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 技术可用于建立衰老模型: br/ /span span style=" font-size: 12px line-height: 14.4px" Kim, H.& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 等人。 /span strong span style=" font-size: 12px line-height: 14.4px font-family: & #39 Segoe UI& #39 , sans-serif" CRISPR-Cas9& nbsp /span /strong strong span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 介导端粒去除会引发线粒体应激和蛋白质聚集。 /span /strong span style=" font-size: 12px line-height: 14.4px" Int J Mol Sci. 2017. 18:& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: & #39 Segoe UI& #39 , sans-serif" br/ br/ /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 氧化磷酸化功能存在缺陷的癌症患者更有可能积极响应 br/ 选择性抑制肿瘤细胞氧化磷酸化的药物治疗: br/ /span span style=" font-size: 12px line-height: 14.4px" Kalyanaraman, B.& nbsp /span span style=" font-size: 12px line-height: 14.4px font-family: DengXian" 等人。 strong 癌细胞中的线粒体生物能学、代谢和相关信号通路基础知识回顾:借助亲脂性阳离子化合物对肿瘤细胞线粒体进行靶向治疗。 /strong /span span style=" font-size: 12px line-height: 14.4px" Redox Biol. 2017. 14: 316-327. /span /p p 如希望继续接收XF出版物快报和其他安捷伦Seahorse 产品信息,请进入如下链接: /p p br/ /p p 所有科研领域,文章可能会在不止一个领域内出现. /p p br/ /p p 老年病研究 :5篇文章 /p p 神经生物学研究:14篇文章 /p p 癌症研究:24篇文章 /p p 肥胖,糖尿病和代谢紊乱:18篇文章 /p p 心血管研究:3篇文章 /p p 评论文章:4篇文章 /p p 细胞生理学研究:12篇文章 /p p 干细胞生物学:6文章 /p p 免疫研究:12篇文章 /p p 技术和方法:4篇文章 /p p 传染疾病研究:2篇文章 /p p 毒理& amp 肝脏生物学:12篇文章 /p p 线粒体疾病研究:1 篇文章 /p p 转化研究:5篇文章 /p p 肾脏病学研究:1 篇文章 /p p br/ /p p 仅限于研究使用,不用于诊断过程。& nbsp /p p br/ /p
  • 纳米快报:纳米净水器可杀死水中98%细菌
    据美国物理学家组织网近日报道,斯坦福大学的研究人员将一种普通棉纱浸入银纳米线和碳纳米管的混合液中,制成了一种高效、廉价的新型净水过滤器,其能杀灭水中98%的细菌,杀菌速度是传统微孔网筛过滤器的8万倍。研究成果发表在近期出版的《纳米快报》杂志上。   碳纳米管具有良好的导电性,98%以上的埃希氏大肠杆菌只要在20伏的电流中呆上几秒就会被杀死。银也能杀菌,巴氏灭菌法和冰箱出现以前,人们常常在牛奶瓶底放一枚银币来消毒。   斯坦福大学材料研究生物工程专家小组的莎拉海尔肖恩称,碳纳米管和银这两种材料“携手”制成的过滤器可最大限度地发挥杀菌效能。其中的银纳米线能够杀死任何滞留在孔隙中的细菌,因此避免了传统过滤器普遍存在的一大缺陷,即细菌会在过滤器上形成生物膜从而污损设备。   传统的过滤器都采用物理方法来吸附细菌,而新型过滤器内含有的棉花纤维包了一层“纳米外套”,其形成的电场可以杀死流经的细菌,而且棉花纤维有多层,厚达6.4厘米,足以杀死水中的大部分细菌。   斯坦福大学材料科学与工程副教授崔毅(音译)介绍说,该新式过滤器的成本也很低。一方面,银纳米线所用的银很少,成本几乎可以忽略不计。另一方面,所需的电流很少。纳米材料的吸附性很高,银纳米线较长的一端和纳米管连接,另一端伸入棉花纤维中间的空隙,在棉纤维上会生成一层光滑无间隙的覆层,导电效果很好,因此,电流强度只需几毫安,一块小型太阳能电池或一对12伏的汽车电池就能满足。而传统的过滤器要用电泵把水抽进微孔,耗电量大,在实验室里过滤等量的水,新型过滤器的耗电量仅为传统过滤器的1/5。   崔毅也表示,新型过滤器的净化速度非常快。传统过滤器的过滤微孔很小,将细菌从水中吸附分离时很容易阻塞微孔 而新型过滤器孔隙比较大,只杀灭细菌却不吸附细菌,因此,不会减缓水流的速度,净水速度是传统过滤器的8万倍。这种过滤器在无法用氯气来给水消毒的偏远地区很实用,可以大大减少以水为介质进行传播的霍乱、伤寒和肝炎等疾病的大面积扩散。   研究人员计划下一步研发针对不同类型的细菌进行过滤的过滤器,并测试多重组合过滤器。
  • 天瑞仪器2014年业绩快报发布
    江苏天瑞仪器股份有限公司2014 年度业绩快报   本公告所载2014 年度财务数据为初步核算数据,未经会计师事务所审计,与经会计师事务所审计的最终财务数据可能存在差异,请投资者注意投资风险。   一、2014 年度主要财务数据   单位:万元     表注:1、本表数据为公司合并报表数据   二、经营业绩和财务状况的简要说明   1、经营业绩   报告期公司实现营业总收入为27,683.14 万元,比去年同期下降14.94% 营业利润为3,205.35 万元,比去年同期下降26.60% 利润总额为5,874.72 万元,比去年同期下降12.19% 归属于上市公司股东的净利润为5,001.34 万元,比去年同期下降10.43%。归属于上市公司股东的净利润比去年同期下降,主要原因是本期营业收入下降。   2、财务状况   报告期末总资产余额为156,680.66 万元,比期初增长0.75% 归属于上市公司股东的所有者权益为147,666.30 万元,比期初增长2.29% 报告期末归属于上市公司股东的每股净资产9.5937 元,比期初增长2.29%。主要系报告期内公司经营积累所致。   三、与前次业绩预计的差异说明   公司本次业绩快报披露的经营业绩与2015 年1 月26 日披露于巨潮资讯网上的2014 年度业绩预告不存在差异。   四、其他说明   本业绩快报是公司财务部门初步测试的结果,具体财务数据将在2014 年年度报告中详细披露。截止目前,公司董事会尚未就2014 年度分配情况进行任何讨论。敬请广大投资者谨慎决策,注意投资风险。   五、备查文件   1、经公司现任法定代表人、主管会计工作的负责人和会计机构负责人(会计主管人员)签字并盖章的比较式资产负债表和利润表   2、深交所要求的其他文件。   特此公告。   江苏天瑞仪器股份有限公司董事会   二○一五年二月二十六日
  • 海能2022年业绩快报:营收2.87亿,同比增长16.34%
    近日,海能未来技术集团股份有限公司(以下简称海能技术)发布2022年业绩快报。2022年公司实现营业收入2.87亿元,同比增长16.34%,净利润为4457万元,同比下降16.50%。海能技术表示,报告期内,公司以提升收入规模增长为核心任务,努力提高各系列产品的市场份额,营收增长的主要原因是:1、持续加大研发投入力度,通过自主研发增加新产品品种,稳固发展实验室分析业务;2、持续加大生产投入力度,不断完善全产业链生产运营模式,对冲疫情、原材料成本波动等因素可能导致的供应链风险,提升产品品质;3、继续加大市场投入力度,结合整体产品战略,调整市场营销拓展方向,提升市场份额。报告期内,在保证公司整体业绩稳定增长的同时,重点推动色谱光谱系列产品收入持续快速增长。而关于报告期内,净利润下降的原因,在快报中,海能技术也做出了一些说明。公司表示:一是为了更有效的提升气相色谱-离子迁移谱相关产品及技术研发和运营服务,进一步优化公司产业布局,丰富公司产品线,发挥各产业板块的协同效应,2021年末公司完成了对联营企业济南海能吉富投资合伙企业(有限合伙)(以下简称“海能吉 富”)75%的认缴出资额的收购,购买日前公司直接持有的海能吉富 25%的出资份额及直接持有的海能吉富下属公司 G.A.S.Gesellschaft für analytische Sensorsysteme mbH 30.01%的股权按照公允价值重新计量产生利得1359.72 万元,导致上年同期可比数据较大所致;二是公司为了进一步拓展产品线和应用领域,进行多品种布局,前期投资的参股公司处于产品研发早期和市场导入阶段,产品尚未形成规模化销售等原因导致公司投资损失增加,影响公司利润。同时,快报中表示,报告期末,预计公司资产总额同比增长 25.48%,归属于上市公司股东的 所有者权益同比增长 37.83%,主要原因系报告期内公司向不特定合格投资者公 开发行股票取得募集资金及报告期盈利增加所致。
  • 《麻省理工科技评论》“35岁以下科技创新35人”中国入选者正式发布!
    创新精神,推动着人类不断拓展科学和技术的边界。一代代创新者,在这种精神的鼓舞下前仆后继,他们走过的路矗立着一座座知识灯塔,为后人指明开疆拓土的方向,终于让人类在地球这颗蓝色星球上发展出璀璨夺目的文明。  在全世界终于走出新冠疫情阴霾的今天,我们的许多生活方式已被彻底改变。因此,创新精神从未如此重要,我们也从未如此需要具备这种独特品质的人。只因他们的存在和不懈努力,我们才能充满希望地展望未来,并有机会亲眼见到那个梦想中的世界。  哪里可以找到这些人?  这个问题难以回答,但可以肯定是,广袤的中国大地上,从来不乏这样的人才,尤其是这样的青年人才。《麻省理工科技评论》希望带你找到他们、认识他们、看到他们的努力、欣赏他们的智慧,或许还能激励你,有一天成为像他们一样的人。  作为一家拥有全球视野的科技智库,《麻省理工科技评论》自 1999 年起每年都会从世界范围内的新兴科技和创新应用中对 35 岁以下、且对未来科技发展产生深远影响的创新领军人物进行遴选,最终形成一份全球创新青年英雄榜——“35岁以下科技创新35人”(Innovators Under 35,简称 TR35),涵盖但不限于生物技术、能源材料、人工智能、信息技术、智能制造等新兴技术领域。  随着中国影响力与日俱增,加之入选名单里中国人的身影不断增加,2017年,《麻省理工科技评论》TR35评选首次落地中国,专注于挖掘新兴科技创新领域的中国青年力量。六年来,越来越多的青年才俊入选,他们的砥砺前行和辛勤耕耘值得被记录下来,他们的创新精神和成果值得被中国,乃至全世界所关注。  历经过去五届的淬炼,加上全球70余位顶级科学和技术领袖近一年的严格评审,2022年TR35中国入选名单今日在全球青年科技领袖峰会上正式揭晓。峰会由中关村科学城管理委员会作为指导单位,北京清华工业开发研究院与《麻省理工科技评论》中国联合主办。35位中国青年才俊横跨计算机、生物和生命科学、化学、物理、材料、半导体、量子计算等各大领域,他们用自己的才智和热情,引领着新兴科技创新的未来。  这其中,有在人类科学边界不断求索的先锋者(Pioneers);有洞悉技术变化方向的远见者(Visionaries);有灵感不断涌现的发明家(Inventors);还有积极推动前沿技术落地的创业家(Entrepreneurs);更有科技向善、以人为本的人文关怀者(Humanitarians)。  他们来自五湖四海,背景各异。有的学科耳熟能详,有的领域鲜有人知;有的在国内外知名大学任教,有的在科研机构任职;有的沉浸在微观世界,希望破解生命密码并攻克绝症,有的面向星辰大海以求突破能源和材料的瓶颈;有的解决了已存在数十年的、悬而未决的难题,有的在探索从未有人涉足过的全新领域。他们的创新成果或专注于一个领域,是人类已知知识边界的突破;或同时涉及多个领域,在学科交叉中孕育出了新的解决思路。  但相同的是,他们都是能够代表中国创新力量的青年人。他们不仅为中国带来了新的发展机遇,也为全球科技创新注入了新的活力。  看到这些人的坚持和努力,我们有理由相信,他们将会继续不断地挑战和突破自己。假以时日,他们必将在各自领域散发出更耀眼夺目的光芒,而由此而来的科技创新成果,将有可能深刻地改变我们的生活和社会。  2022 年度《麻省理工科技评论》“35 岁以下科技创新35人”中国入选者名单如下:  图丨2022 年度《麻省理工科技评论》“35 岁以下科技创新 35 人”中国入选者合照  *以下排名不分先后  远见者  入选理由:她基于微纳米力学技术,实现了金刚石高达 10% 的均匀弹性应变,发现了通过应变工程调控金刚石电子能带结构的规律,为推进宽禁带半导体材料的微电子器件应用开创了一种全新的思路。  金刚石因具有超宽带隙、高热导率、高介电击穿强度等特点,被认为是可在高温、高压、高频等极端环境中稳定工作的新一代半导体器件材料。不过,金刚石的高效掺杂问题,仍是制约其实现商业化应用的瓶颈。通过改变材料电子能带结构进而调控其光电特性的“应变工程”是攻克掺杂问题的有效方法之一,但因金刚石具有超高的硬度和脆性,该方法因缺少成功的实践而被低估。  党超群长期从事高硬度材料的微纳米力学研究,她开发了大尺寸单晶金刚石的微加工技术,在室温下沿 [100]、[101] 和 [111] 等不同晶体学方向,对长度约 1-2 微米,宽度约 100-300 纳米的单晶金刚石微桥进行原位力学加载,在单轴拉伸条件下实现了接近 10% 的均匀弹性应变,接近金刚石的理论弹性极限。  与此同时,她通过理论计算和原位电镜电子能量损失谱实验印证了金刚石“深层弹性应变工程”可行性。在超大、均匀的弹性应变基础上,进一步实现了微米级金刚石阵列的拉伸应变,预示了“应变金刚石”器件概念的可行性。  这些发现为实现金刚石在微电子、光电子和量子信息技术中的器件应用展现了潜力。  入选理由:他设计了自1930年代物理吸附和化学吸附被提出以来的第一种全新的吸附模式,提供了一种控制表面和界面化学的变革性方法,并通过主动吸附在非平衡材料中存储能量以用于未来的能源技术。  将化学物质从溶液中提取到固体和表面上,是包括贵金属回收、废物和污染物处理等在内的许多化学及生物分析和分离相关科学技术的基础。但多年以来,科学家一直没有开发出能够主动驱动上述过程的方法。  基于分子机器(2016 年诺贝尔化学奖)的设计理念,冯亮开拓性地设计了一系列分子机器,并将它们定向定量地安置在纳米二维材料的表面,发现了一种吸附模式,即(主动)机械吸附,攻破了如何实现跨浓度差逆平衡吸附的世纪难题。这项工作于2021年发表在 Science 上,获得了十多家媒体的广泛报道,近期荣获国际吸附学会卓越研究奖等诸多奖项。  作为一种全新的吸附模式,机械吸附与过去统治吸附领域的平衡吸附迥异,是一种由于非平衡泵在吸附剂和被吸附物之间形成机械键而引起的吸附现象。该方法可以实现对关键工业目标(如烃类、二氧化碳和微污染物)经济高效的捕获、修复和净化。  此外,其还对分子识别、光电子学、药物输送、碳捕获和海水淡化等领域的未来应用具有广泛的意义。我们有充分的理由相信,机械吸附的概念有一天也会如物理吸附和化学吸附一样在教科书上出现。  入选理由:她首次建立了最大的单原子催化剂数据库,获得了单原子催化剂性质的普适性规律,在加深对单原子催化活性位本质的理解的同时,也为高性能单原子催化剂的设计提供了基本指导原则。  由于催化剂结构是影响催化剂效能发挥的关键因素,因此要想精准设计具有高性能的催化剂,需要实现催化剂微观结构的三维可视化、对其原子结构进行精准调控,以及揭示其普适性的构效关系。为了解决上述问题,韩丽丽聚焦催化剂结构研究,取得了以下代表性成果。  首先,她通过结合三维重构技术和原位透射电镜表征技术,将其成功地应用到 Ni2Co 双金属催化剂氧化机制的研究中,实现了该催化剂表面和内部结构、元素及价态分布的三维可视,解决了在纳米尺度难以清楚理解双金属氧化过程的难题。  其次,她基于三维重构表征基础,建立并发展了“固相表界面可控瞄定”合成策略,既解决了电催化 CO2 还原过程中 *OH 过吸附的难题,又解决了电催化 N2 合成氨过程中N2 吸附及 *NN 质子化困难与存在强烈竞争性析氢反应的难题,因此获得了 CO2 和 N2 的电催化还原的优异催化性能。  与此同时,她通过对一系列可对比性的单原子活性位的构筑,首次建立了系统性的单原子催化剂数据库,揭示了单原子催化剂性质的普适性规律,确立了单原子催化剂设计的基本指导原则。  韩丽丽的研究,能够为高效纳米催化剂的创制提供理论指导,降低催化剂研发的试错成本及周期,从而加速催化剂的工业应用进程。  入选理由:他所提出的 Swin Transformer 促进视觉 Transformer 取代经典的卷积神经网络,让计算机能够像理解语言一样看周围世界。  能想象机器处理语言和理解图像的机制可以几乎完全一样吗?胡瀚坚信这一点,也一直致力于这样的目标,如果这一目标能实现,那么或许就意味着能开发出一种通用 AI 模型来解决各种各样的智能任务。  然而,长久以来自然语言处理和计算机视觉的机制很不一样,特别是,它们所采用不同的主流神经架构并不相同,自然语言处理的主流神经架构是 Transformer,而计算机视觉领域则长期采用卷积神经网络。  它们是否可以采用相同的神经网络进行建模呢?胡瀚看好 Transformer 的通用性,所以他尝试的主要方向是将 Transformer 适配到计算机视觉问题中。这面临很大的挑战,事实上,他本人和 Transformer 原作者团队的多次早期尝试都未能成功。  胡瀚和团队于2021年提出的 Swin Transformer,成为了推进视觉骨干网络向视觉 Transformer 迁移的一个里程碑工作之一。Swin Transformer 通过在 Transformer 基础上引入“层次化”和“局部化”的设计,以及对移位窗口(shifted window)方法的提出,使得 Transformer 模型既适合视觉信号,又能高效实现。该方法首次在两个最具代表性的视觉评测集 COCO 物体检测和 ADE20K 语义分割上大幅超越了此前卷积神经网络保持的记录。  Swin Transformer 获得了每两年举办一届的计算机视觉国际大会的最佳论文(马尔奖),该奖项也被视为国际计算机视觉领域的最高荣誉之一。同时,该成果的学术影响力也体现在相关论文在一年多的时间获得超过5000次引用以及超10000次Github标星上。  胡瀚于2014年在清华大学自动化系获得博士学位,目前在微软亚洲研究院担任首席研究员和研究经理。他希望推进通用视觉问题的彻底解决,让机器可以完全理解和生成任意图像而几乎不出现错误。  他认为视觉和语言从建模、学习上并没有本质区别,既然以 ChatGPT 为代表的自然语言大模型能在某种意义上基本解决自然语言的问题,通用的视觉问题也是同样可以得到解决的。  入选理由:他揭示了人类卵子经常错误分离染色体的分子机理,并提出了首个增加人类卵母细胞纺锤体组装和染色体分离准确性的防治方案。  女性生殖健康是当今社会面临人口老化的重要焦点之一。20%-50% 的人类卵子是非整倍体,带有过多或过少的染色体。染色体数目异常的卵子受精后会产生发育异常的胚胎,从而导致女性不育、流产和唐氏综合症等遗传病。卵母细胞在减数分裂的过程中错误地分离染色体是造成卵子染色体数目异常的主要原因,阐明这一现象的成因对于女性生殖和医学辅助生殖具有重要价值。  博士期间,苏俊优化了 Trim-Away 急性蛋白降解技术,使卵母细胞和着床前胚胎经处理后的存活率和发育率提升至 90%。通过系统定位 70 个不同的蛋白,苏俊在不同哺乳动物卵子的纺锤体上发现了过往未被报道的液状纺锤体结构域。液状纺锤体结构域在纺锤体微管附近收纳并调动微管调控因子,从而在无中心体下促进纺锤体组装。  他首次把液液相分离引进哺乳动物生殖领域,并利用这个生物物理概念阐明了卵母细胞无中心体纺锤体的组装机制。  此外,苏俊鉴定出纺锤体的稳定性取决于一个名为 KIFC1 的负端定向驱动蛋白。他继而发现哺乳动物的卵母细胞大多高度表达 KIFC1,唯独人类卵母细胞缺乏 KIFC1。通过引入外源的 KIFC1 蛋白,成功提高了人类卵母细胞组装纺锤体和分离染色体的准确性,首次为防治卵子染色体数目异常带来了可能。  总体而言,苏俊的研究成果有被转化至生殖中心以改善人类辅助生殖的效率和结果,并提升女性生殖能力的巨大潜力。  入选理由:他挑战量子精密测量的技术极限,进一步推动量子时间传感器和低温 CMOS 量子测控芯片等原始创新产品发展。  王成主要研究的是量子信息技术(量子传感和量子测控)和先进的 CMOS 集成电路相结合的前沿交叉领域,推动量子信息科学领域的前沿进步(量子算法、量子硬件和量子模拟)。  2018 年,他首次提出并实现了原始创新成果芯片级分子时钟(Chip-Scale Molecular Clock,CSMC),其以硫化羰分子旋转谱线频率为参考,以高集成度的 CMOS 波谱探测片上系统级芯片为基础,是一种原创的高稳性、可大规模部署的小型化时间基准,被列为“美国国防部先进技术发展局 DARPA 下一代时钟技术 ”。  2020 年,第二代芯片级分子时钟在 IC 领域旗舰会议国际固态电路会议(ISSCC)上发表,并进行了现场技术展示。2022 年 5 月 17 日,芯片级分子时钟入选 DARPA 的下一代小型化高稳时间基准 H6 项目,成为其两大核心技术路线之一,旨在满足无 GPS 条件下的长时通信、导航和定位需求(周频率误差小于 1μs 或 10-12)。  2022 年 6 月 23 日,第三代芯片级分子时钟亮相集成电路领域重要会议 RFIC,受到广泛关注。目前,该技术已经完成两代实验室级和三代芯片级原型,正迈向实用化部署。  此外,王成与其所在的集成物理研究组在低温 CMOS 集成电路领域也取得了重要进展。他们率先在中国开展了工作在液氦温区(1~4K)的 CMOS 集成电路芯片研究。  截至目前,该研究组已经完成了多轮次的低温 CMOS 集成电路流片,并于 2022 年 1 月成功实现了国内首个低温 CMOS 集成电路芯片的低温测试,包括参数分频器、高精度数字-电压转换器和锁相环频率源等。  在 2023 年 3 月举行的 ISSCC 2023 上,王成课题组展示了具备 202.3dBc/Hz Figure-of-Merit(FoM)的 4K 压控振荡器 VCO,创造了主流 CMOS 工艺 VCO FoM 的新纪录。目前,王成团队正致力于在 2-3 年时间内,实现国际上首个千比特规模的低温 CMOS 阵列测控阵列芯片。  入选理由:他发展了兆电子伏超快电子衍射技术,突破了原子级时空分辨率的仪器需求,实现了对分子结构演化的直接捕捉。  微观观测技术的突破很容易引发重要的科学革命。不过,迄今为止,绝大多数观测技术只能对物质的静态结构进行捕捉,是这些微观观测技术存在的共性问题。由于世界是运动的,因此要想对各种分子功能背后的微观机理进行深入理解,必须实现对分子结构演化过程的实时捕捉,即拍摄“分子电影”。  杨杰于 2016 年 5 月在美国内布拉斯加林肯大学物理与天文系获得博士学位,随后加入美国 SLAC 国家加速器实验室的兆电子伏超快电子衍射团队。  在该团队,他领衔发展了兆电子伏超快电子衍射技术在气相、液相化学中的科学应用,并取得了一系列原创性的科学成果,这包括首次捕捉非绝热动力学过程,首次同步观测原子核与价电子运动,首次捕捉液态水中的氢键运动等。  此外,他在 SLAC 率领团队发展的实验方法,已于 2019 年被美国能源部升级为一台正式用户装置。  他于 2021 年加入清华大学化学系,担任教研系列长聘副教授。未来,他计划在清华大学大力发展分子电影技术,拓展该技术在复杂溶液相体系中的应用,为人们在微观层面更好地理解溶液中的化学反应做出贡献。  入选理由:他在二维光学芯片上引入三维自由曲面,发展了新型的光学芯片接口方案,大幅提升了芯片的性能。  虞绍良创造性地提出了在集成光学芯片上引入三维微型自由曲面,以进行片上波前调控的全新研究思路,突破了因片上传统二维周期性结构维度缺失而带来的光场调控能力受限瓶颈。  从理论模型、设计方法、制备工艺等多方面开展研究,拓展了片上光学结构的空间维度,增加了对片上光场的调控自由度。他提出光学芯片的新型通用接口方法,实现了超宽波段的低损耗光学互连耦合方案,构建了波导集成的片上光镊系统。  虞绍良基于前述研究思路,在光子芯片上集成微型自由曲面耦合器,实现了光纤-芯片之间的高效互连。自由曲面耦合器实测插入损耗低 0.5dB,工作带宽大于 300nm,覆盖了 O 到 U 波段的超大带宽波分复用需求。  他在实现超低插入损耗的同时,将光学带宽提高了一个数量级,核心指标均为目前最佳值(0.5dB vs. 3dB, 300nm vs 40nm)。  该方案作为一种通用型的光学芯片接口,具有很强的普适性,能应用于多种光互连场景。不仅可以实现光纤-光芯片之间的高效耦合,还可以用于光芯片-光芯片之间的混合集成。  同时,还可以基于该方案实现光电子与微电子芯片之间的共封装,构建光电融合的芯片架构,解决目前信息传输与处理中的带宽和功耗问题。该方案获得了广泛关注,多个产业界和学术界团队已经就方案开展了合作。  虞绍良提出并实现了一种新型的片上光镊系统,通过集成在波导端面的三维自由曲面对波导出射的多个光束进行波前整形,实现了在芯片上对波导光场的三维空间聚焦,产生了三维梯度光场,形成三维光力势阱。首次在芯片上用光实现了对单个和多个微小颗粒的可控悬浮,并演示了灵敏度高达 10-12N 的弱力测量。  该研究解决了片上集成光场三维空间聚焦难题,使在芯片上对光场进行复杂操控成为可能,为片上原子钟、片上位移和弱力的精密测量等领域的研究提供了全新的思路,在基础研究领域具有重要的应用前景。  先锋者  入选理由:他和团队通过量子计算优越性展示,挑战了扩展丘奇-图灵论题。  陈明城一直专注于量子物理领域,尤其是量子力学的基础问题和量子计算应用。他的研究主要基于单光子、单原子和超导人工原子展开,并在量子力学基础问题的检验以及构建优于目前超级计算机模拟能力的量子计算原型机上取得了重要进展。  在量子力学基础方面,他在实验上通过量子隐形传态实现了对任意波函数实部虚部的直接测量,通过量子纠缠交换的贝尔测试确立了复数的物理客观性,通过三光子干涉观察到量子违背鸽笼原理挑战了自然计数规律。  在量子计算方面,他和团队通过实现光量子计算原型机“九章”,在国际上首次展示了光量子计算优越性,在高斯玻色取样任务上比当时世界排名第一的超级计算机“富岳”快一百万亿倍,同时他也助力实现了优于谷歌“悬铃木”量子霸权的“祖冲之号”超导量子计算优越性展示,有效地挑战了扩展丘奇-图灵论题。  入选理由:她建立了在超低电子剂量的条件下研究分子筛亚纳米尺度局域结构解析和原位观察限域分子动态行为的方法,开创了研究限域小分子动态行为和主客体相互作用的新领域。  作为石油化工行业中应用最为广泛的固体酸催化剂和吸附剂,分子筛在能源、催化、环境保护等领域都有应用。但在目前,科学家对于该材料在实际工况条件下的真实状态和微观机制还不甚明了。  陈晓的研究主要致力于理解多孔材料在化石能源吸附、转化、分离等过程中的原子级微观机理,着重于多孔材料中错综复杂主客体相互作用的本源探究以及原位动态捕获分子在限域作用下的运动行为等。
  • 《麻省理工科技评论》35岁以下科技创新35人”出炉 6位华人入选
    近日,麻省理工科技评论在全球范围内评选出了35位“35岁以下优秀科技创新者”。  入选榜单中,有6位华人在列,他们是来自中科院物理研究所的郑金星、Lightelligence创始人沈亦晨、IBM高级研究员孙啸、Huue创始人Tammy Hsu,阿贡国家实验室科学家Jie Xu以及约翰普金斯大学助教Janice Chen。“35岁以下科技创新35人”榜单评选涵盖发明家(Inventors)、创业家(Entrepreneurs)、远见者(Visionaries)、人文关怀者(Humanitarians)及先锋者(Pioneers)五大类,涉及软件创新、生物医药、互联网、材料科学、硬件传感、通信技术、新能源等几乎所有新兴技术领域。2017 年,《麻省理工科技评论》将评选榜单正式放眼中国,重点发掘中国最具影响力和潜力的科技创新人才。每年由国内外各专业领域的权威人士,包括科学家、商业领袖、投资人等组成中国区榜单评审委员会,参与评审活动。在此前四届的中国区榜单评选活动中,已先后评选出 140 位极具创新潜力的科技青年,发掘了百余项由中国青年科学家引导的世界级突破性研究成果。将入选华人详细信息如下:  郑金星,中科院等离子体物理研究所,34岁  中国科学院等离子体物理研究所一室主任,教授,博士毕业于中国科学院大学核能科学与工程专业,主要从事超导电物理工程研究工作。  - 入选理由  郑金星设计出了更好的方法来模拟使用强力磁铁在极端温度下控制等离子体——这对基于聚变的能源来说是一个重大进步。他的工作正在帮助中国领先设计迄今为止最大的聚变反应堆(即“CFETR计划”)。CFETR 预计将在 2035 年之前完成建设并上线,但可能需要 5 到 10 年的时间才能达到全功率。  聚变反应堆基于原子结合时释放的能量,具有创造清洁能源的巨大潜力,并且比现有的基于裂变反应的核能更安全。但是目前还没有人建造出一个实用的聚变反应堆,原因之一是难以容纳必要的超高温度(达到数亿摄氏度)的等离子体。他的创新相当于发现了新的理论模型,有利于理解多个大型超导磁体如何在聚变反应发生时快速改变其磁场以将等离子体保持在一个地方。2018 年,在他的模型的帮助下,中国合肥的一座聚变反应堆(被称为实验性先进超导托卡马克——绰号“人造太阳”)在 5000 万摄氏度下控制等离子体的时长创下了纪录,达到了102秒。中国未来的 CFETR 计划在 2030 年代以超过 1 吉瓦的功率运行,是目前法国南部与世界各国合作完成的聚变反应堆 ITER 功率的两倍。  - 个人主页  http://dsxt.ustc.edu.cn/zj_js.asp?zzid=6815  孙啸,IBM,34岁  现任IBM研究员,本科毕业于北京大学微电子专业,博士与博士后毕业于耶鲁大学,主要研究内容是使用减精度推理与训练来加快深度神经网络计算。  - 入选理由  人工智能计算的关键是寻找出在整个计算过程中只使用少数位的技术。之后,你可能还是要执行上万亿次计算,但每次计算都会变得简单许多。根据孙啸和IBM同事在ISSCC 2021上发表的一篇论文,使用两位数的数字不仅节省时间,而且节省能源,比使用数十亿数字进行同样的计算要高出20倍以上的节能率。  孙啸是IBM Thomas J. Watson研究中心一个研究小组的成员,该小组一直在寻找方法,使用三数位、甚至两数位的数字来执行这些计算(现代笔记本电脑或手机使用20位数字进行计算,而大多数专用的机器学习芯片只使用5个数位)。今年2月,部分基于孙啸的工作,IBM推出了一款新芯片,使用三位数的计算来训练神经网络。IBM希望不仅能用这款芯片在云计算中心训练大型神经网络,还希望训练本地数据、在手机上使用。  - 个人主页  https://researcher.watson.ibm.com/researcher/view.php?person=us-xsun  沈亦晨,Lightelligence,32岁  Lightelligence(初创光子 AI 芯片公司)联合创始人兼CEO。高中就读于杭州外国语学校,本科毕业于约翰霍普金斯大学物理与数学专业,随后在约翰霍普金斯大学攻读数学硕士,2016年毕业于麻省理工学院应用物理学专业,毕业没多久就基于他的博士论文创立了两家公司,分别是 Lightelligence 与 Lux Labs。  - 入选理由  2017 年,沈亦晨与 Nicholas Harris 发表了一篇如今谷歌学术引用接近1000的论文(“Deep learning with coherent nanophotonic circuits”),谈到将光路应用于机器学习任务,比如语音和图像识别。他们的设计被评为“代表了使用光的神经网络最关键构建块之一的真正并行实现,现代代工厂可以轻松地批量制造这种类型的光子系统。”这意味着芯片的光子计算机可能会成为一个市场巨大的业务,每个要使用神经网络进行决策的设备都会用到一个光子计算机。  涉及到神经网络的基本计算有两种:一是必须对神经网络进行训练,通常是向神经网络展示大量数据,使它们调整众多神经元之间的连接强度 二是使用现有连接进行决策。也就是学车与开车的区别。在这种情况下,差异很关键。如果一个神经网络需要数周时间来学习如何识别图像,那不一定是问题。但如果它正在驾驶一辆自动驾驶汽车,就需要在秒内做出生死推断。这时候,光子计算机就派上了用场。尽管光子计算机的研究已经进行了数十年,但效果却不佳。操纵光子比操纵电子还难。但是,对于某些类型的计算,比如使用现有神经网络进行推理,光子又是必不可少的。沈亦晨与 Harris 基于这篇工作共同创办了 Lightelligence。Lightelligence 在 2019 年发布了原型光学 AI 芯片,目前已获得超过 1 亿美元的资金。  - 个人主页  https://www.shenyichen.org/  Jie Xu,阿贡国家实验室,33岁  现任美国阿贡国家实验室助理科学家,博士毕业于南京大学,博士后毕业于斯坦福大学。  - 入选理由  Jie Xu 的主要贡献是发明了聚合物电路(一种即使被弯曲、拉伸和反复移动也仍能继续工作的材料)。  此前,这对研究员来说一直是一个重大挑战,直到2016年,她设计了一种应用于橡胶表面的两种聚合物涂层,该涂层可以拉伸至两倍大小并仍然导电。2019 年,她对这项技术进行了改良,使可拉伸半导体可以使用卷对卷制造(一种工业制造工艺)进行大规模生产。这是可拉伸半导体第一次付诸大规模生产。她的工作使可打印、可拉伸的电子产品成为大规模生产的产品。她的多项突破可应用于未来的可穿戴技术、先进的机器人技术以及将传感器连接到皮肤的人机界面,使柔性显示器和皮肤穿戴式医疗传感器更加实用和易于制造,还可以帮助设计具有功能性皮肤状外壳的假肢。由于担心制造塑料垃圾,目前她正在寻找可回收或可生物降解的聚合物半导体材料。  - 个人主页  https://www.anl.gov/profile/jie-xu  Tammy Hsu,Huue,30岁  Huue创始人,本科毕业于斯坦福大学生物工程专业,博士毕业于UC Berkeley。  - 入选理由  许多消费者没有意识到,牛仔布的标志性颜色靛蓝需要合成化学物质,如甲醛和氰化物,这可能对工人有害,有时还会污染当地的水源。鉴于牛仔裤是世界上最普遍的服装之一,这是一个巨大的环境问题。  Huue 的首席科学官 Tammy Hsu 与同事合作研究颜色在自然界中的生成方式,然后对微生物进行编程、通过酶促产生他们想要的颜色。这是一种不依赖有害过程或化学品的可持续解决方案。现在的挑战是使天然染料与工业所依赖的合成染料一样便宜。Huue 有望在明年发布其靛蓝染料。Hsu 的下一步工作是研究如何诱导微生物生产一系列不同的染料。  Janice Chen,约翰霍普金斯大学,30岁  现任约翰霍普金斯大学助理教授。博士毕业于 UC Berkeley。  - 入选理由  故事要从几年前说起:当时,Janice Chen还在UC Berkeley读博,被一家实验室邀请用她发明的新技术在医院的医学样本中寻找人乳头瘤病毒,然后她匆匆忙忙打了一辆Uber。  没多久,她的测试使用基因编辑工具 CRISPR,几乎每次都能发现病毒,从而为医院提供了一种新的细菌测试方法。她和其他几名学生以及 CRISPR 的共同发现者 Jennifer Doudna(2020年诺贝尔奖得主)共同创立了一家公司(名字叫 Mammoth Biosciences),计划开发新一代测试仪器。医疗诊断业务市场并不容易进入,因为少数拥有完善技术的公司占据了主导地位。但是,他们的技术对传染病测试非常有用,尤其在新冠之后更凸显了重大的意义。  - 个人主页  https://pbs.jhu.edu/directory/janice-chen/
  • 皖仪科技2020年度业绩快报公布 实现营收4.17亿
    近日,皖仪科技公布了2020年度业绩快报。根据快报显示,皖仪科技2020年实现营业收入 41740.04 万元,较上年同期增长 2.05%;实现归属于母公司所有者的净利润 5890.71 万元,较上年同期下降 11.42%;实现归属于母公司所有者的扣除非经常性损益的净利润 3,083.73 万元,较上年同期下降 42.10%。报告期末,公司总资产 102517.38 万元,较期初增长 104.61%;归属于母公司的所有者权益 83,394.79 万元,较期初增长 163.29%。公告显示,公司业绩波动的主要原因是:1、 报告期内,公司产品毛利率较上年同期下降1.17 个百分点。2、 为进一步提升产品竞争力和市场竞争优势,公司持续加大研发投入,导致研发费用增加 1744.42 万元,同比增长 34.01%。3、 随着公司运营规模的扩大,管理费用也较上年同期增加 222.47 万元,同比增长7.47%。同时,公告也对财报中有关项目增减变动幅度较大的原因进行了说明。其中,归属于母公司所有者的扣除非经常性损益的净利润同比下降 42.10%,主要是由于2020年度研发费用和管理费用增加、毛利率下降等因素影响所致。而总资产同比增长 104.61%,归属于母公司的所有者权益同比增长 163.29%,股本同比增长 33.34%,归属于母公司所有者的每股净资产同比增长 97.46%,主要是源于2020年皖仪公司首次公开发行股票募集资金增加所致。
  • 加利用量子纠缠开发超精密测量技术
    加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。   研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马· 李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。   现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。   干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。   科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用&ldquo 光纤带&rdquo 的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。   这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。   研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。
  • 快讯| 皖仪科技公布2021年业绩快报 营收5.6亿增长35%
    仪器信息网讯 近日,安徽皖仪科技发布业绩快报,2021年公司实现营业收入5.6亿元,同比增长 34.79%,实现归属于上市公司股东净利润 4,848.56 万元,较上年同期下降 17.62%;实现归属于母公司所有者的扣除非经常性损益的净利润 1,514.56 万元,较上年同期下降 50.45%。报告期末,公司总资产 116,419.73 万元,较期初增长 13.45%;归属于母公司的所有者权益 85,532.34 万元,较期初增长 2.57%。公告表示,公司业绩波动的主要因素有:①报告期内,为进一步提升产品竞争力和市场竞争优势,公司持续加大研发投入,导致研发费用增加 4,851.78 万元,同比增长 70.53%。②随着公司市场规模的扩大,销售费用也较上年同期增加 6,337.24 万元, 同比增长 75.16%。公告也指出,营业收入同比增长 34.79%,主要由于公司持续推出新产品、加大市场开拓力 度和疫情好转对市场影响减少所致。而营业利润同比下降 35.03%,利润总额同比下降 37.62%,归属于母公司所有 者的扣除非经常性损益的净利润下降 50.45%,主要系报告期内研发费用和销售费 用增加影响所致。详细公告请见附件。皖仪科技:2021年度业绩快报公告.PDF
  • 中国科学院科技论文预发布平台正式上线,科研成果首发权将得到肯定
    p & nbsp & nbsp & nbsp & nbsp 如果A在科学上有了重大发现,形成论文向某期刊投稿,但编辑部审稿时间很长。而B在A之后也有了相同的发现,他把论文投到一家审稿时间不长的期刊,并且先发表了。到底谁是这一科学现象的首发者?以前是按论文的发表时间来确认,但这对A明显不公平。现在国外往往以预发布平台上的论文发布时间为准,科学家可以将完成的论文首先在这一平台上发布,记录在案。 br/ & nbsp & nbsp & nbsp & nbsp 13日,国内第一个按国际通行模式规范运营的预发布平台——中国科学院科技论文预发布平台(ChinaXiv)正式上线。该平台面向全国科研人员接收中英文科学论文的预印本存缴和已发表科学论文的开放存档,致力于构建一种新型的学界自治的科研成果交流和共享平台。中科院副秘书长、发展规划局局长汪克强指出,这一平台主动适应传统媒体向数字出版和新媒体转型的趋势,对我国科技论文的发表模式有所突破。 br/ & nbsp & nbsp & nbsp & nbsp 对科研人员来说,预发布平台能让科研成果的首发权得到认定。中科院文献情报中心副主任张智胜说,在大亚湾中微子振荡的发现上,我国科学家就充分利用了国外的预发布平台。2012年3月,大亚湾中微子实验发现了一种新的中微子振荡。科学家把一篇关键论文于3月7日晚向美国《物理评论快报》杂志投稿,并于3月8日将论文的预印本提交给全球最大的论文预印本系统ArXiv平台开放发布。论文直至4月1日才被《物理评论快报》接收,4月23日在《物理评论快报》上在线发表,4月27日正式发表。这篇论文从投稿到正式发表时滞达51天。据该论文的执笔者和通讯作者、中科院高能物理所研究员曹俊透露,从3月7日投稿到4月1日被接收的这24天中,这篇未正式发表的论文就被引用了22次。 br/ & nbsp & nbsp & nbsp & nbsp 预发布平台的诞生,对传统科技期刊形成了冲击。张智胜提到了数学界破解庞加莱猜想的故事。证明庞加莱猜想的3篇关键论文是2002年11月至2003年7月间发表于ArXiv上,作者是格里戈里· 佩雷尔曼。后来科学家们确认他的论证是正确的。2006年8月22日,佩雷尔曼被授予了菲尔兹奖。令人惊讶的是,佩雷尔曼根本就没把论文发表在任何正式的刊物上,而仅仅是提交给了ArXiv。 br/ & nbsp & nbsp & nbsp & nbsp 如今,中国也终于有了自己的科技论文预发布平台了。 br/ & nbsp & nbsp & nbsp & nbsp 汪克强认为,ChinaXiv有三个鲜明的特点:一是营造了一个公开透明的科技成果交流共享空间,有助于科研人员公平竞争,促进我国科技水平的快速提升;二是保障优秀科研成果首发权的认定,有助于扩大我国科技工作者的国际影响力,促进原创成果的不断涌现;三是缩短了科技成果发布周期,有助于推动科技成果的快速流转和开放获取,促进科技成果的有效转化。 br/ & nbsp & nbsp & nbsp & nbsp 国家广电总局新闻报刊司司长李军对ChinaXiv上线的评价是:它将中国科技期刊出版流程进行了全链条再造,是中国数字出版领域的一次非常重要的尝试与变革。 /p
  • 皖仪科技2022业绩快报:营收6.76亿元 增长20.1%
    近日,安徽皖仪科技股份有限公司(以下简称皖仪)发布2022年业绩快报。2022年公司实现营业收入6.76亿元,同比增长20.1%,归属于母公司所有者的净利润为4821.69万元,同比增长1.54%。皖仪表示,影响经营业绩的主要因素是:公司不断提升自主创新能力,持续进行产品迭代及技术开发,巩固并开拓了 新的市场份额,使得公司的营业收入较上年同期实现增长;同时,与研发相关的 政府补助随研发项目的开展而增加,2022 年度计入当期损益的政府补助较上年 同期增长约 46%,也为公司的经营业绩带来积极影响。
  • 中国化学快报分析化学前沿论坛上岛津先进技术获关注
    7月20-24日,由《中国化学快报》主办、岛津赞助的中国化学快报分析化学前沿论坛在西宁成功召开。《中国化学快报》(ChineseChemicalLetters)为我国自然科学核心期刊,办刊宗旨是“新、快、准”,及时反映化学各相关领域的最新进展及热点问题。本次会议主题是分析化学。来自全国各地高校和科研院所共40多专家参加此次会议,共有22位专家做了大会报告 。 中国化学快报郭焕芳主编致论坛开幕词中,清华大学林金明教授和岛津分析测试仪器市场部杨桂香经理分别发表致辞。林金明教授首先发表了题为“微流控芯片质谱联用细胞药物代谢分析方法研究”的大会报告,他在发表中强调了联用岛津质谱进行分析,并对岛津设备和岛津公司在合作中的支持给予肯定。林金明教授的发表报告成为论坛的亮点。在论坛上,岛津公司分析测试仪器市场部的宋玉婷博士就岛津 XPS在科学研究中的分析技术及最新进展进行了发表,她介绍了XPS的多种功能,比如角分辨等功能可以应用于很多专家对材料的研究,从中可以获得分子结构信息和材料的深度信息等,这引起了与会专家的极大兴趣。 中国化学快报郭焕芳主编致开幕词 清华大学林金明教授致词岛津公司市场部杨桂香经理致词 岛津市场部宋玉婷博士发表:XPS 分析技术及最新进展 大会始终贯穿着浓郁的学术气氛,中间不断有深入的探讨与交流,与会专家们纷纷表示确实得到很多前沿的信息,从相互的发表中得到了启发,甚至接受一些建议做为下一步的试验计划。21日晚岛津质谱中心负责人滨田部长做晚宴致辞,再次感谢各位老师的精彩报告与对岛津的多年支持,会议圆满结束。岛津质谱中心负责人滨田部长晚宴致辞关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 业绩快报:南华仪器2017全年营收1.86亿元
    p & nbsp & nbsp & nbsp & nbsp 2月27日,南华仪器(300417)发布业绩快报,公司2017年1-12月实现营业收入1.86亿元,同比增长6.19%,仪器仪表行业平均营业收入增长率为56.71%;归属于上市公司股东的净利润3719.81万元,同比增长5.91%,仪器仪表行业平均净利润增长率为30.98%。 /p p   公司表示,2017年,公司实现营业收入18,608.87万元,同比增加了6.19%;归属于上市公司股东的净利润3,719.81万元,同比增加5.91%,主要是主营业务收入增长所致。截止本报告期末,公司总资产为44,233.40万元,较本报告期初增长3.64%;归属于上市公司股东的所有者权益为40,431.37万元,较本报告期初增长4.13%。 /p p br/ /p
  • 雪迪龙发布2012年业绩快报 利润大增
    2013年2月28日,雪迪龙发布2012年业绩快报,该报告表示:   报告期内,公司较好地完成了年初制定的各项经营计划,实现营业收入37,852.21万元,较上年同期增长了15.47%;营业利润11,023.95万元,较上年同期增长了21.19%;归属上市公司股东净利润9,844.00万元,较上年同期增长了20.82%。各项经营业绩指标增长的主要原因是:随着国家对环保的投入持续加大,国内脱硝市场快速启动,与脱硝有关产品的收入和利润有了明显的提升;公司积极布局各地环保设备运营项目,取得了较好的成绩;加权平均净资产收益率下降16.06%,主要是公司2012年3月份公开发行A股募集资金所致。   报告期末,公司财务状况良好,总资产较年初增长168.42%,归属于上市公司股东的所有者权益较年初增长214.40%,公司总股本较年初增长33.35%,归属于上市公司股东的每股净资产较年初增长135.87%,变动的主要原因是:公司2012年3月份收到募集资金所致。 雪迪龙2012年度主要财务数据和指标
  • 随机光纤激光由非相干拓展到相干
    记者日前从中国科学技术大学获悉,该校化学与材料科学学院张其锦教授研究组与张群副教授研究组合作,研制出基于极弱纳米颗粒散射体系的低阈值、方向性好、可调控的相干随机光纤激光,并论证了其机理。研究成果近日发表在国际著名学术期刊《物理评论快报》上。   传统激光除了需要增益介质如激光染料、稀土离子等外,还必须有光学反射镜所组成的高稳谐振腔。而随机激光则仅依赖于增益介质和散射介质,其光学回馈通过散射介质的多重散射实现。但由于随机激光具有无方向性等缺点,因此具有方向性的随机光纤激光自2007年问世以来引起了人们的极大兴趣。然而,迄今报道的基于纳米粒子多重散射的随机光纤激光研究,只观察到非相干随机激光行为,这种激光由于光波的强度或能量反馈而仅呈现光谱窄化现象。   在国家自然科学基金委、科技部及中科院资助下,张其锦、张群等人将基于纳米粒子多重散射的随机光纤激光工作机制,首次由非相干拓展到相干,这种激光由于散射光波的干涉效应而产生亚纳米谱宽的激光峰。研究人员将POSS纳米粒子、PM597激光染料以及二硫化碳分散相溶液注入到空心光纤中,构建了一个在极弱散射机制下工作的相干随机光纤激光系统 然后通过精心设计的调控实验和理论分析,证明其相干工作机制主要源自被光纤波导效应大大增强的纳米粒子的多重散射。   据介绍,与传统随机激光相比,相干随机光纤激光具有阈值低、方向性好等优点,有望应用于动态光疗与肿瘤探测、集成光学器件、无散斑全场激光成像等领域。《物理评论快报》审稿人认为:“本工作在随机激光领域起到显著的里程碑的作用 从基础物理学角度来看,本工作无疑构成了一个非常有趣的研究课题。”
  • 华大基因2022业绩快报:营收约71亿 利润同比下滑近50%
    深圳华大基因股份有限公司近日发布2022年度业绩快报:2022年度营业总收入约71.26亿元人民币,与上年同期相比增加5.32% 2022年度营业利润约10.47亿元人民币,与上年同期相比减少42.57%;2022年度利润总额约9.66亿元人民币,与上年同期相比减少44.69%;归属于上市公司股东的净利润约为8.12亿元人民币,与上年同期相比减少44.42%;扣除非经常性损益后的归属于上市股东的净利润约为7.38亿元人民币,与上年同期相比减少45.96%。业绩快报中也进行了经营业绩和财务状况情况说明: (一)报告期的经营情况、财务状况及影响经营业绩的主要因素1、报告期内,公司预计实现营业收入712,627.20万元,较上年同期上升5.32%;预计营业利润为104,681.23万元,较上年同期下降42.57%;预计利润总额为96,569.46万元,较上年同期下降44.69%;预计归属于上市公司股东的净利润为81,225.28万元,较上年同期下降44.42%;预计扣除非经常性损益后的归属于上市公司股东的净利润73,776.93万元,较上年同期下降45.69%。2、报告期内公司利润较2021年度同比下降,主要系报告期内,因新冠业务市场竞争不断加剧,新冠核酸检测服务及试剂单价持续下降,以及国家新冠防疫政策发生调整,新冠检测需求大幅下降,以致公司新冠相关固定资产和存货存在减值迹象,基于此,公司2022年度对新冠相关固定资产和存货计提约4亿减值准备,导致公司基于新冠相关的利润较2021年度相比有大幅下降。报告期内,为支撑公司在全球市场的领先布局,公司持续拓展销售市场,同时持续注重研发,经营投入较2021年度有所上升。3、报告期末,公司财务状况良好,资产负债结构稳定。报告期末预计总资产为1,430,069.69万元,较期初增长0.33%;报告期末预计归属于上市公司股东的所有者权益为992,667.81万元,较期初增长6.53%;报告期末预计归属于上市公司股东的每股净资产为23.98元,较期初增长6.53%。(二)上表中有关项目增减变动幅度达30%以上的主要原因2022年度营业利润预计同比下降42.57%,利润总额预计同比下降44.69%,归属于上市公司股东的净利润预计同比下降44.42%,扣除非经常性损益后的归属于上市公司股东的净利润预计同比下降45.69%,基本每股收益预计同比下降44.24%,主要系本报告期内市场竞争加剧以及防疫政策变化等原因导致新冠业务利润大幅下滑,同时常规业务毛利率有所下滑,以及经营投入增长所致。
  • “超海森堡极限”与海森堡极限的 量子精密测量可同时实现
    2月22日,记者从中国科学技术大学获悉,该校郭光灿院士团队李传锋、项国勇研究组与香港中文大学袁海东教授合作,在量子精密测量实验中,首次实现了两个参数同时分别达到“超海森堡极限”和海森堡极限的最优测量。研究成果日前在线发表在国际知名期刊《物理评论快报》上,并被选作该期的封面文章。精密测量的精度随着消耗的资源增加而提高,数学上用T-k来描述,其中T为资源(如测量时间),k是评价不同测量方法优劣的最重要标准精度增长阶数。在诸如相位估计、磁力仪和量子陀螺仪等众多应用中,研究发现k在经典测量方法和量子测量方法中分别是0.5和1,分别被称作散粒噪声极限和海森堡极限。然而,存在多体相互作用或含时演化的情况下,人们发现k可以超越1,称之为“超海森堡极限”。目前这三种不同的精度极限在单参数量子测量实验中已经分别得以实现,但是海森堡不确定性关系是量子力学的根本限制,“超海森堡极限”是否真的是超海森堡仍存在争议。研究人员采用近年来着力发展的多参数量子精密测量平台,研究测量旋转场的强度和频率两个参数中“超海森堡极限”和海森堡极限是否可以同时达到的问题。他们将控制增强的次序测量技术进一步发展到多参数含时演化的测量中,通过优化量子系统动力学演化各个部分,实现了两个参数同时分别达到海森堡极限和“超海森堡极限”的最优测量,并阐明这两种精度极限都遵从海森堡不确定性关系,都是最优的量子精度极限。该项成果加强了量子精密测量与海森堡不确定性关系两个领域的联系,促进了这两个领域的交叉发展,并且在实际测量问题中具有重要潜在应用价值。《物理评论快报》相关审稿人认为“这是一个具有足够的新颖性和价值的扎实的工作”。
  • 每秒4万亿帧 我科学家用超快摄像机捕获光的运动
    p   西安交通大学电信学部陈烽教授团队与香港城市大学王立代博士团队合作,提出一种全新“压缩超快时间光谱成像术”(简称超快压缩成像),在帧率、帧数和精细光谱成像等方面突破了现有超快成像技术的局限,成功捕获到光子的运动。相关成果近日发表在《物理评论快报》上。 /p p   西安交大科研人员提出的这种新型的超快成像技术是探知各种未知瞬态过程的一项关键核心技术,如化学反应过程中原子的运动、超短激光脉冲作用材料时发生的瞬态非线性过程等。超快压缩成像通过对飞秒激光进行数字编码,并在时间和光谱维度上进行压缩和解压缩,从而能够同时实现高速度、高帧数以及高光谱分辨率。超快压缩成像的超高帧率可以达到3.85THz(1THz=1012Hz),和亚纳米级超高光谱分辨率。研究人员通过这种超快压缩成像技术实时记录了飞秒激光脉冲的传播、反射以及自聚焦等持续时间达到33皮秒的超快物理过程。 /p p   超快压缩成像的基本原理是飞秒激光时间—光谱相互耦合原理,它的实现主要是通过3个关键步骤,首先是利用飞秒激光丰富的频率成分,通过色散将不同的波长在时域上拉伸,形成一个叫做“啁啾脉冲”的高速时间序列。第二步是这个拉伸的时间序列与测量的瞬态过程进行相互作用。这样,不同的波长成分就可以记录超快过程不同的时间信息。进而对这一时间序列进行二维的空间编码,并利用色散将不同的光谱信息压缩在一个二维平面上并采用CCD采集,最终利用算法将一幅二维的CCD图像重建成具有空间和时间维度的多幅超快图像。 /p p   该成果使得长时间、宽光谱地记录飞秒影像成为可能,将推动更多涉及超快过程的极端物理、化学、材料和生物学的研究。 /p p   此外,《自然》(Nature)以研究亮点(Research Highlights)形式对该研究成果进行了专题报道,文章标题为《4万亿帧每秒的速度去捕捉光的运动》。同时,美国物理学会官网《APS物理》(APS Physics)也做了焦点专题报道,文章标题为《聚焦:4万亿帧频的电影》。西安交通大学与香港城市大学联合培养博士生陆宇为本文第一作者,西安交通大学陈烽教授和香港城市大学王立代博士为本文共同通讯作者。西安交通大学是本文第一作者单位。 /p p   《自然》报道链接: /p p   https://www.nature.com/articles/d41586-019-01625-5 /p p   美国物理学会官网《APS 物理》报道链接: /p p   https://physics.aps.org/articles/v12/55 /p p   《物理评论快报》原文链接:             /p p   https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.193904 /p p & nbsp /p
  • 科学家研制成功“纳米耳朵”
    金纳米微粒(左)在一组光镊子中的运动被用来探测由周围其他纳米微粒的膨胀所触发的声波。图片来源:Ohlinger等,《物理评论快报》   你有没有想过一个病毒听起来像什么,或者一个细菌在宿主之间游走会发出什么噪音?如果答案是肯定的,那么由于世界上最小耳朵的发明,你或许很快就有机会搞清这一切。“纳米耳”——被一道激光束俘获的金微粒——能够探测到仅为人类听觉阈值一百万分之一的声音。研究人员认为,这项研究将开启“声学显微术”的一个全新领域,后者是利用生物体释放的声音对其进行研究的一门科学。   纳米耳的概念起源于1986年被称为光镊子的一项发明。这种镊子利用一个透镜将一道激光束聚焦到一点,从而能够抓住微粒并移动它们。光镊子已经成为分子生物学和纳米技术的一种标准工具,帮助研究人员向细胞内注入脱氧核糖核酸(DNA),甚至在DNA注入后对其进行操作。光镊子还能够用来测量作用于微观粒子上的极小的力 一旦你用激光束控制住你的粒子——而不是由你来让其移动,你便只须用一台显微镜或其他合适的观测设备观察它是否在自动地运动。这也正是纳米耳遵循的道路。   声波随着它们经过的介质粒子的前后移动来传播。因此为了探测声音,你需要对这种前后运动进行测量。德国慕尼黑大学光子学与光电学研究团队的光物理学家Jochen Feldmann和同事将一个直径60纳米的金微粒浸入水中,并用光镊子夹住了它。   Feldmann的研究团队记录并分析了该粒子响应声振动所产生的运动——这种声振动由在附近水中的其他金纳米粒子的激光感应加热所导致。除了具有前所未有的敏感性外,他们的纳米耳还能够计算声音来自于哪个方向。研究人员提出,使纳米耳的三维阵列一道工作将能够用来监听细胞或微生物,例如细菌和病毒,随着运动和呼吸,它们都能够释放出非常微弱的声振动。Feldmann表示:“这里显然存在着医学上的可能性,我们可以用其来研究适当的人群,但我们首先必须搞清它是如何工作的。”   丹麦哥本哈根市玻尔研究所光镊子实验室的生物物理学家Lene Oddershede对此印象深刻,并推测这篇论文会激发该领域的其他科学家在研究微生物时寻求声波的帮助。她说:“这真是一个有趣的想法,并且我们很容易做到这一点,但我们之前从未进行过任何尝试。”然而Oddershede警告说,“我只能说这篇论文从这个意义上将是很鼓舞人心的”,但在超声显微镜变为现实之前,这项试验的设置还需要显著细化,以改进其区分来自随机分子运动的声波的能力。但她对此表示乐观:“我相信他们能够相当快地改进这一设备。”   研究人员在最新出版的《物理评论快报》(PRL)上报告了这一研究成果。
  • 天瑞仪器业绩快报:2017年营收7.92亿元 同比增83.96%
    p   2月26日,天瑞仪器发布业绩快报,公司2017年1-12月实现营业收入7.92亿元,同比增长83.96%,仪器仪表行业平均营业收入增长率为56.71% 归属于上市公司股东的净利润9751.11万元,同比增长74.93%,仪器仪表行业平均净利润增长率为30.98%。 /p p   公司表示,报告期公司实现营业总收入为79,178.40万元,比去年同期上升83.96% 营业利润为11,768.83万元,比去年同期上升 199.81% 利润总额为13,019.89万元,比去年同期上升110.68% 归属于上市公司股东的净利润为9,751.11万元,比去年同期上升 74.93%。 /p p strong & nbsp & nbsp & nbsp 增长主要原因 /strong :一、母公司营业收入增加,增加利润 二、贝西生物、国测检测自2017年1月纳入合并报表范围,增加2017年归属于上市公司股东的净利润 三、磐合科仪自2017年08月纳入合并报表范围,增加2017年归属于上市公司股东的净利润。 /p
  • 《麻省理工科技评论》中国区“35岁以下科技创新35人”出炉,生命科学独占9席
    p style=" text-indent: 2em " 《麻省理工科技评论》是由麻省理工学院于1899年创刊的杂志,侧重报道新兴科技和创新商业,专注于科技的商业化和资本化。 strong 自1999年起,《麻省理工科技评论》每年在世界范围内评选35岁以下的科技创新领军人物,涵盖范围包括生物医疗、智能计算、新能源、新材料等几乎所有新兴技术领域。 /strong br/ /p p   近20年来,网景(Netscape)网络浏览器创始人马克· 安德森、Yahoo(雅虎)创始人杨致远、谷歌创始人拉里· 佩奇和谢尔盖· 布林、AMD 首席执行官苏姿丰、Facebook创始人马克· 扎克伯格等都曾登陆该榜单。2017年,DeepTech深科技联合《麻省理工科技评论》推动TR35正式落地中国。 /p p   第二届TR35评选活动于2018年3月启动,榜单由50 位来自中国与全球顶尖学术研究单位、企业集团、投资机构重量级评委团、以及《麻省理工科技评论》中美编辑部历时 9 个月缜密评选得出。据悉, strong 参选者必须为中国籍(含港澳台,所在地无限制),在2018年10月1日时不满35岁,专业包括但不限于电子计算机与硬件、互联网与电子通信技术、软件技术、纳米技术和先进材料、生物医药、航空航天、能源、交通等。 /strong /p p   在评审参选人时, strong 《麻省理工科技评论》会考虑7个因素:影响力、独创性、勇气、时效性、企业家成就、沟通技巧及为贫困地区带来的改变 /strong ,但是候选人无必要在所有方面都表现出色。入选2018 年TR35的科技青年多为跨学科、跨领域、并且对于落地应用有更强烈企图心与使命感的科研创新出现,其成果涵盖人工智能研究与应用、NLP、脑科学、新材料、新能源、生命科学、生物科技、自动驾驶等多个不同领域。 /p p    strong span style=" color: rgb(192, 0, 0) " 生物科技上榜者独占9席 /span /strong /p p    strong 生物科技领域获奖者在今年的TR35榜单中占据9席,涉及基因、细胞、肿瘤、蛋白质及合成生物学等细分领域,表现亮眼 /strong 。 /p p    strong span style=" color: rgb(0, 112, 192) " 基因 /span /strong /p p    span style=" color: rgb(0, 0, 0) " strong 人物:亓磊 /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "    span style=" color: rgb(0, 0, 0) " 专业:基因编辑和基因工程 /span /span /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "    span style=" color: rgb(0, 0, 0) " 职位:斯坦福大学生物工程学副教授 /span /span /strong strong span style=" color: rgb(0, 112, 192) " /span /strong /span /p p   作为CRISPR基因编辑技术中国和欧盟专利的共同发明人,亓磊多年来致力于基因编辑技术与基因治疗领域的开发。他首次将基因魔剪 CRISPR/Cas 系统升级为基因编辑“瑞士军刀”CRISPR-dCas,并以此为基础拓展应用,先后发明了基于 CRISPR 的基因开关(CRISPRi/a),使在不引入突变的情况下精准开启或关闭特定基因表达 基因成像(CRISPR imaging),可以在活体组织中精准呈现基因组序列。基因定位(CRISPR-GO),实现三维空间内对基因组的空间重排和定位等。 /p p    span style=" color: rgb(0, 0, 0) " strong 人物:王思远 /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "    span style=" color: rgb(0, 0, 0) " 专业:三维基因组学 /span /span /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "   span style=" color: rgb(0, 0, 0) "  职位:耶鲁大学医学院遗传学系及细胞生物学系助理教授 /span /span /strong strong span style=" color: rgb(0, 112, 192) " /span /strong /span /p p   王思远致力于生物组学成像技术的研发,开发了多项成像、染色技术,其中一项基于复合荧光原位杂交的 DNA 成像技术。他通过连续成像分辨并定位不同的基因组位点,实现单细胞水平染色质的三维描绘,解决了多年来难以对大尺度染色质盘绕结构直接观察的技术难题。王思远这一另辟蹊径的突破性成像方法將给目前对染色质折叠、区间化的理解带来新的可能,同时也将为观察各种生命活动和疾病过程中的复杂空间结构及其动态变化带来全新理解。 /p p    span style=" color: rgb(0, 0, 0) " strong 人物:付巧妹 /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "    span style=" color: rgb(0, 0, 0) " 专业:古人类 DNA 及基因组研究 /span /span /strong /span /p p span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 112, 192) "    span style=" color: rgb(0, 0, 0) " 职位:中国科学院古脊椎动物与古人类研究所研究员 /span /span /strong /span /p p   付巧妹通过解码中国最古老人类基因组,揭示东亚现代人复杂遗传历史。她首次确定早期现代人与尼安德特人基因交流不局限于中东地区 首次系统性总结史前现代人的遗传演化谱图,且在研究过程中,共同开发了一种古DNA捕捉技术,成功从田园洞人腿骨提取核 DNA 和线粒体 DNA,让田园洞人成为首个获得核 DNA 的早期现代人。此外,付巧妹参与开发的新一代古 DNA 片段提取技术,成功提取到 40 万年前非冰冻层的古DNA,将人类DNA 破译的时间向前推进 30 万年。 /p p    strong span style=" color: rgb(0, 112, 192) " 细胞 /span /strong /p p    strong span style=" color: rgb(0, 0, 0) " 人物:李寅青 /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   专业:单细胞多组学 /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   职位:清华大学药学院研究员 呈源生物技术有限公司联合创始人、科学顾问 /span /strong /p p   李寅青率先开发出单细胞核基因表达解析技术,并开发出神经单细胞多组学技术。他创新性地将组织固定与单细胞核提取结合,实现单细胞分析的高分辨率、覆盖度和灵敏性,并利用该技术首次追踪和解析到成年健康脊髓神经再生的罕见过程 此外,其开发的神经单细胞多组学技术,揭示了丘脑外周的抑制神经元是与遗传性多动症等精神疾病相关的核心神经环路中关键组成部分。李寅青开发的单细胞核基因表达解析技术对研究脊髓神经修复有着重要的意义,神经单细胞多组学技术对筛选潜在的药物靶点提供了重要信息。 /p p    strong 人物:李栋 /strong /p p strong   专业:光超分辨显微镜技术 /strong /p p strong   职位:中国科学院生物物理研究所研究员 /strong /p p   李栋先后发展了掠入射结构光照明超分辨显微镜(GI-SIM)与非线性结构光超分辨显微镜(Nonlinear GI-SIM),实现了前所未有的超分辨活细胞成像速度和成像时程。他在博士后研究期间,发展高数值孔径全反射结构光超分辨显微镜(High NA TIRF-SIM)、条纹激活非线性结构光显微镜(PA NL-SIM)及晶格光片三维非线性结构光显微镜(Lattice light sheet 3-D nonlinear SIM),突破了传统结构光显微镜技术100纳米分辨率极限,实现了活细胞高时空分辨成像。李栋的研究在新型超分辨显微成像技术领域具有重大意义。 /p p    strong span style=" color: rgb(0, 112, 192) " 肿瘤 /span /strong /p p    strong 人物:陈斯迪 /strong /p p strong   专业:癌症系统生物学 /strong /p p strong   职位:耶鲁大学遗传系与系统生物学研究所助理教授 /strong /p p   陈斯迪的研究为未来癌症机理研究、“个性化”癌症药物研发及临床试验提供支持,是未来搭建精准化医疗平台的重要基础。他专注于癌症的系统生物学及其他医学基础问题的研究,包括癌症发生、恶化和免疫过程中的遗传表达及表观遗传修饰变化。陈斯迪通过体内大规模、高通量筛选,带领团队绘制了胶质母细胞瘤和肝细胞性肝癌的功能基因组图谱,从基因突变水平了解癌症发生、恶化等过程。同时发明了基于 CRISPR/Cas 基因编辑的精准肿瘤模型,相比目前已有模型更加经济、高效,不仅可以精准地模拟分子水平突变,更能完整保留肿瘤发生的原始过程及肿瘤微环境的免疫原性。 /p p    strong span style=" color: rgb(0, 112, 192) " 蛋白质 /span /strong /p p    strong 人物:胥国勇 /strong /p p strong   专业:蛋白质翻译调控与精准作物改良 /strong /p p strong   职位:武汉大学高等研究院教授 /strong /p p   胥国勇揭示了蛋白质翻译调控对于建立免疫反应的关键作用,并利用该机制有效地解决了农业生产中抗病性增强与产量受损的矛盾。 他利用新发现的翻译调控元件 uORF 实现了植物抗病能力和生长协同提高的目标。目前,生物学领域关于胁迫应答中翻译调控的研究很少,而胥国勇的研究为利用自然界及人工合成调控元件实现精准作物改良提供了新的思路,对于作物抗病改良有重大意义。 /p p    span style=" color: rgb(0, 112, 192) " strong 合成生物学 /strong /span /p p    strong 人物:邵洋洋 /strong /p p strong   专业:合成生物学 /strong /p p strong   职位:中国科学院上海生命科学研究院植物生理生态研究所博士后 /strong /p p   邵洋洋参与创建了世界首例单染色体的真核细胞,实现“人造生命”里程碑式的重大突破。她通过基因编辑的方法,将酿酒酵母 16 条天然染色体合成为 1 条,对该细胞的进一步研究颠覆了染色体三维结构决定基因表达的传统观念。这也是首次通过合成生物学“工程化”方法,探索解析真核细胞染色体起源与进化的重大基础科学问题。邵洋洋的研究为探索高等生物染色体结构和功能的关系提供了新的思路,为研究端粒相关的衰老和癌症提供了有用的模型。 /p p    strong 人物:李腾 /strong /p p strong   专业:生物材料与合成生物学 /strong /p p strong   职位:北京蓝晶微生物科技有限公司创始人兼CEO /strong /p p   李腾利用合成生物学技术对生命系统进行优化,开发新的微生物产品为解决白色污染问题提供了新思路。他了一种在新疆艾丁湖的耐盐耐碱细菌,大大降低了可降解生物塑料,聚羟基脂肪酸酯(PHA)的生产成本,此外,其领导团队开发了全新的数据管理系统 Holog,提升了研发流程的数据化与自动化水平,建立了软硬一体实验室,极大提升了微生物合成的工程化水平。李腾的研究缩短了工程菌的开发周期,提高了研发准确率,在微生物产业和合成生物学等领域具有重要意义。 /p p    strong span style=" color: rgb(192, 0, 0) " 成果转化获千万级融资 /span /strong /p p   推动科技成果商业化和资本化,是《麻省理工科技评论》进行TR35评选的重要目的。前述9位上榜生物科技人中, strong 李寅青和李腾已经通过创办企业的形式实现了科技成果的转化 /strong 。 /p p   据天眼查的资料, strong 李寅青 /strong 作为联合创始人之一,于2017年7月创办杭州呈源生物技术有限公司,以超高通量单细胞转录组分析为平台,尝试将世界领先的单细胞分析技术带给广大的基础科学和临床研究人员,并最终开发可以用来为多种疾病提供诊断和伴随诊断的产品。杭州呈源生物的另外两位创始人陈曦和丛乐也非常出名,三人还在同时在创建了专注于肿瘤免疫疗法的RootPath公司,并获得了700万美元的种子轮融资,红杉中国领投,Volcanics Venture、百度风投,以及Nest.Bio Ventures参与。 /p p   首席执行官 strong 陈曦 /strong strong 博士 /strong 从德州大学奥斯汀分校毕业之后,曾于哈佛大学Wyss研究所从事博士后研究工作,是一名优秀的生物化学专家。另外一位创始人丛乐作为著名华人学者 strong 张锋教授 /strong 课题组最早的成员之一,参与了许多CRISPR/Cas9相关技术的发明,也在单细胞技术上深有造诣。2013年1月,张锋作为通讯作者、丛乐作为第一作者在《Science》发表论文,介绍如何将CRISPR基因编辑技术用于植物、动物与人类细胞。 strong 丛乐 /strong 也曾获得2017年《麻省理工科技评论》的“35岁以下科技创新35人“荣誉。 /p p   同样来自清华大学的 strong 李腾 /strong 于2016年10月创办北京蓝晶微生物科技有限公司,将合成生物学技术应用于工业生物制造领域,创造包括生物材料PHA在内的全新的生物制造产品,并实现了低成本生物材料PHA的小规模量产。合成生物学(Synthetic Biology )是本世纪新出现的一个生物科学分支学科,研究方向与传统生物学反其道而行,从最基本的要素开始逐步建立零部件。目前,蓝晶微生物已经依托乙酰辅酶A(Acetyl-CoA)、丙二酰辅酶A(Malonyl-CoA)和异戊烯基焦磷酸(IPP)3个平台型分子,经基因元件引入,形成了可降解生物材料PHA、萜类、人体微生物来源小分子新药等不同阶段的产品管线。蓝晶微生物已经于2017年2月和2018年5月,获得峰瑞资本(FreeS VC)领投的500万元天使轮融资和力合创投领投、峰瑞资本跟投的1000万元Pre-A轮融资。 /p p    strong 附:2018年TR35榜单剩余部分 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/40b04355-0831-4d33-8208-66b296fd3185.jpg" title=" 2018年TR35榜单剩余部分.png" alt=" 2018年TR35榜单剩余部分.png" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制