当前位置: 仪器信息网 > 行业主题 > >

颗粒技术研讨

仪器信息网颗粒技术研讨专题为您整合颗粒技术研讨相关的最新文章,在颗粒技术研讨专题,您不仅可以免费浏览颗粒技术研讨的资讯, 同时您还可以浏览颗粒技术研讨的相关资料、解决方案,参与社区颗粒技术研讨话题讨论。

颗粒技术研讨相关的论坛

  • 【原创】2012年全国环境化学计量技术委员会暨环境空气颗粒物(PM2.5)检测技术研讨会

    【原创】2012年全国环境化学计量技术委员会暨环境空气颗粒物(PM2.5)检测技术研讨会

    2012年10月30日,我所何春雷、于令义、曲中华、李靖、石霜等领导带领崂应相关技术人员在青岛蓝海大酒店参加了由全国环境化学计量技术委员会主办、青岛计量测试所承办、崂山应用技术研究所协办的《2012年全国环境化学计量技术委员会暨环境空气颗粒物(PM2.5)检测技术研讨会》。会中讨论了环境空气PM2.5颗粒物的检测方法及相关标准。 会后,全体与会人员参观了崂应,对崂应的产品做了详细的了解,北京的专家对崂应的产品以及生产、研发能力给予了高度肯定。 http://ng1.17img.cn/bbsfiles/images/2012/11/201211021016_400842_2480_3.jpg土豆:欢迎楼主分享,但带上公司的网址链接就不可以了,下次再这样,删帖扣分没商量。

  • 颗粒测试技术的进展与展望

    颗粒测试技术的进展与展望摘 要:本文简述了当今颗粒测试技术六个方面的进展,对颗粒测试技术的近期发展趋势作了简短的展望,提出了七个颗粒测试领域需要统一认识的基本问题,对促进颗粒测试技术发展提出了几点建议.关键词:颗粒测试;技术进展;发展趋势;基本问题;知识产权1 前 言随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 本文就目前颗粒测试领域的新进展,谈一点个人的浅见,请各位指教. 本文谈及的问题有:颗粒测试技术进展、颗粒测试技术展望、颗粒测试的基本问题和促进颗粒测试技术发展的几点建议.2 颗粒测试技术进展近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟,激光衍射/散射技术,现在已经成为颗粒测试的主流. 其主要特点:测试速度快,重复性好,分辨率高,测试范围广得到了进一步的发挥.激光粒度分析技术最近几年的主要进展在于提高分辨率和扩大测量范围. 探测器尺寸增加,附加探头的使用扩大了测量范围;多种激光光源的使用、多镜头、会聚光路、多量程、可移动样品窗的使用提高了分辨率,采样速度的提高则进一步改善了仪器的重复性. 英国马尔文公司GM2000系列激光粒度仪采用高能量蓝光辅助光源和汇聚光学系统,测量范围达到0.02?2000微米,不需更换透镜. 贝克曼库尔特公司采用多波长偏振光双镜头技术将测量范围扩展到0.04?2000微米.代表了当前的先进水平. 国产的激光粒度仪在制作工艺和自动化程度上尚有欠缺,但大多数在重复性准确度方面也达到了13320国际标准的要求. 目前激光粒度分析仪在技术上,已经达到了相当成熟的阶段.米氏理论模型可以提高仪器的分辨率,但是需要事先了解被测样品的折射率和吸收系数,才可能获得正确的结果.测试结果的优劣不仅取决于测试系统和计算模型,更加取决于样品的分散状态.激光粒度仪对样品的分散要求是,分散而不分离. 仪器厂家应更加注意样品分散系统设计. 尽量避免小颗粒团聚,大颗粒沉降,大小颗粒离析,样品输运过程的损耗,外界杂质的侵入. 对于不同样品选用不同的分散剂和不同的分散操作应该引起测试者的注意.任何原理的仪器测试范围都不是可以无限扩展的. 静态光散射原理的激光粒度分析向纳米颗粒的扩展和向毫米方向的扩展极限值得探讨. 毫米级的颗粒只需光学成像技术就可以轻易解决的测量问题采用激光散射原理则并不是优势所在.2) 图像颗粒分析技术东山再起图像颗粒分析技术是一种传统的颗粒测试技术,由于样品制备操作较繁琐、代表性差、曾经作为一种辅助手段而存在,他的直观的特点没有发挥出来.为了解决采样代表性问题,有人使用图像拼接技术或者多幅图像数据累加技术可以有效提高分析粒子数量,采用标准分析处理模式的图像仪则可以将操作误差减小,这些改进取得了一定的效果.最近几年动态图像处理技术的出现使传统度颗粒图像分析仪备受关注,大有东山再起之势. 动态图像处理的核心是采用颗粒同步频闪捕捉技术,拍摄运动颗粒图像,因此减少了载玻片上样品制备的繁琐操作,提高了采样的代表性,而且可用于运动颗粒在线测量. 这就大大扩展了图像分析技术的应用范围和可操作性. 荷兰安米德公司的粒度粒形分析仪是有代表性的产品。它采用CCD+频闪技术测颗粒形状、采用光束扫描技术测颗粒大小。可测最大粒径为6毫米。如果颗粒在光学采样过程不发生离析现象,此种仪器在微米与毫米级颗粒测量中可能会得到广泛的应用.颗粒图像分析技术需要解决的另一个问题是三维测量. 动态颗粒图像采集由于颗粒采集的各向同性因此可以解决在载波片上颗粒方位的偏析问题,但是仍然无法解决如片状颗粒厚度问题. 厚度测量对于金属颜料,云母、特种石墨都是一个急需解决的实际问题.3) 颗粒计数器不可替代颗粒本身是离散的个体,因此对颗粒分级计数是一种最好的测量方法. 库尔特电阻法在生物等领域得到广范应用已经成为磨料和某些行业的测试标准. 但是他受到导电介质的限制和小孔的约束,在某些行业推广受到阻力.最近光学计数器在市场上异军突起,他将在高精度和极低浓度颗粒测量场合发挥不可替代的作用. 美国Haic Royco 公司颗粒计数器/尘埃粒子计数器是才进中国不久的老产品;美国PSS(Particle Sizing Systems)公司采用单粒子光学传感(SPOS)技术生产的系列仪器可用于湿法、干法、油品等各种场合的颗粒计数。国内颗粒计数器的研究工作起步并不晚,但是除了欧美克的电阻法计数器外,尚未见光学计数器商业化的产品。4) 纳米颗粒测试技术有待突破纳米颗粒测试越来越受到重视.电镜是一种测试纳米颗粒粒度与形态最常用的方法.电镜样品制备对于测试结果有重要影响,北京科技大学在拍摄高质量电镜照片方面作了出色的工作. 由于电镜昂贵的价格和严格的使用条件,以及取样代表性问题,电镜在企业推广不是最佳选择.根据动态光散射原理设计的纳米级颗粒测试技术是一种新技术,近年来获得了快速发展.马尔文,布鲁克海文、贝克曼库尔特等公司提供了优秀的商品,马尔文公司已将动态光散射的测量范围扩展到亚纳米范围,HPPS高性能高浓度纳米粒度和Zeta电位分析仪测试范围0.6-6000纳米,可以测量大分子真溶液粒径。国内开展此项技术研究的单位日益增多,上海理工大学、浙江大学、北京大学、清华大学、济南大学等许多高校都有学者和研究生在做工作. 数字相关器仍然是制约国产动态光散射仪器的瓶颈技术,如果数字相关器问题得到解决,中国自己的动态光散射纳米粒度仪出现在市场上将不会太远.X射线的波长比纳米还要短,因此X射线小角散射是一种测量纳米颗粒的理想方法,(类似于激光衍射原理)国外有商品仪器. 国内,此方法已经列入国家开发计划,国家钢铁研究总院对此方法研究已经作了大量工作,但是尚未见商品问世.5) 光子相关技术独树一帜动态光散射原理纳米颗粒测试采用的技术主要是光子相关谱,光子相关技术是一种70年代兴起的超灵敏探测技术,他根据光子信号的时间序列的相关性检测被测信号的多普勒频移或时间周期性,比通常的光谱仪分辨率高一个数量级,因此此技术也被用于颗粒运动速度的测定和其他场合. 上海理工大学浙江大学利用此原理已经研制成功在线用的颗粒粒度与颗粒流速的探针. 它可用于物料管道内部检测物料的平均大小和物料的流速. 对于在线控制具有指导意义。有报道称使用光子探测技术可以对高压空气喷嘴中的颗粒计数,说明颗粒测试正在向更加精密更加灵敏的方向发展.6) 颗粒在线测试技术正在兴起

  • 【转帖】颗粒测试技术的进展与展望

    任中京 ( 济南大学颗粒测试研究所 250022 ) 摘 要:本文简述了当今颗粒测试技术六个方面的进展,对颗粒测试技术的近期发展趋势作了简短的展望,提出了七个颗粒测试领域需要统一认识的基本问题,对促进颗粒测试技术发展提出了几点建议. abstract: the advance of nowadays particle measuring technology is described briefly from six aspects, abbreviated prospect for the developing trend of particle measuring technology in the near future is narrated, seven essential problems that need be recognized uniformly in particle measuring field are put forward, a few proposes that can be promoted the development for particle measuring technology are brought forward. 关键词:颗粒测试;技术进展;发展趋势;基本问题;知识产权 1

  • 第二届“颗粒研究应用与检测分析”主题网络研讨会(2021)

    [align=center][img]https://img1.17img.cn/17img/images/202103/webinar/36af542f-66e9-44ec-897d-7a91fa340fc4.jpg[/img][/align]颗粒学研究包罗万象,涉及食品、医药、化工、材料、冶金等各行各业。2020年,席卷全球的新型冠状病毒平均直径约为100纳米,属于纳米颗粒,新冠病毒的气溶胶传播也属于颗粒研究的范畴。疫情进一步推动颗粒学的研究与应用向着更小、更复杂、更尖端的纵深快速发展,同时,颗粒研发与质控所必须的相关检测分析技术也在不断迭代升级。基于此,仪器信息网联合中国颗粒学会,将于2021年3月24日-3月26日组织召开第二届“颗粒研究应用与检测分析”主题网络会议。分设[b]能源颗粒和电池材料、药物制剂与粒子设计、气溶胶与新冠病毒、超微及纳米颗粒、颗粒测试与表征[/b]五个分会场,邀请业内著名颗粒学学者、检测分析专家及企业代表,针对颗粒学研究应用及检测分析的前沿热点和疑难问题进行探讨,为颗粒学的研发应用端与检测分析端搭建交流平台。热忱欢迎国内外颗粒领域的专家、学者、技术人员、企业界代表及研究生踊跃参会、交流。报名链接:https://insevent.instrument.com.cn/t/w2

  • 用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型任中京 王少清( 山东建材学院科研处 济南250022)提要:激光颗粒大小测试的结果与颗粒形状密切相关。通过对椭圆衍射谱的研究, 提出在激光粒度分析中以椭圆谱代替球形颗粒谱。计算机模拟计算与对金刚砂实测的结果表明椭圆衍射模型可以有效地抑制粒度反演结果的展宽, 更准确地获得非球形颗粒群的粒度分布。关键词 激光衍射, 椭圆模型, 颗粒大小分析, 颗粒形状, 反演1 引言  由于颗粒大小对粉末材料的重要影响, 颗粒粒度测试在建材、化工、石油等许多领域已经成为一种不可缺少的检测技术。由于颗粒形状的多样性, 无论何种测量方法, 均需要颗粒模型。通常假定颗粒为球体, 与被测颗粒等体积的球体直径称为粒径, 或称等效粒径 。然而球体模型在激光衍射(散射) 粒度分析技术中却遇到严重困难—对非球形颗粒测试常常产生较大误差, 表现为所测得的粒度分布较真实分布有展宽且偏小。来自日本和美国的颗粒测试报告也有相同的倾向 。从光学原理上看,激光粒度分析技术是通过检测颗粒群的衍射谱来反演颗粒群的尺寸分布的。非球形颗粒的衍射谱与球体有很大不同: 前者是非圆对称的, 而后者是圆对称的。欲使二者具有可比性需要新的物理模型, 新的模型应满足: 1) 更加逼近真实颗粒;2)对一系列颗粒有普遍的适用性;3)可给出衍射谱解析式;4)在激光测粒技术中能校正颗粒形状引起的测量误差;5)能函盖球体模型。本文将证明椭圆衍射模型是满足以上条件的最佳选择。2 非球形颗粒衍射模型的椭圆屏逼近颗粒虽然是三维物体, 但是在激光测粒技术中其横截面是使光波发生衍射的主要几何因素, 因此只需研究与入射光垂直的颗粒横截面。球体衍射模型即是取颗粒的体积等效球的投影圆作为该颗粒的衍射模型。如图1 所示, 将形状任意颗粒的横截面视为一衍射屏。可分别做出其轮廓的最大内接圆和最小外接圆。设外圆直径为2b, 内圆直径为2a。分别以2a, 2b 为长短轴做椭圆。下面将证明该椭圆屏即为与图1 所示的颗粒横截面等效的非圆屏的最佳解析逼近。2. 1非圆屏与椭圆屏的几何关系由图1 可见,与非球颗粒相对应的椭圆屏的面积S e 恰好为其横截面外接圆与内接圆面积的几何中值,而与该椭圆屏面积相等的圆( 面积等效圆) 的直径Do 恰好为其长短轴2a 与2b 的几何中值。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281105_441929_388_3.jpg此颗粒对球体的偏离可用形状系数K 表示, K 定义为:K=b/a[fon

  • 【免费研讨会抢先知】水体中微塑料污染和金属纳米颗粒污染怎么治?

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“微观污染物分析”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]6[/color]日[color=#ff0000] 下午14:00[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]厦门大学 蔡明刚教授[/b][/align][align=left][b]岛津分析计测事业部市场部FTIR产品经理 郑伟[/b][/align][align=left][b]华东师范大学 何德富副教授[/b][/align][align=left][b]中国科学院生态环境研究中心 阴永光研究员[/b][/align][align=left][b][b]中国科学院生态环境研究中心 谭志强副研究员[/b][/b][/align][align=left][color=#333333]环境中的微塑料、金属纳米颗粒等微观污染物,对环境、生态的影响和人体健康风险早已引起了国内外学界的高度关注,并被定义为一类新型的全球性环境污染物。过于微小的颗粒可能会穿透细胞,产生毒性,对人类健康和环境具有潜在的危害。微塑料、纳米颗粒等微观污染物已成为热点研究项目。仪器信息网特携手环境微观污染物领域内专家于2019年12月6日召开第二届 “微观污染物分析”主题网络研讨会,共同探讨微观污染物对环境和人体的危害及其分析技术。旨在为同行提供在线学习机会,实现教育资源共享,并搭建互动平台,增进学术交流,促成项目合作。欢迎您报名参加![/color][/align][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/MP/[/url]

  • 自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用一、 从静态图像仪到动态图像仪早期的颗粒图像仪都是静态颗粒图像仪,基本上是基于显微镜设备改装的观测设备,制作静态样品,虽然在一定程度上解决了颗粒样品的形貌分析统计问题,但是也表现出了其固有的弱点,即因其参与观测统计的颗粒数量少,导致数据的代表性差。人为误差较大。因此在上世纪90年代末国外就开始进行动态颗粒图像仪的研制,英、法德等国家均推出过动态颗粒图像测试设备。而在本世纪初,国内的上海理工、天津海洋研究所等机构也开始探索颗粒动态测试的有效方法。直到2007济南某厂家首次正式面向市场推出真正意义上国内第一台动态颗粒图像分析仪Winner100。中国才真正具有了动态颗粒图像分析能力。二、 动态图像技术分析对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国外现有的比较成熟的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,形成一个一个从而获得清晰的颗粒图像。这种技术能够解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且鞘液中的颗粒数量仍然不能够太多,因此对于颗粒测试的代表性仍然不强。关键部件鞘流池如果有大的颗粒进入很容易发生堵塞现象,清理疏通也都很费时费力。以国外很多粒度仪厂家也多采取这种实用价值有限的测试技术。近年国内厂家推出一种新型技术,即以流体力学的原理,使用液流的压力将颗粒约束在样品窗表面,使其基本在一个焦平面上运动,使成像效果显著提高。但是问题随之而来,在样品窗表面运动时,经常有颗粒粘连在表面上,越积越多无法处理。因此,此方法的使用价值也大打折扣。2014年济南微纳颗粒推出了一款带超声波自清洗装置的样品窗,才真正解决了这种颗粒在样品窗上粘连的问题,使其实用化程度大大提高,现在在碳化硅、氧化铝等磨料相关等行业已经广泛开始使用,并得到了用户的高度认可。三、 自清洗样品窗技术在以往的动态图像仪中,样品窗污染就会造成测试结果的准确性差。因此样品窗必须每隔一至两周就必须拆卸下来清洗,去除附着在上面的颗粒残留,非常麻烦,而且有的样品自身带有粘性或者静电的,甚至在测试过程中就会粘连到样品窗上,严重影响测试结果。济南微纳推出的可以进行自清洗的样品窗,彻底解决了以上问题,大大减少了样品窗的清洗频次,增加了样品窗寿命,有的甚至可以终生不必拆洗。 自清洗样品窗技术已经应用在微纳的Winner100D动态图像仪、Winner219动静态双模式全自动图像仪上,并解决了样品窗清洗问题。并且自清洗样品窗技术还可以应用在湿法激光粒度仪上,微纳也将进一步自清洗样品窗技术广泛的推广应用,为推动中国颗粒测试事业的发展尽最大努力。 http://ng1.17img.cn/bbsfiles/images/2015/11/201511201552_574512_3049057_3.png

  • 【免费研讨会抢先知】水体中微塑料污染和金属纳米颗粒污染怎么治?

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“微观污染物分析”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]6[/color]日[color=#ff0000] 下午14:00[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]厦门大学 蔡明刚教授[/b][/align][align=left][b]岛津分析计测事业部市场部FTIR产品经理 郑伟[/b][/align][align=left][b]华东师范大学 何德富副教授[/b][/align][align=left][b]中国科学院生态环境研究中心 阴永光研究员[/b][/align][align=left][b][b]中国科学院生态环境研究中心 谭志强副研究员[/b][/b][/align][align=left][color=#333333]环境中的微塑料、金属纳米颗粒等微观污染物,对环境、生态的影响和人体健康风险早已引起了国内外学界的高度关注,并被定义为一类新型的全球性环境污染物。过于微小的颗粒可能会穿透细胞,产生毒性,对人类健康和环境具有潜在的危害。微塑料、纳米颗粒等微观污染物已成为热点研究项目。仪器信息网特携手环境微观污染物领域内专家于2019年12月6日召开第二届 “微观污染物分析”主题网络研讨会,共同探讨微观污染物对环境和人体的危害及其分析技术。旨在为同行提供在线学习机会,实现教育资源共享,并搭建互动平台,增进学术交流,促成项目合作。欢迎您报名参加![/color][/align][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/MP/[/url]

  • 【分享】中药配方颗粒标准研究与复核网络研讨会,6月24日,专家开讲!

    [font=&]2021年2月,国家药品监督管理局及国家药典委员会发布了多项重要文件,4月国家药典委相继发布首批160个配方颗粒国家标准。为了帮助医药研究、生产企业及相关行业从业者了解政策及如何更好应对标准研究与复核,岛津企业管理(中国)有限公司将于[/font][b][color=#ff0000]6月24日[/color][/b][font=&]联合仪器信息网举办[/font][b]“[color=#ff0000]中药配方颗粒标准研究与复核网络研讨会[/color]”[/b][font=&]。[/font][font=&]本次会议特别邀请[/font][b][color=#ff6666]北京盈科瑞创新医药股份有限公司[/color][/b][font=&]资深专家李艳英副总裁对在标准复核过程中遇到的问题及解决方案进行分析及讨论,为广大用户及相关行业提供思路和方案。[/font][font=&][color=#ff6666][b]岛津(上海)实验器材有限公司[/b][/color][/font][font=&]将对色谱柱选择使用及应用注意事项做专项分享,产品团队对液相色谱方法开发及MDR软件使用进行介绍。[/font][font=&]会议日程:[/font][img=,690,381]https://ng1.17img.cn/bbsfiles/images/2021/06/202106081749535040_7497_5206225_3.png!w690x381.jpg[/img][font=&][size=24px][color=#ff0000][b]报名点击[/b][/color][/size][/font][font=&]:[url]https://insevent.instrument.com.cn/t/6h[/url][/font]

  • 中药配方颗粒标准研究与复核网络研讨会,6月24日,专家开讲!

    中药配方颗粒标准研究与复核网络研讨会,6月24日,专家开讲!

    2021年2月,国家药品监督管理局及国家药典委员会发布了多项重要文件,4月国家药典委相继发布首批160个配方颗粒国家标准。为了帮助医药研究、生产企业及相关行业从业者了解政策及如何更好应对标准研究与复核,岛津企业管理(中国)有限公司将于[b][color=#ff0000]6月24日[/color][/b]联合仪器信息网举办[b]“[color=#ff0000]中药配方颗粒标准研究与复核网络研讨会[/color]”[/b]。本次会议特别邀请[b][color=#ff6666]北京盈科瑞创新医药股份有限公司[/color][/b]资深专家李艳英副总裁对在标准复核过程中遇到的问题及解决方案进行分析及讨论,为广大用户及相关行业提供思路和方案。[color=#ff6666][b]岛津(上海)实验器材有限公司[/b][/color]将对色谱柱选择使用及应用注意事项做专项分享,产品团队对液相色谱方法开发及MDR软件使用进行介绍。会议日程:[img=,690,381]https://ng1.17img.cn/bbsfiles/images/2021/06/202106081749535040_7497_5206225_3.png!w690x381.jpg[/img][size=24px][color=#ff0000][b]报名点击[/b][/color][/size]:[url]https://www.instrument.com.cn/webinar/meetings/ZY0624/[/url][img]https://img1.17img.cn/17img/images/202105/webinar/49814339-452d-43fd-ab90-87e4e0b64f76.jpg[/img]

  • 大气颗粒物来源解析技术指南

    大气颗粒物来源解析工作是定性或定量识别大气颗粒物的来源,是一项长期、复杂且系统的技术性工作。大气颗粒物来源解析涉及多种技术方法、模型选择、样品采集与分析、化学成分谱的科学构建、模拟运算以及解析结果评估与应用等,必须强化技术要求和科学规范。随着我国社会经济的快速发展,在我国多个地区接连出现以颗粒物(PM10和PM2.5)为特征污染物的灰霾天气,对人民群众的身体健康和社会经济发展产生影响。大气颗粒物来源解析工作是科学、有效开展颗粒物污染防治工作的基础和前提,是制定环境空气质量达标规划和重污染天气应急预案的重要基础和依据。为指导各地开展大气颗粒物来源解析工作,环境保护部近日发布了《大气颗粒物来源解析技术指南(试行)》(详见附件)。

  • 【分享】中国颗粒学会官方活动——从侧面信息看国产仪器厂家的实力

    “中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会”计划于 12月8-11日在上海召开,会期3天,会议规模约500人。会议还 将邀请国际颗粒技术专家组织召开 “第一届颗粒技术国际研讨会”, 同期还将主办 “第六届上海国际粉体暨散装技术展览会”。热情欢迎海内外广大从事颗粒技术研究的学者、工程技术人员、企业界代表及研究生踊跃投稿、报名参会 ,共同推动颗粒技术的发展。 一、时间安排 时 间 事 项 2008年12月8日 会议报到 2008年12月9-11日 会议开会、参观 二、大会组织机构 学术委员会:名誉主席 郭慕孙 主 席 李静海 副 主 席 卢寿慈 李洪钟 于建国 姚永德 * 委 员 (按音序排列) 蔡春进 * 蔡小舒 曹军骥 岑可法 车凤翔 陈宏勋 陈建峰 陈清如 陈运法 程 迈 程 易 崔福德 戴明凤 * 戴遐明 董青云(百特公司) 都有为 古宏晨 胡荣泽 金 涌 李春忠 李凤生 李经民 * 李劲松 李永丹 粱 勇 林秉乐 林鸿明 * 林嘉平林正雄 * 刘如熹 * 卢春喜 邱冠周 任中京(微纳公司) 沈志刚 施利毅 时铭显 孙予罕 王 丹 王淀佐 王明星 王乃宁 王燕民 韦文诚 * 魏 飞 徐德龙 颜富士 * 叶 菁 叶旭初 袁中新 * 张福根(欧美克公司) 张立德 张仁健 张少明 郑少华 郑水林 周素红 组织委员会: 主 席 沈志刚 李春忠 林鸿明 * 委 员 王 丹 周素红 顾 锋 白蕴如 韩秀芝 徐 菡 赵晓力注: * 为台湾代表,委员所属公司是我自行加上的,本人了解所限,如有错漏,实属无意。

  • 当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用任 中 京( 济南微纳颗粒仪器股份有限公司 济南 250022)摘 要:简要介绍了当代激光颗粒分析技术的最新主要的进展。内容涉及测试原理的发展、仪器结构的改进、数据处理技术的突破、多次散射的处理、样品分散系统的多样化、颗粒形状对测试的影响、颗粒散射模型、工业在线应用等一系列理论和应用问题。关键词:激光,粉体,颗粒,散射,测试1 前言著名物理学家费曼曾说: 假如由于某种大灾难,所有的科学知识都丢失了,只有一句话传给下一代,那么怎样才能用最少的词汇来表达最多的信息呢? 我相信这句话是原子的假设,所有的物体都是用原子构成的 。”可见物质组成在人类文明中具有多么重要的意义。20 世纪,人们对于宏观与微观的物理世界已经有了相当深入的了解,但是对于微观粒子到宏观物体之间的大量物理现象却知之甚少。颗粒正是二者之间的中介物。如大颗粒主要表现为固体特性。随着颗粒变小,流动性明显增强,很像液体;颗粒进一步变小,它将像气体一样到处飞扬了;颗粒尺度再小,它的表面积则迅速增大,表面的分子所处状态与大颗粒完全不同,颗粒的性质将发生突变,显示出某些令人震惊的量子特性! 现在, 世界上许多优秀的科学家正在这个介观领域辛勤耕耘,大量具有特殊性能的材料将在这一领域诞生。导致颗粒性质发生如此变化的第一特征是它的大小。颗粒大小在人们的生活和生产中也非常重要。如水泥颗粒磨细些,水泥早期强度将明显提高;药品粒度越细,人体对它的吸收越好;磁性记录材料越细,存储密度越高。这样的例子不胜枚举。因此,颗粒超细化已经成为提高材料性能的重要手段。颗粒大小测定受到人们重视也就不足为奇了。人们为了测定颗粒大小,几乎采用了可以想到的一切办法。由于篇幅所限,本文只介绍激光颗粒分析技术的概况。2 激光怎样测量颗粒大小激光测量颗粒大小的方法有多种,其中包括光散射、光衍射、多普勒效应、光子相关谱、光透法、消光法、光计数器、全息照相等,本文所说的激光颗粒分析专指通过检测颗粒群的散射谱分布,分析其大小及分布的激光散射( 衍射) 颗粒分析技术。众所周知,一束平行激光照射在颗粒上,将发生著名的夫琅禾费衍射,使用傅里叶变换透镜汇集衍射光,在透镜后焦面可得到此颗粒的衍射谱。如果颗粒是球体,则衍射谱是著名的Airy 图形,中心的Airy 斑直径与颗粒直径成反比。若将一同心环阵光电探测器置于后焦面用于衍射谱的检测,再配以信号处理系统, 即构成基本的激光衍射颗粒分析系统 (见图1) 。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221524_579009_3049057_3.jpg当光束中无颗粒存在时,光会聚在探测器中心; 当小颗粒进入光束时, 探测器的光强分布较宽;当大颗粒进入光束时,探测器光强分布较窄。如果进入光束检测区的是具有一定粒度分布的颗粒群, 则探测器的输出为全部颗粒衍射谱的线性叠加,使用反演技术可根据衍射谱反求被测颗粒群的粒度分布 。激光衍射颗粒分析系统适用于粒度大于激光波长很多的颗粒,测量范围大约在6Lm 以上,测量上限决定于透镜焦距,已知最大可测到2000Lm.激光颗粒分析系统的优点是非常突出的,其中包括(1) 测量速度快,其他方法无法比拟;(2)测量过程自动化程度高,不受人为因素干扰,准确可靠;(3)衍射谱仅与颗粒大小有关,与颗粒的物理化学性质无关,因此适用面极广。3 从衍射到散射使用衍射原理的激光颗粒分析系统的主要缺点是在小颗粒范围测量误差很大,特别是无法测量亚微米颗粒的大小。随着颗粒技术的进步,颗粒粒度迅速向超细发展,夫琅禾费衍射已不能满足测试要求,必需采用更精确的Mie 理论。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221525_579010_3049057_3.jpgMie 散射理论是球形颗粒对单色光的散射场分布的严格解析解。夫琅禾费衍射是Mie 散射理论在特定条件下的近似。Mie 散射理论指出,当颗粒直径比入射光波长小得多时,颗粒的前向散射与后向散射场分布对称;当颗粒直径与入射光波长近似时,前向散射比后向散射强,且散射场关于入射光轴呈周期分布;当颗粒直径比入射光波长大得多时,颗粒将只有前向散射场,这正与夫琅禾费衍射理论一致(见图2) 。由此可见,Mie 散射理论比夫琅禾费衍射理论适用范围更广,更精确。为了适应小颗粒散射谱的测量,光路也发生了重大变化,原平行光路由会聚光路取代。颗粒样品由置于透镜前改为透镜之后,可接收的散射角达到70b。经改进的颗粒分析新光路测量范围从0.1um 至数百um,只要改变样品位置即可方便地调节测量范围,不必更换透镜 。至此,Mie 散射理论正式担当了颗粒分析的主角。4 多重散射激光散射颗粒分析在原理上要求被测颗粒无重叠随机分散在与光路垂直的同一平面内。但是这一要求在实际上很难做到,例如干粉从喷嘴喷出往往呈三维分布,前面的颗粒使平行激光发生散射,散射光遇到后面的颗粒再次散射,此过程经历多次,散射谱分布大大展宽,这种现象称为多重散射。可以证明,N 次散射光场的复振幅是单次散射光场的复振幅的N重卷积。颗粒分布得越厚,散射谱展宽越严重,颗粒分析结果将严重地向小颗粒偏移。为了抑制多重散射,人们曾采用了多种办法。我国学者分析了多重散射与颗粒浓度的关系,发现颗粒三维分布时仍存在最佳衍射浓度,在此浓度下,多重散射可以得到有效抑制。颗粒分布越厚,最佳衍射浓度则越小。在此理论指导下,我国研制的干粉激光颗粒分析仪,其测量结果可以同湿法激光颗粒分析仪相比。5 反演——追求真实的努力我们的测量对象很少有单一粒径的颗粒集合,往往是有一定粒度分布的颗粒群。我们所测得的谱分布是由颗粒分布函数为权重的颗粒散射谱分布对所有粒径的积分。在颗粒分析中的反演运算即通过所测谱分布反求粒度分布(颗粒的散射谱分布作为理论已知)。反演正确与否直接关系到此技术的成败。本文不想全面论述反演技术,只简要介绍两种反演思路。流行的一种方法是先假定被测颗粒粒度服从某种分布函数( 如正态分布、对数正态分布、R - R 分布等,然后叠代求取分布参数。如果预先的假定是错的,那么反演结果必错。怎样才能获得真实可靠的结果呢? 我国研究人员发展了一种无约束自由拟合反演技术,即对粒度分布函数不作任何约束,令每一权重因子独立地逼近最佳值。此技术已在仪器上应用并取得良好效果,提高了颗粒大小分辨率,保证了反演结果的真实可靠性。此技术在其他场合也有应用价值。6 大小与形状有关吗?通常认为物体的大小与物体的形状是互不相关的两个概念。近期关于颗粒学的研究表明,颗粒大小的表征不仅与颗粒形状有关,而且与颗粒测试的方法有关,这恐怕是人们预料不到的。以沉降法为例来说明。在重力场中,某非球形颗粒A 的最终沉降速度与另一同质球体B的最终沉降速度相同,则定义颗粒A 的粒径即为颗粒B 的球体直径,称为沉降粒径。二者实际体积并不相同。与此相反,体积相同的两颗粒,若形状不同,一为球体另一为非球体,则其沉降粒径也不同。由此看来颗粒大小与形状有关。与沉降法类似,激光散射法所测粒径也与形状有关。截面积相同的两颗粒,非球体的衍射谱比球体的谱宽。若用球体衍射谱度量非球体,则测试结果偏小。为了解决这种矛盾,我国学者引入椭圆颗粒衍射模型,即取非球体颗粒的最小外圆直径为长轴,取其最大内圆直径为短轴,所作椭圆即为该颗粒的椭圆模型。颗粒的球体模型发展到椭圆模型是颗粒学的一个进步,椭圆模型引入的实质就是承认颗粒大小与颗粒形状有关,并把形状因素引入大小度量的范畴。椭圆模型的引入,为激光颗粒分析用于非球形颗粒奠定了理论基础,并有效地提高了测量精度。7 从实验室到工业生产第一线事实上颗粒测试生产线早已需要一种颗粒在线检测设备。例如粉磨设备的主要功能是将原料磨细,因此颗粒大小就成为粉磨工艺的首要检测指标,但是无论是沉降法还是库尔特法,无论是图像法还是超声波法,均难担此重任。目前人们只能靠检测磨机负荷与监听磨机发出的声音来判断它的工作状态,至于产品粒度则需数小时一次间隔取样,到试验室分析,再返回现场调整磨机,由于检测不及时,导致产品过粗或过粉磨现象司空见惯,造成的浪费无法计算。现在,激光颗粒分析技术的出现与成熟,为颗粒在线测试提供了可能。激光颗粒分析技术除前面谈到的许多优点外,还有一些优点尚未引起人们的注意:(1)它可用于运动颗粒群的实时颗粒分析;(2)它不但适用于液体中的颗粒,也适用于气体中的颗粒。所有这些优点都注定了这种测试方法必定要在现代化的颗粒生产线担任在线粒度测试的主角。此技术在粉磨系统的应用必将改变磨机的控制模式,磨机将发挥出更大的潜力,能耗也将得到最大限度的节约。我国在气流粉碎机方面的粒度在线测控研究工作业已取得可喜的成果。预计不久,选粉、造粒、喷雾、干燥、结晶等许多工艺过程都将由激光颗粒分析仪担当在线分析的重任。到那时,此种技术的潜力才可得到较为充分的发挥。8 结束语激光颗粒分析技术的研究从70 年代起步,到今天才不过20 年的时间,它已经在测量精度、测量速度、分辨能力、动态检测能力等方面远远超过传统分析方法,在世界许多实验室与生产企业应用表现出无可比拟的优越性,越来越多的产品正在选择激光颗粒分析技术作为产品检验标准。此种

  • 在线颗粒计数器

    请问有没有在线上下游颗粒计数器的厂家资源吗?过滤精度试验台上用

  • 中药配方颗粒标准研究与复核网络研讨会,6月24日,专家开讲!

    [font=&]2021年2月,国家药品监督管理局及国家药典委员会发布了多项重要文件,4月国家药典委相继发布首批160个配方颗粒国家标准。为了帮助医药研究、生产企业及相关行业从业者了解政策及如何更好应对标准研究与复核,岛津企业管理(中国)有限公司将于[/font][b][color=#ff0000]6月24日[/color][/b][font=&]联合仪器信息网举办[/font][b]“[color=#ff0000]中药配方颗粒标准研究与复核网络研讨会[/color]”[/b][font=&]。[/font][font=&]本次会议特别邀请[/font][b][color=#ff6666]北京盈科瑞创新医药股份有限公司[/color][/b][font=&]资深专家李艳英副总裁对在标准复核过程中遇到的问题及解决方案进行分析及讨论,为广大用户及相关行业提供思路和方案。[/font][font=&][color=#ff6666][b]岛津(上海)实验器材有限公司[/b][/color][/font][font=&]将对色谱柱选择使用及应用注意事项做专项分享,产品团队对液相色谱方法开发及MDR软件使用进行介绍。[/font][font=&]会议日程:[/font][img=,690,381]https://ng1.17img.cn/bbsfiles/images/2021/06/202106081749535040_7497_5206225_3.png!w690x381.jpg[/img][font=&][size=24px][color=#ff0000][b]报名点击[/b][/color][/size][/font][font=&]:[/font][url]https://www.instrument.com.cn/webinar/meetings/ZY0624/[/url]

  • 全自动油污颗粒计数器

    SH302B全自动油污颗粒计数器用于检测液体中固体颗粒的大小和数量,可广泛应用于航空航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域,对液压油、润滑油、岩页油、变压器油(绝缘油)、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油等油液进行固体颗粒污染度检测,及对有机液体、聚合物溶液进行不溶性颗粒的检测。全自动油污颗粒计数器采用“光阻法”测量颗粒,并采用油液行业经典方法NAS1638和ISO4406,并可根据用户的要求,内置用户所需多种标准。精密注射器式取样系统,实现取样速度恒定和取样体积精确控制。正/负压取样舱装置,实现样品脱气和高粘度样品检测。大屏幕彩色液晶触摸屏,图形菜单显示、触摸操作、简单方便。[b]性能特点[/b]采用遮光法(光阻法)原理,具有检测速度快、抗干扰性强、精度高、重复性好等优点;精密注射器式取样系统,实现取样速度恒定和取样体积精确控制;正/负压气压舱装置,实现样品脱气和高粘度样品检测;大屏幕彩色液晶触摸屏,图形菜单显示、触摸操作、简单方便;内置 NAS1638、GJB420A-96、GJB420B-06、ISO4406-99(GB/T14039)、ISO4406-87(JB/T9737.1)、SAE749D、DL/T1096 等颗粒污染等级标准,并可根据用户的要求内置所需标准;16 个可任意设定粒径尺寸的通道,便于进行颗粒度分析;检测数据存储功能,方便检测数据的存档、检索和分析;内置打印机,可直接打印出检测报告;内置中文输入法,实现检测报告中文标注;取样体积、检测速度和清洗速度可设定;具有标准串行 RS232 接口,可选配数据软件,实现外接计算机对仪器的控制及对检测数据的处理。[b]技术指标[/b]光源:半导体激光器;粒径范围:0.8μm~600μm;灵敏度: 0.8μm(ISO4402)或3μm(c)(GB/T18854,ISO11171);检测通道:16 通道,粒径在 1μm~100μm 或 4μm(c)~70μm(c)范围内任意设定;取样方式:瓶式;取样体积:0.3mL~100mL,间隔 0.1mL;取样体积精度:优于±1%;取样速度:5mL/min~60mL/min;气压舱最大压力:0.8MPa;气压舱最大真空:0.08MPa检测样品粘度≤650cst;检测样品温度:0℃~80℃;分辨力:优于 10%(GB/T18854-2002);重合误差极限:10000 粒/mL(5%重合误差);重复性:RSD<2%(颗粒计数>5000);检测数据存储:100 组;数据输出:内置打印机打印;输出至外接计算机;电源:100~245V,49~62Hz,<80W;环境温度:0℃~50℃。

  • 便携式油污颗粒计数器

    SH302A便携式油污颗粒计数器用于检测液体中固体颗粒的大小和数量,可广泛应用于航空航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域,对液压油、润滑油、岩页油、变压器油(绝缘油)、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油等油液进行固体颗粒污染度检测,及对有机液体、聚合物溶液进行不溶性颗粒的检测。[b]性能特点:[/b]采用光阻法(遮光法)原理,具有检测速度快、抗干扰性强、精度高、重复性好等优点。高精密传感器保证高分辨率力和准确性。精密计量取样系统,实现取样速度恒定和取样体积控制。彩色液晶屏显示,触摸屏操作。内置GB/T14039、ISO4406、NAS1638、GJB420A、GJB420B、SAE749D、ГОСТ17216、AS4059D等颗粒污染度等级标准,并可根据用户要求内置所需标准。多达990个粒径通道,便于进行颗粒度分析。可同时存储三条校准曲线(ACFTD校准曲线、ISOMTD校准曲线、GOST校准曲线),并可轻松切换,降低换算的误差。具有USB接口,可将检测数据存储至U盘。内置打印机,可直接打印出检测报告。仪器可实现连续自动在线检测,并可任意设置检测间隔时间。具有冲洗功能,冲洗体积可任意设置。采用高强度注塑进口外壳,结构紧凑,重量轻巧,便于携带。采用高精密铝拉丝面板,简洁美观,经久耐用。RS232或RS485接口,可外接计算机完成对检测数据的传输、存储和处理。[b]技术指标:[/b]光 源:半导体激光器粒径范围:1μm~400μm(取决于选用的传感器)灵 敏 度:1μm(ISO4402)或4μm(c)(GB/T18854,ISO11171)检测通道:8个,可任意设定粒径尺寸取样体积:10ml取样体积精度:优于±3%检测速度:5~35mL/min清洗速度:5~35mL/min冲洗体积:可在0ml~90ml间设置(间隔1ml)重合误差JI限:12000~40000粒/mL(取决于选用的传感器)重 复 性:RSD2%计数准确性:±10%离线检测粘度:≤100cSt(选配气压瓶式取样器ZUI高粘度可达400cSt)在线检测压力:0.1~0.6Mpa(选配减压装置ZUI高压力可达40MPa)在线检测间隔时间:可在1秒~10小时59分59秒间设置检测样品温度:0℃~80℃工作温度:-20℃~60℃储存温度:-30℃~80℃供 电:100V~265VAC或24VDC或选配外置锂电池外形尺寸:345×295×152mm仪器净重:5kg

  • 环境空气细颗粒物污染防治技术政策(试行)

    环境空气细颗粒物污染防治技术政策(试行)(征求意见稿)一、总则(一)为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律法规,防治环境污染,保障生态安全和人体健康,完善环境空气细颗粒物污染防治措施,促进技术进步,制定本技术政策。(二)本技术政策为指导性和说明性文件,根据污染物的来源和污染现象的成因,提出了防治环境空气细颗粒物污染的建议措施,供各有关方面在工作中参照采用。(三)环境空气中的细颗粒物包括固态和液态两种形态,主要来源于两个方面:一是各种污染源和发生源向空气中直接释放的细颗粒物,包括烟尘、粉尘、扬尘、油烟、油雾和花粉等;二是部分具有化学活性的气态污染物在空气中发生反应后生成的细颗粒物,这些前体污染物包括二氧化硫、氮氧化物、挥发性有机物(VOCs)和氨等。防治环境空气细颗粒物污染应针对其成因,全面而严格地控制各种细颗粒物及其前体污染物的排放行为。(四)控制细颗粒物及前体污染物排放的重点领域包括工业污染源、移动污染源、生活污染源、农业污染源、各种施工工地、各种粉状物料贮存场等。工业污染源包括:火电、钢铁、建材、化工、炼油、有色冶金、各种锅炉和窑炉、各种废物焚烧装置、各种表面喷涂装置等。移动污染源包括:汽车(含低速货车和三轮汽车)、摩托车和轻便摩托车、机动船舶、航空器、各种移动式机械和动力装置等。生活污染源包括:饮食业(烹饪油烟、烧烤和炉灶烟雾)、干洗业(VOCs)、家庭装修和使用气雾剂(VOCs)、城乡家庭厨房(油烟和炉灶烟雾)家庭取暖煤(油)炉、生活垃圾和城市园林绿化废物(落叶等)露天焚烧、燃放烟花爆竹和吸烟、宗教和祭祀礼仪活动(焚香、焚化祭品)等。农业污染主要来自农业用地扬尘、秸秆等农业废物焚烧等。(五)环境空气中的细颗粒物的生成与社会生产、流通和消费活动有密切关系,防治灰霾污染应以降低环境空气中的细颗粒物浓度为目标,宜采取“各级政府主导、社会各界参与,预防发生为主、应急防护为辅,配套综合措施、坚持长期不懈”的原则,通过优化能源结构、变革生产方式、改变生活方式,不断减少污染物排放量。(六)应将能源利用作为防治细颗粒物污染的重点领域,实行煤炭总量控制,大力发展清洁能源。在特大型城市核心区域应实行能源无煤化。限制高硫份高灰份煤炭的开采与使用,提高煤炭洗选比例,研究推广煤炭清洁化利用技术,减少煤炭燃烧造成的污染物排放。(七)应将制定城市建设规划作为防治细颗粒物污染的重要手段,优化城市功能布局,合理设置公共交通系统,缓解交通拥堵。要通过调整产业结构,强化规划环评,合理部署产业空间格局,推动生态工业发展,淘汰落后产能,严格实施“区域限批”制度和行业准入制度。(八)在开展细颗粒物排放总量调查的基础上,实行细颗粒物排放总量控制制度,将细颗粒物纳入污染物减排统计、监测考核体系,不断削减排放总量,严格控制新增排放量,实施清洁生产,从源头上减少细颗粒物的产生和排放。(九)各地防治污染工作,应将构建细颗粒物及其前体污染物的排放监测体系作为基础,开展环境空气中的细颗粒物成分和来源分析研究,确定本地区需重点控制的污染源名单。在城市密集区域,应开展城市间大气污染联防联控工作。(十)细颗粒物污染防治目标:到2015年,建立有效的排放监控机制和考核机制,构建完善的政府和企业目标责任制,基本建立起重点区域细颗粒物污染防治体系,并逐年减少细颗粒物排放总量;到2020 年,建立区域层面大气污染监测、评估、监督体系,细颗粒物排放总量显著下降。二、工业污染源治理(一)制定严格、完善的国家和地方工业污染物排放标准,明确各行业排放控制要求。对环境污染严重、污染物排放量大的地区,应在国家排放标准中规定特别排放限值或制定实施严格的地方排放标准。尽快制定工业烟(废)气中VOCs、氨的国家或地方排放标准。研究制定适用于低浓度颗粒物烟(废)气的监测方法标准。各级环保部门应严格执法,确保长期、稳定达标排放。(二)对于排放细颗粒物的工业污染源,应按照生产工艺、排放方式和烟(废)气组成的特点,采用适用的高效除尘技术,降低排放浓度;对于非密闭式排放烟尘、粉尘的生产装置,应采用集气装置收集烟气、废气,经净化后排放。(三)对于排放前体污染物的工业污染源,应分别采用去除硫氧化物、氮氧化物、VOCs和氨的治理技术。(四)采用氨作为还原剂的氮氧化物净化装置,应根据烟气中氮氧化物浓度,合理设置氨用量工艺参数,防止投加氨过量造成大量逃逸。(五)鼓励火电企业采用湿式电除尘等新技术,防止脱硫造成的“石膏雨”污染。三、移动污染源治理(一)应将尽快降低燃料有害物质含量和加速淘汰高排放老旧机动车辆作为当前治理移动源污染的重点,并建立长效机制,不断降低全国机动车船污染物排放水平。(二)进一步提高全国车用燃油的清洁化水平,降低硫等有害物质含量,为实施更加严格的新车排放标准、降低在用车辆排放水平创造必要条件。采取措施切实保障各地车用燃油的质量,防止车辆由于使用不符合要求的燃油造成车辆损坏或导致车辆排放控制性能降低。提高船舶和其他动力机械用燃油质量。(三)制定并实施新的机动车船大气污染物排放标准,收紧颗粒物、碳氢化合物、氮氧化物等污染物排放限值。以压燃式发动机和缸内直喷点燃式发动机汽车为重点,实施严格的颗粒物质量排放限值,同时制定实施颗粒物数量排放限值。(四)升级汽车氮氧化物排放净化技术,采用尿素等还原剂净化尾气中的氮氧化物,并建立车用尿素供应网络。(五)制定和实施非道路机械大气污染物排放标准,明确颗粒物排放控制要求。(六)严格控制加油站、油罐车和储油库的油气污染物排放,按时实施国家排放标准。(七)新生产压燃式发动机汽车应安装尾气颗粒物捕集器。严格限制轻型压燃式发动机乘用汽车的数量。用于公用事业的压燃式发动机在用车辆,可按照规定进行改造,提高排放控制性能。(八)大力发展地铁等大容量轨道交通设施,发展使用燃油替代能源的新能源汽车和电动汽车。加速淘汰老旧、高排放机动车,按照国家标准规定按时报废运营车辆,采用奖励等经济补偿措施促进更换各种在用社会车辆,缩短社会车辆更新周期。四、生活污染源治理(一)在全社会倡

  • 任中京教授受邀参加2013年SAC/TC168颗粒分技术委员会年会

    任中京教授受邀参加2013年SAC/TC168颗粒分技术委员会年会全国颗粒表征与分检及筛网标委会颗粒分技术委员会(以下简称“分委会”)年会于10月19日-21日在安徽池州召开。会议由国家非金属矿深加工产品质量监督检验中心承办,共有28名委员和代表参会。会议讨论了立项项目的拟定标准及其颗粒分析技术在国内的适用性、应用领域、标准名称的适宜性以及与国际标准的关系等。作为全国颗粒测试技术的领航者济南微纳颗粒仪器股份有限公司的董事长任中京教授受邀参加了此次会议。任中京教授从事激光颗粒分析理论与技术研究工作30年有余。期间主持并完成国家省部科技攻关项目4项。发表论文60余篇,其中收入美国工程索引(EI)研究论文20余篇,在国际颗粒学研究领域享有很高声誉。--------------- 中国颗粒测试技术的领航者---------------济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。

  • 【原创】常见粒度测量仪器的原理和性能特点(包括颗粒图像处理仪、电阻法颗粒计数器)

    本文简介:[B]颗粒图像处理仪[/B]是用显微镜放大颗粒,然后通过数字摄像机和计算机数字图像处理技术分析颗粒大小和形貌的仪器,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散状况、粉体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等,并增加了详细的圆度分析功能,是其他粒度测试方法的非常有用的辅助工具,是我国现行金刚石微粉粒度测量标准的推荐仪器。适用于磨料、涂料、非金属矿、化学试剂、填料等各种末颗粒的粒度测量、形貌观察粉和分析。 [B]电阻法(库尔特)颗粒计数器[/B]是根据小孔电阻原理,又称库尔特原理,测量颗粒大小的。由于原理上它是先逐个测量每个颗粒的大小,然后再统计出粒度分布的,因而分辨率很高,并能给出颗粒的绝对数目。其最高分辨率(通道数)取决于仪器的电子系统对脉冲高度的测量精度。此文为专业普及文档,PDF文档,请用Acrobat Reader浏览相关链接:http://www.omec-tech.com/products-01-gs.html[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=66309]其他常见粒度测量仪器的原理和性能特点[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制