当前位置: 仪器信息网 > 行业主题 > >

诺贝尔化学奖

仪器信息网诺贝尔化学奖专题为您整合诺贝尔化学奖相关的最新文章,在诺贝尔化学奖专题,您不仅可以免费浏览诺贝尔化学奖的资讯, 同时您还可以浏览诺贝尔化学奖的相关资料、解决方案,参与社区诺贝尔化学奖话题讨论。

诺贝尔化学奖相关的资讯

  • 2017年诺贝尔化学奖,花落谁家?
    p   前不久,科睿唯安发布了2017年的各奖项“引文桂冠奖”。自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。北京时间10月2日起,诺贝尔奖委员会将陆续宣布获得2017年各分类奖项的得主。 /p p   获奖预测是多年来的“传统”节目,各类分析平台、权威机构及个人博客都在为自己“选中”的名单列举获奖理由。 /p p   “引文桂冠奖”、化学权威杂志《化学世界》、著名预测博客等,在25日前后分别对今年的化学奖进行了预测,与碳纳米管、太阳能电池材料和基因编辑技术CRISPR相关的重大成果及其发现者,被认为有望获得第109届诺贝尔化学奖900万瑞典克朗的巨额奖励。北京时间26日,《科学美国人》杂志对此进行了报道。 /p p   strong  “诺奖风向标”指向谁 /strong /p p   科睿唯安(Clarivate Analytics)是各预测机构中的佼佼者。其基于此前汤森路透旗下的知识产权与科技业务板块和出版物索引平台Web of Science,发布了2017年的各奖项“引文桂冠奖”。 /p p   自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。其最近一次成功预测是2016年诺贝尔化学奖得主之一——弗雷泽· 斯托达特。因此,《化学世界》杂志也将今年的奖项得主纳入预测之列。 /p p   今年,科睿唯安化学领域获得“引文桂冠奖”的有三项:第一项授予俄罗斯科学家格奥尔盖· 舒里平(Georgiy Shul& #39 pin)、美国化学家约翰· 伯考(John Bercaw)和罗伯特· 伯格曼(Robert Bergman),他们的获奖理由是对C-H官能团化的发现有重要贡献 第二项授予美国斯坦福大学化学工程师吉恩斯· 诺斯科夫(Jens Norskov),因其在实体面材的多相催化方面的理论和实践研究,带来了合成氨和燃料电池重大进展而上榜 第三项授予日本的宫坂力(Tsutomu Miyasaka)、韩国的朴南圭(Nam-Gyu Park)以及英国的亨利· J· 斯内斯(Henry J.Snaith),他们因为发现并应用钙钛矿材料实现有效能量转换而获奖。 /p p strong   权威杂志和博客看好谁 /strong /p p   《化学世界》杂志还认为,美国化学物理学家费顿· 艾文瑞斯(Phaedon Avouris)、保尔· 麦克尤恩(Paul McEuen)和荷兰物理学家考恩内利斯· 代克尔(Cornelis Dekker)因对碳基电子产品做出重大贡献,虽然获得了“引文桂冠奖”的物理学奖,但因研究涉及碳纳米管、石墨烯和纳米带等在电子学领域的应用,因此,也有可能受到诺贝尔化学奖的青睐。 /p p   美国加利福尼亚大学研究人员、著名博客作者塞缪尔· 劳德认为,诺贝尔化学奖还有可能颁发给围绕新一代基因编辑技术CRISPR开展原创工作的珍妮弗· 杜德娜(Jennifer Doudna)、伊曼纽尔· 夏波尼(Emmanuelle Charpentier)以及华人科学家张峰(Feng Zhang)。这一提议也获得了遗传生物学家克里斯安托· 盖迪尔瑞兹,以及分子生物学家艾利克斯· 沃尔格的赞同,他们在推特上认为这三个人将拔得头筹。 /p p   此外,还有的著名博客将锂离子电池发明家斯坦利· 惠廷翰(Stanley Whittingham)和约翰· 古德伊纳夫(John Goodenough),以及生物无机化学先驱哈里· 格雷(Harry Gray)和史蒂芬· 利帕尔(Stephen Lippard)列为本届化学奖的竞争对手。 /p p   具体花落谁家,我们还要拭目以待。 /p p /p
  • 2009年诺贝尔化学奖揭晓
    2009年诺贝尔化学奖揭晓 美以三科学家因“对核糖体结构和功能的研究”而获奖 Venkatraman Ramakrishnan Thomas A. Steitz Ada E. Yonath   北京时间10月7日下午5点45分,2009年诺贝尔化学奖揭晓,美以三科学家因“对核糖体结构和功能的研究”而获奖。这三位科学家为美国的Venkatraman Ramakrishnan、Thomas A. Steitz及以色列的Ada E. Yonath。   Venkatraman Ramakrishnan,1952年出生于印度的Chidambaram,美国公民。1976年从美国俄亥俄大学获得物理学博士学位。现为英国剑桥MRC分子生物学实验室结构研究部资深科学家和团队领导人。Thomas A. Steitz,1940年出生于美国密尔沃基市,美国公民。1966年从哈佛大学获得分子生物学与生物化学博士学位。现为耶鲁大学分子生物物理学和生物化学教授(Sterling Professor)及霍华德• 休斯医学研究所研究人员。Ada E. Yonath,1939年出生于以色列耶路撒冷,以色列公民。1968年从以色列魏茨曼科学研究所获得X射线结晶学博士学位。现为魏茨曼科学研究所结构生物学教授及生物分子结构与装配研究中心主任。   今年的诺贝尔化学奖奖金为1000万瑞典克朗,三位科学家将各获得三分之一的奖金。   2009年诺贝尔化学奖奖励的是对生命一个核心过程的研究——核糖体将DNA信息“翻译”成生命。核糖体制造蛋白质,控制着所有活有机体内的化学。因为核糖体对于生命至关重要,所以它们也是新抗生素的一个主要靶标。   今年的诺贝尔化学奖奖励Venkatraman Ramakrishnan、Thomas A. Steitz和Ada E. Yonath这三位科学家,他们在原子水平上显示了核糖体的形态和功能。三位科学家利用X射线结晶学技术标出了构成核糖体的无数个原子每个所在的位置。   在所有有机体的每个细胞内都存在DNA分子,它们包含的蓝图决定着一个人、一棵植物或一个细菌的外形和功能。但是DNA分子是被动的,如果没有其他东西存在,就不会有生命。   这些蓝图通过核糖体的作用被转变成活物质。依据DNA内的信息,核糖体制造蛋白质——运输氧的血红蛋白、免疫系统的抗体、胰岛素等激素、皮肤胶原质或分解糖的酶等。身体内存在成千上万种蛋白质,各自具有不同的形态和功能。它们在化学水平上构造并控制着生命。   理解核糖体最基本的工作方式对于科学地理解生命是重要的。这一知识可被直接应用于实践,比如,目前许多抗生素通过阻滞细菌核糖体的功能而治愈多种疾病。没有起作用的核糖体,细菌就无法生存。这就是为什么核糖体对于新抗生素来说是如此重要的一个靶标。   今年的三位获奖者均制造了3D模型,展示了不同的抗生素如何绑定到核糖体。这些模型如今被科学家们所应用以开发新的抗生素,直接帮助了挽救生命及减少人类的痛苦。
  • 中国学者解读2012年诺贝尔化学奖
    10月10日,69岁的美国科学家罗伯特莱夫科维茨和57岁的布莱恩科比尔卡因进一步揭示了G蛋白偶联受体的内在工作机制,分享了2012年诺贝尔化学奖。   而18年前,G蛋白和G蛋白偶联受体(GPCRs)就曾令他们的发现者——两名美国科学家获得了诺贝尔生理学或医学奖。   看清G蛋白激活过程   莱夫科维茨从1968年便开始利用放射性碘来寻找细胞接受信号的物质,这种物质后来被称为“G蛋白偶联受体”。他找到了多种受体,并将其中的“β-肾上腺素受体”从细胞壁抽出。上世纪80年代,年轻的科比尔卡加入了莱夫科维茨团队。   2007年,科比尔卡首次用T4溶菌酶融合法解析了β-肾上腺素受体的结构,该方法后来成为获取G蛋白偶联受体三维结构的常规手段。2011年,他又在这个受体被激活并向细胞发送信号时获得了三维图像。   “在此之前,一直没有人了解G蛋白偶联受体究竟如何激活G蛋白。”清华大学生命科学学院院长施一公评价,“这是一项划时代的工作。”   中科院院士、同济大学校长裴钢指出,G蛋白偶联受体是细胞表面的信号接收器,是细胞生物学、分子药理学等学科里最基础的一类传导分子。同时,很大一部分药物都以该受体为作用靶点,激活机理研究将对未来药物研发有所助益。   早就被看好的研究   获奖者的名字被公布后,《中国科学报》记者拨通北京大学生命科学学院院长饶毅的电话,他称自己曾在今年4月就非常看好G蛋白偶联受体研究。他分析,诺贝尔化学奖委员会不时地肯定化学和生物交叉的工作。鉴于G蛋白偶联受体本身及其结构解析的重要性,他认为,对于该受体的结构生物学研究,几乎肯定会获得诺贝尔奖。   中科院生物物理所研究员王江云曾在与科比尔卡合作过的斯克利普斯研究所工作,他也在第一时间告诉《中国科学报》记者:“几个月来我一直向我的同事表示,G蛋白偶联受体研究非常有可能获得诺奖。”   今年4月,科比尔卡受聘清华大学医学院客座教授。当时,施一公曾给同事们写了一封邮件,在介绍完科比尔卡的工作后,他提到:“我个人认为,他今后5年之内很可能得诺贝尔奖。”   从他们身上学做真正的科学家   裴钢和山东大学医学院教授孙金鹏都曾在莱夫科维茨研究组里做过博士后,整个实验室都亲切地称莱夫科维茨为Bob。   “Bob是一个非常率真的科学家。”裴钢说,“争论时,整个走廊都能听到我们的声音,不过他从来不以老师自居。”孙金鹏则认为:“Bob拿奖是实至名归,他多年的努力进取和一丝不苟的科学态度终究得到了认可。”   施一公与科比尔卡则在两年前结识。“他是一个非常低调、非常认真的人,来清华的时间里,从早到晚都在实验室指导自己的博士后、博士生做实验。”   据裴钢介绍,近年来我国G蛋白偶联受体研究越来越多,但由于起步较晚,仍在努力追赶先进水平。“我们的物质条件已经很好,更需要文化和精神上的建设,应从他们身上学做真正的科学家,孜孜不倦、默默无闻地工作。”   此外,施一公还透露,科比尔卡的妻子田东山是一名出生于马来西亚的华裔,两人“夫妻档”配合默契。“他的妻子称得上是幕后英雄,管理实验室、组织人员等工作都由她承担。”
  • 2011年诺贝尔化学奖揭晓
    北京时间10月5日下午5点45分,2011年诺贝尔化学奖揭晓,以色列科学家达尼埃尔谢赫特曼Daniel Shechtman获奖,获奖理由是“发现准晶体”。今年诺贝尔化学奖奖金共1000万瑞典克朗(约合146万美元),由谢赫特曼一人独享。   2011年诺贝尔生理学或医学奖揭晓   2011年诺贝尔物理学奖揭晓 达尼埃尔谢赫特曼(Daniel Shechtman)    非凡的原子“镶嵌”   在准晶体中,我们发现迷人的阿拉伯镶嵌艺术在原子水平的重现:规则但从不重复的模式。然而,准晶体构型的发现曾被认为是不可能的,因而Daniel Shechtman只得对已知的科学发起强烈的挑战。2011年诺贝尔化学奖已经从根本上改变了化学家如何想象固体物质。   1982年4月8日的早上,一幅违反自然定律的图像出现在Shechtman的电子显微镜中。在所有的固体物质中,原子被认为均匀地分布在晶体中,并周期性地进行重复。对于科学家来说,为了获得晶体,这种重复是必需的。   然而,Shechtman眼前出现的图像却显示,该晶体中的原子排列模式是无法重复的。这种模式曾被认为是不可能的,就像不可能单纯用六角形制造足球,因为同时需要五角形和六角形。他的发现引起了极大的争议。在为自己的发现辩护期间,他被要求离开了自己的研究小组。不过,他的坚持最终迫使科学家重新考虑他们对于物质属性的概念。   非周期性“镶嵌”,比如在西班牙阿尔罕布拉宫和伊朗Darb-i Imam神殿中发现的中世纪伊斯兰镶嵌艺术,帮助科学家理解了准晶体在原子水平的特征。在这些镶嵌中,比如准晶体,模式是规则的——它们遵循数学法则——但它们从不重复自己。   当科学家描述Shechtman的准晶体的时候,他们使用一个来自于数学和艺术的概念:黄金比例。这一数字在古希腊的时候就已经引起了数学家的兴趣,经常出现在几何学中。举个例子来说,在准晶体中,原子间不同距离之比同黄金分割相关。   跟随Shechtman的发现,科学家已经在实验室中制造了其它种类的准晶体,并从来源于俄罗斯一条河流中的矿石样本中发现了天然准晶体。一家瑞典公司也从某种形态的铁中发现了准晶体。科学家们目前正在实验于不同产品中使用准晶体,比如煎锅和柴油机。   Daniel Shechtman,以色列公民。1941年出生于以色列特拉维夫。1972年从以色列理工学院获得博士学位。以色列理工学院菲利普托拜厄斯讲席教授。   ■ 人物 谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系   ——美国化学协会主席纳西杰克逊   当我告诉人们,我发现了准晶体的时候,所有人都取笑我。   ——谢赫特曼   “那时,所有人都取笑我”   因为挑战当时的“常识”,谢赫特曼被斥“胡言乱语”、“伪科学家”   “胡言乱语”、“伪科学家”,当30年前谢赫特曼发现“准晶体”时,他面对的是来自主流科学界、权威人物的质疑和嘲笑,因为当时大多数人都认为,“准晶体”违背科学界常识。   “当我告诉人们,我发现了准晶体的时候,所有人都取笑我。”谢赫特曼在一份声明中说。1982年,41岁的谢赫特曼正在美国霍普金斯大学从事研究工作。   “的确,那时候的人们压根不会接受那种晶体的存在。”美国化学协会主席纳西杰克逊说,“因为他们认为这违反自然界‘规则’。”   因为这些“规则”被视为真理,胆敢“捋虎须”的谢赫特曼自然就备受排挤。   发现“准晶体”后,谢赫特曼花费了好几个月的时间,试图说服他的同事,但一切均徒劳,没人认同他的观点。不仅如此,他还被要求离开他所在的研究小组。无奈之下,谢赫特曼只有返回以色列,在那里,他的一个朋友愿意帮助他,将“准晶体”的有关研究成果公开发表。   最开始,这篇论文也没能逃脱被拒绝的命运,但在谢赫特曼和他朋友的艰苦努力下,1984年,论文终于得以发表,也立即在化学界引发轩然大波。一些化学界权威也站出来,公开质疑谢赫特曼的发现,其中包括著名的化学家、两届诺奖得主鲍林。   “他(鲍林)公开说:达尼埃尔谢赫特曼是在胡言乱语,没有什么准晶体,只有‘准科学家’。”谢赫特曼后来说。   近30年后,勇敢质疑“常识”的谢赫特曼终于获得全世界最权威的科学认可。“谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。”纳西杰克逊说。   ■ 背景 固体家族“另类哥”   20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。   根据固态物质构成的原子排列规律,晶体内原子应呈现周期性对称有序排列,非晶体内原子呈无序排列。1982年4月8日,谢赫特曼在铝锰合金冷冻固化实验中首次观察到合金中的原子以一种非周期性的有序排列方式组合,具有这种原子排列方式的固体在当时理论下是不可能存在的。   由于原子排列不具周期性,准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。鉴于其“强化”特性,准晶体材料可应用于制造眼外科手术微细针头、刀刃等硬度较高的工具。此外,准晶体材料无黏着力并且导热性较差,其应用范围还包括制造不粘锅具、柴油发动机等,应用前景广阔。   附:诺贝尔奖网站官方公告   5 October 2011   The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2011 to   Daniel Shechtman   Technion - Israel Institute of Technology, Haifa, Israel   "for the discovery of quasicrystals"   附录:近10年诺贝尔化学奖得主及其主要成就   2011年,以色列科学家达尼埃尔谢赫特曼因发现准晶体而获奖。准晶体是一种介于晶体和非晶体之间的固体,准晶体的发现不仅改变了人们对固体物质结构的原有认识,由此带来的相关研究成果也广泛应用于材料学、生物学等多种有助于人类生产、生活的领域。   2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究成果而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。   2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。   2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。   2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。   2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。   2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。   2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。   2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了开创性贡献而获奖。   2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希因发明了对生物大分子进行识别和结构分析的方法而获奖。
  • 2009年诺贝尔化学奖得主做客中山大学
    12月2日,中山大学医学院迎来了2009年诺贝尔化学奖得主阿达约纳特。讲座开始前一个小时,通道里已是人头涌涌。约纳特配得上这种礼遇,这位女科学家在核糖体结构和功能研究取得的成绩,让世人瞩目。当晚,约纳特教授在下榻的酒店接受了羊城晚报记者的专访。   阿达约纳特教授在中山大学医学院演讲   科研没有配方可遵循   羊城晚报:你开始这个研究(核糖体结构和功能)的时候是否得到公司的资助,是否有把研究转换成产品的想法?   阿达:在开始的时候,没有人相信我们这个研究,没有人相信我的思路(利用X射线晶体衍射技术来探索核糖体的立体结构),也没有公司资助。当我的研究开始涉及抗生素,那些公司才开始表现出兴趣来。研究刚开始有眉目,需要进一步的发展,而那些公司更希望我们可以加快步伐。项目开始25年后,我才发现我们有资源去做一些外面公司完全不明白的研究,而不仅仅是为了出产品。我们团队在研究选题上不仅仅注重应用,还注重基础研究,这与公司的需求并不对立。   现在,我的团队有足够的经费可以做我感兴趣的研究。如果有公司对我的研究方向有兴趣,便可合作。我不喜欢那些想要和我合作却对有诸多限制的公司,因为科研不像做蛋糕,没有配方可遵循。   羊城晚报:您获得诺贝尔化学奖的抗生素研究跟医药业有很密切的关系,获奖后有没有公司找上门?   阿达:我获奖还不到一年。我的研究离具体抗生素产品出产估计还要15年。如果我们15年后相见,估计我能告诉你。其实这跟诺贝尔奖没有太大关系,这只跟具体研究有关。我们开始研究的时候,我们考虑是出于生产产品还是出于兴趣,我们希望能够两者兼顾。   男女科研能力无区别   羊城晚报:你怎么看待诺贝尔科学类奖项中获奖女性明显少于男性这个现象?   阿达:首先我不觉得科研上男女能力有别。但是在二三十年前,因为社会的各种阻碍,很少女性从事科研。而现在从事科研,例如医药科研的女性明显增多。只是从事科研的男性更多,所以他们拿奖多。   羊城晚报:你遇到过最大的问题是什么?   阿达:很难回答。每次问题来的时候都显得很大,像阿尔卑斯山一样。我遇到过的最大的问题,我想是如何让其他人相信我的研究方法是有效的,我一共花了15年来证明。15年后,就开始有人仿效我们的研究了。   诺贝尔奖不需被神化   羊城晚报:你喜欢“居里夫人第二”这个称谓么?   阿达:不喜欢。第一,这个称呼属于居里夫人的女儿,她也是个科学家 第二,我就是我。居里夫人或许会喜欢我,也或许不喜欢我,而在我眼中,居里夫人是个巨人,我只是个普通人。   羊城晚报:科学研究是不是只有第一,没有第二?   阿达:诺贝尔奖仅仅是一个奖,代表不了什么。诺贝尔基金会想要做得最好,但也不能顾及所有顶尖的科学家。他们并不是无所不知的,只有在实验室里面有所发现,才是最好的奖项。当我第一次发现核糖体的结构的时候,那就是我获得的最大的奖项。诺贝尔奖仅仅是诺贝尔奖,不需要神化。   巨变的广州充满机会   羊城晚报:您此次广州之行除了来分享学术成果外,有没有带来合作项目?   阿达:我没有,但是其他人带来了很多合作项目。我只有一个人,做不来那么多。但是我回去会思考能够开展合作项目。我认为中山大学的医学院有非常良好的合作环境。   羊城晚报:您对广州的印象如何?   阿达:我曾在1986年到过广州,这次亲眼目睹到了广州的巨变。广州是一个充满着机会的城市,可以为研究人员提供许多机会。今天上午我和你们的汪洋书记进行了会面,相信此后在以色列和广东之间的合作会越来越多。   人物简介:阿达约纳特,以色列科学家,因“核糖体的结构和功能”的研究而获得2009年的诺贝尔化学奖。约纳特1939年出生于耶路撒冷,1970年她组建了以色列第一个蛋白晶体学实验室。2008年,约纳特因在细菌抗药性方面的研究获“世界杰出女科学家成就奖”。
  • “中国化学会-阿克苏诺贝尔化学奖”设立
    全球首屈一指的装饰漆、工业涂料及特殊化学品公司阿克苏诺贝尔12月1日在上海宣布,与中国化学会携手合作,将其倍受业界重视的“阿克苏诺贝尔科学奖”引进中国,以表彰中国出类拔萃的化学科研人才。   这个名为“中国化学会-阿克苏诺贝尔化学奖”的大奖将涵盖三个领域,分别颁发给在材料科学、化学、科学测量与分析学领域成就斐然、在进行创新性研究方面有卓越贡献的本地科学家。   该奖项将每两年举办一次,每次颁授给三位在高分子合成、高分子物理、高分子材料表征、胶体化学、绿色化学与新型材料科学科研工作有杰出表现的科学家,每位得奖者将获得奖金10万元人民币和荣誉证书,每届奖励将在中国化学会年会上颁发。   阿克苏诺贝尔科学奖(AkzoNobel)设立于1970年,该奖项每年颁发一次,每次颁发给一个团队或着个人以表彰他们在跨学科领域的开创性研究。自1999年以来,该奖项的颁奖典礼轮流在瑞典和荷兰两地举行。在荷兰和瑞典,该奖项的评审团分别由荷兰皇家科学及人文学会(The Board of the Royal Holland Society of Sciences and Humanities)和瑞典皇家工程科学院(the Royal Swedish Academy of Engineering Science)的科学家组成。   候选人可以由中国化学会理事两人以上、学科或专业委员会、地方学会分别推荐,评选工作由中国化学会召集的独立评审委员会主持,并确定获奖人。评选结果经中国化学会和阿克苏诺贝尔公司确认后公布。若无符合条件的候选人,奖项可不予以颁发。   据了解,推荐截止日期为2009年12月10日至2010年1月10日,公布获奖者时间为2010年6月20日,首届颁奖仪式将于2010年6月20日在中国厦门举行。
  • 诺贝尔化学奖:展现细胞的内部世界
    十七世纪,最早的微生物学家安东尼.范.列文虎克(Antonie van Leeuwenhoek)利用聚光下的透镜看到了游动的细胞,并为之惊叹不已。自那时起,显微镜便开辟了新的研究前景。今年,诺贝尔化学奖授予了三位科学家。他们突破光学显微镜的极限,展现了活细胞分子级结构的清晰图像。   斯特凡.赫尔(Stefan Hell)、威廉姆.莫尔纳尔(William Moerner)和埃里克.白兹格(Eric Betzig)在上世纪九十年代与本世纪头十年内所取得的进展,意味着如今生物学家可以对蛋白质分散、进入细胞的过程进行实时观察。该技术可应用于研究神经元间如何连接,以及受精卵如何分裂成胚胎等问题。   &ldquo 这真是生命科学的革命,因为我们现在可以看到从前看不到的结构。&rdquo 斯特凡.赫尔说道。(斯特凡.赫尔在位于哥廷根的马克斯.普朗克学会生物物理化学研究所从事超分辨率技术的研究工作。)或如诺贝尔委员会所说:&ldquo 显微(微米)技术已然变为显纳(纳米)技术了。&rdquo   正如德国物理学家恩斯特.阿贝(Ernst Abbe)于1873年所意识到的那样,无论透镜有多干净,光学显微镜所呈现的细胞分子图像总是模糊不清的。物理定律决定:当物体间距小于约200纳米(约为可见光波长的一半)时,可见光将无法分辨不同物体,而这些物体将会呈现为一点。这称作阿布衍射极限。在这种分辨率下,人们可以看到细胞中的细胞器,却看不到细胞器的具体结构。电子显微镜比光学显微镜的分辨率高,但只限于真空条件下使用,故仅能用于研究已死的组织。   阿布极限是客观存在的,无法克服。于是,2014年的诺贝尔奖得主们转而运用荧光团(荧光分子)技术。所谓荧光团技术,即激光器发射出特定波长的激光,冲击荧光团使其发光。这一技术现常用于生物成像。   战胜模糊 威廉姆.莫尔纳尔现就职于加利福尼亚州斯坦福大学。他于1989年在位于圣荷西的IBM阿尔马登研究中心工作时,发现了单个分子会发出微弱的荧光。1997年,他在加利福尼亚大学圣地亚哥分校任职期间,又找到了控制荧光的办法,从而可以像开关灯一样改变分子。但仍旧需要这些单个分子间距大于200纳米才能分辨出来。   1995年,新泽西默里山贝尔工作室的埃里克.白兹格提议:如果使细胞中异种分子发出不同颜色的光,研究人员应当可以通过顺序拍摄红分子、绿分子、蓝分子的照片来提高分辨率。虽然同色荧光团仍需相距200纳米以上,但通过图层叠加的方法的确可以做出拥有更高分辨率的结构图。接下来,莫尔纳尔证明了各类同种分子可在不同时刻发光。这项发现最终将白兹格的想法变成了现实。   白兹格历经近十年才将他的想法付诸实践。他曾离开科学学术界,到他父亲在密歇根的医疗设备公司工作。2006年,他效力于弗吉尼亚州阿什本地区霍华德?休斯医学研究所珍妮利亚农业研究院。他运用这项技术拍摄了一张溶酶体蛋白的超分辨率照片,溶酶体蛋白上遍布着带有绿色荧光标记的分子。德国维尔茨堡大学超分辨率显微技术研究员马库斯.萨澳(Markus Sauer)说:这项技术现可达到20纳米的分辨率。   此时,正在芬兰图尔库大学工作的斯特凡.赫尔发现了一种可以避开阿布极限的技术。这项技术同样依赖于对荧光分子的控制。1994年,他提出:使用激光器制造有色荧光团,然后再次使用激光器使部分荧光团停止发光。其实早在1917年,爱因斯坦就描述了这一过程。   赫尔的方法是运用第二次激光照射冲击被照亮的荧光团,如此一来只剩下极少荧光点在发光。而由于无法战胜阿布极限,最后的图像还是模糊的。但有一点可以肯定,第二次照射后剩下的极少荧光点可以帮助研究人员确定光源。   将一系列这样的荧光点集合起来,就可以得到一幅高分辨率的图像。理论上,这些荧光点可以达到仅几纳米的间距。但在活细胞中,30纳米左右已然是极限了。萨澳说:这是由于现阶段第二次激光强度太大而常常破坏荧光团。   细胞的世界   &ldquo 至少在我看来,二十世纪那么多的物理发现一定能帮我们克服衍射难题。&rdquo 现就职于哥根廷马克斯?普朗克学会生物物理化学研究所的赫尔,在得知获奖消息时这样对诺贝尔委员会说道。   &ldquo 的确如此,赫尔运用的所有量子物理原理都在二十世纪二十年代末被发现。&rdquo 托马斯.卡拉尔指出。托马斯.卡拉尔(Thomas Klar)是奥地利约翰.开普勒林兹大学应用物理学研究所负责人,曾在2000年与赫尔合着原理论证的论文。   赫尔接到诺贝尔委员会打来的电话时正在读一篇科学论文。之后,他说:&ldquo 我读完了想看的那段,然后打电话给我的妻子和一些亲友。&rdquo   今年诺贝尔奖得主们的发明尚未成为常规技术,但已有许多生物学家运用此技术拍摄出了很好的细胞内部结构图。赫尔还发布了间距40纳米的小泡在神经元内游动的视频。庄小威是马萨诸塞州剑桥市哈佛大学的一名化学家。她自己则另有发明&mdash &mdash 随机光学重建显微法。该显微法可用于展现肌动蛋白纤维如何沿轴突横截面周长呈环状包裹轴突。&ldquo 将来会出现许多新版的超分辨率显微镜。&rdquo 赫尔说道。
  • 钱永健:2008年诺贝尔化学奖获得者
    荣誉   1968年,即以金属如何与硫氰酸盐结合为题获美国西屋科学天才奖(TheWestinghouseScienceTalent)   1968年,拿了美国优秀学生奖学金(NationalMeritScholarship)进入哈佛大学。1972年获学士(化学和物理)。   1977年,获得剑桥大学博士及博士后(生理学)。   1981年,钱永健来到加州大学伯克利分校,并在这里工作8年,成为大学教授。   1989年,钱永健将他的实验室搬到加州大学圣迭戈分校,现在他是该校的药理学教授以及化学与生物化学教授。   1995年,当选美国医学研究院院士,   1998年,当选美国国家科学院院士和美国艺术与科学院院士。   2009年,获香港中文大学颁授荣誉理学博士学位,获香港大学颁授荣誉科学博士学位。   重要奖项   1991年,帕萨诺基金青年科学家奖   1995年,比利时阿图瓦-巴耶-拉图尔健康奖   1995年,盖尔德纳基金国际奖   1995年,美国心脏学会基础研究奖   2002年,美国化学学会创新奖   2002年,荷兰皇家科学院海内生物化学与生物物理学奖   2004年,获沃尔夫奖(WolfPrizeinMedicine),全美化学学会,蛋白质学会等多项大奖   2008年,与美国生物学家马丁沙尔菲和日本有机化学家兼海洋生物学家下村修2名科学家以绿色荧光蛋白的研究获得该年度诺贝尔化学奖。   瑞典皇家科学院诺贝尔奖委员会于当地时间10月8日11时45分左右(北京时间10月8日17时45分左右)宣布,将2008年度诺贝尔化学奖授予日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁查尔菲Martin Chalfie,以及美国华裔科学家钱永健。这三位科学家在发现绿色荧光蛋白方面作出突出成就,并将分享诺贝尔奖金。多色莹光蛋白标记技术,为细胞生物学和神经生物学发展带来一场革命。
  • 2022年诺贝尔生理或医学奖/化学奖预测,谁将摘走诺奖桂冠?
    一年一度的诺奖季即将开始,这是全球科学界的盛事。尽管鲜有国人获奖,但我们对这个奖项的重视和关注丝毫没有减少。今天我们大胆预测一下今年的诺贝尔生理或医学奖以及化学奖,同时帮助我们科普一下在国际科学这个大舞台上,有哪些科学家做出了重要贡献?我国科研水平与它们差距多大?2020年诺贝尔医学奖授予HCV发现(属临床领域)、2021年诺贝尔医学奖授予感觉受体(属基础领域),今年的诺贝尔医学奖又会花落谁家?基于诺贝尔医学奖领域分配规律(基础:临床为2:1),因此推测今年高概率仍会在基础领域,综合过去30年内基础领域发展情况,这里给出2022年诺贝尔生理或医学奖的三个组合预测。01生物化学组合自2009年诺贝尔医学奖授予端粒酶发现以来,生物化学领域近期还未获得诺贝尔医学奖,应该予以考虑了。目前,组蛋白修饰和基因表达调控的重要性逐渐得到认可,因此在该方向做出重要贡献的三位科学家:1、加州大学洛杉矶分校格伦斯坦(Michael Grunstein)(1988年证明组蛋白与基因表达调控相关)2、洛克菲勒大学艾莉斯(David Allis)(1996年发现组蛋白乙酰转移酶)3、哈佛大学施瑞伯(Stuart Schreiber)(1996年发现组蛋白去乙酰化酶)他们都是诺奖的热门人选。备选:微小RNA发现者:安布罗斯(Victor Ambros)、鲍尔库姆(David Baulcombe)和鲁弗肯(Gary Ruvkun)。02细胞生物学组合细胞生物学是近十年来诺贝尔医学奖重点青睐领域,从iPS到囊泡运输,从细胞自噬到低氧信号,都是诺贝尔医学奖关注的热点,因此今年再次颁发给这个领域的机率也很高。综合细胞生物学各分支发展,内质网未折叠蛋白应答发现是较为重大的科学突破,而做出重大贡献的两位科学家:京都大学森和俊(Kazutoshi Mori)和加州大学旧金山分校瓦尔特(Peter Walter)(1993年同时筛选到未折叠蛋白应答基因),他们今年获奖机率较大。备选:mTOR发现者瑞士巴塞尔大学霍尔(Michael Hall)和磷脂信号通路发现者威尔康奈尔医学院坎特利(Lewis Cantley)。03情怀组合诺贝尔奖不仅仅是科学贡献比拼,有时候还需要考虑到人情世故,因此对于一些较为年迈的科学家可能会有特别照顾。这一组合的三位科学家为法国斯特拉斯堡大学尚邦(Pierre Chambon)、美国索尔克研究所埃文斯(Ronald Evans)和美国洛克菲勒大学罗德(Robert Roeder),以表彰他们在转录因子领域的先驱性贡献。尚邦出生于1931年,今年已91岁高龄,如能获奖,也将打破劳斯(87岁,1966年获奖者)保持的诺贝尔医学奖获奖年龄最大记录,近几年物理奖和化学家先后都有年龄近百科学家获奖并打破纪录(物理奖是96岁,化学奖是97岁),医学奖则多年未有突破,今年有望改观。尚邦属上世纪古典科学家代表,多个领域都做出卓越贡献,如最终错失也可能是诺贝尔奖一点小遗憾。备选:B细胞和T细胞发现者库珀(Max D. Cooper)(89岁高龄)和米勒(Jacques Miller)(91岁高龄)。上面这些预测主要基于2022年诺贝尔医学奖授予基础医学领域,若颁发给临床领域,则赫赛汀发明者、他汀发现者和fMRI发明者等机会很大。这里一并预测下今年的诺贝尔化学奖,去年按规律原本应颁发给生命科学领域,最终却授予有机合成,这也预示着今年生命科学领域获奖机率会进一步增加以符合生命科学越来越被偏爱的趋势,如这个前提成立,今年最有机会的是两个组合PK。04偏基础的分子运动机制研究团队三位科学家美国斯坦福大学斯普迪赫(James Anthony Spudich)、德克萨斯大学希茨(Michael Patrick Sheetz)和加州大学旧金山分校韦尔(Ronald David Vale)。他们在上世纪八十年代的研究深化和拓展对肌肉收缩和分子内物质运输机制的理解和认识,自2015年化学奖颁发给机制研究以来,一直都是授予应用领域,今年有望改变。05偏应用的mRNA疫苗研究团队两位科学家是宾夕法尼亚大学卡里科(Katalin Karikó)和魏斯曼(Drew Weissman)。两位科学家发现的重要性显而易见,去年就被寄予极高厚望,但最终未能获奖,但也有意外收获,那就是今年继续横扫各项科学大奖(通常获得诺贝尔奖后就很难再获其他“小奖”),鉴于mRNA疫苗的热度和新冠肺炎疫情的现状,今年获奖概率仍然较高。不管谁获奖,我想应该都是对全民的一次很好的科普。这次盛事也让我们看到国内科研水平与他们的差距。不难否认的是,诺奖是奖励过去一段时间做出的重大成果,近些年中国的科研水平增长很快,期待不久的将来也会有诺奖级科研成果出来。
  • 2012年诺贝尔化学奖揭晓
    北京时间2012年10月10日下午5点45分,2012年诺贝尔化学奖揭晓,两位美国科学家罗伯特莱夫科维茨(Robert J. Lefkowitz)和布莱恩克比尔卡(Brian K. Kobilka)因“G蛋白偶联受体研究”获奖。二人将均分800万瑞典克朗奖金。   罗伯特莱夫科维茨   布莱恩克比尔卡   罗伯特莱夫科维茨(Robert J. Lefkowitz),美国公民。1943年出生于美国纽约。1966年从纽约哥伦比亚大学获得MD。美国霍华德休斯医学研究所研究人员,美国杜克大学医学中心医学教授、生物化学教授。   布莱恩克比尔卡(Brian K. Kobilka),美国公民。1955年出生于美国明尼苏达州Little Falls。1981年从耶鲁大学医学院获得MD。斯坦福大学医学院医学教授、分子与细胞生理学教授。(克比尔卡《科学》文章: G蛋白偶联受体“停靠站”结构被确定)(《自然》特写文章报道克比尔卡)   细胞表面的聪明受体   每个人的身体就是一个数十亿细胞相互作用的精确校准系统。每个细胞都含有微小的受体,可让细胞感知周围环境以适应新状态。罗伯特莱夫科维茨和布莱恩克比尔卡因为突破性地揭示G蛋白偶联受体这一重要受体家族的内在工作机制而获得2012年诺贝尔化学奖。   长期以来,细胞如何感知周围环境一直是一个未解之谜。科学家已经弄清像肾上腺素这样的激素所具有的强大效果:提高血压、让心跳加速。他们猜测,细胞表面可能存在某些激素受体。但在上个世纪大部分时期里,这些激素受体的实际成分及其工作原理却一直是未知数。   莱夫科维茨于1968年开始利用放射学来追踪细胞受体。他将碘同位素附着到各种激素上,借助放射学,成功找到数种受体,其中一种便是肾上腺素的受体:β-肾上腺素受体。他的研究小组将这种受体从细胞壁的隐蔽处抽出并对其工作原理有了初步认识。   研究团队在1980年代取得了下一步重要进展。新加入的克比尔卡开始挑战难题,意欲将编码β-肾上腺素受体的基因从浩瀚的人类基因组中分离出来。他的创造性方法帮助他实现了目标。当研究人员分析该基因时,他们发现该受体与眼中捕获光的受体相类似。他们认识到,存在着一整个家族看起来相似的受体,而且起作用的方式也一样。   今天这一家族被称作“G蛋白偶联受体”。大约一千个基因编码这类受体,适用于光、味道、气味、肾上腺素、组胺、多巴胺以及复合胺等。大约一半的药物通过G蛋白偶联受体起作用。   莱夫科维茨和克比尔卡的研究对于理解G蛋白偶联受体如何起作用至关重要。此外,在2011年,克比尔卡还取得了另一项突破:他和研究团队在一个精确的时刻——β-肾上腺素受体被激素激活并向细胞发送信号——获得了β-肾上腺素受体图像。这一图像是一个分子杰作,可谓几十年辛苦研究的成果。 新闻专题:
  • 两名诺贝尔化学奖得主拿到中国“绿卡”
    p   近日,一位外国科学家走进上海市出入境管理局,办理了永久居留身份证申请手续,市出入境管理局、市张江高新区管委会、华东理工大学的工作人员全程陪同。 /p p   他就是诺贝尔化学奖得主、华东理工大学客座教授伯纳德· 费林加。预计本月,他将与上海科技大学特聘教授库尔特· 维特里希一起,成为首批来沪工作并拥有“中国绿卡”的诺奖得主。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/92310ad3-0823-42d0-baf6-8dd43544ca20.jpg" title=" 640.jpg" / /p p style=" text-align: center " strong ▲伯纳德· 费林加 /strong /p p   2016年,费林加因“设计并合成分子机器”获得诺贝尔化学奖。今年10月,他出任费林加诺贝尔奖科学家联合研究中心外方主任,每年来沪工作,带领华东理工团队研发新材料。“我们在研发光刺激响应性材料,它像眼睛一样,能对光的变化作出性能响应。”费林加告诉记者,“我们还在研发自修复材料,希望它像人体组织那样,能自我修复。”这些智能材料在医疗、电子、节能等领域,有广泛的应用前景。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/32521ab9-0f62-4835-9c0f-8205be1eb92c.jpg" title=" 6401.jpg" / /p p style=" text-align: center " strong ▲上海科技大学特聘教授库尔特· 维特里希 /strong /p p   作为2002年诺贝尔化学奖得主,维特里希正在带领上科大课题组,利用液体核磁共振等技术,探析人体内G蛋白偶联受体的分子机理。这种原创性研究,有望催生以G蛋白偶联受体为靶点的新药。 /p p   据了解,外籍科学家过去在中国工作,通常要在签证规定时间内离开中国,或在签证到期前重新申请,此外,在出行、购房、医疗等方面,均有诸多不便。今年,作为中央全面深化改革的成果,外国人永久居留身份证启用。持有这一证件的外国人,在我国境内很多事务上享有“国民待遇”。而根据公安部支持上海科创中心建设的“新十条”,截至目前,市张江高新区管委会为30名外籍高层次人才出具了永久居留推荐函。其中,就包括费林加、维特里希。 /p p   市张江高新区管委会分管领导表示,党的十九大报告指出,要“培养造就一大批具有国际水平的战略科技人才、科技领军人才、青年科技人才和高水平创新团队” 作为创新发展先行者,上海亟需引进一批高峰人才,并营造很好的工作和生活环境,让他们带领团队开展前沿科技研究。 /p p   谈及上海政府部门的服务,费林加用了“Fantastic”(好极了)一词,因为从体检到办理永久居留手续,他都走了“绿色通道”——相关部门简化流程,收到预约后很快安排,派工作人员全程陪同。 /p p   令他同样感到“Fantastic”的是,费林加诺贝尔奖科学家联合研究中心得到了“张江专项发展资金”重点项目资助,市张江高新区管委会、徐汇区政府、华东理工大学将联合出资,为他定制实验室,推动智能材料基础研究及其成果转化。“我们会把它打造成世界顶级实验室,在做出创新成果的同时,培养一批青年科技人才,并吸引全球知名科学家加入我们团队。”费林加说。 /p
  • 2022年诺贝尔化学奖揭晓 三位科学家分享奖项
    据诺贝尔奖官网消息,北京时间10月5日下午,2022年诺贝尔化学奖揭晓。瑞典皇家科学院宣布,将2022年诺贝尔化学奖授予卡罗琳露丝贝尔托西、摩顿梅尔达尔和卡尔巴里夏普莱斯,以表彰他们在点击化学和正交化学研究方面的贡献。诺贝尔化学奖首次颁发于1901年,截至2021年,共颁奖113次,有188位获奖者。诺贝尔奖官网上对该奖项介绍道:“对于阿尔弗雷德诺贝尔自己的工作来说,化学是最重要的科学。他的发明的发展以及他采用的工业流程都是基于化学知识。化学是诺贝尔在其遗嘱中提到的第二个获奖领域。”2022年诺贝尔奖各奖项奖金是1000万瑞典克朗。此前,诺贝尔化学奖已颁发113次。期间8年没有颁发,分别是1916年、1917年、1919年、1924年、1933年、1940年、1941年和1942年。自1901-2021年,诺贝尔化学奖已授予188位获奖者,其中,弗雷德里克桑格(Frederick Sanger)是唯一一位获得过两次诺贝尔化学奖的人,分别在1958年和1980年。因此1901年-2021年共187人获得诺贝尔化学奖,其中7位是女性。诺贝尔化学奖近五年得主2021年诺贝尔化学奖授予德国科学家本杰明李斯特 (Benjamin List) 和美国科学家戴维麦克米伦 (David MacMillan),以表彰他们对不对称有机催化的发展所作出的贡献。2020年诺贝尔化学奖授予埃马纽埃尔卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗杜德纳(Jennifer A. Doudna),以表彰她们在“凭借开发基因组编辑方法”方面作出的贡献。2019年诺贝尔化学奖授予约翰古迪纳夫(John B. Goodenough),斯坦利威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino),以表彰他们在锂离子电池领域的贡献。2018年诺贝尔化学奖授予美国科学家弗朗西斯阿诺德(Frances H. Arnold)、美国科学家乔治史密斯(George P. Smith)和英国科学家乔治保罗温特(Gregory P. Winter),以表彰他们在“酶的定向进化”以及“多肽与抗体的噬菌体展示技术”领域的贡献。2017年诺贝尔化学奖颁给了雅克迪波什(Jacques Dubochet)、约阿基姆弗兰克(Joachim Frank)和理查德亨德森(Richard Henderson),以表彰他们发展了冷冻电子显微镜技术。
  • 量子点的春天!2023年诺贝尔化学奖详细解读!
    2023 年 10 月 4 日北京时间 17 时 45 分许,美籍法国-突尼斯裔化学家芒吉G. 巴文迪(Moungi G. Bawendi),美国化学家路易斯E. 布鲁斯(Louis E. Brus)和俄罗斯物理学家阿列克谢I. 叶基莫夫(Alexei I. Ekimov)因“发现和合成量子点”获得 2023 年诺贝尔化学奖。芒吉G. 巴文迪(Moungi G. Bawendi),1961年出生于法国巴黎。1988年毕业于美国伊利诺伊州芝加哥大学,获博士学位。美国马萨诸塞州剑桥市麻省理工学院(MIT)教授。 路易斯E. 布鲁斯(Louis E. Brus),1943 年出生于美国俄亥俄州克利夫兰。1969 年获美国纽约哥伦比亚大学(Columbia University)博士学位。美国纽约哥伦比亚大学教授。 阿列克谢I. 叶基莫夫(Alexei I. Ekimov),1945 年出生于苏联。1974 年毕业于俄罗斯圣彼得堡约菲物理技术研究所,获博士学位。1999年起移居美国,就职于私人商业公司,曾任美国纽约纳米晶体技术公司(Nanocrystals Technology Inc)首席科学家。他们令纳米技术拥有了颜色芒吉G. 巴文迪(Moungi G. Bawendi)、路易斯E. 布鲁斯(Louis E. Brus)和阿列克谢I. 叶基莫夫(Alexei I. Ekimov)因发现和开发量子点,共同荣获2023年诺贝尔化学奖。量子点是一类微小颗粒,具有独特的特性,已经应用在多个方面。例如,电视屏幕和LED灯的光线传导都与此相关,它们可以催化化学反应,它们清晰的光线也能为外科医生照亮肿瘤组织。“托托,我有一种感觉,我们已经不在堪萨斯了。”这是电影《绿野仙踪》中的一句经典台词。当一场强大的龙卷风吹走了主人公多萝西的房子时,十二岁的她晕倒在了床上。当房子再次着陆,多萝西抱着她的狗——托托走出门外时,一切都改变了。突然间,她进入了一个神奇的彩色世界。如果一场魔法龙卷风席卷我们的生活,将一切都缩小到纳米尺度,我们几乎肯定会像奥兹国的多萝西一样感到惊讶。我们的周围将会变得五光十色,一切都会改变。我们的金耳环会突然发出蓝色的光芒,而手指上的金戒指会发出红宝石般的光芒。如果我们尝试在燃气灶上煎东西,煎锅可能会融化。我们的白色墙壁因油漆中含有二氧化钛,还会开始产生大量的活性氧。图 1. 量子点为我们创造彩色光提供了新的机会。纳米尺度在纳米世界中,事物的行为会有所不同。一旦物质的大小开始以百万分之一毫米为单位,奇怪的现象——量子效应——就会出现,这会颠覆我们的直觉。2023年诺贝尔化学奖得主都是探索纳米世界的先驱。20 世纪 80 年代初,路易斯布鲁斯和阿列克谢叶基莫夫各自独立地成功合成了量子点,这种纳米粒子非常微小,量子效应决定了它们的特性。1993 年,芒吉巴文迪彻底改变了制造量子点的方法,使其质量极高——这是它们应用于当今纳米技术的重要先决条件。多亏了这三位获奖者的工作,现在人类能够利用纳米世界的一些奇特特性了。量子点现已出现在商业产品中,并应用于从物理、化学到医学的许多学科。但在展开描述这些内容之前,让我们先来揭开2023年诺贝尔化学奖的背景。图 2. 量子点是一种通常仅由几千个原子组成的晶体。一个量子点相对于足球的大小,就像是足球相对整个地球的大小。几十年来,纳米世界中的量子现象只是一种预测当阿列克谢叶基莫夫和路易斯布鲁斯合成出第一个量子点时,科学家已经知道,它们理论上可能拥有不寻常的特性。1937 年,物理学家赫伯特弗勒利希(Herbert Fröhlich)就已经预测纳米粒子的行为不会像其他粒子一样。他探索了著名的薛定谔方程的理论结果,该方程表明,当粒子变得极小时,材料中电子分布的空间就会减少。因此,电子(既是波又是粒子)会被挤压在一起。弗勒利希意识到这将使材料的特性发生巨大变化。这种可能性吸引了许多研究者,他们利用数学工具成功地预测了许多量子尺寸效应。他们还努力尝试在现实中呈现它们。但这说起来容易做起来难——科学家需要雕刻一个只有针头一百万分之一大小的结构。利用量子效应尽管如此,在 20 世纪 70 年代,研究人员还是成功制出了这种纳米结构。他们利用一种分子束,在块状材料上制造出了一层纳米级厚度的涂层。组装完成后,他们发现该涂层的光学特性可以随其厚度的变化而变化,这一观察结果与量子力学的预测相吻合。这是一项重大的突破,但需要非常先进的技术。研究人员需要超高真空和接近绝对零度的温度,因此很少有人想到量子力学现象能够得到实际应用。然而,科学时不时会带来意想不到的结果,这一次,转折点就出现在对一项古老发明的研究上:彩色玻璃。单一物质可以赋予玻璃不同的颜色对彩色玻璃最古老的考古发现距今已有数千年历史。玻璃制造商已经测试了各种方法,以了解如何制造颜色各样的的玻璃。为此,他们添加了银、金和镉等物质,然后在不同的温度下生产出了色泽美丽的玻璃。在19世纪和20世纪,当物理学家开始研究光的光学特性时,玻璃制造商对光的了解就派上用场了。物理学家可以使用彩色玻璃来滤掉特定波长的光。为了优化实验,他们开始自己生产玻璃,并由此获得了重要的发现。他们了解到的一件事是,一种物质就可以产生具有多种不同颜色的玻璃。例如,硒化镉和硫化镉的混合物可以使玻璃变成黄色或红色——会产生哪一种颜色取决于熔融玻璃的加热程度和冷却方式。最后,他们还证明颜色的形成来源于玻璃内部形成的颗粒,并且可形成的颜色取决于颗粒的大小。这大概是 20 世纪 70 年代末学界所了解的知识。今年的诺贝尔化学奖得主之一、彼时刚刚博士毕业阿列克谢I.叶基莫夫 (Alexei Ekimov) 开始在苏联的圣彼得堡Vavilov国家光学研究所(Vavilov State Optical Institute)工作。阿列克谢叶基莫夫揭示了彩色玻璃的奥秘同一种物质可以制造不同颜色的玻璃,这件事引起了叶基莫夫的兴趣,因为这实际上是不合逻辑的。如果你用镉红画一幅画,它永远都会是镉红色,除非你混合其他颜料。那么同一种物质为何能赋予玻璃不同颜色呢?在攻读博士学位期间,叶基莫夫研究的是半导体,这是微电子学的重要组成部分。在该领域,光学方法被用作评估半导体材料质量的诊断工具。研究人员用光照射材料并测量吸光度,这能表征材料是由什么物质制成的,以及晶体结构的有序程度。叶基莫夫熟悉这些方法,因此他开始用它们来检查彩色玻璃。经过一些初步实验后,他决定系统地生产用氯化铜着色的玻璃。他将熔融玻璃加热到500°C到700°C,加热时间从1小时到96小时不等。玻璃冷却并硬化后,他进行了X射线检查。散射光线显示,玻璃内部形成了微小的氯化铜晶体,而制造的过程会影响这些颗粒的大小。在一些玻璃样品中,它们只有约2纳米大,而在其他玻璃样品中,它们的尺度达到了30纳米。有趣的是,玻璃的光吸收会受到这些颗粒尺寸的影响。最大的颗粒吸收光的方式与氯化铜通常的吸收方式相同,但颗粒越小,它们吸收的光越蓝。作为一名物理学家,叶基莫夫非常熟悉量子力学定律,他很快意识到,他观察到了与尺寸相关的量子效应。这是科学家首次成功地刻意制造了量子点——一种引起尺寸依赖性量子效应的纳米颗粒。1981年,叶基莫夫在苏联科学期刊上发表了他的发现,但这对于铁幕另一边的研究人员来说很难获得。因此,1983年,当同样是今年诺贝尔化学奖的获得者——路易斯布鲁斯首次在溶液中发现了自由漂浮的粒子具备尺寸依赖性的量子效应时,他并不知道叶基莫夫的发现。图 3. 当粒子收缩时会产生量子效应。当粒子直径仅为几纳米时,电子可用的空间就会缩小。这会影响粒子的光学特性。布鲁斯证明粒子的奇怪特性是量子效应路易斯布鲁斯(Louis Brus)当时在美国贝尔实验室工作,他长期的研究目标是利用太阳能实现化学反应。为了实现这一目标,他使用了硫化镉颗粒。这种颗粒可以捕获光,并利用其中的能量来驱动反应。布鲁斯将溶液中的这些颗粒做得非常小,因为这样就有更大的区域可以发生化学反应;材料切得越碎越多,暴露在周围环境中的表面积就越大。在研究这些微小粒子的过程中,布鲁斯注意到一些奇怪的事情——当他将它们放在实验台上一段时间后,它们的光学特性发生了变化。他猜测这可能是因为颗粒变大了。为了证实他的怀疑,他生产了直径约为 4.5 纳米的硫化镉颗粒。随后,布鲁斯比较了这些新制造的颗粒的光学特性和直径约为 12.5 纳米的较大颗粒的光学特性。较大的颗粒和硫化镉吸收相同波长的光,但较小颗粒的吸光度偏向蓝色(图 3)。和叶基莫夫一样,布鲁斯明白他观察到了与尺寸有关的量子效应。他于 1983 年发表了自己的发现,并开始研究一系列其他物质制成的颗粒。这些物质出现的模式是相同的——颗粒越小,它们吸收的光越蓝。元素周期表获得了第三个维度这里,您可能会想问“为什么如果物质的吸光度稍微偏向蓝色会很重要?这真的很神奇吗?”是的,光学性质的变化表明这种物质的特性完全改变了。一种物质的光学特性是由其电子控制的。同样这些电子还会控制物质的其他特性,例如催化化学反应或导电的能力。因此,当研究人员检测到物质的吸收度变化时,他们明白自己实际上正在研究一种全新的材料。如果你想了解这一发现的重要性,你可以想象元素周期表突然有了第三个维度。元素的性质不仅受到电子层的数量和外层电子数的影响,而且在纳米水平上,尺寸也很重要。一位想要开发新材料的化学家因此有了另一个因素需要考虑——当然,这也激发了研究人员的想象力!只有一个问题。布鲁斯用来制造非粒子的方法通常会导致质量不可预测。量子点是微小的晶体(图 2),当时生产出的量子点通常存在缺陷。它们的大小也各不相同。不过可以通过控制晶体的形成方式,使颗粒具有一个相对固定的平均尺寸,但如果研究人员希望溶液中所有颗粒的尺寸大致相同,就必须在制成后对它们进行分类。这是一个艰难的过程,会阻碍研究的发展。芒吉巴文迪彻底改变了量子点的生产这是今年第三位诺贝尔化学奖获得者决定要解决的问题。芒吉巴文迪(Moungi Bawendi)于 1988 年在路易斯布鲁斯(Louis E. Brus)实验室开始了博士后工作,这所实验室中正在进行大量尝试,以改进用于生产量子点的方法。研究者使用一系列溶剂、温度和技术,对多种物质进行实验,尝试形成组织良好的纳米晶体。他们得到的晶体的确在变得更好,但仍然不够好。然而,巴文迪并没有放弃。他随后开始在美国麻省理工学院 (MIT) 担任研究负责人,并继续努力生产更高质量的纳米粒子。重大突破出现在 1993 年,当时研究小组将形成纳米晶体的物质注入经过加热且精心选择的溶剂中。他们注入了恰好形成饱和溶液所需的物质量,从而导致微小的晶体胚胎开始同时形成(图 4)。然后,通过动态改变溶液的温度,巴文迪和研究团队成功使特定尺寸的纳米晶体生长了出来,在这个过程中,溶剂可以令晶体的表面变得光滑且均匀。巴文迪生产的纳米晶体几乎是完美的,并产生了独特的量子效应。同样,由于生产方法很简单,因此这带来了革命性的突破——越来越多的化学家开始研究纳米技术,并开始研究量子点的独特性质。图 4.1.巴文迪将能形成硒化镉的物质注入加热的溶剂中,加入的量足以使针周围的溶剂饱和。2.硒化镉的小晶体立即形成,但由于注射冷却了溶剂,晶体会停止形成。3.当巴文迪提高溶剂温度时,晶体再次开始生长。这种情况持续的时间越长,晶体就会变得越大。量子点的发光特性有了商业用途三十年后的现在,量子点已成为纳米技术的重要工具,并出现在商业化的产品中。研究人员主要利用量子点来产生彩色光。如果用蓝光照射量子点,它们会吸收光并发出一种不同的颜色。通过改变粒子的大小,我们可以精准确定它们的发光颜色(图 3)。量子点的发光特性被用于基于QLED技术的计算机和电视屏幕,其中Q代表量子点。在这些屏幕中,蓝光是使用获得 2014 年诺贝尔物理学奖的节能二极管产生的。量子点被用来改变部分蓝光的颜色,将其转换为红色或绿色。这让电视屏幕获得了显示图像所需的三基色光。一些LED灯也使用了量子点来调节二极管的冷光。这让光线既能像日光一样充满活力,又能使其像暗淡灯泡发出的暖光一样平静。量子点发出的光也可用于生物化学和医学。生物化学家将用量子点与生化分子相连接,以便绘制细胞和器官图谱。医生已经开始研究用量子点追踪体内肿瘤组织的潜在效用。化学家利用量子点的催化特性来驱动化学反应。量子点正在将其对人类的利益最大化,而我们才刚刚开始探索它的潜力。研究人员相信,未来量子点可以为柔性电子产品、微型传感器、更纤薄的太阳能电池以及加密量子通信做出贡献。有一点是肯定的——关于令人惊奇的量子现象,还有很多未知须要探索。因此,如果 12 岁的多萝西正在寻找冒险,纳米世界可以提供很多东西。
  • 盘点诺贝尔化学奖:共发104次 4女性获奖
    2013年诺贝尔物理学奖10月8日在瑞典揭晓,美国科学家马丁· 卡普拉斯、迈克尔· 莱维特及亚利耶· 瓦谢尔因给复杂化学体系设计了多尺度模型而共享奖项。诺贝尔奖官方网站用数字解读了诺贝尔化学奖百年来的历史:   104次颁奖   自1901年至2012年,诺贝尔化学奖项已颁发104次。其中,1916年、1917年、1919年、1924年、1933年、1940年、1941年和1942年这几年未颁奖。这是因为这些年份恰逢第一次和第二次世界大战,化学领域没有足够重要的发现和突破,奖项顺延至下一年。   63人单独获奖   截止2012年,化学奖颁发给单独个人的为63次 23次该奖项为两人同得,18次该奖项由三人共享。   4名女性   在获得过诺贝尔化学奖的163人中,有4名女性。其中一位是著名物理学家、化学家居里夫人。   最年轻:35岁   弗雷德里克· 约里奥· 居里是迄今获得物理学奖最年轻的人,1935年,35岁的约里奥与妻子共同获得诺贝尔化学奖。值得一提的是,其妻伊雷娜· 约里奥· 居里是曾获得两项诺贝尔奖的居里夫人的长女。   最年长:85岁   2002年,85岁的约翰· B· 芬获诺贝尔化学奖奖。这使他成为目前获得诺贝尔化学奖年龄最大的人。   平均年龄57岁   诺贝尔物理学奖的获奖者平均年龄为57岁。
  • 今年诺贝尔化学奖关注领域,也是我国的“长板”之一
    10月6日,诺贝尔化学奖名单公布。本杰明李斯特(BenjaminList)和戴维麦克米伦(DavidMacMillan)因在 “发展不对称有机催化”方面作出的卓越贡献而获奖。诺奖委员会评价,他俩的工作将人类构建分子的水平提升到了一个高度。两位科学家做出的有机小分子不对称催化,简单、漂亮又精彩。打破思维定式,定义新的催化领域人们对催化的概念已经不陌生。催化剂,可以加速化学反应。此前,不对称反应催化剂的角色主要由金属和大分子的酶扮演。在构建手性分子时,通常会形成两种彼此互为镜像结构的手性分子,但在实际应用中,往往只需要其中一种手性分子,这就需要不对称催化合成。诺贝尔奖是青睐不对称催化领域的。2001年,诺贝尔化学奖就授予了不对称金属催化领域的“手性催化氢化及氧化反应”。本杰明李斯特和戴维麦克米伦则在2000年各自独立开发了一种全新而巧妙的分子构建工具——有机小分子催化剂。酶是生物大分子化合物,有没有可能用比酶结构简单、且不含金属的有机小分子实现不对称催化? 本杰明李斯特当时在美国Scripps研究所工作,他与合作者巴博斯(Barbas)和莱纳(Lerner)教授在研究抗体酶催化的过程中,试验了脯氨酸,证实了这一猜想;而麦克米伦则设计发展了手性二级胺催化剂,替代传统的金属催化体系,表现出优异的催化特性。“他们的实验并不复杂,甚至可以说相当简单。”清华大学化学系教授罗三中表示,很多时候,创新需要先在思想和理念上获得突破。此前传统主流的催化剂就是金属和酶,鲜有人想到,分子本身也可以作为催化剂。“有机小分子,在某种程度上就是最小的酶。”罗三中说,“他们打破了一种思维定式,并定义和梳理了这个方向。”中国科学院化学研究所研究员叶松告诉科技日报记者,在两人之前,其实有科研人员做过相关研究,更早期的一些文献中也零星有关于有机小分子催化的报道,比如早在上世纪70年代,就有人发现由脯氨酸催化的不对称羟醛反应。“有机小分子催化的概念被正式提出后,这一领域发展迅速。”叶松说。有机小分子催化剂,相比于酶结构更为简单,合成更为容易;而相比于金属,其反应条件比较温和,通常在室温下就可以进行;而且环境友好,生物毒性小,底物兼容性和适应性强。不过它也有缺点。有机小分子的催化效率有待进一步提高,跟酶相比,它需要的剂量更大,在工业化应用上还有待拓展。我国与国际发展水平“齐头并进”,不过仍有难题待解有机催化领域被开拓后,科研人员意识到,既然氨基可以做催化剂,那么其他带官能团的分子也可以做催化剂。罗三中课题组做的就是伯胺催化,在有机小分子催化领域,还有卡宾催化、手性磷酸催化、相转移催化、有机膦催化等不同方向。在这一领域,还活跃着我国来自不同科研院所的课题组。罗三中指出,目前我国在不对称催化方面的发展水平可以说和国外“齐头并进”。“我们也有不少课题组做出了高水平的工作,发表了漂亮的研究结果。”一些研究工作甚至早于两位获奖教授,比如史一安和杨丹教授分别独立发展的手性酮类小分子催化剂。自两位诺奖得主最初两项重要工作的发布已经过去20多年,现在,大家要攻克的难关是什么?“一是要提升催化效率,拓展应用范畴,发展更好的催化体系;二是做一些模式创新,比如将有机小分子催化和其他催化协同,赋予它新的活力;三是发展原创的新型有机小分子催化体系。”罗三中表示,该领域依然很有发展前景。不过,近几年来,有机小分子不对称催化的发展脚步确实有所迟缓,其在实际合成中的应用也亟待进一步拓展。“毕竟,领域里好解决的问题都被解决了,剩下的都是难啃的硬骨头。”叶松也坦言,有机小分子不对称催化确实已经过了以前急速发展的阶段,但这个领域也是我国的“长板”之一,应该加强长板,巩固优势。“从将来的可应用性来讲,它很有潜力,有广阔发展的空间。”叶松说,诺贝尔化学奖颁给了纯化学领域的基础性研究,给了不对称催化,也是对他们这些从事化学基础研究人员的一种认可和鼓励。“奖项的颁发,能让大家对有机小分子不对称催化燃起更多信心。” 罗三中感慨,“当然,难题还在那里,需要我们科研人员继续努力。”
  • 诺贝尔化学奖得主实验室中的成都小伙
    p style=" text-align: left "   10月7日,瑞典皇家科学院评选委员会将诺贝尔化学奖授予瑞典科学家托马斯· 林达尔、美国科学家保罗· 莫德里克和拥有美国、土耳其双重国籍的科学家阿齐兹· 桑贾尔,以表彰他们在基因修复机理研究方面所作的贡献。评选委员会当天发表的声明说,获奖者的研究成果在分子水平上描绘细胞如何修复基因并维护遗传信息,为科学界提供了关于活细胞功能的基本知识,其中的一些发现可被运用到抗癌新疗法研发方面。 /p p   昨天晚上7点,邛崃热电厂退休工人胡宪昌收到儿子胡晋川发来的一条微信,微信中关于阿齐兹· 桑贾尔等三位科学家获诺贝尔化学奖的新闻让他脸上写满了兴奋。 /p p   三位科学家中,胡宪昌对阿齐兹· 桑贾尔的名字感到兴奋,因为他的儿子胡晋川从2012年去了美国后,对阿齐兹· 桑贾尔教授和他的研究领域很熟悉。 /p p style=" text-align: center " img title=" 1444356284903.jpg" src=" http://img1.17img.cn/17img/images/201510/noimg/c401f736-4572-4621-a3da-69d63a2b1e4b.jpg" / /p p style=" text-align: center " 桑贾尔和胡晋川(后排左起第三)等4位中国科研人员合影 /p p    strong 人物 /strong /p p   胡晋川 /p p   成都邛崃人,父亲为邛崃热电厂工人 /p p   2000年毕业,胡晋川如愿以偿考入了北京大学生命科学学院 /p p   大学毕业后,他被保送进中国科学院,搞起了微生物研究 /p p   2012年留学美国,在阿齐兹· 桑贾尔的实验室里做研究员 /p p   strong  喜欢运动 放学后打盘乒乓才回家 /strong /p p   昨日,胡晋川从美国北卡罗来纳州发了一条微信,给远在四川邛崃的父亲。60岁的胡宪昌收到了信息,是标题为“3位科学家分获诺贝尔化学奖”的新闻,胡宪昌第一时间将新闻分享到了朋友圈。 /p p   在胡宪昌的眼中,儿子从小就对数理化有着浓厚的兴趣,一问梦想就是“科学家”。胡宪昌告诉成都商报记者,他和妻子都是普通工人,从2012年到美国留学后,儿子还没回过老家,“他妈妈去美国帮着带孙子,我至今还住在热电厂快要拆迁的老宿舍。” /p p   胡宪昌表示,胡晋川喜欢运动,每次放学后他都不会忙着回家,而是和同学一起在学校里打盘乒乓球,胡宪昌并不认为儿子是贪玩,默许了他这个习惯。 /p p   strong  文科也好 理工男自编自导历史剧 /strong /p p   “胡晋川嘛,在他后面还没人高考考得比他好的!”听到学生的名字,邛崃一中的数学老师张卓海还能一口说出他高考名次,“当年高考成绩全省第5名。” 张卓海说,在高考之前,他还参加了一次全国数学联赛,也杀入了全省的前几名。为此南开大学数学人才基地班准备保送他进入大学深造,胡晋川还是拒绝了。 /p p   “他说他的兴趣不在数学专业上,他喜欢生命科学。” 张卓海说,2000年毕业,胡晋川如愿以偿考入了北京大学生命科学学院。大学毕业后,他被保送进了中国科学院,搞起了微生物研究。 /p p   虽然选择了理科,文科照样不示弱,张卓海至今都记得,一次政治考试中,同班同学都已经早早离开,最后留下了他一个人。“他是理科生,文科成绩不计入成绩,但他不走过场。”张卓海说,胡晋川文科成绩好,在大学的时候还自编自导了一台历史剧,并在上面扮演了角色。 /p p   在班上,胡晋川是班上为数不多享受“特权”的学生。学习上“跑得快”,胡晋川总是喜欢超前学习,老师也对他因材施教,允许他在自己上课时看专业方面的书籍。 /p p    strong 研究领域 桑贾尔教授是代表人物 /strong /p p   诺贝尔化学奖颁布后,胡晋川感到意外,看着公布的三位科学家的照片,他兴奋地指出,“第三位是阿齐兹· 桑贾尔教授!完全没有预兆,昨天他还在跟我们评论今年的诺贝尔医学奖!” /p p   阿齐兹· 桑贾尔的实验室位于北卡罗来纳州大学(UNC)教堂山分校遗传医学大楼内,2012年的夏天,胡晋川来到了这里,3年时间他对阿齐兹· 桑贾尔教授和其研究领域很熟悉。 /p p   胡晋川告诉成都商报记者,“这次诺贝尔化学奖应该是颁给了这个领域,阿齐兹教授是其中一个代表”。据他介绍,他们所研究的只是细胞修复基因这一机制中的具体过程和方式。 /p p   胡晋川告诉成都商报记者,比如人体内的细胞每天都在进行分裂,按理说DNA分子会遭到破坏,然而,人类的基因并没有被打乱,反而保持了一个完整的状态,这说明细胞有修复自身DNA的机制。目前实验室正在做基因组方向的研究,在远景的计划中,他们的研究主要是指导抗癌药物的开发,对预防癌症、治疗癌症起到重要作用。 /p p    strong 谈诺奖得主 /strong /p p strong   获奖纯属“无心插柳柳成荫” /strong /p p   正如胡晋川当初选择了生命科学,而没有选择数学这一强项,他只是遵从了自己内心的兴趣。他从阿齐兹· 桑贾尔教授的成功上也看到了这一点。还是博士后的时候,阿齐兹· 桑贾尔就对细胞研究产生了浓厚兴趣,一次在对大肠杆菌进行研究时发现,经过紫外线照射的细菌,如果再用可见蓝光照射,细菌可以起死回生。好奇心让他发现了光解酶的作用,并揭示细胞如何运用这一机制来修复紫外线对基因造成的损害。 /p p   胡晋川还提到,阿齐兹· 桑贾尔一直给他们强调,不要认为不能发表好文章的领域就不去研究,做科学忌讳浮躁。胡晋川表示,这次获得诺贝尔奖,有种“无心插柳柳成荫”的味道,“前一天他还在跟我们评论诺贝尔医学奖的价值。” /p p    strong 诺奖得主一度找不到工作 /strong /p p   胡晋川评价阿齐兹· 桑贾尔,用的第一个词就是“勤奋”。“虽然已经70岁了,大多数时候都能够在实验室看到他的身影。”胡晋川透露,在成功的背后,阿齐兹· 桑贾尔经历了不少挫折,博士毕业后,一度找不到工作,最后在耶鲁大学做一个技术员,后来辞职辗转了很多地方,都没找到栖息之所,最后才在北卡罗来纳州大学找到了一份工作。 /p p   “他对我们不是那么严格。”胡晋川笑着说,平时周末都不会喊大家加班。在阿齐兹· 桑贾尔获奖后,学校还奖励了一个永久免费的车位,不过阿齐兹· 桑贾尔表示自己不开车。“他都是走路上下班。”胡晋川透露,阿齐兹· 桑贾尔年轻时还差点入选土耳其青年足球队,“他的确很喜欢体育运动,重要的赛事都不会错过。” /p p strong   对话胡晋川 /strong /p p strong   “找准方向,坚持努力,总会有所收获” /strong /p p   问:能够在这样一个实验室工作,你觉得其中能够获奖的关键是什么? /p p   胡晋川:我想说的是,坚持和努力对所有人都很重要。以阿齐兹· 桑贾尔教授来说,他肯定比大多数人都聪明,更重要的是,他也比大多数人都勤奋。天赋有高低,但是只要找准方向,坚持努力,总会有所收获。 /p p   strong  问:到了美国过后,研究上遇到什么瓶颈没? /strong /p p   胡晋川:我在这边总体来说比较顺利,当然也有困难和挣扎的时候。前半年我曾经不知道方向在哪,还好第二年初有一个实验成功了,解决了一个实验室10多年没解决的问题。然后第二年年底的时候我建立的新方法效果太差,试了半年没进展,都快放弃了,还好有一天突然想到一个改进方法,才坚持下来了。总的来说做科研失败总比成功多,没有一颗百折不挠的心是很难坚持下去的。 /p
  • 像玩积木一样“玩转”化学!2022年诺贝尔化学奖解读
    当地时间10月5日,瑞典皇家科学院宣布,美国科学家卡罗琳贝尔托西、丹麦科学家摩顿P梅尔达尔、美国科学家卡尔巴里夏普利斯荣膺2022年诺贝尔化学奖,以表彰他们在点击化学和生物正交化学领域作出的贡献。诺贝尔奖委员会解释称,今年的诺贝尔化学奖授予了一种简化困难的过程!夏普利斯和梅尔达尔为化学的功能形式——点击化学奠定了基础。利用点击化学方法,构建分子的模块可以像搭扣一样“click”(咔嗒)一声,快速有效地耦合在一起。贝尔托西则将点击化学带入了一个新的维度,并开始将其应用于生物体。长期以来,化学家们一直渴望构建出越来越复杂的分子。在药学研究领域,这通常涉及到对具有药用性质的天然分子进行人工再造。科学家们殚精竭虑的研究催生出了很多令人惊叹的分子结构,但构建过程耗时长,而且生产成本很高。诺贝尔化学奖委员会主席约翰克维斯特说:“今年的化学奖授予了简化困难的过程——即使采取简单的方法也可以构建出功能分子。”夏普利斯开创了这一局面。大约在2000年,他提出了点击化学的概念,这是一种简单可靠的化学形式,反应迅速,而且避免了不必要的副产品。不久之后,梅尔达尔和夏普利斯分别介绍了现在点击化学领域“王冠上的宝石”:铜催化末端炔烃与叠氮化物的环加成反应。这是一种优雅而高效的化学反应,目前已被广泛应用于多个领域:药物开发、绘制DNA图谱以及创建用途更广的新材料。贝尔托西则将点击化学提升到新的水平。为了在细胞表面绘制重要但难以捉摸的生物分子——聚糖,她开发了在生物体内起作用的点击反应,这一生物正交反应不会破坏细胞的正常化学反应。这些反应现在被全球各地的科学家们用于探索细胞和跟踪生物过程。比如,利用生物正交反应,研究人员改进了癌症药物的靶向性,目前正在临床试验中开展相关测试。点击化学和生物正交反应将化学带入了功能主义时代,这给人类带来了巨大的利益和福祉。值得一提的是,这也是夏普利斯在2001年因手性催化氧化反应获诺贝尔化学奖以来,第二次摘得诺贝尔化学奖的桂冠。
  • 三人获诺贝尔化学奖 发明世界上最小机器
    5日,瑞典斯德哥尔摩,2016年诺贝尔化学奖在瑞典皇家科学院揭晓。  瑞典皇家科学院5日宣布,将2016年诺贝尔化学奖授予让-皮埃尔索瓦日、弗雷泽斯托达特、伯纳德费林加这三位科学家,以表彰他们在分子机器设计与合成领域的贡献。  让-皮埃尔索瓦日出生在法国,目前在法国斯特拉斯堡大学工作 弗雷泽斯托达特出生在英国,目前在美国西北大学工作 伯纳德费林加出生在荷兰,目前在荷兰格罗宁根大学工作。  分子机器是指在分子层面的微观尺度上设计开发出来的机器,在向其提供能量时可移动执行特定任务。诺贝尔奖评选委员会在声明中说,这三位获奖者发明了“世界上最小的机器”,将化学发展推向了一个新的维度。  近年来,三位诺奖得主的成果已经成为全世界科研人员开发分子机器的“工具箱”,开创了分子机器的发展道路。目前已有科学家在轮烷的基础上建造出一个可以抓取并连接氨基酸的分子机器人 还有研究人员将分子马达和长聚合物相连,形成复杂的网络,将光能储存在分子中,有望开发出新型电池及光控传感器。  费林加在现场电话连线时说,得奖消息令自己“很震惊”,同时感到荣幸。他表示,荣誉属于全体科研合作者,大家的共同努力才成就了如此骄人的成果。  费加林对其获奖成就解释说:“一旦在分子层面控制了运动,就为控制其他各种形式的运动提供了可能。这一研究成果为未来新材料的研发开启了广阔前景。”  今年诺贝尔化学奖奖金共800万瑞典克朗(约合93.33万美元),将由这三位获奖者平分。 据新华社  ■ 背景  诺贝尔化学奖  曾有171人获奖一人梅开二度  化学奖是众多诺贝尔奖中最重要的奖项之一,诺贝尔奖的发起人阿尔弗雷德诺贝尔本人就是一名化学家。诺贝尔的不少发明和成就,都是以化学知识为基础发展起来的。根据诺贝尔的遗愿,诺贝尔化学奖授予“在化学领域做出最重大发现或进展的人”。  受战争和“宁缺毋滥”影响 八年未颁发  诺贝尔化学奖由瑞典皇家科学院从1901年开始负责颁发,至今总共颁发了107次。期间只有1916、1917、1919、1924、1933、1940、1941和1942这八年没有颁发。  诺贝尔奖奖项空缺,除了受到两次世界大战影响之外,还受到了诺贝尔奖组委会“宁缺毋滥”的评奖理念的影响。  该奖项于每年12月10日,即阿尔弗雷德-诺贝尔逝世周年纪念日颁发。截至2015年,诺贝尔化学奖共有172位获奖者。其中英国生物化学家弗雷德里克-桑格在1958年和1980年两次获得诺贝尔奖,因此历史上获得诺贝尔奖的总共只有171人。  在被颁出的106次诺贝尔化学奖中,有63次被颁给了单独的个人,23次同时颁给两人,21次同时颁给三人,三人是诺奖单项获奖人数的上限。  与居里一家“有缘”母女和女婿均获奖  诺贝尔化学奖获奖者的平均年龄是58岁。迄今为止,最年轻的诺贝尔化学奖得主是法国科学家弗雷德里克约里奥。1935年获奖时约里奥只有35岁。值得一提的是,约里奥的妻子是居里夫人的长女伊伦居里。1935年夫妇二人因在合成新型放射性元素方面有突出贡献,而被同时授予诺贝尔化学奖。  美国化学家约翰芬恩2002年获得诺贝尔化学奖时已是85岁高龄,系最年迈获奖者。  此外,除了居里夫人的长女外,历史上还有3名女性获得过诺贝尔化学奖。其中,有2人是单独得奖:居里夫人1911年获奖,此前在1903年,她已经获得过诺贝尔物理学奖 1964年,英国生物化学家多萝西玛丽霍奇金因促进蛋白质晶体学发展而单独获奖。  最近一次获得诺贝尔奖的女性是以色列科学家阿达约纳特。2009年,她凭借在核糖体的结构和功能研究方面的突出贡献,与另外两人一同获奖。(宗和)  ■ 科普  “世界最小机器”是怎么设计出来的?  世界上存在小到只有千分之一头发丝粗细的机器吗?答案就是刚刚助力三位科学家摘得2016年诺贝尔化学奖的分子机器。  人类是如何用自己一双大手来制造出需要电子显微镜才能观察到的“世界最小机器”?这是一个关于科学家们如何将分子成功连接起来并设计出从微型电梯、微型发动机到分子肌肉的故事。  第一步,索瓦日成功合成了一种名为“索烃”的两个互扣的环状分子,而且这两个分子能够相对移动   第二步,斯托达特合成了“轮烷”,即将一个环状分子套在一个哑铃状的线形分子轴上,且环状分子能围绕这个轴上下移动,并成功实现了可以上升高度达0.7纳米的“分子电梯”和可以弯折黄金薄片的“分子肌肉”   第三步,费林加设计出了在构造上能向一个特定方向旋转的分子马达,这个马达可以让一个28微米长、比马达本身大1万倍的玻璃缸旋转起来。有了这三步,分子机器就可以动起来了。  评选委员会表示,就像19世纪30年代,当电动马达被发明出来时,科学家未曾想过它会在电气火车、洗衣机等被广泛运用。而分子机器正如当年的电动马达一样,未来很有可能将用于开发新材料、新型传感器和能量存储系统等。据新华社  ■ 身边人看诺奖  2016年诺贝尔化学奖公布后,针对三位获奖科学家在分子机器设计与合成领域的贡献,以及他们发明出的“世界上最小的机器”,记者询问了一些大学生和小学生,了解一下身边人对此有何看法。实习生 李晨晖  你认为“分子机器”是个什么样的存在?  清华化学系(大一):分子机器应该是和传统的机器没有很大差别,都是一种能源做功的机器,但分子机器的尺寸非常小,且与传统机器的功能用途有所不同。  北外英语系(大三):分子机器应该是一种在分子层面制作出来的超小型工具吧,这种机器有分子结构,有一定动力系统。  小学生(五年级):非常非常小,它最大的优点就是小,能够做很多大机器完成不了的事情。  你觉得机器最小能做到多小?  清华化学系(大一):分子机器可以做到纳米级别的大小,毕竟分子机器需要完成做功,所以还是需要一个比较大的分子才能具有机器的功能。  北外英语系(大三):机器即使做得再小也应该包含一些必要的结构。我知道的最小单位就是纳米了,分子机器也可以做到纳米级吧。  小学生(五年级):比芝麻还要小,比跳蚤还要小的,需要放在显微镜下才能看得到。  对于分子机器的未来用途,你有何猜想?  清华化学系(大一):分子机器与分子生物学和仿生学密不可分,如果化学能够实现分子机器的合成,将能够在医疗、生化研究等领域发挥重要作用。  北外英语系(大三):比如在医疗领域制造一种超分子的小车运送体内有用物质,在极其微小的空间里能够游刃有余地开展运输任务。  小学生(五年级):人的身体里有器官生病了,可以把这种小机器放进身体里去进行修复。
  • 诺贝尔化学奖花落2位女科学家,历届获奖女科学家盘点
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/a3c2dbc3-ef35-4bc3-bbe8-921005556bb3.jpg" title=" 7440CA75-E13F-4F1F-8F42-9BF46D78D9CB.jpeg" alt=" 7440CA75-E13F-4F1F-8F42-9BF46D78D9CB.jpeg" / /p p style=" text-align: justify text-indent: 2em " 法国科学家埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)与美国科学家詹妮弗· 杜德纳(Jennifer A . Doudna)。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 据诺贝尔奖官方网站消息,2020年诺贝尔化学奖于北京时间10月7日17时45分许正式揭晓,由法国科学家埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)与美国科学家詹妮弗· 杜德纳(Jennifer A . Doudna)获得。以表彰她们“开发出一种基因组编辑方法”。两位获奖者将分享1000万瑞典克朗奖金(约合760万人民币)。 /span /p p script src=" https://p.bokecc.com/player?vid=27570E61F0EADE909C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script br/ /p p style=" text-align: justify text-indent: 2em " 埃马纽埃尔· 卡彭蒂耶,就职于德国柏林马克斯· 普朗克病原学研究室;詹妮弗· 杜德纳,美国生物学家,加州大学伯克利分校的化学和分子生物学与细胞生物学教授。 /p p style=" text-align: justify text-indent: 2em " CNN称,诺贝尔化学奖颁给了开发出能够“改写生命密码”的CRISPR基因编辑工具的科学家。 /p p style=" text-align: justify text-indent: 2em " 2020年诺贝尔奖六大奖项,包括诺贝尔生理学或医学奖、诺贝尔物理奖、诺贝尔化学奖、诺贝尔文学奖、诺贝尔和平奖、诺贝尔经济学奖,于10月5日至12日陆续揭晓。诺贝尔基金会首席执行官拉尔斯· 海肯斯滕此前表示,受新冠疫情影响,今年12月将不再举行传统的诺贝尔奖颁奖典礼,颁奖仪式将改为线上举行。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 历史上的女性诺贝尔奖获得者 /strong /span /p p style=" text-align: justify text-indent: 2em " 5位女性获奖者:截至2019年,在183位诺贝尔化学奖得主中,女性有5位,其中居里夫人(玛丽· 居里)和英国科学家多萝西· 克劳福特· 霍奇金分别在1911年和1964年独享这一奖项。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 近10年这些人曾获奖 /strong /span /p p style=" text-align: justify text-indent: 2em " 诺贝尔化学奖首次颁发于1901年,截至2019年,共颁奖111次,有183人获奖。 /p p style=" text-align: justify text-indent: 2em " 其中,最年轻的化学奖得主是法国物理学家弗雷德里克· 约里奥-居里,他在35时与其妻子因对人工放射性的研究,共同获得诺贝尔化学奖。 /p p style=" text-align: justify text-indent: 2em " 最年长的化学奖得主是美国科学家约翰· 古迪纳夫,他因对锂电池研发领域做出的贡献,在97岁时与另外两位科学家共同获得了2019年诺贝尔化学奖,古迪纳夫也是目前所有诺奖获得者中,年龄最大的一位。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 以下是近10年以来诺贝尔化学奖得主名单,及其主要成就: /span /strong /p p style=" text-align: justify text-indent: 2em " 2019年: /p p style=" text-align: justify text-indent: 2em " 约翰· 古迪纳夫(美)、斯坦利· 惠廷厄姆(美)和吉野彰(日),因在锂电池研发领域做出的贡献分享诺奖。 /p p style=" text-align: justify text-indent: 2em " 2018年: /p p style=" text-align: justify text-indent: 2em " 诺贝尔化学奖授予弗朗西斯· 阿诺德(美)、乔治· 史密斯(美)和格雷戈里· 温特利(英),以表彰他们在酶的定向演化,以及用于多肽和抗体的噬菌体展示技术方面取得的成果。 /p p style=" text-align: justify text-indent: 2em " 2017年: /p p style=" text-align: justify text-indent: 2em " 约阿希姆· 弗兰克(德/美),理查德· 亨德森(英),雅克· 杜博歇(瑞士)发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子结构。 /p p style=" text-align: justify text-indent: 2em " 2016年: /p p style=" text-align: justify text-indent: 2em " 让-皮埃尔· 索维奇(法)、弗雷泽· 斯托达特(英)和伯纳德· 费林加(荷)三位科学家因“设计和合成分子机器”获奖。 /p p style=" text-align: justify text-indent: 2em " 2015年: /p p style=" text-align: justify text-indent: 2em " 托马斯· 林达尔(瑞典)、保罗· 莫德里奇(美)、阿齐兹· 桑贾尔(土耳其/美),因在基因修复机理研究方面所做出的贡献获奖。 /p p style=" text-align: justify text-indent: 2em " 2014年: /p p style=" text-align: justify text-indent: 2em " 埃里克· 贝齐格(美)、威廉· 莫纳(美)、斯特凡· 黑尔(德),因“研制出超分辨率荧光显微镜”获奖。 /p p style=" text-align: justify text-indent: 2em " 2013年: /p p style=" text-align: justify text-indent: 2em " 马丁· 卡普拉斯(美/奥地利)、迈克尔· 莱维特(英/美)、阿里耶· 瓦谢勒(美/以色列)分享诺奖,三人在开发多尺度复杂化学系统模型方面做出贡献。 /p p style=" text-align: justify text-indent: 2em " 2012年: /p p style=" text-align: justify text-indent: 2em " 罗伯特· 莱夫科维茨(美)、布莱恩· 克比尔卡(美),因“G蛋白偶联受体研究”获奖。 /p p style=" text-align: justify text-indent: 2em " 2011年: /p p style=" text-align: justify text-indent: 2em " 达尼埃尔· 谢赫特曼(以色列)因发现准晶体获奖。 /p p style=" text-align: justify text-indent: 2em " 2010年: /p p style=" text-align: justify text-indent: 2em " 理查德· 赫克(美)、根岸英一(日)、铃木章(日),因“有机合成中钯催化交叉偶联”研究,分享诺贝尔化学奖。 /p p br/ /p
  • 2018诺贝尔化学奖授予三位科学家 附历年得主盘点
    p   当地时间10月3日,瑞典皇家科学院宣布,将2018年诺贝尔化学奖授予2018年诺贝尔化学奖得主为Arnold,Smith,Winter。 br/ /p p   奖项的一半授予美国科学家阿诺德(Frances H. Arnold),表彰她实现了酶的定向演化 另一半授予给美国科学家史密斯(George P. Smith)和英国科学家温特(Gregory P. Winter),表彰他们实现了多肽和抗体的噬菌体呈现技术。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/8f1c90ac-2aec-4857-aa84-f43b6f2ce6aa.jpg" title=" 2018100318181296422.png" alt=" 2018100318181296422.png" / br/   2018年诺贝尔化学奖授予3位科学家。 /p p   根据诺贝尔奖官方网站介绍,诺贝尔化学奖由瑞典皇家科学院负责颁发,始于1901年,以表彰“在化学领域做出最重要发现或发明的人”。 /p p   化学是诺贝尔奖创始人阿尔弗雷德· 诺贝尔一生中最依赖的科学,他的发明和积累的巨额财富都得益于化学知识。1895年,诺贝尔立下遗嘱,从个人财富中拿出3100万瑞典克朗作为基金,设立诺贝尔奖,用以奖励在几大科学领域中做出重要贡献的人。遗嘱中,他把化学奖放在了第二位,仅次于物理学奖。 /p p   从1901年至2017年间,诺贝尔化学奖已颁发过109次,拥有178位获奖者。1911年,居里夫人获得诺贝尔化学奖,成为史上第一个两次获得诺贝尔奖的人。英国学者弗雷德里克· 桑格则是唯一一位两次获得诺贝尔化学奖的生物化学家。 /p p   2017年10月4日,2017年诺贝尔化学奖授予了瑞士科学家雅克· 杜博歇、美国科学家约阿希姆· 弗兰克以及英国科学家理查德· 亨德森,以表彰他们在冷冻显微术领域的贡献。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/c5171abc-dec5-4086-9143-053758daaed5.jpg" title=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖颁奖仪式 br/ /p p   诺贝尔化学奖是瑞典化学家阿尔弗雷德诺贝尔遗嘱中设立的原始四大奖项之一,首次颁发于1901年,截至2017年,共颁奖109次,有178人次获奖,化学奖得主的平均年龄是58岁。 /p p   其中,最年轻的化学奖得主是法国物理学家弗雷德里克约里奥-居里,他在1935年与其妻子因对人工放射性的研究共同获得诺贝尔化学奖时年仅35岁。值得一提的是,他妻子的母亲是两获诺奖的居里夫人,两人的一对儿女也是著名的科学家。 /p p   最年长的化学奖得主是美国化学家约翰贝内特芬恩,他因对生物大分子的鉴定和结构分析质谱法方法的研究,与日本化学家田中耕一、瑞士化学家库尔特维特里希共同获得了2002年诺贝尔化学奖,时年85岁。 /p p   百年间,诺贝尔化学奖仅有4位女性得主。分别是1911年因放射化学方面的成就而获奖的法国化学家玛丽居里 上文中提到的法国物理学家伊雷娜约里奥-居里 1964年因解析了一些重要生化物质结构而获奖的英国生物化学家多萝西霍奇金 及2009年因对核糖体结构和功能方面的研究而联合获奖的以色列晶体学家阿达约纳特。 /p p   截至今年,诺贝尔化学奖一共停发过8次,分别在1916, 1917, 1919, 1924, 1933, 1940, 1941和1942年。多数发生在一战二战时期。此外,据诺贝尔奖官网称,如果当年没有符合条件的候选人,该年的诺贝尔奖也将延后颁发。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/30f8da35-fcd8-47dd-b075-c066286f62b8.jpg" title=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖奖章 br/ /p p   strong  最后,附上21世纪以来诺贝尔化学奖得主名单: /strong /p p   2000年:艾伦黑格(美)艾伦麦克迪尔米德(美/新西兰)白川英树(日)对导电聚合物的研究。 /p p   2001年:威廉诺尔斯(美)野依良治(日)手性催化还原反应,巴里夏普莱斯(美)手性催化氧化反应。 /p p   2002年库尔特维特里希(瑞士)约翰贝内特芬恩(美)田中耕一(日)对生物大分子的鉴定和结构分析方法的研究。 /p p   2003年:彼得阿格雷(美)罗德里克麦金农(美)对细胞膜中的水通道的发现以及对离子通道的研究。 /p p   2004年:阿龙切哈诺沃(以)阿夫拉姆赫什科(以)欧文罗斯(美)发现了泛素调解的蛋白质降解。 /p p   2005年:罗伯特格拉布(美)理查德施罗克(美)伊夫肖万(法)对烯烃复分解反应的研究。 /p p   2006年:罗杰科恩伯格(美)对真核转录的分子基础所作的研究。 /p p   2007年:格哈德埃特尔(德),在“固体表面化学过程”研究中作出的贡献。 /p p   2008年:下村修(日)、马丁查尔菲(美)、钱永健(美),发现并发展了绿色荧光蛋白(GFP)。 /p p   2009年:万卡特拉曼拉玛克里斯南(英)、托马斯斯泰茨(美)、阿达约纳什(以色列),在核糖体结构和功能研究中做出贡献。 /p p   2010年:理查德赫克(美)、根岸英一(日)、铃木章(日),发明新的连接碳原子的方法。 /p p   2012年:罗伯特莱夫科维茨(美)、布莱恩克比尔卡(美),因“G蛋白偶联受体研究”获奖。 /p p   2013年:马丁卡普拉斯(美)、迈克尔莱维特(英、美)、阿里耶瓦谢勒(美、以色列),在开发多尺度复杂化学系统模型方面做出贡献。 /p p   2014年:埃里克贝齐格(美)、威廉莫纳(美)、斯特凡黑尔(德),为发展超分辨率荧光显微镜做出贡献。 /p p   2015年:托马斯林达尔(瑞典)、保罗莫德里奇(美)、阿齐兹桑贾尔(土耳其、美),因“DNA修复的细胞机制研究”获奖。 /p p   2016年:让-皮埃尔索维奇,J弗雷泽斯托达特和伯纳德L费林加三位科学家因“设计和合成分子机器”获奖。 /p p   2017年,约阿希姆弗兰克(瑞士),理查德亨德森(英),雅克杜博歇(瑞士),他们发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子的结构。 /p p br/ /p
  • 重磅!2023年诺贝尔化学奖揭晓!量子点绘制绚丽纳米世界!
    2023年10月4日下午,瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国麻省理工学院教授蒙吉G巴文迪(Moungi G. Bawendi)、美国哥伦比亚大学教授路易斯E布鲁斯(Louis E. Brus)和美国纳米晶体技术公司前首席科学家阿列克谢伊基莫夫(Alexei I. Ekimov),以表彰他们在量子点的发现和发展方面的贡献。三人将分得1100万瑞典克朗,约合人民币725万元。量子点是纳米大小的半导体材料,具有独特的光学和电子性质。由于它们可以发出特定颜色的光,且荧光亮度超过传统荧光体,被广泛应用于显示器、照明和生物成像技术。此外,量子点还可以作为光电材料,将光能转化为电能,被应用于太阳能电池和光电器件等领域。在医学领域,量子点被用作生物成像和药物输送,帮助医生了解和诊断病情,提高药物治疗效果。蒙吉G巴文迪(Moungi G. Bawendi):1961年出生于法国巴黎,法国-突尼斯裔美国化学家,美国艺术与科学院院士,美国国家科学院院士,诺贝尔化学奖获得者,美国麻省理工学院教授,是量子点领域的先驱之一,他在该领域的研究成果为制备高质量的量子点材料奠定了基础,并开发出新颖的制备方法,提高量子点的性能,并拓展了应用领域。路易斯E布鲁斯(Louis E. Brus):1943年出生于美国俄亥俄州,美国艺术与科学院院士,美国国家科学院院士,挪威科学与文学院外籍院士,诺贝尔化学奖获得者,美国哥伦比亚大学化学系教授,他创造了量子点术语,在量子点的表征和理解方面做出巨大贡献。阿列克谢伊基莫夫(Alexei I. Ekimov):1945年出生于苏联列宁格勒,俄罗斯物理学家,诺贝尔化学奖获得者,美国纳米晶体技术公司首席科学家,他发现新型半导体量子点材料,推动量子点技术发展,给各领域的应用创新提供可能性。诺贝尔化学奖近五年得主2022年诺贝尔化学奖授予美国化学家卡罗琳贝尔托西(Carolyn R. Bertozzi)、丹麦化学家摩顿梅尔达尔(Morten Meldal)和美国化学家卡尔巴里夏普莱斯(K. Barry Sharpless),以表彰他们在链接化学和生物正交化学的发展作出了贡献。2021年诺贝尔化学奖授予德国科学家本杰明李斯特 (Benjamin List) 和美国科学家戴维麦克米伦 (David MacMillan),以表彰他们对不对称有机催化的发展所作出的贡献。2020年诺贝尔化学奖授予埃马纽埃尔卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗杜德纳(Jennifer A. Doudna),以表彰她们在“凭借开发基因组编辑方法”方面作出的贡献。2019年诺贝尔化学奖授予约翰古迪纳夫(John B. Goodenough),斯坦利威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino),以表彰他们在锂离子电池领域的贡献。2018年诺贝尔化学奖授予美国科学家弗朗西斯阿诺德(Frances H. Arnold)、美国科学家乔治史密斯(George P. Smith)和英国科学家乔治保罗温特(Gregory P. Winter),以表彰他们在“酶的定向进化”以及“多肽与抗体的噬菌体展示技术”领域的贡献。
  • 3名学者获诺贝尔化学奖 表彰其DNA修复研究
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/insimg/8762c5fa-e41f-4bf5-91a8-dbc962a0c974.jpg" title=" 2015100717533042476.jpg" / /p p style=" text-align: center " Tomas Lindahl、Paul Modrich和Aziz Sancar获得今年的诺贝尔化学奖 /p p & nbsp & nbsp 托马斯· 林达尔、保罗· 莫德里奇和阿齐兹· 桑贾尔获得今年的诺贝尔化学奖,以表彰他们在DNA修复的细胞机制方面的研究。 /p p & nbsp & nbsp 托马斯· 林达尔出生在瑞典,保罗· 莫德里奇是美国人,阿齐兹· 桑贾尔是土耳其人。他们三人均分了今次的奖金。 /p p & nbsp & nbsp 另据中新网10月7日电 据诺贝尔奖官网的最新消息,瑞典斯德哥尔摩当地时间7日中午11时45分(北京时间7日下午5点45分),2015年诺贝尔化学奖在当地的瑞典皇家科学学院揭晓,托马斯.林道尔(Tomas Lindahl)、保罗.莫德里奇(Paul Modrich)以及阿奇兹.桑卡(Aziz Sancar)获奖。获奖理由是“DNA修复的细胞机制研究”。 /p p & nbsp & nbsp 颁奖词中写到,三人在分子领域绘制出了细胞如何完成DNA修复及保护遗传信息。他们的工作为活细胞功能的认知提供了基础知识,研究成果在未来甚至可以为癌症治疗发展提供很大帮助。 /p p & nbsp & nbsp 据此前报道,在今年引文桂冠奖的获奖名单中,研究基因编辑技术CRISPR-Cas9的科学家们被认为是诺贝尔化学奖的最有力竞争者。 /p p & nbsp & nbsp 2014年诺贝尔化学奖授予了美国科学家埃里克.贝齐格、威廉.莫纳和德国科学家斯特凡.黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 br/ /p p & nbsp & nbsp 诺贝尔化学奖是诺贝尔奖的一个奖项,由瑞典皇家科学院从1901年开始负责颁发。每年于12月10日,即阿尔弗雷德?诺贝尔逝世周年纪念日颁发。诺贝尔化学奖是为了表彰前一年中在化学领域有最重要的发现或发明的人。 /p
  • 重磅出炉:冷冻电镜技术摘得2017年诺贝尔化学奖
    p   北京时间10月4日下午5点45分,2017年诺贝尔化学奖揭晓,Jacques Dubochet, Joachim Frank和Richard Henderson获奖,获奖理由是“研发出冷冻电镜,用于溶液中生物分子结构的高分辨率测定”。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/625c0b71-5e7f-41ad-9d31-c320ca1bbc44.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 2017年诺贝尔化学奖授予三位冷冻电镜领域的学者 /p p span style=" color: rgb(255, 0, 0) " strong   获奖人简介 /strong /span /p p style=" text-align: center " strong 约阿基姆· 弗兰克(Joachim Frank) /strong /p p   德裔生物物理学家,现为哥伦比亚大学教授。他因发明单粒子冷冻电镜(cryo-electron microscopy)而闻名,此外他对细菌和真核生物的核糖体结构和功能研究做出重要贡献。弗兰克2006年入选为美国艺术与科学、美国国家科学院两院院士。2014年获得本杰明· 富兰克林生命科学奖。 /p p style=" text-align: center " strong 理查德· 亨德森(Richard Henderson) /strong /p p   苏格兰分子生物学家和生物物理学家,他是电子显微镜领域的开创者之一。1975年,他与Nigel Unwin通过电子显微镜研究膜蛋白、细菌视紫红质,并由此揭示出膜蛋白具有良好的机构,可以发生α-螺旋。近年来,亨德森将注意力集中在单粒子电子显微镜上,即用冷冻电镜确定蛋白质的原子分辨率模型。 /p p style=" text-align: center " strong 雅克· 迪波什(Jacques Dubochet) /strong /p p   Jacques Dubochet, 1942年生于瑞士,1973年博士毕业于日内瓦大学和瑞士巴塞尔大学,瑞士洛桑大学生物物理学荣誉教授。Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。 /p p    span style=" color: rgb(255, 0, 0) " strong 冷冻电镜技术为何摘得2017年的诺贝尔化学奖 /strong /span /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 撰文 | 何万中(北京生命科学研究所研究员) /span /p p   ● ● ● /p p   2013年,冷冻电镜技术的突破给结构生物学领域带来了一场完美的风暴,迅速席卷了结构生物学领域,传统X射线、传统晶体学长期无法解决的许多重要大型复合体及膜蛋白的原子分辨率结构,一个个被迅速解决,纷纷强势占领顶级期刊和各大媒体版面,比如程亦凡博士、施一公博士、杨茂君博士、柳正峰博士所解析的原子分辨率重要复合体结构,震惊世界。 /p p   这场冷冻电镜革命的特点是:不需要结晶且需要样品量极少,即可迅速解析大型蛋白复合体原子分辨率三维结构。这场电子显微学分辨率革命的突破有两个关键技术:直接电子相机(其中算法方面程亦凡博士和李雪明博士有重要贡献)和三维重构软件。 /p p   引领这些技术突破的背后离不开三位冷冻电镜领域的开拓者:理查德· 亨德森(Richard Henderson)、约阿希姆· 弗兰克(Joachim Frank)和 Jacques Dubochet分别在基本理论、重构算法和实验方面的早期重要贡献。 /p p   我本人与这三位科学家都有曾过面对面的交流,也是读他们的文章进入这个领域的,下面简要谈谈他们的贡献。 /p p   电子显微镜于1931年发明,但在生物学领域的应用滞后于材料科学,原因在于生物样品含水分才会稳定,而电子显微镜必须在高真空下才能工作,因此如何制作高分辨率生物电镜样品是个技术瓶颈。传统的重金属负染技术,可以让重金属包被蛋白表面,然后脱水干燥制作适合真空成像的样品,但这会导致样品分辨率降低(至多保存1.5纳米)。 /p p   1968年,英国剑桥大学MRC实验室的Klug博士和他的学生DeRosier开创了基于负染的噬菌体病毒的电镜三维重构技术(Klug 博士获1982年诺贝尔化学奖)。但如何保持生物样品原子分辨率结构又适合电镜成像呢?加州大学伯克利分校的Robert Glaeser博士和他学生Ken Taylor 于1974年首次提出并测试了冷冻含水生物样品的电镜成像,可以有效降低辐照损伤对高分辨率结构破坏和维持高真空,实现高分辨率成像的新思路,这就是冷冻电镜(CryoEM)的雏形。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/442c7203-8a0f-4566-88dc-f8fb79e6316a.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " 冷冻电镜样品制作流程,图片来自creative-biostructure.com /p p   1982年,Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。 /p p   在Klug博士提出的三维重构技术基础上,MRC实验室的Richard Henderson博士(物理学及X射线晶体学背景)跟同事Unwin 博士1975年开创了二维电子晶体学三维重构技术,随后应用该技术技术解析了第一个膜蛋白细菌视觉紫红质蛋白的三维结构,1990达到3.5埃,这是一个非常了不起的工作,但是第一个类似的膜蛋白结构的诺贝尔奖还是被X射线晶体学家米歇尔于1988年夺走了。二维晶体最大问题在于很难长出二维晶体,因而应用范围很窄,且容易被X射线晶体学家抢了饭碗(本人刚入行第一个薄三维晶体项目就被抢了)。 /p p   上世纪90年代,Henderson博士转向了刚兴起的另一项CryoEM三维重构技术,即Joachim Frank 博士发展的单颗粒分析重构技术,无需结晶就可以对一系列蛋白或复合体颗粒直接成像,对位平均分类,然后三维重构。Henderson 博士凭借他深厚的物理学及电子显微学功底,以及非凡的洞察力,提出实现原子分辨率CryoEM技术的可行性,在理论上做了一系列超前的预见,比如电子束引起的样品漂移必须解决才能实现原子分辨率,为后期直接电子相机的突破指明了方向,他本人也投身于直接电子相机的开发。 /p p   因此,在这场电镜分辨率的革命中,Henderson博士是个不折不扣的发起者。另外,三维重构新算法的突破也有Henderson 博士的独具慧眼有关,Sjors Scheres博士在没有很强论文情况下被他看中招募到MRC后因为开发经典的Relion 三维重构算法大放异彩。 /p p   最后,我们再介绍一下发展冷冻电镜单颗粒三维重构技术的Joachim Frank博士,他也是物理学背景。Frank 博士是单颗粒分析鼻祖,单颗粒三维重构算法及软件Spider的作者。 /p p   Frank 师从德国著名的电子显微学家Hoppe博士,Hoppe学派主张对任意形状样品直接三维重构,后来的电子断层三维重构及cryoEM三维重构技术都与他的早期思想有关。Frank博士提出基于各个分散的全同颗粒(蛋白)的二维投影照片,经过分类对位平均,然后三维重构获得蛋白的三维结构,发展了一系列算法并编写软件(SPIDER)实现无需结晶的蛋白质三维结构解析技术。尤其在核糖体三维重构方面有一系列的重要开创性工作,可惜当年核糖体结构诺贝尔奖没有给他。现在给他在cryoEM单颗粒三维重构的一个诺贝尔奖,实至名归。 /p p    span style=" color: rgb(255, 0, 0) " strong “不务正业”的诺贝尔化学奖 /strong /span /p p   诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德· 贝恩哈德· 诺贝尔的部分遗产作为基金创立的5个奖项之一,从1901年至2016年,共颁发了108次,拥有175位获奖者。 /p p   2007年-2016年的诺贝尔化学奖的获奖情况如下: /p p   2007年:诺贝尔化学奖授予德国科学家格哈德· 埃特尔,以表彰他在“固体表面化学过程”研究中作出的贡献。 /p p   2008年:美国Woods Hole海洋生物学实验室的下村修、哥伦比亚大学的Martin Chalfie和加州大学圣地亚哥分校的钱永健因发现并发展了绿色荧光蛋白(GFP)而获得该奖项。 /p p   2009年:英国生物学家万卡特拉曼· 拉玛克里斯南(Venkatraman Ramakrishnan)、美国科学家托马斯· 斯泰茨(Thomas A. Steitz)和以色列女生物学家约纳什(Ada E. Yonath)因在核糖体结构和功能研究中的贡献共同获该奖。 /p p   2010年:美国德拉威尔大学的Richard F. Heck、普渡大学的Ei-ichi Negishi以及日本仓敷艺术科学大学的Akira Suzuki,他们发明了新的连接碳原子的方法,获得2010年诺贝尔化学奖。 /p p   2011年:以色列科学家达尼埃尔· 谢赫特曼因准晶体的发现而获得2011年的诺贝尔化学奖。 /p p   2012年:美国科学家罗伯特· 莱夫科维茨和布莱恩· 克比尔卡因“G蛋白偶联受体研究”获诺贝尔化学奖。 /p p   2013年:诺贝尔化学奖授予美国科学家马丁· 卡普拉斯、迈克尔· 莱维特和阿里耶· 瓦谢勒,以表彰他们在开发多尺度複杂化学系统模型方面所做的贡献。 /p p   2014年:诺贝尔化学奖授予了美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 /p p   2015年:瑞典科学家托马斯· 林达尔、美国科学家保罗· 莫德里奇和土耳其科学家阿齐兹· 桑贾尔因在DNA修复的细胞机制研究上的贡献而获得2015年的诺贝尔化学奖。 /p p   有意思的是,自1901年首次颁奖以来,诺贝尔化学奖被多次颁发给生物、生物化学、生物物理、物理等领域,可谓是“不务正业”。据统计,2001年至2016年,在已颁发的15个诺贝尔化学奖中,与生物相关的化学奖达10次之多。 /p
  • 华裔学者无缘诺贝尔化学奖 学界叫屈:厚此薄彼
    左边为用传统显微镜拍摄的图片,右边是贝齐格首次用STED显微镜拍摄的图片,分辨率提高很多倍。   美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔因开发出超分辨率荧光显微镜而获得2014年度诺贝尔化学奖。诺贝尔化学奖评审委员会8日在瑞典首都斯德哥尔摩宣布这一消息时认定,3名科学家成功突破传统光学显微镜的极限分辨率,将显微技术带入&ldquo 纳米&rdquo 领域,让人类能以更精确的视角窥探微观世界。   创新破&ldquo 极限&rdquo   3名获奖者中,现年54岁的贝齐格来自美国霍华德· 休斯医学研究所,现年61岁的莫纳现任美国斯坦福大学教授,现年52岁的黑尔同时就职于马克斯· 普朗克生物物理化学研究所和德国癌症研究中心。   长期以来,光学显微镜的成像效果被认为受到光的波长限制,无法突破0.2微米即光波长二分之一的分辨率极限。这三位科学家则以创新手段&ldquo 绕过&rdquo 这一极限,通过激光束激活荧光分子,在荧光分子发光的时候通过特别手段消除或过滤掉多余荧光,从而获得比&ldquo 极限&rdquo 更精确的成像。   诺贝尔化学奖评审委员会在当天发表的声明中说,通过荧光分子的帮助,这些科学家实现了这一突破,使用这一革命性显微技术在各自专业领域研究生命的最微小组成部分。   其中,黑尔通过研究神经细胞了解大脑突触现象,莫纳研究与亨廷顿氏症(一种神经退化性紊乱疾病)相关的蛋白质,贝齐格研究胚胎内部的细胞分裂。   探索&ldquo 无止境&rdquo   这一&ldquo 纳米显微&rdquo 技术问世前,人类凭借光学显微镜对细胞内分子作用的观察一直存在局限。   按照诺贝尔化学奖评审委员会的说法,3位科学家的成果将显微技术带入&ldquo 纳米&rdquo 领域,让人类能够&ldquo 实时&rdquo 观察活细胞内的分子运动规律,为疾病研究和药物研发带来革命性变化。   &ldquo 在帕金森氏症、阿尔兹海默氏症(老年痴呆症)或亨廷顿氏症发作时,他们(科学家)可以跟踪与之有关的蛋白质(变化) 受精卵分裂并发育成胚胎的过程中,他们也可以观察这些单个蛋白质(变化),&rdquo 诺贝尔化学奖评审委员会说,3人的研究成果为微生物研究带来了几乎无限的可能,&ldquo 理论上讲,如今没有什么物质结构小得无法研究。&rdquo   如今,&ldquo 纳米显微&rdquo 技术在世界范围内被广泛运用,每天人类都能从其带来的新知识中获益。   获奖&ldquo 太意外&rdquo   获得诺贝尔奖,对德国科学家黑尔似乎太过意外。他告诉诺贝尔奖基金会,接到电话时,他正在安静地阅读一篇科研论文,以为打来的是一个恶作剧电话。   &ldquo 太令人意外了,我没敢相信。我一开始觉得这可能是个恶作剧,&rdquo 黑尔说,&ldquo 幸运的是,我记得(瑞典皇家科学院常任秘书)诺尔马克教授的声音,我意识到(他)旁边还有其他人&hellip &hellip 才认为这是真的。&rdquo   不过,黑尔没有陷入惊喜中,而是挂完电话继续阅读论文。   &ldquo 我读完了那篇我希望读到结尾的论文,然后再给我妻子打电话,还有几个和我关系密切的人。&rdquo 黑尔说,他没有去理会如潮水般涌来的电话和采访请求。   回忆起研究成果,黑尔说,他的研究最开始时遭到业内人士的强烈抵制,&ldquo 人们觉得这个&lsquo 极限&rsquo 自1873年就存在,再去做一些研究&hellip &hellip 有点疯狂,不太现实&rdquo 。   &ldquo 然而,我的观点是,20世纪发生了那么多物理学(研究发现)&hellip &hellip 我觉得一定有某种东西或现象能帮助你突破那个极限,&rdquo 黑尔说,&ldquo 我一直都乐于挑战事物,挑战公共智慧。&rdquo   解读 显微镜下的更小世界   从光学显微镜到能探知纳米世界的超分辨率显微镜,2014年诺贝尔化学奖所表彰的科学研究突破了以往物体观测尺寸的界限,使人类得以研究更微小的世界。   北京大学生物动态光学成像中心研究员孙育杰介绍,超分辨率荧光显微技术主要应用于生物领域。孙育杰说,传统光成像分辨率一般是波长的一半200纳米。这个分辨率在细胞成像上有些大了。很多细胞结构小于这个,很多生物分子排列很紧,这样也看不到。因此,科学家们致力于超分辨率领域的研究。   孙育杰介绍,超分辨率领域的发展分为三个阶段,在1994年,德国人斯特凡· 黑尔最先从原理和技术上实现了超分辨率,当时称为STED,但因为生物兼容性很差,很容易将生物样品烧坏,因此一直没能大范围应用。2006年,此次诺奖得主埃里克· 贝齐格与华裔科学家庄小威几乎在同一时间各自独立发表论文,发明了新的超分辨率技术。二者在原理上非常像,且生物兼容性非常好,&ldquo 这个技术一下子火起来&rdquo 。   此后,最早推出超分辨率技术的黑尔教授也在技术上不断改革,使得生物兼容性很好。因此,目前该领域主要广泛使用这三种技术。&ldquo 这3个技术都很成熟,也有公司投入生产。比如尼康、奥林巴斯等,已经商用化了。北京还有10多家实验室在用这个技术。&rdquo   目前,这几种技术把传统成像分辨率提高了10到20倍,最好的能达到10纳米,&ldquo 这种提高是非常了不起的&rdquo 。因此,超分辨率技术推出后,科学家们可以看到细胞内的细节,包括细胞结构,分子间的相互作用,相互定位及动态过程等。&ldquo 好比一个近视眼的人突然戴上了合适的眼镜&rdquo 。   化学奖属于跨界出品   物理学的原理和技术,广泛应用于生命科学领域,最后却获得了诺贝尔化学奖,这令一些人感到困惑。对此,孙育杰说,这几个技术都是跨界技术。实际上黑尔和庄小威都是物理专业毕业。他们都是一直从事物理研究,最后转做生物,用物理理论解决了生物的技术需求。&ldquo 这是一个典型的技术诺贝尔奖,也是跨界的结果&rdquo 。   对于此技术获得化学奖,他说这几类技术实现超分辨率,都是利用荧光探针的性质,包括化学有机染料、荧光蛋白等。在2008年也有科学家凭借荧光蛋白获得过诺贝尔化学奖。&ldquo 这其实是个生物领域&rdquo 。他表示,这个技术就是利用了生物分子、化学分子的性质,实现了突破衍射极限的超高分辨率成像。   反应 学界为华裔学者叫屈   昨天,诺贝尔化学奖公布后,很多学界专家都认为华裔科学家庄小威更有资格获得该奖。   原北大生命科学院院长饶毅在第一时间发表文章称,&ldquo 贝齐格的工作不仅与华裔教授庄小威的工作在物理原理上完全一样,而且他们研究论文发表的时间也一样,令人不解为何厚此薄彼&rdquo 。   孙育杰认为,在荧光显微技术这一领域,庄小威也是极为重要的贡献人。   有学者说,莫纳虽然在成像领域里德高望重,备受尊敬,但是相比诺贝尔奖,还有一定差距。在质量上远不如黑尔、贝齐格和庄小威。   据介绍,庄小威目前任哈佛大学化学系和物理系教授,兼北京大学生物动态成像中心研究员。庄小威毕业于中国科技大学少年班,美国加州大学物理学博士、斯坦福大学博士后,40岁当选美国科学院院士。   埃里克· 贝齐格   1960年出生于美国密歇根州,1988年获得美国康奈尔大学博士学位。美国神经科学家、发明家、应用物理学家,他从康奈尔大学毕业后在贝尔实验室工作。其主要贡献是研发了用于分子生物学、神经科学的光学成像工具。现在美国弗吉尼亚州霍华德· 休斯医学研究所工作。   2011年7月,贝齐格接受BBC的采访介绍超分辨率显微镜技术时说,我们第一次掌握了这种技术,可以让我们了解正在发生的复杂的三维动态。   2006年,超高分辨率显微镜研究行业翻开了新的篇章。贝齐格和其他三个科研小组几乎同时发表了他们提高显微镜分辨率的科研成果。贝齐格和研究伙伴一起在2006年的《科学》杂志上发表了他们的研究成果。   斯特凡· 黑尔   1962年生于罗马尼亚阿拉德,于1981年进入德国海德堡大学学习,并于1990年获得海德堡大学物理学博士学位。现为德国籍,是马克斯· 普朗克生物物理化学研究所所长之一。   1991年至1993年,黑尔在位于德国海德堡的欧洲分子生物学实验室从事研究工作。1993年至1996年在芬兰图尔库大学的物理医学系从事研究工作。1994年,黑尔发明了STED显微镜,是超分辨率显微技术的一大突破。   1997年,黑尔迁往哥廷根,成为马克斯· 普朗克学会在哥廷根的生物物理化学研究所的研究员。2003年至今,黑尔也是位于海德堡的德国癌症研究中心高分辨率光学显微技术部门的主任。   2002年,黑尔获德国雷宾赫激光技术奖。2008年,曾获德国科学技术最高奖&mdash 莱布尼茨奖。   威廉· 莫纳   1953年生于美国加利福尼亚州的普莱森顿,1982年获得康奈尔大学物理学博士学位。现为美国斯坦福大学哈利· S· 莫什讲座教授,是单分子光谱和荧光光谱领域的著名专家。   1981年至1995年,莫纳在IBM位于加利福尼亚州圣荷西的研究中心担任研究人员和管理人员。1993年至1994年,在瑞士苏黎世联邦理工学院担任访问客座教授。1995年至1998年,在加利福尼亚大学担任杰出教授(物理化学领域)。1998年至今,在斯坦福大学担任教授。   莫纳曾获得不少荣誉,1984年获得罗杰· I· 威尔金斯全美杰出年轻电气工程师奖 2001年获得美国物理学会厄尔勒· K· 普利勒奖 2008年获得以色列沃尔夫奖化学奖 2009年获得欧文· 朗缪尔化学物理学奖。
  • 美德科学家因超分辨率荧光显微镜获诺贝尔化学奖
    瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为&ldquo 阿贝分辨率&rdquo 。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一&ldquo 束缚&rdquo ,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破&ldquo 阿贝分辨率&rdquo 的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术&mdash &mdash 单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。
  • 他曾放弃科研10年,“不懂化学却得了诺贝尔化学奖”
    p style=" line-height: 1.75em " span style=" line-height: 1.75em " & nbsp & nbsp “也许是看多了科幻小说,我一直都希望能做出一些东西,看似异想天开,结果拯救了世界。其他人都觉得是比较不现实的领域,正是我喜欢做的。” /span /p p style=" line-height: 1.75em text-align: center " span style=" line-height: 1.75em " img src=" http://img1.17img.cn/17img/images/201603/insimg/e0416f73-2127-4c66-b9c5-e9e574424464.jpg" title=" 201603170851287801.jpg" width=" 500" height=" 313" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 313px " / /span /p p style=" line-height: 1.75em text-align: center " span style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 埃里克· 白茨格(Eric Betzig) /span /p p style=" line-height: 1.75em " span style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 3月14日,应用物理学家、诺贝尔奖得主埃里克· 白茨格(Eric Betzig)站在北京大学英杰交流中心大讲堂,对台下座无虚席的年轻学子们这样说起鼓励自己走上科研之路的原动力。2014年,因为在超高分辨率荧光显微镜术(Super-resolution Fluorescence Microscopy)方面的贡献,诺奖委员会将当年的诺贝尔化学奖授予白茨格与另外两位研究者Stefan Hell 和William E. Moerner,以表彰他们将光学显微镜由微米(& amp #181m,10-6米,百万分之一米)带入纳米(nm,10-9米,十亿分之一米)级尺度的贡献。 /span br/ /p p style=" line-height: 1.75em "   他在两个多小时的演讲中,用自己多年来的亲身体验和科研成果,描述了自己不走寻常路,追随内心激情的人生历程,并介绍了自己对科学研究的深刻感悟。 /p p style=" line-height: 1.75em "   “化学认识我,我不认识化学”,白茨格说,虽然诺贝尔化学奖委员会给他颁奖,但他实际不懂化学。他承认化学在大一过后都还给老师了。他是这样自我定义的:“我不是物理学家,不是化学家,也不是生物学家。我是工程师,光学工程师,为生物学家开发工具,帮助他们看到活体内的分子”。 /p p style=" line-height: 1.75em "   白茨格身上的诺奖光环吸引了北大莘莘学子前来听他演讲。然而,白茨格却坦言“追求奖励本身对于科研是有害的”。他说,“尽管科研成就是客观的,但是评奖是主观的,只代表某一个评奖委员会的观点,即便诺奖也是如此。如果你把得奖当成工作的动力,那么你的驱动力就是错误的。你就应该去找点别的事情做。” 他的这番表述与国内科研界目前经常听到的所谓“诺奖级工作”和为名誉地位而工作的浮躁风气形成鲜明的对照。 /p p style=" line-height: 1.75em "   他还有些激动地说,“当我和赫斯(编者注:Harald Hess,他一生中最好的朋友和同事)第一次通过显微镜看到单分子时,说,‘哇,我们做到了’。这才是最激动人心的一刻。我的经历告诉我,最好忘掉诺奖,专心于自己感兴趣的工作。” /p p style=" line-height: 1.75em "   strong  从物理学家到机械配件厂工程师 /strong /p p style=" line-height: 1.75em "   今年56岁的白茨格出生于美国密歇根州的安娜堡。他于1983年获得加州理工学院的物理学学士,并在1988年获得了康奈尔大学的工程物理学博士学位。 /p p style=" line-height: 1.75em "   他在念研究生时便立志:要以“电子显微镜”的分辨率(即超高分辨率)观察生物活体成像,这在当时是天方夜谭,但他为此目标矢志不渝,奋斗至今。 /p p style=" line-height: 1.75em "   在获得博士学位后,白茨格就职于贝尔实验室半导体物理研究部门,继续他博士论文所开辟的研究方向,研制第一台超分辨率光学显微镜,叫做近场光学显微镜(Near-field Scanning Optical Microscope)。这种显微镜不仅大大提高了传统光学显微镜的分辨率,而且首次实现在室温条件下观察并对单细胞分子进行成像,定位精度为12nm。一系列Science论文的发表为他奠定了近场光学显微技术(NSOM)领头人的地位。 /p p style=" line-height: 1.75em "   在贝尔实验室,白茨格还与好友,从事低温显微镜技术的科学家哈拉尔德?赫斯(Harald Hess)共同进行着另一项开创性研究,尝试利用光谱照射进行细胞分子成像的研究。 /p p style=" line-height: 1.75em "   尽管两个人是好朋友,但他和赫斯在一起共事的时候也常常彼此“较劲”,甚至是有些疯狂地工作着。在北大的讲台上,白茨格回忆,他每天早上4:30就会到实验室开始工作,如果发现赫斯的车先到停车场,“我会走过去,摸摸他的车看他的引擎盖有多热,这样就知道他比我早多少分钟到实验室。而他也会做同样的事情”。两人一起从早上4:30工作到7:00,然后一起打网球,再一起工作到下午6点,然后晚上在同一家中餐馆吃饭,再继续工作至晚上10点。他说,“一个礼拜七天,天天如此。这样的生活我过了五年。” /p p style=" line-height: 1.75em "   然而,随着科研的进展,白茨格却发现近场光学显微技术存在技术瓶颈,另一方面随着自己论文的发表,这项技术得以普及,更多的科学家加入进来,让这一领域变得不再“曲高和寡”,这也让热衷于从事开创性工作的他感到倦怠。 /p p style=" line-height: 1.75em "   白茨格打了一个比方,做科研就好比养育孩子,孩子一出生的时候,你希望他能当总统,但随着年岁的增长,你对他的期望值越来越低,也许最后就是“只要不进监狱就好”。 /p p style=" line-height: 1.75em "   他回忆说,“对我来说,做科研最幸福的时候,就是你在尝试,失败,再尝试的循环往复的过程,终于有所发现。一旦你发了论文,其他人了解到你的这项技术,人们会吹捧这项技术,把它捧上天,而实际上,作为发明者却看到技术自身的局限性,这让我感到沮丧。感觉过去12年我的工作纯粹是浪费时间和纳税人的金钱”。 /p p style=" line-height: 1.75em "   在意识到不可能将光学显微技术的分辨能力推至纳米极限后,1994年,白茨格意兴阑珊,决定离开学术界,却不知道下一步该怎么走。在当了一段时间的全职父亲之后,他加入了父亲拥有的安娜堡机械公司,参与研发工作。在这里,他开发了一种生产汽车配件所需的自适应液压伺服技术(FAST)设备,但并没有取得商业上的成功。 /p p style=" line-height: 1.75em "   白茨格说,“我耗费四年发明这种设备,又花了三年尝试把它卖出去,结果只卖出两台。”这让他意识到,或许自己不很擅长做一个学术科学家,但可以确定的是他无缘做一个精明的商人。“在花掉我父亲100万美元和自己七年的时间之后,我不得不告诉父亲,这个我做不了。”那是2003年,白茨格不仅没有工作,还有两个年幼的孩子要抚养, “那真是我人生中最惨淡的一段时光”,他说。 /p p style=" line-height: 1.75em "    strong 在大自然中找回初心 /strong /p p style=" line-height: 1.75em "   这时,他做了一个后来令自己万分庆幸的事情,那就是给自己的老朋友赫斯打了个电话。 /p p style=" line-height: 1.75em "   当时,赫斯正好被贝尔实验室裁员了,面临着是进入硅谷的初创公司,还是重回基础科研领域的十字路口。 /p p style=" line-height: 1.75em "   这对当年的好朋友、好搭档似乎在同一个时刻遇到了中年危机。他们多次相约一起爬山远足,在加州优胜美地等国家公园里徜徉,大自然的美景和造物的宏大让两位科学家感叹自己的渺小,也让他们真正地放空,思考着人生意义和价值所在。 /p p style=" line-height: 1.75em "   就是在这个过程中,他们重新发现了自己对“受好奇心驱动的科研工作”的热情。白茨格说:“我想做小众的事情,我想走一条并非大家都会选择的道路”。 /p p style=" line-height: 1.75em "   他也坚信自己的目标是更加清晰地观察细胞里充满生机的生理活动。就是这个初衷驱使他在经历了人生的兜兜转转之后,最终回到了自己热爱的科研领域。然而,他需要一个让自己重启科研之路的灵感。 /p p style=" line-height: 1.75em "   为了拾起荒废近10年的专业,“我甚至相当于重新自学了一遍物理学和光学”,白茨格说。 /p p style=" line-height: 1.75em "   就在他潜心自学充电的过程中,一篇重要的论文引起了他的关注,也重新点燃了他对高分辨率显微镜技术的热情。 /p p style=" line-height: 1.75em "   这篇论文是关于一个改变了细胞生物学研究的神奇分子——绿色荧光蛋白(GFP)。下村修最早从水母中分离出这种可以在紫外光照射之下发出绿光的小巧蛋白,Martin Chalfie证明了GFP作为多种生物学现象的发光遗传标记的价值。钱永健的主要贡献在于让人们理解了GFP发出荧光的机制。同时,他拓展出绿色之外的可用于标记的其他颜色的变种,从而使科学家能够对各种蛋白和细胞添加不同的色彩。这一切,令在同一时间跟踪多个不同的生物学过程成为现实。2008年,下村修、Martin Chalfie和钱永健三人因在GFP领域的发现而获得诺贝尔化学奖。 /p p style=" line-height: 1.75em "   白茨格开玩笑地说,“我可能是这个世界上最后一个知道GFP的人,但我马上意识到,这个发现不仅改变了细胞生物学,也将改变生物显微镜技术,因为它开创了巨大的应用空间。” /p p style=" line-height: 1.75em "   “我为自己的朋友没拿诺奖感到遗憾” /p p style=" line-height: 1.75em "   早在1995年,白茨格就提出了光激活定位显微术(Photoactive Localization Microscopy,PALM)的思路,他的想法是控制荧光分子,每次只让少量几个荧光分子发光,用电荷耦合元件(CCD)记录并拟合每个荧光分子像的中心位置,以时间来换空间,将多次观察得到的位置信息整合起来得到完整的图像。 /p p style=" line-height: 1.75em "   他的这篇论文“Proposed Method for Molecular Optical Imaging”发表在1995年的《光学通讯杂志》 (Optics Letters) 。那个时候他刚离开贝尔实验室,处于失业状态,然而这篇论文却奠定了他日后获得诺奖的理论基础。但是基于当时的技术条件,这个设想只能停留在理论阶段。 /p p style=" line-height: 1.75em "   随着荧光蛋白“开关”效应的提出,以及美国国立卫生院(NIH)生物学家Jennifer Lippincott-Schwartz等在2002年发明了光敏绿色荧光蛋白,白茨格意识到,他终于找到了可以把自己多年的梦想变成现实的“关键一环”。而这时已经是2005年,他离开科学领域已经有10年的光阴。 /p p style=" line-height: 1.75em "   时间在流逝,由于担心其他人更早地付诸行动,他和老朋友赫斯这两位失业的“前科学家”决定继续一起合作,快马加鞭把这项技术变成现实。他们来不及申请科研经费,甚至寻找风投资金,于是各自掏出25000美金,花了两个月的时间,在赫斯家的客厅里,研制出了第一台PALM显微镜,并迅速申请了专利。随后,与光敏绿色荧光蛋白发现者Jennifer Lippincott-Schwartz,George Patterson等NIH科学家合作,利用PALM显微镜清楚地观察到纳米级活体细胞的若干生理现象,这篇以白茨格为第一作者的论文发表在2006年9月的Science杂志。从思路诞生到结果发表,他们只用了六个月时间。这篇论文也成为白茨格获得诺奖的关键工作。 /p p style=" line-height: 1.75em "   在白茨格重返科研之路八年之后,他获得了诺贝尔奖,他用“震惊”形容自己得知诺奖消息时的心情,同时,他对和自己一起发明PALM的赫斯未能同获诺奖感到深深的遗憾。毕竟,PALM显微镜来自于他们共同的灵感,是他们的共同发明。 /p p style=" line-height: 1.75em "   他在演讲中多次对赫斯对自己职业生涯中的帮助表示感谢,他说道,我毕生的工作都要感谢他。 /p p style=" line-height: 1.75em "   中国科学院物理研究所李明在《超分辨显微,至极至美:2014年的诺贝尔化学奖述评》一文中评价说,“白茨格、赫尔和莫纳将已知的技术推至极限,最早探测到凝聚态体系中的单个荧光分子,利用荧光分子的开关效应,加上物理教科书上的受激辐射原理和数据分析中常用的拟合定位方法,绕开了这个似乎不能突破的极限。他们将光学显微技术带入到纳米尺度,引发了常温下活体生物学研究的又一场革命。他们对科学的追求堪称至极至美。” /p p style=" line-height: 1.75em "   回顾科研道路中的关键机遇和转折时,白茨格对年轻科学家和学子提出了这样的建议,“没有什么比你的声誉更重要,职业生涯中总有一些时刻你需要一些前同事和朋友的提携和帮助。你必须要做好你的工作,同时你要诚实地工作,要公平地对待别人,否则真的会有报应。你的声誉是你最重要的资产。” /p p style=" line-height: 1.75em "   得益于这些帮助,他获得了霍华德?休斯医学研究所的珍利亚农场研究园区的邀请,领导该领域的研究。赫斯也随后加入,继续成为他的同事。 /p p style=" line-height: 1.75em "   这一次,白茨格携夫人吉娜一道回国讲学。他们除了在北大的演讲,还将访问上海的中国科学院神经科学研究所和复旦大学。吉娜是安徽蚌埠人,毕业于中国科技大学,在加州伯克利大学获得博士学位后加入白茨格实验室做博士后研究。吉娜是一位物理学家和神经生物学家,现在从事双光子显微镜技术开发和应用,成果卓著,两人堪称比翼双飞。2014年,白茨格获得诺奖的消息传到中国之后,吉娜的母校蚌埠一中,甚至打出了庆祝标语,称白茨格为“我校女婿”,一时受到中国网友的热议。 /p p style=" line-height: 1.75em "   在演讲中,白茨格还特地感谢吉娜作为伴侣兼同事,给予自己的支持和帮助,并感激她对自己提出过的中肯的批评。物理学家出身的吉娜认为丈夫虽有物理学博士学位,但在物理方面也不能算天才。她在私下场合开玩笑说,“他认识物理,物理不认识他。” /p p style=" line-height: 1.75em "   白茨格在演讲中坦言,自己的获奖技术虽然有用,但已不足以让他感到振奋。他于是继承了2011年因脑癌去世的同事Mats Gustafsson于2000年发明的另外一项技术SIM(结构给光显微技术),并不断加以改进,与其他技术结合,现在可用于活体成像,且实用性更好。他还介绍了自己尚未发表的最新技术——双通道自适应光学栅格光片显微镜(Lattice Light Sheet Microscopy with Two Channel Adaptive Optics)的研究进展。 /p p style=" line-height: 1.75em "   在他身后的投影屏幕上,演示着一系列用视频呈现的最新研究成果。有一个画面上可以看到细胞分裂的整个过程,细胞核内的DNA也在荧光蛋白的染色下清晰可见& amp #823& amp #823 /p p style=" line-height: 1.75em "   当年引领他走上科学之路的,用高分辨率显微镜观察活体细胞的梦想终于实现了。这才是比诺奖更让他为之陶醉并欣慰的。 /p p style=" line-height: 1.75em "   在回答现场一位北大同学的提问时,白茨格说出了自己对年轻科学家的忠告,“不要害怕冒险,不要因为追求安全而搭上别人的便车,要勇敢地开拓属于自己的道路。” /p p br/ /p
  • 诺贝尔化学奖得主曾因挑战“常识”被斥伪科学家
    据新华社电,瑞典皇家科学院10月5日宣布,以色列科学家达尼埃尔谢赫特曼因发现准晶体独享2011年诺贝尔化学奖。   改变科学家“物质观”   与一天前宣布诺贝尔物理学奖得主一样,瑞典皇家科学院常任秘书斯塔凡诺尔马克当天上午11时45分开始在皇家科学院会议厅先后用瑞典语、英语宣布获奖者姓名及其科学成就。   随后,诺贝尔化学奖评选委员会主席拉尔斯特兰德等人解释谢赫特曼获奖原因。他们说,谢赫特曼于1982年4月8日首次在电子显微镜中观察到一种“反常理”的现象——他们当时所观察的铝合金中的原子,是以一种不重复的非周期性对称有序方式排列的,而按照当时的理论,具有此种原子排列方式的固体物质是不存在的。因此,谢赫特曼的发现在当时引起极大争议。为维护自己的发现,他被迫离开当时的研究小组,但这一发现促使科学家开始重新思考对物质结构的认知。   准晶体增加材料强度   诺贝尔化学奖评选委员会在5日发表的声明中说,从原子级别观察准晶体形态,会发现原子排列具有规律,符合数学法则,但不以重复形态出现。在谢赫特曼发现准晶体后,科研人员陆续在实验室中制造出其他种类的准晶体,并在取自俄罗斯一条河流的矿物样本中发现天然准晶体。瑞典一家公司也在一种钢中发现准晶体,这种准晶体如同盔甲一般增加材料强度。   如今,科学家正尝试将准晶体应用于其他产品,如不粘锅涂层和柴油机制造等。   “旧发现”仍有新潜力   瑞典斯德哥尔摩大学有机结构化学教授邹晓冬在接受新华社记者采访时说,由于准晶体原子排列不具周期性,因此准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。这种材料的应用目前仍有较大发展空间。   今年诺贝尔化学奖奖金共1000万瑞典克朗(约合146万美元),由谢赫特曼一人独享。   谢赫特曼1941年生于以色列特拉维夫,1972年从位于以色列海法的以色列工学院获得博士学位,目前任该校教授。   ■ 人物   谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。   ——美国化学协会主席纳西杰克逊   当我告诉人们,我发现了准晶体的时候,所有人都取笑我。   ——谢赫特曼   “那时,所有人都取笑我”   因为挑战当时的“常识”,谢赫特曼被斥“胡言乱语”、“伪科学家”   “胡言乱语”、“伪科学家”,当30年前谢赫特曼发现“准晶体”时,他面对的是来自主流科学界、权威人物的质疑和嘲笑,因为当时大多数人都认为,“准晶体”违背科学界常识。   “当我告诉人们,我发现了准晶体的时候,所有人都取笑我。”谢赫特曼在一份声明中说。1982年,41岁的谢赫特曼正在美国霍普金斯大学从事研究工作。   “的确,那时候的人们压根不会接受那种晶体的存在。”美国化学协会主席纳西杰克逊说,“因为他们认为这违反自然界‘规则’。”   因为这些“规则”被视为真理,胆敢“捋虎须”的谢赫特曼自然就备受排挤。   发现“准晶体”后,谢赫特曼花费了好几个月的时间,试图说服他的同事,但一切均徒劳,没人认同他的观点。不仅如此,他还被要求离开他所在的研究小组。无奈之下,谢赫特曼只有返回以色列,在那里,他的一个朋友愿意帮助他,将“准晶体”的有关研究成果公开发表。   最开始,这篇论文也没能逃脱被拒绝的命运,但在谢赫特曼和他朋友的艰苦努力下,1984年,论文终于得以发表,也立即在化学界引发轩然大波。一些化学界权威也站出来,公开质疑谢赫特曼的发现,其中包括著名的化学家、两届诺奖得主鲍林。   “他(鲍林)公开说:达尼埃尔谢赫特曼是在胡言乱语,没有什么准晶体,只有‘准科学家’。”谢赫特曼后来说。   近30年后,勇敢质疑“常识”的谢赫特曼终于获得全世界最权威的科学认可。“谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。”纳西杰克逊说。   ■ 背景   固体家族“另类哥”   20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。   根据固态物质构成的原子排列规律,晶体内原子应呈现周期性对称有序排列,非晶体内原子呈无序排列。1982年4月8日,谢赫特曼在铝锰合金冷冻固化实验中首次观察到合金中的原子以一种非周期性的有序排列方式组合,具有这种原子排列方式的固体在当时理论下是不可能存在的。   由于原子排列不具周期性,准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。鉴于其“强化”特性,准晶体材料可应用于制造眼外科手术微细针头、刀刃等硬度较高的工具。此外,准晶体材料无黏着力并且导热性较差,其应用范围还包括制造不粘锅具、柴油发动机等,应用前景广阔。
  • 两位诺贝尔化学奖得主受聘为大连理工名誉教授
    应大连理工大学校长、中国工程院院士欧进萍邀请,3月3日,两位2010年诺贝尔化学奖获得者——根岸英一教授和铃木章教授专程赴大连理工大学访问讲学,并受聘为该校名誉教授。   3月3日上午,受聘仪式暨报告会在大连理工大学伯川图书馆报告厅举行。   至此,已有4位诺贝尔化学奖获得者来到大连理工大学访问讲学。
  • 清华客座教授获2012年诺贝尔化学奖
    瑞典皇家科学院10月10日宣布,美国杜克大学教授罗伯特莱福特霍维茨(Robert J. Lefkowitz)和斯坦福大学教授、清华大学医学院客座教授布莱恩科比尔卡(Brian K. Kobilka)因在G蛋白偶联受体(G Protein Coupled Receptors)方面的卓越成就获得2012年度诺贝尔化学奖。   布莱恩科比尔卡,1955年生于美国明尼苏达州,斯坦福大学医学院教授,美国国家科学院院士。2012年4月16日受聘为清华大学客座教授,在医学院建有实验室并指导博士生和博士后。
  • 李远哲:1986年度诺贝尔化学奖获得者
    1936年出生于新竹,父亲为知名画家李泽藩先生   1943年入新竹小学   1949年入新竹中学   1955年考入台大化工系,次年随及转入化学系   1958年入清华大学原子科学研究所化学组硕士班,指导教授为兵口博先生   1961年留清华担任助教一年   1962年赴加州大学柏克莱分校追随Manan先生   1966年在哈佛从事博士后研究,指导教授为Herschebach先生   1968年任芝加哥大学教授(其间于1972年返台担任清华大学教授半学年)   1974年转任加州柏克莱分校教授   1979年获选为美国科学院院士   1980年当选中央研究院数理组第十三届院士   1986年获美国最高荣誉国家科学奖章   1986年与哈佛大学Herschebach博士及多伦多大学John Polany博士同获诺贝尔化学奖   1993年受推荐接任为中央研究院院长   1995年主持教改会
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制