当前位置: 仪器信息网 > 行业主题 > >

生物纳米材料

仪器信息网生物纳米材料专题为您整合生物纳米材料相关的最新文章,在生物纳米材料专题,您不仅可以免费浏览生物纳米材料的资讯, 同时您还可以浏览生物纳米材料的相关资料、解决方案,参与社区生物纳米材料话题讨论。

生物纳米材料相关的资讯

  • 国家纳米中心“活体自组装”生物纳米材料研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院国家纳米科学中心王浩课题组通过发展“活体自组装”技术,在细胞内构建了不同拓扑结构的纳米材料,并提出了全新的细胞内原位聚合和组装策略,为功能性纳米材料的设计提供了新思路。相关研究成果发表在 em Nature Communications /em 上,并已申请中国发明专利。 /p p   纳米材料在生物医学领域已被广泛研究和认可,例如药物递送、组织工程等均得到了深入研究。但纳米材料独特的生物界面效应,使其在复杂生命体中的递送过程、物理化学转化以及蓄积代谢等问题变得十分棘手。因此,王浩课题组提出了“活体自组装”理念,独特设计纳米材料的建筑单元,将外源引入的分子参与到生命体的功能性组装过程中,实现了在生理环境下自发的纳米材料构建和功能化。这一独特思路,为生物医用纳米材料领域的设计和应用提供了新视角和新途径。 /p p   在纳米材料的生物功能应用中,拓扑结构对活体器官、组织和细胞的功能影响显得尤为重要。前期报道指出,特定拓扑结构在生命体中扮演者独特的角色,例如双螺旋结构的DNA、具有特定3D结构的蛋白大分子,以及各种传导信号的分子复合体等。材料和界面的拓扑结构影响生物功能,例如界面的形态会诱导干细胞定向分化、决定细胞迁移和内吞等功能。因此,深入研究在特定区域内材料拓扑结构与生物功能之间的关系,将为精准功能化纳米材料的设计提供指导。目前,体外构筑的纳米材料,不能区分界面和胞内作用,干扰了限域拓扑结构和生物功能关系的分析和理解。 /p p   针对特定区域内材料与功能之间的关系研究,王浩课题组发展了细胞内原位聚合和组装的新方法,首次实现了在细胞内平行构筑不同拓扑结构的纳米材料,为研究胞浆拓扑结构和功能的关系提供了有效手段。通过设计不同氨基酸序列的多肽聚合单体,实现了在胞内聚合过程中,对聚合物分子量大小、温敏性质以及组装后的拓扑结构的调控;在细胞和组织水平原位的证实了多肽单体的聚合和组装过程;综合评价了不同拓扑结构的纳米组装体的滞留效应和细胞毒性等生物功能,为精准设计功能化纳米材料提供基础参考。 /p p   研究工作得到了国家自然科学基金、创新群体项目、中科院国际合作、交叉团队、青促会等的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171108529108817694.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4a4278be-71e4-47d4-87a7-0fc2df981d1b.jpg" uploadpic=" W020171108529108817694.png" / /p p style=" text-align: center " 国家纳米中心“活体自组装”生物纳米材料研究工作获进展 /p
  • 中国科大在生物质制备纳米结构材料方面取得系列进展
    近年来,中国科大合肥微尺度物质科学国家实验室俞书宏课题组在低温水热碳化生物质制备功能性碳基材料方面的研究取得显著进展,其中有关生物质水热碳化制备高活性富碳纳米功能材料的一系列工作引起国际关注。最近,该课题组应邀撰写观点透视综述论文,并以封面文章形式发表在Dalton Trans上,英国皇家化学会网站也进行了报道。 多功能碳基材料由于其在催化剂载体、固碳、吸附剂、储气、电极、碳燃料电池和药物传递等领域潜在的重要应用,使其合成技术研究成为一个热门课题。目前,该领域研究的重点已经从化石燃料转变到以生物质作为原料合成碳基材料,同时也有望为合理利用过剩的生物质,为储存碳能源和避免直接焚烧对环境的严重污染等提供新的解决方案。 该课题组研究发现,由非晶态纤维素组成软质的植物组织主要产生球状碳纳米颗粒,它们的尺寸很小,孔隙主要是间隙孔隙;由固定结构的晶态纤维素组成的硬质植物组织,能够保留外部形状以及大范围内宏观和微观结构特征,在纳米尺度上产生了显著的结构变化,形成介孔网状结构。同时,利用碳水化合物能够控制合成出具有特殊形态和结构的碳基纳米材料、多孔碳材料及复合材料,诸如纳米球、纳米纤维、亚纳米线、亚纳米管、纳米电缆和核壳结构等,而且富含能显著改善其亲水性和化学活性的官能团。所制备的碳基材料和复合材料具有优异的固碳效率、催化性质和电学性质,在固碳,色谱分离、催化剂载体和电极材料、气相选择吸附剂、药物传递等领域具有潜在的应用前景。 目前,该课题组正着力研究水热碳化过程机理和进一步提高碳化效率,为高效制备一系列多功能化、高活性碳基纳米结构材料及实际应用打下基础。
  • 流式细胞仪大显身手 高通量纳米材料生物毒性检测技术取得进展
    随着纳米技术的快速发展,越来越多的新型纳米材料不断出现并迅速应用在实际生活中。因此,发展快速、高通量的生物检测手段对纳米毒性的快速安全评估极为重要。流式细胞术是毒理学检测的常用技术,具有高通量、快速、准确的特点。但由于团聚的纳米材料在尺寸上同细菌相近,严重干扰检测结果,使得流式细胞术难以运用于纳米材料对细菌的毒性评估。  近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴李君、陈少鹏课题组建立了基于PI-GFP双荧光标记的纳米材料细菌毒性检测方法:GFP绿色荧光表征细菌的生长,碘化丙啶PI红色荧光标记区分死、活细胞,在流式细胞仪上准确区分细菌与纳米材料,通过绿色荧光和红色荧光细胞的相对比例,反应纳米材料的毒性。对比单荧光标记,双荧光标记可以更准确地检测纳米材料的毒性。运用上述建立的双荧光报告系统,他们研究了水环境中金属离子及表面活性剂对纳米银毒性的影响,揭示了不同环境因子对纳米银细菌毒性的影响和机制。结果表明,双荧光报告检测系统可以较准确地反应纳米材料的毒性,适用于环境纳米材料生物学效应的评估。该研究成果已被国际毒理学期刊Cheomsphere (DOI: 10.1016/j.chemosphere.2016.04.074)接收。  该研究受到国家重大研究计划、中科院先导专项B、国家自然科学基金以及研究院院长基金资助。  双荧光报告基因系统检测纳米银生物毒性
  • 上海纳米生物材料与再生医学工程技术研究中心落户东华大学
    5月9日,上海纳米生物材料与再生医学工程技术研究中心启动会暨校企合作对接会在东华大学松江校区举行。东华大学副校长卿凤翎、上海市科委研发基地建设与管理处处长仲东亭出席活动;人事处、科研院、化工生物学院相关领导,以及其他校内外嘉宾和代表共100余人出席开幕式。开幕式由东华大学科学技术研究院院长丁彬教授主持。东华大学副校长卿凤翎 致辞卿凤翎在开幕式上致欢迎辞,他代表学校向与会嘉宾表示欢迎,并介绍了学校基本情况和生物医学工程相关学科的良好发展势头。他希望通过校企交流与合作,促进我校生物材料与再生医学研究及其成果转化更上层楼。随后,卿凤翎与仲东亭共同为“上海纳米生物材料与再生医学工程技术研究中心”揭牌,宣示工程技术研究中心正式启动。卿凤翎还为工程技术研究中心校外共建企业颁授共建牌匾,为中心负责人及技术委员会成员颁发聘书。中国科学院院士朱美芳担任中心技术委员会主任,化工生物学院莫秀梅教授担任中心主任。工程研究中心揭牌仪式东华大学生物材料与再生医学相关学科特色鲜明,发展势头强劲,在国内外享有较高声誉。由莫秀梅教授领衔的申报团队得到评委专家的高度评价,“上海纳米生物材料与再生医学工程技术研究中心”最终落户东华大学松江校区。该工程技术研究中心将主要依托东华大学化学化工与生物工程学院,同时吸纳整合包括材料科学与工程学院和纺织学院在内的相关研究力量,并联合生纳科技(上海)有限公司、上海贝奥路生物材料有限公司、诺一迈尔(苏州)生命科技有限公司、上海翼和应用生物技术有限公司等校外企业共同建设。工程中心将聚焦纳米生物材料与再生医学,依托学科优势,通过资源整合、校企合作,推进生物、材料、医药工程相关研究成果工程化和产业化,促进上海市生物医药产业高质量发展。卿凤翎为工程技术中心主任颁发聘书会上,莫秀梅介绍了工程技术中心的筹备及建设情况。化学化工与生物工程学院院长武培怡介绍了学院生物相关学科的发展情况。合作企业代表先后致辞,表达了加深校企合作、促进生物材料与再生医学相关科技成果转化的迫切愿望。仲东亭在开幕式上作总结发言。他代表上海市科委对中心的成立表示祝贺,肯定了东华大学在生物材料和再生医学领域所取得的成就,勉励中心发展成为校企合作的典范,促进上海生物材料和再生医学研究的进步及其成果的产业转化。启动仪式结束后,朱美芳院士在线上和史向阳教授共同主持工程技术中心技术委员会的首届工作研讨会,委员们就中心运营和发展建言献策。下午,工程技术中心举行了首次学术交流活动。学者报告了各自课题组的最新研究进展,与会代表就感兴趣的学术问题进行了热烈讨论。大家表示要把握和珍惜校企合作发展机遇,勇于担当时代赋予的责任,合力打通产、学、研经络,形成产学研相互促进的良性循环,为国家和社会的发展贡献科技正能量。
  • 12.01日直播 5位专家在线共话生物纳米材料表征与检测技术
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8cdbadc6-6fbd-497d-8a17-40496580cd1d.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-indent: 2em text-align: justify " 生物材料与细胞的相互作用是组织工程研究领域中的重要课题,其中生物材料表面的微观结构对细胞的生物调控起重要作用。纳米材料由于其尺寸在纳米量级、有大量的界面或自由表面、各纳米单元之间存在着或强或弱的相互作用而具有一些独特的效应,表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能的根本途径。 /p p style=" text-indent: 2em text-align: justify " 为促进生物纳米材料领域的科技创新和产业发展,仪器信息网将于 span 2020 /span 年 span 12 /span 月 span 01 /span 日举办 span “ /span 生物纳米材料表征与检测技术 span ” /span 主题网络研讨会,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。 /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong 【生物纳米材料交流群】 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 159px height: 213px " src=" https://img1.17img.cn/17img/images/202011/uepic/82aa6b9d-e452-4d11-bd42-6eed97311697.jpg" title=" 纳米材料表征会议微信群.jpg" alt=" 纳米材料表征会议微信群.jpg" width=" 159" height=" 213" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 宋体 color: rgb(192, 0, 0) " 【报告嘉宾一览】 /span /strong /span /p p style=" text-align:center font-variant-ligatures: normal font-variant-caps: normal orphans: 2 widows: 2 -webkit-text-stroke-width: 0px word-spacing: 0px" span style=" font-size:14px color:#444444" (按报告时间顺序) /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a49a88b0-2e0f-4ad7-9183-fc1e3018232d.jpg" title=" 专家信息.jpg" alt=" 专家信息.jpg" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 黑体 " 【 /span 大会报告题目及日程安排】 /strong /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse" align=" center" tbody tr class=" firstRow" td width=" 480" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 12 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 月 /span /strong strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 01 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 日 /span /strong strong /strong strong span style=" font-size: 12px font-family:宋体 color:#444444" 生物纳米材料表征与检测技术 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 时间 /span /strong /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告人 /span /strong /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告题目 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" p span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 13:30-14:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 周晶 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 首都师范大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 稀土纳米探针诊断性能的可控调控及其检测研究 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:00-14:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 王鑫 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 布鲁克 span ( /span 北京 span ) /span 科技有限公司 & nbsp 应用科学家 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 原子力显微镜技术进展与在生物学检测中的应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:30-15:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 李春霞 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 山东大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 多功能纳米诊疗平台的构建及生物应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:00-15:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 侯毅 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 北京化工大学 副教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 纳米肿瘤分子影像探针构建与应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:30-16:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 袁荃 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 湖南大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 长余辉发光纳米材料控制合成及生物医学应用 /span /p /td /tr /tbody /table p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7e51a59a-b457-496e-ba14-e33aee9c244f.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-align: center " span style=" text-align: center " 报名地址 /span /p p style=" text-align: center " span a href=" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/ /a /span /p
  • 纳米材料将成环境“杀手”?
    PM2.5颗粒对人体的危害已被公众熟知,那么只有PM2.5千分之一大小的纳米颗粒对人体是否有危害呢?答案是肯定的。前日,来蓉参加中国化学会第28届年会的不少科学家发表的研究成果显示,纳米颗粒对生物细胞具有相当“毒性”,纳米材料已对环境构成潜在威胁,或成人类未来面临的重要环境“杀手”。   纳米材料或成环境杀手   纳米材料已在化妆品、衣服等日常生活物品中出现,纳米技术也被预测为可能超越网络和基因技术而成为21世纪最有前途的技术。那么,纳米材料究竟会有哪些危害呢?   中国化学会第28届学术年会环境化学分会上,北京航空航天大学副教授范文宏,江苏大学杜道林、薛永来,以及中科院生态环境研究中心的专家,都报告了有关纳米材料的毒性研究成果。   江苏大学杜道林、薛永来做了关于“纳米二氧化钛通过ROS诱导的氧化损伤途径抑制水稻生长”的研究。薛永来前日在现场报告中表示,他们的研究表明,纳米二氧化钛除了对动物细胞有损伤外,对植物细胞也同样存在损害。   中科院生态环境研究中心有关专家在有关“纳米材料的潜在环境与健康风险”研究中也发现,纳米材料对生物细胞具有一定的危害作用,对细胞的凋亡、功能损伤甚至死亡都存在威胁。   纳米污染研究是未雨绸缪   北京航空航天大学副教授范文宏做了关于“不同表面改性二氧化钛与铜在大型水蚤体内的生物积累和生物毒性”的研究。前日,范文宏接受成都商报记者采访时表示,她的研究显示,即使本身毒性不显著的纳米材料,也可以使重金属在生物体内的毒性大大增强。   在范文宏的实验中,她把铜对大型水蚤的生物毒性,以及纳米二氧化钛和铜同时存在时对大型水蚤的生物毒性分别做了研究。结果发现,纳米二氧化钛和铜同时存在时,对大型水蚤的毒性有明显增强,纳米二氧化钛确实增加了大型水蚤对铜的毒性效应。   范文宏表示,纳米材料虽然现在已大量使用,但是还没有产生明显环境污染,估计短期也看不到其污染危害。目前对其环境影响的研究,“是前瞻性的研究,算是未雨绸缪。”   虽然自己做的是纳米材料在水环境中对生物的毒性研究,但范文宏认为,纳米材料对空气的潜在危害可能要大于对水环境的危害。不过,公众不必就此拒绝穿纳米材料的衣服,因为纳米材料一般要变成粉末才会显现出其危害性。就目前的纳米材料使用情况看,大规模的纳米环境污染短期内还谈不上,公众不必因学界的研究而产生恐慌。   纳米材料:纳米是长度计量单位,1纳米等于十亿分之一米。纳米技术是指研究结构尺寸在1到100纳米之间的材料的技术。用纳米技术制造的材料,通常会有许多优越的性能。纳米技术已广泛应用在电子、纺织、建材、化工、石油、汽车、军事装备等领域。
  • 2016年能量纳米技术和能量纳米材料国际会议
    2016年6月13-15日,巴黎,法国 2016年能量纳米技术和能量纳米材料国际会议将于2016年6月13-15号在法国巴黎召开。所有被会议接受的文章将作为会议论文集发表在Key Engineering Materials (ISSN: ISSN: 1662-9795, Trans Tech Publications)上,并提交EI核心,Scopus检索。 大会召开时间为3天,6月13日为大会注册日,6月14日为会议召开日,6月15日暂定为巴黎一日游。此次大会将为能量纳米技术相关专业的科研人事提供面对面的交流与合作讨论。我们热忱欢迎从事相关技术研究的专家、学者和专业技术人员向ICNNE2016踊跃投稿,并积极参加大会。 大会委员会 国际咨询委员会 Prof. Peter Lund, 阿尔托大学理工学院, 芬兰Prof. Jordi Llorca, 纳米工程研究中心, 西班牙Prof. Sergej NEPIJKO, 美因茨大学, 德国Prof. Mohamed HABOUSSI, 巴黎大学, 法国 大会主席 Assoc. Prof. Salma BARBOURA, 巴黎大学, 法国Prof. Dr. Jean-Jacques DELAUNAY, 东京大学,日本 程序委员会主席 Prof. Sofoklis Makridis, 马其顿西部大学, 希腊Prof. ZITOUNE Redouane, 图卢兹大学, 法国Prof. Zdeněk Chobola, 布尔诺理工大学, 捷克共和国Prof. Witold Daniel Dobrowolski, 波兰科学院, 波兰 投稿主题 纳米技术与材料科学材料科学与工程:纳米技术在纳米科学和纳米技术先进的应用程序碳纳米管与生物分子纳米材料纳电子学纳米系统纳米力学纳米操作纳米磁学纳米光学和纳米光子学纳米线纳米流体力学纳米生物纳米科学与技术分子电子学 请将您的论文于2016年3月1日之前投至会议邮箱:icnne@saise.org更多疑问,请咨询会议负责人:聂老师
  • Nature Protocols揭示纳米材料生物冠的秘密:从结构解析到应用前景!
    【科学背景】随着纳米技术的快速发展,工程纳米材料(ENMs)引起了广泛关注。ENMs是具有独特物理和化学特性的材料,它们与其大块材料相比,表现出显著不同的性能。例如,ENMs在靶向药物递送领域具有巨大的应用潜力,通过设计特定的表面化学特性,ENMs可以实现高效的药物靶向和递送。这些特性同样适用于纳米农药的精准递送,旨在减少污染和温室气体排放。然而,要将这些技术从实验室应用到实际的临床或农业领域,仍然面临着诸多挑战。其中一个主要问题是ENMs在进入生物或环境系统后,容易发生生物转化,形成一层由生物分子组成的生物冠。生物冠的形成不仅改变了ENMs的表面特性,还影响了其在生物和环境中的行为和命运。生物冠包括蛋白质(蛋白冠)和其他生物分子如核酸和代谢物。尽管目前大多数研究集中在蛋白冠上,因为蛋白质比其他生物分子更容易监测和表征,并在受体结合和信号传递中发挥关键作用,但代谢物在信号传递中同样扮演着重要角色。为了解决这一问题,英国伯明翰大学Zhiling Guo, 国家杰出青年科学基金获得者,中国科学院纳米生物效应与安全性重点实验室副主任陈春英教授、 中国科学技术大学环境科学与工程系Iseult Lynch团队在“Nature Protocols”期刊上发表了题为“Analysis of nanomaterial biocoronas in biological and environmental surroundings”的最新论文。他们提出了一套详细的工作流程,用于分离和生物物理表征生物分子冠成分(蛋白质和代谢物)。这套流程通过质谱、先进的结构技术(如透射电子冷冻显微镜和同步辐射X射线吸收近边结构)以及分子动力学模拟来模型化ENM-生物冠相互作用。通过规范不同实验室数据的获取,这一流程提高了数据的可重复性,并有助于预测较少表征的ENM获得的生物冠。本研究解决了ENMs生物冠形成、组成和演变的机制性问题。研究人员通过简化制备、分离、鉴定和表征生物冠的程序,使不同实验室的研究结果更加可比。具体而言,研究团队描述了如何可重复地制备和表征生物分子包裹的ENMs,特别指出了需要针对不同类型ENMs优化的步骤。研究使用常规方法(如透射电子显微镜、动态光散射、电泳–质谱和液相色谱–质谱)以及先进技术(如透射电子冷冻显微镜、同步辐射X射线吸收近边结构和圆二色性),来表征生物冠的结构和组成。同时,研究还讨论了如何使用分子动力学模拟来研究和预测ENMs与生物分子之间的相互作用及其导致的生物冠组成。【科学亮点】1. 实验首次通过综合使用质谱、透射电子冷冻显微镜、同步辐射X射线吸收近边结构以及分子动力学模拟,详细描述了生物分子涂层(生物冠)的制备与表征方法。实验针对工程纳米材料(ENMs)的生物冠层进行了全面的分析,涵盖了蛋白质和代谢物的分离及其生物物理特性。这些方法能够提供关于生物冠层的结构、组成和动态的深刻洞察。2. 实验通过优化的工作流程,提高了数据获取的规范性和重复性,使得不同实验室之间的数据可以进行有效比较,并可以预测其他未表征ENMs的生物冠。研究设计了一套标准化的流程来简化生物冠的制备、分离、鉴定和表征。通过这些技术和方法,能够更准确地理解ENMs与生物分子之间的相互作用及其对生物冠组成的影响。这一流程不仅提升了研究的可重复性,还为生物医学和农业应用提供了新的理论依据,并有助于更好地评估ENMs在环境中的影响。【科学图文】图1:生物冠确定协议的五个主要部分概述。【科学结论】本文通过系统化地研究生物冠的制备和表征,为工程纳米材料(ENMs)的生物学和环境研究提供了重要的科学价值。首先,本文揭示了生物冠在ENMs与生物体或环境系统相互作用中的核心作用,强调了生物冠对ENMs生物学和环境行为的决定性影响。这一发现不仅拓展了对ENMs表面生物分子层的理解,也为精准控制ENMs的生物学功能和环境行为提供了理论基础。其次,本文介绍了通过质谱、透射电子冷冻显微镜、同步辐射X射线吸收近边结构等先进技术以及分子动力学模拟来表征生物冠的方法,展示了如何结合多种技术手段深入研究生物冠的结构和组成。这种综合方法的应用,不仅提高了数据的准确性和重复性,也为其他研究提供了可复制的实验流程。这种方法的标准化,有助于不同实验室之间的结果比较,促进了ENMs研究的全球合作和数据共享。此外,本文还指出了生物冠的制备和分析步骤在提高数据质量和可比性方面的关键作用。这为纳米材料在生物医学和农业领域的实际应用奠定了坚实的基础,使研究人员能够更准确地预测和评估ENMs的生物学和环境效应。总之,本文的研究为纳米材料领域的科学家提供了新的视角和工具,推动了ENMs应用的理论和实践进展,具有广泛的学术和实际意义。原文详情:Zhang, P., Cao, M., Chetwynd, A.J. et al. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01009-8
  • 【回放视频】生物纳米材料表征与检测技术会议精彩合集
    p style=" text-align: justify text-indent: 2em " span 2020 /span 年 span 12 /span 月 span 01 /span 日举办 span “ /span 生物纳米材料表征与检测技术 span ” /span 主题网络研讨会圆满落下帷幕,在大家回看的呼声下,仪器信息网特别安排了视频回放,希望大家可以在会后加深学习。 span style=" color:#444444" 以下会议日程中, /span strong span style=" font-family:等线 color:#0070C0" 可回放视频已经标蓝色,并加超链 /span /strong span style=" color:#444444" ,各位可以点击超链直接观看回放。 /span span style=" text-align: center " & nbsp /span /p p style=" text-align: center text-indent: 0em " span style=" text-align: center " 生物纳米材料交流群 /span /p p style=" text-indent: 0em " span style=" text-align: center " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 155px height: 207px " src=" https://img1.17img.cn/17img/images/202012/uepic/30860e8d-0b13-4d34-a32c-ad51de609999.jpg" title=" 微信图片_20201204100113.jpg" alt=" 微信图片_20201204100113.jpg" width=" 155" height=" 207" / /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse" align=" center" tbody tr class=" firstRow" td width=" 480" colspan=" 3" style=" background: rgb(0, 112, 192) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:& #39 Arial& #39 ,sans-serif color:white" 12 /span /strong strong span style=" font-family:宋体 color:white" 月 /span /strong strong span style=" font-family:& #39 Arial& #39 ,sans-serif color:white" 01 /span /strong strong span style=" font-family:宋体 color:white" 日 /span /strong strong /strong strong span style=" font-family:宋体 color:white" 生物纳米材料表征与检测技术 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 时间 /span /strong /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告人 /span /strong /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告题目 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 13:30-14:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 周晶 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 首都师范大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_114093.html" target=" _blank" textvalue=" 查看回放:稀土纳米探针诊断性能的可控调控及其检测研究" strong span style=" text-decoration:underline " span style=" font-size:12px font-family:宋体 color:#0070C0" 查看回放:稀土纳米探针诊断性能的可控调控及其检测研究 /span /span /strong /a /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:00-14:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 王鑫 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 布鲁克 span ( /span 北京 span ) /span 科技有限公司 & nbsp & nbsp /span /p p span style=" font-size:12px font-family:宋体 color:#444444" 应用科学家 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_114092.html" target=" _blank" strong span style=" text-decoration:underline " span style=" font-size:12px font-family:宋体 color:#0070C0" 查看回放:原子力显微镜技术进展与在生物学检测中的应用 /span /span /strong /a strong span style=" text-decoration:underline " /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:30-15:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 李春霞 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 山东大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体" 多功能纳米诊疗平台的构建及生物应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:00-15:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 侯毅 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 北京化工大学 副教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_114095.html" target=" _blank" strong span style=" text-decoration:underline " span style=" font-size:12px font-family:宋体 color:#0070C0" 查看回放:纳米肿瘤分子影像探针构建与应用 /span /span /strong /a strong span style=" text-decoration:underline " /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:30-16:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 袁荃 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 湖南大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_114094.html" target=" _blank" strong span style=" text-decoration:underline " span style=" font-size:12px font-family:宋体 color:#0070C0" 查看回放:长余辉发光纳米材料控制合成及生物医学应用 /span /span /strong /a strong span style=" text-decoration:underline " /span /strong /p /td /tr /tbody /table p style=" text-indent:32px" span style=" font-size:16px font-family:& #39 微软雅黑& #39 ,sans-serif color:#0070C0" 欢迎各位专家老师自荐或者推荐相关研究报告人(生物纳米材料设计合成等),并加入网络仪器评审专家团,抢先查看 span / /span 参与评审各厂家最新产品技术。 /span /p p style=" text-indent:32px" strong style=" text-indent: 2em " span style=" font-family: 微软雅黑, sans-serif color: rgb(68, 68, 68) " 咨询联系方式:liuld@instrument.com.cn /span /strong /p p style=" margin-bottom: 16px text-align: center text-indent: 0em " span style=" font-size:16px font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" 更多生命科学相关会议 敬请扫码关注【 span 3i /span 生仪社】 /span /p p style=" margin-bottom: 16px text-align: center " span style=" font-size:16px font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" /span img style=" max-width: 100% max-height: 100% width: 140px height: 140px " src=" https://img1.17img.cn/17img/images/202012/uepic/b75420a6-9810-40f7-bab8-7e1acf0c1f9b.jpg" title=" 3i生仪社 二维码.jpg" alt=" 3i生仪社 二维码.jpg" width=" 140" height=" 140" / /p
  • 利用光谱技术分析纳米材料环境影响取得进展
    2020年4月1日,中国科学院合肥物质科学研究院官网发布“纳米材料环境转化过程对生态毒性影响及机制研究取得进展”。近期,中科院合肥研究院技术生物所黄青课题组以水生生态系统初级生产者藻类为受试对象,应用光谱技术对纳米氧化锌在含磷水体中的转化过程进行定性和定量分析,阐明了环境物质转化过程对小球藻毒性效应影响及其机制。相关成果已被英国皇家化学会期刊Environmental Science: nano接收发表。 随着纳米科技迅速发展,纳米材料对环境和生物潜在影响日益受到关注。纳米毒理学研究表明,环境过程对纳米材料毒性效应影响显著,使其毒性区别于原始状态纳米材料,但环境转化过程对毒性效应影响规律尚待阐明,这对纳米材料环境安全性评价非常重要。 研究人员利用拉曼光谱和XRD等光谱手段,发现随水体中磷含量的增加,纳米氧化锌先部分转变成晶体状磷酸锌,再转变成无定型磷酸锌。毒性效应检测结果表明,原始状态纳米氧化锌的毒性主要源自其释放的锌离子;在含磷水体中,纳米氧化锌发生物理化学转变,生成了低毒性的磷酸锌,使其毒性显著区别与原始状态的纳米氧化锌。此外,结合光合作用相关基因表达分析,研究人员揭示了纳米氧化锌物态变化对藻类光合作用产生影响,是纳米毒性效应差异的重要原因。 研究结果为利用光谱技术分析纳米材料环境转化的理化过程,阐明环境转化过程对毒性效应的影响及机制,以及合理评价纳米材料在真实环境水体中生态安全性提供了理论和实验基础。  该研究受到国家重大研究计划、国家自然科学基金以及安徽省自然科学基金等课题的资助。光谱分析技术由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.光谱技术根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。现代光谱分析仪器有原子发射光谱仪、原子吸收光谱仪(原子吸收分光光度计)、红外光谱仪等。
  • ISO发布纳米材料分类新标准
    近日,国际标准化组织(ISO)发布一份新的技术报告:《纳米材料分类的新标准——ISO/TR 11360:2010》。该标准为纳米材料的分类提供了更综合、更国际化的方法。   ISO表示,从新的医疗设备到最新的工具以及消费产品,创新的纳米技术推动着时代的发展。通过对纳米材料的理解和对逻辑分类的认识,让这项技术发展地更远、更快、更好。纳米材料的应用十分广泛,从电脑记忆存储到防晒霜都含有纳米技术。目前,各种物理、化学、力学、光学、生物学以及不同的内部/外部结构中都有纳米材料的存在。   据悉,ISO/TR 11360标准引入了一种叫做“纳米树”的系统。将纳米技术的变成逻辑概念,把现有的纳米材料看作纳米领域这棵大树上的一些分支,而纳米技术中最基础和最普遍的元素看作纳米树的主要枝干。各种纳米材料在结构、化学性质和其他方面都有所区别。   新的ISO/TR 11360标准的涵盖了科学、工程学、行业和政府等各方面,将会大大促进行业与消费者之间,以及政府与监管机构的交流和沟通。
  • 纳米材料绿色印刷技术走向市场
    无须感光成像、不会污染环境、印刷流程缩短……由我国自主研发的纳米材料绿色制版印刷技术,日前在中科院怀柔科教产业园纳米材料绿色打印印刷技术产业化基地开始运用于国家正式出版物印刷,且运行情况良好,标志着该技术从实验室走向市场,北京怀柔成为全球纳米材料绿色印刷原创地。   “纳米材料绿色制版技术摒弃了传统感光成像的思路,通过开发新型纳米转印材料,直接打印制版,实现真正的印刷制版数字化。”纳米材料绿色制版技术项目负责人、中科院化学所新材料实验室主任宋延林介绍说,非感光、无污染、低成本是纳米材料绿色制版技术的三大特点。   据了解,这项绿色节能技术成为取代激光照排和计算机直接制版技术的前沿印刷制版技术。使用纳米绿色版材,理论上是传统版材涂布成本的20% 从应用效果看,印刷品成品锐利度更高,文字更清晰,色彩更丰富。   据悉,北京纳米材料绿色打印技术产业化基地包括中科院化学所两项重大产业化项目,即基于纳米材料新一代制版技术项目和纳米材料绿色打印印刷线路板项目,未来产品包括纳米材料印刷线路板、绿色打印制版设备、打印介质及相关软件等。   今年4月,致力于纳米科技在能源、电子、环境、生物医药等四大领域应用的北京纳米科技产业园揭牌,并以下游应用带动上游纳米材料、纳米加工、纳米器件等产业链各环节实现快速聚集发展,预计可实现产值120亿元。产业园完全建成后,将成为国内重要的纳米科技研发生产基地。
  • 新型石墨烯纳米抗菌材料研究获进展
    近日,美国化学会ACS Nano杂志报道了中国科学院上海应用物理研究所物理生物学实验室在新型石墨烯纳米抗菌材料方面的研究工作(Graphene-Based Antibacterial Paper. Wenbing Hu, Cheng Peng, Weijie Luo, Min Lv, Xiaoming Li, Di Li, Qing Huang and Chunhai Fan,ACS Nano, 2010, 4 (7), pp 4317–4323)。该工作发表以后,被Nanowerk、Qmed、Sciencedaily等多家媒体报道及转载,其中美国科学促进协会主办的Eurekalert!网站报道中指出,这可能是石墨烯重要的环境和临床应用。   研制和利用抗菌材料来抑制和杀灭有害细菌是提高人类健康水平的一个重要方面。传统的抗菌材料,如抗生素、季铵盐等不但会导致微生物的抗性,还会造成严重的环境污染。纳米技术的发展,为解决该问题提供了一条新的思路。   石墨烯是由单层碳原子紧密排列而成的二维晶体,其优异的电子传递、较高的机械强度特性使石墨烯成为纳米电子器件、太阳能电池、生物传感器等方面应用的新贵。上海应用物理所物理生物学实验室博士研究生胡文兵等在樊春海和黄庆研究员的指导下,探索了氧化石墨烯的抗菌特性,发现氧化石墨烯纳米悬液在与大肠杆菌孵育2小时后,对其抑制率超过90%。进一步的实验结果表明,氧化石墨烯的抗菌性源于其对大肠杆菌细胞膜的破坏。更重要的是,氧化石墨烯不仅是一种新型的优良抗菌材料,而且对哺乳动物细胞产生的细胞毒性很小。此外,通过抽滤法能够将氧化石墨烯制备成纸片样的宏观石墨烯膜,也能有效地抑制大肠杆菌的生长。   由于氧化石墨烯的制备简便、成本低廉,这种新型的碳纳米材料有望在环境和临床领域得到广泛的应用。
  • 纳米服装,真的有纳米材料吗?
    越来越多的高科技已经进入到我们日常生活之中,比如纳米服装。将纳米级的微粒覆盖在纤维表面或镶嵌在纤维甚至分子间隙间,利用纳米微粒表面积大、表面能高等特点,在物质表面形成一个均匀的、厚度极薄的(肉眼观察不到、手摸感觉不到)、间隙极小(小于100nm)的‘气雾状’保护层。使得常温下尺寸远远大于100nm的水滴、油滴、尘埃、污渍甚至细菌都难以进入到布料内部而只能停留在布料表面,从而产生了防水、防油、防紫外线等特殊效果。但是这些衣物经过洗涤,直到最终被丢弃,其中的纳米颗粒又会对环境造成负担。如何测定和评价纳米科技纺织品的纳米颗粒数量和尺寸分布,是纺织行业面对的新课题。 二氧化钛(TiO2)纳米颗粒具有紫外线防护功能和抗菌特性,并且能够提高织物的亲水性并减少异味,因此被越来越多的应用到纺织行业。本应用报告使用单颗粒电感耦合等离子体质谱法(SP-ICP-MS),研究了几种商业纺织产品中TiO2纳米颗粒的释放情况。样品用于评估的五种纺织样品均从当地商店购买,如表1所述。40%TiO2纳米颗粒(30-50 nm)悬浮液购自美国研究纳米材料公司(US Research Nanomaterials™ ,位于美国德克萨斯州休斯顿市)。为了促使纳米颗粒分散,将Triton X-100(购自西格玛奥德里奇公司Sigma- Aldrich™ ,位于美国密苏里州圣路易斯)添加到所有溶液中,最终浓度为0.0001%。实验测量总钛时,将0.25g的每种纺织样品切成小片,放入5mL浓硝酸(65%)和1mL的浓氢氟酸(49%)中,放入微波炉中消解。消解后,每个样品添加6mL 10%H3BrO3(v/v),放入微波炉中与HF络合15分钟。然后,用去离子水将样品定容至50mL,并采用常规ICP-MS进行分析。检查TiO2纳米颗粒从织物中的释放情况时,每个样品取400cm2,浸入200mL去离子水中。对容器超声处理15分钟,然后将其放在摇床上(每分钟150次)24小时。对容器进行第二次超声处理,然后取出等分液体进行分析。向空白去离子(DI)水中掺入2.7μg/L TiO2纳米颗粒,作为对照品。如有必要,用去离子水进一步稀释样品,并在两次稀释之间进行超声处理,以最大程度地减少纳米颗粒团聚。所有分析均在珀金埃尔默(PerkinElmer)的NexION® 电感耦合等离子体质谱仪上进行,该质谱仪上运行Syngistix™ 以用于ICP-MS软件。进行纳米颗粒分析时,使用Syngisitix纳米应用模块进行数据收集和处理。表2示出了进行TiO2纳米颗粒分析的NexION工作条件。实验结果图1示出了TiO2纳米颗粒(对照品)和三个样品的信号。这些图表清晰地显示了样品之间的差异:虽然TiO2纳米颗粒对照品显示出可重复的、均匀的粒度分布,但样品的纳米颗粒粒度分布更大,高达200nm。此外,同一类型的样品之间也存在差异,如样品A和D所示。样品B和样品C不含大量TiO2纳米颗粒。下面的表3和表4,分别为A~E样品中的总Ti含量和TiO2纳米颗粒的尺寸和浓度。婴儿连体衣A和B形成了有意思的对比:A含有的基本全是TiO2纳米颗粒,而B含有的基本都是其他形态的Ti离子。结论本研究表明,SP-ICP-MS能够检测和测定纺织品中释放的TiO2纳米颗粒。使用SP-ICP-MS可以快速分析大量颗粒,能够提供单个颗粒的信息,克服了常规纳米颗粒分析技术的局限性。本研究结果表明,各个纺织产品都含有粒度和浓度不等的TiO2纳米颗粒。了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默单颗粒电感耦合等离子体质谱法(SPICP-MS)表征织物中TiO2纳米颗粒的释放相关资料。
  • 我国科学家制出绝缘纳米新材料
    合肥5月25日电近日,中国科学技术大学俞书宏院士团队研制出一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,成为今后深入探索的主要障碍。在极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究中的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 张新荣教授评述:基于碳纳米材料的PM2.5多组分生物组织质谱成像研究进展
    近期,中科院化学所聂宗秀研究员发表在Angew Chem Int Ed上的“ Mass Spectrometry Imaging Reveals In Situ Behaviors of Multiple Components in Aerosol Particles”一文被选为“hot paper”,下面为清华大学张新荣教授为该篇文章撰写的评述。张新荣:清华大学教授。一直从事分析测试的方法与技术研究,最近的研究聚焦在单细胞质谱分析。研究成果曾获教育部自然科学一等奖、二等奖、以及国家科技进步二等奖等。英国皇家化学会会士,美国化学会Analytical Chemistry执行主编、Luminescence (Wiley)主编、国内外十余种学术刊物编委,担任中国分析测试协会副理事长、中国仪器仪表学会分析仪器学会副理事长、北京质谱学会理事长等职务。质谱技术具有快速、高灵敏度、高通量和多组分同时检测等优点,已被广泛应用于生物医药领域中蛋白质、糖类、代谢小分子等的检测。纳米材料由于其特殊的物理化学特性,广泛应用到包括疾病诊断、癌症治疗、生物传感、能量储存等在内的诸多领域,由此产生的潜在生物暴露影响和生物安全性的担忧和讨论始终存在。开发实用有效的用于研究纳米材料的亚器管分布及其与生物体之间相互作用的方法至关重要。质谱成像技术是近年来快速发展的一类用于研究生物组织中分子的分布和含量变化的一种有效的技术手段,MALDI-MS是其中较为典型的技术。但MALDI成像通常需要基质辅助解吸电离,适用于大分子质量蛋白的检测。2015年,中国科学院化学研究所聂宗秀研究组发展了一种免标记的纳米材料表面分子成像方法,将质量信号窗口转移到了小分子区域,研究了碳纳米材料在生物亚器官水平的分布的质谱成像。2018年,该研究组进一步利用纳米材料的基质效应,即可有效吸收紫外光并促进小分子的解吸电离,同时获得了纳米载体及负载药物在组织中分布的质谱成像,并实现了药物原位释放的定量分析。大气颗粒物,特别PM2.5的环境污染以及引起的健康效应是目前公众关注的问题。生物质或化石燃料的不完全燃烧产生的烟尘、黑碳和柴油发动机颗粒等碳质气溶胶是PM2.5等复杂大气颗粒物的重要组成部分。这些大气颗粒物通常由无机碳(EC)内核和多环芳烃的有机碳(OC)包覆而成,追踪真实的气溶胶粒子多种成分的体内行为至关重要。然而,由于其复杂性,现有方法难以同时实现质谱成像。最近,该研究组在前期工作的基础上实现了碳质气溶胶的多组分质谱成像研究,获得了碳质气溶胶中EC和OC的分布差异。定量结果显示,OC在肺实质中释放更多,且能够比EC更快地被肺部清除,原位肺癌模型的结果显示OC比EC能够更加深入地进入到癌组织区域。此外,他们还对肺外器官中EC和OC的特异分布进行了定量分析,并在原位肝癌模型中也观察到了与肺部相似的结果。可以预见,基于这一技术原理,我们可利用质谱成像对更多纳米体系的组织分布进行研究,从而解答纳米颗粒在体内行为与相互作用等重大科学问题。
  • 纳米材料,激发你的好奇心
    激发好奇心纳米材料纳米材料是近几十年来最伟大的技术成就所用的基石。它们为医药、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此其性质和相互作用成为研究的热点。安东帕是全球研究人员的可靠合作伙伴:世界排名前100位的大学中有96所,每天至少使用我们的一种仪器。安东帕独特而灵活的纳米材料研究仪器组合为客户实验室提供了前瞻性的解决方案,今天购买的仪器,也为未来提供了无数的可能性。纳米颗粒01纳米颗粒是一种用于许多不同领域的超细单元,从生物医学、制药到储能技术。由于它们的尺寸,很难进行跟踪和测量,但了解它们的特性是非常必要的,这样就可以设计它们来实现它们的目的。不同的测量技术可用于制备和表征纳米粒子,如微波合成、原子力显微镜、动态光散射、SAXS、激光衍射等。左右滑动查看更多022D材质单层材料是非常广泛应用的研究重点,包括纳米尺寸的应变计,用于人体植入的纳米晶TiO2涂层,以及原子台阶对生长现象的影响,或例如,研究阳极或阴极组件的2D材料结晶度,以便在电池中更快更有效地进行能量转移。安东帕公司的各种测量解决方案和不同技术在二维材料的表征中发挥着重要作用,如可进行温度控制的掠入射小角X射线散射(GISAXS)、原子力显微镜(AFM)、表面zeta电位或真密度仪。左右滑动查看更多复合材料03复合材料将两种或两种以上材料的不同特性结合在一起,形成一种新材料,其特性与单个部件不同。复合材料与固溶体和混合物的区别在于,它们各自的组分保持分离和区别。因此,研究和了解复合材料的性能对其应用至关重要。涉及到流变学研究或孔径表征金属有机框架(MOF)气体吸附分析仪。左右滑动查看更多04半导体在信息处理、全彩显示和新型传感器技术等领域,对纳米结构的理解和表征在前所未有的技术发展中起着至关重要的作用。安东帕的解决方案有助于我们时代的技术进步。它们包括颗粒尺寸的表征和表面zeta电位的研究,以改进化学机械抛光工艺,以及用掠入射小角X射线散射(GISAXS)分析纳米图形表面。
  • 苏州市纳米新材料协会成立!
    12月23日,苏州市纳米新材料协会成立大会暨第一次会员大会以线上形式召开。会议宣读了苏州市纳米新材料协会成立批文,汇报了协会筹备情况,审议通过了《苏州市纳米新材料协会章程(草案)》等相关文件,确认了协会第一届会长、副会长、秘书长、理事、监事。苏州市科技局高新处处长韩文佳,苏州纳米科技发展公司董事长、总裁张淑梅,苏州纳微科技股份有限公司董事长兼首席科学家江必旺,以及来自苏州各板块的初始会员企业负责人参加会议。纳米公司会场纳米技术是引领21世纪全球科技发展的重要力量。苏州工业园区从2006年就开始围绕第三代半导体、微纳制造、纳米新材料、纳米大健康等领域,布局发展纳米技术应用产业,截至2021年底,实现产值1255亿元,成为国家级纳米技术产业高地,跻身全球八大纳米产业集聚区。2021年以苏州工业园区为核心区的苏州市纳米新材料集群入选工信部第一批先进制造业集群。作为纳米新材料产业的主要集聚区,截至2022年9月底,苏州工业园区培育纳米新材料相关企业400余家,实现产值规模超370亿元,从业人数超过1.5万人,涌现上市企业7家。为贯彻落实江苏省“十四五”战略性新兴产业发展规划,进一步推动纳米新材料集群发展,在苏州市科技局的牵头推进下,苏州市纳米新材料协会应运而生。苏州市纳米新材料协会是由苏州市纳米新材料领域相关企事业单位自愿结成的全市性、行业性社会团体,将立足苏州,充分利用现有地方优势,搭建苏州市纳米新材料企业之间的桥梁,整合国内外纳米新材料产业技术资源,开展纳米新材料产业技术交流与合作,为苏州打造纳米新材料领域技术创新高地、人才高地和产业化高地提供有力支撑,推动纳米新材料产业和相关战略性新兴产业跨越式发展。在发起单位和上级有关部门的共同努力下,协会前期筹备组建工作进展顺利,明确了发展定位,搭建并健全了协会管理运行体系,同时经广泛征集筛选,会员队伍持续壮大,目前初始会员达52家。会上宣读了于会前进行的协会第一届会长、副会长、秘书长、理事、监事选举结果。纳微科技江必旺当选协会第一届会长,桐力光电石东、汉纳材料陈新江、纳维科技王建峰担任副会长,纳米公司仇苏宇担任秘书长,同时在52家初始会员单位中选举出12家理事单位、2家监事单位。园区科创委王正宇主持会议韩文佳宣读协会成立批文江必旺发言桐力光电石东发言海狸生物任辉发言南大光电王陆平发言作为协会发起单位和会长单位,江必旺博士表示,新材料是现代产业的基础支撑,其发展不仅关系到这个产业本身,而还关系到很多其它战略性新兴产业,是一个国家产业实力和竞争力的重要标志。苏州历代以来都保持着追求创新和精益求精的工匠文化,恰好契合了新兴产业的发展需求,正是基于这样的文化基因,以及各级政府的大力支持,苏州的纳米新材料产业才会实现从空白到国内领先的突破,同时以中国唯一一家新材料实验室落户苏州为契机,更好地承担国家重大需求。纳米新材料协会的创建会进一步促进纳米新材料产业的发展,为该领域的创业者提供一个很好的交流和合作平台。协会可以对接科研院所新材料领域技术专家资源,联系相关专家帮助创业公司解决核心技术问题;对接产业上下游关系,明确客户需求,加速创新成果产业化;对接政府资源关系,协同相关领域产业园及中试生产平台解决新材料创业过程中涉及的共性问题。我们非常欢迎新材料创始人积极参与纳米新材料协会,共同为苏州纳米新材料发展做出贡献。张淑梅代表苏州纳米科技发展有限公司对协会的成立表示祝贺,她表示,苏州纳米城是苏州纳米新材料产业的主要集聚区,集聚了一众创新企业、上市企业、成长型企业、明星企业,技术应用广泛辐射各领域、各环节。作为秘书长单位,纳米公司会把协会建设作为重要工作内容,切实发挥协调、联络、组织等功能,搭建好政企沟通平台,促进产业链上下游企业、科研院所联动发展,实现优势互补、合作共赢,打造社会组织服务企业的标杆,推动纳米新材料产业集群做大做强。
  • 纳米材料: 过度炒作12公司9家负增长
    导读纳米科技是一次非常深刻的技术革命,不仅可以改变传统的微观世界,还可以应用于传统工业中,促进产业技术升级。但由于&ldquo 纳米&rdquo 概念炒作过度,纳米信誉度降低,近几年国内的纳米材料企业成长并不明显,涉及纳米材料的上市公司共有12家,其中9家公司负增长。生物纳米技术成为纳米技术未来的看点。   &ldquo 纳米&rdquo 在当下而言,不再是一个新鲜的概念,甚至我们对它已经觉得陈乏无味。但是,国家&ldquo 十二五&rdquo 规划中将之作为重点发展对象,似乎有想回归理性认识真实的&ldquo 纳米&rdquo 的趋势。   十几年前,《科学美国人》杂志曾提出一种诱人的梦想:若在地球与月亮之间搭建一座天梯,跨越38万公里的距离而不被自身重量拉断的材料,只有碳纳米管!这样的假设或许并不好实现,但用碳纳米管建设地球与国际空间站、卫星连接&ldquo 天梯&rdquo ,却是可以预期的梦想。或许那时候,人类进入太空或运送物资进入空间站时,可以像乘坐电梯一样前往。   此前,全世界的科学家为了这一梦想绞尽脑汁,始终未能制备足够长的碳纳米管。清华大学机械系、物理系、化工系先后制成了20厘米长度的碳纳米管束或单根碳纳米管后,国际上几年来再也没有新的突破。其中最关键的困难,是碳纳米管&ldquo 生长&rdquo (制造)过程中,高温环境下催化剂会很快失去活性,导致碳纳米管停止&ldquo 生长&rdquo 。   值得期待的还有,这类超长碳纳米管拥有长度、生长速度快与结构超完美的多种重诱人特性。这样的碳纳米管已经接近理论最高值的拉伸强度,从而具有意想不到的机械性能&mdash &mdash 真正可以和钢铁、钛合金等材料同场竞技,进入应用领域,制造&ldquo 拉不断&rdquo 的绳子、&ldquo 扯不破&rdquo 的纤维布、&ldquo 打不透&rdquo 的防弹衣。   在&ldquo 十二五&rdquo 规划的重点产品目录当中,纳米材料重点包括了纳米碳管及纳米碳管纤维、富勒烯、纳米环境材料以及纳米粉体材料。其中,纳米碳管运用于高强度复合结构材料,纳米结构电子器件,热电材料,电池电极材料,低温高灵敏度传感器,生物分子载体,催化剂载体,下游领域广泛,用途广。&ldquo 一是它的用途广,其他材料无可替代 二是目前正在进一步开发,成本比之前大大降低了,在国内已经实现产量化。&rdquo 浙江纳米材料开发应用协会秘书长关君正秘书长告诉记者。   碳纳米管颠覆传统行业,中国宝安石墨烯看点   被誉为&ldquo 21世纪新材料&rdquo 的纳米材料,其特异的化学、机械、电子、磁学及光学性能引起人们的广泛关注和重视。   &ldquo 不过,近几年国内的纳米材料企业不大生长,因为之前商家把&lsquo 纳米&rsquo 概念炒烂了,降低了纳米的信誉度。&rdquo 关君正告诉记者。   在理财周报材料科学实验室数据库中,涉及纳米材料的上市公司共有12家,总市值71.6亿,其中9家公司2012年净利润同比增长率均为负数,中国宝安(000009.SZ)涉足石墨烯,2012年净利润同比增长率为259%,成为行业内的佼佼者。   石墨烯作为当今世界最为热门的新材料之一,自其发现之日起就受到了全世界的关注,其发现者更是获得了诺贝尔奖的殊荣,围绕石墨烯的基础与应用研究在最近几年中也呈现出突飞猛进的态势。然而,至今尚无石墨烯的量产技术,且石墨烯的制备成本太高,大大限制了石墨烯产业化的发展,因此攻克石墨烯低成本规模化制备技术成为了石墨烯相关产业发展中至关重要的一步。   作为一种技术含量极高的碳材料,石墨烯在半导体、光伏、锂电池、航天、军工、LED、触控屏等领域都将带来一次材料革命。不过,石墨烯目前尚未产业化。有分析认为,作为一种理想的替代型材料,石墨烯一旦实现产业化其产值至少在万亿以上。   中国宝安成立子公司深圳市贝特瑞纳米科技有限公司专门研制石墨烯。该公司7月31日国家知识产权局网站公布了贝特瑞纳米科技有限公司申请的&ldquo 带状石墨烯的制备方法&rdquo 专利获得授权的信息。中国宝安称,目前贝特瑞公司石墨烯项目处于应用研究阶段,尚无法预测相关产品投入商业应用的时间及对公司未来收益的影响程度,尚未批量对外销售。   目前被讨论最多的两种纳米填料还有纳米粘土和碳纳米管,并且都已经取得了商业化应用。   据媒体报道,近日北京市科委支持科研项目再次取得世界性突破&mdash &mdash 继建立全球首个碳纳米管薄膜生产线之后,又成功制备出世界上最长的、单根长度达半米以上的碳纳米管,创造了新的世界纪录。   如此先进的高科技产物,那究竟什么是碳纳米管?   在纳米材料中,碳纳米材料一直是近年来国际材料科学的前沿领域之一。而碳纳米管在纳米材料中最富代表性,性能最优异,在各个领域引起普遍关注。科学家们还预测,碳纳米管将成为21世纪最有前途的纳米材料。   碳纳米管是迄今为止发现的力学性能最好的材料之一,有着极高的拉伸强度和断裂伸长率。其密度只有钢铁的六分之一到四分之一,单位质量上的拉伸强度,却是钢铁的276倍之高,远远超过目前人类发现和制造的其他任何材料。   &ldquo 碳纳米管有五种特性是其他材料无可替代的。首先它的硬度是钢铁的100倍,但是重量却只有钢铁的1/6 二是它的导热性好,一分钟可以导热 三是它是管状的,展开的表面积增大,每一克碳管展开可展开500-600平米,上面可以组装的东西多 四是它的半导体特性 最后是它的生物相容性,用于作为靶向药物载体,可作为治癌药物。&rdquo 关君正秘书长告诉记者。   尽管碳纳米管的技术性能非常好,但因制造成本过高和生产技术工艺等问题,致使碳纳米管有&ldquo 贵比黄金&rdquo 之称,国际市场90%的高纯度碳纳米管的价格高达每克上百美元,一般纯度的碳纳米管价格也在60美元/克,远远高出黄金的价格。   &ldquo 由于原材料对纯度的要求高,致使碳纳米管的工艺成本高。目前国内的碳纳米管技术已经走在国际前沿,只要成本降下来,将会有很大的市场潜力。碳纳米管现在已经实现产量化,主要用到工厂的脱硫脱销、脱二噁英方面,以后还会用于汽车如替代保险杠、电源等。&rdquo 关君正秘书长向记者解释。   据有关报道称,使用了碳纳米管材料后,铝酸蓄电池的能量可提高18%,另外,手机锂电池若采用了碳纳米管复合材料,手机可待机18天之久。   &ldquo 纳米材料可以运用到我们日常生活的衣、食、住、行当中,未来的发展方向应该是纳米环境材料,意义重大。比如目前正在开发的新产品&mdash &mdash 抗PM.2.5的衣服,还有防紫外线功能的化妆品、能降解新房子有毒气味的墙体材料等等,甚至是平时喝的水,也加入纳米技术,将之变为小分子团水,更加有助于细胞吸收营养,不过这种水还处于推广阶段,现在还属于特供产品。&rdquo 关君正秘书长告诉记者。   这将会是一种颠覆传统行业的材料。   然而,和任何一个行业一样,纳米材料领域里面风险与机遇共存。在浪里淘金的企业当中,也有遭遇&ldquo 滑铁卢&rdquo 的不幸。   2001年,威孚高科(000581.SZ)发布消息,称将作为主发起人投资3000万元发起设立江苏省纳米科技开发公司。此外,该公司又在南京市与南京大学、东南大学、南京理工大学及南京工业大学四所著名高校就正式定名的江苏省纳米科技与应用开发中心举行合作协议签约仪式。当时威孚高科董事长许良飞接受媒体采访时指出,这消息已表明,威孚高科目前已担当起纳米科技开发与应用的中坚力量。   此去经年,物似人非。据该公司2012年报,净利润同比下降19.4%,目前公司的重大项目主要是汽车零部件产业化。&ldquo 纳米材料成本太高了,我们已经不做好几年了的。&rdquo 威孚高科董秘周卫星表示。   纳米未来看点生物医药,乐普医疗支架在列   在纳米材料领域里面,值得一提的公司还有在美国上市的西安量维生物纳米科技股份有限公司。   西安量维是一家在天然生物化学产业领域中,专业从事以天然药食同源的动植物为原料,研发、生产与销售纳米级生物原料中间体、纳米级健康保健食品、纳米级健康化妆品、纳米级生物抗菌消毒类产品等的民营股份制公司高新技术企业。   生物纳米技术被认为是中国在新技术领域为数不多的能够与世界先进水平保持同步的一块阵地。   2005年5月19日,该公司和中国最大的航天育种高科技企业中科航天股份&ldquo 强强联合&rdquo ,致力打造航天育种生物产品的中药现代化产业链,实现了从纳米级保健品到纳米级化妆品再到纳米医药产业链的转型升级。   将纳米材料运用到生物医学领域,这是个值得探讨的话题。&ldquo 目前国内的纳米材料在生物医学以及航空航天领域要比国外落后。&rdquo 关君正秘书长告诉记者。   而纳米技术在医学上的运用则包括了正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA片)等,它们都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技。   据悉,这些技术将直接应用于临床诊断,药物开发和人类遗传诊断,植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。   国内涉足纳米医学的公司还有乐普医疗(300003.SZ),该公司2012年收购北京思达医用装臵有限公司进入心脏瓣膜器械领域,公司进一步研制开发了下一代药物洗脱支架&mdash 抗体药物联合支架。   该支架在纳米支架的基础上,将与血液接触的支架表面原来的药物涂层改为CD34抗体涂层,进一步促进支架表面的内皮化,提高其安全性。
  • 研究首次采用猕猴桃合成荧光纳米材料检测金属离子
    荧光纳米材料是将荧光与纳米材料结合起来,发展出的一种新研究领域。与传统有机荧光染料相比,这些荧光纳米材料,如量子点、金团簇、发光氧化石墨烯等具有极高的荧光量子产率和复杂表面化学组分,为化学检测、生物检测及荧光成像奠定了基础。近日,中国农业科学院(郑州果树研究所,果品质量安全控制技术团队)利用生物质碳源猕猴桃合成了多功能纳米材料,在金属离子检测中取得一定成效。铁离子作为生物系统中最重要的金属离子之一,在氧吸收、氧代谢和电子转移中起着重要作用,人体内铁离子的含量异常可引发多种生物紊乱。此外,研究发现水和土壤中的铁离子会和有机磷农药(草甘膦)结合成长期稳定存在的污染化合物,所以开发铁离子的检测方法是十分必要的。该团队首次采用猕猴桃作为合成荧光纳米材料的生物质碳源,通过实验制备了一例具有Fe3+检测能力的荧光纳米材料——KF-CDs。科研人员使用手持式紫外分析仪发现添加Fe3+后该材料的荧光强度明显变弱,且其荧光降低的趋势与Fe3+的添加浓度在1-33.8微摩尔/升范围内呈线性分布。
  • 无干扰检测纳米材料张力新方法被发明
    本报柏林1月12日电 德国和西班牙两国科研小组合作,利用红外线纳米近场显微镜发明了一种无干扰检测纳米半导体材料张力的新方法,这一新方法为科学家研究半导体材料的物理性能,以及测量纳米级半导体元器件的性能提供了新的可能。   参与这项发明的是位于德国慕尼黑的马普生物化学及等离子物理研究所和圣塞巴斯蒂安的西班牙巴斯克研究所。一种无干扰和无接触的测量技术对纳米和半导体技术研究来说一直是个很大的挑战,因此,该成果对纳米级范畴的材料张力特性测量具有重要的意义,利用它可以确定高性能陶瓷物理特性,以及现代半导体元器件的电子特性。   德国马普生物化学和等离子物理研究所的专家首先开发出了一种红外线纳米近场显微镜,这种基于原子显微镜AFM的纳米近场显微镜利用20纳米至40纳米直径的可控光栅束作为光学近场记录,并运用可控光束拍摄并获取材料的光学和物理特性。   最新研究显示,红外线纳米显微镜还可以发现晶体材料中最细微的张力场和纳米级裂纹。在一项示范性试验中,科学家对一块试验钻石施以不同强度的压力,利用纳米显微镜跟踪材料在压力下产生的纳米张力场的变化,纳米近场显微镜拍摄的图片成功地显示了这一测量方法的可靠性。参与试验的专家安德列斯• 胡伯评论说,相对于其他显微镜技术,如电子显微镜,新的测量方法具有很多优越性,它不需要特殊地制作试样,因此也避免了对试样的标准化校正等麻烦的程序。   红外线近场显微镜的潜在应用还包括对纳米级张力半导体材料的电子载荷密度和移动性的检测,应用于现代半导体材料结构的设计,定向提高电子元器件的性能,并使未来的计算机芯片更加小型化。
  • 新型纳米材料的流动合成法
    p    strong 爱沙尼亚塔尔图大学物理研究所选用了一款搭载Flow-UV& #8482 探测器的Uniqsis FlowSyn& #8482 连续流动反应器来帮助他们开发可用于下一代应用的新型纳米材料。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/aac6b0cc-ddae-46ee-b9eb-5de725939aa7.jpg" / /p p   材料科学研究小组的Aile Tamm博士在采购Uniqsis FlowSyn系统之前评估了不同种合成纳米材料的技术路径。 /p p   Aile Tamm博士谈到:“我们已研究过具有先进电磁性能的纳米颗粒和纳米复合材料。例如,我们已成功制备出含有平均粒径在5-50纳米的氧化铁、氧化铁铒、氧化锰铁和氧化镧微粒的薄固体膜粒子复合涂层。这些新型复合材料已被证明具有电子设备开发所需要的非线性饱和磁化及强制磁滞现象。除这些纳米材料以外,我们研究所也正在研究若干其他形式的纳米颗粒。” /p p   Uniqsis总经理,Paul Pergande评论道:“我们很高兴欢迎Tamm博士的知名研究团队加入到这一日渐发展的群体中来,这一群体涵盖了多家国际领先的使用Flowsyn来研究纳米颗粒合成的材料科学实验室。”他还补充道:“Flow-UV内嵌式二极管阵列探测器可被用于确定何时达到稳态,从而可确定何时开始与停止收集反应产物。紫外-可见吸收光谱测量法对于纳米颗粒分布具有特别重大的意义,并可提供有关粒径及是否发生团聚的信息。” /p p   FlowSyn& #8482 是一种被设计成可简单、安全、有效运行的集成化持续流动反应系统。FlowSyn& #8482 包含了一系列可进行单重或多重的均相或非均相反应的产品型号,并具有手动或自动运行功能。反应的范围通过Uniqsis的集成模块化流动化学系统的不断探究,已变得越来越广,并被越来越多发表于学术刊物和Uniqsis应用注释中的应用文章所证明。 /p p br/ /p p   获取更多有关FlowSyn& #8482 连续流动反应器的信息,及讨论该系统的试验请联系Uniqsis的电话+44-845-864-7747或电子邮箱 info@uniqsis.com /p p   Uniqsis擅于设计中等规格的,用于各种不同化学和药学研究应用的持续流动化学系统。公司目标是使初学者和经验丰富的使用者都易于使用我们的流动化学系统。 /p p /p
  • 网络研讨会:多功能纳米材料在胃癌纳米治疗诊断中的应用:承诺与挑战
    时间 日期:2017年6月7日时间:下午3点研讨会概述 纳米诊断治疗学是指应用纳米技术和纳米材料对多种疾病将诊断与治疗相结合的学科(诊疗学)。 纳米诊疗技术有望在医学领域带来的一些益处包括降低成本,准确可靠的疾病检测和早期疾病诊断,这将显著增加成功治疗的可能性。 在本次网络研讨会上,我们将听取上海交通大学仪器科学与工程系纳米技术专家张春雷博士的演讲。张老师将为我们介绍他在开发肿瘤成像多功能纳米探针方向的研究工作。今天,科学家对早期癌症检测的分子成像技术越来越感兴趣,张老师将介绍他在开发基于纳米颗粒的造影剂方面取得的进展,这将有望扩展这些技术的适用范围。 另外,在本次网络研讨会上,我们还将听到来自布鲁克临床前成像部门的技术专家王蕊在线介绍布鲁克的活体Xtreme II光学/ X射线系统及其广泛的多模式光学成像特性。 听众此次网络研讨会主要是针对已经在使用布鲁克公司的光学成像系统的客户或打算使用光学成像系统并成为客户的人。进行癌症研究,纳米材料和神经科学的研究人员可能会特别关注,但也会有来自各种不同研究背景的研究者会对此议题感兴趣。 演讲者 张春雷博士 - 纳米技术专拣, 仪器科学与工程系, 上海交通大学, 中国王蕊博士 - 布鲁克临床前影像部门王蕊博士将在网络研讨会上首先介绍布鲁克光学成像系统的最新功能和升级,随后将介绍与癌症研究,神经科学,纳米技术和药代动力学的相关应用。布鲁克最新升级的光学成像系统,In-Vivo Xtreme II,可以提供共定位的五种成像模式,包括生物发光成像(BLI),从可见光到近红外的多光谱荧光成像(MS-FLI),独特的直接放射性同位素成像(DRI ),切伦科夫成像(CLI)和X射线成像。接下来,张博士将会谈论他研究的主要焦点,关于开发金纳米材料作为多功能纳米颗粒的造影剂进行多模态癌症诊断。他将探讨这些成像剂的功能,影响和作用。张博士和他的团队最近开发了一种简单而省时的方法,用于合成适用于不同成像模态的带有几种造影剂的纳米结构,以提高癌症诊断的准确性。研究人员设法将金纳米簇(GNCs)在水溶液中组装成单分散球形颗粒(GNCNs),这增强了肿瘤的多模态成像。 张博士认为,这种研究开发可能被用在癌症诊断中其他超小型纳米粒子组装的指导方法或依据。 注册请点击以下链接Register for this webinar
  • 中澳功能纳米材料联合实验室在厦大揭牌
    中国—澳大利亚功能纳米材料联合实验室揭牌仪式日前在厦门大学隆重举行。   根据中澳联合功能纳米材料实验室合作协议,厦门大学与昆士兰大学将通过研究资源、设备和信息共享,研究人员互访交流,研究生联合培养等方式,建立有效的合作关系。   澳大利亚研究理事会功能纳米材料中心是由昆士兰大学、澳大利亚国立大学、新南威尔士大学、悉尼科技大学等4所澳大利亚最著名大学联合成立的。中心聚集了澳大利亚一流的纳米技术研究力量和最先进的研究设备,研究方向几乎涵盖纳米科学技术所有领域。该实验室将联合中澳双方实验室的技术力量,申请和开展纳米科学和技术前沿战略性的研究与发展项目,在促进亚太地区纳米研究的国际交流与合作中扮演重要角色。   厦门大学将大力支持该联合实验室的工作,开展纳米科学与技术在生物能源、信息技术、生态环境等领域的研究与应用,推动物理、化学、材料、生物医学等学科的交叉发展。同时,积极寻求政府、学校、企业等多方面支持,充分利用国内外两种资源,开辟更多的国际合作与交流渠道,将实验室打造成高水平的纳米研究国际国内合作平台。
  • 浅谈纳米材料的表征与测试方法
    p style=" text-align: justify text-indent: 2em " 纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。 /p p style=" text-align: justify text-indent: 2em " strong 1 纳米材料的表征 /strong /p p style=" text-align: justify text-indent: 2em " 纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 纳米材料的表征 /span /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title=" 纳.png" alt=" 纳.png" / /strong /p p style=" text-align: justify text-indent: 2em " strong 2 纳米材料的测试技术 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 光子相关光谱法(photo correlation spectroscopy,PCS) /p p style=" text-align: justify text-indent: 2em " PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。 /p p style=" text-align: justify text-indent: 2em " 2.2 X 射线衍射法(X-ray diffraction,XRD) /p p style=" text-align: justify text-indent: 2em " X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。 /p p style=" text-align: justify text-indent: 2em " 2.3 X 射线小角散射法(small angle X-ray scattering,SAXS) /p p style=" text-align: justify text-indent: 2em " SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。 /p p style=" text-align: justify text-indent: 2em " 2.4 电子显微镜法(electron microscopy) /p p style=" text-align: justify text-indent: 2em " 电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。 /p p style=" text-align: justify text-indent: 2em " SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。 /p p style=" text-align: justify text-indent: 2em " TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。 /p p style=" text-align: justify text-indent: 2em " 由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。 /p p style=" text-align: justify text-indent: 2em " 2.5 扫描探针显微镜法(scanning probe microscopy,SPM) /p p style=" text-align: justify text-indent: 2em " SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。 /p p style=" text-align: justify text-indent: 2em " 近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。 /p p style=" text-align: justify text-indent: 2em " 2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS) /p p style=" text-align: justify text-indent: 2em " XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。 /p p style=" text-align: justify text-indent: 2em " 2.7 俄歇电子能谱法(aguer electron spectroscopy,AES) /p p style=" text-align: justify text-indent: 2em " AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。 /p p style=" text-align: justify text-indent: 2em " 2.8 其他方法 /p p style=" text-align: justify text-indent: 2em " 除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " 纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于 span style=" color: rgb(255, 0, 0) " 2019年12月18日 /span 组织举办 strong 第二届“纳米表征与检测技术”主题网络研讨会 /strong ( a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 免费报名中" i span style=" color: rgb(255, 0, 0) " 免费报名中 /span /i i span style=" color: rgb(255, 0, 0) " /span /i /a ),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" / /a /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 报名链接:第二届“纳米表征与检测技术”主题网络研讨会" strong span style=" color: rgb(255, 0, 0) " 报名链接 /span /strong : i strong span style=" color: rgb(112, 48, 160) " 第二届“纳米表征与检测技术”主题网络研讨会 /span /strong /i /a /p p style=" text-align: center " strong 扫一扫,参与报名 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title=" 报名.PNG" alt=" 报名.PNG" / /p p style=" text-align: center " strong 扫一扫,进入纳米表征与检测技术群 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title=" 群.PNG" alt=" 群.PNG" / /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " 文章摘自: /i /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " span style=" font-family: " microsoft=" " font-size:=" " background-color:=" " 谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21. /span /i /strong /p
  • 「工业纳米材料检测解决方案开发联盟」在日成立
    -整合与标准化纳米检测技术,瞄准国际纳米材料市场 - 独立行政法人 产业技术综合研究所 株式会社岛津制作所 日本电子株式会社 株式会社理学 ■ 要点 ■ ・ 产总研与日本检测・ 分析仪器厂家启动纳米材料检测技术的共同研究 ・ 应对欧洲等地日趋严格的纳米材料法规 ・ 争取全日本实现纳米材料测试技术标准化 ■ 概要 ■ 2013年6月1日,独立行政法人 产业技术综合研究所【理事长 中钵 良治】(以下称「产总研」)检测・ 计量标准领域【研究统括 三木 幸信】以及纳米技术・ 材料・ 制造领域【研究统括 金山 敏彦】、株式会社岛津制作所【董事会代表兼总经理 中本 晃】(以下称「岛津」)、日本电子株式会社【董事会代表兼总经理 栗原 权右卫门】(以下称「日本电子」)以及株式会社理学【董事会代表兼总经理 志村 晶】(以下称「理学」)共同成立「工业纳米材料检测解决方案开发联盟」(Consortium for Measurement Solutions for Industrial Use of Nanomaterials (COMS-NANO)) (以下称「纳米检测解决方案联盟」),致力于以开发纳米材料的粒径、特性测试方法・ 装置为目标的共同研究。 在粉体、微粒子领域,世界各国正大力开发更高度功能化的材料与更微小化的纳米材料。但人们担心纳米材料有可能对生物体造成影响,为此,欧洲一些国家开始导入有关纳米材料流通的申请制度。 为检测・ 测试纳米材料,采用基于电子显微镜的直接观察方法、利用光散射・ 衍射、X射线散射的检测方法以及比表面积测定法*1等间接测试方法。目前,有关粒径以及其分布、组成、杂质的检测方法尚没有国际标准。 纳米检测解决方案联盟将通过整合日本企业所擅长的纳米材料检测技术,推进纳米材料的检测装置开发以及其国际标准化,为日本纳米材料进军国际市场做出贡献。 工业纳米材料检测解决方案联盟的体制 ■ 背景 ■ 2000年,美国克林顿总统发表了国家纳米技术倡议宣言,以此为契机,纳米材料的研究开发在世界范围内大大加速。而在此之前,炭黑、二氧化硅(SiO2)、二氧化钛(TiO2)等作为功能性材料已经大量用于涂料、油墨、轮胎橡胶填充剂、化妆品等的生产制造当中。 伴随纳米技术在科学等领域的应用,因其革命性与未来不确定性,必须考虑提高社会对纳米技术的接受程度。对于有可能被人类摄取或散播在环境中的纳米材料,需要从预防原则的观点出发制定使用纳米材料的法规。法国从2013年1月起开始实施针对纳米材料流通的申请制度。 为促进纳米材料的产业化,迫切需要确立其检测方法。作为欧洲指令M/461*2,已经开始讨论纳米材料的物理化学特性测试,但测试方法的完备与标准化刚刚起步。 此前,产总研、岛津、日本电子以及理学以提高各自企业所擅长的检测技术为目的,分别小规模地开展了与纳米材料应用、纳米水平检测技术相关的共同研究。但纳米材料的应用与检测技术因企业而异。纳米检测解决方案联盟将整合检测技术,共同化・ 标准化各种纳米材料的应用与检测方法,促进多形态与多特性的纳米材料产业应用。 ■ 联盟内容 ■ 〇组织 运营委员会、知识产权委员会、事务局以及各种工作小组 〇事业内容 产总研、岛津、日本电子以及理学在纳米材料的物理化学特性检测・ 测试技术领域开展共同研究,构筑解决方案平台,帮助制造企业解决难题,强化日本检测分析技术能力,并为对应欧洲已开始导入的纳米材料法规,开发纳米材料的特性测试方法・ 装置。 ○参加机构 独立行政法人 产业技术综合研究所、株式会社岛津制作所、日本电子株式会社、株式会社理学 ■ 未来开展的活动 ■ 不仅与分析仪器厂家合作,还与相关的材料、化学厂家、制造装置厂家、分析服务公司、大学・ 公共研究结构联手,组织并推进满足实际需求的研究开发项目。在开发过程中,通过强化国际整合性、标准化与认证等基础面的工作,创造附加价值,开发安全可靠的纳米材料、粉体材料的特性测试方法和装置。 在定于2013年9月4日在日本幕张国际展览中心(日本千叶县千叶市)举办的JASIS2013(原日本分析展/科学仪器展)上,将召开「纳米材料检测技术」研讨会,讨论研究开发的进展与未来开展的活动。 【术语解说】 * 1 比表面积测定法 同一质量(体积)的纳米材料,因粒径不同,总全表面积也不同。气体吸附量与样品表面积相关,本方法通过测定一定质量的样品的气体吸附量,可以间接地测定纳米粒子的粒径。 * 2 欧洲指令M/461 欧洲议会向欧洲标准化机构CEN, CENELEC, ETSI发出的要求完备纳米技术及纳米材料相关标准的指示。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
  • 纳米材料与器件技术及产业战略研讨会在京召开
    10月23日,科技部高新司在京组织召开纳米材料与器件技术及产业战略研讨会,新材料技术领域专家组成员,以及相关企业、高校、研究院所的30余位专家出席了会议。科技部高技术中心陈志敏副主任、高新司和高技术中心相关处室同志参加会议。   研讨会上,来自相关高效和科研院所的专家代表,分别就纳米加工、表征技术与设备及标准化,纳米器件的设计、功能化应用及信息应用技术等问题进行了汇报,并针对纳米技术在航空航天、能源转换与储能、生物医用、环境保护、节能减排、基础产业等领域的应用进行了专题报告。   与会专家围绕纳米材料和器件技术及产业发展进行了深入研讨,并就如何加强“十二五”期间我部纳米技术和产业推进工作,提出了宝贵的意见和建议。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • “600万支/年荧光纳米材料试剂盒产业化”项目投产
    近日,北京市重大科技成果转化和产业化项目&ldquo 600万支/年荧光纳米材料试剂盒产业化&rdquo 在大兴生物医药基地举行投产仪式,标志着该项目正式进入产业化阶段。   上转发光纳米材料是一类可在红外光激发下发射可见光的新型荧光材料,与普通荧光素或荧光颗粒相比,具有高敏感性、高稳定性等特点,其作为标记物可广泛应用于生物检测等领域。该项目由北京热景生物技术有限公司承担,在市科委统筹资金支持下,历时2年成功开发出白介素6定量测定等7种试剂盒产品(已全部获得注册证),具备了600万人份试剂的产能 同时实现了1000台/年的现场快速检测用上转发光免疫分析仪生产能力,该仪器定量准确、操作简单,适合临床、疾控、军队等单位使用和装备。   政府股权资金的注入带来企业高速成长。该公司2014年预计实现产值是入资前4倍,已发展成为国际上唯一将稀土元素所构成的上转发光材料应用于临床检测及生物安全领域的企业,掌握核心技术并拥有20多项专利,成为引领行业发展的重要力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制