当前位置: 仪器信息网 > 行业主题 > >

生物医学成像

仪器信息网生物医学成像专题为您整合生物医学成像相关的最新文章,在生物医学成像专题,您不仅可以免费浏览生物医学成像的资讯, 同时您还可以浏览生物医学成像的相关资料、解决方案,参与社区生物医学成像话题讨论。

生物医学成像相关的资讯

  • 多模态跨尺度生物医学成像设施工程竣工!
    我国生物医学成像领域的大科学工程——多模态跨尺度生物医学成像设施项目工程3日在北京怀柔科学城竣工。未来将对生命体的结构与功能进行跨尺度、可视化地描绘与精确测量,为复杂生命科学问题和重大疾病研究提供成像组学研究手段,助力全景式研究和解析生物医学重大科学问题。11月3日,多模态跨尺度生物医学成像设施工程竣工仪式在北京怀柔科学城举行该项目是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学联合中科院生物物理研究所、哈尔滨工业大学、中国科学技术大学等多家单位共同建设,项目总投资为17.17亿元,建设用地100亩,新增建筑面积7.2万平方米,项目预计2023年试运行,2024年验收。成像设施在科研、医疗、教育和产业等方面具有广泛需求。在要求“看得见、看得清、看得早”的重大生物医学问题的研究中,多模态跨尺度成像技术具有重要作用。视频来源:北京大学11月3日,参观者观看介绍多模态跨尺度生物医学成像设施项目的图文展览及设备展示。“如果无法看清发病过程中分子、蛋白、细胞、器官等的变化过程,就无法精准治疗疾病。生物医学成像设施可以多层次、全景式、可视化‘看见’疾病发生的动态过程,便于更好地筛选药物、对症下药。”北京大学国家生物医学成像科学中心副主任陈良怡说。据悉,成像设施项目主要包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合系统以及模式动物等辅助平台和配套设施等。未来将聚集相关领域优秀团队,建立完备的核心成像设施,形成跨尺度、多模态、自动化和高通量的生物医学成像全功能研究平台。11月3日拍摄的多模态跨尺度生物医学成像设施工程建筑群(无人机照片)。“成像设施将多层次、全景式揭示生命的奥秘。”北京大学国家生物医学成像科学中心主任、成像设施首席科学家程和平院士说,成像设施建成后将对中国生物医学成像的研发起到积极带动作用。
  • “大国重器”多模态跨尺度生物医学成像设施,竣工!
    经过近三年的建设施工,国家重大科技基础设施建设项目——多模态跨尺度生物医学成像设施终于揭开了面纱!▼11月3日,由建筑部承建的多模态跨尺度生物医学成像设施工程竣工仪式在怀柔科学城举行。十一届全国政协副主席王志珍院士,北京大学校长龚旗煌院士,北京大学党委常委、常务副校长乔杰院士,成像设施首席科学家、国家生物医学成像科学中心主任程和平院士,怀柔科学城党工委委员、副主任丁明达,北京建筑设计研究院总建筑师吴晨,集团公司党委书记、董事长陈代华,集团公司党委常委、建筑部总经理张锁全等出席仪式。北京大学副校长、成像设施总指挥张平文院士主持竣工仪式。乔杰表示,从概念成形到蓝图绘就,再到拔地而起,成像设施已经走过十年历程,是新时代伟大变革的生动缩影。成像设施工程顺利竣工,对北大意义深远、责任重大。她希望项目加快设备安装调试,争取早日通过国家验收;引领学科发展,培养杰出人才,产出大成果;发挥辐射带动作用,服务怀柔科学城及北京市的创新发展。程和平表示,大科学设施是国家品牌,是重要的战略科技力量,更是教育、科技、人才的重要有机融合点,建好用好大设施,是机遇、是挑战,更是重重的责任。他说,会以基建竣工为契机,进一步做好科研与人才的统筹规划,当好科技创新和人才培养融合发展的先锋队,打造科技航母,让大设施发挥出国家战略科技力量的应有作用。丁明达向成像设施建设取得的成果表示祝贺。希望进一步加速项目进度,加快设备安装调试,力争项目早建成、早运行、早见效,同时也希望北京大学深度融入怀柔科学城,在创新装置平台建设、管理、运行机制方面探索新路径,为北京国际科技创新中心和科技强国建设做出新的贡献。陈代华表示,北京大学是我国顶尖高校,是国家培养高素质创造性人才的摇篮、科学研究的前沿和知识创新的重要基地、国际交流的重要桥梁。怀柔区是首都“四个中心”功能的重要承载地,怀柔科学城更是激发创新活力、服务国家战略、引领科技前沿的重要集聚区。面向未来,北京城建集团期待能在北京大学建设世界一流大学的过程中,能在“展翅腾飞看怀柔”的壮美篇章中,与北京大学、怀柔区加强全方位的深度合作,用更多优质服务和精品工程回报社会各界。最后,参加仪式的领导嘉宾共同为多模态跨尺度生物医学成像设施揭牌,还一起参观了“看见生命力”成像设施建设专题展览。多模态跨尺度生物医学成像设施是国家“十三五”重大科技基础设施之一,是北京大学科技创新的重要平台,也是北京以“三城一区”建设为抓手,建设全国科技创新中心的标志性工程。该项目于2020年3月启动基建施工,建设用地超6.6万平方米,新增建筑面积7.2万平方米,建设在怀柔科学城的核心区域。设施由四大核心装置和一个辅助平台构成,包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像整合系统以及模式动物等辅助平台和配套设施。项目投用后,可达到对生命体结构与功能的跨尺度可视化描绘与精确测量,破解生命与疾病的奥秘,实现高端生物医学影像仪器装备的“中国创造”。自项目竣工起,随着设备的安装和试运行,北京大学的科研人员、工程技术人员、运营团队以及大批师生将陆续进驻,运用成像设施开展多项重大科学研究。未来,该设施还将与美国、欧盟等地生物医学成像平台建立国际联盟,实行开放、流动、择优的机制,面向全国开放共享。
  • 2015生物医学成像新技术新方法青年论坛举行
    2015年11月22日,由北京大学、中国科学院生物物理研究所联合主办的“2015年生物医学成像新技术新方法青年论坛”在北京大学中关新园科学报告厅举行。共有100多名生物医学成像领域的青年科学家前来参加了此次会议。  北京大学科学研究部部长周辉致辞欢迎各位青年学者的到来。18位青年科学家就自己的研究方向作了精彩的报告。  上午的会议由中科院生物物理所研究员卓彦主持。北京大学生命科学学院研究员唐世明介绍了其团队发展和利用双光子成像技术在清醒猴脑皮层研究视觉神经回路方面的情况。因为猴视觉与人比较接近,所以可以获得更加接近人类视觉神经回路的结果。目前其团队已经实现700-800μ m的活猴脑成像深度。中科院心理研究所研究员左西年主要介绍了国际人脑神经影像“重测信度”与可重复同盟(CoRR),他通过功能磁共振成像数据,就计算方法的重复性、稳定性以及临床应用等方面进行了讲解。中科院自动化研究所研究员张鑫介绍了他们开发的围绕脑网络研究的多尺度、多模态的成像设备。中科院武汉物理与数学研究所研究员周欣介绍了肺部气体MRI仪器和方法以及肺部重大疾病MRI成像。浙江大学教授牛田野、田梅分别介绍了定量低剂量锥束CT、PET成像技术取得的临床应用新进展和未来的发展方向。北京大学医学部基础医学院刘绍飞老师讲述了活体小动物分子影像监控下的肿瘤精准治疗的探针研究。中科院自动化所研究员王坤介绍了肿瘤光学成像的前沿技术和其研究所在该方面取得的工作成果。  会议休息期间,多位青年科学家就自己的研究方向进行了海报展示,并同与会代表进行了深入交流。  下午的报告由北京大学教授陈良怡和研究员孙育杰主持。上海交通大学教授魏勋斌以“in vivo counting of circulating cells”为题,开启了下午的精彩环节。清华大学教授廖洪恩介绍了医学三维成像和精准诊疗的研究意义、现状和未来的发展方向。复旦大学教授季敏标介绍了其小组在受激拉曼散射成像技术用于脑肿瘤的无标记探测中所取得的最新进展。上海交通大学教授贺号介绍了其利用光刺激显微系统对细胞信号的调控研究。中科院上海生命科学研究院神经科学研究所研究员王凯介绍了自适应光学技术在斑马鱼、果蝇、小鼠深层神经组织成像中的应用。来自台湾的陈壁彰教授介绍了一种“lattice light sheet microscopy”实现超快超高成像的进展。吉林大学的吴长峰教授介绍了基于半导体聚合物的荧光探针设计及其在生物医学成像中的应用,引起了参会者的极大兴趣。来自中科院生物物理所的徐平勇研究员介绍了他们在光激活和光转化荧光蛋白用于多种超高分辨荧光显微成像的应用。中科院生物物理所的孙飞研究员介绍了目前国际上各种电子显微镜技术的现状和他们在电镜成像方面所取得的成绩。最后,来自北京师范大学的贺永教授以他们在脑成像方面所取得的进展结束了下午的报告。  北京大学分子医学所程和平院士充分肯定了此次会议的成功,表达了对未来的期望。各位与会学者纷纷表示此次会议给予了他们学习交流的机会,对未来中国生物医学成像的发展起到重要的推动作用。  本次会议得到了北京协同创新研究院、脉动科技有限公司和北京锐驰恒业仪器科技有限公司的赞助支持。
  • “全国生物医学成像科技创新联盟”成立预备会在北京怀柔召开
    9月18日下午,“全国生物医学成像科技创新联盟”成立预备会在北京怀柔多模态跨尺度生物医学成像设施建设指挥部隆重举行,有近70家在生物医学成像领域具有突出优势的科研单位、医疗机构、企业等的代表参加。国家生物医学成像科学中心主任、多模态跨尺度生物医学成像设施首席科学家、中国科学院院士程和平,怀柔区政协副主席、怀柔科学城管委会创新服务处处长杨昊天,北京大学未来技术学院副院长、国家生物医学成像科学中心副主任、多模态跨尺度生物医学成像设施副总工程师孙育杰,北京大学物理学院讲席教授、国家生物医学成像科学中心副主任、多模态跨尺度生物医学成像设施装置一负责人高家红,以及中国科学院生物物理研究所科技处,北京大学怀柔科学城校区筹建办公室、科技开发部等相关负责人出席大会。会议由孙育杰主持。程和平在致辞中向莅临预备会的领导嘉宾表示热烈欢迎,并对成立联盟的构想等进行了介绍。他指出,成像设施作为国家平台,为充分发挥引领与辐射作用,北京大学等单位倡议发起全国生物医学成像科技创新联盟,构建生物医学领域的创新生态圈,资源共享,协同创新,对于提升生物医学成像领域的科技创新水平、促进行业产业发展意义重大。他表示,怀柔科学城作为北京国际科技创新中心建设的重要支点,成像设施要托举怀柔科学城成为中国生物医学成像领域的科技重镇,要产生引领未来十年、二十年生命科学发展的生物医学成像新方法、新技术、新产品、新产业。程和平致辞杨昊天代表怀柔科学城管委会对科学城进行了介绍。他指出,怀柔科学城定位为北京怀柔综合性国家科学中心,要建成与国家战略需要相匹配的世界级原始创新承载区,至2050年,怀柔科学城要全面建成世界一流的科学城和国家科学中心,并成为我国建设科技强国的重要支撑。目前,怀柔科学城的重大科技基础设施和科教平台集群已初步形成,综合性国家科学中心已见雏形,配套保障体系也在同步建设中,“科学+城”的新型城市形态正在日趋完善,期待成像设施早日建成、创新联盟早日成立并显现成效。杨昊天介绍怀柔科学城规划等情况孙育杰介绍了成像设施及国家生物医学成像科学中心的建设情况。成像设施通过建设四大科学装置及辅助平台设施,构建“从分子到人”的全景式结构和功能成像系统。科学中心是成像设施建设及运行的主体单位,大力发展基于大科学设施的科研,培养大科学创新人才,推动成像组学建设,组织实施大科学计划,致力于实现更多“从0到1”的源头创新。孙育杰介绍成像设施和科学中心情况高家红介绍了联盟的设想等相关情况。联盟以“推动科技创新,引领产业发展”为宗旨,以推动生物医学成像科技创新,成为生物医学成像装备的领航者、行业标准的制定者为目标,积极吸纳高校科研院所、医疗机构、公司、科技支撑及服务等单位参加,共同协力开展科技创新、成果转化、人才培养等多类任务。高家红介绍联盟相关情况参会代表就成立联盟的相关事项进行了热烈讨论。大家对联盟的成立表示热切期盼,并就联盟的发展形式、合作内容、工作任务、人才培养等具体事项提出了意见和建议,对联盟章程(草案)也进行了交流讨论。此次预备会取得了显著成效,达成了联盟建设与发展共识,为11月3-4日计划在第二届“怀柔论坛”上举行的联盟成立大会奠定了坚实基础。参会代表讨论发言参会代表讨论发言最后,程和平总结强调,成像设施是国家设施,共建共享,开放包容。以成像设施为核心,构建生命科技的良好创新生态圈,为大家搭建一个交流合作的平台,希望大家共同努力,把成像设施建设好,把联盟设计好,共同为生物医学影像事业发展贡献力量。此次联盟成立预备会议采取线上和线下相结合的方式召开。线下参会代表还参观了怀柔科学城创新展示中心,实地考察调研了怀柔科学城整体布局以及成像设施的建设情况。与会代表参观怀柔科学城创新展示中心参会代表考察怀柔科学城建设布局参会代表考察成像设施建设
  • 怀柔论坛2022生物医学成像技术创新与产业发展会议通知
    尊敬的各位专家同道: 您好!成像技术作为生物医学最重要的研究工具之一,已经成为生命科学基础研究和临床医学研究发展的核心动力。北京大学联合多家单位在怀柔科学城建设“十三五”国家重大科技基础设施——多模态跨尺度生物医学成像设施,为复杂生命科学问题和重大疾病的研究提供系统成像组学研究手段,对生命体结构与功能进行跨尺度可视化描绘与精确测量,进而破解生命与疾病的奥秘。为充分发挥国家设施的示范引领与辐射带动作用,探索生物医学成像前沿科学与技术发展,助推我国高端生物医学成像装备自主创新,我们创办了“怀柔论坛”,集各领域生物医学研究者智慧,利用多模态跨尺度先进成像能力来推动生物医学研究的范式变革,助力高端生物医学影像仪器装备的“中国创造”。第二届“怀柔论坛”计划于2022年11月3日(星期四)至4日(星期五)在北京怀柔日出东方酒店举办,论坛主题为“生物医学成像技术创新与产业发展”。本届论坛由北京大学联合北京市怀柔区人民政府、北京市怀柔科学城管理委员会及北京市科学技术协会共同主办。雁栖湖畔,金风送爽,诚挚邀请您出席本次大会!顺颂秋绥!北京大学国家生物医学成像科学中心2022年10月点击链接进入会议官网点击报名:https://www.wjx.cn/vm/tvedfeR.aspx#会议信息1. 会议时间:2022年11月3日-4日2. 会议地点:北京市怀柔区日出东方酒店3. 会议主题:生物医学成像技术创新与产业发展4. 会议主席(以姓氏笔划为序): 名誉主席:韩启德院士 大会主席:乔杰院士、张平文院士、 徐涛院士、程和平院士 执行主席:王天兵教授、王世强教授、王嘉东教授、 孙育杰教授、陈良怡教授、罗金才教授、 高家红教授5. 日程安排:11月3日09:00-12:00 全国生物医学成像科技创新联盟成立大会14:00-14:30 开幕式及领导致辞14:30-15:00 怀柔科学城及成像设施介绍15:00-16:30 怀柔科学城及成像设施参观11月4日08:30-17:00 主题报告及圆桌讨论6. 会议规模:线下共约200人报名须知:1.报名截止时间:10月25日12:00点击报名:https://www.wjx.cn/vm/tvedfeR.aspx#2.联系人:张金博(交通管理)13466768211 林 颖(会务综合) 15030818223 杜淑欣(参会报名)18301166236 容颖雪(会务综合)18810535356 王莹莹(食宿安排) 13520951896 3.发票开具:如需开具发票,点击按钮填写发票信息。会议后三十个工作日开具增值税普通发票。大会日程
  • 第三届怀柔论坛 生物医学成像:未来技术与未来科学家
    成像技术作为生物医学最重要的研究工具之一,已经成为生命科学和临床医学研究发展的核心动力。北京大学联合多家单位在怀柔科学城建设“十三五”国家重大科技基础设施——多模态跨尺度生物医学成像设施,为复杂生命科学问题和重大疾病的研究提供成像组学研究手段,对生命体结构与功能进行跨尺度可视化描绘与精确测量,进而破解生命与疾病的奥秘。为充分发挥成像设施作为国家设施的示范引领与辐射带动作用,助推生物医学成像前沿科学与技术发展,促进我国高端生物医学成像装备的自主创新,我们创办了“怀柔论坛”,集各领域生物医学研究者智慧,利用多模态跨尺度先进系统成像能力推动原创性重大科学问题研究以及技术创新,为人类健康事业提供更多解决方案。第三届“怀柔论坛”计划于2023年11月3日(星期五)至5日(星期日)在北京怀柔科学城举办,论坛主题为“生物医学成像:未来技术与未来科学家”。本届论坛由北京大学联合北京市科学技术协会共同主办。一、会议时间:2023年11月3日-5日二、会议地点:北京怀柔日出东方酒店三、会议主题:生物医学成像:未来技术与未来科学家四、组织单位:主办单位:北京大学 北京市科学技术协会协办单位:中国科学院生物物理研究所 北京科技国际交流中心承办单位:北京大学国家生物医学成像科学中心 北京大学未来技术学院五、日程安排:11月3日13:30-14:30开幕式14:30-16:55主题报告16:55-19:00成像设施参观19:00-21:00晚宴11月4日08:30-18:00主题报告及圆桌讨论11月5日08:30-17:50主题报告及圆桌讨论六、会议规模:线下约200人七、特邀报告嘉宾(姓名首字母排序)• Stefan W. Hell,2014年诺贝尔化学奖获得者,德国国家科学院院士,美国科学院外籍院士,马克思普朗克多学科科学研究所、医学研究所所长• 杜江峰,中国工程院院士,浙江大学校长• 戴琼海,中国工程院院士,清华大学教授• Jan Ellenberg,德国国家科学院院士,欧洲分子生物学实验室(EMBL)所长,Euro-Bioimaging总协调人• Yale E. Goldman,美国国家科学院院士,美国国家艺术与科学院院士,宾夕法尼亚大学教授• Jennifer Lippincott-Schwartz,美国国家科学院院士,霍华德休斯医学研究所珍妮莉亚研究园区(HHMI Janelia Research Campus)教授,4D Cellular Physiology科学计划负责人• 骆清铭,中国工程院院士,海南大学校长• Lihong V. Wang,美国国家工程院院士,加州理工学院教授• 谢晓亮,美国国家科学院院士,中国科学院外籍院士,昌平实验室主任,北京大学未来基因诊断高精尖创新中心主任、讲席教授• 徐涛,中国科学院院士,中国科学院生物物理研究所生物大分子国家重点实验室主任八、报告嘉宾(姓名首字母排序)• Xiaoyuan Chen,新加坡国立大学终身讲席教授• 方宁,厦门大学化学化工学院教授• 郭强,北京大学生命科学学院助理教授• 韩铭,北京大学定量生物学中心助理教授• Julian Kompa,马克斯普朗克医学研究所博士• 刘贝,北京大学国家生物医学成像科学中心助理教授• Rong Li,新加坡国立大学机械生物学研究所所长、特聘教授• W Jonathan Lederer,马里兰大学医学院生物医学工程与技术中心主任、教授• 刘颖,北京大学未来技术学院副院长、教授• Hanchuan Peng,艾伦脑科学研究所研究小组负责人、教授,东南大学脑科学与智能技术研究院院长• 齐志,北京大学定量生物学中心研究员• 孙赫,北京大学国家生物医学成像科学中心助理教授• Longsheng Song,爱荷华大学卡佛医学院心血管内科终身教授,Edith King Pearson心血管研究主席• Lingyan Shi,加州大学圣地亚哥分校助理教授• Till Stephan,马克斯普朗克多学科科学研究所博士后• Zheng Shi,罗格斯大学助理教授• 田华,北京大学医学部副教授• Jin Wang,纽约州立大学石溪分校化学和物理学系教授• Micheal Weber,马克斯普朗克多学科科学研究所博士后• Yingxiao Wang,南加州大学生物医学工程系主任、教授• 熊汗青,北京大学国家生物医学成像科学中心助理教授• Sheng Xu,加州大学圣地亚哥分校纳米工程系副教授• Miao Yu,美因茨大学博士后• Yaoheng Yang,圣路易斯华盛顿大学博士后• 郑鹏里,北京大学生命科学学院助理教授九、会议网站及报名:https://mp.weiqihd.com/msite/site/11269/
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 北京大学生物医学成像设施工程竣工仪式举行
    仪式现场。(崔雪芹摄)11月3日上午,北京大学多模态跨尺度生物医学成像国家重大科技基础设施的工程竣工仪式在怀柔科学城举行。十一届全国政协副主席王志珍院士,北京大学校长龚旗煌院士,北京大学党委常委、常务副校长乔杰院士,怀柔科学城党工委委员、副主任丁明达,北京城建集团董事长陈代华,北京建筑设计研究院总建筑师吴晨,成像设施首席科学家、国家生物医学成像科学中心主任程和平院士等出席仪式。共建单位代表,北京大学医学部领导、相关院系和职能部门领、国家生物医学成像科学中心PI及学生代表等参加仪式。北京大学副校长、成像设施总指挥张平文院士主持竣工仪式。乔杰表示,今天的基础设施工程竣工是北京大学面向国家重大需求、优化大学创新体系历程中的一件大事。设施从概念初具雏形到蓝图逐步完善,到建筑拔地而起,再到今天的基建竣工非常不容易。她提出了四点要求,一是加快设备安装调试,争取早日通过国家验收;二是进一步探索有组织科研,深化体制机制创新;三是引领学科发展,培杰出人才,产出真大成果;四是发挥辐射带动作用,服务怀柔科学城及北京市的创新发展。程和平表示,大科学设施是国家品牌,是重要的战略科技力量,更是教育、科技、人才的重要有机融合点,建好大设施、用好大设施,发挥大设施的最大效益,是机遇、是挑战,更是重重的责任。虽然科研装置还要很多问题和难题,但会与所有参建者们一起去解决去攻克,有信心按计划完成建设任务,让成像设施早日实现开放运行。他提出,会以基建竣工为契机,进一步做好科研与人才的统筹规划,当好科技创新和人才培养融合发展的先锋队,打造科技航母,让大设施发挥出国家战略科技力量的应有作用。同时,以成像大设施为引领,努力构建生物医学成像科技领域生态圈,让科技赋能产业发展,让创新引领行业进步,不断催生新动能新业态,为全面贯彻实施创新驱动发展战略做出新的贡献。丁明达向成像设施建设取得的成果表示祝贺。希望进一步加速项目进度,加快设备安装调试,力争项目早建成、早运行、早见效,同时也希望北京大学深度融入怀柔科学城,在创新装置平台建设、管理、运行机制方面探索新路径,为北京国际科技创新中心和科技强国建设做出新的贡献。陈代华表示,面向未来,城建集团期待能在北京大学建设世界一流大学的过程中,能在“展翅腾飞看怀柔”的壮美篇章中,与北京大学、怀柔区加强全方位的深度合作。最后,由参加仪式的领导嘉宾共同为多模态跨尺度生物医学成像设施揭牌。
  • UT3D电镜成功进军国家级生物医学成像中心,纳克微束参建多模态跨尺度生物成像设施
    近期,多模态跨尺度生物医学成像设施--高通量电子显微断层成像系统项目顺利完成招标工作,纳克微束(北京)有限公司成为高通量电子显微断层成像系统UT3D的唯一提供商。多模态跨尺度生物医学成像设施是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学和中科院生物物理所承接建设任务,未来将成为国家级的生物医学成像科学中心。此次合作的达成,是行业客户对纳克微束卓越技术水平的认可,也意味着微束将承担项目中心建设的重要使命。(怀柔科学城多模态跨尺度生物医学成像设施平台)多模态跨尺度生物医学成像设施项目,旨在快速提升我国生命科学基础研究和临床医学等领域的研究水平,为实现我国生物医学研究整体水平,特别是原始创新能力的跨越式发展以及为高端生物医学影像装备的“中国创造”提供战略支撑和保障。在连接生物医学介观到微观尺度的这一关键节点,相关的多模态跨尺度串联技术和产品级的解决方案长期处于研发摸索阶段。因此,生物物理所希望通过合作,找到志同道合的订制成像方案服务方。由于国内扫描电子显微镜行业起步较晚,国外企业几乎主导国内市场,为响应高端生物医学影像装备的“中国创造”的号召,纳克微束做出部署、展开攻关,以本次订制方案服务为契机,迎难而上,踔厉奋发,在国际上先人一步提出解决方案。高效解决生物样品从介观到微观的成像难点和痛点,改善微观尺度高效率切割和最终电子断层成像效率低的问题,对于扫描电子显微镜技术的发展具有里程碑的意义!纳克微束秉承钢研的技术创新基因,积极探索新方向,守正创新,在钢研集团70周年之际,敢于“亮剑”,力战国内外厂商,成为生物医学成像科学中心唯一的国产厂家,以达成高通量电子显微断层成像系统项目合作这一成绩为集团庆祝,吹响了解决生物医学介观到微观尺度问题的时代号角,在扫描电子显微镜行业崭露头角。作为一家新创立公司,纳克微束成为高通量电子显微断层成像系统项目唯一服务商,为高端生物医学影像装备“中国创造”吹响了进征的号角,秉持守正创新的精神,攻坚克难,为扫描电子显微镜领域的发展注入新动力,助力微观世界的探索与发现。此次合作只是一个起点,未来将持续投入综合显微成像的研发,开拓创新,推动技术升级,助力国产电镜行业实现崭新发展,致力成为中国电镜技术引领者。
  • 超灵敏多光谱光声显微镜,具有广泛的生物医学成像潜力
    “光学分辨率”光声显微镜是一种新兴的生物医学成像技术,可用于癌症、糖尿病和中风等多种疾病的研究工作。但是灵敏度不足,一直是其获得更广泛应用的长期障碍。据麦姆斯咨询报道,近期,香港城市大学(CityU)的一支研究团队开发出一种多光谱、超低剂量的光声显微镜(SLD-PAM)系统,该系统的灵敏度极限得到了显著提高,为未来新的生物医学应用和临床转化提供了可能,相关研究成果以“Super-Low-Dose Functional and Molecular Photoacoustic Microscopy”为题发表于Advanced Science期刊。多光谱光声显微镜系统及其灵敏度增强示意图光声显微镜结合了超声波检测和激光诱导光声信号,以创建生物组织的详细图像。当生物组织被脉冲激光照射时会产生超声波,然后超声波被检测并转换为电信号用于成像。与传统的光学显微镜方法相比,这种新颖的技术可以在更大的深度上实现毛细管水平或亚细胞级别的分辨率。然而,灵敏度不足阻碍了该技术的更广泛应用。“高灵敏度对于高质量成像很重要。它有助于检测不强烈吸收光的发色团(通过吸收特定波长的可见光赋予材料颜色的分子)。它还有助于减少光漂白和光毒性,减少对脆弱器官生物组织的干扰,并在宽光谱范围内提供更多可选的低成本、低功率激光器。”香港城市大学生物医学工程系Wang Lidai教授解释道。例如,在眼科检查中,为了更安全和舒适,优选低功率激光器。他补充称,对于药代动力学或血流的长期监测,需要低剂量成像以减轻对组织功能的干扰。为了克服灵敏度挑战,Wang Lidai教授及其研究团队最近开发了一种多光谱、超低剂量的光声显微镜系统,突破了传统光声显微镜的灵敏度极限,将灵敏度显著提高了约33倍。他们通过光声传感器设计的改进,结合用于计算的4D光谱空间滤波器算法,实现了这一突破。研究人员通过使用实验室定制的高数值孔径声透镜、优化光学和声学波束组合器,以及改进光学和声学对准来改进光声传感器的设计。该光声显微镜系统还利用低成本的多波长脉冲激光器,提供从绿光到红光的11种波长。其激光器以高达兆赫的重复频率工作,光谱切换时间为亚微秒级。超低剂量照明下的血管形态提取为了证明光声显微镜系统的重要性和新颖性,该研究团队通过绿光和红光光源的超低脉冲体内动物成像,对其进行了全面的系统测试,并得到了显著的成果。首先,该光声显微镜系统能够实现高质量的体内解剖和功能成像。超低的激光功率和高灵敏度,显著地减少了眼睛和大脑成像的干扰,为临床转化铺平了道路。其次,在不影响图像质量的情况下,该光声显微镜系统较低的激光功率,将光漂白减少了约85%,并能够使用范围更广的分子和纳米探针。此外,该系统成本显著降低,使研究实验室和诊所更能负担得起。Wang Lidai教授说道:“该光声显微镜系统能够在对受试者损伤最小的情况下,对生物组织进行非侵入性成像,为解剖、功能和分子成像提供了一种强大而有前景的工具。我们相信该光声显微镜系统有助于推进光声成像的应用,实现许多新的生物医学应用,并为临床转化铺平新的道路。”接下来,Wang Lidai教授及其研究团队将利用该系统在生物成像中测试更广泛的小分子和基因编码生物标志物。他们还计划在宽光谱中试验更多类型的低功率光源,以开发可穿戴或便携式光声成像显微镜。论文链接:https://doi.org/10.1002/advs.202302486
  • 日本理学收购生物医学成像设备制造商MILabs 全面进军生命科学领域
    近日,X射线分析设备的领先制造商日本理学(Rigaku)宣布,已收购MILabs所有已发行股票,作为其全面进入生命科学业务的一部分。通过此次收购,Rigaku将通过合并MILabs的多模式业务,在全球扩展其生命科学模式业务,包括PET(正电子发射断层扫描)、SPECT(单光子发射计算机断层扫描)、光学成像和动物CT(计算机断层扫描)设备,以及Rigaku的原始动物X光成像业务。MILabs成立于2006年,专业提供高性能的SPECT和PET设备,比传统的替代方案具有更高的效率和准确性,并具有同时成像核治疗和多种示踪剂的独特能力。这充分利用了Frederik Beekman博士和他的同事开发的公司专有的准直和数据采集技术。此外,MILabs还开发了一种独特的多模态系统,能够完全集成高性能X射线CT、PET、SPECT和光学成像,以更低的成本满足客户的灵活性需求。在过去的几年里,公司在各种成像模式的销售经历了快速增长。Rigaku同全球的大学、研究机构和主要产业参与者一起,在支持科学、技术和相关产业的发展方面发挥了领导作用。该公司的业务领域包括纳米技术和新材料、资源、能源、环境、半导体和电子材料、生命科学等,在过去70年里Rigaku积累了丰富的知识和技术。Rigaku于2021年获得了凯雷集团基金的投资,目前正在积极扩大增长领域的投资。通过此次收购,Rigaku旨在通过整合MILabs的辐射成像和光学成像技术来加强其生命科学领域的临床前成像业务,这是Rigaku的新举措,同时建立其现有的X射线成像业务。Rigaku认为,临床前成像在生命科学领域将愈发重要。随着基因编辑等创新技术的发展,通过体内分析来验证编辑基因的作用和功能将成为必要,而临床前成像有望在这方面发挥重要作用。此外,在药物发现领域,研发人员需要观察候选药物在开发阶段的体内行为,临床前影像学有望对阐明药物的药效机制做出很大贡献。通过此次收购,Rigaku将加强MILabs的销售能力,利用Rigaku的销售网络和全球服务网络,两家公司将能够为客户提供更好的服务。此外,两家公司还将把MILabs的辐射探测技术和附加平台系统设计与Rigaku的X射线设计技术相结合,促进新产品的共同开发。MILabs的创始人、首席执行官、CSO Frederik Beekman博士评论道:“我们对Rigaku收购MILabs感到非常兴奋,因为这将进一步推动我们在全球范围内提供独特的产品,加快我们的创新步伐,惠及更多的生物医学研究人员、医生和患者,他们将受益于我们的成像技术。”Rigaku总裁兼首席执行官Toshiyuki Ikeda评论道:“通过对MILabs的收购,我们期待与Rigaku核心X射线相关业务的协同效应,这将促进公司向生命科学领域扩展的新举措。我们相信,MILabs独特的产品将大大加快大学、医院和制药公司与临床前成像相关的生命科学研究。此外,我们还希望通过提供开发新检测方法和治疗制剂所需的设备和系统,为整个社会做出贡献。我们认为,这些措施对于提高老龄人口的生活质量和应对新传染病的增加至关重要。”Carlyle Japan的副总裁Takaomi Tomioka评论道:“虽然从今年3月我们完成对Rigaku的投资到现在才四个月,但我相信我们已经完成了对该公司非常重要的战略性收购。在生命科学领域的扩张是Rigaku增长战略中最重要的举措之一,我相信收购MILabs是实现我们长期目标的有意义的第一步。”Rigaku计划积极进军生命科学领域,并在2025年之前将其发展为核心事业之一。
  • 微观世界显真容:质谱成像助力生物医学研究
    质谱成像(MSI)作为一种新兴的分子成像工具,凭借其高灵敏度、特异性及无需标记等优势,已经在生物医学研究领域展现了巨大潜力。其可以直接获取分子轮廓,并直观地显示每种离子化化合物在样品(尤其是生物组织)中的空间分布。作为探索空间多组学最有前途和最有发展前景的技术之一,MSI 不仅能定位药物和代谢物的分布,还能深入了解疾病进展和药物干预背后的表型变化。本文将结合多种质谱成像技术,包括常压透射式激光解吸/后光电离质谱成像、基质辅助激光解吸电离质谱成像、解吸电喷雾离子化质谱成像、飞秒激光电离成像质谱、离子迁移率分离、飞行时间二次离子质谱、激光剥蚀电感耦合等离子体质谱、成像质谱显微镜等技术,深入探讨了其在肿瘤研究、药物代谢分析和单细胞研究中的突破性成果。◆ 常压透射式激光解吸/后光电离质谱成像技术 由中国科学技术大学国家同步辐射实验室潘洋等的研究团队,共同发展的常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI)新方法,能够在无需复杂样品前处理的情况下,实现对生物组织中多种内源性化合物的原位可视化分析。该技术结合了透射式激光解吸电离和紧凑型后紫外光电离装置,显著提高了空间分辨率和灵敏度。在复杂临床样本分析中,t-AP-LDI/PI-MSI被用来分析肿瘤组织的代谢物分布,揭示了黑素瘤微环境的代谢异质性,这为深入了解肿瘤发生的复杂分子机制具有很大的参考价值。点击了解最新进展~◆ 基质辅助激光解吸电离质谱成像技术 (→点击查看相关仪器)基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种经典的技术,通过在样品表面添加基质,使得样品在激光照射下能够能够高效地解吸和电离组织样品中小分子代谢物、脂质和蛋白质。MALDI-MSI在肿瘤标志物发现、药物分布研究等方面应用广泛,为生物内源性化合物的直接鉴定和定位提供了强有力的支持。已有研究使用不同的纳米材料作为衬底,从而显著提高分析物的解吸电离效率和检测灵敏度。此外,MALDI-MSI还被成功应用于单细胞分析,通过优化样品制备和基质选择,能够在单细胞水平上检测代谢物和脂质,这对于细胞异质性研究具有重要意义。例如,杭纬等相继研发出的质谱仪器能够实现单细胞内药物分子的3D成像分析,揭示了抗癌药物诱导癌细胞凋亡的动态过程。蔡宗苇等研发出冰冻3D细胞微球方法用于MSI分析,并结合代谢组学揭示了环境污染物对细胞球增殖的影响。点击了解最新进展~◆ 解吸电喷雾离子化质谱成像技术 解吸电喷雾离子化质谱成像(DESI-MSI)是一种无需样品前处理的即时质谱成像技术,可在大气压下进行快速、直接的化学成分分析。近年来,DESI-MSI在临床诊断中的应用逐渐增多,能够在手术过程中实时识别癌组织边界,为外科医生提供重要的指导信息。此外,DESI-MSI在环境科学中也展现出潜力,尤其是在分析复杂环境基质中的污染物时,DESI-MSI能够快速、准确地检测和定位多种化学物质。贺玖明团队还开发出基于AFADESI-MSI技术的空间分辨代谢组学新方法,揭示肿瘤转移机制,建立了以空间分辨代谢组学技术为特色的代谢研究平台。点击了解最新进展~◆ 飞秒激光电离成像质谱技术 飞秒激光电离成像质谱(fs-Laser Ionization Imaging Mass Spectrometry)技术凭借其超快激光脉冲和精确的电离能力,在质谱成像领域独树一帜。该项技术可高效分析热敏性和易碎性样品,超越了传统光学显微镜的分辨率限制。通过微米级分辨率进行激光烧蚀和质谱仪的软电离源,其能够鉴别和分析生物分子和其他微观物质,在分子水平上揭示样品的化学组成和空间分布,推进了多个研究领域的进展。其已经能够在亚细胞水平上进行高分辨率质谱成像,为细胞生物学、神经科学等领域的研究提供了前所未有的视角。◆ 离子迁移率分离技术 (→点击查看相关仪器)离子迁移率分离技术(IMS)的引入,为质谱成像带来了革命性的变化。IMS通过分离气相中的离子,根据它们在电场中的迁移速度不同来实现分离,这取决于离子的碰撞截面积和电荷状态。离子迁移率质谱成像(IM-MSI)利用IMS的优势,提高了分子特异性和空间分辨率,尤其是在分析小分子异构体方面表现出色。这项技术在药物开发、疾病诊断和生物标志物的发现等领域展现出巨大的潜力,为生物医学研究提供了新的视角。李灵军团队利用离子迁移率分离和双极性电离质谱成像(MSI)技术实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。点击了解最新进展~◆ 飞行时间二次离子质谱技术 (→点击查看相关仪器)飞行时间二次离子质谱(TOF-SIMS)技术是一种仍然处于高速发展中的高分辨率表面分析技术,具有高空间分辨率、高化学专一性、高灵敏度的独特优势,广泛应用于生物组织和单细胞成像等生命科学研究领域。TOF-SIMS是迄今为止,能在亚细胞水平上对生物分子进行无标记2D和3D成像的、为数不多的分析技术之一,为研究细胞膜组成、药物分布和疾病标志物提供了宝贵的信息。汪福意课题组长期致力于TOF-SIMS方法与应用研究,发展了基于TOF-SIMS和荧光共聚焦显微镜联用的成像分析方法,并在单细胞水平上开展了金属抗肿瘤化合物、细胞内生物大分子蛋白质与DNA之间的相互作用等研究。点击了解最新进展~◆ 激光剥蚀电感耦合等离子体质谱技术 (→点击查看相关仪器)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术通过激光剥蚀样品并结合ICP-MS的高灵敏度检测,实现了对生物组织中金属元素和有机化合物的空间分布分析。该技术在金属组学和元素生物化学研究中,特别是对揭示元素在生物体内的分布和功能方面,提供了强有力的手段。LA-ICP-MS技术能够以高空间分辨率对生物样本进行元素成像,对于研究微量元素与疾病的关系以及药物代谢等领域具有重要价值。中科院高能物理研究所丰伟悦研究团队对LA-ICP-MS在单细胞分析和生物成像方面的研究,为理解生物样本中的元素分布和相互作用提出了新的见解,也为生物医学研究和纳米材料的安全性评估提供了重要的技术支持。◆ 成像质谱显微镜 (→点击查看相关仪器)成像质谱显微镜结合了光学显微镜和质谱成像技术的优势,能够在单细胞甚至亚细胞水平上提供高分辨率的化学信息,并对生物分子进行定量分析。该技术为研究细胞内的分子动态和相互作用提供了可能,对于理解疾病的发生和发展机制具有重要意义。成像质谱显微镜为揭示细胞内复杂的分子网络和相互作用提供了新的研究工具。点击了解最新进展~质谱成像技术的不断创新与发展,极大提升了生物样本化学信息的解析能力,并在细胞、组织及器官层面揭示了样品的复杂化学组成及空间分布。随着技术的发展,质谱成像将在未来生物医学研究中继续发挥重要作用,为疾病诊断、治疗方案优化以及生命科学研究带来新的突破与希望。更多精彩内容↓↓↓上述内容综合了当前质谱成像技术在生物医学研究中的最新研究进展和应用实例。有关更多信息和研究讨论,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有来自国内外的顶尖专家分享他们在质谱成像领域的最新研究成果和见解,赶紧点击下方的图片报名吧。
  • 生物医学工程前沿交叉论坛 第三轮通知
    为推进生物医学工程前沿技术创新和发展,加快抢占生物医学工程领域科技制高点,中国科学院苏州生物医学工程技术研究所、北京航空航天大学定于2024年5月17日—18日(5月16日报到)以“医工融合协同创新”为主题召开“生物医学工程前沿交叉论坛”,会议地点:苏州市科技城清山会议中心。大会共设置1个主论坛和5个专题论坛。将邀请国内外知名学术专家、临床专家、产业专家报告和研讨,展示近年来在生物医学成像、消化健康与显微成像、生物医用材料、生物医学仪器、康复治疗等方向的新技术、新进展,推动“生-医-工交叉融合”和生物医学工程领域高质量发展。生物医学工程前沿交叉论坛大会(2024,苏州),热忱期待从事相关领域的专家学者莅临参会。大会组委会论坛主席吴成铁 党委书记、所长 中国科学院苏州生物医学工程技术研究所樊瑜波 院长 北京航空航天大学论坛执行主席周连群 副所长 中国科学院苏州生物医学工程技术研究所 特邀嘉宾(按姓氏笔画排序)王振常 院士 首都医科大学张玉奎 院士 中国科学院大连化学物理研究所陈学思 院士 中国科学院长春应用化学研究所郑海荣 院士 南京大学、中国科学院深圳先进技术研究院徐宗本 院士 西安交通大学参会嘉宾(按姓氏笔画排序)丁利军 南京鼓楼医院张周锋 中国科学院西安光学精密机械研究所丁建勋 中国科学院长春应用化学研究所张 炜 中国科学院重庆绿色智能技术研究所于成功 南京鼓楼医院张思东 南京鼓楼医院万明习 西安交通大学张晓东 天津大学王卫东 中国人民解放军总医院张雅超 中国科学院苏州生物医学工程技术研究所王文学 中国科学院沈阳自动化研究所张道强 南京航空航天大学王 均 华南理工大学张鹏飞 中国科学院化学研究所王丽珍 北京航空航天大学陆 建 东南大学附属中大医院王启飞 中国科学院苏州生物医学工程技术研究所陈方圆 中国科学院南京分院王 乾 上海科技大学陈江龙 中国科学院南京分院王常勇 中国人民解放军军事科学院陈 阳 东南大学王强斌 中国科学院苏州纳米技术与纳米仿生研究所陈 雨 上海大学王 瑜 中国科学院遗传与发育生物学研究所陈 勋 中国科学技术大学龙 勉 中国科学院力学研究所陈洪敏 厦门大学田 捷 中国科学院自动化研所陈 罡 苏州大学附属第一医院史 文 中国科学院化学研究所陈新建 苏州大学他得安 复旦大学范怡敏 中国科学院脑智卓越中心吕宏旭 中国科学院上海硅酸盐所季 申 中国科学院动物研究所吕 毅 西安交通大学季敏标 复旦大学朱本鹏 华中科技大学金 晶 华东理工大学朱雪松 苏州大学附属第一医院周少华 中国科学技术大学朱融融 同济大学郑 健 中国科学院苏州生物医学工程技术研究所庄 杰 中国科学院苏州生物医学工程技术研究所赵凌霄中国科学院苏州生物医学工程技术研究所刘小龙 福建医科大学孟超肝胆医院胡振华 中国科学院自动化研究所刘 冉 天美仪拓实验室设备(上海)有限公司施 俊 上海大学刘成波 中国科学院深圳先进技术研究院姚保利 中国科学院西安光学精密机械研究所刘 刚 厦门大学秦建忠 苏州大学附属第二医院刘 宏 东南大学顾 奇 中国科学院动物研究所刘笑宇 北京航空航天大学倪大龙 上海交通大学刘润辉 华东理工大学徐 飞 南京大学刘斯淼 中国科学院遗传与发育生物学研究所徐圣进 中国科学院脑智卓越中心刘 斌 中国科学院苏州生物医学工程技术研究所徐 峰 西安交通大学刘 斌 中国科学院沈阳自动化所研究所徐家科 中国科学院深圳先进技术研究院关柏鸥 暨南大学高长有 浙江大学米 鹏 四川大学高 阳 南京大学孙立宁 苏州大学高明远 苏州大学孙敏轩 中国科学院苏州生物医学工程技术研究所高 欣 中国科学院苏州生物医学工程技术研究所李 飞 西安交通大学高 峰 天津大学李光林 中国科学院深圳先进技术研究院郭 晴 中国科学院化学研究所李 伟 苏州高新区科创局陶春静 北京航空航天大学李建清 南京医科大学曹国华 上海科技大学李跃华 上海交通大学医学院附属第六人民医院曹殿文 中国科学院遗传与发育生物学研究所李 锐 苏州大学附属第一医院常 江 中国科学院上海硅酸盐研究所杨西斌 中国科学院苏州生物医学工程技术研究所崔崤峣 中国科学院苏州生物医学工程技术研究所杨 兴 苏州市立医院(南京医科大学附属苏州医院)梁兴杰 国家纳米科学中心杨志谋 南开大学尉迟明 华中科技大学杨洪波 中国科学院苏州生物医学工程技术研究所屠 娟 南京大学杨健 北京理工大学喻洪流 上海理工大学杨 健 西湖大学程 茜 同济大学肖海华 中国科学院化学研究所傅东升 中国科学院化学研究所吴方刚 飞依诺科技股份有限公司谢 飞 苏州市政府吴旭翔 苏州高新区政府廖希明 苏州市科技局吴宇奇 中国科学院化学研究所端洪菊 苏州高新区科招中心吴练秋 中国医学科学院药物研究所熊 鹏 中国科学技术大学吴富根 东南大学缪丽燕 苏州大学附属第一医院吴勤峰 南京大学医学院附属苏州医院(苏州科技城医院)缪 鹏 中国科学院苏州生物医学工程技术研究所何晖光 中国科学院自动化研究所樊瑜波 北京航空航天大学谷陆生 中国科学院生物物理研究所薛华丹 北京协和医院宋爱国 东南大学穆 宇 中国科学院脑智卓越中心张 丽 华中科技大学附属协和医院戴亚康 中国科学院苏州生物医学工程技术研究所会议信息会议主题:医工融合协同创新会议地点:苏州市科技城清山会议中心(苏州市虎丘区科技城稼先路35号)会议日期:2024年5月16-18日 5月16日注册报道 5月17日8:30-18:00大会论坛、分会报告 5月18日9:00-12:00分会报告日程安排论坛会议名称论坛安排时间5月17日开幕式+大会特邀报告主会场四季厅8:30-12:00生物医学成像技术论坛四季厅A14:00-18:00消化健康与显微成像前沿技术论坛半山厅A14:00-18:00生物医用材料前沿交叉论坛阳山厅13:30-18:00生物医学仪器与康复治疗前沿交叉论坛贡山厅14:00-18:00人工智能生物医学工程前沿交叉论坛清山厅14:00-18:00光学显微技术联盟理事会(闭门会议)龙山厅20:30-21:30BMEF编委会(闭门会议)茅山厅20:30-21:305月18日生物医学成像技术论坛四季厅A9:00-12:00消化健康与显微成像前沿技术论坛半山厅A9:00-12:00生物医用材料前沿交叉论坛阳山厅8:30-12:00生物医学仪器与康复治疗前沿交叉论坛贡山厅9:00-12:00开幕式+大会特邀报告时间:2024年5月17日 8:30-12:00地点:四季厅主持人:周连群大会议程时间内容报告人主持人8:30-8:45嘉宾致辞周连群中国科学院苏州生物医学工程技术研究所8:45-8:55全国重点实验室启动8:55-9:05医工融合签约9:05-9:10参会人员合影9:10-9:45外泌体蛋白组技术进展张玉奎中国科学院院士中国科学院大连化学物理研究所9:45-10:20智能化推动国产化:我国基础医疗装备自主创研的可行路径徐宗本中国科学院院士西安交通大学10:20-10:30茶歇10:30-11:05基于CT的结直肠癌前病变智能检测系统的创建王振常中国科学院院士 首都医科大学11:05-11:40生物医用可吸收高分子材料与器件陈学思中国科学院院士 中国科学院长春应用化学研究所11:40-12:00高新区创新创业环境推介端洪菊苏州高新区科招中心分会场01:生物医学成像技术论坛时间:2024年5月17日 14:00-18:002024年5月18日 9:00 - 12:00主持人:薛华丹、张丽、崔崤峣、高欣时间题目报告人主持人5月17日14:00-14:20磁对生命医学研究将会产生重大影响吕毅西安交通大学薛华丹北京协和医院高欣中国科学院苏州生物医学工程技术研究所14:20-14:40AI在医工交叉医学影像中的应用李跃华上海交通大学医学院附属第六人民医院14:40-15:00胰腺影像领域的潜在科研问题薛华丹北京协和医院15:00-15:20内镜引导手术导航研究与应用杨健北京理工大学15:20-15:40任务驱动的智能X射线成像算法及应用陈阳东南大学15:40-16:00茶歇16:00-16:20超声跨尺度血管成像与高效诊疗万明习西安交通大学张丽华中科技大学附属协和医院崔崤峣中国科学院苏州生物医学工程技术研究所16:20-16:40多模态超声-光声骨成像方法及仪器他得安复旦大学16:40-17:00光纤光声显微成像徐飞南京大学14:40-15:00超声断层成像技术及产业化尉迟明华中科技大学15:00-15:20
  • 滨松中国即将参展生物医学光子学与成像技术国际学术研讨会
    生物医学光子学与成像技术国际学术研讨会(PIBM)是亚洲地区规模最大的生物医学光子学国际盛会之一。1999年由华中科技大学在中国武汉创办,每两年一届,现已连续成功举办了十四届。本届盛会首次由海南大学主办,将于2021年12月2-4日在海南大学召开。PIBM旨在吸引来自不同学科领域的科学家、工程师和临床研究人员,探讨应用光学、光子学和成像技术等手段解决生物学与医学中的问题。会议范围涵盖基础研究、应用基础研究和应用示范,包括但不限于神经光子学、免疫光子学、农业光子学、分析生物光子学和转化生物光子学。在本次的研讨会中,滨松中国将重点关注脑神经高速成像应用。针对此应用,滨松可以提供用于fMOST高速荧光成像、超分辨成像等系统的sCMOS相机,用于共聚焦/双光子等应用的光电倍增管以及双色分光器、光源、空间光调制器等各类产品。欢迎大家前来参观交流。
  • 太赫兹技术在生物医学领域应用研讨会通知
    近年太赫兹技术受到广泛关注,其在生物医学工程领域的应用,如生化检测、医学成像诊断、生物组织检测等方向不断取得突破。为交流研讨太赫兹技术在生物医学领域应用最新进展,推动太赫兹仪器技术发展,中国仪器仪表学会将召开学科前沿沙龙系列活动——太赫兹技术在生物医学领域应用研讨会,邀请太赫兹领域的科学家、技术研发专家、应用领域专家就技术前沿、产业趋势和热点问题进行演讲和交流对话。主办单位:中国仪器仪表学会承办单位:中电科思仪科技股份有限公司     中国电子科技集团公司第四十一研究所     电子测试技术重点实验室     中国仪器仪表学会光学仪器分会会议日期:2023年9月19日报到,20-21日会议会议地点:中电科思仪科技股份有限公司(山东省青岛市黄岛区香江路98号)会议日程:9月19日 14:00—20:00 会议报到(世贸海悦大酒店)9月20日 09:00—17:00 会议召开9月21日 09:00—12:00 参观思仪科技大会报告嘉宾会议报名:会议费1000元/人,请扫描下方二维码进行报名缴费。报名截至日期:9月17日。对公转账信息开户名称:中国仪器仪表学会开 户 行:工行北京北新桥支行汇款账号:0200004309014464348备注:太赫兹研讨会+姓名联系人:齐琳(中电科思仪科技股份有限公司),13706306289,邮箱:qilin@ceyear.com张真(中国仪器仪表学会),13811973718,邮箱:zhangzhen@cis.org.cn
  • 香山科学会议呼吁加快太赫兹技术生物医学研究
    很多患者在医院检查病情时,需要做X光、CT、核磁共振等一系列检查。太赫兹(THz)波,一个尚未充分开发的电磁波段,或许将会改变这种状况。   4月8日&mdash 9日,在以&ldquo 太赫兹波在生物医学应用中的科学问题与前沿技术&rdquo 为主题的第488 次香山科学会议上,与会专家指出,由于太赫兹波具有反应物质结构与性质的指纹特性,并且光子能量低,远远小于X射线能量,不会对生物大分子、生物细胞和组织产生有害电离,特别适合于对生物组织进行活体检查。因此,相较于现有医学成像技术,太赫兹波光谱成像技术具有更独特、更适用的物理特征。   太赫兹波是频率在0.1&mdash 10THz的电磁波,处于宏观电子学向微观光子学过渡的波段。国际上,太赫兹生物医学研究随着欧盟2000年设立的国际联合项目&ldquo THz-Bridge&rdquo 正式启动。美国政府将太赫兹技术评为&ldquo 改变未来世界的十大技术&rdquo 之一,日本将其列为&ldquo 国家支柱十大重点战略目标&rdquo 之首,并将生物医学应用列为主要方向之一,欧洲也连续10年将生物医学应用作为首要研究方向。   本次会议的执行主席之一姚建铨院士介绍说,围绕太赫兹技术生物医学应用研究,国际上已经开展了很多大型国际合作项目。目前,国内外在太赫兹技术生物大分子、细胞、组织、器官等生物监测及生物效应研究方面,已取得部分代表性成果。   本次会议的执行主席之一杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。&ldquo 这次会议就是研讨太赫兹技术和生物医学前沿的交叉,推动这个领域的深入研究与合作。&rdquo   针对太赫兹技术在生物医学方面的应用,吉林大学教授崔洪亮介绍,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。   太赫兹技术最终应用到生物医学领域,还需要落实到具体的医疗设备上,在产业化上形成一定规模。   &ldquo 我国检验医学现有的核心技术和临床设备主要都被国外垄断,国产品牌市场占有率极低。&rdquo 第三军医大学西南医院府伟灵教授对此忧心忡忡。他指出:&ldquo 目前,太赫兹波侦检分子与细胞的检测理论和关键技术是我国第一个与全球同步开展的研究,将从新的视角为检验医学领域提供分子和细胞侦检的革命性科学手段,有望阐明和提供全新的检验医学理论与技术体系,形成太赫兹波&mdash 检验医学优势新学科和产业基础。&rdquo   中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。   &ldquo 可以说,太赫兹技术在生物医学微观领域,将为揭示生物大分子之间、细胞之间的相互作用物质规律,呈现这些作用和活动的物性特征,最终解释各种生命现象提供革命性科学方法 在生物医学宏观层面,将为疾病的诊断、治疗、评估、监测和预警及后续药物设计、研发、生产和评价带来革命性改变。&rdquo 对太赫兹技术的未来,天津大学教授姚建铨院士充满信心。   然而,国内太赫兹波生物医学研究刚刚起步,缺乏学科间深入有效的交叉融合,缺乏全国性的学术战略发展规划,还不具备国际竞争力。在相关科研支持方面,目前我国只有6项与太赫兹波生物医学相关的国家自然科学基金项目。   &ldquo 国内目前有多个团队正在开展太赫兹波生物医学研究,但还缺乏交叉融合、联合攻关、体系研究的平台、团队和技术支撑,实现实质性突破任重道远。&rdquo 会议执行主席之一、中国工程物理研究院刘仓理研究员呼吁,这不仅需要研究人员奋起直追,也需要在国家层面上给予规划、支持和协调。
  • 二次离子质谱仪在生物医学领域中的用途是什么?
    二次离子质谱(简称:SIMS)分化为静态二次离子质谱(S-SIMS)、动态二次离子质谱(D-SIMS)两种,通过扫描,可以得到化学成像、成分定性鉴定。二次离子质谱技术具有非常高的分辨率以及灵敏度,可对有机物进行元素的面分布,深度分布分析,所以被广泛地运用在生物医学的领域当中。SIMS是利用具有一定能量的初级离子束轰击固体材料表面,再通过质谱分析检测被初级离子束溅射出的二次离子的质荷比,从而得到样品信息。如今应用在SIMS中最广泛的质谱检测器是飞行时间质谱仪(TOF),TOF-SIMS的分辨率可以达到5-10nm,微区分辨率达到100nm2,深度分辨率达到0.1-1nm,二次离子浓度灵敏度达到ppm级别。TOF-SIMS以其各种优异的性能和特点被广泛地用于半导体行业,随着半导体硅晶片制程越来越小,SIMS逐渐成为分析半导体器件表面污染缺陷、研究元素掺杂等不可替代的手段。除此之外,SIMS的应用近年来也不断发展到生物医学、材料、化学等领域。 其中在生物医药领域,利用TOF-SIMS技术对生物细胞进行化学成像分析受到越来越多的研究人员关注,例如使用TOF-SIMS研究生物组织或生物薄膜上蛋白质等分子行为、细胞界面特性、药物作用、疾病诊断等。和MALDI-TOF-MS、ESI-MS等质谱相比,TOF-SIMS的灵敏度更高且可以进行二维或三维化学成像。 下图为分别使用SSIMS和DSIMS对冠状动脉支架中的药物进行分析的案例。其中的质谱图就是通过SSIMS得到样品表面化学信息,下方的化学成像则是通过DSIMS层层剥离,得到的不同深度下的药物分布图。
  • ACAIC 2023 | 生物光学成像技术创新论坛圆满落幕
    第八届中国分析仪器学术大会(ACAIC 2023)于2023年11月28日-30日在浙江杭州召开,本届大会主题为“分析仪器创新进展、挑战及对策”,为促进行业的沟通与交流,会议邀请了院士、知名学者、青年科技工作者和科技管理人员参会并作学术报告。11月30日下午,生物光学成像技术创新论坛(分论坛九)顺利举行。会议现场邀请到了中国科学院生物物理研究所研究员纪伟、中国科学院苏州生物医学工程技术研究所研究员史国华、上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志、潘安 中国科学院西安光学制密机械研究所副研究员/中心主任潘安、华东师范大学教授陈建刚、复旦大学附属浦东医院科主任/主任医师游庆华六位专家学者为现场观众作精彩报告。为现场观众带来超分辨成像、介观显微镜、人工智能生物光学成像仪、高通量数字成像、超声AI、国产医疗设备创新等精彩报告。报告题目:单分子定位超分辨成像技术进展报告人:纪伟 中国科学院生物物理研究所 研究员报告伊始,纪伟研究员首先向介绍了干涉定位的成像原理,并向大家介绍了ROSE显微镜提升侧向(XY)分辨率、ROSE-Z显微镜提升轴向(Z)分辨率;基于笼式结构的超稳冷冻定位显微镜介绍了冷冻荧光成像的优势,同时介绍了冷冻电子断层成像技术、细胞纳米结构三维成像、结构生物学应用等多项创新技术。纪伟研究员介绍道,基于干涉定位技术研制ROSE显微镜,可实现5纳米XY分辨率量;研制ROSE-Z显微镜,可实现5纳米Z分辨率;ROSE&ROSE-Z显微镜可用于细胞纳米结构解析。基于冷冻定位技术研制冷冻定位显微镜,可实现光电融合成像;冷冻显微镜可用于引导冷冻电镜数据收集;冷冻显微镜可用于引导冷冻电镜样品减薄制备。报告题目:介观显微物镜研究进展报告人:史国华 中国科学院苏州生物医学工程技术研究所 研究员光学在生物医学上具有多种强大的成像模态,这些模态目前都取得了重大进展,对疾病的理解和临床治疗具有重大的影响。随着科研的发展和生物成像需求,人们对光学成像的要求逐渐向更深程度发展,2016年英国的University of Strathclyde提出一种特殊设计的物镜,可实现6mm成像视场下,分辨率达到0.6um,被评为当年度全球物理十大突破,介观显微物镜逐渐进入人们的视野。介观显微介于宏观与微观之间,需要复杂的光学系统设计,专用性强,可以理解为低放大倍率,高数值孔径的物镜,可以对宏观的对象实现微观分辨率。随后史国华研究院介绍了这项技术在以英国、美国、日本等国家为代表的国际领域取得的进展,以及相应的应用领域。目前,医工所也在相关领域取得了一定的进展,并产出了相应的物镜,相比同类型产品检测难度有所降低,更易使用。介观显微镜目前重要的应用领域为智能化数字病理诊断,能够解决临床重大问题,如恶性肿瘤的检测。随后史国华研究员介绍了智能数字式半自动显微镜(Leica DM 4000M)、VENTANA 数字病理切片扫描仪(Roche)等设备,指出介观显微镜主要服务于基础生物技术研究、数字医疗教学、临床病理诊断等领域。最后,史国华研究员也表达了对物镜发展的期待,未来将和课题组成员继续努力,为医疗诊断行业贡献力量。报告题目:人工智能生物光学成像仪器研发与应用报告人:康怀志 上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志主任从图像显示、光学系统、变倍放大、运动控制、实时图像分类、实时图像拼合融合、自动聚焦算法等几个部分介绍了智能生物成像仪器及关键技术。同时指出了高清光学成像系统对设备的光源、透镜、滤光器、探测器等方面的要求。自动变倍放大技术对透镜组的数量和布局、透镜的属性、自动调焦机构等几个方面做出了相应的要求。目前优质的生物光学成像仪器结构具有实时自动扫描、信息网络化、智能一体、服务临床场景等四个方面的功能特点,在主机上方面可以做到结构简单、性能稳定、体积小、操作简单,进而做到独立模块化运作、可拓展、可调配、操作简单。扫描成像及图像拼接可以通过图像匹配技术计算用于匹配参考图像和待匹配图像的特征点,基于特征点进行特征点匹配,最后通过匹配的特征点进行图像融合。仪器主要应用于基础生物技术研究、数字医疗教学、临床病理诊断等方面,是一项重要的诊断工具。报告题目:傅里叶叠层显微成像技术:从高通量数字成像到大规模高内涵药物筛选报告人:潘安 中国科学院西安光学制密机械研究所 副研究员/中心主任高通量数字显微镜在科学研究、医疗健康、药物筛选领域是刚需仪器,数字医疗+人工智能无疑是医疗行业的重要发展趋势。如何在诊疗过程实现高质量读片无疑是一项重要的课题。相比于检验,影像科室,病理科的人员素质要求高,培养周期长,人工读片效率低。而AI病理分析则为这一困境提供了破局之策,相比于人工读片,AI病理分析可以节省70%的时间,成功率平均达到50-60%,但是目前市场上缺乏病理科高质量读片仪器。光学成像的诞生与发展是时代的必然产物。千百年来,人们对长驻影像的渴望和对影像记录和信息传播分享的需求,推动了光学成像技术的变革。可以说,其从无到有、从黑白到彩色、从静态到动画,依托的便是光学成像技术的变革。傅里叶叠层显微成像术证明了并非只有干涉才能记录相位,分辨率可以突破系统行射限制,一个算法完成相位恢复、合成孔径、上采样。傅里叶叠层显微成像术依托光场调控和非干涉相位恢复算法,能够应用于病理学和光学遥感。报告题目:超声AI在临床多科室的应用研究报告人:陈建刚 华东师范大学 教授陈建刚从背景与原理、数字病理学、药物筛选应用、下一步计划等四个方面基于高质量病理重构结果的AI分类与识别。针对术中病理制片时间长,提出基于相位的虚拟染色方法推动科研最后一公里,研发高通量显微镜,服务科学仪器与医疗市场。超声人工智能肺炎辅助诊断技术可以应用于超声人工智能肺炎辅助诊断技术、超声气胸自动诊断技术、下腔静脉自动测验技术、B线自动检测、视神经鞘直径测量、基于流体动力学模型的无创颅内压监测等急救急症,同时,该技术还可适用于麻醉、骨科、中医、肿瘤、消化、产科等领域,具有丰富的适用场景。报告题目:从临床医疗实践角度浅述国产医疗设备的创新方向及系统性评估报告人:游庆华 复且大学附属浦东医院 科主任/主任医师随着人口老龄化和健康意识的提高,预防和早诊早治逐渐成为医疗领域的主旋律,分级分层治疗已是必然,医院端诊疗地位逐渐下降,而医院前端和医院后端医疗市场成为医疗持续增长的最大引擎,但国产化医疗设备却不能满足市场需求,处于尴尬的境地。目前的科学仪器主要用于基础科学研究、实验和分析,极少直接用于临床诊疗。游庆华主任坦言国产医疗设备存在设计工艺差、性能不稳定、准确率不高、缺乏定期疫准和检测等问题。接着,他从技术瓶颈难以克服、资金投入的缺乏、政策支持力度不足等三个方面分析了国产医疗设备面临的困境。同时他指出,国产医疗设备仪器厂商在设计时应面对市场需求,对应用场景和系统性要素评估,不能“闭门造车”,切实满足市场需求。他期待未来医疗检测的筛查数据和结果能够及时上传形成医疗大数据库,为政府和主管部门制定相关政策提供有效的科学支撑。
  • 基因组大数据、生物质谱等将为生物医学带来新机遇
    p   云计算正在成为生物医学界的“宠儿”。——8月14日,北京贝瑞和康生物技术有限公司与阿里云共同向外界宣布双方达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。 /p p   此次,双方共同合作的“神州基因组数据云项目”将首先聚焦于基因组大数据在云平台上的批量计算、分析、存储,进而在基因大数据领域共同进行前沿探索。 /p p   “打造基因组大数据,相当于建立了一个中国人基因版的《本草纲目》,将记载中国人群最核心的基因信息、生命信息,为中国人群重大疾病的预测、预防、诊断和治疗奠定基础。它的意义将不亚于《本草纲目》这部东方医药巨典。”贝瑞和康首席生物信息官于福利博士说。 /p p   中国是世界出生缺陷率最高发地区之一。每年1600万至2000万的出生人口中,有80万至120万出生缺陷儿。1996年到2010年,中国新生儿出生缺陷发生率增幅达70.9%,每一万名新生儿中就有149.9人患有先天性缺陷。 /p p   这一不利的局面将随着“神州基因组数据云”项目的实现得到改观。据了解,贝瑞和康自主构建的中国人群基因组大数据库目前已包含超过四十万份基因组数据。通过对该数据资源的深入挖掘,能够进一步揭示中国人群遗传突变分布,这将极大助益于提升中国人遗传疾病诊断的效率和精准程度。 /p p   贝瑞和康作为国际领先的基因测序技术临床转化服务商,致力于为临床医学疾病筛查和诊断提供“无创式”整体解决方案,是无创DNA产前检测和针对肿瘤循环DNA的肿瘤个体化医疗基因检测的行业领导者。 /p p   基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种罕见疾病的可能性,如地中海贫血病。 /p p   业内人士指出,随着下一代基因测序、生物质谱和医学成像等医学技术的迅猛发展,大数据浪潮为生物医学带来了前所未有的机遇,将根本性的改变生物医学基础研究和医疗实践,但同时生物医学领域数据爆炸式的增长也对海量数据的存储和分析提出新的挑战。云计算将大量计算资源、存储资源和软件资源虚拟化,形成规模庞大的共享资源池,可以有效解决生物医学对IT资源的弹性需求。 /p p   目前,新一代基因测序技术要得到比较准确的信息,一般认为30X 的基因测序深度是必须的,所以一个人的基因组检测大约需要产生 90Gb 的数据。如此大的数据,在一般的电脑或小型服务器上运行起来非常困难。 /p p   阿里云是全球领先的云计算服务平台。客户通过阿里云,用互联网的方式即可远程获取海量计算、存储资源和大数据处理能力。根据IDC调研报告,阿里云是国内最大的公共云计算服务提供商。 /p p   此次,阿里云与贝瑞和康达成合作,正是基于阿里云批量计算服务的强大能力,利用云计算的优势降低成本,提高数据分析的速度。 /p p   阿里云批量计算服务是一种适用于大规模并行批处理作业的分布式云服务,适用于生物基因分析、渲染、多媒体转码、科学计算、金融保险分析等多个行业领域。 /p p   阿里云高级专家林河山介绍说,“借助批量计算服务,用户可以调动海量计算资源快速完成基因大数据的处理。批量计算服务提供简单易用的API,允许用户通过有向无环图的方式灵活组建工作流,计算资源管理、作业调度和数据分发由系统自动完成。同时,批量计算服务支持自定义镜像,并允许应用通过网络文件系统(NFS)协议高效访问阿里云对象存储(OSS)上的数据,使得用户原有分析流程可以轻松上云。结合阿里云对象存储,批量计算服务能够帮助生物信息分析专家在云上快速构建大规模基因组学应用。” /p p   他进一步说,“此次与贝瑞和康的合作,阿里云将不断优化基于基因组学的云解决方案,以契合医学时代发展的需求。” /p p   业内专家预计,双方合作完成的基因组数据云将对中国临床医学的精准诊断,预防和治疗的发展产生深远的推动力。 /p p   无疑,借助阿里云的批量计算服务,用户将更便捷、更简单、更迅速完成基因大数据计算,大大降低客户的成本。同样,因为云计算的赋能,为研究人员开展大规模的基因组学研究大开“方便之门”,将催生一批影响人类健康相关的变革性成果。 /p
  • 医工融合协同创新 生物医学工程前沿交叉论坛成功召开
    仪器信息网讯 2024年5月16-18日,生物医学工程前沿交叉论坛在清山会议中心圆满召开。本次大会由中国科学院苏州生物医学工程技术研究所和北京航空航天大学联合主办,中国生物工程学会生命科学仪器专业委员会、首都医科大学友谊医院、中国科学院深圳先进技术研究院、江苏省高端医疗器械技术创新中心和江苏省康复医学会为大会的支持单位。大会为期1.5天,以“医工融合协同创新”为主题,80余位科研专家、临床专家、产业专家分享了精彩报告,吸引近300位来自高校、科研院所、医院的专家学者、临床医生以及相关领域企业代表参会。大会现场大会主论坛由中国科学院苏州生物医学工程技术研究所周连群研究员主持,中国科学院苏州生物医学工程技术研究所党委书记/所长吴成铁、苏州市科技局副局长廖希明、中国科学院南京分院副院长陈江龙、苏州市高新区党工委书记毛伟为大会致辞。中国科学院大连化学物理研究所张玉奎院士、西安交通大学徐宗本院士、中国科学院长春应用化学研究所陈学思院士、南京大学副校长/中国科学院深圳先进技术研究院副院长郑海荣院士、北京友谊医院王振常院士、苏州市政府副秘书长谢飞西、安交通大学副校长吕毅、上海市第六人民医院党委书记马昕、南京大学医学院附属鼓楼医院院长于成功、苏州大学附属第一医院院长缪丽艳、中国科学院苏州纳米技术与纳米仿生研究所所长王强斌、北京航空航天大学生物与医学工程学院院长樊瑜波、苏州市高新区党工委委员/科技城党工委书记卢潮、苏州市高新区管委会副主任吴旭翔、苏州市高新区科技创新局局长李伟等专家领导莅临大会现场。吴成铁 中国科学院苏州生物医学工程技术研究所党委书记、所长廖希明 苏州市科技局副局长陈江龙 中国科学院南京分院副院长毛伟 苏州市高新区党工委书记本届生物医学工程前沿交叉论坛设置了1个主论坛和5个专题论坛,主论坛环节,四位生物医学工程领域的院士分享了精彩的大会报告。张玉奎 中国科学院院士、中国科学院大连化学物理研究所研究员《外泌体蛋白组技术进展》外泌体是由细胞分泌的尺寸为30-200nm的囊泡,存在于体液、组织及细胞培养液中,携带脂质DNA、RNA、蛋白质等重要功能性成分,其中干细胞外泌体在临床方面有重要应用,如用于治疗脑损伤。但是目前干细胞外泌体用于临床还面临规模化制备的多方面问题,纯度、通量和质控是制约外泌体临床发展的瓶颈。传统的外泌体富集方法主要包括超速离心、膜过滤等,但存在回收率低或者纯度低等问题。张院士团队合成了反向富集微球材料,利用外泌体尺寸差异实现外泌体的反向富集,效果好于传统方法。张院士还详细介绍了鹿茸干细胞外泌体的应用,包括治疗小鼠肠炎、皮肤创伤、骨缺损等。徐宗本 中国科学院院士、西安交通大学教授《智能化推动国产化:我国基础医疗装备自主创研的可行路径》当前智能化改造是实现我国医疗装备国产化的重大机遇,用AI技术可用来提升医疗装备性能,解决“卡脖子”难题,更优质地服务于人民健康。徐院士介绍了在这一方向上的两大探索,一是分布式微剂量CT,二是快速/超快MRI。徐院士讲到,X射线辐射是一类致癌物,新一代CT系统的核心应该是低剂量,当前的国际专家共识是:真正的低剂量成像时代尚未到来,目标是追求sub-mSv的微剂量成像。其次,分布化是新一代CT系统的发展趋势,分布式CT影像中心有多个应用场景,能够解决院际/院内自由部署、集成度高难以实现低剂量等诸多问题,让CT的商业价值、医疗价值、社会价值更大。目前徐院士团队成功研发分布式微剂量CT已经在有些医院安装,其算法效果已经达到甚至超过商业化CT系统,同时还在做小型化便携式CT系统。此外,徐院士介绍了新一代MRI的趋势,核心是解决成像速度慢的问题。徐院士最后总结了智能化带动国产化的可行性技术途径:软硬分离、数物融通、用计算换性能、个性化代替菜单式、上下游贯通、大数据与AI技术的深度使用。王振常 中国工程院院士、北京友谊医院党委常委、副院长《基于CT的结直肠癌前病变智能检测系统的创建》王院士介绍了国内外结直肠癌病变筛查的情况,2020年全球结直肠癌新发193.2万,死亡93.5万,超过93%的结直肠癌源于腺瘤性息肉,从息肉增生到癌变周期5-10年。有数据显示,CTC检出息肉灵敏度≥6mm为80%,≥10mm为88%,结直肠癌灵敏度为96%,CTC≥10mm的癌前病变及结直肠癌的灵敏度可与肠镜媲美。美国2008年将CTC列入指南,2018年将其列入联邦医保。我国结直肠癌新发已上升到全球第二位,由于医疗资源不足、依从性低,肠镜很难用于筛查。结直肠癌缺乏有效防控体系,现有CTC技术存在检测精度低、效率低、无法实现自动识别和定位等问题,急需系统创新。在此背景下,王院士团队开展了智能检测系统的研究工作,核心创新包括三点:基础算法创新、多视角联动技术和病变识别方法创新。目前已经获得二类医疗器械注册证,并发表了相关论文,下一阶段重点是降低假阳性。这项工作充分体现了算法、工科和专用系统等多方面的交叉融合。陈学思 中国科学院院士、中国科学院长春应用化学研究所研究员《生物医用可吸收高分子材料与器件》陈院士介绍了生物降解高分子材料制备及产业化进展和可吸收医用高分子材料与器件的开发情况。可降解高分子材料中,微生物合成高分子材料(酸酯类等)的特点是性能可调、成本偏高;化学合成高分子材料(聚乳酸等)特点为从硬塑料到柔性材料,成本可控,应用前景好;和天然高分子材料(淀粉、纤维素等)成本较低、可塑性差,需进行预处理方可塑化加工。陈院士介绍了团队己内酯合成研究进展,对这类材料的表征结果进行了详细介绍,结果表明,合成的可降解高分子材料的性能和聚乙烯、聚丙烯等材料性能一致。己内酯应用场景可拓展至外科医疗、手术缝合线、胶黏剂、航天阻尼、农用地膜等。陈院士还详细介绍了聚乳酸合成研究成果和应用领域。聚乳酸产业市场现状:2022年全球聚乳酸总产能约63万吨,应用领域如制作吸管、3D打印等。目前,陈院士团队已获得Ⅲ类医疗器械注册证14个,Ⅱ类医疗器械注册证11个,Ⅰ类器械注备案证24个。陈院士讲到,做科学研究,不仅要发文章,更要产业化,实现应用。苏州市高新区科技招商中心主任端洪菊作高新区创新创业环境推介苏州市2023年地区生产总值2.46万亿元,规上工业总产值4.43万亿元,全国第二,被网友称为“地表最强地级市。”是经济强市、工业强市、产业强市。苏州高新区于1990年开发建设,1992年获批全国首批国家级高新区,经过30多年发展,占苏州2.5%的土地,创造出近8%的经济总量,综合发展水平走在全国高新区前列。2023年地区生产总值1835亿元,蝉联全市高质量发展综合考核第一等次。这里创新资源高度聚集,产业集群活力迸发,不仅有多个院所平台和国家级重点实验室等科研力量,还有新一代信息技术、高端装备制造主导产业和新能源、光子及集成电路、医疗器械及大健康等新兴产业。主论坛主持人 中国科学院苏州生物医学工程技术研究所周连群研究员主论坛后,大会特别设置了“生物医学成像技术前沿论坛”、“消化健康与显微成像前沿技术论坛”、“生物医用材料前沿交叉论坛”、“生物医学仪器与康复治疗前沿交叉论坛”、“人工智能生物医学工程前沿交叉论坛”5个专题论坛,80余位科研专家、临床专家、产业专家分享了报告,其中不乏领域学术带头人,充分展示了近年来在上述方向的新技术、新进展,论坛的成功召开为推动“生-医-工交叉融合”和生物医学工程领域高质量发展贡献了力量。分论坛掠影茶歇交流企业风采
  • 活体生物光学成像技术的应用
    作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。 1、在体监测肿瘤的生长和转移 利用在体生物光学成像技术,通过荧光素酶或绿色荧光蛋白标记肿瘤细胞,可以实时监测被标记肿瘤细胞在生物体内生长、转移、对药物的反应等生理和病理活动,揭示肿瘤发生发展的细胞和分子机制。Contag 等[1] 将荧光素酶和绿色荧光蛋白作为报告基因,对肿瘤细胞进行活体成像,探讨了使用报告基因在细胞分子水平研究肿瘤的前景,并指出在体生物光学成像技术具有较高的灵敏度,尤其在监测肿瘤细胞的生长方面具有较大优势。Yang等[2,3] 首先利用光学成像系统对表达绿色荧光蛋白的肿瘤实现了实时非侵入性成像,记录了肿瘤的转移过程,开辟了在整体水平上无创、在体、实时跟踪肿瘤发生、发展和转移等生物学行为的崭新领域。Jenkins 等[4] 将标记了荧光素酶基因的人类前列腺癌细胞注射到小鼠体内,利用在体生物光学成像系统,实时、在体监测了前列腺癌细胞化疗后的复发和转移情况。基于绿色荧光蛋白的在体生物光学成像也在肺癌、大肠癌、前列腺癌、胰腺癌、黑色素瘤、脑胶质瘤和乳腺癌等多种肿瘤的生长转移等研究中得到了越来越广泛的应用[2,3,5,6]。 2、在体监测基因治疗中的基因表达 随着后基因组时代的到来和人们对疾病发生发展机制的深入了解,在基因水平上治疗肿瘤、心血管疾病、AIDS 和分子遗传病等恶性疾病已经得到国内外研究人员越来越广泛的关注。如何客观地检测基因治疗的临床疗效判断终点,有效监测转基因在生物体内的传送,并定量检测基因治疗的转基因表达,已经成为基因治疗应用的关键所在。通过荧光素酶或绿色荧光蛋白等报告基因,在体生物光学成像技术能够进行基因表达的准确定位和定量分析,在整体水平上无创、实时、定量地检测转基因的时空表达[7]。McCaffrey 等[8] 将荧光素酶标记在靶基因上,应用siRNA 及shRNA 减弱了小鼠转染的荧光素酶的表达,在活体动物体内首次实时观察到siRNA 对特异靶基因表达的阻断作用。以病毒[9,10](如腺病毒及腺相关病毒等) 作载体,将荧光素酶基因或绿色荧光蛋白等作为报告基因加入载体,采用在体生物光学成像,能够实时观察病毒在动物体内的侵染活动,获取病毒侵染部位等相关信息。 3、揭示机体的生理病理改变过程 目前,在体生物光学成像技术已成功应用于干细胞移植、肿瘤免疫、毒血症、风湿性关节炎、皮炎等发病机制的研究中,可以实时监测生物机体的生理病理改变过程,具有重要的临床意义。应用转基因鼠,Wang等[11] 将荧光素酶基因转导于人类造血干细胞(Hematopoietic stem cells,HSC) 中,并将其植入脾及骨髓,利用在体生物光学成像技术,揭示了HSC 在小鼠骨髓腔中植活、增殖等动态信息,实时监测HSC 的后代在小鼠体内的生长等。Kim等[12] 将荧光素酶基因转染于神经前体细胞(Neuralprogenitor cell,NPC),并注射入小鼠脑梗模型中,在体生物光学成像系统显示神经前体细胞迅速游走聚集至梗塞病灶处。风湿性关节炎和类风湿性关节炎的动物模型研究表明: 荧光报告基因在患关节炎的关节局部产生荧光信号,在健康组织周围未见荧光信号,能够动态观测关节炎的发生和发展,对关节炎疾病的治疗具有重要意义。另外,在体生物光学成像技术在生物大分子间相互作用及细胞凋亡的研究中也取得了一定进展。Paulmurugan 等[13] 将胰岛素样生长因子与胰岛素样生长因子结合蛋白分别用绿色荧光蛋白及Renilla 荧光素酶基因融合,研究它们之间在活体小动物体内的相互作用。 4、药物的筛选和评价 目前,转基因动物模型已大量应用于病理研究、药物研发、药物筛选和药物评价等领域。 通过体外基因转染或直接注射等手段,将荧光素酶或绿色荧光蛋白等报告基因标记在生物体内的任何细胞(如肿瘤细胞、造血细胞等) 上,采用在体生物光学成像技术对其示踪,了解细胞在生物体内的转移规律,不仅能够检测转基因动物体内的基因表达或内源性基因的活性和功能,而且能够对药物筛选及疗效进行评价。Zhang 等[14] 利用转基因鼠,研究可诱导的NO 合成酶在急慢性免疫反应中的作用,并以此对多种化合物进行抗免疫反应的测试和筛选。肺癌、前列腺癌、黑色素瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌和脑癌的原位GFP 肿瘤的整体荧光成像模型已经建立[15],利用转移鼠和血管鼠实现了抗肿瘤生长转移和血管生成的在体药物筛选和评价(http://www.metamouse.com)。基于绿色荧光蛋白的在体荧光成像揭示了肿瘤发生发展的细胞和分子机制,非侵入性在体评价抗肿瘤药物的疗效[1]。 参考文献 1、 Contag C H,Jenkins D,Contag P R,Negrin R S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia,2000,2(1-2): 41~52 2、 Yang M,Baranov E,Jiang P,Sun F X,Li X M,Li L. Whole-body optical imaging of green fluorescent protein expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America,2000,97(3): 1206~1211 3、 Yang M,Baranov E,Wang J W,Jiang P,Wang X,Sun F X. Direct external imaging of nascent cancer,tumor progression,angiogenesis,and metastasis on internal organs in the fluorescent orthotopic model. Proceedings of the National Academy of Sciences of the United States of America,2002,99(6): 3824~3829 4、 Jenkins D E,Yu S F,Hornig Y S,Purchio T,Contag P R. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clinical and Experimental Metastasis,2003,20(8): 745~756 5、 Hasegawa S,Yang M,Chishima T,Miyagi Y,Shimada H,Moossa A R. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Therapy,2000,7(10): 1336~1340 6、 Bouvet M,Wang J W,Nardin S R,Yang M,Baranov E,Jiang P. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pan creatic cancer orthotopic model. Cancer Research,2002,62(5): 1534~1540 7、 Vassaux G,Groot-Wassink T. In vivo noninvasive imaging for gene therapy. Journal of Biomedicine and Biotechnology,2003,2003(2): 92~101 8、 McCaffrey A P,Meuse L,Pham T T,Conklin D S,Hannon G J,Kay M A. RNA interference in adult mice. Nature,2002,418(6893): 38~39 9、 Sato M,Johnson M,Zhang L Q,Zhang B,Le K,Gambhir S S. Optimization of adenoviral vectors to direct highly amplied prostate-specificexpression for imaging and genetherapy. Molecular Therapy,2003,8(5): 726~737 10、 Tseng J C,Levin B,Hunado A,Yee H,de Castro I P,Jimenez M. Systemic tumor targeting and killing by Sindbis viral vectors. Nature Biotechnology,2004,22(1): 70~77 11、 Wang X,Rosol M,Ge S,Peterson D,McNamara G,Pollack H. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood,2003,102(10): 3478~3482 12、 Kim D E,Schellingerhout D,Ishii K,Shah K,Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke,2004,35(4): 952~957 13、 Paulmurugan R,Gambhir S S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Analytical Chemistry,2003,75(7): l584~1589 14、 Zhang N,Weber A,Li B,Lyons R,Contag P R,Purchio A F. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. The Journal of Immunology,2003,170(12):6307~6319 15、 Hoffman R M. Green fluorescent protein imaging of tumour growth,metastasis,and angiogenesis in mouse models. The Lancet Oncology,2002,3(9): 546~556
  • ICORS2016看点:拉曼或将是未来生物医学的主要检测手段
    p   2016年8月15日,第25届国际拉曼光谱大会(ICORS 2016)在巴西的福塔雷萨召开 a title=" " href=" http://www.instrument.com.cn/news/20160816/199306.shtml" target=" _self" span style=" color: rgb(84, 141, 212) " strong (第25届国际拉曼光谱会议ICORS 2016在巴西召开) /strong /span 。 /a br/ /p p   据北京服装学院龚龑老师在会议现场的感受:从大会的第二天的报告内容和数量来看,拉曼或将成为未来生物医学的主要检测手段。其中,谢晓亮教授带来了题为《Stimulated Raman scattering microscopy:Label-free vibrational imaging for biology and medicine》的报告。 /p p   受激拉曼散射(SRS)显微镜是一种新型的相干拉曼散射成像技术,具有无需标记、非破坏性等优势。与传统的拉曼光谱技术相比,SRS可以快速获取样品信息,实现实时、活体的研究。目前,该项技术已经被世界上多个小组应用于生物医学研究,在临床检测领域具有非常好的应用前景。 /p p style=" text-align: center " img title=" 2-1-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/5ee8af65-b7f8-4960-81dc-2f54b7a23800.jpg" / img title=" 2-2-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/5564bb3d-6369-41e9-a3e8-28268883d301.jpg" / br/ /p p   作为国际单分子生物物理化学的开拓者之一,谢晓亮教授及其合作者被认为是在拉曼散射光谱学基础上发展非线性光学显微成像技术的重要团队之一。谢晓亮教授对相干反斯托克斯拉曼散射显微镜以及受激拉曼散射显微镜的发展做出了创造性的贡献,大力推进了非侵入式成像技术在生物学研究和临床医学研究中的应用。这些技术描绘了细胞中的无标记的化学分布,为细胞化学及医疗诊断提供了新的工具。 /p p   在本次的报告中,谢晓亮教授给与会代表分享了其课题组的最新研究进展,以下研究成果值得大家关注: /p p style=" text-align: center " img title=" 2-3-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/1377e568-7daf-4f8d-be0d-eb8ea5b2c0ac.jpg" / /p p   谢晓亮教授展示的受激拉曼光谱技术作为癌症病灶位点原位检测的应用成为可能。 /p p style=" text-align: center " img title=" 2-4-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/f3a6f062-833e-4a21-84a8-73e78aeded51.jpg" / /p p   在老年痴呆症方面,拉曼光谱技术已经达到可以区别正常脑组织与病变组织。 /p p style=" text-align: center " img title=" 2-5-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/47a7f724-513c-4f78-8b6f-fd28436b1f2a.jpg" / /p p   谢晓亮教授展示的光纤激光技术让拉曼检测仪器更加小型化、便携、低价。 /p p style=" text-align: center " img title=" 2-6-1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/de99fffc-661a-41fc-8df2-36428bbd00fd.jpg" / /p p style=" text-align: center " strong 谢晓亮教授与德国kiefer教授亲切交流 /strong /p p style=" text-align: right "   ( strong 以上信息由北京服装学院龚龑副教授从会议现场发回。) /strong br/ /p p   strong  附件:谢晓亮教授个人简介 /strong strong br/ /strong /p p style=" text-align: center " img title=" 2-7.gif" src=" http://img1.17img.cn/17img/images/201608/noimg/9fefc93c-9fdf-4430-be3b-16750b3809f9.jpg" / br/ /p p style=" text-align: center " strong 哈佛大学、北京大学生物动态光学成像中心主任谢晓亮教授 /strong /p p   谢晓亮教授现任北京大学生物动态光学成像中心(BIOPIC)主任,美国哈佛大学讲席教授,中组部“千人计划”专家。主要研究方向:单分子光谱学、单分子酶学、分子相互作用、构象动态学及大分子的作用机理、活细胞的基因表达、非线性光学成像技术及其生命科学与医学应用 /p p   谢晓亮教授1962年出生于北京,1984年本科毕业于北京大学化学系,1990年获得美国加州大学圣地亚哥分校化学系博士学位,1990-1992年在芝加哥大学化学系从事博士后研究工作。1992-1998年任美国西北太平洋国家实验室研究员和主任科学家,1999年起任哈佛大学教授。 /p p   谢晓亮教授曾经获得美国阿尔伯尼生物医学奖、美国化学会德拜奖、美国化学会Harrison Howe奖、美国能源部劳伦斯奖(化学类)、德国雷宾赫应用激光技术奖、威利斯?兰姆奖等,还入选美国文理科学院院士、中国化学会荣誉会士、美国科学促进会会士、生物物理学会会士。 /p p    strong 相关新闻: /strong a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/news/20160818/199558.shtml" target=" _self" span style=" color: rgb(255, 0, 0) " strong ICORS 2016第一天:中国拉曼军团代表征战巴西国际拉曼大会 /strong /span /a br/ /p
  • 2016年国际生物医学工程与医疗仪器学术产业大会通知(第一轮)
    2016年国际生物医学工程与医疗仪器学术产业大会通知(第一轮)  (Bio-med and Innovative Medical Devices 2016)  由中国仪器仪表学会、中国生物医学工程学会、中国光学工程学会联合主办,中国仪器仪表学会医疗仪器分会、清华大学医学院、解放军总医院检验科和中关村医疗器械产业技术创新联盟联合承办的2016年国际生物医学工程与医疗仪器学术产业大会(Bio-med and Innovative Medical Devices 2016),将于11月29-30日在北京召开,会议规模400人。  会议遵循为创新医疗仪器产业发展提供良好的产学研用管对接的平台,通过学术引领、促进产业繁荣发展和共同进步的宗旨,聚焦健康社会、精准医疗、基因诊断、居家养老等主题。本次会议学术交流形式包括大会特邀报告、分会场邀请报告、口头报告以及优秀论文电子墙报展示等。会议同期还将安排企业交流专场,为企业提供展览展示及寻求科技合作的平台。  一、组织架构  1、大会学术委员会(按姓氏拼音排序)  名誉主席:金国藩   主席:程 京  副主席:曹雪涛、陈凯先、樊瑜波、顾 瑛、李兴德、尤 政、俞梦孙  成员:陈 群、崔彤哲、邓玉林、果德安、洪 波、康熙雄、李 宁、李金明、李劲松、李路明、李为公、卢爱丽、骆清铭、马长生、任秋实、唐劲天、唐玉国、王成彬、王晓庆、王拥军、邢婉丽、魏勋斌、朱险峰  2、大会组织委员会(按姓氏拼音排序)  主席:吴幼华  副主席:池 慧、赵雪燕、朱险峰  成员:陈 蓓、郝红伟、康亚文、李 瑾、李 靖、李明远、刘 鹏、刘 毅、茅伟明、秦永清、王 东、许俊泉、严壮志、俞 海、张 彤、张 莉、张送根、周智峰、祝连庆  3、论文评审委员会(按姓氏拼音排序)  主任:朱险峰  副主任:魏勋斌、祝连庆  成员:邓玉林、洪波、李劲松、任秋实、骆清铭、严壮志  二、会议安排  时间:2016年11月29-30日  地点:北京 京仪大酒店  1、主会场:11月29日上午8:50-12:30  时间会议报告报告专家  8:50-9:00领导讲话  9:00-9:40医学技术前沿曹雪涛(中国工程院院士、中国医学科学院院长)  9:40-10:20中医技术前沿陈凯先(中国科学院院士、上海中医药大学教授)  10:20-10:30中场休息  10:30-11:10待定李青(卫计委医药卫生科技发展研究中心主任)  11:10-11:50Translational Biomedical Optics for Label-free Imaging of Tissue Histology in vivo李兴德(美国约翰霍普金斯大学教授)  11:50-12:30问道健康中国程京(中国工程院院士、清华大学医学院教授、博奥生物集团有限公司总裁)  2、分会场:2016年11月29日下午-30日上午  分会场主题会议主席  穿戴式健康设备卢爱丽、王磊  先进临床检验技术王成彬  先进影像与治疗技术唐劲天  中医发展论坛果德安  先进激光医疗技术顾 瑛  行业监管促进产业创新发展樊瑜波  新技术发展论坛魏勋斌  三、会议征文  1、征文范围:  1. 生物医学信号处理 2. 医疗仪器与健康监护  3. 穿戴式医疗设备 4. 微纳机电系统  5. 微流控芯片技术 6. 生物医学大数据  7. 分级诊疗 8. 临床检验与POCT  9. 生物医学成像技术 10. 基因诊断  11. 生物光子学与光学分子成像  2、投稿须知:  1.凡内容符合主题范围,未在国内外正式刊物或其他会议上发表的中文论文均可投稿   2.投稿论文撰写要求请参照www.etmchina.com公布的《仪器仪表学报》投稿要求及论文模板,投稿时请提交MS Word版本   参见:http://www.etmchina.com/down.do?method=listFront&pid=2  3.论文的结构依次为:论文题目(中英文)、作者姓名、单位、所在城市及其邮编、摘要(中英文)、关键词(中英文)、正文、参考文献、作者简介   4.如果论文内容可能涉密,请作者主动提交“已通过工作单位保密审查”的证明   5.论文一经提交,即表明作者同意会议主办方拥有论文版权   6.投稿时务必提供联系人的姓名、职称、电话、手机、E-mail、详细通信地址   7.投稿截止日期:2016年11月15日。  3、征文投寄邮箱:  luwang@ capitalbio.com yiliao@cis.org.cn  4、论文集:  经过大会评审委员会评审通过的论文将推荐到《仪器仪表学报》增刊发表。  四、会议联系方式  1、会务组联系人:  王 璐 18510056847 邮箱:luwang@ capitalbio.com   范丽云 15801190516 邮箱:liyunfan@capitalbio.com   李 靖 13701158832 邮箱:lijing@cis.org.cn  联系电话:010-80726868-6207  地址:北京市昌平区生命科学园路18号  2、各学会联系人:  中国仪器仪表学会:张莉 010-82800752 zhangli@cis.org.cn  中国光学工程学会:李瑾 022-58168516 lijin@csoe.org.cn  中国生物医学工程学会:康亚文 010-69156448 swyxgch@126.com  五、会议缴费须知:  1、收费标准:  主会场注册费1000元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  主会场及分会场注册费1500元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  10月30日前注册八五折优惠。  2、缴费方式:  1、汇款  账户名称:中国仪器仪表学会  开 户 行:工商银行北京北新桥支行(行号102100000431)  账 号:0200004309014464348  收款人电话:13520672025(洪爱琴)  * 汇款附言注明:医疗仪器会议+参会人员名字  * 如需发票,请注册时写明发票抬头并于11月15日前将款汇到  2、现场缴费  现金或刷卡, 现场收取并开具收据 会后大会秘书处将发票邮寄给您,签到时还请写明收寄人详细地址。  中国仪器仪表学会  中国光学工程学会  中国生物医学工程学会  2016年10月12日
  • 2016年国际生物医学工程与医疗仪器学术产业大会第二轮通知
    由中国仪器仪表学会、中国生物医学工程学会、中国光学工程学会联合主办,中国仪器仪表学会医疗仪器分会、清华大学医学院、解放军总医院检验科和中关村医疗器械产业技术创新联盟联合承办的2016年国际生物医学工程与医疗仪器学术产业大会(Bio-med and Innovative Medical Devices 2016),将于11月29-30日在北京召开,会议规模400人。  会议遵循为创新医疗仪器产业发展提供良好的产学研用管对接的平台,通过学术引领、促进产业繁荣发展和共同进步的宗旨,聚焦健康社会、精准医疗、基因诊断、居家养老等主题。本次会议学术交流形式包括大会特邀报告、分会场邀请报告、口头报告以及优秀论文电子墙报展示等。会议同期还将安排企业交流专场,为企业提供展览展示及寻求科技合作的平台。  一、组织架构  1、大会学术委员会(按姓氏拼音排序)  名誉主席:金国藩  主席:程 京  副主席:曹雪涛、陈凯先、樊瑜波、李兴德、尤 政、俞梦孙  成员:陈 群、崔彤哲、邓玉林、果德安、洪 波、康熙雄、李 宁、李金明、李劲松、李路明、李为公、卢爱丽、骆清铭、马长生、任秋实、唐劲天、唐玉国、王成彬、王晓庆、王拥军、邢婉丽、魏勋斌、朱险峰  2、大会组织委员会(按姓氏拼音排序)  主席:吴幼华  副主席:池 慧、赵雪燕、朱险峰  成员:陈 蓓、郝红伟、康亚文、李 瑾、李 靖、李明远、刘 鹏、刘 毅、茅伟明、秦永清、王 东、许俊泉、严壮志、俞 海、张 彤、张 莉、张送根、周智峰、祝连庆  秘书长:张 莉、王 东  3、论文评审委员会(按姓氏拼音排序)  主任:朱险峰  副主任:魏勋斌、祝连庆  成员:邓玉林、洪波、李劲松、任秋实、骆清铭、严壮志  二、会议安排  时间:2016年11月29-30日  地点:北京 京仪大酒店  第一分会场:11月30日上午  穿戴式健康设备 卢爱丽(论坛主席)  第二分会场:11月29日下午  先进临床检验技术 王成彬(论坛主席)  Speakers and topics coming very soon  第三分会场:11月29日下午  先进影像与治疗技术 唐劲天(论坛主席)  第四分会场:11月29日下午  中医发展论坛 果德安(论坛主席)  第五分会场:11月30日上午  政策环境促进产业创新发展 樊瑜波(论坛主席)  Speakers and topics coming very soon  第六分会场:11月29日下午及11月30日上午  新技术发展论坛 魏勋斌(论坛主席)  三、会议征文  1、征文范围:  1. 生物医学信号处理 2. 医疗仪器与健康监护  3. 穿戴式医疗设备 4. 微纳机电系统  5. 微流控芯片技术 6. 生物医学大数据  7. 分级诊疗 8. 临床检验与POCT  9. 生物医学成像技术 10. 基因诊断  11. 生物光子学与光学分子成像  2、投稿须知:  1.凡内容符合主题范围,未在国内外正式刊物或其他会议上发表的中文论文均可投稿   2.投稿论文撰写要求请参照www.etmchina.com公布的《仪器仪表学报》投稿要求及论文模板,投稿时请提交MS Word版本   参见:http://www.etmchina.com/down.do?method=listFront&pid=2  3.论文的结构依次为:论文题目(中英文)、作者姓名、单位、所在城市及其邮编、摘要(中英文)、关键词(中英文)、正文、参考文献、作者简介   4.如果论文内容可能涉密,请作者主动提交“已通过工作单位保密审查”的证明   5.论文一经提交,即表明作者同意会议主办方拥有论文版权   6.投稿时务必提供联系人的姓名、职称、电话、手机、E-mail、详细通信地址   7.投稿截止日期:2016年11月15日。  3、征文投寄邮箱:  luwang@ capitalbio.com yiliao@cis.org.cn  4、论文集:  经过大会评审委员会评审通过的论文将推荐到《仪器仪表学报》增刊发表。  四、会议联系方式  1、中国仪器仪表学会医疗仪器分会秘书处联系人:  王 璐 18510056847,010-80726868转6207 luwang@ capitalbio.com  陈 鹏 13811529795,010-57287898 eric@futurexpo.cn  地址:北京市昌平区生命科学园路18号  2、各学会联系人:  中国仪器仪表学会:张莉 010-82800752 zhangli@cis.org.cn  中国光学工程学会:李瑾 022-58168516 lijin@csoe.org.cn  中国生物医学工程学会:康亚文 010-69156448 swyxgch@126.com  五、会议协办单位及支持媒体  协办单位:北京未来畅想科技有限公司  支持媒体:医械信息网 仪器信息网 火石创造 分析测试百科网 艾兰博曼 威斯腾转化网 高创汇  六、会议缴费须知  1、收费标准:  主会场注册费1000元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  主会场及分会场注册费1500元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  10月30日前注册八五折优惠。  2、缴费方式:  1、汇款  账户名称:中国仪器仪表学会  开 户 行:工商银行北京北新桥支行(行号102100000431)  账 号:0200004309014464348  收款人电话:13520672025(洪爱琴)  * 汇款附言注明:医疗仪器会议+参会人员名字  * 如需发票,请注册时写明发票抬头并于11月15日前将款汇到  2、现场缴费  现金或刷卡, 现场收取并开具收据 会后大会秘书处将发票邮寄给您,签到时还请写明收寄人详细地址。报名请点击如下链接:http://e.eqxiu.com/s/D5oRw0bZ?eqrcode=1&from=singlemessage&isappinstalled=0  中国仪器仪表学会    中国光学工程学会    中国生物医学工程学会  2016年10月27日
  • 发改委《“十四五”生物经济发展规划》 支持基因测序、分子诊断、医学成像等技术发展(附全文)
    5月10日,国家发展和改革委员会官方网站发布关于印发《“十四五”生物经济发展规划》(以下简称“《规划》”)的通知,《规划》中明确“十四五”期间生物技术和生物产业的发展目标,包括生物经济总量规模迈上新台阶、生物科技综合实力得到新提升、生物产业融合发展实现新跨越、生物安全保障能力达到新水平、生物领域政策环境开创新局面。“十四五”生物经济发展规划通知全文科学规划、系统推进我国生物经济发展,是顺应全球生物技术加速演进趋势、实现高水平科技自立自强的重要方向,是前瞻布局培育壮大生物产业、推动经济高质量发展的重要举措,是满足生命健康需求快速增长、满足人民对美好生活向往的重要内容,是加强国家生物安全风险防控、推进国家治理体系和治理能力现代化的重要保障。为贯彻落实党中央、国务院决策部署,加快发展生物经济,依据《中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》编制本规划。一、生物经济发展形势当前,生命科学已成为前沿科学研究活跃领域,生物技术成为促进未来发展的有效力量。生物经济以生命科学和生物技术的发展进步为动力,以保护开发利用生物资源为基础,以广泛深度融合医药、健康、农业、林业、能源、环保、材料等产业为特征,正在勾勒人类社会未来发展的美好蓝图。党的十八大以来,我国生物经济发展取得巨大成就,产业规模持续快速增长,门类齐全、功能完备的产业体系初步形成,一批生物产业集群成为引领区域发展的新引擎。生物领域基础研究取得重要原创性突破,创新能力大幅提升。生物安全建设取得历史性成就,生物安全政策体系不断完善,积极应对生物安全重大风险,生物资源保护利用持续加强,为加快培育发展生物经济打下了坚实基础。“十四五”时期是我国开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的第一个五年,也是生物技术加速演进、生命健康需求快速增长、生物产业迅猛发展的重要机遇期。我国是全球生物资源最丰富、生命健康消费市场最广阔的国家之一,一些生物技术产品和服务已处于第一梯队,新冠肺炎疫情防控取得重大战略成果,依托强大国内市场、完备产业体系、丰富生物资源和显著制度优势,生物经济发展前景广阔。同时,生物经济发展也面临不少挑战,全球疫情仍在持续演变,传统生物安全问题和新型生物安全风险相互叠加,生物产业原创能力仍较为薄弱,生物资源保护开发利用体系尚不完备,生物经济发展缺乏顶层设计和统筹协调等。需科学分析我国生物经济发展形势,把握面临的风险挑战,科学规划、系统推进“十四五”时期我国生物经济发展。二、总体要求(一) 指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,弘扬伟大建党精神,坚持稳中求进工作总基调,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,推动高质量发展,以深化供给侧结构性改革为主线,以改革创新为根本动力,以满足人民群众日益增长的美好生活需要为根本目的,坚持系统观念,更好统筹发展和安全,加强战略性、前瞻性研究谋划,充分发挥我国生物经济发展优势,推动生物技术赋能经济社会发展,加快构建现代生物产业体系,有序推进生物资源保护利用,着力做大做强生物经济,加强国家生物安全风险防控和治理体系建设,提高国家生物安全治理能力,切实筑牢国家生物安全屏障。(二) 基本原则。——坚持创新驱动。加快推进生物科技创新和产业化应用,打造国家生物技术战略科技力量,健全生物技术科研攻关机制,加快突破生物经济发展瓶颈,实现科技自立自强,提升产业链供应链安全稳定水平。——坚持系统推进。推动有效市场和有为政府更好结合,科学施策,统筹谋划,加快生物技术向多领域广泛融合赋能,加强生物领域产学研用深度融合,加快培育生物领域新技术、新产业、新业态、新模式。——坚持合作共赢。以更高水平的对外开放、更大力度的改革举措,集聚全球生物创新资源。积极参与全球生物安全治理,推动生命科学、生物技术双边和多边国际合作,促进创新要素合理流动,实现生物经济效益互利共赢。——坚持造福人民。面向人民生命健康,恪守人与自然和谐共生客观规律,实现生物经济发展与生态文明建设互融互促,确保生命科学、生物技术造福人民群众,更好满足人民群众日益增长的美好生活需要。 ——坚持风险可控。贯彻总体国家安全观,贯彻落实生物安全法,强化底线思维,按照以人为本、风险预防、分类管理、协同配合的原则,加强国家生物安全风险防控和治理体系建设,提高国家生物安全保障能力,切实筑牢国家生物安全屏障。(三)发展目标。“十四五”时期,我国生物技术和生物产业加快发展,生物经济成为推动高质量发展的强劲动力,生物安全风险防控和治理体系建设不断加强。生物经济总量规模迈上新台阶。生物经济增加值占国内生产总值的比重稳步提升,生物医药、生物医学工程、生物农业、生物制造、生物能源、生物环保、生物技术服务等战略性新兴产业在国民经济社会发展中的战略地位显著提升。生物经济领域市场主体蓬勃发展,年营业收入百亿元以上企业数量显著增加,创新创业企业快速成长。生物科技综合实力得到新提升。生命学科基础研究投入大幅提高,生物产业研发投入强度显著提高,高价值发明专利拥有量大幅增加,关键核心技术取得新突破。生物产业创新中心、工程研究中心、技术创新中心等创新平台竞争力和辐射带动力显著增强,生物经济区域性创新高地、生物产业集群数量和影响力显著提升。创新产品和服务对生物产业增长贡献率显著提高。生物产业体系更加发达,产业链、供应链更加协调稳定。生物产业融合发展实现新跨越。生物技术和生物产业更加广泛惠及人民健康、粮食安全、能源安全、乡村振兴、绿色发展。生物药物和医疗服务社会普及程度明显提升,基因检测技术覆盖率持续提高,生物领域第三方服务机构数量稳步增长。生物能源稳步发展,生物基材料替代传统化学原料、生物工艺替代传统化学工艺等进展明显。生物安全保障能力达到新水平。加快国家生物安全风险防控和治理体系建设,生物安全监测预警、应急处置、基础保障、事后恢复能力显著提升,形成平战结合的应对重大新发突发传染病、动植物疫情等生物安全事件联防联控机制,基本建成国家主导、防控兼备、多元立体、机制顺畅、基础扎实的生物安全风险防控和治理体系。公共卫生防控救治能力大幅提高,重大疫情防控早发现、早报告、早隔离、早治疗的体制机制不断健全,疫情防控相关科研攻关、基础保障、创新能力显著提升。生物领域政策环境开创新局面。体制机制和制度环境更加优越,促进先进技术、人才、资本等创新要素集聚和流动。生物技术市场交易更加活跃,审评审批、市场准入、产品定价、市场监管、产权保护等体制机制改革持续深入,生物资源保护开发利用体制机制更加健全完善,专业化市场服务机构持续增加。展望 2035 年,按照基本实现社会主义现代化的要求,我国生物经济综合实力稳居国际前列,基本形成技术水平领先、产业实力雄厚、融合应用广泛、资源保障有力、安全风险可控、制度体系完备的发展新局面。(四)重点发展领域。紧紧围绕生命科学和生物技术发展变革趋势,聚焦面向人民群众在医疗健康、食品消费、绿色低碳、生物安全等领域更高层次需求和大力发展生物经济的目标,充分考虑生物技术赋能经济社会发展的基础和条件,优先发展四大重点领域。顺应“以治病为中心”转向“以健康为中心”的新趋势,发展面向人民生命健康的生物医药,满足人民群众对生命健康更有保障的新期待。着眼提高人民群众健康保障能力,重点围绕药品、疫苗、先进诊疗技术和装备、生物医用材料、精准医疗、检验检测及生物康养等方向,提升原始创新能力,加强药品监管科学研究,增强生物医药高端产品及设备供应链保障水平,有力支撑疾病防控救治和应对人口老龄化,建设强大的公共卫生体系和深入实施健康中国战略,更好保障人民生命健康。顺应“解决温饱”转向“营养多元”的新趋势,发展面向农业现代化的生物农业,满足人民群众对食品消费更高层次的新期待。着眼保障粮食等重要农产品生产供给,适应日益多元的营养健康食物等消费需求,重点围绕生物育种、生物肥料、生物饲料、生物农药等方向,推出一批新一代农业生物产品,建立生物农业示范推广体系,完善种质资源保护、开发和利用产业体系,更好保障国家粮食安全、满足居民消费升级和支撑农业可持续发展,构建更加完善的全链条食品安全监管制度,确保人民群众“舌尖上的安全”。顺应“追求产能产效”转向“坚持生态优先”的新趋势,发展面向绿色低碳的生物质替代应用,满足人民群众对生产方式更可持续的新期待。着眼加快建设美丽中国目标,重点围绕生物基材料、新型发酵产品、生物质能等方向,构建生物质循环利用技术体系,推动生物资源严格保护、高效开发、永续利用,加快规模化生产与应用,打造具有自主知识产权的工业菌种与蛋白元件库,推动生物工艺在化工、医药、轻纺、食品等行业推广应用,构建生物质能生产和消费体系,推动环境污染生物修复和废弃物资源化利用,确保生态安全和能源安全。顺应“被动防御”转向“主动保障”的新趋势,加强国家生物安全风险防控和治理体系建设,满足人民群众对生物安全更好保障的新期待。着眼贯彻总体国家安全观、统筹发展和安全的要求,重点围绕国家生物安全风险防控和治理体系建设,完善顶层设计,构建国家生物安全法律法规制度体系,加强重大新发突发传染病、动植物疫情疫病防控和救治能力建设,全面提高国家生物安全保障能力。积极参与生物安全全球治理,同国际社会携手应对日益严峻的生物安全挑战,加强生物安全政策制定、风险评估、应急响应、信息共享、能力建设等方面的双多边合作交流,为世界贡献中国智慧、提供中国方案。三、大力夯实生物经济创新基础坚持发挥创新在生物经济发展中的基础作用,强化市场导向、需求牵引,推动生命科学研究、生物技术创新与发展生物经济新动能紧密结合,加快推动生物经济创新发展。(五) 加快提升生物技术创新能力。加强原创性、引领性基础研究。瞄准临床医学与健康管理、新药创制、脑科学、合成生物学、生物育种、新发突发传染病防控和生物安全等前沿领域,实施国家重大科技项目和重点研发计划。加快打造生物领域国家战略科技力量,积极凝聚大团队、集聚大资源、实施大项目、取得大突破。强化国家重大科技基础设施牵引作用,聚焦“四个面向”超前部署引领性设施,加快转化医学研究、多模态跨尺度生物医学成像等建设,鼓励依托设施建设前沿交叉研究平台,加强设施运行开放和数据共享。打好关键核心技术攻坚战。实行“揭榜挂帅”、“赛马”制度,开展生物领域关键核心技术攻关,集中力量补齐底层技术、关键部件、共性基础技术和材料、基础软硬件等发展短板,加强供需协同,提高创新链整体效能。开展前沿生物技术创新。加快发展高通量基因测序技术,推动以单分子测序为标志的新一代测序技术创新,不断提高基因测序效率、降低测序成本。加强微流控、高灵敏等生物检测技术研发。推动合成生物学技术创新,突破生物制造菌种计算设计、高通量筛选、高效表达、精准调控等关键技术,有序推动在新药开发、疾病治疗、农业生产、物质合成、环境保护、能源供应和新材料开发等领域应用。发展基因诊疗、干细胞治疗、免疫细胞治疗等新技术,强化产学研用协同联动,加快相关技术产品转化和临床应用,推动形成再生医学和精准医学治疗新模式。部署开展中医药治疗重大疾病作用机制及针灸作用原理研究。鼓励发展生物计算、脱氧核糖核(DNA)存储等新技术。(六) 培育壮大竞争力强的创新主体。强化企业创新主体地位。发挥生物领域龙头企业引领支撑作用,引导大企业向产业链上下游开放科技创新、供应链、金融服务等资源,推动与中小企业融通创新。围绕生物医药、生物农业、生物制造等规模大、影响广的重点领域,鼓励生物创新企业深耕细分领域,厚植发展优势,培育成为具有全球竞争力的单项冠军。以促进关键技术突破和科技成果转化应用为目标,支持龙头企业牵头组建创新联合体,承担建设产业创新中心、工程研究中心、技术创新中心、制造业创新中心等创新平台。鼓励生物技术领域创新创业,支持中小微企业发展。发展壮大新型创新力量。在高端科研仪器、医疗设备、新药创制、生物制造、生物育种、生物质能等前沿领域,支持有影响力的用户单位牵头建立产用联合体,与生产企业共同合作开展生物产品技术创新和示范验证,构建“应用示范-反馈改进-水平提升-辐射推广”的良性循环发展机制。围绕重大疾病预防和治疗,加快建设研究型医院、临床医学研究中心和转化医学研究中心,鼓励有条件的医疗机构设立研究型病房,加强医工、医校结合,试点开展临床研究制度创新,提升医药卫生成果转化和功能验证能力。鼓励建设行业研究院和创新发展联盟,健全完善生物产品和服务的标准体系,促进产学研用深度融合,提高行业发展质量和效率。(七) 优化生物经济创新发展的区域布局。建设生物经济创新发展高地。服务国家重大区域战略,引导创新资源向京津冀、长三角、粤港澳大湾区集聚发展,围绕生物医药、生物农业、生物制造等领域培育一批世界级龙头企业,促进城市间产业分工协作和要素有序流动,加快提升产业链供应链现代化水平。发挥北京、上海、江苏、广东、成渝双城经济圈等地区生物产业体系完备、科研基础扎实、医疗资源丰富、国际化程度较高等优势,集中力量组织实施重点产业专项提升行动,先行先试改革举措,打造具有全球竞争力和影响力的生物经济创新极和生物产业创新高地。提升生物产业集群竞争力。推动国家生物产业基地向高端化、国际化、平台化方向发展,立足区位和产业比较优势,建设一批关键共性技术和成果转化平台,加强国际科技创新和产业协作,有减有增控制发展规模,促进重点产业升级,打造具有国际竞争力的生物产业集群。引导生物产业园区聚焦优势领域和产业链重点环节深耕细作,促进相关人才、技术、资金等要素集中,不断提升成果转化水平和知识产权服务能力,提高专业化、特色化、绿色化发展水平。(八) 深化生物经济创新合作。鼓励国内生物领域科研机构主动发起和参与国际大科学计划,主动参与生物资源保护利用、医药卫生、生物制造等领域的国际规则和标准制定。推进创新药、高端医疗器械、基因检测、医药研发服务、中医药、互联网诊疗等产品和服务走出去,鼓励生物企业通过建立海外研发中心、生产基地、销售网络和服务体系等方式加快融入国际市场。加快建设对外合作生物产业园。推动医疗健康领域国际合作,在自由贸易试验区、海南自由贸易港探索开展先进生物治疗诊断技术的开发与应用。专栏1 生物经济创新能力提升工程1.重大科技基础设施建设。建好用好蛋白质科学、多模态跨尺度生物医学成像、模式动物表型与遗传、转化医学、国家种质资源库、农业生物安全科学中心等国家重大科技基础设施。围绕探索生命奥秘、保障人民生命健康、推动农业现代化等需要,加快建设人类细胞谱系、人类器官生理病理模拟、国家作物表型组学等国家重大科技基础设施,不断提升生物领域极限研究能力。2.关键共性生物技术创新平台建设。紧扣支撑服务国家重大战略任务和重点工程,以推动应用和产业转化为目标,在重大传染病防控、重大疾病防治、新型生物药、新型生物材料、精准医学、医学影像和治疗设备、核酸和重组疫苗、生物制造菌种、林源医药、中医药、主粮等重要农产品种源、生物基环保材料、生物质能等重点领域,布局建设临床医学研究中心、产业创新中心、工程研究中心、制造业创新中心、技术创新中心、企业技术中心、生物医药检验检测及技术标准研究中心、中医药传承创新中心等共性技术平台,支撑开展关键共性技术创新和示范应用。围绕加快创新药上市审批、强化上市后监管,建设药品监管科学研究基地,建设抗体药物、融合蛋白药物、生物仿制药、干细胞和细胞免疫治疗产品、基因治疗产品、外泌体治疗产品、中药等质量及安全性评价技术平台。四、培育壮大生物经济支柱产业加快生物技术广泛赋能健康、农业、能源、环保等产业,促进生物技术与信息技术深度融合,全面提升生物产业多样化水平,推动生物经济高质量发展。(九) 推动医疗健康产业发展。助力疾病早期预防。推动基因检测、生物遗传等先进技术与疾病预防深度融合,开展遗传病、出生缺陷、肿瘤、心血管疾病、代谢疾病等重大疾病早期筛查,为个体化治疗提供精准解决方案和决策支持。加快疫苗研发生产技术迭代升级,开发多联多价疫苗,发展新型基因工程疫苗、治疗性疫苗,提高重大烈性传染病应对能力。提升疾病诊断能力。推动生物技术与精密机械、新型材料、增材制造等前沿技术融合创新,大力开发分子诊断、化学发光免疫诊断、即时即地检验等先进诊断技术和产品,发展高端医学影像等诊断装备,促进装备向智能化、小型化、快速化、精准化、多功能集成化发展。强化中医疗效判定与机制研究,推动中医药理论的传承创新。提高临床医疗水平。发展微流控芯片、细胞制备自动化等先进技术,推动抗体药物、重组蛋白、多肽、细胞和基因治疗产品等生物药发展,鼓励推进慢性病、肿瘤、神经退行性疾病等重大疾病和罕见病的原创药物研发。拓展智能手术机器人、数字疗法、粒子放疗等先进治疗技术临床应用。对开展临床应用的干细胞治疗、细胞免疫治疗、医疗新技术制定完善技术规范,科学开展临床评价。把优秀传统理念同现代生物技术结合起来,中西医结合、中西药并用,集成推广生物防治、绿色防控技术和模式,协同规范抗菌药物使用。专栏2 生物医药技术惠民工程1.早筛与精准用药。以高通量基因测序、质谱、医学影像、生物信息诊断等技术为主,重点开展肿瘤早期筛查及用药指导,继续推动耳聋、唐氏综合症、地中海贫血等出生缺陷基因筛查,推动个体化医疗实现突破。2.先进医疗装备。加强医疗装备示范应用基地建设,鼓励企业依托基地持续跟踪产品技术迭代应用示范,进一步降低诊疗费用。面向共建“一带一路”国家医疗装备需求,推动先进医疗装备惠及世界人民。3.中医药质量提升。选育一批中药材良种,从源头加强中药质量保障,推动传统中药材种植产业转型升级,建立中药材生态种植体系。开发一批优质中药,支持中医药标准化工作,建设中医药标准物质库、质控标准体系、信息数据平台。(十) 推动生物农业产业发展。提高粮食等重要农产品生产能力和质量。在尊重科学、严格监管、依法依规、确保安全的前提下,有序推动生物育种等领域产业化应用,保障粮食、肉蛋奶、油料等重要农产品供给。有序发展全基因组选择、系统生物学、合成生物学、人工智能等生物育种技术,着力提升良种培育、生产加工、推广应用等能力,加快构建商业化育种创新体系。积极推进高抗优质玉米、大豆粮食作物,开展优质生猪、白羽肉鸡、奶牛等禽畜和水产品良种攻关及科学饲养。发展合成生物学技术,探索研发“人造蛋白”等新型食品,实现食品工业迭代升级,降低传统养殖业带来的环境资源压力。提高农业生产效率。发展绿色农业,开发农业废弃物生物制剂、天然农业生物药物、精准多靶标生物农药、土壤改良生物制品等农业制品。促进前沿生物技术在农业领域融合,推动饲用抗生素替代品、木本饲料、动物基因工程疫苗、生物兽药、植物免疫调节剂、高效检测试剂、高效固碳和固氮产品等技术的创制与产业化,提高土地和资源利用效率。发展酶制剂、微生物制剂、发酵饲料、饲用氨基酸等生物饲料,解决饲料安全、原料缺乏和环境污染等养殖领域重大问题。专栏3 现代种业提升工程1.保护种质资源。以国家农作物种质资源长期库和中期库(资源圃)、畜禽基因库和保护场(区)、水产种质资源库和资源场等为重点,着力打造具有国际先进水平的种质资源保护体系,支持科研院所、高校和企业开展种质资源搜集、保存、鉴定评价和开发利用,为科研育种提供优质资源材料。2.推动育种创新。以农作物分子育种创新服务平台和鉴定平台、畜禽育种创新平台、水产联合育种平台等为重点,发展原创育种技术,支持建设一批育繁推一体化企业,着力打造具有国际水平的基础性科研和商业化育种体系,改善科研创新条件,推动产研深度融合,促进创新要素高效配置。3.开展测试评价。以农作物品种测试评价中心(站)、畜禽遗传评估中心和品种测定站、水产品种测试站为重点,对标国际先进水平,全面提升设施装备条件和品种测试(测定)能力。4.促进良种繁育。以农作物国家级育制种基地和区域性良种繁育基地、种公畜站、水产繁种基地为重点,着力打造国家农作物、畜禽和水产良种生产基地,有效保障良种供应,全面提升良种覆盖率。(十一) 推动生物能源与生物环保产业发展。助力环境保护和污染治理。依托生物制造技术,实现化工原料和过程的生物技术替代,发展高性能生物环保材料和生物制剂,推动化工、医药、材料、轻工等重要工业产品制造与生物技术深度融合,向绿色低碳、无毒低毒、可持续发展模式转型。运用功能型微生物、酶制剂等生物技术,推动实现水体脱氮除磷、重金属土壤修复、固体废物利用处置,推动提高秸秆综合利用水平,发展污染物生物环境响应监测、生物降解和生物修复、生物资源回收利用等生物环保产业链,助力打赢大气、水、土壤等污染防治攻坚战。积极开发生物能源。有序发展生物质发电,推动向热电联产转型升级。开展新型生物质能技术研发与培育,推动生物燃料与生物化工融合发展,建立生物质燃烧掺混标准。优选和改良中高温厌氧发酵菌种,提高生物质厌氧处理工艺及厌氧发酵成套装备研制水平,加快生物天然气、纤维素乙醇、藻类生物燃料等关键技术研发和设备制造。积极推进先进生物燃料在市政、交通等重点领域替代推广应用,推动化石能源向绿色低碳可再生能源转型。专栏4 生物能源环保产业示范工程1.生物能源领域。定向选育、推广和应用高产、高抗、速生的油料和能源林新品种,因地制宜开展生物能源基地建设,加强热化学技术创新,推动高效低成本生物能源应用。在城乡有机废弃物集中地区开展纤维素乙醇、生物柴油、生物天然气产业示范,打通生物质原料收集、有机肥生产使用等重要环节,提高生物燃料生产专栏7 生物经济先导区建设行动在京津冀、长三角、粤港澳大湾区、成渝双城经济圈等区域,以城市为载体布局建设生物经济先导区,围绕生物医药、生物农业、生物能源、生物环保等领域开展科技创新和改革试点,引领我国生物经济发展壮大。生物经济先导区重点是探索构建适应生物经济时代的前瞻性制度框架和政策实施体系,集中建设凝聚高层次人才、实现创新突破的科技与产业创新平台,通过合作园区、离岸科技孵化器等方式深化国际合作。八、保障措施(二十六) 加强组织领导。深入学习贯彻习近平新时代中国特色社会主义思想,增强 “四个意识”、坚定“四个自信”、做到“两个维护”,把党的领导贯彻到发展生物经济的全过程。发展改革委要牵头强化对生物经济发展的统筹,健全教育、科技、工业和信息化、财政、农业农村、自然资源、生态环境、卫生健康、市场监管、林草、药监等各有关部门参与的协调机制,推动生物经济发展的重大规划、重大改革、重大政策和重大工程。(二十七) 营造良好氛围。加强生物技术科普宣传,提高公众对生命科学和生物技术的认知接受程度,建设一批生物技术科普平台,营造有利于公众客观、科学理解生物技术的人文社会环境。支持举办国际性生物经济高端论坛,提高我国生物经济影响力。鼓励国家高端智库(试点)单位牵头,联合有关科研院所、企业、金融机构、媒体等各方力量,加强生物经济发展智力支撑,推动开展生物经济立法、监管、政策、统计等重大问题研究,加强对生物经济政策的解读。推动行业自律、公众监督相结合,加强生物经济重大问题争端协商。(二十八) 强化协调配合。各地区、各有关部门要高度重视生物经济发展工作,加强地方规划、有关专项规划与本规划的衔接,切实抓好本规划实施。地方各级人民政府要建立健全工作机制,细化实化政策措施,推动本规划的各项任务落实到位。各有关部门要按照职责分工抓好任务落实,加快制定配套政策,共同推动生物经济发展壮大,把生物安全工作责任落到实处。本规划实施中涉及的重大事项、重大政策和重大项目要按程序报批。适时开展规划实施情况监测评估,重大问题及时向党中央、国务院报告。附件:十四五生物经济发展规划.pdf
  • 2017年暑假生物医学大型仪器理论与实验技术培训班通知
    p    /p p   (5日大型仪器综合、3日Aminis& reg 成像和CyTOF质谱流式、TissueFAXS类流式专题、3日Sequenom& reg 质谱基因检测专题和5日蛋白组学专题培训) /p p   (第一轮通知) /p p   中国医学科学院基础医学研究所∕北京协和医学院基础学院在医学领域具有国内一流的影响力和知名度,以尖端的医学研究及出色的理论和实验教学成为著名的医学科学研究与教育基地。为了培养生物医学领域创新人才,现推出以尖端仪器和实战训练为特色的“大型仪器原理与实验技术”寒假培训班。参加培训班的学员,将可获得国家级继续教育I类学分10分并颁发医疗卫生适宜技术推广培训结业证书。 /p p   1培训目标 /p p   1.1通过实战学习,使学员有机会亲自操作先进的大型仪器,了解其应用领域,促进这些技术在基础和临床科研中的推广。 /p p   1.2通过了解当前生物医学研究中先进的大型仪器原理与使用技术,结合对实验设计思路的理解,提高学员的科研水平,激发创新能力。 /p p   2培训特色 /p p   2.1尖端前沿:使用当前最先进、最主流的生命科学类大型仪器和技术,如最前沿的TissueFAXS类流式分析系统(价值约250万RMB)、Sequenom& reg MassArray 质谱生物芯片系统(约300万RMB)、Aminis& reg 成像仪(约328万RMB)、CyTOF质谱流式仪(约360万RMB)、Bio-Rad QX200第二代微滴式数字PCR仪(约100万RMB)、Bruker UltrafleXtreme MALDI-TOF/TOF质谱仪(约350万RMB)、PE UltraVIEW VoX活细胞高速激光共聚焦实时成像分析系统(约200万RMB)、。 /p p   2.2实际操作:上机实验课时数不低于50%,理论与实践紧密结合。小组授课学习(4~6人),每位学员均可亲自操作尖端的大型生命科学仪器。 /p p   2.3师资雄厚:讲师团成员均来自中国医学科学院基础医学研究所中心实验室科研和教学一线,实验经验丰富。 /p p   2.4后续指导:培训后学员将能继续和讲师们联系,获得一线丰富的经验指导。 /p p   3招生对象 /p p   临床的医务人员、科研人员和在读研究生。面向全国各大高校、科研院所和临床医院。 /p p   4培训规模 /p p   限报20人(综合培训)∕15人(专题培训),机会难得,预报从速。 /p p   5培训班内容 /p p   5.1培训内容(综合) /p p   理论部分:概论及光谱分析技术、荧光显微镜技术、电子显微镜技术、流 /p p   式细胞仪技术、色谱及质谱技术、定量PCR和液滴式数字PCR。 /p p   实验部分:荧光显微镜技术、电子显微镜技术、流式细胞仪技术、色谱及 /p p   质谱技术、定量PCR和液滴式数字PCR。 /p p   5.2教学方式 /p p   各项技术在老师的指导下由学员亲自动手操作,学员将掌握各项实验技术,包括实验技术原理与操作细节、课题设计方法、常见问题及结果分析等。 /p p   5.3培训时间 /p p   2017年7月10~14日(大型仪器综合) /p p   2017年7月15~17日(量化成像分析流式和质谱流式专题+TissueFAXS类流式分析系统) /p p   2017年7月15~17日(质谱基因检测专题) /p p   2017年7月15~19日(定量蛋白组学专题) /p p   5.4培训地点 /p p   北京东城区东单三条5号(基础医学研究所科研楼内) /p p   5.5培训费用 /p p   表:注册费(含资料费,提供午餐 住宿不统一安排,费用自理) /p p   序号培训组合注册费(RMB元) /p p   15日大型仪器综合5 000 /p p   23日量化成像分析、质谱流式和TissueFAXS类流式分析系统专题3 000 /p p   33日质谱基因检测专题3 000 /p p   45日定量蛋白组学专题5 000 /p p   备注:长期合作伙伴可享有8折优惠 组合培训(综合+任一专题)8折优惠 6月27日前确定报名可9折 2人以上同行可再享有9折优惠. /p p   缴费方式(银行汇款):银行转账付款账户 /p p   开户行:中行北京王府井支行 /p p   户名:中国协和医科大学出版社 /p p   账号:320 756 781 894 /p p   报名联系人: /p p   王老师(wangxin@ibms.pumc.edu.cn) /p p   范老师(corelabibms@ 163.com) /p p   联系电话:010-6915 6952/6995 /p p   主办单位: /p p   中国医学科学院基础医学研究所中心实验室中国协和医科大学出版社 /p p   2017年5月22日2017年5月22日 /p
  • 科技部:国家投入12亿经费支持生物医学5大重点专项
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/2b63017c-186b-4a10-af7d-2697a2b0c77b.jpg" / /p p   近日,科技部官网发布了14个重点专项2018年度项目申报指南,其中包括了“精准医学研究”、“重大慢性非传染性疾病防控研究”等生物医学领域的5大专项,累计国拨经费总概算约12亿元。 /p p style=" text-align: center " strong “生物医用材料研发与组织器官修复替代”重点专项2018年度项目申报指南 /strong /p p   本专项按照多学科结合、全链条部署、一体化实施的原则,鼓励产、学、研、医联合申报,围绕项目的总体目标,部署前沿科学及基础创新、关键核心技术、产品开发、典型示范4大研究任务,以及涉及前沿科学及基础创新、关键核心技术、产品开发、典型示范等的医用级原材料的研发及产业化、标准和规范研究、临床及临床转化研究3项重点任务。2018年将继续围绕前沿科学及基础创新、关键核心技术、产品开发、典型示范4大研究任务部署12个方向,拟支持19个项目,国拨经费约为3亿元。实施周期为2018-2020年。 /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/9a7bf1aa-b59a-47c8-a4b9-2038180968e8.jpg" / /p p style=" text-align: center " strong “数字诊疗装备研发”试点专项2018年度项目申报指南 /strong /p p   结合实施方案总体安排以及2016年和2017年立项情况,2018年拟部署其中的20个重点方向,拟支持项目24个,国拨经费总概算约2.3亿元,其中用于典型应用示范类项目的中央财政资金不得超过该专项中央财政资金总额的30%。实施周期为2018-2020年。启动任务包括先进医学成像、先进治疗、诊疗一体化、可靠性与工程化和生物学效应评估等前沿和共性技术创新研究,新型专科超声成像系统等重大装备研发,新服务模式解决方案研究,创新诊疗装备区域应用示范等。同时根据前期部署情况,对未部署完成的医学影像设备可靠性与工程化技术、医用电子仪器评价等方向补充部署,加强对新的成像前沿技术、人工智能新型服务模式解决方案等方向部署。 /p p style=" text-align: center " img title=" 003.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/6adf841e-d42d-489d-9cc2-b28cb71bee11.jpg" / /p p style=" text-align: center " strong “重大慢性非传染性疾病防控研究”重点专项2018年度项目申报指南 /strong /p p   2018年将在心脑血管疾病、恶性肿瘤、慢阻肺、糖尿病、神经精神疾病防控技术研究、重大慢病综合防控研究、重大慢病支撑平台体系研究及国际合作研究等方向继续部署34个三级指南方向,拟支持项目36个,国拨经费总概算约4.5亿元,实施周期为2018-2020年。 /p p style=" text-align: center " img title=" 004.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/bf3fabdb-8799-481e-8e8f-92cff7af03c8.jpg" / /p p style=" text-align: center " strong “生殖健康及重大出生缺陷防控研究”重点专项2018年度申报指南 /strong /p p   2016-2017年,专项启动两批项目立项,涉及“建立和完善中国人群育龄人口队列和出生人口队列,开展生殖健康相关疾病临床防治研究”、“生殖健康与出生缺陷相关疾病发病机制研究”和“出生缺陷、不孕不育和避孕节育防治技术及产品研发”3个重点任务。结合实施方案总体安排,2018年继续在生殖健康相关疾病临床防治研究、出生缺陷和不孕不育防治技术研发2个重点任务中的4个研究方向部署项目,拟支持项目4个,国拨经费总概算约0.9亿元,其中用于典型应用示范类项目的中央财政资金不得超过该专项中央财政资金总额的30%。实施周期为2018-2020年。 /p p style=" text-align: center " img title=" 005.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/cb37603c-6b69-4f72-99e8-e4058f4d4e06.jpg" / /p p style=" text-align: center " strong “精准医学研究”重点专项2018年度项目申报指南 /strong /p p   2018年启动的项目主要部署新一代临床用生命组学技术研发,精准医学大数据的资源整合、存储、利用与共享平台建设,疾病防诊治方案的精准化研究3个主要任务,拟启动5个重点方向,拟支持项目6个,国拨经费总概算约1.3亿元。实施周期为2018—2020年。 /p p style=" text-align: center " img title=" 006.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/621731b9-ebd8-425f-898b-fede0b0cd30c.jpg" / /p
  • “100家实验室”专题:访国家生物医学分析中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第三十站:国家生物医学分析中心。   国家生物医学分析中心,是国家科技部(原国家科委)1994年正式批准成立的全国唯一的国家级生物医学分析中心,在药物毒物分析、新药研发、蛋白质组分析、代谢组学分析、细胞分析、环境和食品分析等领域拥有雄厚实力,是我国在上述领域科学研究、新药研发和社会经济活动的重要依托基地。与此同时,中心也是军事医学科学院生物医学分析中心、军事医学科学院仪器测试分析中心、全军环境保护研究监测中心和北京市生物医药分析测试中心。   中心已通过国家计量认证和“中国实验室国家认可”,可提供权威的分析数据和检测报告。中心主要任务是:研究和发展生物医学分析领域的新技术、新方法及其在生物医学中的应用,可承担生物医学领域中的核酸、蛋白质分析,有机药物,有机毒物分析,基因工程重组药物分析,微生物分析,致癌致畸致突变物分析,免疫分析,生物自由基分析,细胞分析,微区元素分析,放射计量分析等科研任务。2004年,国家科技部和北京科委决定在中心共建具有当前国际先进水平的“北京质谱开放技术平台”,为我国在上述领域的科学研究、新药产品开发和社会经济活动提供重要的技术支撑和服务。2009年,中心加入“首都科技条件平台”,面向全社会开放提供技术服务。技术服务项目包括:新药报批服务、科研技术平台、测试服务以及专项服务。     资质证书     国家生物医学分析中心主要由以下技术服务平台组成:代谢组学技术平台、蛋白质组技术平台、中药现代化技术平台、细胞生物学技术平台、结构生物学技术平台、环境和食品安全技术平台、微量元素分析技术平台、药物与毒物分析技术平台以及公共突发事件应急分析技术平台。   中心分为7大专业实验室:质谱实验室、核磁共振实验室、电镜实验室、色谱实验室、环境监测实验室、光谱和元素分析实验室,这些专业实验室拥有大量高尖端分析仪器支撑科研工作的进行:   质谱实验室主要核心仪器为9.4T超高性能混合型四极杆串联傅里叶变换离子回旋共振质谱(Q-FT-ICR-MS) ,配套仪器有:高性能多肽测序质谱、高通量飞行时间质谱、磁质谱、飞行时间质谱、电喷雾串联质谱、离子阱质谱、高分辨气质联用以及无机质谱等,已建立完善的一、二、三代生物质谱系统。     Bruker高性能混合型串联傅立叶质谱(Q-FT-MS):9.4T Apex Qe 仪器说明:全球最新版双离子源(DualSource),分辨率超过140万,准确度优于1.0ppm,主要进行小分子物质结构快速解析、蛋白质与核酸序列测定及翻译后修饰分析以及疾病多肽组学研究。   Waters Micromass 高解析离子淌度质谱Synapt HDMS 仪器说明:该仪器为亚洲第一台引进的,主要进行无标记定量蛋白质组学、蛋白质复合物研究以及复杂体系离子淌度分离分析。     Bruker 高速高灵敏多功能串联飞行时间质谱 Ultraflex III TOF/TOF 仪器说明:该仪器为全球第一台,主要进行蛋白质组学、多肽组学、质谱成像、物药报批、修饰分析以及寡核苷酸分析。   电镜实验室配备有透射电子显微镜、激光扫描共聚焦显微镜、原子力显微镜及活体动物体内成像系统等,为研究组织学、病理学、细胞生物学、遗传学及分子生物学提供了重要的测试手段和技术方法。 Bio-Rad Radiance2100 激光扫描共聚焦显微镜  仪器说明:可对细胞内各种荧光标记物及其组分进行定位、定性和定量分析;对细胞、细胞器进行三维图像重建与定量分析。  Hitachi H7650投射电子显微镜 仪器说明:主要对组织、细胞等进行高分辨率、高灵敏度、高对比度的形态结构观察和组分的定性及定量分析。 Varian 600MHz NMR核磁共振 仪器说明:主要进行核磁共振方法学、天然及合成小分子结构、毒物分析、活体核磁共振、代谢组学以及生物大分子空间构象等领域的研究。 国家医学生物分析中心充分发挥人才、设备和技术优势,在保证向社会提供公正、科学、可靠、准确的检测数据的同时,积极参与国家重大项目的研究攻关和国际合作,在国家科技创新体系中成为集研究、培训、咨询、仲裁、成果鉴定、技术服务为一体的生物医学分析中心。中心作为国家生物安全应急分析基地,多次出色完成事关国家安全的重大事件样品分析。 国家生物医学分析中心承担的课题: 课题来源 项目名称 “863”项目 蛋白质组学新技术在肿瘤泛素通路研究中应用 “973”项目 人类肝脏蛋白质组定位图新技术新方法研究 “973”项目 定位整合、原位修复技术及机理的研究 创新研究群体科学基金 人胎肝蛋白质组学及重要细胞调控因子的发掘 国家科技攻关计划项目 蛋白质定位技术平台建立及应用 北京市肝脏及重大肝病的蛋白质组学研究科技计划项目 肝再生中系列蛋白质复合体的研究 国家自然科学基金 阻断泛素通路中Bcl-2蛋白形成复合体的生物质谱分析 “863”项目 蛋白质组技术平台的建立及其在肿瘤细胞泛素通路与凋亡调控研究中应用 国家自然科学基金 阻断泛素通路对正常和肿瘤细胞影响的巨大差异机制研究 “863”项目 应用蛋白质组技术对白血病细胞凋亡相关蛋白的高通量鉴定 国家科技部 生物质谱技术对蛋白复合体的鉴定 “863”计划青年基金 基于Bcl-2蛋白结构的创新药物发现 北京市自然科学基金 微丝相关新蛋白Lca295的空间结构及其与蛋白质间的相互作用 国家自然科学基金重大研究计划 代谢组学方法在中药毒性研究中的应用 国家自然科学青年基金 寡糖溶液构象的核磁共振研究 国家自然科学基金 新型分子成像技术——质谱扫描成像及其应用 国家科技部 一维固相pH梯度等电聚焦结合生物质谱直接鉴定混合蛋白质的方法初探 国家科技部 质谱(MALDI-TOF-MS)扫描成像技术初探 国家科技部 蛋白质组学技术用于分析肿瘤组织特异性自身免疫性抗原   附录:国家生物医学分析中心   http://www.ncba.cn/   国家生物医学分析中心蛋白质组学网   http://www.proteomics.com.cn/
  • 2018年光学成像技术市场将达19亿美元
    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。   虽然光学成像技术仍然处于发展的初期,但是它有许多重要的优势超过现有的放射成像技术。例如,光学成像技术是非扩散性的,无电离辐射,与传统的放射技术相比可以节约可观的成本,而且光学成像技术可以提高诊断的分辨率,它可以得到眼睛、表面组织、粘膜、胃肠道和血管系统等清晰的深层结构图像,能更好地促进诊断在临床医学中的应用。   该报告中的光学成像技术包括光学相干断层扫描技术(OCT)、光声层析成像技术(PAT)、超光谱图像技术(HSI)和近红外光谱技术(NIRS),这些技术在未来五年将推动整个光学成像技术的市场。   当前,OCT占领光学成像技术市场的70%,从2013年到2018年,OCT的市场将按照4%的年均复合增长率增长。OCT被广泛地应用在眼睛、牙齿、心脏和皮肤等的临床诊断,并且现在还将其的应用领域扩展到癌症检测。卡尔蔡司和圣犹达医疗是这项技术的先驱,且几乎所有的设备都与OCT技术有关。   此外,HSI、NIRS和PAT在光学成像技术市场属于新兴的技术。其中,HSI和NIRS目前在皮肤和神经领域被用于生物医学研究和药物开发,而PAT被用于癌症检测。(编译:邓雅静)
  • 雷尼绍:助力生物医学发展“加速度”
    赶在18年的尾巴,雷尼绍参加了全国第二届生物医学拉曼光谱学术会议。这是一场汇集了学术、医学界和仪器厂家等各行业的年度跨界盛典,也是引领未来生物医学拉曼光谱技术发展趋势的风向标。 在会议上,我们被“聚众围观”的是作为首次在中国展出的全新雷尼绍RA816生物分析仪。 作为一款操作简单的紧凑型台式拉曼成像系统,RA816生物分析仪将拉曼光谱的化学分析能力和先进的光学及光谱成像技术结合在一起,专为生物研究领域设计。RA816能够快速揭示生物样品的详细生化信息,包括组织活检、组织切片及生物流体等,具有高的灵敏度和特异性,有助于发现和验证早期疾病,目的是将拉曼光谱分析推向临床研究。目前我们的解决方案已应用在众多客户的实验室中,为研究工作提供可靠而有价值的分析结果,帮助用户发现更多信息,加速研究工作的进展。各领域专家和学者的跨界交流、增强合作,在现场处处得到完美展现。展位的圆桌交流会上各位专家讲解的报告,引起了与会老师的浓厚兴趣,围绕实际问题进行具体分析,积极地交流和讨论,碰撞出的智慧火花闪烁在会场之中。远道而来的英国雷尼绍Martin Isabelle博士在会议中讲到,拉曼光谱及成像可以分析特定的生物分子结构,区分不同的组织或细胞器,同时结合空间信息,得到生化物种的分布及大小。报告中通过对具体的组织或细胞的案例分析,包括结肠组织、皮肤组织、脑胶质瘤细胞等,揭示了拉曼光谱快速鉴别/区分癌变、异变及正常组织/细胞的能力,帮助研究者更好地了解疾病的开始、进展及治疗响应,揭示了拉曼光谱分析走向临床研究的巨大潜力。会议顺应拉曼光谱技术在生物医学领域日新月异发展的现状,旨在推动国内拉曼光谱学界同仁与生物学、基础医学、临床医学及纳米科学等相关领域学者的交流与合作。拉曼分析小福利 衬底选择中的大学问对组织或者细胞做拉曼分析的时候,经常会发现衬底会对样品信号有较强的影响,这时就需要在测试前选择合适的制样衬底。生物样品拉曼分析常用的衬底材料:CaF2和MgF2是最理想选择,对生物拉曼信号的干扰最小,但成本相对较高;熔融石英也可以接受,但确实存在一定的拉曼背景;高度抛光的金属载玻片非常适用于组织切片成像和部分细胞成像。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制