当前位置: 仪器信息网 > 行业主题 > >

纳米生物技术

仪器信息网纳米生物技术专题为您整合纳米生物技术相关的最新文章,在纳米生物技术专题,您不仅可以免费浏览纳米生物技术的资讯, 同时您还可以浏览纳米生物技术的相关资料、解决方案,参与社区纳米生物技术话题讨论。

纳米生物技术相关的资讯

  • 展会预告 | 锐视诚邀您参加第五届中美纳米医学与纳米生物技术年会
    会议介绍第五届中美纳米医学与纳米生物技术年会由中美纳米医学与纳米生物技术学会(CASNN)主办,华南理工大学和浙江大学承办。大会将于2023年12月8日至10日在中国广州举办。大会将邀请来自中国、美国等国家和地区的院士、专家和青年才俊参会,围绕全球纳米医学与纳米生物技术领域面临的瓶颈、挑战展开充分研讨,激发新思想、变革新技术,进一步提升学科交叉融合水平,推动产业转化,创造更美生活。会议议题会议议题涵盖生物医用纳米材料、纳米生物学与生物技术、纳米肿瘤学、肿瘤免疫治疗、纳米疫苗、纳米生物界面、精准医学纳米技术、组织工程、分子影像、纳米传感与检测、纳米安全性、人工智能纳米药物、纳米医药转化等多个领域。会议详情日期:2023年12月8日-10日地点:广州万富希尔顿酒店(白云区云城东路515-517号)锐视展位号:C15&C16本次大会锐视科技将携Micro-CT成像系统、三维光学成像系统、三维多模态精准成像系统、X射线辐照仪、多模态图像引导精准放疗系统等科研设备精彩亮相,全面呈现“多模态影像导航技术”和“超精准放疗技术”在疾病诊断、肿瘤治疗、科学研究等多元化领域的市场应用。会议日程锐视科技期待与您不见不散!
  • 纳米生物技术可监控病毒感染过程
    病毒性疾病严重威胁着人类健康,深刻认识和理解病毒感染过程及致病机制是病毒性疾病防治的重要基础。研究病毒感染过程通常基于荧光标记技术,但是常用的荧光蛋白及传统荧光染料往往容易发生光漂白,难以长时间动态跟踪整个感染过程。   在&ldquo 纳米研究&rdquo 国家重大科学研究计划的支持下,围绕&ldquo 量子点标记技术研究病毒侵染过程及宿主应答&rdquo 项目,来自武汉大学,中国科学院武汉病毒研究所、长春应化所、深圳先进技术研究院,以及北京理工大学等单位的专家,自2011年1月开始开展了有益的探索,并取得了重要进展。   据该项目首席科学家、武汉大学化学与分子科学学院教授庞代文介绍,以半导体荧光量子点为代表的性能优异的纳米标记材料,可望克服现有荧光标记材料的不足,为实时动态跟踪病毒感染宿主细胞这一复杂的动态生物学过程提供新途径。   新型纳米标签   为了研究病毒感染过程,就需要荧光标记。一般来说,活细胞或活体示踪要求所用的荧光标记材料在复杂的生物环境中具有良好的稳定性,能产生稳定、可靠的检测信号,才不会&ldquo 走丢&rdquo 或&ldquo 隐身&rdquo 。并且,还要求在最大程度上降低对所标记对象的影响,以获取生命过程的真实信息。   &ldquo 也就是说,虽然身上贴了标签,但其本人并无察觉,心情依旧,行为如常。既然如此,就要求所选用的标记材料具有尽可能小的尺寸、良好的生物相容性及稳定性,能发出足够强的示踪信号。&rdquo 在庞代文看来,量子点就算得上这一类令人满意的&ldquo 标签&rdquo ,具有粒径小(通常可小至几纳米)、亮度高、光稳定性好等独特性能,且能实现多色同时标记,同时跟踪多个对象。   采用纳米标记技术,特别是量子点标记技术对病毒感染宿主过程进行诠释,将有望克服现有技术的不足,科学诠释病毒致病机制。但是,如何精确控制材料的性质,制备出尺寸小且性质稳定的量子点,依然是该领域的一大难题。   此外,为了降低生物成像中背景信号的干扰、激发光对生物体的光毒性以及增加荧光的穿透深度,理想的标记材料应具有较长的激发波长,荧光发射波长也最好在近红外区且具有高的荧光强度。   基于此,武汉大学研究团队提出了&ldquo 在时间和空间上耦合活细胞内并无关联的生物化学反应途径&rdquo 合成纳米材料的&ldquo 时&mdash &mdash 空耦合&rdquo 调控合成新策略,利用活酵母细胞成功可控地合成出多色荧光量子点纳米标记材料,让细胞为科学家们做了一件几乎不可能做到的事。   他们将烦琐危险的化学操作演变为仅仅培养细胞,将通常在约300℃进行的合成演变为在30℃下的活细胞内完成,且不需要任何易燃、易爆、有毒溶剂。进而,他们又提出了&ldquo 准生物合成&rdquo 策略,利用细胞外的模拟体系成功合成出多种小粒径的近红外量子点,成功地化解了难题。   让病毒亮起来   庞代文告诉记者,病毒很小,若要监视其一举一动非常困难,如果是在复杂的生物背景之下,那更是一片漆黑。而荧光标记能让病毒亮起来,方便地实现跟踪。   中国科学院武汉病毒研究所研究员肖庚富的团队制备出均一稳定的发光病毒样颗粒,并跟踪了其&ldquo 感染&rdquo 细胞的过程。他们还实现了量子点对艾滋病慢病毒(hiv)的标记,也能用量子点定点标记昆虫病毒内部的结构。   由于包膜病毒广泛存在于自然界且与人类健康密切相关,这一研究受到了很大的关注。而包膜病毒结构较为复杂,通常由包膜、衣壳及核酸等构成。由武汉大学和中国科学院武汉病毒研究所的研究者们进行合作,利用绿色荧光蛋白标记杆状病毒包膜,核酸分子光开关钌的含氮杂环配合物在病毒复制过程中自然嵌入核酸中标记病毒核酸,成功实现了对病毒包膜和核酸的双重标记。   此外,北京理工大学和中国科学院武汉病毒研究所的专家团队合作提出顺应自然的病毒的温和标记策略。他们利用细胞中胆碱磷脂自然的生物合成和代谢嵌入机制、病毒从宿主细胞膜获取磷脂成分形成包膜的生物学特点以及病毒核酸的&ldquo 复制嵌合&rdquo ,在病毒自然复制过程中实现了病毒核酸和包膜的双重标记(双重标记效率高达85%)。   &ldquo 这将有助于研究人员看到病毒感染过程中更多的行为细节。&rdquo 庞代文表示,量子点标记技术能让病毒持续变亮,为监测单个病毒侵染宿主细胞的一举一动创造了条件。   看到病毒感染过程   病毒是严格寄生的微生物,寄生于宿主并借助宿主细胞完成自身&ldquo 繁衍&rdquo 。病毒在细胞中的感染由三个基本过程构成循环,即进入宿主细胞(侵染)、基因组复制/组装和出胞,并进一步感染其他细胞。   该循环是病毒维持繁衍生息的关键,而侵染是其中的首要步骤。基于量子点标记,武汉大学团队获取了病毒感染过程的实时动态信息,如病毒运动方向、路径、速率、&ldquo 扩散&rdquo 系数等,以及各种运动模式 研究了禽流感病毒在活细胞内的动态行为及机制,并对流感病毒侵染宿主细胞典型运动轨迹进行分析,发现病毒侵染过程错综复杂。   中国科学院长春应用化学研究所团队发现乙肝病毒表面抗原(hbsag)通过小窝蛋白介导的内吞途径跨膜,实现了病毒感染活细胞过程的高分辨、高灵敏、多维动态示踪,展示出纳米生物技术良好的应用前景。   最近,中国科学院深圳先进技术研究院团队研究出近红外量子点标记病毒感染活体动物的非侵入示踪技术 成功地长时间跟踪了禽流感h5n1假病毒对小鼠的感染过程。
  • 邀请函|珀金埃尔默邀您参加第四届中美纳米医学与纳米生物技术学会年会
    第四届中美纳米医学与纳米生物技术年会由中美纳米药物与纳米生物技术学会(CASNN)主办,旨在共同探讨纳米药物/纳米医学的发展愿景、面临的挑战及解决策略,推动纳米医学与纳米生物技术相关产业的蓬勃发展, 促进中美纳米医学与纳米生物技术领域项目和技术的交流、合作。会议已邀请来自中国、美国、加拿大、日本、韩国、新加坡等国家和地区的院士和专家及国内知名药企人员,预计参会人数约500人。会议将于2019年8月19号报到,20-22日在杭州开元名都大酒店举行。珀金埃尔默作为全球领先的解决方案供应商,将亮相此次会议,欢迎莅临珀金埃尔默展台!珀金埃尔默可提供纳米检测整体解决方案:诚挚邀请参会代表莅临珀金埃尔默展位参观交流,珀金埃尔默与您不见不散!扫描二维码参与抽奖,会前抽奖到珀金埃尔默展位领取,或留地址邮寄均可。关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 海狸生物完成数千万元B轮融资,深耕纳米磁珠技术
    完成B轮融资后,海狸生物将进一步加大第三代化学发光及免疫捕获磁珠的规模化量产,同时推进第四代纳米磁珠先进制造技术的深度开发,定位全球市场,打造基于纳米磁珠核心技术的生物医学相关产品的产业化基地,全面提升临床及非临床生物样本处理全流程自动化解决方案的能力。BeaverBeads® 的SEM呈像海狸生物(BEAVER)创立于2011年底,落户于苏州工业园区,是国内较早期从事纳米磁珠技术和产品开发的国家级高新技术企业。近10年来,海狸生物专注于纳米磁珠技术自主研发,从第一代弥散结构纳米磁珠技术,第二代核壳结构二氧化硅磁珠,到第三代多夹层结构聚合物磁珠,不断取得技术突破,持续进行产业升级。目前,海狸生物已完成搭建了近6000平方米的产业化基地,面向生物医学科研领域及IVD产业领域,相继提供了蛋白纯化磁珠、核酸提取磁珠、化学发光及免疫捕获磁珠,配套生物样本采集、保存、提取全流程生物试剂、生物耗材及自动化设备等二十多个产品系列。BeaverBeads® 生物应用海狸生物董事长兼CEO任辉博士介绍:“纳米磁珠技术适用于自动化和高通量样本处理,例如高效提取游离血球外核酸,标记捕获超微量及痕量生物大分子,已经广泛应用于唐氏筛查、肿瘤分子和免疫检测、细胞免疫治疗等领域,当前90%以上的产品种类依赖进口,被称为生物医学领域的‘芯片级’原料。海狸拥有近十年‘三代’纳米磁珠技术积累,也得益于新冠疫情防控对磁珠法高通量样本处理的广泛需求,海狸团队实力和深度均得到显著增强,我们请来国家级特聘材料学专家黄明贤博士担任首席科学家,并请来了成功的企业家梁萍女士担任营销副总裁。目前,我们正在搭建3000多平方米的研发中心,大力投入原材料技术和生物医学应用产品的开发,海狸的目标不仅仅是实现国产品牌替代进口,更大的挑战是得到国际市场的认可。”对于投资海狸生物,联合领投方君子兰资本创始合伙人王学军表示:“海狸生物创立之初即制定了双轮驱动的技术战略,立足于纳米技术和生物技术两个核心领域,打造生物样本处理整体解决方案。任辉博士深耕磁珠领域,踏实务实的作风与君子兰资本‘君子如兰,志存高远’的价值观极为吻合,并且君子兰资本管理苏州北大商会基金,任博士作为苏州北大商会中的杰出企业家,是我们长期寻找的优秀合作伙伴。我们期待陪伴海狸生物在纳米磁珠底层技术和应用上不断打磨、创新,为市场带来颠覆性的医疗科技产品。”联合领投方遨问创投管理合伙人周敏博士也认可道:“遨问看好IVD产业在中国的发展趋势和上升空间,海狸生物作为国内领先的上游核心材料开发供应商,将受益于本土IVD产业蓬勃发展,和国际品牌本土化的两大趋势。同时在海狸生物多年的技术积累基础上,随着海狸产品线的丰富和下一代具有国际领先性的磁珠生产技术的开发,海狸产品将在国际市场更有竞争力,我们期待海狸生物最终成为生物磁珠领域的国际一线品牌。”跟投方深圳慧和资产董事长陈湘永先生认为:“苏州海狸作为一家具有深厚技术底蕴和国际经营视野的生物科技企业,既立意高远,敢于挑战全球顶尖同行,又脚踏实地,稳健进取,不断取得阶段性的研发和经营成果,符合慧和资产投资理念和准则的要求。我们相信海狸不断迭代创新的纳米磁珠技术未来将迎来广阔的应用前景。”
  • 上海纳米生物材料与再生医学工程技术研究中心落户东华大学
    5月9日,上海纳米生物材料与再生医学工程技术研究中心启动会暨校企合作对接会在东华大学松江校区举行。东华大学副校长卿凤翎、上海市科委研发基地建设与管理处处长仲东亭出席活动;人事处、科研院、化工生物学院相关领导,以及其他校内外嘉宾和代表共100余人出席开幕式。开幕式由东华大学科学技术研究院院长丁彬教授主持。东华大学副校长卿凤翎 致辞卿凤翎在开幕式上致欢迎辞,他代表学校向与会嘉宾表示欢迎,并介绍了学校基本情况和生物医学工程相关学科的良好发展势头。他希望通过校企交流与合作,促进我校生物材料与再生医学研究及其成果转化更上层楼。随后,卿凤翎与仲东亭共同为“上海纳米生物材料与再生医学工程技术研究中心”揭牌,宣示工程技术研究中心正式启动。卿凤翎还为工程技术研究中心校外共建企业颁授共建牌匾,为中心负责人及技术委员会成员颁发聘书。中国科学院院士朱美芳担任中心技术委员会主任,化工生物学院莫秀梅教授担任中心主任。工程研究中心揭牌仪式东华大学生物材料与再生医学相关学科特色鲜明,发展势头强劲,在国内外享有较高声誉。由莫秀梅教授领衔的申报团队得到评委专家的高度评价,“上海纳米生物材料与再生医学工程技术研究中心”最终落户东华大学松江校区。该工程技术研究中心将主要依托东华大学化学化工与生物工程学院,同时吸纳整合包括材料科学与工程学院和纺织学院在内的相关研究力量,并联合生纳科技(上海)有限公司、上海贝奥路生物材料有限公司、诺一迈尔(苏州)生命科技有限公司、上海翼和应用生物技术有限公司等校外企业共同建设。工程中心将聚焦纳米生物材料与再生医学,依托学科优势,通过资源整合、校企合作,推进生物、材料、医药工程相关研究成果工程化和产业化,促进上海市生物医药产业高质量发展。卿凤翎为工程技术中心主任颁发聘书会上,莫秀梅介绍了工程技术中心的筹备及建设情况。化学化工与生物工程学院院长武培怡介绍了学院生物相关学科的发展情况。合作企业代表先后致辞,表达了加深校企合作、促进生物材料与再生医学相关科技成果转化的迫切愿望。仲东亭在开幕式上作总结发言。他代表上海市科委对中心的成立表示祝贺,肯定了东华大学在生物材料和再生医学领域所取得的成就,勉励中心发展成为校企合作的典范,促进上海生物材料和再生医学研究的进步及其成果的产业转化。启动仪式结束后,朱美芳院士在线上和史向阳教授共同主持工程技术中心技术委员会的首届工作研讨会,委员们就中心运营和发展建言献策。下午,工程技术中心举行了首次学术交流活动。学者报告了各自课题组的最新研究进展,与会代表就感兴趣的学术问题进行了热烈讨论。大家表示要把握和珍惜校企合作发展机遇,勇于担当时代赋予的责任,合力打通产、学、研经络,形成产学研相互促进的良性循环,为国家和社会的发展贡献科技正能量。
  • 中法生物矿化与纳米结构联合实验室挂牌
    2010年9月6日,在中国科学院地质与地球物理研究所举行了“中-法生物矿化与纳米结构联合实验室(Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, 简称LIA_BioMNSL)”第一届科学指导委员会会议暨实验室揭牌仪式。中-法生物矿化与纳米结构联合实验室由中国科学院、中国农业大学与法国国家科研中心、法国原子能总署的9个实验室联合成立。   中国科学院地质与地球物理所赵平副所长主持了会议和揭牌仪式。中国科学院院士、地质与地球物理所所长朱日祥研究员、中国科学院资源环境科学与技术局副局长常旭研究员、法国国家科研中心生命科学局副局长马蒂尼德费教授、法国驻华使馆科技参赞包若柏先生、生物局国际合作处处长弗兰克巴居斯教授出席了会议并讲话。   中国科学院资源环境科学与技术局常旭副局长和法国国家科研中心生物局马蒂尼德费副局长共同为“中-法生物矿化与纳米结构联合实验室(LIA_BioMNSL)”揭牌。   中-法生物矿化与纳米结构联合实验室的中方成员实验室包括:地质与地球物理所古地磁与年代学实验室、海洋所海洋微生物实验室、电工所生物电磁学实验室、中国农业大学农业生物技术实验室、福建物质结构所纳米尺度化学与生物学实验室。法方成员实验室包括:法国科研中心马赛地中海微生物所细菌化学实验室、图卢兹系统分析和结构实验室、法国能源总署生物环境和生物技术所细胞生物能源实验室、巴黎地球物理所古地磁学与矿物学实验室。
  • 生物纳米园公共检测中心获国家级认可
    近日,苏州工业园区专为生物医药产业打造的生物纳米园公共技术服务平台、公共检测中心获得了中国合格评定国家认可委员会(CNAS)认可,成为了江苏省仅有的两个国家级生物医药公共技术平台之一。而获得CNAS认可,相当于加入了全球生物医药实验室的“WTO”:超过43个国家的相关实验室都将认可园区公共分析平台的数据结果。这也使得生物纳米园内的企业,足不出户即可获得全球认可的实验数据。   生物纳米园公共技术服务平台现有42名员工,其中博士19名、硕士10名。其中,创新生物医药平台以分子肿瘤学国家重点实验室为主要依托,国家863高技术生物和医药领域专家组组长詹启敏教授领衔,并由病毒生物技术国家工程研究中心副主任姬云博士为主要负责人组建了一支高素质的团队。而另一个子平台——纳米靶向药物传导技术平台则是以“药物传导之父”美国麻省理工学院罗伯特兰格教授为核心,拥有一支由6名博士、2名硕士组成的专业管理团队。   在完善硬件、专业化管理团队的同时,生物纳米园还为平台开设了一个便捷的服务窗口:建设ICT(信息与通信技术)服务平台。企业只需登陆网站,即可查询、预约一站式搞定。思坦维生物公司就充分尝到了覆盖产业链的公共技术平台带来的“甜头”:截至目前,公司在产品研发过程中,已使用公共技术服务平台700余次,其产品已进入到临床前研究阶段,并达到国际领先水准。公司总经理周群敏表示,现在,在产品研发的每一个阶段都在使用园区公共技术服务平台,“估算下来,使用公共技术服务平台帮我们节省了上百万元资金。 ”   为了帮助企业甩掉“成长的烦恼”,近期生物纳米园还将启动建设扶持企业产业化发展的中试生产平台。
  • 2010全国纳米生物与医学学术会议召开
    仪器信息网讯 2010年11月5-7日,“中国微米纳米技术学会纳米科学技术分会第二届年会暨2010全国纳米生物与医学学术会议”在湖北省武汉市洪山礼堂召开。   “全国纳米生物与医学学术会议”由国家科技部“纳米研究”重大科学计划专家组和中国微米纳米技术学会纳米科学技术分会共同发起,自2008年开办以来,每两年举行一次,其初衷是为了反映我国纳米生物与医学领域中的最新成果,促进各研究单位与相关研究者之间的学术交流,尤其是重大科学研究计划项目之间的互动与合作,以更好地推动纳米生物与医学的研究与发展,特别是进一步明确主攻方向,发现和培育新的生长点,为我国纳米生物与医学失业的健康发展提供更多的契机和思路。 会议现场   本次会议中国微米纳米技术学会纳米科学技术分会主办,武汉大学、国家纳米科学中心及湖北省化学化工学会联合承办,几十位中科院院士、国家“973计划”项目首席科学家、国家杰出青年科学基金获得者和长江学者以及其他业内人士等共700人参会。   据介绍,纳米科技在过去十几年间有着十分迅速的发展,很多学科专家进入到了这个领域。纳米科学与生物学及医学的结合,将促进生物学和医学研究的深入以及对疾病致病机理的认识,为开发出更为有效的检测和诊断技术以及提出更好更新的疾病治疗方案开辟新的方向和途径。 大会执行主席之一、武汉大学庞代文教授介绍会议筹备情况   本次会议共收到稿件400多篇,共有大会报告8个、分场报告88个、口头报告60个以及墙报近220篇。会议期间,国内外专家学者围绕“纳米生物技术、肿瘤诊断与治疗、细胞与病原微生物、纳米药物制剂”四个主题进行了演讲和探讨,共同交流有关纳米科学技术最新前沿进展和我国纳米生物与医学领域中的最新成果。大会执行主席之一、武汉大学庞代文教授介绍说,希望此次会议能给业内人士提供一个高水平的交流平台,并能给对纳米生物与医学感兴趣的学生提供良好的学习机会。 大会报告:自驱动的纳米系统:纳米发电机和压电电子学 报告人:美国佐治亚理工学院 王中林院士 分场报告:发展纳米表征技术的一些思考 报告人:厦门大学田中群院士 墙报展示   从会上了解到,目前,全球纳米技术的年产值已超过500亿美元,并将在未来四年内增长至上万亿美元,纳米技术的进一步发展,将导致传统产业结构的调整以及新产业的诞生。我国政府部门高度重视纳米科技的发展,于2006年设立了“纳米研究”重大科学研究计划,并先后组建了国家纳米科学中心、纳米技术及应用国家工程研究中心等国家级纳米中心以及国家纳米技术国际创新园等产业化基地。   会议还组织了由973项目首席科学家为主要骨干、感兴趣的教授共同参加的“纳米生物与医学研究自由论坛”,目的是促进与加强重大科学计划等科研计划中纳米生物与医学及其相关研究的联接与互动,有利于开展更多的学术交流与合作。主要议题为:1)纳米生物与医学研究中的共性问题、原始创新以及如何通过联合来解决或实现;2)研究纳米生物与医学的基本方法与途径;3)重大应用和向应用发展所需要的支撑条件;4)纵观纳米生物医学的下一个10年:核心技术,重大问题, 产业化前景。   会议同期还举办了仪器展示活动,岛津、马尔文、布鲁克AXS、蔡司、奥林巴斯、安道尔、儒博、上海千欣、上海悌可、凯隆国际等十几家仪器及试剂供应商进行了产品展示。 仪器展示会一角
  • 纳米孔技术悄然改变癌症早期检测——访宣泽生物Farzin Haque博士
    p   在人类与癌症的斗争中,有一半的胜利是得益于早期检测。而纳米技术的出现,又使得癌症的诊断更早更准确,并可用于治疗监测。宣泽生物作为全球第一家从事基于蛋白纳米孔道的单分子检测技术进行癌症超早期检测的公司,一直在积极地推动这一创新技术的临床应用。近日,生物探索有幸采访了公司首席科学家Farzin Haque博士,请他分享了致力于纳米技术的故事。 /p p    strong 1 与纳米技术结缘 /strong /p p   “纳米技术”的理念最早由诺贝尔物理学奖获得者费曼所提出,1990年第一届国际纳米科学技术会议的召开,标志着纳米科学技术正式诞生。在短短二十几年里,作为最具突破的战略性前沿技术之一,纳米技术已经在材料、医疗、环境等领域引起颠覆性改变。 /p p   纳米技术的兴起,同样吸引了当时还在普渡大学读博士研究生的FarzinHaque。他一直想在这个领域有所作为,于是2008年在获得博士学位后,便开始积极寻找纳米技术领域的职位,希望能够充分发挥自己在膜生物物理学上的专长。 /p p   恰逢此时,Farzin Haque留意到了美国国立卫生研究院(NIH)纳米医学发展中心,这个中心由RNA纳米技术的先驱郭培宣教授领导,是NIH仅有的七个致力于纳米技术医疗保健的研究中心之一。在顺利进入该中心后,Haque博士主要负责开发基于噬菌体Phi29马达通道的纳米孔系统,并应用于疾病诊断。之后,他又加入另一个由郭培宣教授领导的美国国家癌症研究所(NCI)癌症纳米技术联盟资助的中心,开展用于药物递送的RNA纳米技术平台的研究。 /p p   在此期间,Farzin Haque博士取得了诸多科研突破,特别是设计了一系列功能强大的基于RNA的纳米传送平台,可以将治疗用的有效载荷(如siRNA,miRNA,核酶,化学治疗剂)靶向传递至癌细胞,并具有低毒性和高功效的特点。而在过去的十年中,虽然科学家们已经确立了多种候选癌症干预目标,但是在体内递送针对这些目标的治疗药物一直具有挑战性。 /p p    strong 2 从科研界向产业界的跨越 /strong /p p   虽然开发纳米孔平台超过8年时间,但想要将成熟的技术转化为临床,就必须得从实验室走出来。FarzinHaque博士很清楚这一点,于是2016年加入宣泽生物(pzbiology),公司使用的核心技术正是纳米孔平台。 /p p   如今,回想起这个决定,Haque博士笑着说,“这个决定对我来说很简单,我知道纳米孔技术的真正潜力。所以,当机会来临时,我很高兴加入宣泽来完成这项技术的临床转化。” /p p   在担任宣泽生物全球首席科学家的期间,Haque博士正式完成了从“科研界”向“产业界”的跨越。他说,“在学术界进行研究与在公司工作非常不一样。 学术研究往往是开放式的,而我之前更多的是从事纳米孔平台开发的基础方面的研究。在公司里,我们更专注于临床方面的转化,将推动技术走向临床应用。” /p p   Haque博士表示,宣泽目前进展基本按照计划稳步进行。公司在深圳拥有一支优秀的管理团队,在美国和深圳拥有强大的具有多学科研究背景的研发团队。我们共同制定了公司战略发展目标以及每一个发展里程碑,并努力不懈致力于产品的推出、优化、服务。 /p p   “研发并非个人,而是团队的合作。”这是Haque博士工作中非常重要的体会,“而且作为创业公司,很难自己完成所有的事情,我们需要与世界各地的领先机构和公司建立了高效的合作关系。宣泽在过去的几年里,与英国的牛津纳米孔公司,意大利的Element,美国的俄亥俄州立大学,肯塔基大学和新泽西理工学院,广东工业大学和中国四川大学等机构展开了深入的合作,并取得良好的进展。” /p p    strong 3 纳米医学领域主要的发展方向 /strong /p p   专访中,Farzin Haque博士结合自身从业经历,还分享了许多宝贵看法。 /p p   诸如,将纳米技术应用于医疗卫生领域代表了现代医学的一个新发展方向,而纳米医学领域应用非常广泛,有许多使用不同纳米材料的平台,我们应该如何去辨别?对此, Haque博士认为:“每个平台都有各自的优势和挑战。从诊断角度来看,我们需要开发出一种在单一平台上即可发现和筛选多种生物标志物的纳米技术方法。我们还需要开发出可以保留被捕获生物分子的完整性以便进行下游活性分析的纳米诊断设备。从治疗的角度来讲,我们需要看到纳米材料可以穿透生物屏障并在目标器官积聚,并具有最小的脱靶效应。我们需要开发具有生理触发的下一代‘智能’纳米系统。我们还需要开发可以用于癌症免疫治疗的纳米技术。” /p p   “我们的重点应该是将成熟的技术转化为临床,使得普通老百姓能够从中受益。”Farzin Haque博士反复强调,“要做到这一点,我们需要对纳米颗粒、纳米器件与生物系统之间的相互作用有深入的了解,还要不断培养具有医学应用价值的纳米技术研究领域方面的人才。” /p p   另外,在Farzin Haque博士看来,2017年可以说是纳米医学领域的元年,这一年这个领域取得了诸多重大突破,特别是在纳米孔技术应用方面。他还给我们举了两个例子:第一个是牛津纳米孔公司将其开发的便携式Minion装置用于人类基因组测序,这也意味着基于测序的个性化医学即将成为现实。纳米孔测序可以解决医疗保健中的若干关键需求,例如基因表达变化,以及在临床中以经济有效和快速的方式积累遗传突变数据。而纳米孔应用的另一新兴并发展迅速的领域,是通过高灵敏度和高特异性的生物标志物的检测诊断疾病。 /p p   值得一提的突破,还有就是将天然分泌的外泌体应用于疾病治疗。FarzinHaque博士说道,外泌体能够与细胞膜融合并以高效率将其装载物质递送到细胞中。然而,外泌体通常缺乏特异性的靶向能力,可以与许多细胞非特异性融合,因此该技术主要的挑战就是如何改造外泌体并应用于靶向治疗。最近,郭培宣教授团队在Nature Nanotechnology上发表的文章展示了使用RNA纳米技术对外泌体进行再造并应用于癌症治疗。外泌体表面经由特异性的配体修饰,可以达到高效的肿瘤靶向和治疗性物质的递送,从而抑制肿瘤生长。 /p p   Farzin Haque认为,纳米孔癌症检测与基因测序、RNA靶向药物递送系统、纳米医疗机器人等将是纳米医学领域主要的发展方向。 /p p   4 期待将宣泽打造成世界顶尖 /p p   作为全球第一家从事基于蛋白纳米孔道的单分子检测技术进行癌症超早期检测的公司,宣泽生物一直在积极推动创新技术的应用。相比于影像检测、肿瘤标志物检测、基因检测等现有的癌症检测方法,基于蛋白纳米孔道的单分子检测技术有很多优势。Farzin Haque博士具体说道,“平台可以实现多指标联合实时检测,兼具低成本、无创伤、灵敏度高、特异性、可重复性好、易操作、便携式、实验时间短等优点。” /p p   同时,宣泽团队正在开发一系列具有高稳定性和高检测能力的纳米孔道平台,以及用于生物标志物检测的新型探针,现正在优化各处组件之间的链接工作,以及同时启动开发供临床使用的软件。Farzin Haque博士预计,2019年初将开始临床试验,然后在2020年初有望推出产品。 /p p   身为宣泽生物的全球首席科学家,Farzin Haque博士也给自己确定了研发“小目标”——首先开发出诊断设备并开始针对某一种癌症的临床试验,根据需要改进设备的高通量和准确性,并在此之后推出产品。然后,不久的将来扩展到其他类型癌症以及病毒、细菌和真菌疾病。前期宣泽的市场将主要集中在中国,之后再向美国和欧洲拓展。 /p p   Farzin Haque博士希望,宣泽能成为世界顶尖生物技术公司之一,聚焦于基于纳米技术的个性化诊断与治疗。尽管这个市场竞争将非常激烈,但他相信,宣泽的产品将为诊断领域带来革命性贡献。 /p
  • 德国凯杰与苏州生物纳米科技园成立转化医学中心
    嘉宾启动开业仪式   千人同药、医疗支出居高不下,已然是目前医学界亟须攻克的弊端和难题。对个性化医疗的呼吁声也越来也高,对人下药,为个人制定最适合的诊疗方案,使每个个人受益于科技进步,亦是生命科学产业的使命。   早在2012年9月,样本制备和分析技厂商德国凯杰(QIAGEN)与苏州生物纳米园(BioBAY)在新兴的转化医学领域内展开战略合作,双方计划合资成立凯杰—苏州生物纳米园转化医学中心,并举行了签字仪式。   经过大半年的筹备,2013年5月24日,凯杰(苏州)转化医学研究有限公司正式成立开业。公司成立后,将致力于开发出更多具有重要意义的个性化医疗产品。携手制药企业和相关机构推进生物标记物和个性化医疗产品的研发,推动新型伴随诊断技术的开发,加快转化医学在中国的发展。   凯杰公司亚太区总裁施晨阳博士表示:“与生物纳米园的合作是我们在推动转化医学发展方面的重要一步,我们相信,更高效地开发相关诊断产品和解决方案,为重要创新药物筛选出最适合的病人群体,为患者带来最好的治疗效果。”   凯杰贯穿整个研发生命周期的技术优势以及生物纳米园在中国生物医药行业的领先地位将共同为转化医学中心的建立和发展创造了良好基础。   生物纳米园首席执行官刘毓文也表示:“非常欢迎凯杰入驻生物纳米园,凯杰基于伴随诊断技术的个性化医疗战略能极大改善患者的生活质量,对整个生物制药行业有着革命性的影响。”   苏州生物纳米科技园作为苏州工业园引领未来增长的关键创新引擎,是中国生物科技与纳米技术领域当之无愧的领导者。苏州生物纳米科技园已聚集了330多家高科技研发企业,形成了新药创制、医疗器械(含体外诊断)、生物技术、纳米技术等产业集群,并成为近7000名高层次研发人才集聚、交流、合作的创新社区。冷泉港亚洲会议中心等项目更是使苏州生物纳米科技园成为全球生命科学领域的学术和产业交流中心。
  • 6.2亿!生物梅里埃投资牛津纳米孔,推动纳米孔技术临床应用
    10月19日,法国体外诊断公司生物梅里埃(Bio Mérieux)将向牛津纳米孔技术公司(Oxford Nanopore Technologies PLC)提供7000万英镑的战略投资,约6.2亿元。另外,这家总部位于英国的纳米孔测序技术公司表示,他们已与梅奥诊所合作,开发新的临床测试,以改善癌症和遗传疾病的治疗。对于这笔投资,Bio Mérieux将以每股238.08便士的价格购买Oxford Nanopore的29025326股普通股,相当于该公司3.5%的表决权。这笔交易预计将于10月23日完成。生物梅里埃表示,公司预计将"不时"在市场上进一步收购牛津纳米孔公司的股票,最多再增持3.5%的股份。这笔投资是在今年早些时候两家公司建立合作伙伴关系之后进行的,投资将用于支持牛津纳米孔公司进一步开发其开创性的基于纳米孔的IVD技术。作为协议的一部分,双方将成立一个IVD咨询委员会,以推动纳米孔技术在临床中的应用。牛津纳米孔公司的测序技术有望实现快速、低成本的病原体特征描述。牛津纳米孔公司老板戈登-桑盖拉表示,这笔投资将使我们能够更快地提供快速、便捷、经济的临床工具,以满足尚未满足的需求,改善全球的医疗保健。同时他还重申了公司到 2026 年实现 EBITDA 盈亏平衡的目标。
  • 生物纳米园成为公共技术服务中心服务平台
    产业发展迅猛,昂贵的实验仪器却成中小企业瓶颈,建立拥有一流专业设备的公共技术服务中心成为期待——   在甲型H1N1流感肆虐蔓延之际,苏州工业园区生物纳米园内一家企业生产的甲型H1N1流感病毒表面抗原蛋白成为在美国上市的首个同类产品。日前,生物纳米园公共技术中心的服务平台引起央视《焦点访谈》的关注。   截至11月,隶属公共技术服务中心的公共分析平台累计服务6355次,同比增长318% 抗体公共服务平台累计服务4057次,较去年全年增长 571%。目前,生物纳米园汇聚了高科技研发企业140家,累计获得专利65项,年产值超5000万元,拥有21%博士与46%硕士的高学历人才队伍,形成了生物医药、诊断技术和医疗器械、研发服务外包、纳米技术等产业集群。   为表彰生物纳米园在生物医药领域的成就,12月6日,国家药监局药审中心为该园颁发特殊贡献奖。苏州工业园区科技局局长张东驰表示:“以生物纳米园作为良好载体,园区政府投入巨资建设的公共技术服务中心,通过一流技术设备与高端学术交流,扩大科技载体服务内涵,提升科研机构研究能力,为高科技创新企业加速发展创造了有利环境。”   在生物纳米科技升温的同时,大量昂贵的实验仪器却成为企业发展瓶颈,广大中小型企业无力购置或购全。建立拥有一流专业设备的公共技术服务中心成为期待。为解决企业发展难题,苏州工业园建立生物纳米园,并建立公共技术服务中心,以低廉的价格供园区企业使用。   目前,该中心建立公共分析平台、抗体和蛋白药物平台、纳米靶向药物传导平台、药物高通量筛选平台、临床前研究平台、药物中试平台、纳米加工平台、纳米测试分析平台、仪器试剂采购服务平台、ICT融合通讯沟通平台、人才招聘和培训平台、政策申报服务平台等,总面积约2800平方米。其中,首期 750平方米,具备生物医药研发所需的大型先进分析仪器和实验室保障设备,可满足药物开发基本分析测试需求 二期投入运营的抗体公共服务平台,覆盖分子生物学、基因组学、生物化学、医学免疫学、细胞生物学等领域。   同时,该中心还加入了区域共享协作网,依托苏州纳米技术与纳米仿生研究所的科研设备及纳米技术加工平台和纳米测试分析平台,为纳米技术企业的成长提供完备的技术支持。   张东驰称,作为苏州工业园区大力扶持生物医药产业发展的新举措,生物纳米园公共技术服务中心资金投入巨大,拥有业内一流的专业设备,采用了基础平台叠加专业平台的超前规划,自建平台与专业团队共同合作管理的创新模式。通过这种合作模式,既可以借助专业团队的管理经验,又可有效地缩减平台运行成本。
  • 全国生命分析化学研讨会:生物纳米技术
    仪器信息网讯 2010年8月20-22日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。   大会同期举办了“生物纳米技术”系列报告会,300余人参加了此会。会议由厦门大学陈曦教授、郑州大学冶保献教授、中国科学院化学研究所毛兰群研究员和北京大学黄岩谊研究员共同主持,16位来自科研院所和高校的专家学者做了精彩的报告。部分报告内容摘录如下:   福州大学 池毓务教授   低毒性纳米电致化学发光体及共反应物的研究   池毓务教授的课题组对低毒性纳米电致化学发光体和纳米共反应物进行了一些研究,从中发现了环境友好、生物低毒性、容易标记、具有良好电致化学发光活性的碳量子点(CODs)发光体和SnO纳米颗粒,详细研究了相关纳米材料的制备方法、它们各自组成的电致发光电致体系、电致化学发光性能、及其反应机理,并对它们的分析应用前景进行了评价。   复旦大学 卢建忠教授   基于金纳米微粒的化学发光免疫分析和特定序列DNA分析   免疫分析和特定序列DNA分析新技术的构建多年来一直吸引着国内外学者们的热情,检测方法涵盖了电化学、色谱、质谱、比色、荧光、同位素和化学发光法(CL)等。卢建忠教授课题组以金纳米颗粒为标记物,采用CL分析法,发展了一系列基于金纳米颗粒的CL免疫分析和特定序列DNA分析法。   哈尔滨工业大学 刘绍琴教授   自组装膜纳米结构薄膜的光学性质:从器件到传感器   刘绍琴教授研究小组采用层层自组装技术构筑基于量子点的生物传感系统:(1)将具有可逆光致变色性能的多金属氧酸盐Na-POMs与具有荧光性能的CdSs@CdS量子点有序组装在玻璃、石英或硅基底表面,成功构建了具有可逆光控荧光开关功能的纳米复合薄膜;(2)将量子点与酶进行有序组装,利用量子点光学特性与酶的催化活性和特异性相结合,构建了可直接用于检测血清样品中葡萄糖以及果蔬中有机磷农药残留的光学和光电生物传感器。   华东师范大学 施国跃教授   基于室温离子液体/纳米传感器的研究及其对大鼠脑渗析液中谷氨酸的实时在线检测   施国跃教授课题组以功能化的室温离子液体[C3(OH)2][BF4]为模板,采用原位电沉积的方法,在玻碳电极表面制备了平均粒径为2.5nm的Au/Pt合金纳米粒子并构筑了GlutaOX-[C3(OH)2 min][ BF4]-Au/Pt-Nafion生物传感器。结合微渗析在线体系,对大鼠纹状体内谷氨酸的含量进行了实时、在线、连续的测定。   西南大学 黄承志教授   长距离共振能量转移及其分析化学   黄承志教授在报告中首先介绍了长距离共振能量转移(LrRET)的研究背景及其基础理论,着重介绍了LrRET中供体-受体对的构建及其分析应用。他在报告中对LRET的研究进行了展望:(1)新材料(不同材质、大小、形状的供体和受体)的合成及组装技术将会进一步拓展LrRET理论;(2)LrRET对生物大分子的检测,特别是检测距离在10nm以上的生物分子相互作用中将会有广阔的应用前景;(3)LrRET将会在细胞和活体成像中得到广泛的应用;(4)在大量的实验基础上提出LrRET的机制。   东南大学 钱卫平教授   基于局域表面等离子体共振的新型纳米探针构建及其生物传感器应用研究   钱卫平教授研究了电子传递介质的金纳米壳生长过程中局部表面等离子体共振(LSPR)谱演变规律,构建了一种用于LSPR生物传感快速检测生物催化反应和抗氧化物质的抗氧化能力等的新型纳米探针,探索了利用LSPR谱变化检测生物体系中有重要生理意义的酶的活性和酶催化反应的底物和产物水平以及抗氧化物质的抗氧化能力等。   吉林大学 宋大千教授   金磁纳米粒子探针在SPR传感器中的应用   宋大千教授首先介绍了SPR技术的检测原理、仪器结构,然后介绍了金纳米粒子和磁纳米粒子在SPR中的应用和优缺点。他的课题组研究发现:通过控制纳米粒子的尺寸和组成,对其化学和物理性质进行调节,金磁纳米粒子同时具备了金纳米粒子和磁纳米粒子的优点,与其单组分金属纳米粒子相比,具有独特的光学、催化和电子学性质。   此外,在本次“生物纳米技术”报告会上作报告的还有:(排名不分先后) 姓名 职称 单位 报告题目 蒋兴宇 研究员 中国科学院纳米研究中心 微流控技术在生化分析研究中的应用 刘松琴 教授 东南大学 自由基聚合反应在生物传感器中的应用 李正平 教授 河北大学 利用恒温指数扩增反应高灵敏度检测microRNA 邱建丁 教授 南昌大学 纳米金/聚多巴胺/四氧化三铁/石墨烯复合纳米材料制备及其免疫传感器研究 汪莉 教授 江西师范大学 普鲁士蓝-壳聚糖/乙酰胆碱酯酶修饰玻碳电极检测西维因的电化学研究 苏星光 教授 吉林大学 磁性荧光编码微球用于马病毒的多元免疫分析与分离 刘继峰 教授 聊城大学 核酸碱基自组装膜表面沉积铂电催化剂以及在H2O2和CH3OH电化学中的应用 毕赛 研究生 青岛科技大学 基于细胞适体和限制性内切酶循环放大化学发光检测肿瘤细胞的研究 朱玲艳 研究生 青岛大学 电解胶束溶液法制备聚吖啶橙/石墨烯修饰电极及其应用
  • 美国研究人员利用纳米技术生产生物燃料
    美国路易斯安那理工大学日前发表新闻公报说,该大学研究人员在生产生物燃料工艺过程中采用纳米技术,从而大大节省了生产成本。   公报说,秸秆等农林废弃物作为生物燃料的原料具有巨大潜力,用它们生产的生物燃料被称为第二代生物燃料。但是将这些生物原料转化成可以燃烧的乙醇等需要多种酶对其中的纤维素进行分解,成本很高。路易斯安那理工大学从事化学工程研究的帕尔梅及其同事最近开发出一种纳米技术,能将参与反应的多种酶固定成几种酶,并且这些酶能重复使用多次,这大大降低了第二代生物质燃料的生产成本。这一技术可以被应用到大规模商业生产中。   第二代生物燃料包括利用秸秆、稻草等农林废弃物生产的燃料乙醇和生物柴油,它可以替代传统的汽油和柴油,能大大减少温室气体排放,同时避免了第一代生物燃料以玉米等粮食作物为原料,因此受到广泛青睐。
  • 泊菲莱再次深度参与国标制定:《纳米科技术语 第12部分:纳米科技中的量子现象》
    2023年5月23日,由全国纳米技术标准化技术委员会(SAC/TC 279)主持制定的国家标准《纳米科技术语 第12部分:纳米科技中的量子现象》正式发布,标准于2023年12月1日正式实施。北京泊菲莱科技有限公司作为标准主要起草单位深度参与此标准从制定到发布的全过程。助力产业发展中国有“兵马未动粮草先行”之古训,在当今高科技纳米技术领域,中国权威人士又提出纳米技术研究标准应先行。国家标准委主任李忠海认为,长期以来,在传统的工业领域中总是先有产品后有标准。但在高新技术领域的标准化工作中,必须改变传统的标准化工作的思维方式,提倡理念的创新。在纳米材料的标准化工作中,应提倡标准先行,用标准引导产业化发展,用标准来规范市场。纳米材料标准化是一项面向全新材料领域、具有前瞻性的标准工作,涉及多学科、多领域。2001年中国国家科技部将“纳米材料标准及数据库”列入基础性重大研究项目;2003年12月经国家标准委批准成立了“全国纳米材料标准化联合工作组”,目前已开展了近15项纳米材料标准的研究制定工作。2023年5月23日,由北京泊菲莱科技有限公司作为主要起草单位的国家标准《纳米科技术语 第12部分:纳米科技中的量子现象》(Nanotechnologies-Vocabulary-Part 12: Quantum phenomena in nanotechnology)发布(GB/T 30544.12—2023/ISO/TS 80004-12:2016, IDT)。该标准的制定及发布,将为纳米科技在与量子相关的生产、应用、检验、流通、科研等领域,提供统一技术用语的基本依据,是开展纳米科技量子相关各种技术标准研究及制定工作的重要基础及前提。北京泊菲莱科技有限公司创立于2006年,是集研发、生产、销售、服务于一体的国家级高新技术企业,致力于开发智能化、高精度、高性能的高科技设备企业。泊菲莱科技拥有多种自主知识产权,现已应用于新能源、药物合成、精细化工等各类科研领域,在立足于国内市场的同时,多款产品也远销海外。泊菲莱科技荣获国家级高新技术企业、中关村高新技术企业,企业通过ISO9001质量管理体系认证,符合GB/T27922-2011《商品售后服务评价体系》五星级标准。泊菲莱科技不仅拥有雄厚的研发实力,也一直秉持着“以客户为中心”的服务理念和“创见、实干、卓越”的企业精神,作为科技型高新企业,积极创导高科技智能设备等尖端科技,不断革新,不断挑战,以卓越创新的进取精神,推动自身的不断成长和壮大。2005年4月我国颁布第一批七项纳米领域的国家标准,其中就有《纳米材料术语》(GB/T 19619—2004,terminology for nanomaterials)。这项标准规定了纳米材料一般概念和按技术分类的具体概念的术语。分为一般概念、纳米材料的种类、特性、制备方法、处理方法和表征方法6类,共68个术语。其中对纳米尺度的定义是在1到100纳米范围的几何尺度,没有涉及性质变化。近年来,很多企业意识到参与标准制定的战略意义,形成了共识:一流的企业制定标准,二流的企业销售服务,三流的企业售卖产品。随着我国纳米科技国标的发布,作为标准主要起草单位,泊菲莱科技将在行业中更具话语权,进一步引领相关产业发展。 相关背景 纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是动态科学(动态力学)和现代科学(混沌物理、智能量子、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
  • 学者研发便携式生物纳米孔测序仪 仅口袋大小就能测人类基因组
    p & nbsp & nbsp & nbsp & nbsp 《自然-生物技术》日前在线发表一篇论文,介绍了一种纳米孔装置。该装置仅有一个口袋大小,却可以测序和从头组装人类基因组。该研究报告了迄今为止最连续的人类基因组组装且仅使用了单一测序技术。 /p p   理解和解读人类基因组是现代医学的基石,人们一直希望可以尽可能多地测序基因组。此前,受速度、成本和测序系统有限等多种因素影响,这项工作令人望而生畏。虽然测序技术已有所改进,但要快速、低成本地组装人类基因组并保证高准确度和完整性,依然颇具挑战。 /p p /p p   为此,英国诺丁汉大学研究人员采用了一种便携式生物纳米孔测序仪,对人类GM12878细胞系基因组进行测序和组装,生成了91.2Gb的序列数据。利用这一方法,单个读长可长达882kb,使研究者能够分析过去利用最先进的测序方法也分析不了的人类基因组区域。填补了相关空缺,并提高其准确性。 /p p   据悉,“读长”指的是测序反应所能测得序列的长度,如果DNA序列长度高于“读长”,那么必须把DNA序列分割成长度在“读长”以内短序列才能测序。较长的“读长”,体现了测序技术的优势。 /p
  • 岛津参加2011年中国国际纳米科学技术会议
    由国家纳米科学和技术中心组织,国家纳米技术指导委员会主办,科技部、教育部、国家自然科学基金会、中国科学院、中国科学技术协会协办的&ldquo 2011年中国国际纳米科学技术会议&rdquo 于2011年9月7日-9日在国家会议中心召开。此次会议旨在探讨纳米科学技术的前沿研究,聚焦于无机纳米材料、碳纳米材料、有机和高分子纳米材料、纳米复合材料的研究和应用,纳米器件、纳米系统、纳米生物技术及纳米医药的表征以及纳米结构的建模与仿真。来自世界各地的500多名专家、学者、研究生参加了此次会议。由于纳米领域密切的国际交流,本次会议从会议主持、专家报告到代表交流,全程采用英语直接交流,也成为本次国际会议的一大特色。 会场外的大厅里是40多家纳米领域分析试验仪器厂家的展台展示,陈列着各家&ldquo 纳米金刚钻&rdquo 。提到纳米技术就不能不提扫描隧道显微镜,它由IBM研究员、诺贝尔物理学奖获得者Gerd Binning(盖尔德· 宾尼)和Heinrich Rohrer(海因里希· 罗勒)这两位科学家于1981年率先开发,能够在原子水平观察材料表面,从而奠定了纳米技术研究的基石。 所以,最先亮相的当然非&ldquo 原子力显微镜&rdquo 莫属,原子力显微镜是继扫描隧道显微镜之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。 岛津公司于2011年5月新品推出了SPM-9700扫描探针显微镜 扫描探针显微镜(SPM)是在样品表面用微小的探针进行扫描,高倍率观察三维形貌和局部物理特性的显微镜总称。SPM-9700更是性能高、速度快、操作简单的新一代扫描探针显微镜。 专利技术的头部滑动机构,高稳定性&高速分析的保证 样品交换时也可保持激光稳定照射悬臂。照射稳定性优异,分析时间也大幅度缩短。 鼠标操作即可表现丰富的3D图像显示 可从不同角度放大拉伸图像进行确认。鼠标操作简单,更可进行3D断面形状分析。 X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,下称XPS)是广泛应用于材料科学领域的高技术分析仪器,主要用于固体材料的表面(2~3nm深度)元素成分和价态的定性和定量分析,与成像功能和离子溅射刻蚀相结合,也可以用于固体表面元素成分及价态的二维面分析和深度剖析,在纳米材料、高分子材料、材料的腐蚀与防护、各类功能薄膜的机理研究、催化剂研究与失效等方面具有不可替代的作用。 通常情况下,纳米材料的颗粒直径均在100nm左右,原子排列仅具备短程序而无长程序,其表面特性与块状材料有很大不同。由于颗粒过于微小,其他分析手段如SEM或EPMA的信息深度在1&mu m左右,测量结果只能是多个颗粒由表及里的平均结果,因而只能使用XPS等表面分析手段进行材料最外层数个原子层的成分与价态表征。 相信岛津纳米分析领域的扫描探针显微镜(包含原子力显微镜、扫描隧道显微镜功能)、X射线光电子能谱的应用会令您的纳米研究如虎添翼!
  • 上海应物所合作开发出一种基于DNA纳米技术的生物传感平台
    生物传感器是一类在临床检测、遗传分析、环境检测、生物反恐和国家安全防御等领域具有重要应用的传感器件。最近,中科院上海应用物理所物理生物学实验室和美国亚利桑那州立大学的研究人员合作发展了一种基于DNA纳米技术的三维DNA纳米结构探针,并在此基础上构建了一类新型的生物传感平台,实现了对基因和蛋白质高性能检测。相关论文以封面形式发表于材料领域著名杂志《先进材料》 (Advanced Materials, 2010, 22, 4754-4758)。   上海应用物理所博士生裴昊等在樊春海研究员和亚利桑那州立大学颜颢教授的合作指导下,将一种衍生的DNA四面体纳米结构固定在金基底上,而四面体结构顶点上延伸出来的一段DNA序列可以通过特定设计作为DNA分子、核酸适配体和抗体识别单元的基础。在高度刚性的四面体结构的支撑下,DNA识别序列呈高度一致的取向,并提高了表面识别的自由度。研究者进一步证明,此新型生物分子识别界面适用于电化学、表面等离子体共振、石英晶体微天平、微悬臂梁等一系列传感技术。这一平台技术可能会为生物传感领域打开一个新的研究契机。   该研究得到了国家自然科学基金委、科技部和上海市科委的支持。   生物传感器是基于生物分子界面识别的原理,通过将生物识别单元(如DNA或蛋白质分子)作为“分子探针”固定在固体表面,形成一个分子识别界面。生物传感器领域的一个基本问题是如何实现生物识别单元的有效固定,并且避免界面上生物分子活性的损失。传统的DNA探针常用一维(单链DNA)或二维结构(如发夹结构)DNA作为识别元件,其传感界面的均一性在制备过程中难以得到有效控制,从而影响了实际应用中检测的稳定性和重复性。而三维DNA探针具有高结构稳定性和刚性,可以有效提高DNA探针在表面分布排列的均一性,并精确调控探针之间的距离,从而显著提高了生物检测的灵敏度和特异性。这一研究结果展示了DNA纳米技术作为一种新型生物传感平台的巨大潜力。DNA纳米技术是近年来新兴的前沿交叉领域,充分利用了DNA分子卓越的自组装和识别能力实现精确的从底向上的纳米构筑。目前,研究者已可以将DNA自组装成千姿百态的DNA纳米结构,而这些DNA纳米结构的潜在用途也受到各个领域的广泛关注。
  • 只需400元 纳米技术将用于三聚氰胺检测
    买包奶粉几十百把块钱,如果怀疑奶粉有问题,要送去检测,以前可能要花上几百上千元的检测费。监督成本高,成为食品安全的拦路虎。10月22日,重庆晨报记者从国际纳米生物技术与微系统创新产业化研讨会上获悉,重庆科学技术研究院、重庆大学与德国弗劳恩霍夫电子纳米系统研究所签订协议,将开展微系统与维纳在食物检测中的应用。“到时候,我们的食品检测就可以应用纳米技术进行,即使检测10-30个指标,也只需50元左右。”   检测三聚氰胺需400元   从大头娃娃到三聚氰胺,奶粉的质量安全一直让人担心,这也使得不少妈妈到香港、澳门等地选购奶粉。如果自己买的奶粉能够快速检测质量问题,那就用不着长途奔波了。“可是检测费高啊,而且还要等检测结果,等不起啊。”不少妈妈有这样的担心。   对于这个问题,记者从市计量质量检测研究院了解到,目前三聚氰胺的检测费用在400元左右。也就是说,你花几十百把块钱买一包奶粉,如果需要知道奶粉是不是含有三聚氰胺,得花400元才能买个安心。“这点检测费我都可以买一两袋进口奶粉了,不划算啥。”已经是两岁孩子妈妈的滕春燕告诉记者。   为什么检测费用会这么高?以市计量质量检测研究院所购买的液相色谱质谱联用仪为例,该仪器价值三百多万,开一次机,所用的耗材等就需要一百多块钱。“所以使用这样的仪器检测,费用就比较高。”市计量质量检测研究院相关人士称。   新技术50元能测30项指标   重庆科学技术研究院魏启明博士称,这次签约,就是要把国外的技术引到国内,并进行国产化。“届时,我们用纳米技术进行食品检测,一是灵敏度高,二是快,而且价格便宜。”   魏教授将这种新技术与传统技术进行了对比。“灵敏度最高会高出传统技术几十倍 在时间上,几分钟就检测检查出来,而传统技术需要几天 最主要的是节约钱,传统技术测一个指标约几十百把块钱,但用新技术测10-30项指标才50元。”换句话说,以后你怀疑食品质量有问题,可以很坦然地拿去检测,因为检测费会非常低,最多几十块钱。   检测费用的差距为何如此之大?魏教授称,这是因为新技术使用的是芯片,“一个芯片就能检测30-50种污染物。”
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E,Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
  • 国家纳米中心“活体自组装”生物纳米材料研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院国家纳米科学中心王浩课题组通过发展“活体自组装”技术,在细胞内构建了不同拓扑结构的纳米材料,并提出了全新的细胞内原位聚合和组装策略,为功能性纳米材料的设计提供了新思路。相关研究成果发表在 em Nature Communications /em 上,并已申请中国发明专利。 /p p   纳米材料在生物医学领域已被广泛研究和认可,例如药物递送、组织工程等均得到了深入研究。但纳米材料独特的生物界面效应,使其在复杂生命体中的递送过程、物理化学转化以及蓄积代谢等问题变得十分棘手。因此,王浩课题组提出了“活体自组装”理念,独特设计纳米材料的建筑单元,将外源引入的分子参与到生命体的功能性组装过程中,实现了在生理环境下自发的纳米材料构建和功能化。这一独特思路,为生物医用纳米材料领域的设计和应用提供了新视角和新途径。 /p p   在纳米材料的生物功能应用中,拓扑结构对活体器官、组织和细胞的功能影响显得尤为重要。前期报道指出,特定拓扑结构在生命体中扮演者独特的角色,例如双螺旋结构的DNA、具有特定3D结构的蛋白大分子,以及各种传导信号的分子复合体等。材料和界面的拓扑结构影响生物功能,例如界面的形态会诱导干细胞定向分化、决定细胞迁移和内吞等功能。因此,深入研究在特定区域内材料拓扑结构与生物功能之间的关系,将为精准功能化纳米材料的设计提供指导。目前,体外构筑的纳米材料,不能区分界面和胞内作用,干扰了限域拓扑结构和生物功能关系的分析和理解。 /p p   针对特定区域内材料与功能之间的关系研究,王浩课题组发展了细胞内原位聚合和组装的新方法,首次实现了在细胞内平行构筑不同拓扑结构的纳米材料,为研究胞浆拓扑结构和功能的关系提供了有效手段。通过设计不同氨基酸序列的多肽聚合单体,实现了在胞内聚合过程中,对聚合物分子量大小、温敏性质以及组装后的拓扑结构的调控;在细胞和组织水平原位的证实了多肽单体的聚合和组装过程;综合评价了不同拓扑结构的纳米组装体的滞留效应和细胞毒性等生物功能,为精准设计功能化纳米材料提供基础参考。 /p p   研究工作得到了国家自然科学基金、创新群体项目、中科院国际合作、交叉团队、青促会等的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171108529108817694.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4a4278be-71e4-47d4-87a7-0fc2df981d1b.jpg" uploadpic=" W020171108529108817694.png" / /p p style=" text-align: center " 国家纳米中心“活体自组装”生物纳米材料研究工作获进展 /p
  • 北京检验检疫局纳米生物检测技术平台初见规模
    近日,从北京检验检疫局传出的一则消息引起了业内人士的广泛关注:截至目前,该局与国家纳米中心合作的11个纳米检测技术研究项目取得可喜成果,这标志着该局积极打造的纳米生物检测技术平台已初见规模。   纳米科学技术是当今最重要的新兴科学技术之一,纳米材料的特殊效应使其在检验检疫领域中有着极其广阔的研究和应用前景。北京检验检疫局大处着眼,立足长效,在质检系统内率先开展了纳米科学技术研究。经过3年多努力,该局科研人员与国家纳米中心合作,在纳米材料应用于动植物检疫、食品检测技术的研究方面进行了积极的探索,研究水平在系统内处于领先地位。   2009年7月8日,在北京检验检疫局和国家纳米科学中心召开的“纳米生物检验检疫检测技术合作研讨会”上,北京检验检疫局相关部门负责人透露,自2008年11月,双方签署了《关于加强纳米生物检测技术合作的协议》以来,两家单位从纳米生物检验检疫检测技术研究起步,积极开展科研合作:2009年北京检验检疫局主持的《高效检测炭疽杆菌纳米技术研究》等6个项目获得国家质检总局科研计划立项,研究范围涉及卫生检疫、植物检疫、纺织品检验、食品检验等领域。今年该局在申请、申报新的科研立项工作中,将战略重点进一步放在了纳米科学技术方面,申请的2010年国家质检总局科研计划项目中,与纳米科学技术相关的项目达10余项。   随着纳米科学技术的进一步研究和应用,纳米科学技术在检验检疫的应用研究将不断深入,研究范围将从动植物、食品、纺织品、卫生检疫等专业扩大到更多专业,如纳米技术应用于环境监测的研究、纳米功能性产品的检测等领域。   北京检验检疫局相关负责人表示,该局和国家纳米科学中心在现有合作基础上,将进一步加强合作,将研究项目向深度、广度发展,为将来联合申报国家级科研项目奠定基础。
  • 我国“863”计划纳米项目获20余项专利
    中国纳米生物技术研究已处于国际先进水平和部分领先水平。正在实施的国家十一五“863”计划《纳米医药制剂、纳米生物材料、纳米生物器件》三大重点项目中,目前已有部分课题取得较大进展,获发明专利20余项。这是记者1月14日从长沙召开的三大重点项目实施年度报告大会上获得的信息。   纳米生物学是在纳米尺度上应用生物学原理,发现新现象,研制新材料、纳米器件和新药物的一门新兴科学。纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在人工器官材料、血液净化等众多方面具有广泛、诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。   近年来,中国通过实施“863”、“973”计划,纳米材料制备和技术研究已取得较为突出的成果,国家纳米科学技术中心、纳米生物技术重点实验室等一批纳米科技研究与开发中心已建立。据中国医药生物技术协会副会长张阳德教授介绍,卫生部纳米生物技术重点实验室在中国较早开展了纳米生物技术的理论和应用研究,并取得了可喜成绩。由于国家的重视和本领域专家的积极努力,中国的纳米生物技术研究已处于国际先进水平和部分领先水平,开拓了中国纳米生物技术研究的新局面。   卫生部有关负责人透露,经过一年多时间的实施,国家十一五“863”计划《纳米医药制剂、纳米生物材料、纳米生物器件》三大重点项目的116个课题中,目前已有三分之一的课题取得较大进展,一个项目制剂进入临床研究阶段,共发明专利20余项,申请发明专利70多项。这位负责人同时表示,由于实施时间较短,一些课题进展仍比较缓慢。此次年度报告大会的召开,将对促进研究、加强交流发挥积极作用。
  • Queensgate仪器推出双传感器技术 实现亚纳米级分辨率
    【2013年1月10日,上海】Elektron Technology公司旗下品牌Queensgate近日宣布推出其革命性新款双传感器技术(Dual Sensor Technology)。这一尖端的控制技术与以往相比,可实现更快、更准确以及更稳定的显微镜物镜聚焦。 全新双传感器技术克服了传统纳米定位系统的限制,可提供更快的阶跃响应,提高有效载荷出现变化时的稳定性,并且显著增加自动显微术应用时的机械带宽。       NPC-A-1110DS 独立式模拟单轴闭合环路传动装置   Queensgate推出的双传感器技术彰显了纳米定位技术领域的阶跃性变化是目前业内最尖端的控制技术之一。目前Queensgate的OSM-Z- 100B 100μm目标扫描机构以及NPC-A -1110DS独立式模拟单轴闭合环路传动装置已率先采用这一革命性创新技术系统。其中最新的OSM-Z-100B 100μm目标扫描机构,它将双传感器技术与Queensgate著名的电容纳米传感器(NanoSensors?)的卓越性能结合在一起,以非凡的聚焦稳定性实现亚纳米级分辨率。这项突破性的技术能够应用于各种袖珍模拟和数字控制器,其操作简便,为用户提供顶尖性能。 OSM-Z-100B 100 μm 目标扫描机构   Queensgate 是Electron Technology公司的下属品牌,成立于1979年的英国伦敦,是一家为高科技为工业领域提供纳米定位和感应技术的解决方案商。公司服务于全球客户并为其提供技术领先且质量卓越的纳米定位技术已超过30年。公司设计团队将领先的研究成果运用到具有革命性意义的全新纳米定位系统中。 即使在当今这个全球新技术瞬息万变的环境下,Queensgate 依然处于该领域的前沿地位。凭借着卓越的技术,出色的品质为诸多领域,例如微系统、通信、半导体技术、生物技术以及航空航天技术等领域提供相关支持,并与扫描电子显微镜完美结合,实现微纳米尺度的操纵。
  • 流式细胞仪大显身手 高通量纳米材料生物毒性检测技术取得进展
    随着纳米技术的快速发展,越来越多的新型纳米材料不断出现并迅速应用在实际生活中。因此,发展快速、高通量的生物检测手段对纳米毒性的快速安全评估极为重要。流式细胞术是毒理学检测的常用技术,具有高通量、快速、准确的特点。但由于团聚的纳米材料在尺寸上同细菌相近,严重干扰检测结果,使得流式细胞术难以运用于纳米材料对细菌的毒性评估。  近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴李君、陈少鹏课题组建立了基于PI-GFP双荧光标记的纳米材料细菌毒性检测方法:GFP绿色荧光表征细菌的生长,碘化丙啶PI红色荧光标记区分死、活细胞,在流式细胞仪上准确区分细菌与纳米材料,通过绿色荧光和红色荧光细胞的相对比例,反应纳米材料的毒性。对比单荧光标记,双荧光标记可以更准确地检测纳米材料的毒性。运用上述建立的双荧光报告系统,他们研究了水环境中金属离子及表面活性剂对纳米银毒性的影响,揭示了不同环境因子对纳米银细菌毒性的影响和机制。结果表明,双荧光报告检测系统可以较准确地反应纳米材料的毒性,适用于环境纳米材料生物学效应的评估。该研究成果已被国际毒理学期刊Cheomsphere (DOI: 10.1016/j.chemosphere.2016.04.074)接收。  该研究受到国家重大研究计划、中科院先导专项B、国家自然科学基金以及研究院院长基金资助。  双荧光报告基因系统检测纳米银生物毒性
  • 邀请函|2022国际医药生物技术大会
    2022国际医药生物技术大会(简称ICMB2022)将于2022年7月26-28日在古都西安召开。会议以“加强创新合作,发展健康产业”为主题,围绕基因工程、遗传工程、细胞工程、酶工程、免疫治疗、基因治疗、干细胞治疗、蛋白质工程、生物信息学、抗体药物、重组蛋白药物、多肽药物、核酸药物、免疫细胞治疗、干细胞治疗、基因治疗、合成生物学、微米级生物机器人等领域,通过开幕式、主会场报告、分会场报告、国际线上交流论坛、论文征稿、科技展览、墙报展示等多种形式,邀请来自国内外的院士、专家学者、企业高管共聚一堂,为国内外生物医药科技工作者搭建交流与共享的平台,推进我国生物医药产业相关领域的技术交流、科研创新、成果转化的发展,诚邀您相约古都西安,共同见证生物医药的学术盛会,携手开创生物医药产业发展的美好未来! 1、 基本信息名称:2022国际医药生物技术大会时间:2022年7月26-28日地点:陕西省西安市主题:加强创新合作,发展健康产业规模:200+报告人,600+参会规模语言:中英文网址:http://www.ifengcongress.com/icmb2022/index.html 2、 组织架构主办单位:羽嘉会议协办单位:医学信息,肽度TIMEDOO、食品伙伴网、再生医学、中科蓝智、领慧媒体合作:分析测试百科网、中国生物器材网、生物探索、活动家、露森科研、会会药咖、药源网、仪器信息网、制药在线、现代资讯、会展之窗、华夏界网、来宝网、爱爱医、贤集网、易科学、人民医生网、药方舟、好展会3、 大会议题分会一:基础研究进展与突破议题涵盖生物化学与生物物理学、药物化学、细胞与分子生物学、合成生物学、基因组学与基因编辑、蛋白质与蛋白质组学、宏基因组及微生物研究、代谢组学、遗传学和表观遗传学、先进的生物分析技术。分会二:神经生物学与神经科学议题涵盖脑科学与类脑研究、计算神经科学、神经病学基础研究进展、神经毒素、神经发育与再生、神经干细胞和组织工程、神经胶质细胞、神经损伤与修复、神经退行性疾病、神经肿瘤。分会三:再生医学、干细胞和组织工程议题涵盖干细胞生物学、组织修复和再生、组织工程材料与设计、全器官工程、软组织修复与再生、组织工程中的生物反应器、干细胞治疗前沿、干细胞与抗衰老、组织工程、干细胞与再生医学的应用、生物医学材料与3D打印技术。分会四:癌症研究与肿瘤免疫治疗议题涵盖CAR-T细胞治疗、肿瘤精准医学、癌症免疫治疗、炎症与癌症、癌症代谢、新型肿瘤标志物、双特异性和多特异性抗体、癌症治疗的耐药、乳腺癌专题、肺癌专题。、分会五:新一代生物医药技术议题涵盖基于人工智能和计算机辅助药物设计、生物医药大数据与智能分析、生物催化与新药研究和开发、新一代药物递送技术、系统生物学前沿。分会六:中医药与天然药物议题涵盖中药抗肿瘤、抗炎和抗病毒研究、中药化学成分、药效物质基础和新药开发、中医治未病及中医病因病机、天然药物活性成分研究、天然药物的发现、合成与功能研究。分会七:创新药物研究进展议题涵盖重大疾病药物研发进展、小分子药物发现与合成、抗体药物、纳米药物与纳米制剂、蛋白质和多肽药物、 基因治疗-寡核苷酸、核酸药物、mRNA药物和siRNA药物治疗、海洋创新药物、新冠肺炎疫苗、抗体和药物研发、医药行业的CRO、CMO、CSO、罕见病药物研发。分会八:免疫技术、微生物学和细胞治疗议题涵盖病毒感染与疾病、细菌感染与疾病、细菌敏感性和耐药性、诊断微生物学、真菌感染与疾病、寄生虫病与全球健康、 医疗相关感染、预防和控制、实验微生物学、微生物致病机理与生物膜、免疫与疫苗、COVID-19。分会九:纳米医学与纳米生物技术议题涵盖纳米技术在医疗诊断中的应用、纳米生物材料合成与表征、纳米医学材料、纳米技术在治疗中的应用、医药纳米技术、用于免疫系统和癌症诊断与治疗的纳米医学、 生物和医疗纳米器件及生物传感器、组织工程和再生纳米医学、微纳米分子系统、生物医用纳米机器人。分会十:人工智能在医药领域的应用议题聚焦人工智能助力药物筛选、药物设计、医药产品开发、智能制药、质量控制和质量保证、临床试验设计、基于人工智能的药物开发、AI创新解决方案等。4、 参展范围生物技术与实验室装备与技术、药品研究制造及制药装备、诊断试剂和医疗设备、分析和质量控制、国内外知名医药企业、中医药和大健康产业、药物制剂、各类疫苗、药物研发机构及生产销售机构, CMO/CDMO/CRO等服务、临床试验机构、医院、投资公司、政府园区及科研院校、媒体等。5、 参会价格参会票A门票类型早鸟票(2022-01-31前)2021-03-31前现场缴费学术代表1600元1800元2200元企业代表1800元2000元2400元学生代表1000元1200元1600元以上费用包含:1. 所有会议资料;2. 会议所有论坛入场券;3. 会议期间茶歇;4. 可投递会刊论文一页(A4大小);5. 学生赠送学术墙报一张(自行制作,统一粘贴)6. 会后可获得会议所有参会代表通讯录。参会票B门票类型早鸟票(2022-01-31前)2021-03-31前现场缴费学术代表2200元2400元2800元企业代表2400元2600元3000元学生代表1600元1800元2200元以上费用包含:1. 所有会议资料;2. 会议所有论坛入场券;3. 某一专题论坛演讲20分钟;4. 会议期间茶歇;5. 会议期间午餐(2022年7月26-28日);6. 大会晚宴(2022年7月26日);7. 学生赠送学术墙报一张(自行制作,统一粘贴)8. 会后可获得会议所有参会代表通讯录。展览票门票类型早鸟票(2022-01-31前)2021-03-31前2021-05-31前标准展位10000元12000元14000元光地/平米(18平米起租,不含任何设施)800元1000元1200元所有展商均包含以下权益:1. 在大会网站、会议手册和会议背景板上宣传企业信息;2. 在大会期间颁发致谢奖牌;3. 在会议资料包中发放企业介绍资料或小礼品;4. 在大会网站上发布企业logo 及链接;5. 大会间隙循环播放企业宣传视频;6. 会后可获得会议所有参会代表通讯录。备注:1、注册优惠截止时间以注册费汇出时间为准;2、注册付款后无特殊原因,不提供退款。如您因个人原因无法参加,建议您转让他人;3、5人以上团队注册享受8折优惠,请直接联系组委会;4、如因不可抗力因素导致活动取消或延期,大会将及时发布通知,并与您确认退票事宜,不收取任何手续费。6、 付款方式1、银行转账:转账备注:ICMB+姓名+单位单位开户名:大连羽嘉会议有限公司单位开户银行:中国建设银行股份有限公司大连青泥洼桥支行单位开户账号:21250186005000000870纳税人识别号:91210231MA0YKLFE4G汇款成功后请将汇款回单发送至邮件会务组邮箱:yujia@ifengcongress.com 2、微信/支付宝付款报名参会的嘉宾用手机扫描下方二维码,可以实时到账。 特别提示:(1) 付款时请务必添加附言,格式为“ICMB+姓名+单位”;(2) 会议注册费发票由大连羽嘉会议有限公司统一开具。7、 会务组联系人联系人:杨经理电话:18698687308邮箱:daisy @ifengcongress.com 附大会注册回执表姓名性别□男 □女单位职务电话邮箱通信地址注册项目□参会票A □参会票B □展览票 □海报 □购买会刊 □赞助 □其他费用总额 ¥: 大写:发票名头注:此表可复制填写
  • 12.01日直播 5位专家在线共话生物纳米材料表征与检测技术
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8cdbadc6-6fbd-497d-8a17-40496580cd1d.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-indent: 2em text-align: justify " 生物材料与细胞的相互作用是组织工程研究领域中的重要课题,其中生物材料表面的微观结构对细胞的生物调控起重要作用。纳米材料由于其尺寸在纳米量级、有大量的界面或自由表面、各纳米单元之间存在着或强或弱的相互作用而具有一些独特的效应,表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能的根本途径。 /p p style=" text-indent: 2em text-align: justify " 为促进生物纳米材料领域的科技创新和产业发展,仪器信息网将于 span 2020 /span 年 span 12 /span 月 span 01 /span 日举办 span “ /span 生物纳米材料表征与检测技术 span ” /span 主题网络研讨会,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。 /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong 【生物纳米材料交流群】 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 159px height: 213px " src=" https://img1.17img.cn/17img/images/202011/uepic/82aa6b9d-e452-4d11-bd42-6eed97311697.jpg" title=" 纳米材料表征会议微信群.jpg" alt=" 纳米材料表征会议微信群.jpg" width=" 159" height=" 213" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 宋体 color: rgb(192, 0, 0) " 【报告嘉宾一览】 /span /strong /span /p p style=" text-align:center font-variant-ligatures: normal font-variant-caps: normal orphans: 2 widows: 2 -webkit-text-stroke-width: 0px word-spacing: 0px" span style=" font-size:14px color:#444444" (按报告时间顺序) /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a49a88b0-2e0f-4ad7-9183-fc1e3018232d.jpg" title=" 专家信息.jpg" alt=" 专家信息.jpg" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 黑体 " 【 /span 大会报告题目及日程安排】 /strong /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse" align=" center" tbody tr class=" firstRow" td width=" 480" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 12 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 月 /span /strong strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 01 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 日 /span /strong strong /strong strong span style=" font-size: 12px font-family:宋体 color:#444444" 生物纳米材料表征与检测技术 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 时间 /span /strong /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告人 /span /strong /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告题目 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" p span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 13:30-14:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 周晶 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 首都师范大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 稀土纳米探针诊断性能的可控调控及其检测研究 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:00-14:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 王鑫 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 布鲁克 span ( /span 北京 span ) /span 科技有限公司 & nbsp 应用科学家 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 原子力显微镜技术进展与在生物学检测中的应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:30-15:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 李春霞 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 山东大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 多功能纳米诊疗平台的构建及生物应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:00-15:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 侯毅 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 北京化工大学 副教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 纳米肿瘤分子影像探针构建与应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:30-16:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 袁荃 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 湖南大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 长余辉发光纳米材料控制合成及生物医学应用 /span /p /td /tr /tbody /table p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7e51a59a-b457-496e-ba14-e33aee9c244f.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-align: center " span style=" text-align: center " 报名地址 /span /p p style=" text-align: center " span a href=" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/ /a /span /p
  • 纳米组学:基于纳米技术的血液循环癌组的多维采集
    在过去的十年中,开发“简单”的血液测试并为个性化治疗提供设计,且无需侵入性肿瘤活检取样,使癌症筛查、诊断或监测成为可能,一直是癌症研究的核心目标。来自正在进行的生物标志物开发工作的数据表明,提高早期癌症检测分析的灵敏度和特异性需要多个标志物单独使用或作为多种方式的一部分。在血液中多个维度(基因组、表观基因组、转录组、蛋白质组和代谢组)的癌症相关分子改变以及整合所得的多组学数据有可能发现新的生物标志物并进一步阐明潜在的分子途径。在此,我们回顾了多组学液体活检方法的关键进展,并介绍了“纳米组学”标准模式:开发和利用纳米技术工具来富集并对血液循环癌组进行组学分析。  论文:Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome译名:纳米组学:基于纳米技术的血液循环癌组的多维采集  尽管癌症的治疗手段取得了日新月异的成果,但全球人口仍有六分之一的死亡是由癌症导致的。缺乏早期癌症检测工具是造成这种高死亡率的主要原因之一。能够在疾病早期检测血液中肿瘤特征的测试为癌症患者提供了巨大的、尚未开发的潜力,即在肿瘤变得无法治愈之前接受有效治疗。因此,液体活检技术正在迅速发展,不仅可以进行非侵入性肿瘤分析,还可以检测无症状个体的癌症发作。  基于使用组合治疗方式治疗癌症相似的基本原理(例如,手术、放疗和化疗),多种血液循环分析物作为“癌症指纹”的协同作用导致了在早期癌症检测中的范式转变。液体活检样本包含一系列蛋白质、核酸、循环肿瘤细胞(CTC)和细胞外囊泡(EV),它们从多个肿瘤部位进入血液循环,共同反映肿瘤生物学的空间和时间异质性。尽管关于分泌和循环肿瘤材料的动力学仍有待了解,但连续液体活检提供了纵向捕获系统性生物分子变化的可能性,因为它们在肿瘤进展的进化轨迹中动态发展。  检查各种血液成分中的多维分子变化(基因组、表观基因组、蛋白质组和其他)并整合由此产生的多组学数据集,不仅有可能阐明癌症特异性分子机制和潜在的治疗靶点,而且还可以发现新的用于早期癌症检测的生物标志物组合(图1)。迄今为止,由于液体活检分析物的浓度极低,尤其是在非转移性疾病患者中,对癌症组的综合分析范围上收到了限制,。事实上,基于血液的多组学生物标志物发现的主要瓶颈之一是单独富集和提取不同类型的液体活检分析物所需的大样本量(通常10-15 ml)。此外,多种分析物提取方案影响了所得组学数据集的分析重现性和可比性。  在此,我们评估了过去十年在早期癌症检测的多组学方法方面取得的进展。我们还介绍了“纳米组学”的概念,这是一种使用纳米技术来解决当前与血液循环癌组的富集和分析相关的技术限制的新兴范式。具体来说,纳米组学利用生物流体培养的纳米材料作为清除平台,在组学分析之前富集和分离癌症衍生的分析物,最终目标是识别用于早期癌症检测的新型多组学生物标志物组。  图1 多组学液体活检的转化潜力可以通过基于血液的液体活检捕获的肿瘤特异性信息的多个生物分子层的示意图。血液中存在的复杂生物分子特征突出了开发能够从单个血液样本中检测肿瘤特异性多组学特征的方法的机会。确定的多组学特征在癌症生物标志物和药物开发中具有潜在应用。  1.多组学生物标志物  目前,大多数液体活检测试基于蛋白质或游离DNA (cfDNA)分析物,临床上用于检测预后和预测性生物标志物主要是帮助选择最佳治疗策略。例如,血清癌抗原15-3常用于监测晚期乳腺癌患者的治疗反应,血浆cfDNA的EGFR突变检测可用于预测非小细胞肺癌患者对EGFR酪氨酸激酶抑制剂的反应性。随着此类检测在临床上的普及,正在进行的生物标志物发现工作正逐渐朝着开发用于癌症筛查和早期检测的多分析物检测方向发展。尽管评估单一蛋白质(例如,用于前列腺癌筛查的前列腺特异性抗原)或多种蛋白质(例如在已知盆腔肿块的女性的术前检查中用于卵巢癌检测的OVA1组)的分析已经成功应用于临床,(表观)基因组学方法目前仍在早期癌症检测领域占据主导地位。  循环肿瘤DNA (ctDNA)由封闭在CTC内或由于肿瘤细胞凋亡或坏死而释放到血流中,正在成为早期癌症检测的最有希望的生物标志物之一。尽管ctDNA仅占总cfDNA的一小部分,但下一代测序(NGS)方法能够放大ctDNA信号,因此优于基于质谱(MS)的蛋白质生物标志物发现方法。目前,超过30项正在进行的大型队列临床试验正在评估血液中基于ctDNA的生物标志物。单基因分析已逐渐演变为多基因NGS分析,最近又演变为多模式液体活检方法。不同类别的生物标志物分子的整合不仅有可能提高癌症检测的灵敏度和特异性,还可以将肿瘤定位在特定的解剖部位。  作为多癌症早期检测液体活检发展的领军技术,两种不同的多重生物标志物特征平台目前正在前瞻性临床研究中进行测试:CancerSEEK和GRAIL测试。 CancerSEEK测试使用蛋白质基因组生物标志物组,并在一项回顾性研究中进行了初步临床评估后,首次在通过基于选择性突变的血液采集和测试(DETECT-A)早期检测癌症研究中对没有癌症病史的患者进行了前瞻性评估。1005名临床检测到8种不同类型的非转移性癌症患者。最初的概念验证回顾性研究评估了一个包含16个基因和8种蛋白质的多分析物组,并证明了70%的中位测试灵敏度(在8种不同癌症类型之间以及疾病阶段之间存在相当大的差异)和超过99%的特异性。此外,监督机器学习算法的应用正确识别了63%的CancerSEEK测试呈阳性的患者的起源器官。随后的DETECT-A研究是第一个评估多分析物(16种基因和9种蛋白质)和多癌症血液检测的前瞻性和介入性试验,涉及10006名无已知癌症的女性(年龄65-75岁)报名时。研究期间共进行了96例癌症诊断,其中26例仅使用CancerSEEK血液检测,24例通过标准护理筛查检测,其余46例根据症状或其他方式检测。据报道,单独使用CancerSEEK测试对所有癌症类型的敏感性为27.1%,与标准护理测试结合使用时为52.1%。然而,应该注意的是,CancerSEEK测试依赖于诊断性PET-CT扫描来确认所有阳性病例并将癌症定位到特定的解剖部位。尽管如此,该试验表明,多分析物血液检测与PET-CT和标准癌症筛查方案相结合,不仅可以有效地纳入常规临床护理,还可以促进旨在治愈的手术。最新版本CancerSEEK的验证目前正在一项前瞻性观察研究中进行,该研究对1000名已知或疑似癌症患者和2000名未患癌症的人进行,命名为ASCEND(Detecting Cancers Earlier Through Elective Plasma-based CancerSEEK Testing–Ascertaining Serial Cancer Patients to Enable New Diagnostic)。  GRAIL测试使用基于血浆cfDNA中DNA甲基化模式的替代检测方法,该模式通过对超过100000个信息甲基化区域进行亚硫酸氢盐测序确定。该平台目前正在一项雄心勃勃的临床计划中进行多癌症筛查测试,其中包括五项前瞻性试验:循环无细胞基因组图谱(CCGA)研究(NCT02889978)、STRIVE (NCT03085888)、SUMMIT(NCT03934866)、PATHFINDER(NCT04241796)和PATHFINDER2 (NCT05155605)。基础CCGA研究表明,这种靶向DNA甲基化检测可以检测50多种癌症类型,同时还能以93%的准确度预测癌症信号起源的组织。在所有疾病阶段都检测到癌症(I-III期敏感性:43.9% I-IV期敏感性:54.9%),特异性超过99%。通过与英国国家卫生服务局的合作,最新版的GRAIL测试(Galleri)的临床和经济性能将在一项包括140000名50-77岁参与者的试点筛选研究中进行前瞻性评估。值得注意的是,CancerSEEK和GRAIL测试都被授予FDA突破性设备状态,突出了多分析物测试在早期检测多种癌症类型方面的巨大潜力。  除了无细胞基因组和蛋白质组癌症生物标志物之外,研究人员还尝试从血液中纯化和表征CTC和肿瘤衍生的EV用于实时监测治疗反应。CELLSEARCH系统是第一个获得FDA批准的平台,旨在捕获、纯化和枚举上皮来源的CTC,以预测转移性乳腺癌、结直肠癌或前列腺癌患者的预后。目前,计数极少的CTC(转移性疾病患者每毫升血液中通常为1-10个)是基于上皮标志物的表达,例如上皮细胞粘附分子(EpCAM)和细胞角蛋白8、18或19,并依赖于无法维持CTC活力的基于抗体的细胞捕获和染色方法。目前,CTC的临床效用仅基于计数,并且仅限于预测临床结果而不是实现癌症检测。然而,大量的CTC富集技术正在开发中,以实现异质CTC种群的顺序采样和分子谱分析。从散装细胞策略到对可行和完整的患者衍生CTC进行单细胞分析的转变推动了具有集成下游分子分析功能的微流体技术的发展,包括ClearCell FX1系统。  肿瘤分泌的EV不仅与肿瘤生长和转移有关,而且还可能稳定地封存癌症相关蛋白质、核酸和脂质的宝库。与CTCs相比,EVs在生物体液中的含量更高,尽管从生物体液的背景分子成分中重复分离和富集EVs仍然是众所周知的困难。 DNA条形码标记、3D纳米图案微流控芯片和无标记纯化平台(例如,通过超快分离系统(EXODUS)检测外泌体)只是目前正在开发的克服与传统超速离心相关在纯化效率、产量、速度和稳定性方面限制的基于抗体的EV纯化方案的几个例子。将生物分子或生物物理富集与在单个微流控平台(例如,外泌体模板等离子体技术TPEX)内对EV封存的生物标志物(例如蛋白质和microRNA)的多重检测相结合,在分离EV方面显示出来自非囊泡生物流体成分巨大的前景。  还尝试使用基于免疫亲和的微流体接口从单个样品中对CTC和EV进行双重隔离和分析。例如,双重用途的OncoBean (DUO)微流体装置已被证明能够从黑色素瘤患者的血液样本中同时分离CTC和EV,并使用多重实时定量逆转录 PCR (RT-qPCR) 测试对这些分析物进行分子分析,检测一组96个黑色素瘤相关基因的表达模式。使用单个设备或平台富集多种癌症分析物被认为是多组学液体活检领域的下一个前沿。  2.数据分析与整合  尽管组学数据集的可用性越来越高,但由于需要对多组学数据集进行计算操作和解释,所以将生物标志物发现转化为临床试验仍然具有挑战性。大规模的国际研究网络开始意识到在癌组整合层上捕获数据的巨大潜力。癌症基因组图谱 (TCGA)是2005年发起的泛癌基因组学联盟,现已扩展到多组学,包括超过2.5 PB的基因组、表观基因组、转录组和蛋白质组数据。美国国家癌症研究所的临床蛋白质组肿瘤分析联盟(CPTAC)是多机构倡议的另一个例子,旨在利用蛋白质组数据集的互补性,为不同癌症类型提供新的分子见解。  从单个患者样本中生成的多组学数据集的集成为发现血液中疾病特异性分子特征提供了巨大的潜力。然而,多组学数据分析比“单组学”分析更具挑战性,以下六个关键问题仍有待解决:(1)命名差异(例如,以基因为中心的与以蛋白质为中心的)和标识符弃用可能会无意中合并不同的分子种类 (2)每种数据模式都受制于其自身特定的噪声和分布特征,这需要在分析工作流程中使用大量相互依赖的软件工具 (3)开发和执行多组学工作流程需要广泛的领域知识 (4)工作流程复杂,难以优化,容易出错 (5)结果可能高度依赖于分析工作流程的设计 (6)复制和比较结果可能会因工作流程的细微变化而变得复杂。  目前已经开发了许多工作流程解决方案以实现多组学数据的关联,例如 GalaxyP和WINGS。但目前对于从此类数据集中选择关键生物标志物尚无共识。用于多组学数据分析和整合的可用工具和方法已在其他地方进行了彻底审查。  3.癌组的纳米富集  MS和NGS的技术进步极大地推进了血液中蛋白质组学特征的分析,但只有少数基于血液的癌症生物标志物测定已获得FDA批准。从血液中提取和纯化癌症相关分析物仍然是限制液体活检进入常规临床实践的主要瓶颈。  对新型早期检测生物标志物的探索引起了基于纳米技术平台的开发,这些平台旨在丰富血液癌组的不同成分(包括蛋白质、ctDNA、CTC和EV)。这些“纳米富集”策略中的大多数依赖于纳米粒子的高表面体积比以及它们的表面工程和功能化能力。所有这些利用纳米级技术或材料特性的策略都包含在纳米组学范式中。在这里,我们讨论了当前阻碍液体活检临床转化的技术挑战,并重点介绍了已用于克服这些挑战的纳米组学平台示例(表1)。  靶向纳米组学基于纳米颗粒表面的功能化,靶向部分作为特定癌症相关分析物的识别元素。相比之下,“非靶向纳米组学”方法依赖于癌症相关分析物在与生物流体孵育后非特异性吸附到纳米颗粒表面(图2)。已经开发了许多靶向纳米组学方法,主要用于富集EV和CTC(图2和3),而癌症分析物在生物流体孵育的纳米粒子表面的自发吸附仅在过去5年有使用,主要用于蛋白质和cfDNA的富集和分析(表1)。我们强调,尽管在免疫测定和生物传感器中加入基于纳米颗粒的探针经过广泛研究,但其不属于纳米组学方法的范围。这种生物传感器的输出信号是基于纳米颗粒-分析物复合物独特的光学和电化学特性,而不是基于纳米颗粒富集分析物的下游组学分析。  图2 纳米组学范式概述“纳米组学”方法的示意图,其中纳米材料被用作清除平台,以从生物体液中捕获、富集和分离癌症相关分析物以进行下游组学分析。“靶向纳米组学”需要使用靶向部分对纳米材料表面进行功能化捕获特定的癌症分析物,而“非靶向纳米组学”依赖于癌症分析物非特异性、自发吸附到纳米颗粒表面(称为生物分子电晕形成)。基于纳米材料的采集平台可以同时从单个外周血样本(以及可能的其他生物体液)中丰富癌症特异性基因组、转录组、蛋白质组和脂质组特征。纳米组学方法旨在应用生物-纳米界面获得的知识,以实现复杂生物流体的多组学分析,最终目标是推出用于早期癌症检测的新型多分析物生物标志物。cfDNA,循环游离DNA CTC,循环肿瘤细胞 EV,细胞外囊泡。  表1 使用纳米组学方法分析液体活检分析物的示例研究  ASGPR1,去唾液酸糖蛋白受体1 cfDNA,循环游离DNA CTC,循环肿瘤细胞 ddPCR,微滴数字PCR ELISA,酶联免疫吸附试验 EpCAM,上皮细胞粘附分子 EV,细胞外囊泡 ICC,免疫细胞化学 IHC,免疫组化 LC-MS/MS,液相色谱和串联质谱 nano-HB,纳米人字形结构 NP-HBCTC-chip,纳米颗粒人字形循环肿瘤细胞芯片 NSCLC,非小细胞肺癌 PEDOT,聚(3,4-乙撑二氧噻吩) PEG,聚乙二醇 PEI,聚乙烯亚胺 PIPAAm,聚N-异丙基丙烯酰胺 PLGA,聚乳酸共乙醇酸 PL,磷脂 qPCR,定量PCR RT-ddPCR,逆转录微滴数字PCR RT-qPCR,实时定量逆转录PCR SWATH-MS,连续窗口全理论碎片采集质谱 TROP2,肿瘤相关钙信号传感器2。  3.1 蛋白和ctDNA采集  在血液循环的生物分子中,蛋白质是细胞过程的生物学终点。因此,蛋白质在历史上作为最受关注的分子生物标志物。然而,直接从血液中发现新的蛋白质生物标志物由于高丰度蛋白(例如,白蛋白约占总蛋白质含量的50%)的压倒性掩蔽效应而变得错综复杂。尽管基于无标记MS的蛋白质组学取得了相当大的进步,但这种信噪比问题极大地阻碍了血液中疾病特异性蛋白质特征的识别。血浆免疫亲和消耗柱被广泛用于克服白蛋白掩蔽的问题,但会导致低分子量(LMW)蛋白质组(例如,60 kDa的蛋白质)以及高丰度载体蛋白的大量损失。  2003年首次提出使用富集纳米粒子来增强血液中LMW癌症蛋白质组的蛋白质组学分析,但这一概念仅在过去十年中才引起纳米科学界的兴趣(表1)。由 Liotta、Petricoin及其团队开发的Nanotrap技术使用核壳亲和诱饵水凝胶纳米粒子作为蛋白质收集器。与上述免疫亲和柱类似,Nanotrap技术能够将高丰度的高分子量(HMW)蛋白与LMW蛋白分离。具体来说,纳米颗粒的多孔外壳阻止HMW但不阻止LMW蛋白的进入,而内核包含共价连接的化学亲和诱饵,可捕获LMW蛋白以进行收获和后续分析。值得注意的是,虽然初步可行性研究证明了Nanotrap颗粒作为蛋白质生物标志物发现平台的潜在用途,但该技术主要用于捕获和富集已知的生物标志物蛋白质。  蛋白质在与生物体液一起孵育后自发且非靶向吸附到纳米颗粒表面,称为“蛋白冠”(框1),也已被用于蛋白质生物标志物的发现。在过去的十年中,我们了解到复杂的蛋白质电晕会在所有纳米级材料的表面上以不同程度迅速形成,这取决于它们的物理化学性质和表面特性。事实上,纳米粒子对血液蛋白的结合亲和力已被证明是由许多不同的因素决定的,包括它们的大小、表面电荷和功能化以及纳米粒子-生物流体的孵育条件(框1)。  对低丰度蛋白质的纳米颗粒电晕富集和分析进行体内研究,首先需要通过将脂质纳米颗粒静脉注射到荷瘤小鼠和卵巢癌患者体内。随后通过尺寸排阻色谱法从血液中回收电晕包被的纳米颗粒并从高丰度背景分子(没有诊断价值)中纯化纳米颗粒结合的蛋白,从而能够对血浆蛋白质组的LMW部分进行高分辨率分析。这项最初的范式转变工作引发了人们对体外形成的蛋白质电晕指纹作为一种新工具的临床开发的兴趣,该工具用于对从癌症患者队列中获得的血浆样本进行蛋白质组学分析。通过无标记蛋白质组学技术对“健康”和“患病”纳米颗粒电晕样本进行全面比较,可以识别多种以前未被识别的候选生物标志物蛋白(表1)。  在这些原理的基础上,Proteograph平台已被开发用于深度分析等离子体蛋白质组,该平台使用具有不同表面特性的有不同的电晕轮廓的磁性纳米粒子组合。由于2D和3D纳米材料是过量的,因此需要做更多的工作来研究各种类型的纳米颗粒的组合是否能在MS分析中显著“扩大”血液蛋白质组的覆盖范围。还存在从血浆样品中纯化和回收电晕涂层纳米颗粒、纳米颗粒制剂的合成和稳定性以及所需的样品量是可能阻碍此类生物流体预处理方案开发的一些亟需解决的技术挑战。  最近,纳米颗粒蛋白冠的形成在概念上已经转变为由蛋白质、脂质、多糖和核酸组成的多层分子自组装,称为“生物分子冠”(框1)。例如,我们展示了cfDNA与基于脂质的纳米颗粒在与人类血浆样本孵育时的相互作用。这一额外组学维度的发现以及在患有晚期卵巢癌的女性(与年龄匹配的未患癌症的女性相比)样本中发现的显著更高丰度的纳米粒子冠状cfDNA为进一步研究卵巢癌铺平了道路。有趣的是,对相同纳米颗粒电晕样本的蛋白质组学分析揭示了组蛋白中的癌症特异性升高,表明核小体介导的纳米颗粒cfDNA相互作用。虽然 microRNA(在蛋白质复合物中或封存在EV中)的纳米颗粒表面吸附仍有待研究,但这些发现突出了开发能够同时富集和纯化血浆蛋白和无细胞游离核酸的纳米蛋白质组收获平台技术的机会。  使用纳米粒子从血液中纯化cfDNA的替代方法只有少数正在探索中,包括阳离子磁性纳米线系统的开发。在一项原理验证研究中,这种纳米纯化方法在收集cfDNA以通过液滴数字PCR检测EGFR突变方面优于金标准QIAamp循环核酸试剂盒。此外,从非小细胞肺癌患者的血液中共同分离CTC和cfDNA证明使用单个纳米颗粒平台有富集多种分析物的潜力。其他证明金纳米粒子与甲基化DNA相互作用的研究也为利用生物纳米界面检测cfDNA中癌症特异性甲基化模式奠定了基础。  3.2 CTC和EV分离  将CTC和EV从癌症患者的血液中高效提取和纯化是液体活检分析物进行临床转化的关键,这给纳米技术人员带来了工程创新挑战。基于金标准CTC免疫捕获的方法无法收获功能上可行的CTC的异质群体。因此,目前CTC的临床应用只是基于它们在大量造血细胞中的检测和计数,并且仅在高负担、转移性疾病患者中进行。尽管血液中的EV数量更多,但它们的小尺寸和低密度带来了一系列独特的技术挑战。传统的台式EV纯化技术(如超速离心、聚合物诱导沉淀等)主要依赖于它们的物理特性,需要几个小时并无法区分癌症衍生的EV和非恶性细胞释放的EV。  已经进行了许多利用CTC和某些EV子集的癌症特异性的尝试,以使用纳米组学方法增强血液CTC和EV及其基因组、转录组和蛋白质组的捕获和分离。这些收获策略中的大多数需要用针对众所周知的CTC和EV表面抗原(如 EpCAM、HER2、CD9、CD81和CD63)的抗体涂覆纳米颗粒表面。已经开发了广泛的纳米技术来捕获血液CTC和EV(表1和图3),包括磁性、金、硅、二氧化钛(TiO2)和碳纳米材料平台,具有不同程度的设计复杂性和成功率。为了解决与CTC固有异质性相关的问题并提高捕获效率,还使用了不同抗体的混合物对相同的纳米颗粒平台进行功能化。例如,用抗体混合物标记的磁性纳米线已被证明能以100%的效率(29名患者中的29名)从250 µl血液样本中有效分离早期非转移性乳腺癌衍生的CTC。  抗体靶向纳米颗粒也已集成到微流体装置中,与标准的CTC或EV分离方法相比,该装置需要更少的样品量并具有更高的检测灵敏度,并且可以设计成多步功能(例如,分析物分离、鉴定和检测)。这种基于纳米颗粒的平台的例子包括Poudineh等人设计的基于磁性排序流式细胞仪的微流控芯片,以根据其表面蛋白表达表型分析CTC,以及Zhang等人开发的具有自组装3D人字形纳米图案的Nano-HB微流控芯片,用于检测卵巢癌患者血浆中低水平的肿瘤相关外泌体。结合纳米颗粒分离CTC或EV以及下游细胞内或囊泡组学分析的微流控芯片也在开发中,并逐渐演变为综合多物种分析平台。  纳米材料提供的多模态工程能力使其能够从复杂的生物流体中同时捕获和可视化癌症分析物,以及对捕获的分析物进行刺激响应分离和取样以进行进一步分析。多功能纳米颗粒平台的一个例子是由Zhou等人开发的发光聚乙二醇功能化免疫磁性纳米球,用于对从EpCAM+上皮癌患者的外周血样本中分离的CTC进行高分辨率可视化。量子点沉积在这些磁响应Fe3O4纳米颗粒上,除了与血液进行磁分离外,还可以实时监测CTC的回收过程。最后,使用含二硫键的接头将抗EpCAM抗体连接到这些纳米颗粒构建体的表面,使谷胱甘肽介导释放活化的CTC。  除了这些上皮标记依赖技术之外,还有研究利用CTC对裸碳基纳米颗粒表面的高亲和力的不依赖标记的方法,并有望捕获更广泛的CTC亚型,从而能够表征其独特的转移潜力。例如,在概念验证研究中,Loeian等人开发了一种碳纳米管CTC芯片,能够从4毫升或8.5毫升血液样本中根据细胞角蛋白8或 18、EGFR和HER2成功捕获具有各种表型的异质CTC,血液样本来自7名I-IV期乳腺癌患者获得的每毫升血液中0.5-28个CTC。从污染的白细胞中纯化并将粘附的CTC从纳米管
  • 微流控技术仍面临微加工、设计等挑战——访烟台芥子生物技术有限公司
    近日,烟台芥子生物技术有限公司参展第十三届纳博会。展会现场,仪器信息网就微流控技术的市场规模、技术发展、行业应用、前景展望以及烟台芥子生物的产品优势、研制背景、技术特点等采访了烟台芥子生物技术有限公司。以下是对烟台芥子生物技术有限公司的现场采访视频:2022年3月1-3日,由科技部、中国科学院指导,中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会(CHInano 2023)在苏州国际博览中心举行。本届纳博会为期3天,聚焦第三代半导体、微纳制造、纳米新材料、纳米大健康等热门领域,开设1场大会主报告、11场专业论坛、344场行业报告、22000平米展览、2场创新创业大赛,包括19位院士在内的300余位顶级专家、行业精英齐聚一堂,新技术、新产品、新成果集中亮相,为大家奉上一场干货满满、精彩纷呈的科技盛会,推出专业论坛、创新赛事、沉浸式游学等系列活动,全方位释放大会红利,推动产业生态建设,共绘美好发展蓝图。回望过去,寄语未来。展会现场,仪器信息网采访了15位专家、厂商代表,分别谈了各自的与会感受以及他们眼中中国半导体、MEMS、OLED、半导体设备、科学仪器、微流控等产业的发展现状和前景展望。
  • 中科院开发痕量生物分子分离的纳米孔聚合物微球新技术
    p    近日,中科院理化技术研究所研究员王树涛团队与大连化学物理研究所研究员梁鑫淼团队合作,开发出一种具有亲水/疏水异质纳米孔的聚合物微球。该微球能在不同极性的溶剂中选择性吸附生物分子,进而从复杂样品中高效地分离出痕量的糖肽。相关研究成果发表于《先进材料》,研究工作得到了国家自然科学基金杰出青年基金、中组部国家“万人计划”领军人才项目和北京市科委计划项目等资金的大力支持。 /p p   目前高分子多孔材料已广泛地应用于分离领域,传统的高分子多孔材料具有均质的组成或孔隙,例如聚苯乙烯多孔微球,这些材料往往很难从复杂的样品中分离出痕量的目标分子。为了实现选择性分离,通常需要对这些材料表面进行功能基团的修饰。然而,这些修饰仅仅是在分子尺度,往往造成在材料表面的修饰密度低、不均匀等各种问题,难以消除含量较高的背景分子的非特异性吸附。在临床上,痕量疾病标志物分子的分离和检测意义重大,例如与阿尔茨海默氏症紧密相关的内源性糖肽的分离。 /p p   该工作是在乳液界面聚合的研究基础上取得的又一新进展。王树涛团队前期发展的乳液界面聚合策略,实现了拓扑结构和化学组成可调的两亲性Janus微球材料的可控制备,这些两亲性的Janus微球可用于油水乳液的高效分离。同时,这种界面聚合的方法还可以拓展到二维Janus膜材料的制备上。 /p p   王树涛表示,这种具有亲水/疏水异质纳米孔的微球为开发新型的生物分子分离材料提供了新的思路,有望应用于生物分子分离及后续的临床诊断等领域。该工作一经发表便得到了国内外同行及媒体的广泛关注。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制