当前位置: 仪器信息网 > 行业主题 > >

柔性储能设备

仪器信息网柔性储能设备专题为您整合柔性储能设备相关的最新文章,在柔性储能设备专题,您不仅可以免费浏览柔性储能设备的资讯, 同时您还可以浏览柔性储能设备的相关资料、解决方案,参与社区柔性储能设备话题讨论。

柔性储能设备相关的论坛

  • PCBA板柔性电路的种类与好处

    PCBA板就是PCB板经过SMT贴片、DIP插件与PCBA测试等制作过程之后,所形成的成品,几乎所有的电子产品都需要用到PCBA板。随着电子行业的不断发展,元器件的尺寸也越来越小、密度却越来越大,柔性电路应运而生。  柔性电路板又称“软板”,是用柔性的绝缘基材制成的印刷电路。柔性电路提供优良的电性能,能满足更小型和更高密度安装的设计需要,也有助于减少组装工序和增强可靠性。柔性电路板是满足电子产品小型化和移动要求的惟一解决方法。[b]  一、柔性电路的种类[/b]  在以前,这种互连技术都是用导线互连的方式来实现的。柔性电路有很多种:  1、双向接入的柔性电路,这是一种单面柔性电路,制造这种电路的目的是可以从柔性电路的两侧接入导电材料。  2、双面柔性电路,是一种有两个导电层的电路,两个导电层分别位于电路里的基本层的两个侧面 针对你的具体要求,可以在基板薄片的两个侧面形成走线图案,两个侧面上的走线可以通过镀铜通孔实现互相连通。  3、多层柔性电路,是把几个有复杂互连的单面电路或双面电路结合起来,在多层设计中需要常常使用屏蔽技术和表面贴装技术。  4、刚性—柔性电路,是把刚性印刷电路板和柔性电路两者的优势整合起来,电路通常是通过刚性电路和柔性电路之间的电镀通孔实现互连。[b]  二、柔性电路的好处[/b]  柔性电路有很多好处。柔性组件的主要的一个好处就是可以实现几乎无错误的布线,替代劳动密集型的手工布线。另外与刚性电路不同的是,柔性电路还可以设计成复杂的三维结构,因为可以把他们弯曲成各种形状。顾名思义,在柔性电路中使用的材料可以来回弯曲无数次,这意味着它们可以用于高度重复的应用,例如在印刷头上使用。PCBA加工厂商在需要考虑产品的重量问题时,柔性电路是刚性电路板和导线非常好的替代品,因为它的介电材料和导体线路都非常薄。  随着科技的发展,相信在不久的将来,柔性电路会变得更小、更复杂,组装的造价也会越来越高。所以对于PCB从业者来说是,要想在未来能够站在更高的位置,就需要不断的了解、学习和掌握更多有关柔性电路的知识。

  • 【求助】关于柔性材料DMA测试的问题

    最近想做DMA测试,以前没接触过DMA,因此了解不多。材料为柔性材料,最终产品是薄膜,厚度约为0.5mm,测0-50℃的力学损耗和温度的图谱,想知道用哪种模式做比较好?拉神模式好象对设备的要求比较高,我咨询过,建议用悬臂梁弯曲模式,不知道这种模式对试样的要求如何?比如最低厚度之类的,厚度0.5mm不知道可不可以用这种模式做等?另外有没有什么好的建议,在此先谢谢各位大侠了!!!

  • 柔性衬底非晶硅薄膜太阳电池的研究 求助论文

    [align=center][b]柔性衬底非晶硅薄膜太阳电池的研究陈宇华中科技大学[/b][/align]摘要:[color=#666666]随着能源问题的日益突出,近年来太阳电池光伏发电技术发展迅猛。聚合物衬底柔性薄膜太阳电池凭借其耗材少、成本低、可卷曲(柔性)、重量比功率高、轻便等特点成为当前太阳电池研究领域的热点。 聚酰亚胺(PI)膜具有耐高温等优点,被本研究选作了柔性衬底材料。针对聚合物材料光透过率普遍偏低的情况,本研究设计了“柔性衬底/Al底电极/N/I/P/TCO(透明导电薄膜)”的倒结构柔性太阳电池,并制定了相应的工艺制备方案。 PI膜在高温200℃以上存在气体释放现象,本研究提出了PI膜的预烘(prebake)工艺,以解决PI膜高温释放气体问题,并通过实验确定了最佳的预烘工艺条件。在此基础上,为了保证沉积在PI膜上的Al底电极不掉膜不脱落,本研究探索了制备高电导、良好附着性的Al底电极的工艺。 本研究通过在PECVD沉积非晶硅薄膜的过程中通入CH4来制备宽带隙a-SiC:H薄膜作为电池窗口层以提高电池的性能,研究优化了其制备工艺条件。同时研究了获得高光暗电导比(δph/δd>105)的本征非晶硅层的制备工艺以及获得高暗电导的N型非晶硅膜... [/color]更多[url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2010&filename=2009228005.nh]柔性衬底非晶硅薄膜太阳电池的研究 - 中国知网 (cnki.net)[/url]

  • 【看故事谈管理四十五】柔性管理,感情投资

    柔性管理,感情投资   管理者与员工之间无疑是一种“管理”与“被管理”的关系。身为领导者,无不希望下属对自己尽心尽力尽职尽责尽忠地努力工作。因为只有做到这一点,才能证明自己的管理是成功的,自己是一个成功的管理者。   可是,并不是每一位管理者都能实现这一目标,恰恰相反,成功的管理者往往只是少数人。古往今来,失败的管理者都是居于多数,不胜枚举的。   在这里,决定成功与失败的关键因素,就是管理者采取什么样的管理方式,运用什么样的管理方法,这向来是管理学者们所讨论的一大重点问题。   自从管理学出现以来,许多管理学派相继登台亮相。从广义的范围看,人们研究管理学的目的是为了社会和文明的进步,为了人类的生存和发展,从狭义的范围看,则是追求最大的和谐与效益,为了提高本机构、本单位的工作效率。   正是在这种目的的驱使下,当今人类对管理的研究投入了极大的精力,提出了多种多样的管理理论,当这些理论投入实践以后,人们发现,无论是哪一种管理理论,都存在着许多的缺陷,没有一种是可以全部或大部分实现管理目的的。   然而,随着时间的发展,管理学理论正不断推陈出新,以发展“精神生产力”为目的的“人本管理”,越来越被提到重要的议事日程,以至于美国人把“开发人力心理资源”列为21世纪的前沿课题加以研究,日本和其他许多发达国家也在这方面倾注了大量的人力、物力、财力,展开潜心研究。   这种以发展“精神生产力”的“人本管理”,实际上就是当今某些国内管理者称为“柔性管理”的管理理论。   “柔性管理”的基本原则包括:内在重于外在,心理重于物理,肯定重于否定,感情交流重于纪律改革,以情感驭人重于以权压人……   这些原则中所体现的魅力,集中到一点,就是以看重感情投资、通过感情投资达到管理的目的。   按理说,“柔性管理”尽管现在才被明确提出来,但它实际上早已被人类广为利用了。而相比之下,我国在这方面做得最早,像2000多年前《老子》、《论语》、《孟子》等书都涉及到了。

  • 【分享】JT/T 528-2004 公路边坡柔性防护系统构件

    交通行业标准,2004-04-16发布,2004-07-15实施。JT/T 528-2004 公路边坡柔性防护系统构件[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=90044]JT/T 528-2004 公路边坡柔性防护系统构件[/url]

  • 气相色谱仪常用电子器件——柔性线路板

    气相色谱仪常用电子器件——柔性线路板

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用[/font][font=宋体]电子器件[/font][font=宋体]——[/font][font=宋体]柔性线路板[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]柔性线路板([/font][font=宋体]Flexible Printed Circuit,简称FPC),是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板。具有配线密度高、重量轻、厚度薄、弯折性好的特点[/font][/font][font=宋体]。[/font][font=宋体]常用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的自动进样器模块或者显示模块中。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的自动进样器单元中,一般安装有较多的机械运动部件,例如进样针、机械手、机械臂等。在进样过程中,通过运动部件的直线、旋转、伸缩、抓放等动作,实现样品瓶的运输、进样针的可靠运行,从而完成整个进样过程。某些型号色谱仪的显示面板设计在频繁开合的仪器面板上,其与控制器也采用了柔性线路板的连接方式,使用寿命长、性能可靠。[/font][font=宋体]各个运动部件需要与色谱仪系统的控制器进行电气连接,用来传送和控制部件的位置、温度、压力等参数,运动部件与系统控制器常见的连接方式有线缆、排线和柔性线路板。[/font][font=宋体][font=宋体]柔性线路板([/font][font=宋体]Flexible Printed Circuit,简称FPC),是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板,如图1所示。[/font][/font][align=center][font=宋体]。[/font][img=,264,135]https://ng1.17img.cn/bbsfiles/images/2023/07/202307312220042343_7686_1604036_3.jpg!w603x308.jpg[/img][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]1 [/font][/font][font=宋体]柔性线路板[/font][/align][font=宋体][font=宋体]柔性线路板一般有绝缘薄膜、导体(一般为铜箔)和粘结剂组成,按结构可以分为分为单层板、双层板、多层板和刚挠结合板等类型,如图[/font][font=宋体]2所示,。[/font][/font][font=宋体]柔性电路板的优点[/font][font=宋体]1 灵活性。 性能优良的柔性线路板,挠性优良,可以弯曲、折叠数万次性能仍旧保持稳定,可以根据需要设计不同几何尺寸,使用方式灵活。[/font][font=宋体]2 轻便。 机电系统采用柔性线路板连接,体积和重量将会显著减小,比较适合空间紧凑的场合。[/font][font=宋体]3 安全性强、可靠性好。 与复杂的线缆或者排线连接方式相比,采用柔性电路板的装配方式更加简单,不容易产生线缆或接插件连接错误等问题。柔性线路板可以将电气线路、电气元件均集成在一起,作为独立的单个仪器元器件,简化了色谱仪的系统连接,从而降低了机电故障发生的几率。[/font][font=宋体] [/font][align=center][img=,264,210]https://ng1.17img.cn/bbsfiles/images/2023/07/202307312220130370_236_1604036_3.jpg!w640x509.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]2 柔性线路板的结构[/font][/font][/align][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]利用柔性线路板([/font][font=宋体]FPC)可显著缩小机电产品的体积,适用机电产品向高密度、小型化、高可靠方向发展的需要。因此,FPC在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域或产品上得到了广泛的应用。[/font][/font][font=宋体][font=宋体]与普通线缆或排线不同,柔性线路板内部不仅可以集成连接线路,还可以集成传感器、控制芯片、发光芯片等元件,与相同情况下的排线[/font][font=宋体]——接插件——传感器等元器件的连接方式,柔性线路板的可靠性、耐用性更好,但成本略高。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 【求助】關于2006年中國柔性線路(FPC,軟板)行業研究報告

    【報告名稱】: 2006年中國柔性線路(FPC,軟板)行業研究報告 【關 鍵 字】: 柔性 線路(FPC,軟板)行業 研究 報告最新報告 【出版日期】: 2007年1月 【報告頁碼】: 230頁 【報告字數】: 5.3萬字 【圖表數量】: 140個 有電子版的請幫忙一下了,謝謝!Email:doris@futis.com.cn

  • 大连化物所开发出柔性可穿戴长波红外光热电探测器

    [color=#000000]近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。[/color][color=#000000]仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/d9f98d30-33d3-4a5f-ae64-7284b6ef766d.jpg[/img][/align][color=#000000]光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作([/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]Adv. [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]M [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b][color=#0070c0]ater. [/color][color=#0070c0][/color][/b][/i][/url][color=#000000],2022;[/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902044][i][b]Adv. Mater [/b][/i][/url][color=#0070c0][i][b].[/b][/i][/color][color=#000000],2019;[/color][url=https://www.nature.com/articles/s41467-018-07860-0][i][b]Nat. Commun. [/b][/i][/url][color=#000000],2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。[/color][color=#000000]在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。[/color][color=#000000]相关研究成果以“[b]Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”[/b]为题,发表在[b]《先进材料》[/b][i](Advanced Materials)[/i]上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911[/b][/url][来源: 中国科学院大连化物所][align=right][/align]

  • 柔性显示屏温度冲击试验测试-测试与可靠性

    柔性显示屏温度冲击试验测试-测试与可靠性

    刚性玻璃基材 LCD 投入使用已有很长时间,占显示屏销量的 90% 以上。玻璃 OLED 显示屏是一种新技术,目前也越来越多地应用于各种产品—特别是旗舰级智能手机和电视产品。目前这两种技术都转而采用柔性塑料基材,但需要经过严格的可靠性测试,以证明其具备商业可行性。例如,必须对显示屏进行[url=http://www.riukai.com/products/gdwcjs.html#pcm][color=#ff0000][b]温度冲击试验[/b][/color][/url]测试,以确保其适用于最终产品。还需要开发与特定应用和使用案例相关的新测试程序。根据显示屏需承受单次弯曲或多次弯曲,需对其进行不同的测试,而且还必须测试弯曲在显示屏上不同位置产生的影响。[align=center][img=,540,359]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111552522811_2637_3254213_3.jpg!w540x359.jpg[/img][/align][align=center][img=,540,405]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111605575238_1900_3254213_3.jpg!w540x405.jpg[/img][/align]

  • 自愈合材料与柔性传感器的发展趋势研究

    【序号】:1【作者】: 陈荣虎常广涛李若欣【题名】:自愈合材料与柔性传感器的发展趋势研究【期刊】:丝网印刷. 【年、卷、期、起止页码】:2023(05)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ioT0BO4yQ4m_mOgeS2ml3UKMzGm9vnlI4zXhKfmiDPhE_x8G0H14gfmy7gpRy9DqU&uniplatform=NZKPT

  • 【资料】(比表面及孔隙度分析)柔性多孔配位聚合物的动态门孔开放过程

    [align=center][b][size=5][font=宋体]柔性多孔配位聚合物的动态门孔开放过程[/font][/size][size=5][font='Arial','sans-serif'][/font][/size][/b][/align][size=3][font=宋体]作者:[/font][font='Arial','sans-serif']Daisuke Tanaka, Keiji Nakagawa, Masakazu Higuchi, Satoshi Horike, Yoshiki Kubota, Tatsuo C. Kobayashi, Masaki Takata, and Susumu Kitagawa[/font][/size][size=3][font=宋体]最近,越来越多的人关注吸附时结构和性质可进行反向变化的柔性多孔配位聚合物([/font][/size][size=3][font='Arial','sans-serif']PCPs[/font][/size][size=3][font=宋体])的性质[/font][/size][size=3][font='Arial','sans-serif'] [1][/font][/size][size=3][font=宋体]。自柔性[/font][/size][size=3][font='Arial','sans-serif']PCPs[/font][/size][size=3][font=宋体]被首次报道并预测其重要性后[/font][/size][size=3][font='Arial','sans-serif'][2][/font][/size][size=3][font=宋体],近十年已经制备出这类聚合物。高选择性[/font][/size][size=3][font='Arial','sans-serif'][3][/font][/size][size=3][font=宋体]、适应性[/font][/size][size=3][font='Arial','sans-serif'][4][/font][/size][size=3][font=宋体]和分子水平灵敏度[/font][/size][size=3][font='Arial','sans-serif'][5][/font][/size][size=3][font=宋体]的关键已经被确定为所谓的结构动态性。柔性[/font][/size][size=3][font='Arial','sans-serif']PCPs[/font][/size][size=3][font=宋体]最有趣的一点是外源性框架变更导致的阶梯型吸附[/font][/size][size=3][font='Arial','sans-serif'][3,4,6][/font][/size][size=3][font=宋体]。此外,吸附过程中,框架结构在特定压力下,能从闭合状态变为开放状态,从而出现栅效应。这个效应将产生一条[/font][/size][size=3][font='Arial','sans-serif']S[/font][/size][size=3][font=宋体]形吸附曲线。闭合结构状态要变为开放,这个启动压力取决于栅开放压([/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体])和主体框架的结构转变[/font][/size][size=3][font='Arial','sans-serif'][7][/font][/size][size=3][font=宋体]。有趣的是,[/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体]的值显示出外源依赖性[/font][/size][size=3][font='Arial','sans-serif'][8][/font][/size][size=3][font=宋体]。这种被吸附物导致的差异显示出柔性[/font][/size][size=3][font='Arial','sans-serif']PCPs[/font][/size][size=3][font=宋体]具有广泛的应用前景。这些应用包括:分离、传感器和交换物质。此外,诸如[/font][/size][size=3][font='Arial','sans-serif']O[sub]2[/sub][/font][/size][size=3][font=宋体]、[/font][/size][size=3][font='Arial','sans-serif']Ar[/font][/size][size=3][font=宋体]和[/font][/size][size=3][font='Arial','sans-serif']N[sub]2[/sub][/font][/size][size=3][font=宋体]等小分子气态被吸附物已成为研究热点。原因有两点:第一,这些相似气体分子间吸附行为的不同有广泛的商业前景;第二,他们的简单结构和物理性质的微小差别也是科学研究的热点[/font][/size][size=3][font='Arial','sans-serif'][9][/font][/size][size=3][font=宋体]。[/font][/size][size=3][font='Arial','sans-serif'][/font][/size][size=3][font=宋体]然而,尚有不要问题亟待解决[/font][/size][size=3][font='Arial','sans-serif']——[/font][/size][size=3][font=宋体]为什么吸附不能在[/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体]之下发生?[/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体]由哪些因素决定?因为被吸附物不同,[/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体]的差异是如何放大的?通常理解下,一条有轻微滞后效应的的[/font][/size][size=3][font='Arial','sans-serif']S[/font][/size][size=3][font=宋体]形曲线是协同作用的结果[/font][/size][size=3][font='Arial','sans-serif'][10][/font][/size][size=3][font=宋体]。几种柔性[/font][/size][size=3][font='Arial','sans-serif']PCPs[/font][/size][size=3][font=宋体]在实际应用中相对高压下等温曲线出现了不连续性和比较大的滞后效应,动力学是该现象的主要原因[/font][/size][size=3][font='Arial','sans-serif'][11, 12][/font][/size][size=3][font=宋体]。撇开重要性不论,为了确定栅效应的动力学,已经有人做过一些尝试[/font][/size][size=3][font='Arial','sans-serif'][11, 13][/font][/size][size=3][font=宋体]。本文中,我们介绍了一种柔性[/font][/size][size=3][font='Arial','sans-serif']PCPs{[Cd(bpndc)(bpy)]}[sub]n[/sub] (1 bpndc=benzophenone-4,4’-dicarboxylate, bpy=4,4’-bipyridyl)[/font][/size][size=3][font=宋体]的合成、晶体结构和气体吸附性质。这种物质在吸附[/font][/size][size=3][font='Arial','sans-serif']O[sub]2[/sub][/font][/size][size=3][font=宋体]、[/font][/size][size=3][font='Arial','sans-serif']Ar[/font][/size][size=3][font=宋体]和[/font][/size][size=3][font='Arial','sans-serif']N[sub]2[/sub][/font][/size][size=3][font=宋体]时显示出巨大的差异(图[/font][/size][size=3][font='Arial','sans-serif']1[/font][/size][size=3][font=宋体])。要理解这些相似气体差异背后的机制,我们在一种新的模型下研究这个现象,这个模型要求吸附过程在某种介质中发生。动力学分析揭示,介质的构成能通过栅开放过程、[/font][/size][i][size=3][font='Arial','sans-serif']P[/font][/size][/i][sub][size=3][font='Arial','sans-serif']go[/font][/size][/sub][size=3][font=宋体]以及气体差异的增加来描述。[/font][/size][size=3][font='Arial','sans-serif'][/font][/size][size=3][font='Arial','sans-serif'][/font][/size][font='Arial','sans-serif'][size=3][/size][/font][size=3][font=宋体]我们使用日本拜耳公司的[/font][font='Arial','sans-serif']Belsorp-18[/font][font=宋体]来测定氧气、氩气、氮气在[/font][font='Arial','sans-serif']77K[/font][font=宋体]、[/font][font='Arial','sans-serif']90K[/font][font=宋体]和[/font][font='Arial','sans-serif']100K[/font][font=宋体]下的等温吸附线,来研究结构转变性能。[/font][font='Arial','sans-serif'][/font][/size][size=3][font='Arial','sans-serif']We measured the adsorption isotherms of O2, Ar, and N2 by volumetric adsorption [b][i]Belsorp-18, BEL Japan[/i][/b]) at various temperatures (77, 90, and 100 K) to study the effect of structural transformation.[/font][/size][size=3][font='Arial','sans-serif'][/font][/size]

  • 高分子柔韧性的条件、参数和影响因素

    高分子柔韧性的条件、参数和影响因素长链结构是高分子获得柔韧性的必要条件,高分子具有柔性的根本原因:分子内单键的内旋转。表征分子链的参数:均方末端距、链段长短。均方末端距比值越大,刚性越大;链段越短,柔性越好。影响因素:主链含C-O、C-N、Si-O更具柔性,引入苯环、杂环,柔性减小;‚取代基对称,柔性增大,取代基极性强、体积大,柔性弱

  • 无负压供水设备的安装要求有哪些?

    无负压供水设备,是一种理想的节能供水设备,它是一种能直接与自来水管网连接,对自来水管网不会产生任何副作用的二次给水设备,在市政管网压力的基础上直接叠压供水,节约能源。  无负压供水设备的安装要求如下:  1、安装前应仔细检查泵体流产内有无硬质物,以免运行时损坏叶轮和泵体。  2、在泵的进、出口管路上安装调节阀,在泵出口附近安装压力表,以控制泵在额定工况内运行,确保泵的正常使用。  3、安装无负压供水设备时管路理量不允许加在泵上,以免使泵变形,影响正常运行。  4、排出管路如装逆止阀应装在闸阀的外面。  5、泵的安装方式分为硬性联接安装和柔性联接安装。  6、无负压供水设备拧紧地脚螺栓,以免起动时振动对泵性能产生影响。

  • 科学家开发出石墨烯太赫兹设备样机

    为研制太赫兹设备与操控系统开辟了广阔舞台 中国科技网讯 在电磁波谱中,太赫兹波段是当前最热的研究范围之一。据美国物理学家组织网5月2日报道,美国圣母大学通过实验证明了利用石墨烯原子层可以有效操控太赫兹电磁波,并制作了一台基于石墨烯材料的太赫兹调制器样机,为开发紧密高效且经济的太赫兹设备与操作系统开辟了广阔舞台。相关论文近日发表在《自然·通讯》杂志上。 人们每天都在用着电磁能量,看电视、听广播、用微波炉做爆米花、用手机通话、拍X光片等,电子产品和无线电设备中的能量大部分是以电磁波形式传输的。太赫兹波处于微波和可见光频率之间,在日常生活中有着重要应用。比如在通讯设备中,用太赫兹波能携带比无线电波或微波更多的信息;在拍X光片的时候造成的潜在伤害更小,所提供的医学和生物图像分辨率也比微波更高。 “太赫兹技术前景光明,但一个最大的瓶颈问题是缺乏有效的材料和设备来操控这些能量波。如果有一种天然二维材料能对太赫兹波产生明显反应,而且可以调节,就给我们设计高性能太赫兹设备带来了希望。而石墨烯正是理想的材料。”圣母大学电学工程系研究生贝拉迪·森赛尔-罗德里格斯说,石墨烯是仅有一个原子厚度的半导体材料,具有独特的电学、机械力学和热学性质,在诸多领域都有着潜在的应用价值,如最近开发的快速晶体管、柔性透明电子产品、光学设备,以及目前正在开发的太赫兹主动元件。 研究小组演示了他们用于概念论证而制作的第一台样机,这台基于石墨烯材料的调制器,可在石墨烯内部实现带内跃迁,是目前唯一能做到这一点的太赫兹设备。 该校电学工程系副教授邢慧丽(音译)指出,石墨烯自发现以来,一直被当作新研究的理想平台,但至今它在现实中还很少应用,操控太赫兹波就是其应用之一。在2006年时,他们曾想用二维电子气体来操控太赫兹波,去年他们论证了基于石墨烯的高性能设备,今年是首次通过实验证明了这种设备,并将进一步开展研究。(记者 常丽君) 《科技日报》(2012-05-04 二版)

  • 畜肉或水产品变质检测设备应用有哪些

    畜肉或水产品变质检测设备应用有哪些

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401041017519711_9983_5604214_3.jpg!w690x690.jpg[/img]  畜肉或水产品变质检测设备的应用非常广泛,可以帮助我们快速准确地检测出肉制品和水产品的质量,从而保证食品的安全和卫生。  首先,畜肉或水产品变质检测设备可以检测肉制品和水产品的新鲜度。这些设备通常采用生物传感器技术,通过检测肉制品和水产品中的生物化学变化,来评估其新鲜度。比如,在肉类变质过程中,会产生许多有害物质,如氨、硫化氢等,这些物质可以被设备中的传感器检测到,从而判断肉类的质量。  其次,畜肉或水产品变质检测设备还可以检测食品中的微生物含量。微生物是导致食品变质的主要因素之一,通过检测食品中的微生物数量,可以有效地评估食品的质量和安全性。这些设备通常采用微生物培养或核酸检测等技术,可以快速准确地检测出食品中的微生物含量。  此外,畜肉或水产品变质检测设备还可以用于食品加工过程中的质量控制。在食品加工过程中,如果原材料或加工环节出现问题,可能会导致食品变质。通过使用这些设备对加工过程中的食品进行检测,可以及时发现并解决问题,保证食品的质量和安全。  总之,畜肉或水产品变质检测设备的应用非常广泛,可以帮助我们快速准确地检测出食品的质量和安全性,保证食品的安全和卫生。随着技术的不断进步和应用领域的不断拓展,这些设备将会发挥更加重要的作用。

  • 企业实施数字化检测的要求

    1、对检测员的要求:数字化检测降低了对检测员的要求。没有数字化检测前,检验员需要根据仪器的操作说明,或检验规程来进行检验操作。这些检验规程可能是打印成小册子,或通过电子屏幕呈现。检测员需要通过学习后,熟记规程的每一个步骤和要求,然后根据要求进行检验。现场检验时,又要求检验员的实操具有高准确度和完成度,遇到问题,还需要有丰富的经验去处理解决问题,对检验员的专业能力和个人素养要求比较高。有了数字化检测后,检验员只需要按照系统设定好的流程进行操作,检验准确度和完成度有了极大的提高,从而也提高了工作效率,降低了对检验员的要求。2、对检测设备的要求:数字化检测的系统需要具备足够柔性。数字化检测系统需要和不同的检测设备/硬件进行对接。企业检测时,不同的检测场景、不同的检测用途,对应有不同的型号/品牌的检测设备。这就要求数字化检测系统提供的设备接口足够多,柔性足够大,能和不同的仪器设备对接。企业检测场景也很多样化,有一个人一个量具,还有一个人多个量具,多人多个量具测量;有些产品可能需要多个人同时测量,也有可能一个人就可以测。测量还分直接测量或间接测量,有些尺寸可以直接测量得出,有些尺寸只能通过间接测量后再计算得出。这就要求数字化检测系统有更大柔性来匹配这些检测场景。做数据数字化采集时,会有一些冗余的数据,需要把冗余的数据剔除,只留下实际需要的数据,需要数字化检测的系统具备足够的柔性去匹配这些具体的细节。

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 肉类检测设备有哪些

    肉类检测设备种类繁多,这些设备主要用于肉类产品的质量检测和食品安全保障。以下是一些常见的肉类检测设备:  肉类综合检测仪:这是一种采用先进技术的食品安全检测设备,主要通过光谱分析、电化学分析等多种手段,对肉类食品中的营养成分、有害物质等进行快速、准确的检测。该设备能够快速识别出肉类中的水分、蛋白质、脂肪等营养成分,同时还能够检测出瘦肉精、抗生素等有害物质,为食品安全监管提供了有力的技术支持。  兽药残留检测仪:用于检测动物制品中是否存在兽药残留,并可以快速准确地检测出兽药的种类和含量。  抗生素快速检测仪:用于检测肉类中是否含有抗生素残留物。  病害肉检测仪:可以检测肉制品中的病害肉和细菌微生物成分。  瘦肉精检测仪:一种用于快速检测瘦肉精残留的高科技产品,可以有效地检测肉类及其制品、水产品等食品中的瘦肉精残留,提供迅速、准确、便捷的检测解决方案。  水分测定仪:用于快速测定肉食品中的水分含量,保证产品质量和口感。  脂肪测定仪:用于测定肉食品中的脂肪含量,帮助企业控制成本和产品质量。  蛋白质测定仪:用于快速测定肉食品中的蛋白质含量,保证产品质量和营养价值。  添加剂检测仪:用于检测肉食品中是否含有添加剂,保证产品安全性。  重金属检测仪:用于检测肉食品中是否含有重金属,保证产品质量和安全性。  微生物检测仪器:用于检测肉食品中的微生物种类和数量,保证产品安全性。  此外,还有一些设备采用高光谱技术,如用于检测牛肉的电磁波吸收率以识别新鲜度,检测猪肉的细胞结构以识别新鲜度,以及检测鸡肉和鸭肉的色泽以识别质量等。  请注意,上述仅为一些常见的肉类检测设备,具体的设备种类和功能可能会根据实际需要和技术发展而有所变化。在选择肉类检测设备时,应综合考虑设备性能、易用性、价格以及售后服务等因素,以选择最适合自己需求的设备。同时,使用这些设备时应遵循操作规范,确保检测结果的准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404251111034261_7804_4214615_3.jpg!w690x690.jpg[/img]

  • 工信部等联合发文:加快应用固废处理和节水设备

    近日,工业和信息化部携手其他六部委联合印发了《推动工业领域设备更新实施方案》,旨在全面推进我国工业设备现代化进程,提升制造业整体竞争力。[b]方案提出,加快应用固废处理和节水设备。以主要工业固废产生行业为重点,更新改造工业固废产生量偏高的工艺,升级工业固废和再生资源综合利用设备设施,提升工业资源节约集约利用水平。面向石化化工、钢铁、建材、纺织、造纸、皮革、食品等已出台取(用)水定额国家标准的行业,推进工业节水和废水循环利用,改造工业冷却循环系统和废水处理回用等系统,更新一批冷却塔等设备。[/b][align=center][b]推动工业领域设备更新实施方案[/b][/align]推动工业领域大规模设备更新,有利于扩大有效投资,有利于推动先进产能比重持续提升,对加快建设现代化产业体系具有重要意义。为贯彻落实党中央、国务院决策部署,推动工业领域设备更新和技术改造,制定如下实施方案。一、总体要求推动工业领域大规模设备更新,要以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,按照中央经济工作会议和中央财经委员会第四次会议部署,统筹扩大内需和深化供给侧结构性改革,围绕推进新型工业化,以大规模设备更新为抓手,实施制造业技术改造升级工程,以数字化转型和绿色化升级为重点,推动制造业高端化、智能化、绿色化发展,为发展新质生产力,提高国民经济循环质量和水平提供有力支撑。——坚持市场化推进。坚持全国统一大市场,充分发挥市场配置资源的决定性作用,结合工业领域各类设备更新差异化需求,依靠市场提供多样化供给和服务。更好发挥政府作用,营造有利于企业技术改造和设备更新的政策环境。——坚持标准化引领。强化技术、质量、能耗、排放等标准制定和贯标实施,依法依规引导企业淘汰落后设备、使用先进设备,提高生产效率和技术水平。统筹考虑行业发展和市场实际,循序渐进、有序推进。——坚持软硬件一体化更新。主动适应和引领新一轮科技革命和产业变革,积极推进新一代信息技术赋能新型工业化,在推动硬件设备更新的同时,注重软件系统迭代升级和创新应用。到2027年,工业领域设备投资规模较2023年增长25%以上,规模以上工业企业数字化研发设计工具普及率、关键工序数控化率分别超过90%、75%,工业大省大市和重点园区规上工业企业数字化改造全覆盖,重点行业能效基准水平以下产能基本退出、主要用能设备能效基本达到节能水平,本质安全水平明显提升,创新产品加快推广应用,先进产能比重持续提高。二、重点任务(一)实施先进设备更新行动1.加快落后低效设备替代。针对工业母机、农机、工程机械、电动自行车等生产设备整体处于中低水平的行业,加快淘汰落后低效设备、超期服役老旧设备。重点推动工业母机行业更新服役超过10年的机床等;农机行业更新柔性剪切、成型、焊接、制造生产技术及装备等;工程机械行业更新油压机、折弯机、工艺陈旧产线和在线检测装备等;仪器仪表行业更新数控加工装备、检定装备等;纺织行业更新转杯纺纱机等短流程纺织设备,细纱机、自动络筒机等棉纺设备;电动自行车行业更新自动焊接机器人、自动化喷涂和烘干设备、电动或气动装配设备、绝缘耐压测试仪、循环充放电测试仪等。2.更新升级高端先进设备。针对航空、光伏、动力电池、生物发酵等生产设备整体处于中高水平的行业,鼓励企业更新一批高技术、高效率、高可靠性的先进设备。重点推动航空行业全面开展大飞机、大型水陆两栖飞机及航空发动机总装集成能力、供应链配套能力等建设;光伏行业更新大热场单晶炉、高线速小轴距多线切割机、多合一镀膜设备、大尺寸多主栅组件串焊机等先进设备;动力电池行业生产设备向高精度、高速度、高可靠性升级,重点更新超声波焊接机、激光焊接机、注液机、分容柜等设备;生物发酵行业实施萃取提取工艺技改,更新蒸发器、离心机、新型干燥系统、连续离子交换设备等。3.更新升级试验检测设备。在石化化工、医药、船舶、电子等重点行业,围绕设计验证、测试验证、工艺验证等中试验证和检验检测环节,更新一批先进设备,提升工程化和产业化能力。重点推动设计验证环节更新模型制造设备、实验分析仪器等先进设备;测试验证环节更新机械测试、光学测试、环境测试等测试仪器;工艺验证环节更新环境适应性试验、可靠性试验、工艺验证试验、安规试验等试验专用设备,以及专用制样、材料加工、电子组装、机械加工等样品制备和试生产装备;检验检测环节更新电子测量、无损检测、智能检测等仪器设备。(二)实施数字化转型行动4.推广应用智能制造装备。以生产作业、仓储物流、质量管控等环节改造为重点,推动数控机床与基础制造装备、增材制造装备、工业机器人、工业控制装备、智能物流装备、传感与检测装备等通用智能制造装备更新。重点推动装备制造业更新面向特定场景的智能成套生产线和柔性生产单元;电子信息制造业推进电子产品专用智能制造装备与自动化装配线集成应用;原材料制造业加快无人运输车辆等新型智能装备部署应用,推进催化裂化、冶炼等重大工艺装备智能化改造升级;消费品制造业推广面向柔性生产、个性化定制等新模式智能装备。5.加快建设智能工厂。加快新一代信息技术与制造全过程、全要素深度融合,推进制造技术突破、工艺创新、精益管理、业务流程再造。推动人工智能、第五代移动通信(5G)、边缘计算等新技术在制造环节深度应用,形成一批虚拟试验与调试、工艺数字化设计、智能在线检测等典型场景。推动设备联网和生产环节数字化链接,实现生产数据贯通化、制造柔性化和管理智能化,打造数字化车间。围绕生产、管理、服务等制造全过程开展智能化升级,优化组织结构和业务流程,打造智能工厂。充分发挥工业互联网标识解析体系作用,引导龙头企业带动上下游企业同步改造,打造智慧供应链。6.加强数字基础设施建设。加快工业互联网、物联网、5G、千兆光网等新型网络基础设施规模化部署,鼓励工业企业内外网改造。构建工业基础算力资源和应用能力融合体系,加快部署工业边缘数据中心,建设面向特定场景的边缘计算设施,推动“云边端”算力协同发展。加大高性能智算供给,在算力枢纽节点建设智算中心。鼓励大型集团企业、工业园区建立各具特色的工业互联网平台。(三)实施绿色装备推广行动7.加快生产设备绿色化改造。推动重点用能行业、重点环节推广应用节能环保绿色装备。钢铁行业加快对现有高炉、转炉、电炉等全流程开展超低排放改造,争创环保绩效A级;建材行业以现有水泥、玻璃、建筑卫生陶瓷、玻璃纤维等领域减污降碳、节能降耗为重点,改造提升原料制备、窑炉控制、粉磨破碎等相关装备和技术;有色金属行业加快高效稳定铝电解、绿色环保铜冶炼、再生金属冶炼等绿色高效环保装备更新改造;家电等重点轻工行业加快二级及以上高能效设备更新。8.推动重点用能设备能效升级。对照《重点用能产品设备能效先进水平、节能水平和准入水平(2024年版)》,以能效水平提升为重点,推动工业等各领域锅炉、电机、变压器、制冷供热空压机、换热器、泵等重点用能设备更新换代,推广应用能效二级及以上节能设备。9.加快应用固废处理和节水设备。以主要工业固废产生行业为重点,更新改造工业固废产生量偏高的工艺,升级工业固废和再生资源综合利用设备设施,提升工业资源节约集约利用水平。面向石化化工、钢铁、建材、纺织、造纸、皮革、食品等已出台取(用)水定额国家标准的行业,推进工业节水和废水循环利用,改造工业冷却循环系统和废水处理回用等系统,更新一批冷却塔等设备。(四)实施本质安全水平提升行动10.推动石化化工老旧装置安全改造。推广应用连续化、微反应、超重力反应等工艺技术,反应器优化控制、机泵预测性维护等数字化技术,更新老旧煤气化炉、反应器(釜)、精馏塔、机泵、换热器、储罐等设备。妥善化解老旧装置工艺风险大、动设备故障率高、静设备易泄漏等安全风险,提升行业本质安全水平。11.提升民爆行业本质安全水平。以推动工业炸药、工业电子雷管生产线技术升级改造为重点,以危险作业岗位无人化为目标,实施“机械化换人、自动化减人”和“机器人替人”工程,加大安全技术和装备推广应用力度。重点对工业炸药固定生产线、现场混装炸药生产点及现场混装炸药车、雷管装填装配生产线等升级改造。12.推广应用先进适用安全装备。加大安全装备在重点领域推广应用,在全社会层面推动安全应急监测预警、消防系统与装备、安全应急智能化装备、个体防护装备等升级改造与配备。围绕工业生产安全事故、地震地质灾害、洪水灾害、城市内涝灾害、城市特殊场景火灾、森林草原火灾、紧急生命救护、社区家庭安全应急等重点场景,推广应用先进可靠安全装备。三、保障措施(一)加大财税支持。加大工业领域设备更新和技术改造财政支持力度,将符合条件的重点项目纳入中央预算内投资等资金支持范围。加大对节能节水、环境保护、安全生产专用设备税收优惠支持力度,把数字化智能化改造纳入优惠范围。(二)强化标准引领。围绕重点行业重点领域制修订一批节能降碳、环保、安全、循环利用等相关标准,实施工业节能与绿色标准化行动,制定《先进安全应急装备(推广)目录》,推广《国家工业和信息化领域节能降碳技术装备推荐目录》,引导企业对标先进标准实施设备更新和技术改造。(三)加强金融支持。设立科技创新和技术改造专项再贷款,引导金融机构加强对设备更新和技术改造的支持。发挥国家产融合作平台作用,编制工业企业技术改造升级导向计划,强化银企对接,向金融机构推荐有融资需求的技术改造重点项目,加大制造业中长期贷款投放。(四)加强要素保障。鼓励地方加强企业技术改造项目要素资源保障,将技术改造项目涉及用地、用能等纳入优先保障范围,对不新增土地、以设备更新为主的技术改造项目,推广承诺备案制,简化前期审批手续。各地区工业和信息化主管部门牵头负责本地区工业领域设备更新工作组织实施,要完善工作机制,做好政策解读,加强协同配合,强化央地联动,建立重点项目库,推动各项任务落实落细。

  • 【求助】柔性电路板铅锡镀层的焊接强度问题

    【求助】柔性电路板铅锡镀层的焊接强度问题

    各位大虾:本人遇到一个比较棘手的问题。我们的一个产品的铅锡镀层在客户处与硬板热压焊后发现有镀层强度不够的情况。 客户称目前,焊接后剥离强度为4-5磅,而目标值为10磅。并且发来了EDS图谱。第一张图是软板的EDS图谱,红色是亮区,蓝色是暗区。 第二张图是硬板的EDS图谱,红色是亮区,蓝色是暗区。 请各位高手帮忙看一下是不是真是因为有杂质引入镀层造成焊点强度不够?谢谢![color=red]【由于该附件或图片违规,已被版主删除】[/color][img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707021739_56971_1066999_3.jpg[/img]

  • 美创造石墨烯太阳能电池能量转化率纪录

    中国科技网华盛顿5月24日电 在工业界看来,石墨烯太阳能电池是未来获得廉价且耐用太阳能电池的最佳途径之一,但是过去的试验发现,石墨烯太阳能电池的能量转换效率仅约为2.9%。美国佛罗里达大学物理学研究人员24日表示,他们通过对石墨烯材料进行掺杂处理,获得了具有能量转化率高的掺杂石墨烯太阳能电池。 据研究人员介绍,石墨烯材料掺杂处理所用的物质为三氟甲基磺酰胺(简称TFSA),掺杂后的石墨烯太阳能电池的能量转化率高达8.6%,创造了石墨烯太阳能电池能量转换的纪录。他们的研究成果刊登在《纳米通信》网站上。 研究生缪晓常(英译)在分析能量转化率提高的原因时表示,掺杂导致石墨烯薄膜导电能力更强同时提高了电池内的电位,这让石墨烯太阳能电池的光电转换效率更高。同过去人们尝试的掺杂物相比,新的掺杂物TFSA性能稳定,即作用持续时间长。缪晓常和同事在实验室研发的掺杂石墨烯太阳能电池为镶有金边的5毫米见方的小窗,小窗由硅材料表面镀单层石墨烯组成。 石墨烯和硅结合时形成了电子单向导通的肖特基结,在光照时,它是石墨烯太阳能电池中实现光电转换的区域。肖特基结通常由半导体表面镀金属而成,但是佛罗里达大学生物和工程纳米学研究所2011年发现,石墨烯材料能够代替金属与半导体形成肖特基结。 佛罗里达大学著名物理学教授亚瑟·赫巴德说,与普通金属不同,石墨烯是透明和柔性材料,它具有极大的潜力成为太阳能电池的重要组成部分。人们希望在未来,太阳能电池能够用于建筑外部和其他产品中。他同时认为,石墨烯太阳能电池的能量转化率能够通过如此简单且廉价的处理方法得以提高,展现了其光明前景。 研究人员表示,如果石墨烯太阳能电池的能量转化率达到10%,且保持生产成本足够低,那么它们将成为市场上有力的竞争者。 佛罗里达大学目前研发的石墨烯太阳能电池样品的基底是硅半导体材料,用于大规模产品生产并不经济。不过,赫巴德表示,他看好将掺杂石墨烯与更廉价、更具有柔性的基底材料相结合,这些基底材料包括全球众多实验室正在开发的高分子膜。(记者 毛黎) 总编辑圈点 石墨烯及其衍生物的研究已广为人知。本研究通过新的技术工艺,不仅造就了迄今最高效的石墨烯基太阳能电池,也指出了一个重要的研究方向,并描绘了一幅非常诱人的应用前景。我们相信,这只是一个起点,石墨烯很快会成为一种充满无限可能的革命性材料:除了已经在研究中的太阳能电池、超薄防弹衣、天文望远镜、高强度航空材料、高性能储能和传感器材料等,还有更富想象力的太空电梯。当然,前提还是基础研究的进一步深入。 《科技日报》(2012-05-26 一版)

  • 果蔬肉类检测仪能检测调料吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  果蔬肉类检测仪能检测调料吗,果蔬肉类检测仪能检测调料。  功能介绍:  果蔬肉类检测仪是一种高科技食品安全检测设备,其主要功能包括检测农药残留、兽药残留、肉类新鲜度及激素成分等指标。尽管其主要功能集中在果蔬和肉类的检测上,但也可以用于调味品的安全检测。  检测调料的具体作用:  检测添加剂和防腐剂:通过果蔬肉类检测仪,可以了解调味料中的添加剂、防腐剂等成分,这些成分可能对食品安全和消费者健康构成影响。  识别有害物质:检测仪还能够识别调料中是否含有有害物质,如重金属、农药残留等,从而确保调料的安全性。  技术原理:  果蔬肉类检测仪采用高精度的光学检测技术,通过发射光线并检测其反射光,得到样品的反射光谱。然后,通过对光谱进行分析,可以得出样品的营养成分、农药残留、重金属等成分的含量。  应用范围:  除了常规的果蔬和肉类检测外,该仪器在食品安全和品质控制中具有广泛的应用,包括调料的安全检测。这种扩展应用有助于更全面地保障食品安全,让消费者吃得放心。  综上所述,果蔬肉类检测仪不仅限于检测果蔬和肉类,还能有效地检测调料中的多种成分,确保食品的整体安全性和品质。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406051011052444_5336_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制