当前位置: 仪器信息网 > 行业主题 > >

生物分析化学

仪器信息网生物分析化学专题为您整合生物分析化学相关的最新文章,在生物分析化学专题,您不仅可以免费浏览生物分析化学的资讯, 同时您还可以浏览生物分析化学的相关资料、解决方案,参与社区生物分析化学话题讨论。

生物分析化学相关的方案

  • 电化学工作站在文物保护方面的应用
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 化学纯度分析——Agilent Intuvo 9000 气相色谱仪与 FID 联用的技术优势
    单环芳烃是用于生产聚合物的重要通用化学品。ASTM 委员会 D16 针对许多这类化学品规定了纯度指标。ASTM D7405 方法使用气相色谱测量整体化学纯度和关键杂质含量,以此对这些指标提供支持。这些分析通常由生产技术人员执行,这类分析化学人员并非训练有素的分析化学家。为在简化方法的同时确保精密度,D7504 方法通过使用有效碳数 (ECN) 响应省略了样品前处理和仪器校准步骤。为使这种技术更高效,必须在单次运行中检测 10-4 至 99.5%(重量百分比)的样品组分。
  • 复杂样品分离分析新方法、新技术
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 多聚多巴胺遇见固态纳米孔:仿生完整表面化学调节纳流二极管功能性质
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 便携式电化学分析仪测生物传感器交流阻抗
    PlamSens3掌上型电化学分析仪,携带方便,直接USB供电,操作方便,易于上手。仪器灵敏度高,应用于生物传感器,可以得到更好的实验数据。详细请下载附件文件。
  • 用Gamry电化学工作站研究药品的导电性,稳定性和可转换的防污/抗菌性能。
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 代谢组学在疾病、中药及植物表型的研究以及复杂样品分离分析新方法、新技术及代谢组学技术的其他应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 电化学方法在微生物快速检测中的应用
    综述了传统电化学方法在微生物快速检测中的应用。将相关研究归为阻抗(电导)法、伏安分析法、电位电流分析法等三大类,回顾了阻抗法在临床微生物学、环境微生物学、食品卫生学中的研究发展过程,比较了其它几种电化学技术的检测能力和不同特点,最后讨论了电化学微生物检测方法的发展方向。
  • 天津兰力科:亚甲基蓝与酵母核糖核酸相互作用的电化学研究
    亚甲基蓝(methylene blue, MB )是一种具有平面结构(结构式见图1)的碱性生物染色剂,在医学临床诊断及化学分析中已有较长的应用历史,可用于亚硝酸盐、磺氨类、氰化物及一氧化碳等中毒的解毒药。电分析化学中常被用作氧化还原指示剂或电子媒介体,其在水溶液中的电化学行为曾被深入地研究[ 1 - 2 ] 。在水溶液中,MB的还原态为无色中性分子,而氧化态MB +为一价阳离子,由于分子中环平面和氮杂原子上甲基的存在而具有一定的疏水性。水溶液中MB容易形成二聚体,在电极上发生两个连续的1电子转移反应(EE mechanism) [ 1 ] ,其氧化还原电位的峰距ΔEp介于1电子转移反应( 59mV)和2电子转移反应(2815mV)之间。以MB 为分子探针来研究其他生物大分子已有很多报道[ 3 - 9 ] ,如近年来发现MB对DNA具有插入作用[ 8 - 9 ] ,可被用于抗癌药物的体外筛选,但对于RNA 的研究目前还没有文献报道。
  • 环境实验室元素分析检测方案
    元素分析检测都归属于分析化学的研究范围,分析化学分析发展开始阶段,它主要是用于新材料的开发与生产质量控制,并且这两种应用也一直是元素分析重要部分。随着社会与科技的发展,元素分析的应用领域日益扩展,在环保、制药、化工、农产品检测与食品安全评价、生命科学领域有广泛的应用。
  • 化学药物分析整体解决方案
    化学药物分析整体解决方案,加速新药发现,完整覆盖原料药分析、制剂辅料与包装材料分析以及生物等效性研究,实现从源头到上市全过程的质量控制,确保数据合规。
  • 基体消除-离子色谱法分析复杂基体中的阴阳离子
    准确而方便快捷的样品预处理是目前分析化学研究的难题之一,它制约着相关学科如环境科学和生命科学的发展,是分析化学研究的热点。对于大量复杂基体的样品,离子色谱可以采用合适的方法,通过预处理后再用离子色谱法进行分析,但如果预处理方法不合适,经常会导致不稳定的基线、畸形的色谱峰、较差的分离效率,甚至根本无法进行色谱分析,同时色谱柱的寿命也会大大缩短。合适的预处理方法可大大提高复杂基体样品测定结果的准确性、提高分析方法的灵敏度。采用瑞士万通Metrohm 英蓝基体消除装置,分析了含甘油样品中的钾,以及IPA、NMP等之中的氟离子、氯离子、硝酸根离子、磷酸根离子、硫酸根离子等阴离子,并获得满意的测定结果。
  • 代谢组学在植物表型研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 分析流变学
    分析流变学是确定材料微观结构从而测量粘弹性响应的学科。分析流变学是分析化学在相同意义上与其他作为其他分析方法基础上的流变性能测试的延伸。固有粘度分析技术是一种分析流变学。分析流变学可适用于任何材料系统的流变响应,这种响应很大程度上取决于微观结构分析。?
  • 电化学法快速检测微生物的发展现状及趋势
    自1898 年 Stewart 提出利用电化学法检测微生物, 电化学法已发展成为一种微生物快速检测的方法 根据检测的参数不同, 电化学微生物检测法可以分为阻抗微生物法和介电常数法 阻抗法主要用于食品工业中微生物的快速检测), 尤其用于易腐食品的微生物快速检测, 以期实现在其发生明显腐败之前得到检测结果 而介电常数则用于生物发酵过程中的微生物数量的快速测定, 可以实现在线监测微生物数量及生物发酵过程的实时控制 电化学法由于其检测迅速 可以实现自动化检测, 在工业化生产中具有广阔的应用前景。
  • 岛津生物药整体解决方案(五)—多肽类药物分析篇
    多肽合成方法可分为生物合成法及化学合成法,随着基因重组技术的发展,多肽生物合成法除传统的天然提取法,酶解法、基因重组法也在多肽合成逐步得到应用;多肽化学合成法通过氨基酸之间的缩合反应来实现氨基酸连接延长,以获得特定序列的多肽。化学合成法具有研发周期短、可快速生产等优点,逐渐成为主流。在多肽药物的开发和生产过程中需要对产品和工艺相关杂质进行检测和评估,以保证药物质量可靠并且安全有效;目前主要的参考指南有国家药品监督管理局(NMPA)药品审评中心于2023年2月颁布的《化学合成多肽药物药学研究技术指导原则(试行)》以及之前发布的《制备工艺和过程控制对合成多肽药物有关物质的影响》、《合成多肽药物质控及杂质谱研究》等,涉及到氨基酸的组成和序列分析、多肽的分子量、含量、纯度和结构表征等质控分析,可利用HPLC、LC-MS、Q-TOF、MALDI-TOF、Edman降解法等进行相关检测分析。
  • 代谢组学在疾病研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 代谢组学在中药研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 代谢组学技术的其他应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 常用蛋白质染色法原理及优缺点
    凝胶电泳是研究蛋白质性质的一种相对简单、快速和高灵敏度的工具。它是分析化学、生物化学和分子生物学的主要工具。通过电泳分离蛋白质是基于这样一个事实,即带电分子将在施加电场时通过基质迁移。
  • 矿物中的化学反应分析
    对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用埃里克· 埃里森如是表示。
  • 污水化学需氧量COD与生物需氧量BOD检测罗威邦产品
    化学需氧量(COD)& 生物需氧量(BOD)— 您了解这些衡量碳污染的“需氧量”吗?本文要点• 为何测定碳污染需要测氧气?• 为何生物需氧量需要测试 5 天?• BOD5 数值一般小于化学需氧量 COD 数值;• 稀释法 BOD 测试需要繁琐的操作步骤,压差法简单方便;• BOD 测试常常不适合测试工业污水和含大量有毒物质的污水;• Lovibond® COD、BOD 测试产品
  • 运用单颗粒ICP-MS进行生物组织中纳米材料分析
    用SP-ICP-MS分析ENPs水系样品中组成的分析是十分便捷的,样品处理只需稀释即可。然而,分析生物组织中的ENPs是更加困难,需要分析前进行消化处理。传统消化过程是使用强酸溶解释放出组织所需的元素。然而,这种类型的消化方式与ENP分析不相容,ENPs提取物可能会溶解。相反,另一种方法是使用强碱或酶类来消化组织,理想情况下不会改变ENPs。医学界最初开发这些非传统的抽取,分析人工关节磨损颗粒分析。这些提取已经应用于分析ENPs的一次尝试。一种ENP的提取方法是使用氢氧化四甲铵 (TMAH)进行化学消化。一种ENP的提取方法是使用氢氧化四甲氨(TMAH)进行化学消化。TMAH提取方法在粒子数量和总质量方面比组织消化使用声波超声法的回收率高,是一种很先进的技术在生物样品纳米材料分析方面。此实验是利用此提取方法并使用珀金埃尔默SP-ICP-MS NexION® 350Q进行分析。
  • MALDI-TOF分析多肽药物化学合成起始物料的分子量
    Fmoc保护氨基酸是多肽药物化学合成常用的起始物料,分子量是药物合成物料质控的关键指标。本文应用台式MALDI-TOF质谱仪MALDI-8030检测了6种Fmoc保护氨基酸的分子量,本方法无需液相分离、操作简便,还能够直接分析酸性条件下不稳定的含Boc基团的氨基酸衍生物的分子量,避免了传统液相分离流动相中酸对Boc基团的影响,可作为多肽药物化学合成起始物料快速质量控制的参考。
  • CTAB辅助高灵敏银纳米颗粒团簇SERS基底的制备
    表面增强拉曼散射(Surface-enchanced Raman scattering,SERS)技术由于具有高灵敏度,甚至可达到单分子检测水平,作为一种有效的分析技术已被广泛应用于分析化学、环境监测、生物诊断和国土安全等领域的痕量物质检测。
  • 利用纳米傅里叶红外光谱仪nano-FTIR对生物材料中矿物质进行化学成像
    本文次以自然纳米结构(贝壳和骨质中的矿物质颗粒)的化学鉴定,证明通过红外近场显微镜技术能够解决以上问题。 纳米傅立叶红外光谱(nano-FTIR)是通过将傅立叶变换红外光谱技术(FTIR) 与散射式扫描近场光学显微技术(s-SNOM)结合获得的。对紫贻贝贝壳横截面抛光处理后,通过Nano-FTIR可以重复的观察到生物钙质微晶体的声子共振,以及生物文石质上明显不同的光谱特征。更重要的是,本研究次在紫贻贝贝壳中发现了尺寸为20nm左右、稀疏分布的纳米颗粒,其显著不同的光谱特征表明这些纳米颗粒为磷化物晶体。对人类牙齿界面的研究观察到了多组分磷酸盐的红外吸收峰。这些光谱在牙本质小管附近有明显的特征变换,证明了磷灰石纳米晶体的化学与结构的变化。红外光谱峰的强弱对应矿物质浓度变化,这点通过电镜得到印证。Nano-FTIR对结构的畸变反应敏感,因此非常适用于对生物矿物质形成和老化的研究。总体来说nano-FTIR适用于从微纳加工到临床骨科研究等多种学科中涉及复合材料的分析和鉴定工作。
  • 用丝束电极研究SRB微生物诱导腐蚀的电化学特征
    (本文章的版权属于文章作者及所属出版机构,下载本文仅作学习研究之用,不得用于商业目的。)应用丝束电极研究了半连续培养基中SRB及其生物膜对Q235低碳钢腐蚀的影响。采用电位、电流以及阻抗扫描技术测试了生物膜的不均匀性特性,以及电极开路电位和电化学阻抗谱(EIS)与培养时间的关系。发现随生物膜的成长,开路电位负移。由于生物膜中SRB代谢产生的硫化物具有导电性,使表面电位扫描已不能作为生物膜下局部腐蚀的判据,但表面阻抗扫描却可探测到膜下的局部腐蚀。EIS表明,生物膜电容极大(104 ~105 μF/cm2),且膜电容随时间呈S型增加,而溶液电阻和电荷传递电阻则呈指数下降。
  • 多肽生物分析解决方案
    随着越来越多的肽类药物的研发和上市,从临床前药物开发阶段获得药代动力学信息,到药物临床研究,再到治疗药物监测阶段,都离不开生物样本中多肽的定量分析技术。此外,具有诊断潜力的内源性肽类生物标志物的定量,以及蛋白特征肽段分析也依赖于多肽的生物分析技术。艾杰尔飞诺美提供多肽生物样本的制备技术,以及从小分子到大分子的色谱柱解决方案,助力多肽生物分析方法的高效开发。
  • 使用生物惰性超高效液相色谱仪分析抗体药物
    生物技术药物正在利用基因组编辑和细胞融合等生物技术进行开发。近年来,由于有望有效治疗各种疾病,包括难治性疾病,其中一些药物已在世界范围内推广使用。众所周知,抗体药物,如单克隆抗体(mAb)和抗体偶联药物(ADC),由于其对靶向物质的特异性和亲和力,已知具有良好的治疗效果并可减少不良反应。然而,由于这些生物技术药物是使用动物细胞制造而成,确保药物结构的均一性,是要面临的挑战,这是化学合成小分子药物不曾遇到的。因此,生物技术药物在每个生产工艺中都需要合理的质量控制。例如,ICH-Q6B1),2)提出了生物制品的规范和测试规程,规定在生产过程中产品有关物质应进行分离和/或确定其百分含量。多数情况下,这些检测均使用液相色谱法进行分析。
  • 基于无火焰原子吸收法的河水标准物质及自来水中镉的分析
    根据日本「关于部分修改水质标准相关省令等的省令」(厚生劳动省令第十八号)(2010年2月17日),自来水中镉的标准从0.01 mg/L以下修改为0.003 mg/L以下。新标准已从2010年4月1日开始实施。在新标准中,从过去的4种分析方法中删除了火焰原子吸收法,采用的3种分析方法,1. 无火焰原子吸收法,2. ICP发射光谱分析法,3. ICP质谱分析法。本文介绍对于由日本分析化学会提供的作为认证标准物质的JAC0302河水标准物质(添加),以及在自来水中添加浓度相当于标准值1/10的镉所制成的样品,以无火焰原子吸收法进行分析的实例,并介绍简便的自动稀释再次测定功能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制