当前位置: 仪器信息网 > 行业主题 > >

量子声子激光

仪器信息网量子声子激光专题为您整合量子声子激光相关的最新文章,在量子声子激光专题,您不仅可以免费浏览量子声子激光的资讯, 同时您还可以浏览量子声子激光的相关资料、解决方案,参与社区量子声子激光话题讨论。

量子声子激光相关的资讯

  • 我科学家提出单向量子声子激光技术方案
    p style=" text-align: justify "   在量子芯片中,跟超导比特耦合的声子谐振器,是连接转换光电信号和执行量子逻辑操作的关键部件。这类相干声子器件,在量子信息、纳米力学与热电材料、超灵敏传感及无损检测与地质勘探等诸多领域具广泛的应用价值。不过,这一关键部件的制造,存在着一个技术“困扰”,即信号质量和计算精度易受环境噪声的干扰甚至破坏。湖南师范大学物理与电子科学学院教授景辉,提出了一种单向量子声子激光技术,既能实现信号高保真度的定向放大,又可明显抑制反向噪声对芯片功能的干扰或损害。该技术方案不依赖材料非线性,方便拓展到集成阵列电路,填补了国际上单向声子激光研究的空白,为量子计算、单向通信、隐身探测、热流控制等的实际应用提供了一种通用方法。相关成果12月15日,在美国物理学会刊物《物理评论· 应用》上在线发布。 /p p style=" text-align: justify "   在这项工作中,景辉提出,可利用旋转腔的相对论光学效应,实现声波的单向放大与传输。首先利用光学辐射压,巧妙设计耦合腔参数,实现声子相干放大,即声子激光。然后利用相对论萨格纳格效应,即在沿着或逆着腔旋转方向的光的频率及辐射压会存在差异,使其中一个方向产生的声子相干放大,而相反方向的声子激发则完全被禁戒。最终,实现了既可信号高保真度定向放大,又可明显抑制反向噪声对芯片功能的干扰的新型单向声子相干放大技术。 /p p /p
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 半导体所成功研制太赫兹量子级联激光器产品
    中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。   太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干极化THz辐射的新型太赫兹光源。半导体材料科学重点实验室经过多年的基础研究和技术开发,目前推出系列太赫兹量子级联激光器产品。频率覆盖2.9~3.3 THz,工作温度10~90 K,功率5~120mW。   太赫兹波介于中红外和微波之间,是一种安全的具有非离化特征的电磁波。它能够穿透大多数非导电材料同时又是许多分子光学吸收的特征指纹光谱范围。它的光子能量低(1 THz对应的能量大约4meV),穿透生物组织时不会产生有害的光电离和破坏,在应用到对生物组织的活体检验时,比X光更具优势。它的波长比微波短,能够被用于更高分辨率成像。THz波在分子指纹探测、诊断成像、安全反恐、宽带通讯、天文研究等方面具有重大的科学价值和广阔的应用前景。 半导体研究所制备成功太赫兹量子级联激光器系列产品
  • Nature:皮米精度位移测量激光干涉仪助力声子四极拓扑绝缘体观测
    电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。 图1:实验装置示意图(图片来源:doi:10.1038/nature25156) 值得指出的是,Sebastian Huber教授利用细金属丝将100片硅片组成一个10cmX10cm的平面,以此来模式二维拓扑缘体(如图1所示)。关键点是,当硅晶片被超声激励时,只有中心点有振动;其他角尽管连接在一起仍然保持静止。这种行为类似于二维拓扑缘体的带隙边缘和隙内拐角态的电子行为。而如何探测硅晶片的微小振动是整个实验成功的关键,Sebastian Huber教授利用德国attocube system AG公司的IDS3010皮米精度激光干涉仪(如图2所示)来测量硅晶片不同位置的微小振动变化,整个测量系统的不确定度达到5pm的精度,测量统计误差达到10pm,后在通过超声激励后测得硅晶片的中心位置的振动位移为11.2pm,通过傅里叶变换之后在73.6KHz(如图3所示)。通过attocube皮米精度激光干涉仪IDS3010成功实现声子四拓扑缘体的次观测。 图2:皮米精度位移测量激光干涉仪IDS3010 图3:测量系统示意图和经过傅里叶频率变换的测量结果(图片来源:doi:10.1038/nature25156)IDS3010皮米精度位移测量激光干涉仪体积小、测量精度高,分辨率高达1 pm,适合集成到工业应用与同步辐射应用中,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等。同时也得到了国内外众多低温、超导、真空等领域科研用户的认可和肯定。
  • 滨松量子级联激光器获日本激光学会产业“优秀奖”
    2016年5月18日至20日滨松公司出展了国际光学与光电技术展(OPTICS & PHOTONICS International Exhibition,OPIE2016)。OPIE拥有激光、红外紫外应用技术、医疗和成像、宇宙天文等7个专业展厅,是目前日本国内规模最大的光学技术展会。展会期间,在激光展区举办了第8届激光学会“产业奖”的授奖仪式。激光学会“产业奖”包含“优秀奖”、“奖励奖”和“贡献奖”,是针对学会会员单位开发的优秀产品而设立的,获奖产品和技术须应用于激光或光产业相关领域,并对社会的发展作出杰出贡献。经过几轮严格的专家评审,滨松公司的DFB型量子级联激光器L12000系列最终脱颖而出,凭借良好的产品优势和应用价值,被授予了激光学会产业“优秀奖”。量子级联激光器(QCL)是一种发射波长在中红外波段 (4 um 到10 um) 的半导体激光器。由于它的发光原理和常规LD完全不同,并且为环境监控的痕量气体分析等中红外应用提供了创新性解决方案,因此也是日益受到关注。滨松QCL产品在气体分析的应用中,具有实时检测、快速响应、高精度和高分辨率的优点。搭配相应的红外探测器,则可准确高效地实现气体的分析测量。在以下视频中,展示了一套滨松QCL、红外探测器等其它元件组成的测量系统,可以了解QCL系统在对火柴燃烧的气体、汽车尾气以及土壤散发的气体进行分析的应用实例。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in asemiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 量子激光雷达水下获取3D图像
    英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。相关研究论文刊发于4日出版的《光学快报》杂志。  在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。  激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3米距离的受控高散射场景中,3D成像取得了成功。
  • 滨松中国携新款量子级联激光器亮相第三届全国激光光谱技术学术论坛
    2019年5月10-12号,由吉林大学、中国科学院长春光学精密机械与物理研究所联合举办的第三届全国激光光谱技术学术论坛在吉林省长春市圆满落幕。滨松中国作为此次研讨会的首家赞助商,在会上隆重展出了激光器新产品——外腔调谐量子级联激光器L14890-09(External-Cavity Quantum Cascade Laser, EC-QCL)和低热功耗的蝶形量子级联激光器。 外腔调谐量子级联激光器L14890-09是一款利用腔外光栅结构、连续波长调谐、频扫式工作的脉冲量子级联激光器,波长调谐范围为7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。 在中红外光谱应用上,相比较于传统的FT-IR方法,该产品充分利用激光的定向能和宽频扫特性,可实现中红外光谱的远程、非接触式、高通量测量。 现已应用于中红外光谱测量、树脂塑料分选、无创血糖测量、中红外高光谱成像技术以及气体分析等领域。值得一提的是,该产品在2018年被日本文部科学省纳米技术平台事业部授予“最佳成果奖”。Polystyrene film Measurement resultData provided byMr. Hiromitsu Furukawa, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology新款蝶形量子级联激光器,采用Tall-Butterfly 封装,相比较于传统的HHL封装,该款产品QCL芯片经过重新设计,在阈值电流、最大电流、芯片功耗以及总功耗方面均有大幅度优化。且更加紧凑,重量只有16g,非常适合于集成到气体分析设备内。该款产品仍然继承了滨松光子原HHL封装QCL的优点:CW功率保证不低于15mW,芯片工作温度10~65摄氏度,甚至某些高温芯片无需外部风冷,完全可以满足日常环境要求。 在探测器方面,滨松中国展出了满足ROHS标准的无毒害InAsSb红外探测,探测范围为1~14um。同时也展出了满足工业监测标准要求的CCD/CMoS阵列光谱仪,主要应用于紫外差分吸收光谱(DOAS)和拉曼光谱分析技术。滨松QCL产品在气体分析的应用中,具有实时检测、快速响应、高精度和高分辨率的优点。搭配相应的探测器,则可准确高效地实现气体的分析测量。
  • 水母荧光蛋白发出新激光 为量子物理和光学计算开辟新途径
    绿色荧光蛋白极化激元激光原理示意图:将活细胞产生的绿色荧光蛋白填充在微光腔中制成一层薄膜,光和电子能量混合产生准粒子。  一个由英德科学家组成的研究团队在最近出版的《科学进展》杂志上发表论文称,他们首次将水母体内的荧光蛋白基因插入大肠杆菌基因组,利用转基因大肠杆菌产出了增强型绿色荧光蛋白(eGFP)并用来产生激光。研究人员指出,这一突破代表着极化激元激光领域的重大进步,其效率和光密度都比普通激光高得多,有望为研究量子物理学和光学计算开辟新途径。  据美国趣味科学网日前报道,传统的极化激元激光器用无机半导体做增益介质,必须致冷到极低温度 而有机发光二极管(OLED)显示器中的有机电子材料能在室温下工作,但需要有皮秒(万亿分之一秒)光脉冲来供能。研究团队开发的新激光器也能在室温下工作,但只需纳秒(10亿分之一秒)脉冲。  极化激元激光来自一种量子凝聚现象:激光增益介质中的原子或分子反复吸收发出光子,产生一种叫做极化激元的准粒子,在一定条件下变成一种联合量子态,从而发出激光。理论上极化激元激光需要的能量更少。  研究人员把转基因大肠杆菌产生的eGFP填充在许多光微腔里,作为一种“光泵”,能以纳秒速度发出闪光,使整个系统达到产生激光所需的能量。“光泵”能在达到激发阈值后,给设备注入更多能量以产生传统激光。该激光发明人之一、苏格兰圣安德鲁大学物理与天文学院教授马尔特盖瑟说,皮秒脉冲的能量更合适,但制造起来要比纳秒脉冲难1000倍,他们的做法简化了很多制造工序。  盖瑟还指出,新方法的一个关键优点是,蛋白质分子的发光部分被一种纳米大小的圆柱形外壳保护着,让它们彼此间不会互相干扰,分子结构很适合在高亮度下工作,更容易发出激光。但目前的激发阈值还太高,今后经过改进,最终可让极化激元激光器的激发阈值比传统激光器低得多,这样效率会更高,发光更致密。
  • 微系统所自主成功研制出THz量子级联激光器
    近日,由上海微系统所信息功能材料国家重点实验室曹俊诚研究员负责的太赫兹(THz)课题组自主成功研制了激射频率为3.2 THz的量子级联激光器(QCL)。该器件的整个研制过程,包括有源区材料生长、器件流片工艺以及光电特性测试等均在微系统所完成,为发展相关THz应用系统奠定了基础。 THzQCL具有体积小、轻便、易集成、能量转换效率高,并且可在连续波模式下工作等优点。它是一种具有复杂结构的半导体量子器件。课题组采用V90气态源分子束外延设备生长了基于GaAs/AlGaAs材料体系的THzQCL有源区;采用单面金属波导工艺制备并封装了THzQCL器件;采用远红外傅里叶变换光谱仪测试了器件的发射谱,激射频率为3.2 THz。
  • 国内首个用于量子芯片生产的激光退火仪研制成功
    据合肥日报报道,国内首个专用于量子芯片生产的MLLAS-100激光退火仪(以下简称“激光退火仪”)已研制成功,可解决量子芯片位数增加时的工艺不稳定因素,像“手术刀”一样精准剔除量子芯片中的“瑕疵”,增强量子芯片在向多比特扩展时的性能,从而进一步提升量子芯片的良品率。报道显示,该激光退火仪由合肥本源量子计算科技有限责任公司完全自主研发,可达到百纳米级超高定位精度,对量子芯片中单个量子比特进行局域激光退火,从而定向控制修饰量子比特的频率参数,解决多比特扩展中比特频率拥挤的问题,助力量子芯片向多位数扩展。安徽省量子计算工程研究中心副主任贾志龙表示,这台激光退火仪拥有正向和负向两种激光退火方式,可以在生产过程中灵活调节多比特超导量子芯片中量子比特的关键参数。同时,该设备还可用于半导体集成电路芯片、材料表面局域改性处理等领域,目前已在国内第一条量子芯片生产线上投入使用。
  • 波兰科学家研究成功生产量子级联激光器技术
    据波兰通讯社报道,波兰华沙电子技术研究院新近研究成功制造量子级联激光器的技术。   量子级联激光器是当前最新形式的半导体激光器,自1994年问世后,它的商业化使用时间并不长。   量子级联激光器是之所以吸引专业人士的眼球是因为它可以制造成便携式的探测器,用来探测像地雷中的甲烷一样的化学物质数量和化学工业中泄露的危险气体 在医学上也同样可以大有作为,可以用它在病人呼出气体中探察疾病的影踪,靠其红外辐射穿透人体的手段对人体进行安全扫描,其查验效果远远超过超声波。   报道称,波兰科学家制造的量子级联激光器样机具有前所未有的功率,在室内温度下其红外辐射脉冲达到几十个毫瓦特,低温下达到五个瓦特。这个数值高于设计数值的三倍。量子级联激光器由几百个半导体层组成,被称为超晶格。超晶格层数的变化根据设计模式确定,通常达到几个纳米级。量子级联激光器在半导体材料中用独特方式采用激光传导机制。
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 科研人员研发用于量子技术的金刚石激光器
    根据俄罗斯国家科学院西伯利亚分院网站报道,西伯利亚分院大电流电子研究所科研人员与托木斯克国立大学合作,研发出一种基于NV中心和光泵浦的金刚石激光器。相关研究结果发表在《Nature Communications》杂志上。制造该设备需要一种人造金刚石,经过辐射热处理,在其晶体结构中形成许多抗激光辐射的色心。对于量子技术来说,最重要的是NV中心(金刚石的色心之一)。NV色心是金刚石的结构缺陷,包括一个氮原子(N)和一个相邻的空位,晶格位置未被碳原子(V)占据。多年来,科研人员从金刚石色心获得激光辐射均未成功。此次,科研人员在含有多达10个NV中心和每百万碳原子多达300个氮原子的合成金刚石样品中,实现了非热发光的增强和激光辐射的产生。
  • 新型显微镜:用激光冷却费米子并拍摄图像
    麻省理工学院的物理学家们发明了一种可以看到多达1000单独费米子的显微镜。研究人员设计了一种基于激光技术,冻结并困住费米子并拍摄粒子图像。    费米子包括有电子,质子,中子,夸克等核子组成的奇数的基本粒子&mdash &mdash 物质的构成是在众多粒子交互排列形成了各种元素。因为他们的费米特性,电子和核物质 在理论上很难理解,所以研究人员尝试使用超冷气体冷冻费米子原子。但费米子的单独成像几乎是不可能的,因为他们对光线非常敏感,当一个光子撞击一个原子, 粒子的位置会改变。   为了避免这些问题,新的成像技术使用了两束激光束对准晶格中的费米子原子云。两束不同的波长的光,冷冻原子云,降低费米子能级,最终达到基态。同时,每个费米子释放光,被显微镜捕捉到,拍摄到费米子的确切位置。   研究人员用这项新技术能够冷冻并拍摄超过95%的费米子。Martin Zwierlein,麻省理工学院物理学教授说还有一个有趣的现象,费米子拍完后还处于冷冻状态。   &ldquo 这意味着我知道他们在那里,我可以用一个小镊子将它们移动到任何位置,并安排他们在任何模式我想。&rdquo Zwierlein说。研究结果发表在《物理评论快报》上。    在过去的二十年里,实验物理学家研究超冷原子气体的两类粒子:费米子和玻色子,例如光子与费米子不同的是,可以在无限地占据相同的量子态。2010年, 一个玻色子显微镜被麦克斯· 普朗克量子光学研究所开发出来,用来揭示在强相互作用下玻色子的行为。然而,还没有人发明了一种类似费密子显微镜。   冷却原子到绝对零度的技术已经计划了几十年。在1995年,康奈尔的Carl Wieman和麻省理工的Wolfgang Ketterle实现了玻色-爱因斯坦凝聚,被授予2001年诺贝尔物理学奖。其他技术包括使用激光冷却原子,从300摄氏度到接近绝对零度。   然而,观察单独的费米子需要进一步冷却。要做到这一点,Zwierlein团队创建了一种光学晶格,像一个盒子样的结构,每个都可能困住一个费米子。通过激光冷却,磁捕捉,进一步蒸发冷却气体等不同阶段,得到略高于绝对零度&mdash &mdash 足够使费米子进入光学晶格中。    他的团队决定使用双激光方法进一步冷却原子;操纵原子的特定的能量水平或振动能量。团队用两束不同频率的激光照射晶格。频率的差异与费米子的能级一致。 因此,当双光束射向费米子,粒子会吸收较小的频率,并从较大的频率发出光子,反过来降低一个能级,稳定状态。晶格上的镜头收集发射光子,记录其精确位置。   &ldquo 费米气体的显微镜,和随意摆弄原子位置的能力,可能是实现费米量子计算机的重要一步,&rdquo Zwierlein说。&ldquo 有人会利用同样的复杂量子规则,妨碍我们对电子系统的理解。&rdquo   Zwierlein说,这是一个很好的时机:大约在同一时间,他的团队首先公布了结果,来自哈佛大学和斯特拉斯克莱德大学的团队在格拉斯哥也发表了费密子在光晶格图像,指出这种显微镜的美好未来。   这项研究的部分资金由美国国家科学基金会,美国空军科学研究办公室,美国海军研究办公室,陆军研究办公室,戴维和露西尔帕卡德基金会提供。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 科技前沿中国发声:8台深紫外激光装备世界独有
    10月27日,中国工程院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家许祖彦(右),在其领衔研发成功国际首创深紫外全固态激光源的实验室与青年科研人员交流。   ●首次实现量子反常霍尔效应   ●科技论文数量居世界第二位   ●20纳米技术领域占一席之地   3月14日,由中科院物理所和清华大学科研人员组成的科研团队,在国际上首次实现量子反常霍尔效应,成果在线发表于美国《科学》杂志。据介绍,这是国际上该领域的一项重要科学突破,从理论研究到实验观测的全过程,都由我国科学家独立完成。   而据记者了解,以中科院为代表的中国科技界,近期不断实现突破,在国际相关技术和产业领域发出“中国之声”。“中国科学已经发展到可以构思大手笔的时候了。”最近,《中国科学报》记者采访了部分中科院院士和研究所所长,中科院大连化学物理研究所所长张涛说,中国论文数量已仅次于美国,居世界第二位。“我们不缺数量,应该更重视成果的质量。”张涛的观点得到了普遍认同。而如何实现这一目标,采访对象们向记者说出了自己的观点。   肩负战略使命   2012年诺贝尔奖发布时,中科院院士郭光灿曾表示,缺乏原创,是中国科学家与诺贝尔奖的距离。实际上,这也是中国与世界科学发展的距离。   “原始创新能力显著提高,但重大原创成果和开创性工作还比较少 关键技术创新和系统集成能力大幅提升,但对产业发展有重大影响的关键核心技术和解决方案还不够多。”郭光灿说。   中科院各研究所所长在2013年的新年规划中,都进一步明确了以重大成果产出为导向,开展原始创新、关键核心技术创新和系统集成创新的战略使命。   中科院微电子所所长叶甜春说,从中国科学院的角度看,在国家层面要发挥战略作用的话,意味着研究所的成果应该代表国家水平。   在刚刚结束的两会上,中央和社会各界对科技支撑经济转型和社会发展期望很高,产业界希望借助科技的力量尽快调整结构并实现利益最大化,农民也期待有更好的农业成果带领他们脱贫致富、奔向小康。   “我们目前的创新能力,以及知识创新工程实施十几年的积累,和这些期待仍有距离。”中科院西安分院院长周杰说。   立足创新前沿   张涛认为,经过改革开放30多年的发展,“中国科技界应该在世界前沿领域真正提出些原创性的想法或发现”。   2011年,理化所牵头的“深紫外固态激光源前沿装备研制项目”获得突破,深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为世界独有的科研利器。   2012年,8台装备中有两台获批科技部产业化项目,为前沿装备产业化工作作了铺垫。   同样在2012年,微电子研究所集成电路先导工艺研发中心在22纳米CMOS关键技术先导研发上取得突破性进展。   22纳米CMOS技术是全球正在研究开发的最新一代集成电路制造工艺,各国都投入了巨大资金,力争抢占技术制高点。有国际评论认为,像中国这样的大国,迟早要做这样的技术。   叶甜春认为,过去全球微电子最先进的技术领域,没有中国任何位置。现在在最先进的20纳米技术领域,中国也有了一席之地,下一步应考虑更前沿的技术创新。   突破产业桎梏   我国每年集成电路的进口额,超过石油、铁矿石、粮食等的总和。“尽管集成电路需求很大,但是我国这一产业相对弱小。”叶甜春说。   集成电路是全球化的产业,每年全球研发资金几百亿美元,产业投入数千亿美元,产业发展非常迅速。面对国外若干个“航母舰队”构成的整个国际化产业链,中国企业研发力量不足,尚无航母级企业。   “在着力建立企业研发力量的同时,把我们的研发力量慢慢融入企业,交给企业,然后我们再去作更前瞻的研究。”叶甜春说。   同样依赖进口的还有大型低温制冷设备。作为大科学装置的支撑技术之一,中国有50%,国际有80%的大科学装置需要用到这种设备。   2012年,理化所自主研发的2KW@20K低温制冷机获得成功。理化所所长张丽萍前段时间接受记者采访时说,理化所和北京宇航系统工程研究所正在起草协议,届时中国人自己制造的首台(套)大型低温制冷机将接受实地应用的考验。   “让应用证明,中国自己制造的大型制冷设备能够与国际品牌相媲美,为该产品的国产化奠定基础。”张丽萍希望,以此来赢得用户对国产设备技术和质量的认同。   此前,理化所低温制冷机曾与林德、法液空这些国际知名品牌共同竞标散裂中子源工程。虽然理化所并未中标,但是,因为理化所的参与,国外厂商被迫降价40%。   接受记者采访的研究所所长普遍认为,总体来看,我们对产业发展有重大影响,但关键核心技术和解决方案还不够多。要想更好地发出“中国之声”,就要集中力量攻克重大项目,并且项目要关注国家战略需求,为国家战略性新兴产业、经济发展、国防建设作贡献。   相关新闻:我国投资1.8亿深紫外固态激光项目世界领先
  • 河南省科学院量子材料与物理研究所1786.00万元采购激光拉曼光谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 河南省科学院量子材料与物理研究所 新型高温超导体的高压制备与综合极端条件表征项目 招标公告河南省-郑州市 状态:公告 更新时间: 2023-09-27 河南省科学院量子材料与物理研究所 新型高温超导体的高压制备与综合极端条件表征项目 招标公告 中小微企业融资申请 项目概况 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目招标项目的潜在投标人应在登录河南省公共资源交易中心(http://www.hnggzy.net)获取招标文件,并于2023年10月18日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2023-990 2、项目名称:河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目 3、采购方式:公开招标 4、预算金额:17,860,000.00元 最高限价:17860000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20231594-1 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包1 850000 850000 2 豫政采(2)20231594-2 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包2 5760000 5760000 3 豫政采(2)20231594-3 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包3 6720000 6720000 4 豫政采(2)20231594-4 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包4 4530000 4530000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1项目地点:郑州(采购方指定地点)5.2招标范围:河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目:包1主要包括1台六面顶液压机及配件;包2主要包括1套6-8二级推进压机、分压装置及高压配件,1台磁体;包3主要包括2台拉曼光谱仪,1套高压实验室辅助设备,1批高压合成与表征配件;包4主要包括2套低温测试系统。以及各包相关配套设施的采购、安装、调试、验收及质保服务等工作。5.3标包划分:本招标项目共划分四个包。5.4交付时间:详见招标文件要求。5.5质量要求:符合国家现行验收规范和标准,满足采购人的相关要求。 6、合同履行期限:详见招标文件要求。 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 3.1能独立承担民事责任的法人或其他组织,应遵守有关的国家法律、法规和条例,参加本次采购活动应当具备《中华人民共和国政府采购法》的第二十二条、《中华人民共和国政府采购法实施条例》第十七条的规定的条件和本文件中规定的条件:(一)具有独立承担民事责任能力,提供法人或者其他组织的营业执照等证明文件;(二)具有良好的商业信誉和健全的财务会计制度,提供2022年度经会计师事务所或审计机构审计的年度财务审计报告或银行出具的资信证明;(三)有依法缴纳税收和社会保障资金的良好记录,提供单位2023年1月1日以来任意1个月缴纳税收和社保资金的证明材料;依法免税或不需要缴纳社会保障资金的服务商,应提供相应文件证明其依法免税或不需要缴纳社会保障金;(依法缴纳的税收和社保证明材料日期以投标人所提供的税收完税凭证上标注的税款所属日期为准);(四)具备履行合同所必需的设备和专业技术能力,提供书面承诺函并加盖单位电子章;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录,提供书面声明要求加盖单位电子章;(六)具备法律、行政法规规定的其他条件的证明材料。3.2根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号) 和豫财购[2016]15号的规定,对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的企业,拒绝参与本项目招标采购活动(查询渠道:“信用中国”网站(www.creditchina.gov.cn)查询:列入失信被执行人、重大税收违法失信主体、中国政府采购网(www.ccgp.gov.cn):政府采购严重违法失信行为记录名单);注:采购代理机构在开标当天将对所有参与本项目投标的投标人的信用情况(失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单)进行查询、打印留存。若在开标当天查询到投标人有相关负面信息的,则该投标人的投标视为无效;3.3单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一合同项下的投标,提供在“国家企业信用信息公示系统”中查询打印的相关材料并加盖公章(需包含公司基本信息、股东信息及股权变更信息);3.4本次招标不接受联合体投标。 三、获取招标文件 1.时间:2023年09月28日 至 2023年10月11日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:登录河南省公共资源交易中心(http://www.hnggzy.net) 3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查询河南省公共资源交易中心网站-公共服务-办事指南-新交易平台使用手册(培训手册)) 4.售价:0元 四、投标截止时间及地点 1.时间:2023年10月18日09时00分(北京时间) 2.地点:加密电子投标文件须在投标截止时间前通过“河南省公共资源交易中心(www.hnggzy.net)”电子交易平台加密上传。逾期上传的或者未上传指定地点的投标文件,采购人不予受理 五、开标时间及地点 1.时间:2023年10月18日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(四)-5(郑州市经二路与纬四路向南50米路西)。本次项目实行远程不见面招标,投标人无需到河南省公共资源交易中心现场参加开标会议,在招标文件确定的投标截止时间前,投标人登录远程开标大厅(www.hnggzyjy.cn),在线准时参加开标活动并进行文件解密。未在规定时间内解密投标文件的投标人,视为撤销其投标文件。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《河南省公共资源交易中心网》、《河南博鑫创展工程管理有限公司官网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 1、本项目执行促进中小型企业发展政策(监狱企业、残疾人福利性企业视同小微企业),优先采购节能环保产品,政府强制采购节能产品等。2、其他内容(1)本项目采用“远程不见面”开标方式,网址(www.hnggzyjy.cn)。投标人应当在招标文件确定的投标截止时间前,登录远程开标大厅,在线准时参加开标活动并进行文件解密、答疑澄清等。(2)供应商编制投标文件时,涉及营业执照、资质、业绩、获奖、人员、财务、社保、纳税、各类证书等内容,必须在市场主体信息库中已登记的信息中选取。未在市场主体信息库中登记的上述内容,不作为评标依据。供应商应及时对市场主体信息库的相关内容进行补充、更新。(3)不见面服务的具体事宜请参阅公共服务----办事指南----新交易平台使用手册(培训手册)。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:河南省科学院量子材料与物理研究所 地址:郑州市郑东新区龙子湖湖心岛崇德街与明理路交叉口西南角 联系人:沈老师 联系方式:0371-65727294 2.采购代理机构信息(如有) 名称:河南博鑫创展工程管理有限公司 地址:郑州市郑东新区永和龙子湖广场 联系人:尹丽 联系方式:0371-55891678 3.项目联系方式 项目联系人:尹丽 联系方式:0371-55891678 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:激光拉曼光谱 开标时间:2023-10-18 09:00 预算金额:1786.00万元 采购单位:河南省科学院量子材料与物理研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南博鑫创展工程管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 河南省科学院量子材料与物理研究所 新型高温超导体的高压制备与综合极端条件表征项目 招标公告 河南省-郑州市 状态:公告 更新时间: 2023-09-27 河南省科学院量子材料与物理研究所 新型高温超导体的高压制备与综合极端条件表征项目 招标公告 中小微企业融资申请 项目概况 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目招标项目的潜在投标人应在登录河南省公共资源交易中心(http://www.hnggzy.net)获取招标文件,并于2023年10月18日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2023-990 2、项目名称:河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目 3、采购方式:公开招标 4、预算金额:17,860,000.00元 最高限价:17860000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20231594-1 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包1 850000 850000 2 豫政采(2)20231594-2 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包2 5760000 5760000 3 豫政采(2)20231594-3 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包3 6720000 6720000 4 豫政采(2)20231594-4 河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目包4 4530000 4530000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1项目地点:郑州(采购方指定地点)5.2招标范围:河南省科学院量子材料与物理研究所新型高温超导体的高压制备与综合极端条件表征项目:包1主要包括1台六面顶液压机及配件;包2主要包括1套6-8二级推进压机、分压装置及高压配件,1台磁体;包3主要包括2台拉曼光谱仪,1套高压实验室辅助设备,1批高压合成与表征配件;包4主要包括2套低温测试系统。以及各包相关配套设施的采购、安装、调试、验收及质保服务等工作。5.3标包划分:本招标项目共划分四个包。5.4交付时间:详见招标文件要求。5.5质量要求:符合国家现行验收规范和标准,满足采购人的相关要求。 6、合同履行期限:详见招标文件要求。 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 3.1能独立承担民事责任的法人或其他组织,应遵守有关的国家法律、法规和条例,参加本次采购活动应当具备《中华人民共和国政府采购法》的第二十二条、《中华人民共和国政府采购法实施条例》第十七条的规定的条件和本文件中规定的条件:(一)具有独立承担民事责任能力,提供法人或者其他组织的营业执照等证明文件;(二)具有良好的商业信誉和健全的财务会计制度,提供2022年度经会计师事务所或审计机构审计的年度财务审计报告或银行出具的资信证明;(三)有依法缴纳税收和社会保障资金的良好记录,提供单位2023年1月1日以来任意1个月缴纳税收和社保资金的证明材料;依法免税或不需要缴纳社会保障资金的服务商,应提供相应文件证明其依法免税或不需要缴纳社会保障金;(依法缴纳的税收和社保证明材料日期以投标人所提供的税收完税凭证上标注的税款所属日期为准);(四)具备履行合同所必需的设备和专业技术能力,提供书面承诺函并加盖单位电子章;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录,提供书面声明要求加盖单位电子章;(六)具备法律、行政法规规定的其他条件的证明材料。3.2根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号) 和豫财购[2016]15号的规定,对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的企业,拒绝参与本项目招标采购活动(查询渠道:“信用中国”网站(www.creditchina.gov.cn)查询:列入失信被执行人、重大税收违法失信主体、中国政府采购网(www.ccgp.gov.cn):政府采购严重违法失信行为记录名单);注:采购代理机构在开标当天将对所有参与本项目投标的投标人的信用情况(失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单)进行查询、打印留存。若在开标当天查询到投标人有相关负面信息的,则该投标人的投标视为无效;3.3单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一合同项下的投标,提供在“国家企业信用信息公示系统”中查询打印的相关材料并加盖公章(需包含公司基本信息、股东信息及股权变更信息);3.4本次招标不接受联合体投标。 三、获取招标文件 1.时间:2023年09月28日 至 2023年10月11日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:登录河南省公共资源交易中心(http://www.hnggzy.net) 3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查询河南省公共资源交易中心网站-公共服务-办事指南-新交易平台使用手册(培训手册)) 4.售价:0元 四、投标截止时间及地点 1.时间:2023年10月18日09时00分(北京时间) 2.地点:加密电子投标文件须在投标截止时间前通过“河南省公共资源交易中心(www.hnggzy.net)”电子交易平台加密上传。逾期上传的或者未上传指定地点的投标文件,采购人不予受理 五、开标时间及地点 1.时间:2023年10月18日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(四)-5(郑州市经二路与纬四路向南50米路西)。本次项目实行远程不见面招标,投标人无需到河南省公共资源交易中心现场参加开标会议,在招标文件确定的投标截止时间前,投标人登录远程开标大厅(www.hnggzyjy.cn),在线准时参加开标活动并进行文件解密。未在规定时间内解密投标文件的投标人,视为撤销其投标文件。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《河南省公共资源交易中心网》、《河南博鑫创展工程管理有限公司官网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 1、本项目执行促进中小型企业发展政策(监狱企业、残疾人福利性企业视同小微企业),优先采购节能环保产品,政府强制采购节能产品等。2、其他内容(1)本项目采用“远程不见面”开标方式,网址(www.hnggzyjy.cn)。投标人应当在招标文件确定的投标截止时间前,登录远程开标大厅,在线准时参加开标活动并进行文件解密、答疑澄清等。(2)供应商编制投标文件时,涉及营业执照、资质、业绩、获奖、人员、财务、社保、纳税、各类证书等内容,必须在市场主体信息库中已登记的信息中选取。未在市场主体信息库中登记的上述内容,不作为评标依据。供应商应及时对市场主体信息库的相关内容进行补充、更新。(3)不见面服务的具体事宜请参阅公共服务----办事指南----新交易平台使用手册(培训手册)。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:河南省科学院量子材料与物理研究所 地址:郑州市郑东新区龙子湖湖心岛崇德街与明理路交叉口西南角 联系人:沈老师 联系方式:0371-65727294 2.采购代理机构信息(如有) 名称:河南博鑫创展工程管理有限公司 地址:郑州市郑东新区永和龙子湖广场 联系人:尹丽 联系方式:0371-55891678 3.项目联系方式 项目联系人:尹丽 联系方式:0371-55891678
  • 文章推荐 | 量子级联激光开路分析仪检测农田氨干沉降的日变化
    氨(NH3)是大气中最重要的碱性气体。农业活动,特别是施用合成肥料后的氨挥发,是人为氨排放的主要来源之一,也是农田养分流失的重要途径。这些氮(N)负荷有利于生态系统作为初级生产的营养投入,但也会导致许多环境和公共卫生问题,如生物多样性丧失、富营养化和雾霾污染。因此,特别是在农业地区,准确定量氨挥发和沉积通量对于了解地方和区域氮预算至关重要。然而,氨通量的现场测量仍然存在巨大的不确定性和挑战。 到目前为止,涡流协方差(EC)技术,基于同时测量地面上的湍流空气运动和气体浓度,是测量生态系统和大气之间的能量和质量交换的最直接的方法。对于氨通量测量,EC比其他方法有优势,因为它可以直接量化氨发射和沉积通量,并产生代表场尺度上空间平均的时间连续数据。然而,在过去,由于缺乏快速响应(≥10Hz)和高灵敏度的氨分析仪,特别是那些可以由现场太阳能电池驱动的分析仪,EC的应用受到了严重的限制。海尔欣昕甬智测推出一种采用量子级联激光吸收光谱技术的HT8700大气氨激光开路分析仪。根据实验室和现场测试,该仪器已被证明是在各种环境条件下测量氨通量的有效工具。 HT8700大气氨激光开路分析仪开创性的开路设计用于氨气测量基于量子级联激光技术,自主研发、设计、生产了的开路分析仪,具有低功耗(太阳能供电)、高精度(亚ppbv级)、快响应(10Hz)等特点,特别适合于地面氨排放和大气氨沉降通量的涡动相关法高频自动连续监测。 本研究采用HT8700大气氨激光开路分析仪,在全球氨热点地区之一华北平原的一个典型农业站点进行了氨通量测量。该实验时间持续了5周,并在小麦季节进行。本研究的主要目的是调查该农业基地秋季氨通量的特征,并量化氨对农田的干沉积和氨挥发造成的氮损失。
  • 半导体所等在高功率、低噪声量子点DFB单模激光器研究中获进展
    分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线宽低至1.62 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
  • 应用案例 | 基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究
    近日,来自山东师范大学的研究团队发表了《基于4.5 μm量子级联激光器的开放光路N2O气体检测系统研究》的研究成果。项目背景温室气体(Greenhouse Gas,GHG)的温室效应引发全球变暖和气候变化,这使得全球生态环境面临着很大的威胁。一氧化二氮(N2O)是全球六大GHG之一,相较于人们熟知的二氧化碳(CO2),N2O含量相对较低,但其全球变暖潜能值(Global Warming Potential, GWP)却是CO2的310倍左右,此外,它对臭氧(O3)也有一定的破坏作用。因此,有效探测大气中的N2O含量及其浓度变化趋势是至关重要的。N2O气体分子的吸收谱带主要集中在中红外区域,需要选用中红外光源对N2O气体进行探测。近年来,随着波长可调谐、可室温工作的量子级联激光器(Quantum Cascade Laser, QCL)的研发技术日益成熟,将其与激光吸收光谱技术相结合,可以实现对气体的高分辨率、高灵敏度探测,被广泛应用于气体遥感探测领域。目前,结合激光吸收光谱技术及紧凑型多通道气室(MGC),可实现对气体分子的快速响应,并达到较低的检测限,但系统为封闭式光学路径,限制了在户外环境中持续检测的便携性、实际适用性和空间覆盖范围。因此,开放式光学路径的设计,对于户外大范围环境中气体浓度的实时检测是十分必要的。系统搭建宁波海尔欣光电科技有限公司为该项目提供了HPQCL-Q&trade 标准量子级联激光发射头、QC750-Touch&trade 量子级联激光屏显驱动器、HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HPQCL-Q&trade 标准量子级联激光发射头其波数的可调谐范围是 2203.7 cm-1~2204.1 cm-1,最大输出光功率可达 50 mW。 为了充分发挥 QCL 的波长可调谐特性,结合激光器驱动,对QCL 的工作温度以及电流进行设置,进而得到系统中所需要的激光器发射中心波长。QC750-Touch&trade 量子级联激光屏显驱动器结合触摸屏的显示功能,极大的方便了用户进行操作。 通过激光驱动器对注入激光器的电流进行更改,分析发射波数与驱动电流的相关性,调节驱动电流大小,分析在300 mA至360 mA的电流变化范围内,激光器波数随驱动电流变化的响应曲线。可以得到,随着电流逐渐增大,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.0271x + 2212.972。 同理,对激光器发射波数与温度的相关性进行分析,对温度进行调节,使激光器在30 °C至45 °C之间工作,分析激光器中心波数随温度变化的响应曲线。可以得到,随着温度逐渐升高,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.1716x + 2210.216。 综上所述,根据所选用的N2O吸收谱线波数为2203.7333cm-1,因此,所对应的QCL 中心电流和工作温度应分别设置为330 mA和36.0 °C。 HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器的感光面积为1×1 mm2,探测范围较为广泛,可达到 2μm-14μm,完全满足本系统探测的需求。由于探测器接收到的回波信号较为微弱,在对数据进行处理前,需要对信号进行放大,而该型号的探测器内部设计有前置放大器,以便后续可直接进行谐波解调和浓度反演等数据处理,同时也对系统的设计进行了简化。结论与创新点:使用该检测系统对大气中 N2O 浓度进行实时检测是可行的。(1) 选用QCL作为发射光源。QCL 具有波长调谐范围广、输出功率较高、并且可以在室温条件下工作的卓越性能。选取最优谱线位置为 2203.73 cm-1,能有效避免其他气体的干扰,实现对N2O气体分子的高灵敏度检测。(2) 为了避免MGC在远程或户外的大范围环境检测研究中的限制性,选用离轴抛物面反射镜和角反射镜,搭建了开放式光学路径的N2O气体检测系统。将大部分光学元件安装在一个光学平台上,实现了系统的紧凑、便携特性,并满足开放式、大范围环境监测的需求。(3) 经验证,当积分时间为1s时,N2O检测限为1.1 ppb,当积分时间延长至95 s时,系统达到最低检测限为0.14 ppb。结合实验结果,表征了系统的高精确度、高灵敏度、低检测限的性能,并且完全满足对大气环境中N2O浓度测量的标准。参考文献:张玉容,赵曰峰《基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究》
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。 利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。 滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • 微型激光测振仪在超声领域的应用
    微型激光测振仪在超声领域的应用最近几年,超声技术在各个领域的应用越来越多,比如利用超声波原理进行医学治疗的设备也在临床实践中被广泛应用。医学超声设备主要是基于高频振动波(超声波)传入人体组织,并在局部产生热效应、机械效应和空化效应,引起目标组织的改变,从而达到治疗的目的。昊量光电全新推出的微型激光测振仪是一种非接触式的振动测量仪器,能够精确测试医学超声设备的超声振动特性和模态,在产品的研发、质检和性能优化过程中起到了至关重要的作用。激光测振仪在医学超声领域的应用具有如下优势:1、激光聚焦光斑小、空间分辨率高,能够快速定位并测量超声手术刀、洁牙器等小尺寸超声器件;2、采用非接触式的测量方法,高效便捷,可以快速检测产线上的超声设备性能,确保产品一致性,甚至可以检测超声设备在工作状态下的超声波输出特性,更加真实地反映设备的实际使用性能;3、超声检测带宽大,最高可检测5MHz左右的高频超声,同时能满足20pm以下的微弱振动分辨率要求,检测精度极高;4、集成式光学自研芯片,无需额外控制器,体积小巧使得安装测试变得更加便捷,提高测量精准性!一、 超声换能器测振超声换能器是一种将电磁能转化为机械能(声能)的装置,通常由压电陶瓷或其它磁致伸缩材料制成,常见的超声波清洗器、超声雾化器、B超探头等都是超声换能器的应用实例。针对超声领域应用需求,昊量光电全新推出了一套完整的台架式超声振动测量仪。作为这款测量仪核心部件的激光传感器,利用了集成光学技术将原有复杂光学元器件集成于微小芯片中,结合具有自主知识产权的调频连续波(FMCW)相干光检测原理,以小型集成化的设计模式,实现了传统复杂大型设备的测量能力。测试:20kHz 频率功率换能器,工作距离:375px振动图谱:在换能器在各个位置的测量结果。当换能器频率在 Mhz 附近时,幅度测量对测量精度的要求大大提高。结果显示,昊量测振传感器能很好的分辨振幅的实时波形,得到 nm 级的测量精度。二、 超声手术刀超声手术刀是一种通过激发20 kHz~60 kHz 超声振动的金属探头(刀头),对生物组织进行切割、消融、止血、破碎或去除的外科手术仪器。超声手术刀的工作性能一般与刀头的超声输出功率、频率直接相关,因此对刀头的超声特性探测至关重要。超声手术刀的刀头尺寸一般为5-10 mm,这种小尺寸结构很难采用接触式传感器测量其超声特性,而激光测振仪则可以轻松将激光聚焦到刀头位置,精确测量超声振幅与频率。三、 超声洁牙器 超声洁牙器主要工作原理是:将高频振荡信号作用于超声换能器,利用逆压电效应(或磁致伸缩效应)产生超声振动并传递至工作尖,工作尖受到激励产生共振,利用工作尖的超声波共振可以将牙齿表面的菌斑、结石或牙周表面的细菌等清除。依据我国医药行业标准(YY 0460-2009)和国际电工委员会标准(IEC 61205:1993),超声洁牙器工作尖的超声输出特性是重要的检测指标。常规超声洁牙器工作尖振动频率主要设计范围在18 kHz~60 kHz,其中以42 kHz工作频率最为常见。同时工作尖尺寸往往较小(<1mm),无法采用传统的接触式振动传感器进行检测。因此,对于超声洁牙器振动性能的检测,通常采用激光测振仪完成,其非接触式的检测方式便于开展产线上产品的逐个检测,是产品良率和一致性的有力保障。某品牌的洁牙器尖端测振四、 超声焊接 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。五.技术参数介绍昊量光电全新推出的微型超声测振仪光学元件集成化可以实现更加复杂的设计和更多的功能。集成光学芯片可以在一个单一的光学基底上包含数十到数百个光学元件,包括激光器、调制器、光电探测器和滤波器等。相对于传统基于分立器件的多普勒测振仪,MV-H以其低功耗、高性能、小型化的优势,为客户带来了低成本、便于集成的解决方案,也为激光振动传感器的广泛应用奠定了基础。1.产品参数指标2.软件功能完善3.丰富的配件可选上海昊量光电作为这款微型超声测振传感器在中国大陆地区蕞大的代理商,为您提供专业的选型以及技术服务。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
    此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:https://www.nedo.go.jp/activities/ZZJP_100151.html *2 中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。
  • 320万!自然资源部浅层地热能重点实验室建设项目量子力级激光红外光谱仪采购项目
    项目编号:11000022210200018513-XM001项目名称:自然资源部浅层地热能重点实验室建设项目量子力级激光红外光谱仪购置预算金额:320 万元(人民币)采购需求:序号设备名称数量单位是否允许进口产品投标1量子力级激光红外光谱仪1台是合同履行期限:签订合同后3个月内完成交货,仪器到达用户所在地后, 在接到用户通知后1周内执行免费安装调试直至达到验收指标。每台仪器的安装调试-验收期不长于10个工作日。本项目不接受联合体投标。
  • 半导体所在激子-声子的量子干涉研究中获进展
    近日,中国科学院半导体研究所半导体超晶格国家重点实验室报道了二维半导体WS2中暗激子与布里渊区边界声学声子之间量子干涉导致的法诺(Fano)共振行为,并揭示了对称性在其中的重要作用。相关研究成果以《少数层WS2中暗激子与边界声学声子的量子干涉》(Quantum interference between dark-excitons and zone-edged acoustic phonons in few-layer WS2)为题,在线发表在《自然-通讯》(Nature Communications)上。由于库伦屏蔽作用减弱,激子效应在二维层状半导体中变得更加显著。偶极跃迁允许的亮激子可通过光致发光直接进行观测,而暗激子因偶极跃迁禁介却难以被直接观测。暗激子的复合往往需要其他元激发如声子等的协助,因而共振拉曼散射是比较理想的研究暗激子的实验手段。二维半导体过渡金属硫族化物如MoS2、WS2等具有丰富的能谷结构,在布里渊区的不同位置同时具有Γ、K、Q等能谷且能量接近,并可以发生强的光-物质相互作用,是探究暗激子与声子相互作用的优异平台。研究通过不同数值孔径下的光致发光(PL)谱确认了少数层WS2中亮态A激子与自旋禁戒的暗态A激子的存在。对于多层WS2,其导带底位于Q谷,价带顶位于K谷,而Q-K之间跃迁的动量正好可由布里渊边界M点声子的波矢来补偿。因此,布里渊区边界M点的一阶声子有可能通过拉曼光谱直接进行测量,在这个过程中预期观察到由导带Q谷的电子和价带K谷的空穴形成的暗激子参与的共振散射过程。研究团队选择了与暗态A激子能量共振的激发光,进行了低温拉曼光谱的测量。如先前预期,研究在共振激发下可以观测到布里渊区边界M点的一阶声学声子的拉曼模式【TA(M), ZA(M)和LA(M)】,并发现这些拉曼模式表现为不对称的Fano线型,且与平面内剪切声子的Fano线型呈现出镜像分布的现象。特别是在双层WS2中,暗激子-声子的强耦合导致ZA(M)声学模式表现为Fano凹陷(对应相消干涉行为)而非Fano峰(对应相涨干涉行为)。一般而言,Fano共振来源于连续态和分立态之间的量子干涉。通过理论分析和系列实验佐证,研究确定了连续态来源于K谷空穴和Q谷电子所形成的暗激子态,而分立态来源于M点声子。由于暗激子的长寿命以及二维激子低的态密度,在较弱光激发下暗激子态会形成准连续态。进一步,研究通过改变激发光波长(改变激子的驰豫通道以及参与声子的模式从而破坏共振条件)和变温拉曼光谱(改变激子能量从而破坏共振条件)对上述研究进行验证。最后,研究从对称性的角度分析了平面内剪切模声子、边界声学声子和暗激子耦合的物理机制,揭示了声子振动方向以及激子对称性对激子-声子耦合的重要影响。研究工作得到国家重点研发计划、中科院创新交叉团队、国家自然科学基金等的支持。厦门大学、新加坡南洋理工大学、法国图卢兹大学等的科研人员参与研究。
  • 滨松量子级联激光器在遥感测量中的应用 ——CIEPEC2018访滨松中国分析领域QCL项目负责人周旭升
    p    strong 仪器信息网 /strong 讯 2018年6月7日-9日,由生态环境部、北京市人民政府、中国国际商会、联合国环境规划署共同支持,中国环境保护产业协会主办的第十六届中国国际环保展览会(CIEPEC2018)在北京开幕,滨松光子学商贸(中国)有限公司(以下简称“滨松中国”)受邀参展。借此机会,仪器信息网的工作人员采访了滨松中国的分析领域量子级联激光器(QCL)项目负责人周旭升,由他为我们介绍了QCL在环境大气遥感测量中的应用。 /p p style=" TEXT-ALIGN: center" img title=" 周总照片.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/565951eb-966e-40d6-bf9e-29d02f832bac.jpg" / /p p style=" TEXT-ALIGN: center"    span style=" COLOR: rgb(0,112,192)" 滨松中国分析领域量子级联激光器项目负责人周旭升 /span /p p   据了解,QCL是1994年Federico Capasso和同事卓以和等人在贝尔实验室率先发明的。QCL的工作原理与通常的半导体激光器截然不同,它打破了传统p-n结型半导体激光器的电子-空穴复合受激辐射机制,其发光波长由半导体能隙来决定。量子级联激光器比其它激光器的优势在于它的级联过程,电子从高能级跳跃到低能级过程中,不但没有损失,还可以注入到下一个过程再次发光。 /p p   烟气、汽车尾气等污染气体中所含有的氮氧化物、硫氧化物等成分,对我们的健康有着很大的威胁,监测它们的排放情况,中红外波段光这时就大有用处了。 /p p style=" TEXT-ALIGN: center" img title=" QCL.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/efab3200-d43d-4347-b84a-8530b15ffcef.jpg" / /p p   QCLAS(量子级联激光调谐吸收光谱)技术是利用中红外光指纹峰来判断气体的种类和浓度的一种办法。目前常见的污染气体(有机/无机)在4μm~10μm内都有多重的、极其强烈的吸收峰。在这更宽的波长选择区间,QCL更高的功率可以实现低检出限(ppb以下)、高精度(ppb)、远距离(Km)、抗干扰、多组分(订制波长)。 /p p style=" TEXT-ALIGN: center" img title=" 参考.png" src=" http://img1.17img.cn/17img/images/201806/insimg/71e6a5cd-d4e7-40b9-9b72-ab270b9eac47.jpg" / /p p   与同类厂商相比,滨松QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽处于非常窄的单一波长。虽然DFB-QCL很难实现量产,但滨松目前已拥有了充实的可定制化产品线。值得一提的是,滨松拥有芯片的生产专利,而且滨松QCL的整个生产过程均在自己的工厂完成,全环节无外包,保证产品质量的同时各个环节的反馈能够得到及时的响应。 /p p   最关键一点,滨松公司的QCL已经走出实验室,全线产品工作在10~50℃外界环境温度 长时间功率和波长可靠性可以大大节省前处理成本、校准周期和工序!在采访过程中,周工说到,“我们还有四点承诺,那就是我们的调试范围肯定是在正负一个波数的,而且绝对不会有模跳,单一精确波长,和最低20mW输出功率,这四点是绝对的承诺!” /p p   从客户角度来讲,探测器和光源都来自同一个厂家是具有很大优势的。比如,目前多数的仪器制造商都是从不同厂家分别购买的探测器件和光源。但若开发出来的设备没有达到预期的性能时,由于器件来自不同的地方,就很难知道配合使用过程中的问题所在。在这方面,滨松拥有绝对的优势,除了光源,滨松是唯一可同时提供对应红外探测器的厂家,包括器件和模块。 /p p   在采访中,周工坦言,QCL目前还是小众技术,对于客户而言,它的成本相对较高,因此整个市场的销量也相对较少。周工形象地用“先有鸡?还是先有蛋?”的问题来比喻了QCL的市场情况。当客户的使用量增长以后,产品的成本自然会下降。对于光谱分析技术,中红外技术仍在发展阶段,在这个过程中,滨松是走在前面的,也希望通过和更多的客户合作,共同发展QCL激光分析技术以及其应用。 /p p   对于中国市场,滨松的客户目前集中在学术领域,在工业领域虽然还没有大批量的量产用户,但是大家对这中红外可调谐激光技术都表示出了强烈的兴趣。为更加方便国内客户对技术的了解和接触,滨松在中国专门配备了样机,供客户免费试用。在空气污染问题日益严峻的现在,我们也希望通过滨松这样的新型技术发展,为我们的环境监测应用带来更多的支持和可能。 /p p style=" TEXT-ALIGN: center" img title=" 产品2.JPG" src=" http://img1.17img.cn/17img/images/201806/insimg/132431b3-00b1-49c1-924a-987066eccfb5.jpg" / /p p style=" TEXT-ALIGN: center"    span style=" COLOR: rgb(0,112,192)" 环保展中滨松展示的QCLAS DEMO /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: rgb(0,112,192)" img title=" 滨松展位.JPG" src=" http://img1.17img.cn/17img/images/201806/insimg/c69ba122-c1f3-4548-8461-5437bb392ffe.jpg" / /span /p p style=" TEXT-ALIGN: center"    span style=" COLOR: rgb(0,112,192)" 滨松中国展位 /span /p
  • 我国科研团队研制成功“量子芯片激光手术刀”
    记者3日从安徽省量子计算工程研究中心获悉,中国首个专用于量子芯片生产的激光退火仪研制成功,该设备可解决量子芯片位数增加时的工艺不稳定因素,像“手术刀”一样精准剔除量子芯片中的“瑕疵”,增强量子芯片向多比特扩展时的性能,提升量子芯片的良品率。据安徽省量子计算工程研究中心副主任贾志龙介绍,该激光退火仪由合肥本源量子计算科技有限责任公司研发,设备可达到百纳米级超高定位精度,可对量子芯片中单个量子比特进行局域激光退火。激光退火仪拥有正向和负向两种激光退火方式,可定向控制修饰量子比特的频率参数,解决多比特扩展中比特频率拥挤的问题,助力量子芯片向多位数扩展,该设备目前已投入使用。量子比特位数是代表量子计算机能力水平的重要参数之一,量子比特位数越高,其计算能力越强。“量子芯片生产过程中,科研人员通过无损探针仪发现量子芯片的优劣,对于其中的‘坏品’‘次品’,再用激光退火仪改善其中‘不良’的部分,从而提高量子芯片的品质。”贾志龙说。贾志龙表示,量子芯片无损探针仪和量子芯片激光退火仪都属于量子芯片工业母机,前者是发现问题,后者是解决问题,通过两台机器相互配合,才能够生产出更高质量的量子芯片。本源量子团队技术起源于中科院量子信息重点实验室,该团队一直致力于超导与硅基半导体两条产线工艺的量子计算芯片的研发,先后研发出中国首个超导量子计算机本源悟源、中国首款量子计算机操作系统本源司南、中国首条量子芯片生产线等。
  • 太赫兹技术新突破:新型锁相技术实现太赫兹激光器创纪录高输出功率
    p style=" text-align: justify text-indent: 2em " 等离子体激光器由于其本身的亚波长金属腔而经受着低输出功率和光束发散的困扰。 /p p style=" text-align: justify text-indent: 2em " strong 近日,里海大学(Lehigh University)的科研人员研制出一套方案,可以显著提高激光的发射效率和改善光束质量,研究人员称之为锁相的方案。通过该应用,可以实现目前为止最高高功率的太赫兹激光输出。他们研制出的激光可以产生迄今为止最高的发射效率,并且适用于任何单波长半导体激光量子级联激光器。 /strong /p p style=" text-align: center" strong img style=" max-width: 100% max-height: 100% width: 470px height: 530px " src=" https://img1.17img.cn/17img/images/202007/uepic/13f65aca-5a4c-4d3c-b367-43abbfff42c9.jpg" title=" 截屏2020-07-01 下午5.15.13.png" alt=" 截屏2020-07-01 下午5.15.13.png" width=" 470" height=" 530" / /strong /p p style=" text-align: center text-indent: 0em " strong 文章截图 /strong /p p style=" text-align: justify text-indent: 2em " 阵列的金属微腔穿过等离子体波而实现纵向地耦合,从而导致单个光谱模的发射和衍射局限在表面法线方向形成单瓣光束。研究人员将这一方案应用于太赫兹等离子体量子级联激光器(quantum-cascade lasers,QCLs)和测量峰值功率超过2 W的单模 3.3 THz QCL在窄单瓣光束时的发射,条件为运行温度为58K时的紧凑型斯特林制冷机。 /p p style=" text-align: justify text-indent: 2em " 新的等离子体激光器锁相方案,与以往在半导体激光器方面的大量文献中对锁相激光器的研究截然不同,该方法利用电磁辐射的行波作为等离子体光腔锁相的工具。同早期的工作相比较,研究人员展示了在功率上可以有一个数量级的增加和至少30倍高的平均功率强度的单模太赫兹QCLs存在。 /p p style=" text-align: justify text-indent: 2em " 该方法获得的太赫兹激光辐射效率是迄今为止任何单波长量子级联所能达到的最高水平,也是首次报道这种量子级联的辐射效率超过50%。这一高效率可以说超过了研究人员一开始的预期,这也是为什么他们研制的激光器的输出功率会显著的高出以前的激光器的原因。 /p p style=" text-align: justify text-indent: 2em " 这项工作的主要创新在于光学腔的设计,它在某种程度上独立于半导体材料的特性。研究人员认为,在利哈伊大学的利哈伊大学光子学和纳米电子学中心,新获得的电感耦合等离子体(ICP)刻蚀工具在推动这些激光器的性能边界方面发挥了关键作用。这一研究报道可以说是单波长太赫兹激光的范式转变,窄的光束将会得到发展和在将来继续发展,同时研究者认为在将来太赫兹的前途非常光明。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制