当前位置: 仪器信息网 > 行业主题 > >

精准编辑基因

仪器信息网精准编辑基因专题为您整合精准编辑基因相关的最新文章,在精准编辑基因专题,您不仅可以免费浏览精准编辑基因的资讯, 同时您还可以浏览精准编辑基因的相关资料、解决方案,参与社区精准编辑基因话题讨论。

精准编辑基因相关的资讯

  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 科研快讯 | MGISEQ-200助力CRISPR基因编辑系统的特异性精准开发
    近日,北京大学神经科学研究所的科学家们在Science Advances 杂志发表了题为Development of a CRISPR-SaCas9 system for projection-and function-specific gene editing in the rat brain的研究论文。该研究基于CRISPR-SaCas9技术,结合腺相关病毒和细胞标记技术,以功能特异性模式实现基因编辑,在实验大鼠的脑中实现了特定记忆的精准删除。在研究中,研究人员对基因编辑靶点和潜在的脱靶位点进行扩增建库并使用基因测序仪MGISEQ-200对扩增产物进行深度测序。测序数据分析结果显示:潜在脱靶位点相对于基因编辑靶点在indel发生率方面至少低两个数量级(图1),同时在单细胞水平上对基因编辑后靶点区域的indel信息进行了验证(图2)。与以往的相关研究报道一致,SaCas9对DNA错配有较高的抗性,在体内能够保证高的靶点特异性。图1 基因编辑靶点和潜在脱靶位点序列及indel发生率图2 基因编辑靶点序列及基因编辑后测序结果展示作为一款小型化的桌面型基因测序仪,MGISEQ-200小巧、灵活,应用广泛,支持基于杂交捕获或多重PCR扩增的靶向测序、小型基因组测序、低深度全基因组测序等多种应用。目前,通过MGISEQ-200获得测序数据并由此展开深入探讨的相关研究已陆续见刊。其中,基于MGISEQ-200深度测序的新冠病毒转录组结构研究于4月份登上了Cell杂志,为全球科学家的后续研究提供参考和依据。小贴士MGISEQ-200已发表文章(精选)[1] 一例基孔肯雅病毒和寨卡病毒混合感染病例的发现.华南预防医学.DOI: 10.13217/j.scjpm.2019.0481[2] Devolopment of a CRISPR-SaCas9 system for projection and function-specific geneediting in the rat brain. Science Advances.DOI: 10.1126/sciadv.aay6687[3] Thearchitecture of SARS-CoV-2 transcriptome. Cell.DOI: 10.1016/j.cell.2020.04.011
  • 科幻片删除记忆成真了?北大研究团队利用基因编辑做到了精准删除
    p style=" text-indent: 2em text-align: justify " 人生在世,总有一些事是想望却忘不掉的,对常人来说,可能只是徒增苦恼,对于一些精神疾病的人来说,这些记忆就是他们的“病根”。 strong 删除记忆此前是人们想象出来的,出现在科幻片中的行为,但是一只无法实现,但现在,它成真了! /strong br/ /p p style=" text-indent: 2em text-align: justify " 2020年3月18日, strong 北京大学神经科学研究所的伊鸣研究员和万有教授团队在Science子刊Science Advances在线发表题为 Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain(用于大鼠脑中投射和功能特异性基因编辑的 CRISPR-SaCas9 系统的开发)的论文。 /strong 据悉,基于 CRISPR-Cas9 基因编辑技术, strong 研究人员开发出一种 CRISPR-SaCas9 系统,在实验大鼠的脑中实现了特定记忆的精准删除。 /strong /p p style=" text-indent: 2em text-align: justify " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 566px height: 318px " src=" https://img1.17img.cn/17img/images/202003/uepic/95ff1206-e970-46a4-948a-b0a7cdf32dea.jpg" title=" 2e5c86a7cc3e22c.png" alt=" 2e5c86a7cc3e22c.png" width=" 566" height=" 318" / /p p style=" text-indent: 2em text-align: justify " strong 开发 CRISPR-SaCas9 系统 /strong /p p style=" text-indent: 2em text-align: justify " 对特定神经元亚群进行稳定的基因操作具有挑战性,这是摆在科研人员面前的一道难题,也是这项研究的出发点。 /p p style=" text-indent: 2em text-align: justify " 实际上,哺乳动物大脑中的复杂神经元网络,是由不同遗传、形态和功能特征的神经元集合形成的。即便是在同一大脑区域内,神经元集合在解剖学或功能上也并不统一,分为不同的亚群,这便是一种“异质性”。 /p p style=" text-indent: 2em text-align: justify " 这一异质性需要对特定神经元集合进行基因编辑——而且,在特定神经元亚型、回路中进行精确的基因操作,对于确定神经元活动和行为之间的关系是至关重要的。 /p p style=" text-indent: 2em text-align: justify " 不过,在具有特定连接或功能特征的神经元亚群中,特别是在大鼠和非人灵长类动物中,实现稳定的基因敲减(Gene knock-down,指通过降解具有同源序列靶基因的 mRNA 阻止基因表达)或基因修饰并非易事。 /p p style=" text-indent: 2em text-align: justify " 而 CRISPR-Cas9 基因编辑技术为研究人员找到了一个突破口。 /p p style=" text-indent: 2em text-align: justify " CRISPR-Cas9 基因编辑技术,通俗来讲就是,将基因组中的错误位点基因进行“修改”,使人体细胞恢复正常机能。这一技术通过一种名叫 Cas9 的特殊编程的酶发现、切除并取代 DNA 的特定部分,是生物科学领域的游戏规则改变者。 /p p style=" text-indent: 2em text-align: justify " 实际上,有人形象地将& nbsp CRISPR-Cas9 基因编辑技术称为“基因魔剪”,认为基因编辑就是用附带了“导航仪”的基因剪刀对基因进行修饰。 /p p style=" text-indent: 2em text-align: justify " 不过,病毒载体的容量有限,是在神经系统中应用 CRISPR-Cas9 的一个障碍。 /p p style=" text-indent: 2em text-align: justify " 实际上,最常用的一种病毒载体就是腺相关病毒(AAV,adeno-associated virus),它是一类单链线状 DNA 缺陷型病毒。 The Cas9 ortholog from Staphylococcus aureus (SaCas9), by contrast, is more than 1 kb shorter but edits the genome with an efficiency similar to SpCas9 /p p style=" text-indent: 2em text-align: justify " 而来自化脓性链球菌的高通用性核酸内切酶 Cas9(SpCas9)正是受到 AAV 递送载体的容量(通常小于 4.4-4.7kb)及低效包装的限制。相比之下,来自金黄色葡萄球菌的 Cas9 直系同源物 SaCas9 递送载体的容量比 SpCas9 小 1kb 以上,但基因编辑的效率却相差不大。 /p p style=" text-indent: 2em text-align: justify " 综合上述因素,研究团队提出了一种 CRISPR-SaCas9 系统——基于 CRISPR-Cas9 技术,结合顺行/逆行 AAV 载体和细胞标记技术。 /p p style=" text-indent: 2em text-align: justify " strong 精准删除大鼠特定记忆 /strong /p p style=" text-indent: 2em text-align: justify " 实验表明,这一系统实现了大鼠脑中的投射和功能特异性基因编辑。 /p p style=" text-indent: 2em text-align: justify " 具体来讲,研究团队首先诱发了大鼠对 2 个不同实验箱的恐惧记忆,然后通过 CRISPR-SaCas9 系统,精确删除掉了大鼠对其中一个箱子的记忆,而大鼠对另外一个箱子的记忆则完好保留。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/cb55bcb9-6a31-4068-a6ab-02da59e8e16e.jpg" title=" c1cb523e3e51f7b.png" alt=" c1cb523e3e51f7b.png" / /p p style=" text-indent: 2em text-align: justify " 神经元兴奋性和记忆的形成,一种具有组蛋白乙酰转移酶活性的转录辅激活因子是必不可少的,这种激活因子便是内侧前额叶皮层特定神经元亚群中的 cbp(CREB结合蛋白)。 /p p style=" text-indent: 2em text-align: justify " 基于此,该团队将 cbp 作为目标基因,并进行基因敲减,证实了投射和功能特异性 CRISPR-SaCas9 系统在揭示记忆的神经元和回路基础的意义,这也说明 CRISPR-SaCas9 系统的高效率和特异性可广泛应用于神经环路研究。 /p p style=" text-indent: 2em text-align: justify " 同时上述过程也表明,该系统与电生理学、行为分析、流式细胞荧光分选技术 FACS 和深度测序方法相结合,可为生理、病理条件下的脑功能精确基因组干扰提供重要的参考。论文作者之一、北京大学神经科学研究所认知神经科学实验室研究员伊鸣表示: /p p style=" text-indent: 2em text-align: justify " 记忆编码与储存很重要,但遗忘负面记忆也同样重要。如果负面记忆过于顽固,有时会带来负担,甚至造成疾病。慢性痛、药物成瘾、慢性应激等疾病,本质上都是患者在经历了疼痛、毒品带来的感觉或压力后,产生了难以清除的、长时间存在的“病理性记忆”。因此,这一系统可能也将为这类疾病的治疗提供新思路。 /p p style=" text-indent: 2em text-align: justify " strong 删除记忆,道阻且长 /strong /p p style=" text-indent: 2em text-align: justify " 在这项突破之前,已经有不少科学家做过记忆编辑与删除的相关研究。 /p p style=" text-indent: 2em text-align: justify " 在此前的研究中,科研人员通常会考虑以下几个方面: /p p style=" text-indent: 2em text-align: justify " 从研究海马体出发:位于大脑丘脑和内侧颞叶之间,主要功能为记忆处理储存和空间信息处理。20 世纪初就有科学家认识到海马对于某些记忆以及学习有着基本的作用; /p p style=" text-indent: 2em text-align: justify " 利用光遗传学技术:使用光控的方法,选择并打开某种生物的特定细胞,旨在激活清醒哺乳动物的单一神经元。在研究大脑与记忆的语境下,这一技术就是采用光线打开或者关闭大脑中神经元组的生物技术; /p p style=" text-indent: 2em text-align: justify " 以治疗抑郁症等疾病为目标:抑郁症患者对于负面事件存在记忆偏好,同时对于正面信息却不具备相应的记忆能力。因此,删除负面记忆,将对这一类疾病的治疗起到推动作用。 /p p style=" text-indent: 2em text-align: justify " 实际上,目前已经出现了一些具体的特定记忆消除方法。比如 2019 年 5 月,美国波士顿大学研究团队利用光遗传学技术,对实验大鼠海马体的特定区域进行刺激来实现对消极记忆的“消除”;同年 7 月,澳大利亚皇家墨尔本理工大学开发出一种受光遗传学技术启发的新型类脑芯片,可模仿大脑存储和删除信息的方式。 /p p style=" text-indent: 2em text-align: justify " strong 不难发现,且不论删除记忆是否会引发新一轮的道德伦理大讨论,从技术的角度看,这一领域仍然有很大的发展空间。 /strong /p p style=" text-indent: 2em text-align: justify " strong 那么,如果上述方法有朝一日进入应用阶段,你会选择删除某段记忆吗? /strong /p
  • 复旦王永明团队开发出高精准CRISPR基因编辑工具酶 多场景可取代SpCas9
    CRISPR/Cas9被誉为“基因魔剪”,是基因编辑的利器,在基础研究、农业育种和基因治疗等领域得到了广泛应用。但是CRISPR/Cas9工具还存在很多局限,常用的SpCas9编辑范围广,活性高,但是其基因较大,给病毒载体递送带来困难。常用的SaCas9基因小,但是编辑范围小。其他Cas9活性低,应用较少。为了找到理想的Cas9工具酶,复旦大学王永明课题组建立了大规模筛选Cas9的平台,对自然界中数百种Cas9进行系统性筛查。2020年该课题组筛选到了SauriCas9,具备活性高、编辑范围广、基因小等优点,但是精准性不理想,介于SpCas9和SaCas9之间。2021年3月15号,王永明课题组联合王红艳和李继喜课题组,在 Nucleic Acids Research 杂志发表了题为:Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity 的研究论文。研究团队经过鉴定和改造,开发出了SlugCas9-HF工具酶,性能突出,它识别简单的NNGG PAM,具备活性高、精准性高、编辑范围广、基因小等优点。研究团队同时还开发出ShaCas9、SlutrCas9、Sa-SlugCas9等工具。为了方便研究人员选择合适的工具酶使用,作者对本团队开发的7种工具酶和SaCas9的活性和精准性进行了比较。综合看,SlugCas9-HF在编辑活性、精准性和编辑范围都具有优势。在12个内源位点对8个工具酶活性进行比较该研究的第一作者胡子英博士兴奋地说:“我们后继工作对SlugCas9-HF和SpCas9的活性进行了比较,它们活性没有差异。也就是说SlugCas9-HF兼具了SpCas9和SaCas9的优点。这是我们一直寻找的理想工具酶,它在很多场景都可以取代SpCas9和SaCas9。我们还找到很多有优点的工具酶,将陆续与同行分享。”利用GFP报告基因对8个工具酶在脱靶位点的编辑效率进行比较。在脱靶位点编辑效率越低精准性越高。胡子英博士和张成东博士是论文的共同第一作者,王永明教授、王红艳教授和李继喜教授是论文的共同通讯作者。跟着我们涨知识!由仪器信息网举办的第五届PCR技术网络会议将于4.14日-4.16日举行,我们特别邀请到王永明老师给我们讲诉这把神奇的基因魔剪,大家千万不要错过噢~点击此处即可报名听会!
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 医学领域是否为临床CRISPR基因编辑的到来做好了准备?
    医学领域是否为临床crispr基因编辑的到来做好了准备? crispr-cas9能够以多个重要的方式来潜在地转化医学,首先该技术能够帮助科学家们对多种哺乳动物机体中的基因进行“裁剪”来产生用于研究人类健康和疾病发生的模型,此前科学家仅能够在小鼠机体中使用该技术,但基因编辑技术使得他们能够更加精准地修饰几乎所有哺乳动物机体的基因组。由于猪的心脏或者猴子的大脑更类似于人类机体中相应的器官,这或许就能够帮助研究者通过研究来理解心脏病和多种精神疾病发生背后的遗传基础和分子机制,但这往往也是具有一定的争议性,因为很多人反对对灵长类动物进行实验操作。基因编辑影响医学进展的另一种方式就是通过促进对人类细胞生理学和病理学过程的研究,利用基因编辑技术在体外准确地操作人类细胞的基因组,就能够帮助我们鉴别出参与参与正常人类生理学过程以及多种人类疾病发生的关键基因,笔者在他最近新出版的一本名为“redesigning life: how genome editing will transform the world”的书中探讨了crispr-cas9基因编辑技术的应用和转化。当然一项让科学家们非常感兴趣的发展就是基因编辑技术和干细胞技术的合集,多潜能干细胞(pluripotent stem cells)有潜力发育为任何类型的细胞,其能够以胚胎干细胞(es)的方式从人类胚胎中分离出来,或者通过激活成体细胞的特殊基因来产生诱导多能干细胞(ipscs)。 近日有科学家诱导胚胎干细胞和诱导多能干细胞使其发育成为类器官,类器官是一种类似机体组织的结构,比如类似于机体眼睛、肠道、肾脏、胰腺、前列腺、肺部、乳腺,甚至大脑等组织,而基因编辑技术就使得科学家们对类器官操作成为了可能,这就能够帮助研究者更加深入地理解人类胚胎发育的奥秘,并且也能够帮助研究者开发研究疾病的模型以及药物筛选平台。来自威斯康星大学麦迪逊分校的研究人员su-chun zhang今年夏天就在一份声明中指出,人类干细胞和基因编辑技术联姻将能够给科学界带来革命性的变革;而来自加利福尼亚大学的科学界pablo ross带领的研究团队通过研究则发现,利用crispr-cas9技术就能够对猪胚胎进行编辑从而使猪长出胰腺。将人类诱导多能干细胞注入胚胎中就能够促进这种初步人类胰腺组织的生长,ross告诉bbc,我们希望这种猪的胚胎能够正常发育,但胰腺几乎完全由人类细胞产生,而且其也能够很好地应用于患者的胰腺移植。 对干细胞进行工程化操作来产生能够用作器官移植的人类器官是基因编辑的一个潜在方向,另外一个方向就是利用该技术来纠正隐藏在多种人类疾病背后的遗传缺失;近日就有研究表明,利用基因编辑技术就能够修复编码肌营养不良蛋白和亨廷顿蛋白基因的缺失,而这两种蛋白往往能够诱发杜氏肌营养不良和亨廷顿氏症;基于能够对动物进行成功研究和试验,美国监管机构就为临床试验亮了绿灯,鼓励科学家们利用基因编辑技术来治疗癌症,同时科学家们也考虑利用基于crispr的疗法来治疗一系列的遗传性失明。目前部分crispr应用进入到临床仍然存在一定的争议,当然就有科学家们对于基因疗法的潜在风险展开了激烈地辩论,美国西北大学的生物论理学家laurie zoloth近日就告诉nature杂志,任何在人类中第一次使用的方法我们都必须格外小心,当然科学家们非常关心的问题就是是否基因编辑能够足够准确地靶向作用基因缺失位置,同时还不会产生对基因组其它位置的不利脱靶效应,是否引入人类细胞,比如将诱导多能干细胞引入到猪体内,能够影响宿主的大脑发育或者产生其它副作用,抑或者是在受体动物体内产生脱靶效应;来自斯坦福大学的研究者mildred cho则认为,对动物的研究截止到目前为止仅仅需要进行临床研究即可,当然通常情况下我们都很想为了我们的信仰大干一场。
  • 中美科学院院长就基因编辑准则在《科学》发文
    p style=" text-indent: 2em text-align: justify " 近日,中国科学院院长白春礼联合美国国家医学院院长Victor J. Dzau、美国国家科学院院长Marcia McNutt在《科学》上发表一篇题为《来自香港的警示》社论,呼吁全球各国科学院携起手来,就基因编辑研究及临床应用所应遵循的准则达成广泛的国际共识。 /p p style=" text-indent: 2em text-align: justify " 上月,在香港举办的第二届国际人类基因组编辑峰会引起了轩然大波。一名来自南方科技大学的研究者贺建奎爆出,他对一对健康胚胎进行了基因编辑,使其能抵抗艾滋病,并使这对基因编辑的双胞胎出生。 /p p style=" text-indent: 2em text-align: justify " 事件发生后,中科院学部科学道德建设委员会迅速发出声明称,坚决反对任何个人、任何单位在理论不确定、技术不完善、风险不可控、伦理法规明确禁止的情况下开展此类的临床应用。 /p p style=" text-indent: 2em text-align: justify " 社论作者在文章中指出,尽管峰会主办方、各国科学院以及有声望的科学领袖都在普遍谴责这项研究“令人深感不安”以及“不负责任”,中国也已启动了对该研究者行为的调查,但很显然,使用CRISPR-Cas9技术来编辑人类基因组,已经跑在了科学、医学共同体为应对复杂伦理及管理问题所进行的努力的前面。 /p p style=" text-indent: 2em text-align: justify " “当前,人类生殖系基因组编辑的指导方针和原则是基于充分的科学研究和伦理原则的。”社论称,“然而,此次事件突显出一种紧迫的需求,那就是我们需要加倍努力,赶在人类生殖系基因组编辑被认为是一件可容许的事之前,就更加明确的准则及标准达成国际共识。” /p p style=" text-indent: 2em text-align: justify " 文章作者呼吁,各国科学院应迅速召集国际专家及利益相关者形成一份快速报告,来推动完善用于生殖目的的人类胚胎所必须遵循的准则及标准。作者认为,在召集国际专家、推动就负责任的基因编辑研究及临床应用达成广泛科学共识方面,国家科学院具有很大的优势。 /p p style=" text-indent: 2em text-align: justify " “我们坚信,建立基因编辑标准的国际共识是十分重要的,这些标准能够避免研究者为从事危险和有违伦理的实验寻求借口,或寻找方便的实验场所。”文章作者同时强调,国际科学标准的建立,并不打算去替代各国的规章制度,反而可能会使各国的规章制度更加充实。 /p p style=" text-indent: 2em text-align: justify " 社论称,基因编辑有朝一日是能够治疗或预防疾病的,但想要维持公众对这一问题的信任,学术共同体现在就要采取措施,来证明这种新的工具可以在具备能力、正当及善行的前提下被使用。但不幸的是,此次基因编辑事件恐怕在各个方面都已失败,鲁莽而草率的行为,会置人类生命于危险之中。 /p p style=" text-indent: 2em text-align: justify " 作者认为,仅仅建立标准还不够,人们还需要建立一种国际机制,让科学家能够对不符合原则和标准的研究更加重视。他们提出了一系列政策建议,例如加快管理科学的发展、提供一个管理方案的“信息交换所”、致力于共同监管标准的长期发展,以及对计划及进行中的研究及临床应用实验,可以通过国际注册制度提升协调能力等。 /p p style=" text-indent: 2em text-align: justify " 文章最后援引了著名的阿希洛马会议案例。40多年前,当DNA重组还是一项革命性的生物医学新技术时,其安全性和效果也曾引发关注,为此科学家召开了阿希洛马会议。在那次会议上,科学家就这些问题进行了公开的讨论和辩论,最终,他们就一系列研究指导原则达成了共识,这些原则最终成为政府制定政策的基石。 /p p style=" text-indent: 2em text-align: justify " “阿希洛马会议至今仍能为我们带来重要的启示。”白春礼等人强调,人们需要就人类生殖系基因组编辑的研究和临床应用的具体标准及准则达成广泛的共识。并且,这种共识不仅涵盖科学和临床医学的共同体,也应当将全社会囊括进来。 /p p style=" text-indent: 2em text-align: justify " 在这篇文章中,统领美国国家科学院、国家工程院、国家医学院及国家科学研究委员会四大学术机构的美国国家学院(美国最高学术团体)也表态称,愿意牵头为推动此事作出贡献。 /p p style=" text-indent: 2em text-align: justify " 据了解,2015年12月,由美国国家科学院、美国国家医学院、英国皇家学会、中科院联合组织的人类基因编辑峰会在美国召开首次峰会。会后,包括中科院广州生物医药与健康研究院研究员裴端卿在内的22名学者组成了人类基因编辑研究委员会,历经14个月研究后,向全球发布了人类基因编辑基本原则。 /p p style=" text-indent: 2em text-align: justify " 其中,可遗传的生殖系基因组编辑的原则描述如下:有令人信服的治疗或者预防严重疾病或严重残疾的目标,并在严格监管体系下使其应用局限于特殊规范内,允许临床研究试验;任何可遗传的生殖系基因组编辑应该在充分的持续反复评估和公众参与条件下进行。委员会还特别就可遗传生殖系基因组编辑提出了10条规范标准。 /p
  • 从“单个修改”到“全面覆盖” 我国科学家开发基因编辑新技术
    基因编辑技术是面向未来的技术,以CRISPR为代表的基因编辑技术,基本实现了对基因的“单个修改”——单碱基和短序列尺度的精准编辑。那么,能不能发明一种新的基因编辑技术,实现一次修改全面覆盖?中国科学院动物研究所/北京干细胞与再生医学研究院的生物学家们开发了一种具有自主知识产权的基因编辑新技术,成功实现了以核糖核酸(RNA)为媒介的基因精准写入,为新一代创新基因疗法的发展提供了基础。这项成果由中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成,相关论文发表在7月8日晚出版的国际学术期刊《细胞》上。李伟介绍,基因组脱氧核糖核酸(DNA)是生命的蓝图,对基因组DNA实现任意尺度的精准操作代表对生命蓝图进行修改绘制的底层能力,是基因工程技术发展的核心。目前,实现大片段基因尺度的DNA在基因组的高效精准整合,是整个基因工程领域急需突破的难题。针对这一重大技术挑战,多种基因写入技术已被开发,但是这些技术大多依赖于DNA模板作为基因写入的供体。在实际医学应用中,DNA供体面临免疫原性高、在体递送困难、在基因组中具有随机整合风险等诸多挑战。研究人员将视线转向RNA供体。RNA供体具有更低的免疫原性、可被非病毒载体有效递送、在细胞内迅速降解、无随机整合风险等特点,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。在多次尝试后,研究团队选定R2逆转座子进行攻关。李伟介绍:“结合基因组数据挖掘和大分子工程改造等手段,我们开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因高效精准的整合,最高效率超过60%。”这一技术的突破,意味着可以通过外源功能基因的精准写入,来干预涵盖不同位点多种突变谱的基因所导致的遗传缺陷等疾病,能够开发更为通用的基因与细胞疗法,具有广泛的应用前景。李伟说:“这一技术目前尚无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。这也是我们下一步工作的重点。”
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 赛默飞与克睿基因携手共建基因编辑研发中心并合作开发液体活检市场
    2018年2月1日,赛默飞世尔科技(中国)有限公司实验室产品和服务与苏州克睿基因生物科技有限公司,双方达成战略合作协议,携手共建基因编辑研发中心并合作开发液体活检市场。双方的战略合作旨在有机结合各自的技术优势和市场资源,共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化。CRISPR基因编辑技术能够在细胞中精准识别特定DNA序列并制造双链断裂,从而实现定向基因改造,特异性调控细胞功能。相比上一代的TALEN及锌指核酸酶等技术,CRISPR系统具有高效、快速、简单易用等特点。因此自2013年张锋教授与丛乐博士成功利用CRISPR/Cas9在哺乳动物细胞中实现基因组编辑,便立即获得了学术界、工业界及资本界的高度关注。在2015年由国际顶尖学术杂志《Science》评选出的“年度十大科技突破”中,CRISPR基因编辑技术位居榜首。随着对CRISPR系统的工程改造以及基于应用场景的持续优化,CRISPR基因编辑技术已经广泛应用于医疗、诊断、新药开发、畜牧、育种、科研等多个领域,市场潜力巨大。克睿基因首席运营官李秋实博士表示:"在十亿级的基因组中精准识别二十个碱基序列的能力以及高效的基因定向改造能力,赋予了CRISPR系统无限的应用潜力。通过对CRISPR系统及其应用方法的优化,克睿基因建立了国际顶尖的医疗级CRISPR基因编辑技术平台以及多条独特的医疗及诊断产品管线。与赛默飞世尔一流的实验室整体解决方案以及丰富的液体活检市场资源的结合,将进一步提高CRISPR基因编辑技术原创性应用的开发及商业化速度。"赛默飞实验室产品和服务事业部总经理谢英女士评价说:"克睿基因是国内外最有前途的基因编辑公司并将此技术造福于人类,赛默飞非常愿意全力支持高科技公司的发展。"让我们拭目以待,赛默飞世尔与克睿基因的强强联手,定能在共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化等方面取得卓越成绩。
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 中美科学院院长在《科学》发文,就基因编辑国际准则达成共识
    p style=" text-indent: 2em " 12月14日,中国科学院院长白春礼联合美国国家医学院院长Victor J. Dzau、美国国家科学院院长Marcia McNutt在《科学》上发表一篇题为《来自香港的警示》社论,呼吁全球各国科学院携起手来,就基因编辑研究及临床应用所应遵循的准则达成广泛的国际共识。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/9c9c887e-d3f5-49fb-91b1-7cd75481813d.jpg" title=" 11.png" alt=" 11.png" width=" 426" height=" 337" style=" width: 426px height: 337px " / /p p   上月,在香港举办的第二届国际人类基因组编辑峰会引起了轩然大波。一名来自南方科技大学的研究者贺建奎爆出,他对一对健康胚胎进行了基因编辑,使其能抵抗艾滋病,并使这对基因编辑的双胞胎出生。 /p p   事件发生后,中科院学部科学道德建设委员会迅速发出声明称,坚决反对任何个人、任何单位在理论不确定、技术不完善、风险不可控、伦理法规明确禁止的情况下开展此类的临床应用。 /p p   社论作者在文章中指出,尽管峰会主办方、各国科学院以及有声望的科学领袖都在普遍谴责这项研究“令人深感不安”以及“不负责任”,中国也已启动了对该研究者行为的调查,但很显然,使用CRISPR-Cas9技术来编辑人类基因组,已经跑在了科学、医学共同体为应对复杂伦理及管理问题所进行的努力的前面。 /p p   “当前,人类生殖系基因组编辑的指导方针和原则是基于充分的科学研究和伦理原则的。”社论称,“然而,此次事件突显出一种紧迫的需求,那就是我们需要加倍努力,赶在人类生殖系基因组编辑被认为是一件可容许的事之前,就更加明确的准则及标准达成国际共识。” /p p   文章作者呼吁,各国科学院应迅速召集国际专家及利益相关者形成一份快速报告,来推动完善用于生殖目的的人类胚胎所必须遵循的准则及标准。作者认为,在召集国际专家、推动就负责任的基因编辑研究及临床应用达成广泛科学共识方面,国家科学院具有很大的优势。 /p p   “我们坚信,建立基因编辑标准的国际共识是十分重要的,这些标准能够避免研究者为从事危险和有违伦理的实验寻求借口,或寻找方便的实验场所。”文章作者同时强调,国际科学标准的建立,并不打算去替代各国的规章制度,反而可能会使各国的规章制度更加充实。 /p p   社论称,基因编辑有朝一日是能够治疗或预防疾病的,但想要维持公众对这一问题的信任,学术共同体现在就要采取措施,来证明这种新的工具可以在具备能力、正当及善行的前提下被使用。但不幸的是,此次基因编辑事件恐怕在各个方面都已失败,鲁莽而草率的行为,会置人类生命于危险之中。 /p p   作者认为,仅仅建立标准还不够,人们还需要建立一种国际机制,让科学家能够对不符合原则和标准的研究更加重视。他们提出了一系列政策建议,例如加快管理科学的发展、提供一个管理方案的“信息交换所”、致力于共同监管标准的长期发展,以及对计划及进行中的研究及临床应用实验,可以通过国际注册制度提升协调能力等。 /p p   文章最后援引了著名的阿希洛马会议案例。40多年前,当DNA重组还是一项革命性的生物医学新技术时,其安全性和效果也曾引发关注,为此科学家召开了阿希洛马会议。在那次会议上,科学家就这些问题进行了公开的讨论和辩论,最终,他们就一系列研究指导原则达成了共识,这些原则最终成为政府制定政策的基石。 /p p   “阿希洛马会议至今仍能为我们带来重要的启示。”白春礼等人强调,人们需要就人类生殖系基因组编辑的研究和临床应用的具体标准及准则达成广泛的共识。并且,这种共识不仅涵盖科学和临床医学的共同体,也应当将全社会囊括进来。 /p p   在这篇文章中,统领美国国家科学院、国家工程院、国家医学院及国家科学研究委员会四大学术机构的美国国家学院(美国最高学术团体)也表态称,愿意牵头为推动此事作出贡献。 /p p   据了解,2015年12月,由美国国家科学院、美国国家医学院、英国皇家学会、中科院联合组织的人类基因编辑峰会在美国召开首次峰会。会后,包括中科院广州生物医药与健康研究院研究员裴端卿在内的22名学者组成了人类基因编辑研究委员会,历经14个月研究后,向全球发布了人类基因编辑基本原则。 /p p   其中,可遗传的生殖系基因组编辑的原则描述如下:有令人信服的治疗或者预防严重疾病或严重残疾的目标,并在严格监管体系下使其应用局限于特殊规范内,允许临床研究试验 任何可遗传的生殖系基因组编辑应该在充分的持续反复评估和公众参与条件下进行。委员会还特别就可遗传生殖系基因组编辑提出了10条规范标准。 /p
  • 种业基因编辑技术引发创投机构关注
    自古以来,民以食为天,粮食安全一直被视为“国之大者”,而粮食安全的前提之一是种业安全。种业,被誉为农业的“芯片”,其发展的关键是种质资源的创制和高效育种技术的应用。当前,基因编辑技术正助力我国种业更具竞争力。  近年来,得益于第二代测序技术的商业化应用,测序成本不断降低,测序技术的应用更为广泛。业内人士表示,在畜牧业、农业等生物技术领域中,基因组编辑技术可以用来改良动植物品种,提供高产、优质、安全的食品。全基因组重测序和高通量测序技术的发展,促进了群体基因组学研究的进步,解决了许多重要的植物科学问题,并通过基因编辑、转基因、合成生物学等技术手段使得生物育种成为现实。  在此背景下,境内外资本市场颇为关注植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司,相关融资事件不断发生。  基因编辑生物育种赛道受到资本关注  公开资料显示,生物育种是现代农业生物技术育种的统称,生物育种是指利用基因工程、细胞工程和胚胎工程等现代生物技术,培育和推广一系列性能优良的动植物新品种的育种新技术和新产业。当前,现代生命科学和生物育种技术创新加快突破,孕育着新一轮农业科技革命。  此前,中国工程院院士万建民在接受媒体采访时表示,加快农业生物育种创新,构建现代种业创新体系,是贯彻落实中央决策部署实现种业科技自立自强的关键举措,是实现种源自主可控的根本路径。  近年来,植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司受到国际投资机构关注,融资事件不断发生:例如,美国某种子科技初创公司于2021年完成D轮2.08亿美元融资;总部位于美国的某农业基因编辑创业公司于2021年完成B轮9000万美元融资;此外,还有数家基因编辑公司相继获得超百万美元规模的融资,且部分公司已在资本市场上市。  国内方面,今年3月,基因编辑公司齐禾生科宣布完成了由杏泽资本领投的逾亿元种子轮融资,所募集资金将主要用于公司新一代基因编辑工具的开发,以及基因编辑技术在生物育种等各产业方向的应用。据了解,齐禾生科的联合创始人高彩霞,是中国科学院遗传与发育生物学研究所研究员。中国科学院遗传与发育生物学研究所官网显示,高彩霞主要从事植物基因组编辑技术、生物安全新型育种技术以及基因组编辑定向设计分子育种等方面的研究,致力于推动基因组编辑在分子设计育种中的应用。2013年,高彩霞团队在《自然生物技术》期刊(Nature Biotechnology)发表了世界首篇CRISPR基因编辑植物研究论文,率先将CRISPR基因编辑技术应用于植物研究。此后,高彩霞实验室陆续发表了数十篇基因编辑相关研究论文。  业内人士表示,不同于转基因技术,基因编辑技术在实现对基因组自身序列修改的同时,不会引入任何外源(其它非本物种)基因片段,具有商用领域广、安全性强、精准性高等特点,成为当下种业行业的发展焦点。私募投资机构正意识到,在国家粮食安全的大前提下,我国农业急需开发适合我国实际情况且拥有自主可控知识产权的种业“芯片”、减少粮食方面的进口依赖。  种业赛道投资需要坚持长期主义  中国科学院院士、中国科学院遗传与发育生物学研究所研究员李家洋曾公开表示,在生物育种技术中,诱变育种、杂交育种、分子标记辅助选择育种以及转基因育种都是“2.0”或“3.0”版本的技术,基因编辑技术才是当前最高的技术水平,也是全球育种业正在竞争的制高点,应该称为现代育种技术的“4.0”版本。  当前,生物育种发展得到了政策有力支持。2022年1月,农业农村部公布了《农业用基因编辑植物安全评价指南(试行)》,我国农作物基因编辑研发、应用有了更明确的规范,强化了我国基因编辑技术应用的制度保障,这对我国生物育种技术研发与产业推动具有里程碑意义。  业内人士表示,基因编辑应用于种业优势明显,具有研发周期短、成本较低、稳定性强、可以同时编辑多个性状等特点。在产品端,在保证高产、优质、多抗的前提下,更能兼顾各类营养物质的含量,实现产品订制化服务。可为产业链增效,如延长销售时间、产后保鲜和害病治理;为生产者提高粮食作物产量并获得新收益。  尽管在行业利好与需求增长的双重影响下,种业引发私募投资机构涌入,但投资人对种业赛道需要有更清晰的思考:我国种业行业集中度低,种业赛道具有周期长、投入高等特点,与资本的耐心可能形成错位,因此更需要资本与企业有共同抵抗风险的准备和耐心。  “产学研用”紧密结合是推动基因编辑育种向产业化迈进的关键。杏泽资本管理合伙人强静表示,杏泽资本秉承长期价值投资理念,将全力支持齐禾生科发展成为全球领先的解决基因编辑“卡脖子”难题的生物技术公司。“相信在国家对生物经济领域政策引领下,在我国科学家团队联合攻关的创新研发支持下,在以创新型生物企业为主体的投资产业化运营保障下,未来,我国生物经济领域战略科技力量将持续壮大,中国基因编辑技术一定会让中国饭碗端得更牢。”强静称。点击图片免费报名参加“第五届基因测序网络大会”
  • 天壤之别!胚胎基因编辑伦理不容,另一项基因编辑技术却在造福人类!
    p style=" text-indent: 2em text-align: justify " 近日刷爆朋友圈的不仅是抗癌“神药”Vitrakvi& reg 的问世,还有一则是首例基因编辑婴儿的诞生! /p p style=" text-align: justify text-indent: 2em " 来自中国深圳的科学家贺建奎向外界公布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。 /p p style=" text-align: justify text-indent: 2em " 她们的基因已经经过人为修饰,能够天然抵抗艾滋病。消息一出,舆论哗然,遭到百余位中国科学家发表联署声明谴责,国家相关部委对此已经做出回应,对违法违规行为坚决予以查处! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/bfe6a416-98de-499b-bf93-960d34dd0bf9.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 541" height=" 230" style=" width: 541px height: 230px " / /p p style=" text-align: justify text-indent: 2em " 人类生殖细胞的基因编辑可能诱发非常严重的伦理问题,即被改写的生殖细胞会影响其子孙后代,甚至随着现象的普及、改变整个人类的基因池。 /p p style=" text-align: justify text-indent: 2em " 因为存在高风险,基因编辑技术并未在人体上广泛应用。过去有少数科学家曾在人类早期胚胎上进行实验,但只是停留在胚胎阶段。& nbsp /p p style=" text-align: justify text-indent: 2em " 2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而此次“基因编辑婴儿”如果确认已出生,必将引起一场轩然大波!& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 引发轩然大波的基因编辑到底是一种什么技术? /strong /span /p p style=" text-align: justify text-indent: 2em " 中国农业大学生物化学与分子生物学系教授吴森向中新网记者介绍,DNA结构被发现之后,科学家需要通过一项技术去研究每个基因的功能,基因编辑技术便于上世纪80年代后期应运而生。& nbsp /p p style=" text-align: justify text-indent: 2em " 当时,基因编辑技术被称作基因打靶技术。科学家以小鼠作为模型,通过基因打靶的方法改变小鼠的特定基因,借由观察其表型或者行为变化,研究这个基因的功能。& nbsp /p p style=" text-align: justify text-indent: 2em " 基因编辑技术实际上是基因打靶技术的“升级换代”。“基因编辑是一种重构基因序列的手法,就像一个制作精良的橡皮擦,能针对出了毛病的基因,进行精准的‘擦除’。”同济大学医学院教授、同济大学丽丰再生医学研究院执行院长高正良这样评价基因编辑的作用。& nbsp /p p style=" text-align: justify text-indent: 2em " 吴森表示,在过去30年里,基因打靶技术在基础科学研究领域和生物医学领域的用途非常广泛,做出了很多有价值的研究,包括在肿瘤治疗领域中的CAR-T技术(嵌合抗原受体T细胞免疫疗法)等。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 为什么CAR-T不违背伦理? /strong /span /p p style=" text-align: justify text-indent: 2em " CAR-T技术实质上也是一种基因工程技术,但是为何不违背伦理?很重要的一点是,该技术是通过对体细胞(即免疫细胞)而非体细胞进行基因编辑,遗传基因不会发生改变,对于人类子孙后代不会造成影响。& nbsp /p p style=" text-align: justify text-indent: 2em " 据欧洲药品管理局资料,CAR-T疗法先后须经专利药品委员会、高级治疗委员会和欧盟委员会批准后方可获得临床应用。在中国,同样需要相关职能部门审核通过,才能进行临床试验及应用。我国的CAR-T细胞治疗研究虽然较国外整体起步较晚,但后期发展突飞猛进。& nbsp /p p style=" text-align: justify text-indent: 2em " 从2012年我国首次在clinicaltrial.gov上登记CAR-T细胞临床试验以来,我国每年新注册的CAR-T项目以数倍的速度爆发式增加,目前我国在clinicaltrial.gov上登记的CAR-T项目超过170项,已经超过美国的103项,成为世界上CAR-T细胞临床试验注册数量最多的国家,文末有招募信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/280c8040-d0e2-4a0e-84d7-d65c14acf8b6.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 457" height=" 374" style=" width: 457px height: 374px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " CAR-T是一种什么样的技术? /span /strong /p p style=" text-align: justify text-indent: 2em " CAR-T疗法是一种通过T细胞基因改造实现肿瘤靶向杀伤的免疫治疗技术。它通过基因转导技术,把识别肿瘤相关抗原的单链抗体和T细胞活化序列的融合蛋白表达到T细胞表面,经过纯化、体外扩增和活化,输注回患者体内,对抗肿瘤。& nbsp /p p style=" text-align: justify text-indent: 2em " 全称为(Chimeric antigen receptor T-cell therapy)嵌合抗原受体 T细胞疗法,本质上一种肿瘤基因疗法,也是免疫疗法。对于这个中文名您一定还是一头雾水,即便中文名也是看不懂。 /p p style=" text-align: justify text-indent: 2em " 首先,我们必须先对T细胞有初步的认识,T细胞是一种免疫细胞,负责保护身体免于外来病原的攻击。 /p p style=" text-align: justify text-indent: 2em " 而身体裡面的T细胞有又分很多种,其中一种名为细胞毒性T细胞(cytotoxic T cell),它的功能主要是辨识异常的细胞,分泌细胞毒素(如穿孔素、颗粒酶素B),并消灭这些异常细胞。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法,简单来说就是,我们在原本无法辨识癌细胞的T细胞上,装上一个名为CAR(嵌合抗原受体)的雷达。如此一来,经过改造的T细胞就会像导弹一样,精准的定位癌细胞位置,并将这些癌细胞杀死。 /p p style=" text-align: justify text-indent: 2em " 这样的技术,开启了细胞疗法新的扉页。将来,面对不同的癌症,只要找出适合的雷达-CAR,我们就能请T细胞代劳,替我们对抗癌症。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 原理讲完了,再给您介绍下CAR-T的治疗流程,很easy。 /strong /span /p p style=" text-align: justify text-indent: 2em " 1、分离:从癌症病人身上分离免疫T细胞。 /p p style=" text-align: justify text-indent: 2em " 2、修饰:用基因工程技术给T细胞加入一个能识别肿瘤细胞并且同时激活T细胞的嵌合抗体,也即制备CAR-T细胞。 /p p style=" text-align: justify text-indent: 2em " 3、扩增:体外培养,大量扩增CAR-T细胞。一般一个病人需要几十亿,乃至上百亿个CAR-T细胞(体型越大,需要细胞越多)。 /p p style=" text-align: justify text-indent: 2em " 4、回输:把扩增好的CAR-T细胞回输到病人体内。 /p p style=" text-align: justify text-indent: 2em " 5、监控:严密监护病人,尤其是控制前几天身体的剧烈反应。& nbsp /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5f16e10d-c481-41a8-9337-3ed0d9b85536.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " 目前,已经有两项CAR-T技术获得美国FDA批准上市。 /p p style=" text-align: justify text-indent: 2em " 2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p style=" text-align: justify text-indent: 2em " 紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法无疑已成为肿瘤免疫治疗领域中新的国际研究热点。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong CAR-T在肿瘤治疗领域有何贡献? /strong /span /p p style=" text-align: justify text-indent: 2em " 提到CAT-T治疗,最出名的就是在2012年被Carl June博士用来治愈了6岁的小女孩Emily Whitehead后,由此被认为是最有希望攻克肿瘤的手段之一,迅速引发了全球性的研发热潮。 /p p style=" text-align: justify text-indent: 2em " 2012年至今,6年过去了,6岁的小女孩已经长成12岁亭亭玉立的少女,那么,Emily的现状怎么样呢? /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9fa16f1c-61a5-4c42-afe6-1d1af37da321.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 572" height=" 337" style=" width: 572px height: 337px " / /p p style=" text-align: justify text-indent: 2em " 今年8月份,家人刚刚为她庆祝了十二岁生日。除了曾经患过白血病之外,Emily与普通的孩子并无区别,脸色红润,头发蓬松,与小伙伴们在海滩上嬉戏,显得生气勃勃。根本无法想象在6年前,她是一名晚期癌症患者。& nbsp /p p style=" text-align: justify text-indent: 2em " 她是第一个接受CAR-T治疗的孩子,在治疗的早期临床试验中被认为是一种危险的治疗方法。而如今CAR-T已经获得FDA批准用于临床肿瘤治疗后,Emily成为治疗效果的象征,CAR-T疗法的新型癌症免疫疗法挽救了她的生命,并为数以千计的白血病患儿接受该治疗增加了信心。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 中国首例!CLL1新靶点CAR-T治疗10岁转化型急性髓系白血病女孩获成功 /strong /span /p p style=" text-align: justify text-indent: 2em " 广州市妇女儿童医疗中心血液肿瘤科张辉主任团队结合现有治疗手段和经验,并根据小慧白血病细胞的免疫分型特点,大胆尝试了CLL1新靶点的CAR-T临床试验性治疗。 /p p style=" text-align: justify text-indent: 2em " 据悉,CAR-T技术用于急性白血病治疗,已有多个成功案例,但针对CLL1靶点的CAR-T治疗,在全国尚属首次! /p p style=" text-align: justify text-indent: 2em " 治疗两个月后,小慧体内的大部分白血病细胞被成功清除,目前已进入观察期,只需定期复查即可。 /p p style=" text-align: justify text-indent: 2em " 如果顺利度过了18至24个月的观察期,小慧有望和美国的Emily(全球首位接受CAR-T治疗急性淋巴细胞白血病的儿科患者)一样被彻底治愈,恢复健康。(来源:金羊网)& nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 中、美CAR-T临床试验招募信息 /span /strong /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 美国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、EGFR806 CAR T细胞免疫治疗儿童和青少年复发/难治性实体肿瘤 /span /p p style=" text-align: justify " 小儿实体肿瘤:生殖细胞肿瘤、视网膜母细胞瘤、肝母细胞瘤、Wilms肿瘤、横纹肌样瘤、骨肉瘤、尤文肉瘤、横纹肌肉瘤、滑膜肉瘤、透明细胞肉瘤、恶性周围神经鞘瘤、增生性小圆细胞肿瘤、软组织肉瘤、神经母细胞瘤 /p p style=" text-align: justify " 入组医院:西雅图儿童医院 /p p style=" text-align: justify " 入组人数:36 /p p style=" text-align: justify " 截止日期:2021年10月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、CD19 + CAR T细胞治疗淋巴恶性肿瘤 /span /p p style=" text-align: justify " 肿瘤类型:白血病、淋巴瘤 /p p style=" text-align: justify " 入组医院:MD安德森癌症中心 /p p style=" text-align: justify " 入组人数:30 /p p style=" text-align: justify " 截止日期:2021年12月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、EGFR-vIII CAR-T细胞用于复发性GBM治疗 /span /p p style=" text-align: justify " 肿瘤类型:脑胶质瘤 /p p style=" text-align: justify " 入组医院:杜克癌症研究所 /p p style=" text-align: justify " 入组人数:24 /p p style=" text-align: justify " 截止日期:2021年12月31日& nbsp /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 中国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、CAR-T细胞在间皮素阳性实体瘤中的应用研究 /span /p p style=" text-align: justify " 肿瘤类型:成人实体瘤 /p p style=" text-align: justify " 入组医院:解放军总医院 /p p style=" text-align: justify " 入组人数:10 /p p style=" text-align: justify " 截止日期:2019年11月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、恶性肿瘤的自体CAR-T / TCR-T细胞免疫治疗 /span /p p style=" text-align: justify " 肿瘤类型:B细胞急性淋巴瘤、白血病淋巴瘤、骨髓性白血病、多发性骨髓瘤、肝癌、胃癌、胰腺癌、间皮瘤、结直肠癌、食道癌、肺癌、胶质瘤、黑色素瘤、滑膜肉瘤、卵巢癌、肾癌 /p p style=" text-align: justify " 入组医院:郑州大学第一附属医院 /p p style=" text-align: justify " 入组人数:73 /p p style=" text-align: justify " 截止日期:2023年3月1日 /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、研究评估CAR-T治疗儿童复发或难治性神经母细胞瘤的疗效和安全性 /span /p p style=" text-align: justify " 肿瘤类型:复发或难治性神经母细胞瘤 /p p style=" text-align: justify " 入组医院:南京儿童医院 /p p style=" text-align: justify " 复旦大学附属儿童医院 /p p style=" text-align: justify " 入组人数:22 /p p style=" text-align: justify " 截止日期:2020年9月 /p
  • 美农业部声明对农作物基因编辑不作监管
    p   美国农业部28日针对农作物育种创新技术发表一份声明,称目前不会对使用一些新技术育种的农作物进行监管,其中包括基因编辑技术。 /p p   声明称,根据现有生物技术法规,农业部不会、也没有任何计划对使用包括基因编辑技术在内的新育种技术培育的农作物进行监管,前提是它们不是有害植物或利用植物害虫开发的。 /p p   声明指出,越来越多的育种者正在使用新技术生产新品种,这些新技术,如基因编辑技术,扩大了传统农作物育种的工具库,能更快、更精准地培育出农作物新性状,可在育种方面节约数年甚至数十年时间。 /p p   与通常所说的转基因技术不同,基因编辑技术无需转入外源遗传物质,而是使用CRISPR-Cas9等技术手段对植物自身基因进行编辑,进而培育出不含外源DNA(脱氧核糖核酸)的作物。而美国现行法律规定,只有由细菌等植物病原体或其DNA构建的转基因作物被认定为“管制作物”。此次声明表明了农业部对基因编辑作物的态度:不对其进行监管。 /p p   农业部部长桑尼· 珀杜在声明中说:“植物育种创新前景广阔,新技术有助于增强农作物抗旱、抗病虫害的能力,增加营养价值,还有助于消除过敏原。”他强调,农业部不会放弃自身的监管责任,而是要在没有风险的情况下寻求创新,他们将继续以技术为中心的现代化监管方式,推动农业发展,保护消费者安全。 /p p   农业部是美国管理食品和农业技术产品的三大联邦机构之一,其与环境保护局(EPA)和食品药品管理局(FDA)共同负责制定生物技术法规框架,确保这些产品对环境和人类安全。其中农业部着重于保护作物安全,FDA监督食品和饲料安全,EPA则负责管理农药的销售和测试。 /p
  • CRISPR基因编辑技术遭遇迄今最大安全性质疑
    p   据《新科学家》杂志网站5月30日报道,美国科学家通过全基因组测序发现,CRISPR基因编辑技术能引起基因组内大量非靶标区内的基因发生突变,包括1500多种单核苷酸突变和100多种大片段序列的敲入和敲除。发表在《自然· 方法学》杂志上的这一论文表明,CRISPR的脱靶效应可能远超人们此前的估计。 /p p   CRISPR基因编辑技术因其快速和高精准等特点,成为研究基因与疾病关系的热门之选,并因其能敲入新基因、敲除或修复受损基因,为基因疗法带来了更大希望。但最新论文共同作者、哥伦比亚大学医学中心病理学和细胞生物学副教授斯蒂芬· 曾认为,随着临床试验的相继展开,科学界是时候慎重考虑CRISPR技术脱靶效应的潜在风险了。 /p p   之前对CRISPR脱靶效应的研究,主要通过计算机模型先识别最可能受到影响的非靶标区,再详细研究这些位点是否发生过基因敲入或敲除现象,但这些研究只能对培养皿的细胞或组织展开,而斯蒂芬团队首次通过全基因组测序对活体动物内CRISPR技术的全部脱靶效应进行了研究。 /p p   他们对两只经过CRISPR基因编辑的小鼠进行了全基因组测序,并与未编辑小鼠进行对照后发现,虽然CRISPR成功修复了导致小鼠失明的基因,但这两只小鼠基因组内不但出现了1500多种单核苷酸突变,而且其100多种非编码区内还出现了基因敲入和敲除现象,而这些变异都是之前计算机模拟未发现的脱靶效应。 /p p   斯蒂芬表示,如果不用全基因组测序方法,研究人员就会“忽略”这些具有潜在威胁的突变,而其实哪怕只出现一种单核苷酸变异,也有可能造成致癌性等严重副作用。他指出:“希望其他团队利用我们的方法对CRISPR的脱靶效应进行研究,不断改进CRISPR系统,进一步提高其精确性和安全性。” /p
  • 《自然》:两种新型基因编辑系统问世 魔剪家族添新员
    12月21日,英国《自然》杂志发表一项生物学进展,报告了两种新型的CRISPR/Cas基因编辑系统。  CRISPR被称为“生物科学领域的游戏规则改变者”,现已发展成为该领域最炙手可热的研究工具之一。以往研究表明,通过介入,CRISPR能使基因组更有效地产生变化或突变,效率比既往基因编辑技术更高。现在,生物学家们正致力于用CRISPR探究治疗人类遗传疾病的方法,而这种突破性的技术就是通过一种名叫Cas9的特殊编程的酶发现、切除并取代DNA的特定部分。它来源于细菌,在细菌内帮助抵抗入侵的病毒。目前的系统都是来自人工培育的细菌,而大量未培养的原核生物也成为替代性基因编辑工具的潜在来源。  此次,美国加州大学伯克利分校研究人员吉利安.本菲尔德及其同事,分析了上万新改造的基因组,这些基因组来自在地下水、土壤、婴儿肠道和其他各种环境中发现的微生物群落,结果研究人员发现了两种新型CRISPR/Cas系统,他们将其分别称为CRISPR/CasX和CRISPR/CasY。随后,这两种系统在CRISPR/Cas9系统的发现者之一詹妮弗.杜德纳的实验室接受了检测,其活性得到证实。  新型CRISPR/Cas系统将作为一种基因组编辑工具,被研究人员广泛用于精准添加、删除或修改DNA片段。在CRISPR-Cas中的Cas,指的是在预定位置剪切双链DNA的DNA剪切酶。在最新的研究中,论文作者还报告了在古菌域首次发现Cas9,这一点尤为引人关注,因为过去认为,缺乏细胞核的原核生物都是没有此类系统的。
  • 基因编辑公司Editas融资1.2亿美元 盖茨、谷歌领投
    p   据报道,基因编辑公司Editas融资1.2亿美元,开发能精准地编辑基因以及治疗致命性遗传病的技术,本轮融资投资者包括微软联合创始人比尔· 盖茨(Bill Gates)和谷歌。 /p p   Editas这轮融资的领投投资方是盖茨的前科学和技术首席顾问鲍利斯· 尼科里克(Boris Nikolic)。据Editas首席执行官卡特琳· 博斯利(Katrine Bosley)介绍,尼科里克的基金是专门为投资该公司设立的。盖茨是尼科里克基金的投资者。周一发表的声明显示,尼科里克成为了Editas董事。 /p p   Editas的投资者包括风险投资公司Deerfield Management、Fidelity Management & amp Research,以及硅谷投资机构Google Ventures和Khosla Ventures。这是Editas的第二轮融资,1.2亿美元的金额相当于2013年第一轮融资的近3倍。 /p p   Editas在开发利用Crispr-Cas9技术的治疗技术。它尝试利用Crispr基因组编辑技术,修复能导致眼疾的问题基因,并在与开发癌症治疗新技术的Juno Therapeutics进行合作。Editas的治疗技术尚未进入人体试验阶段,博斯利也没有披露人体试验的时间表。 /p p /p p /p p /p
  • 基因测序与精准用药产业化标准将建立
    近年来生物技术领域的创新出现井喷。随着科技部3月下发精准医疗重大科研专项申报指南,我国精准用药与基因测序产业化标准将率先建立起来。此前,在科技部和国家卫生计生委等的组织下,中国精准医疗战略专家组成立,计划于2030年前在精准医疗领域投入600亿元。多家券商研报测算,精准医疗产业涉及的产业规模上万亿元,直接相关的产业规模超过一百亿元。  涉及领域广泛  中国科学院北京基因组研究所原副所长于军告诉中国证券报记者,精准医疗是以个体化医疗为基础,随着基因组测序技术的发展以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。其本质是通过基因组、蛋白质组等组学技术和医学前沿技术,对于大样本人群与特定疾病类型进行生物标记物的分析与鉴定、验证与应用,从而精确寻找到疾病的原因和治疗的靶点,并对疾病不同状态和过程进行精确分类,最终实现对疾病和特定患者进行个体化精准治疗的目的,提高疾病诊治与预防效益。  中国医学科学院副院长詹启敏表示,当前,国内临床医疗多局限于依靠病人主诉、临床症状、生理生化指标和影像学改变来确定疾病情况。但在组织器官改变的下面,是大量的深层次分子生物学改变,包括遗传背景、变异、免疫和内分泌改变。以癌症早期诊断为例,发达国家的早期诊断率为50%以上,北欧甚至高达70%-80%,而中国不足20%。  对于美国率先提出精准医疗计划,南昌大学医学院李振山认为应从三方面来看:美国的医疗系统相对比较完善 生物医学研究的成果转化普遍 精准医疗能够解决当前美国疾病诊疗中重要的问题。精准医疗中的诊断成本仅占医疗成本的不到5%,却可以影响近70%的治疗成本。  业内人士告诉中国证券报记者,精准医疗是一个系统工程,主要在于确定病人群体的异质性以及后续的处理办法,由此直接和间接涉及的行业和相关产业广泛。  确定病人群体的异质性方面,涉及众多科研部门与医疗部门的合作、样本的收集与保存、临床症状和数据的记录与储存、大规模数据库的建立与分析 然后是诊断实现合理的转化,这又涉及到诊断服务业本身及诊断仪器、试剂和技术开发行业等。  确定异质性后的处理办法方面,则涉及制药业,包括开发针对特异群体的靶向乃至基因药物,以及药物应用到临床的诸多环节。  此外,整个过程离不开信息咨询、行业管理等中介机构的参与,以及政府层面的立法和监管。  技术新 难度大  国家卫计委科教司有关人士向中国证券报记者透露,卫计委、科技部等部门组织专家论证后,认为开展精准医疗研究是整个医学界的重大机遇,并提出了中国版的精准医疗计划。  业内人士表示,开展精准医疗是国际医学发展的趋势,尽快切入有可能弯道超车 随着社会逐渐进入老龄化,医疗方面的负担越来越重,医疗产业是刚性内需且边际效应巨大,可以有效拉动整体经济发展。  精准医疗主要包括三个层次,层次间逐级提高,难度呈几何级数加大。基础层次方面,基因测序是精准医疗的基础。无论是细胞治疗还是基因治疗,首先要通过基因测序诊断病情才能设计方案。在实施精准医疗方案过程中,需要大量的细胞和分子级别的检测。基因测序工具分为测序仪和试剂,医疗器械公司可以顺势介入测序设备生产领域。  中等层次方面,主要涉及细胞免疫治疗。通过对免疫细胞的功能强化和缺损修复,提高免疫细胞的战斗力。这种技术治疗癌症效果好,但操作难度大,对患者身体素质要求较高,难以大面积推广。  最高层次方面是基因编辑。癌症本质上是人体基因变异导致的细胞分裂失控。基因剪辑就是对患者癌变细胞的变异基因进行批量改造,使之成为正常细胞。  精准医疗计划获得众多政策利好支持。《科技部关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》(简称“国家指南”)3月8日公布,拉开了精准医疗重大专项科研行动的序幕。国家指南明确,精准医疗将是今年优先启动的重点专项之一,并正式进入实施阶段。本年度的科研专项涵盖八大目标,包括构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列,建立生物医学大数据共享平台及大规模研发生物标志物、靶标、制剂的实验和分析技术体系,建设中国人群典型疾病精准医学临床方案的示范、应用和推广体系,推动一批精准治疗药物和分子检测技术产品进入国家医保目录等。  “这标志着精准用药及基因测序产业标准化即将开始。”业内人士介绍,这八大目标环环相扣:构建百万人以上专病队列及大数据共享平台,旨在打下精准医疗的大数据基础 建立大规模研发生物标志物分析体系,是为中国人群典型疾病示范打下产业标准化的基础 推动精准医疗药物进入医保目录,则标志着精准医疗大规模商业化的关键瓶颈有望被打破。  精准医疗技术新,难度大。目前进入这个领域的国内企业主要是传统医疗医药企业转型、医药器械公司创新以及其他行业跨界三种类型,包括达安基因、迪安诊断、新开源、千山药机、紫鑫药业、北陆药业、仙琚制药、丽珠集团等。  肿瘤诊治成突破口  2015年4月,国家卫计委医政医管局公布首批肿瘤高通量基因测序临床应用试点单位名单。达安基因旗下广州达安临床检验中心、迪安诊断全资子公司杭州迪安医学检验中心入选首批试点单位名单。  卫计委指出,将通过试点,做好高通量基因测序技术的验证与评价,逐步完善相关技术规范,提高高通量基因测序技术在肿瘤诊断与治疗方面的应用和管理水平。除上述两家企业外,入选首批试点的单位还包括中山大学附属肿瘤医院、深圳华大临床检测中心等。  据统计,2012年中国癌症发病人数为306.5万,约占全球发病的1/5 癌症死亡人数为220.5万,约占全球癌症死亡人数的1/4。  对这类恶性疾病的治疗,一方面是加大治疗药物的研发突破,另一方面应从精准治疗角度进行治疗技术的突破。业内人士介绍,当前的肿瘤治疗正逐渐从宏观层面对“症”用药向更微观的对基因用药转变,实现“同病异治”或“异病同治”,精准治疗已经成为肿瘤治疗的一个趋势。在广阔的市场前景面前,继无创产前测序争夺战开展数年后,多家基因公司开始进入肿瘤检测市场,争夺这块大蛋糕。  此前,在肿瘤个体化治疗领域,国家卫计委仅批准了中南大学湘雅医学检验所、北京博奥医学检验所和中国医科大学第一附属医院三家,但进展缓慢。在2015年3月国家卫计委公布了首批肿瘤高通量基因测序临床应用试点后,个别公司已先下手为强。华大基因旗下华大医学的进展快速,其肿瘤套餐已推向市场,目标客户包括健康人群、高危人群,也可辅助治疗、预后监控。
  • 哈佛学者宣布进行精子基因编辑,10月曾来华寻求胚胎项目合作
    p style=" text-indent: 2em " 据《麻省理工科技评论》11 月 29 日的报道,来自美国哈佛大学的科学家 Werner Neuhausser 对基因编辑技术的科研应用提出了他自己的研究意向,并计划于几周内开展实验。他曾在今年 10 月到访中国,探索在中国研究胚胎的可能性。 br/ /p p   Werner Neuhausser 希望,通过 CRISPR 技术对人类精子进行编辑,修改精子的 ApoE 基因,进而减少新生试管婴儿患有阿尔茨海默症的风险。Neuhausser 及他的团队暂未与中国任何组织或个人达成项目合作。同时,他强调在自己目前的计划中,并不包括婴儿出生这一目标选项。这位来自奥地利的不孕不育专家仍旧对生殖细胞的基因编辑持乐观和开放态度。 /p p   他预测,在不久的将来,人们会在怀孕前对胚胎进行深入的分析、筛选,甚至使用 CRISPR 技术进行编辑。未来,人们可以在诊所完成基因组检测,并获得最健康的孩子。“很可能整个体外受精领域的重心将从生育转向疾病预防。” /p p   对于 CRISPR 断开 DNA 双链进行基因编辑所可能带来的不确定性,该研究团队选择了“基因魔剪”的升级版——碱基编辑。该技术由同样来自哈佛大学的 David Liu (刘如谦)教授开发,这种编辑方法并不需要剪断双链,而是直接对单个碱基进行更改,进而将可能引入的编辑错误风险降到最低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/357f7695-dd80-4442-b527-d3057e773316.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " Werner Neuhausser (来源:麻省理工科技评论) /span /p p   可就在 Neuhausser 及他的团队即将开始实验之际,12 月初,美国生命科学界收到一则消息:特朗普政府要求受雇于国立卫生研究院(NIH)的科学家停止获取新的人类胎儿组织用于实验。NIH 官员表示,禁令直接影响到 NIH 的两个实验室,并且其中一项关于艾滋病病毒最初如何在人体组织中“定位”的研究更是直接被中断。 /p p   这一禁令的催化剂显然是最近公布的基因编辑婴儿事件。基因编辑婴儿的诞生迫使整个学术共同体直面胚胎编辑问题。在 11 月 29 日于香港举办的第二届人类基因组编辑国际峰会上,多名学者一致表示,现在正是为胚胎基因编辑临床试验制定严格、负责任的转化途径的关键时刻。 /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 有所为,有所不为 /strong /span /p p   随着人类将基因与性状联系起来,越来越多的疾病开始被认定为基因遗传疾病。目前已经确定的单基因遗传疾病超过 6600 种,并以每年数十种的速度递增。在人群中,大约每 10 个人就有一个人携带了至少一种单基因遗传疾病的致病基因。 /p p   但携带不等同于致病,对于一些常染色体隐形遗传疾病来说,当父母双方均携带有致病基因,孩子就有可能患病。这种巧合是不幸的,人们希望用科学的工具进行“纠错”,改写生命,而 CRISPR/Cas9 就是这样一种可以对基因进行编辑的强力工具。 /p p   识别目标序列,进行 DNA 双链切割,凭借精准的切割和低廉的成本,近年来 CRISPR 成为基因编辑技术的主流,几乎席卷整个生物界,被应用于农业、医疗、临床等方方面面的前沿研究中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3741ae0e-4195-49af-95e0-8d064b96cff8.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:Genetic Literacy Project) /span /p p   但 CRISPR 并不完美。精准的识别和切割并不意味着完美无瑕,脱靶效应使这个过程变成了一个“黑箱”,在 CRISPR 的“作业”过程中,会发生什么,编辑效率会是多少,谁也不知道。 /p p   不仅如此,人类虽然在不断的认识自我,但从未做到认清自我。我们远比自己想象的更复杂,绝大多数情况下,基因与性状并不是一一对应的关系。这就意味着任何一个基因的增或缺都可能有着意料之外的影响,牵一发而动全身,因而在有万全的把握之前,没有人愿意、也不敢拿人“赌一把”。 /p p   即使是顾虑重重、饱受争议,但基因编辑这项技术却是真实且具有价值的。更不可否认的是,这项技术最终会被应用于人类。 /p p   事实上,人类已经开展了体细胞编辑的临床试验,2017 年 11 月,美国完成了首例人类活体基因编辑实验,目标是治疗一种叫做“亨特综合征”(Hunter syndrome)的代谢性疾病,这是一种由于基因突变导致的遗传性疾病。而就在 一周前,美国 FDA 又通过了另外一项关于先天性黑朦病患者基因编辑的临床试验。 /p p   与在体细胞基因编辑方面形成开放的共识不同,生殖细胞一直是一个颇具争议的话题。对生殖细胞进行基因编辑,意味着这种修改将会随遗传信息传递给下一代。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a89e2418-7dde-4c91-8dec-d61df13a1d02.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   Werner Neuhausser 和他的团队希望通过 CRISPR 技术对精子中的 ApoE 基因进行编辑的研究实验计划正是在此时一片批判声中进行着准备工作,预计将会在几周后展开实验将用到来自波士顿 IVF(这是一个大型的国家生育诊所网络)的精子, strong span style=" color: rgb(12, 12, 12) " 该项目最终将不会有胚胎或是婴儿产生 /span /strong 。这项实验的目标是基于之前的研究发现,ApoE 基因与与阿尔茨海默症的患病风险高度相关,遗传了两个高危拷贝的人,最终患有阿尔茨海默症的风险高达 60%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1bad067f-b16d-47fa-b62a-6fdd3ab711f7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:QUARTZ) /span /p p style=" text-align: center " strong 造物?or 救世? /strong /p p   相比于技术上的不完善,道德伦理、社会公平等问题则显得更为棘手,甚至面对这些问题,没有人能够给出确切的答案。 /p p   在技术成熟之后,我们面临的第一个问题将是:一部分掌握技术的人是否有资格代表全人类做出选择,修改人类基因库?没有人可以预见这种基因修改在演化的漫漫长河中意味着什么,况且即便可以预测,也没有个人或团体能够承担这份风险。 /p p   目前,基因编辑根据目的可以划分为治疗和增强两类,通俗的讲,可以将其比喻为“救世”和“造物”。对于罕见的严重遗传缺陷,如果不对患者基因进行遗传修正,新生儿面对的很可能就只有死亡这条路,这是一类目的为治疗或避免疾病发生所进行的基因编辑。而另外一类被称为增强的方法则是对性状的升级,让下一代跑得更快、身体更健康、智力更高,可以说是用科技制造一个 Superman。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d4fe0d8-63cf-4618-8ddc-fae71f62353f.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源: VERDICT) /span /p p   对于前者,学界的态度是谨慎但值得考虑的,但对后者就没有那么宽容。对于这种严厉的态度,人群中不禁发出这样的疑问:如果基因编辑可以使人生“更完美”,那为什么不可以做? /p p   针对这一疑问,回答却是另一个问句:谁会先用到这种“完美”的工具?换句话说,目前持激进和支持态度的人,会是可能享受到这种科技“福利”的人群么? /p p   对后代进行基因编辑,考量的实际上是孩子背后父母的财力与权力,如果这一问题不加以限定,未来很可能形成“富人靠科技,穷人靠变异”的滑稽局面,如果基因多样性带来的幸存者偏差最终也被消磨掉,社会公平与平等将会有新的定义。 /p p   父母总想给孩子最好的,但孩子会认同这种“好”么?与可以被赋予特定性状的物件、游戏、甚至设定都不同,婴儿同样是或者也将会成为一个具有独立人格的思考者。那么他人是否可以为他做决定,更何况是一个将会伴随一生、决定了整个游戏规则的决定? /p p style=" text-align: center " strong 争论的价值 /strong /p p   当然,技术的发展就是为了应用,换句话说,在基因编辑技术出现之初,基因编辑婴儿的出现就已经可以预见,不过是早晚的事情。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/444c33c5-47b6-448a-93f0-14adc67b05b0.jpg" title=" 6.png" alt=" 6.png" width=" 466" height=" 412" style=" width: 466px height: 412px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   但恰恰这个时机的问题,包含了对技术的完善、伦理的讨论等方方面面的考量,其中决定“可以做而不去做”的重要一点,就是对规则的认同。 /p p   锋利的刀刃既能救人也能伤人,而手持科学这把利刃的勇士则需要有更坚定和完整的心智。在科幻故事中,科学怪人甚至可以将致命病毒与流感病毒编辑在一起完成自己的疯狂目标,现实中这将是难以想象的灾难。而目前人类之所以得以安宁,正是因为科学家们坚守心中的底线。 /p p   而此次基因编辑婴儿事件的发生,必将会给整个生命科学界带来一股强力的冲击。短期内人们对于基因编辑的态度可能会变得更为严格甚至抵触,社会上也可能引发相关的争论。也许某一天,此时的某些观点最终被证明是错误的,但这个辩证的认知过程是永不应该被否定的。 /p p    strong span style=" color: rgb(0, 0, 0) " 参考资料 /span /strong /p p   Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm /p
  • 中科院微生物所等发表植物基因组编辑研究综述
    p   序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。CRISPR-Cas9系统自出现以来,作为可转化植物的基因组编辑工具已得到广泛应用。CRISPR-Cas9对基因组靶位点进行定向切割,造成DNA双链断裂。DNA双链断裂主要通过两种高度保守的机制进行修复,即非同源末端连接(Non-homologous end joining, NHEJ)和同源重组(Homologous recombination, HR)。通过NHEJ方式,断裂的DNA会重新连接,但往往是不精确的,断裂位置会产生少量核苷酸的插入或删除,通常产生基因敲除突变体 与之相反,HR方式以同源序列为模板进行合成修复,可以产生精确的定点替换或插入突变,精准编辑靶基因。通过基因组定向突变进行基因功能鉴定和性状改良在植物中已得到广泛应用。然而,在植物中进行精准基因组编辑的需求极其迫切,尤其是对于那些难以转化的物种。目前,新开发出来的Cas9变体、新型RNA导向的核酸酶、碱基编辑系统和无DNA的CRISPR-Cas9递送方法都为植物基因组工程提供了前所未有的机遇。近日,中国科学院微生物研究所邱金龙研究组最近发表文章综述了植物基因组编辑的现状,重点关注由于植物基因组编辑的自身特点(如图)所带来的特殊挑战和机遇,并介绍了新近发展出的基因组编辑工具、方法及其在植物中潜在的应用。文章最后还展望了植物基因组编辑的前景和未来方向。 br/ /p p   该文章已于近日在线发表在《自然-植物》(Nature Plants)上。邱金龙研究组助理研究员尹康权为第一作者,邱金龙和中科院遗传与发育生物学研究所研究员高彩霞为共同通讯作者。相关研究得到了国家转基因专项(2016ZX08010-002)、国家重点研发项目(2016YFD0100602)北京市科委项目(Z171100001517001)、中科院战略性先导科技专项(XDB11030500)和国家自然科学基金(31672015)等经费支持。(来源:中科院遗传与发育生物学研究所) /p p    a href=" https://www.nature.com/articles/nplants2017107" target=" _self" title=" " 文章链接 /a /p p br/ /p
  • 基因编辑10大公司榜单
    p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/uepic/8bc7001e-94f6-4c02-8845-6af9a4efc65c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify " & nbsp & nbsp 前段时间,CRISPR的负面新闻可谓是此消彼长,就在上个月,Wellcome Sanger研究所的科学家报告CRISPR诱导的基因重排,对CRISPR-Cas9基因编辑的精确性提出质疑,三家专注该技术的上市公司股价瞬间由云端跌入谷底,3月9日至8月20日期间: /p p style=" text-align: justify " § CRISPR Therapeutics在7月27日从56.72美元跌至47.01美元,然后回归48.92美元。 /p p style=" text-align: justify " § Editas Medicine在8月8日从44.08美元跌至27.65美元,然后反弹至30.41美元。 /p p style=" text-align: justify " § Intellia Therpeutics在8月1日从34.95美元跌至25.78美元,然后小幅上涨至27.74美元。 /p p style=" text-align: justify " & nbsp & nbsp 尽管他们发表声明说从未使用研究中提到的方法CRISPR Therapeutics,但股价的下跌仍然在所难免。 /p p style=" text-align: justify " & nbsp & nbsp 本文详细列举了专注于开发和应用基因编辑技术十大公司的名单,张锋的公司也位列其中。其中包含五家上市公司和五家私营公司。上市公司按其2017年的收入排名,私营公司按其筹集的资本总额进行排名。每家公司最近动态的简短说明也被囊括其中。 /p p /p p style=" text-align: justify " strong 顶级上市公司 /strong /p p style=" text-align: justify " 5、Editas Medicine /p p style=" text-align: justify " 2017年收入:1372.8万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由合作和其他研发活动组成,比2016年增加了一倍以上,增长了近127%。这一增长其实是其合作伙伴Allergan的功劳,Allergan 在2017年3月启动的研发合作伙伴关系下,针对Editas的5个眼科疾病的早期CRISPR基因组编辑计划持有许可权,目前正在计划开发和商业化。 /p p style=" text-align: justify " 4、Intellia Therapeutics /p p style=" text-align: justify " 2017年收入:2611.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 收入完全由协作收入构成,比2016年增长58.5%,这主要得益于Regeneron Pharmaceuticals授权Intellia的CRISPR-Cas基因编辑技术,根据2016年启动的合作,开发可通过编辑肝脏基因治疗的疾病治疗方法。8月1日,Intellia报告其转甲状腺素蛋白淀粉样变性(ATTR)体内计划的进展,并计划在今年晚些时候与FDA进行研究前新药会议,并在2019年底前提交IND新药临床试验申请。 /p p style=" text-align: justify " 3、Sangamo Therapeutics /p p style=" text-align: justify " 2017年收入:3656.7万美元 /p p style=" text-align: justify " & nbsp & nbsp 去年,Sangamo Therapeutics的收入几乎翻了一番,比2016年增长了近89%,这主要归功于它与辉瑞的首次合作。2017年5月,两家公司同意为血友病A开发重组腺相关病毒(AAV)基因治疗,包括SB-525。8月8日,Sangamo公布了I / II期“Alta”试验(NCT03061201)的阳性初步数据,包括治疗性因子VIII活性水平的实现。这些公司在1月份同意开发基因疗法,使用锌指蛋白转录因子进行ALS和与C9ORF72基因突变相关的额颞叶变性。 /p p style=" text-align: justify " 2、 CRISPR Therapeutics /p p style=" text-align: justify " 2017年收入:40997万美元 /p p style=" text-align: justify " & nbsp & nbsp 合作计入了CRISPR Therapeutics的所有收入,去年这一收入增长了近700%。但在5月份,该公司与Vertex制药公司合作遭遇重创,当时FDA对镰状细胞病候选人CTX001的公司IND实施临床控制,等待该机构在审查申请时提出的未公开问题的解决。在8月7日,CRISPR Therapeutics公司表示它有明确渠道来解决这一问题,并补充说,这些公司仍然有望在今年晚些时候开始进行CTX001的输血依赖性β-地中海贫血的I / II期试验。 /p p style=" text-align: justify " 1、Horizon Discovery Group /p p style=" text-align: justify " 2017年收入:3650万英镑(4653.2万美元) /p p style=" text-align: justify " & nbsp & nbsp Horizon Discovery预计将通过RNAi和CRISPR终端市场实现蓬勃发展,预计2017年至2021年之间的复合年增长率约为18%。该公司去年的收入增长了52%,并且进行了转型通过收购 GE 的 Dharmacon,赋予Horizon Discovery基因调制功能,额外收入和全球销售机会。去年年底,Horizon Discovery通过推出其CRISPR激活(CRISPRa)试剂平台增加了其Edit-R产品组合,该平台旨在实现天然基因过表达,从而实现有意义的功能。 /p p style=" text-align: justify " strong 顶级私营公司 /strong /p p style=" text-align: justify " 5、Inari Agriculture /p p style=" text-align: justify " 筹集的资金总额:5500万美元 /p p style=" text-align: justify " & nbsp & nbsp Inari Agriculture于8月9日增加了4000万美元的B轮融资,其筹资总额不到一个月,此前专注农业的CRISPR基因编辑技术开发商脱颖而出。该公司成立于2016年,现已有80多位科学家,统计学家,工程师和学术顾问。Inari表示,收益将使其能够加速技术在作物中的部署,扩大工具的开发,并增加员工。 /p p style=" text-align: justify " 4、Inscripta /p p style=" text-align: justify " 总募集资金:84.5万美元 /p p style=" text-align: justify " & nbsp & nbsp 早在2月份,Inscripta获得5550万美元的C轮融资,该资本加速了其基因编辑工具(包括仪器,试剂和软件)的开发和商业化,公司的员工也日益增加。上个月,Inscripta获得了第一个使用MAD7的美国专利,该公司的第一个免费CRISPR酶,以及使用另一种MADzyme,MAD2的系统的专利保护。Inscripta去年更名为Muse bio。 /p p style=" text-align: justify " 3、Beam Therapeutics /p p style=" text-align: justify " 筹集的资金总额:8700万美元 /p p style=" text-align: justify " & nbsp & nbsp Beam Therapeutics成立于5月,迅速成为精准基因医学开发者,其共同创始人包括CRISPR先驱张锋博士。Beam宣布自己是第一家使用CRISPR基础编辑技术开发新疗法的公司,该公司于5月14日披露,它在F-Prime Capital Partners和ARCH Venture Partners的带领下筹集了高达8700万美元的A轮融资。 /p p style=" text-align: justify " 2、Pairwise Plants /p p style=" text-align: justify " 筹集的资金总额:1.25亿美元 /p p style=" text-align: justify " & nbsp & nbsp 孟山都投资了Pairwise Plants筹集的1.25亿美元中的大部分资产,这是一家农业创业公司,致力于利用植物的自然遗传多样性开发新的基因组编辑工具。3月20日,孟山都公司表示将捐赠1亿美元用于在农作物应用中获取和开发知识产权,包括将公司合作产生的产品商业化。孟山都公司的风险投资公司Monsanto Growth Ventures加入了迪尔菲尔德管理公司,共同促成了Pairwise公司2500万美元的A轮融资。 /p p style=" text-align: justify " 1、Precision BioSciences /p p style=" text-align: justify " 筹集的资金总额:1.3565亿美元 /p p style=" text-align: justify " & nbsp & nbsp Precision BioSciences在私营基因编辑公司中名列前茅,6月26日,它由ArrowMark Partners领导认购了1.1亿美元B轮融资 ,这是上半年获得风险投资的私人生物医院的第三大融资。 Precision表示,收益将用于基于其ARCUS® 基因组编辑平台的进一步产品开发工作,该平台源自称为归巢核酸内切酶的天然基因组编辑酶。 /p p style=" text-align: justify " & nbsp & nbsp 由以上名单,我们可以看出,CRISPR绝不会因为一些负面消息而“一蹶不振”,私营公司的投资者依然相信CRISPR的广阔前景。让我们期待未来的某一天CRISPR可以“重振雄风”。 /p p br/ /p
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p   新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。 /p p   被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。 /p p   论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。 /p p   据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于 strong 这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切 /strong 。研究显示, strong 这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。 /strong /p p   宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。 /p
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • 基因编辑技术再添新工具,真核生物中类CRISPR机制首次揭示
    图中是Fanzor蛋白(灰色、黄色、浅蓝色和粉色)与ωRNA(紫色)及其目标DNA(红色)复合的冷冻电镜图。非目标DNA链呈蓝色。图片来源:麻省理工学院美国麻省理工学院麦戈文脑研究所、麻省理工学院博德研究所和哈佛大学张锋团队在真核生物中发现了第一个可编程的RNA引导系统。29日发表于《自然》杂志上的论文称,这种基于Fanzor蛋白的系统能对人类基因组进行编辑,类似于CRISPR的基因编辑系统。与CRISPR-Cas系统相比,Fanzor蛋白系统更精准,有望成为被递送至人类细胞的新型基因编辑工具。研究表明,RNA引导的DNA切割机制存在于包括真核生物在内的所有生命王国。张锋表示,这个新系统是对人类细胞进行精确改变的另一种方式,补充了已有的基因组编辑工具。两年前,团队成员在原核生物中发现了一类名为OMEGA的RNA可编程系统,这种系统通常与细菌基因组中的转座元件或“跳跃基因”相关联,并可能产生CRISPR-Cas系统。这项研究还突显了原核生物OMEGA系统和真核生物中Fanzor蛋白之间的相似之处,表明Fanzor蛋白可能也使用RNA引导的机制来靶向和切割DNA。在这项研究中,研究人员从真菌、藻类和变形虫物种以及北圆蛤中均分离出Fanzor蛋白。Fanzor蛋白的生化特征研究结果表明,它们是切割DNA的核酸内切酶,使用附近的非编码RNA(即ωRNA)来靶向基因组中的特定位置。这是第一次在动物等真核生物中发现这种机制。进一步研究发现,Fanzor蛋白可对人类细胞基因组的特定位点进行靶向的插入与缺失编辑,证明了Fanzor蛋白作为基因组编辑工具的潜力。研究人员通过工程化技术,在蛋白质中引入了一系列突变,使其活性增加了10倍。此外,Fanzor蛋白没有显示出“附带活性”,即当RNA引导内切酶切割DNA时,会同时降解邻近的DNA或RNA。这些结果表明,Fanzor蛋白有可能被开发为高效的基因组编辑程序。
  • 有望开启医学新时代——首次证明CRISPR基因编辑对人类疗效
    美国Intellia Therapeutics公司(NTLA)和再生元公司的科学家在最新一期《新英格兰医学杂志》上撰文称,治疗转甲状腺素蛋白淀粉样变性多发性神经病(ATTR)的CRISPR基因编辑疗法NTLA-2001在Ⅰ期临床试验中取得积极结果:单剂NTLA-2001导致血清中的转甲状腺素蛋白(TTR)水平平均下降87%,最大可达96%。这是首批支持体内CRISPR疗法安全性和效果的临床数据,有望开启医学新时代。  由于TTR基因发生特定突变,ATTR患者的神经和心脏等组织内会产生错误折叠的TTR并不断积聚,危及生命。而NTLA-2001是一款在体内进行基因编辑的创新疗法,利用非病毒脂质纳米颗粒(LNP)递送,通过降低血清中TTR的浓度来治疗ATTR。  经过体内外研究后,NTLA-2001首次被用于ATTR患者的体内基因编辑。在Ⅰ期临床试验中,有6名ATTR患者接受了这一基因编辑疗法,其中3名接受剂量为0.1mg/kg的NTLA-2001治疗,另外3名接受剂量为0.3mg/kg的NTLA-2001的治疗。  接受治疗第28天的检测显示,NTLA-2001能够降低患者血清中的TTR水平,而且,剂量越高效果越明显:0.1mg/kg剂量组TTR平均下降52%(47%—56%);0.3mg/kg剂量组平均下降87%(80%—96%)。而且,NTLA-2001表现出良好的安全性,没有发现严重不良事件和肝脏问题。  研究人员指出,与之形成对比的是,目前治疗伴有多发性神经病的ATTR患者的标准疗法通常只能将TTR水平降低80%,而且患者需要长期接受治疗。  此外,研究人员表示,体内CRISPR基因编辑系统令人担心的一点是,基因编辑系统可能会对靶点序列以外的基因组序列进行编辑,从而引入有害突变——所谓“脱靶效应”,但实验结果显示,治疗剂量的NTLA-2001并未产生“脱靶效应”。  NTLA总裁兼首席执行官约翰雷纳德博士说:“这些临床数据首次表明,我们可能通过单次静脉注射CRISPR系统,在患者体内精准编辑靶细胞,从而治疗遗传疾病,为使用这一疗法治疗其他遗传疾病打开了大门。”  美国生物制药网站指出,尽管这是一个令人鼓舞的证明,但这些初步数据还没有回答CRISPR面临的许多最紧迫的问题:目前尚不清楚研究人员观察到的效果会持续多久,也不清楚随着更多患者接受治疗,效果是否会有所不同,此外,基因编辑的长期安全后果也不得而知。  总编辑圈点  这是一个里程碑式的事件——首个人体内CRISPR基因编辑临床试验结果公布,而且疗法安全有效。文中开展这项研究的公司之一Intellia Therapeutics就是诺奖得主詹妮弗杜德娜创办的。NTLA-2001通过非病毒脂质纳米颗粒递送,可以特异性敲除TTR基因,从而降低TTR蛋白的表达。试验结果令人振奋,但也不能因此就过于乐观。毕竟受试病人并不多,而且长期效果还有待观察。不过,至少试验证明,NTLA-2001具有在短期给药情况下中止和逆转ATTR的潜力。对患者来说,“潜力”二字,就已经足够珍贵。
  • 分子诊断与基因编辑服务商舒桐医疗完成数千万元融资
    珠海舒桐医疗科技有限公司(以下简称:舒桐医疗)完成数千万元融资,本轮融资由云锋基金、格力集团产投公司联合领投,中汇投资、善治投资跟投。据悉,融资资金将用于推进基因编辑诊断产品快速商业化以及创新药物申报IND,建设符合GMP要求的新药研发实验室,同时不断提升公司技术创新能力,以拓展具有全球竞争力的新药研发管线。舒桐医疗是一家具有基因编辑底层创新技术的平台公司,主攻基于CRISPR分子诊断与基因编辑治疗。在分子诊断领域,舒桐医疗率先研发出基于CRISPR技术的分子诊断产品,走在国内这一领域的前沿。基于自主知识产权的液相捕获芯片合成技术,该公司成功开发出多款检测试剂盒,覆盖肿瘤早筛、肿瘤伴随诊断、遗传病诊断及病原体检测等领域,致力于为企业级客户提供更精确快捷的定制化产品与服务。早在2009年,舒桐医疗的创始团队便开始深入研究基因编辑领域,在基因编辑工具和药物递送载体领域拥有多年的技术沉淀,同时具有创新药产业经验,形成了从研发、申报到商业化的完整新药产业转化能力。基于CRISPR技术的底层创新能力,舒桐医疗开发了多种具有自主知识产权的新型CRISPR基因编辑工具,搭建了安全高效的纳米材料及病毒递送系统,形成了以病毒清除和肿瘤治疗为核心方向的药物研发管线。其中HPV创新药物已完成研究者发起的临床研究(IIT),在药物疗效和安全方面均取得很好的结果,目前正快速推进申报IND进程。作为首批HPV基因治疗创新药,产品上市后将填补市场空白,满足大量患者群体需求,在国内和国际上具有庞大的市场潜力。此外,舒桐医疗掌握了各类精准的基因编辑技术(定点敲除、点突变、大片段插入、过表达等),建立了高通量的sgRNA筛选平台,是国内首家提供基因脱靶检测服务的公司,为科研机构及基因治疗领域企业提供高通量新药靶点筛选、基因编辑脱靶分析、药物递送系统等基因编辑CRO服务,得到了工业和科研客户的广泛认可,并将持续为工业和科研客户提供服务。目前,舒桐医疗已与多家知名高校和创新医药企业建立合作关系,包括多家知名的细胞与基因治疗的新秀企业,共同推动中国细胞基因治疗行业的发展。关于本轮融资,舒桐医疗联合创始人、CEO林华兵表示:“非常感谢国内外生物医药知名投资机构的关注、认可和支持,此次融资的顺利完成将大大加快公司的发展进程,我们将秉承“创新 敬业 融合 开放”的价值观,诚邀更多的行业内优秀伙伴加盟,加速First-in-class 药物的研发、申报、商业转化,同时不断迭代创新技术和拓展管线,为更多临床尚未解决的疾病提供全新的治疗方案,致力于把公司打造成为基因治疗领域的一流创新企业。”云锋基金董事总经理李文罡博士表示:“基因编辑技术作为生命科技和医疗健康革命性的下一代技术,在治疗和诊断领域不断突破和成熟,为产业界带来诸多惊喜。舒桐医疗作为拥有基因编辑技术底层创新的平台公司,自主研发了新一代基于CRISPR技术的分子诊断产品和创新递送系统的基因治疗药物,处于行业领先地位。我们希望舒桐医疗利用其创新的基因编辑平台技术为患者提供更多临床未被满足需求的诊断和治疗产品。”格力集团产投公司表示:“近年来高速发展的基因编辑技术在各个治疗领域发挥着越来越重要的作用。舒桐掌握的CRISPR基因编辑、纳米递送体系、基因脱靶检测等核心技术,拥有自主知识产权,且技术壁垒较高。团队构架完整,优势互补,既有精于科研的人才,又有清晰了解临床痛点的医生。格力集团产投公司通过以投促产的方式推动该项目扎实落地珠海,相信能在促进项目顺利发展的同时,增强本市先进医疗的产业影响力。”中汇投资表示,舒桐医疗在基因编辑技术、研发团队和研发管线上均具有突出优势,有望在HPV基因药物上率先取得突破,终结HPV病毒感染无药可医的局面。本次投资后,中汇资本将全力支持舒桐医疗加强国内和海外布局,助力舒桐医疗成为基因治疗领域的全球领先企业。
  • 张锋团队再发Science:又一种新的基因编辑工具要来了?
    基因是生物的遗传密码,通过基因编辑对生物进行特征改造或疾病治疗可以说是直击根本。工欲善其事,必先利其器,想要在基因水平上进行操作,必须要有“称手”的工具。在过去的数十年间,科学家们不断从自然界中“取材”,先后开发出了Cre-lox重组技术、锌指核酸内切酶(ZFN)技术、转录激活样效应核酸酶(TALENs)技术、CRISPR/Cas系统等工具。然而,现有的这些工具依然存在不够精准、编辑范围有限、难以递送等局限性,因此,科学界从未停止开发新基因编辑工具的脚步。  继3月30日,基因编辑先驱张锋领导的团队在Nature上发表论文,报道了一种可递送任何蛋白至任何细胞的系统后,短短一周后的4月6日,张锋团队又在Science发表最新论文“Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription”,评估了家蚕(Bombyx mori)R2非LTR逆转录转座子作为新型基因编辑工具的潜力。  图1 研究成果(图源:[1])  所谓逆转录转座子,是基因组中一段有能力通过各种手段产生自己的“副本”并插入至其他位置的基因序列。其大致过程为,逆转录转座子先被转录成RNA并翻译出相应的蛋白,随后,生成的这些RNA和蛋白组成复合物,在基因组中找到合适的位置,进行逆转录和插入。  图2 逆转录转座子的生命周期示意图(图源:维基百科)  而非长末端重复序列(non-LTR)逆转录转座子,顾名思义,则指的是这类逆转录转座子的两端没有长链的重复DNA序列。在人类身上,非LTR逆转录转座子构成了基因组的17%。  图3 LTR和非LTR逆转录转座子的区别(图源:[2])  非LTR逆转录转座子又可进一步分成两类:LINEs(long interspersed nuclear elements)和SINEs(short interspersed nuclear element)。前者能够编码出“复制粘贴”所需的必要蛋白,而后者则做不到“自给自足”。  和所有的非LTR逆转录转座子一样,这次的主角,来自家蚕的R2元件(R2Bm),可以编码出具有结合DNA、切割DNA和逆转录功能的蛋白。负责切割的限制性核酸内切酶在“粘贴位置”,即目标DNA上切开口子,然后逆转录酶从暴露的3'端启动R2 RNA的逆转录,使得R2元件的新拷贝得以“安家落户”。这一过程被称为靶向启动逆转录(target-primed reverse transcription,TPRT)。  过去的研究表明,R2元件只会特异性地识别28S rRNA基因并插入到其内含子区域中。这种插入会导致28S rRNA基因的表达受到影响,或导致28S rRNA基因的突变和进化,从而影响到蚕的生长、发育、遗传多样性及进化。  然而,关于R2元件是如何识别28S rRNA基因,以及其编码出的蛋白如何在切割目标DNA后完成逆转录,这两个问题尚未得到充分解答,目前只知道R2元件的这种靶向性需要3'UTR中的一个元素,但这个元素具体的位置还没有确定。3'UTR(3' untranslated region)指RNA分子的3'端非编码区。  为此,张锋团队使用冷冻电子显微镜解析了R2元件在28S rRNA基因上使用自身3' UTR启动TPRT的结构。该结构揭示了3' UTR中与目标DNA产生交互的核心区域,并表明,可以通过对R2元件进行改造,使其靶向28S rRNA基因以外的位点。  研究发现,R2Bm蛋白的核心是一个逆转录酶(RT)结构域,前后分别是一个特征性的N端扩展域和一个C端ɑ螺旋拇指结构域。R2Bm蛋白、3' UTR RNA和目标DNA之间存在几个关键的相互作用:目标DNA的两条链在ZnF域周围分离,其中底链(被切断的那条DNA链)进入限制性核酸内切酶(RLE)活性位点,而顶链沿着RLE的相反面蛇行 目标DNA与3' UTR RNA形成的异源双链被RT活性位点包含 3' UTR RNA经N端扩展域被引入到RT活性位点。  图4 R2Bm 反转录转座子的冷冻电镜结构(图源:[1])  研究团队还发现了目标28S DNA序列上与可能与R2Bm特异性识别有关的两个关键区域:其一是-34到-22的上游基序,与N端N-ZnF和Myb结构域结合 其二是-6到+1,与RLE结合。研究人员称之为逆转录转座子上游基序(Retrotransposon Upstream Motif,RUM)和逆转录转座子相关插入位点(Retrotransposon-Associated INsertion site,RASIN)。  图5 R2Bm与目标DNA相互作用示意图(图源:[1])  研究团队推断,TPRT的启动包含以下步骤:R2Bm的N端结构域首先检测RUM序列,然后在 RASIN位点切割底链,可能将剪切位点绕顶链旋转到RT活性位点,将任何3'同源序列与剪开的底链配对后,最终启动逆转录。进一步的实验表明,R2Bm可以在外源性底链附近启动逆转录,并且能在Cas9的指导下在28S DNA序列以外的目标位点执行TPRT。  有意思的是,以上结果表明,不同于其他非LTR逆转录转座子,仅靠核酸内切酶结构域决定目标位点的选择,R2Bm使用其N-ZnF和Myb结构域来定位核酸内切酶的目标序列。此外,研究团队还发现,RUM-RASIN共识基序搜索家蚕基因组的结果提示,存在许多脱靶位点,但实际情况中,非28S插入非常少见,这可能是其他因素调节了R2Bm的转座。  总而言之,这项研究就非LTR逆转录转座子给出了新颖而深刻的理解。Cas9成功指导R2Bm重新定向更表明R2Bm未来有望作为一种新的基因插入工具发挥更大的作用。  参考资料:  [1]Wilkinson ME, Frangieh CJ, Macrae RK, et al. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science. 2023 Apr 6:eadg7883. doi: 10.1126/science.adg7883.[2]https://www.jove.com/science-education/11574/non-ltr-retrotransposons
  • 历史性一刻|英国批准全球首个CRISPR基因编辑疗法
    全球首个 CRISPR/Cas9 基因编辑疗法于2023年11月16日获批。  Vertex 和 CRISPR Therapeutics同时宣布英国授权了他们旗下用于治疗镰状细胞病和输血依赖性β地中海贫血疗法——CASGEVY。  尽管在英国符合该疗法的患者可能只有2000个,但背后的意义重大。因为它让人们看到监管部门对创新疗法的态度。  CRISPR Therapeutics成立于2013年,是由诺奖得主Emmanuelle Charpentier、Rodger Novak 和 Shaun Foy联合创办。  11月16日,Vertex制药公司和CRISPR Therapeutics宣布获得英国药品和保健品监管机构 (MHRA) 授予基因疗法CASGEVY有条件上市。 这是全球首个基于 CRISPR 的基因编辑疗法获批。    CASGEVY是一种 CRISPR/Cas9 基因编辑疗法,用于治疗镰状细胞病 (SCD) 和输血-依赖性β地中海贫血(TDT)。  它适用于治疗12岁及以上患有复发性血管闭塞危象的镰状细胞病患者,这些患者具有 βS/βS、βS/β+ 或 βS/β0 基因型,适合造血干细胞移植并且没有人类白细胞抗原匹配的相关造血干细胞供体。  CASGEVY同样适用于治疗12岁及以上适合造血干细胞移植且无法获得与人类白细胞抗原相匹配的相关造血干细胞供体的患者的输血依赖性β地中海贫血。  不过,估计英国仅有 2000 名患者符合CASGEVY的条件。  “今天是科学和医学领域历史性的一天:CASGEVY 在大不列颠这是世界上第一个基于 CRISPR 的疗法的监管授权。”医学博士、Vertex公司首席执行官兼总裁Reshma Kewalramani表示。“我希望这是这项诺奖技术众多应用中的第一个,可以造福符合条件的患有严重疾病的患者”,CRISPR Therapeutics 董事长兼首席执行官Samarth Kulkarni表示。    CASGEVY 治疗效果怎么样?在 CASGEVY 治疗 SCD 和 TDT 的两项全球临床试验中,试验达到了各自的主要重点——即至少连续 12 个月摆脱严重 VOC 或独立于输血。一旦实现,这些益处有望终生受益。在这些正在进行的研究中,迄今为止接受 CASGEVY 治疗的 97 名 SCD 和 TDT 患者的安全性总体上与白消安(Busulfan)和造血干细胞移植的清髓性调节一致。    “这项授权为符合条件、正在等待创新疗法的患者提供了一个新的选择,我期待患者尽快获得这种疗法,” 伦敦帝国理工学院教授Josu de la Fuente表示,他是CLIMB-111 和 CLIMB-121 研究的首席研究员。关于镰状细胞病镰状细胞病 (SCD) 是一种遗传性血液疾病,会影响红细胞,而红细胞对于将氧气输送到身体的所有器官和组织至关重要。由于血细胞畸形或“镰状”,SCD 会导致严重疼痛、器官损伤和寿命缩短。患有 SCD 的人可能会经历痛苦的血管堵塞,也称为血管闭塞危象 (VOC),这可能导致急性胸部综合征、中风、黄疸和心力衰竭症状。个体还可能出现贫血,这可能导致终末器官损伤和过早死亡。血管闭塞危象是 SCD 的标志,通常会导致严重的疼痛。目前,SCD 的标准治疗方案主要是对症治疗,不能充分解决疾病负担或减轻慢性护理的需要。大多数情况下,治疗的重点是缓解疼痛、尽量减少器官损伤、保持水分和退烧,需要药物治疗,有时需要每月输血和经常去医院就诊。SCD 的唯一治疗方法是来自匹配捐献者的干细胞移植,但这种选择仅适用于一小部分 SCD 患者。SCD 需要终身治疗并大量使用医疗保健资源,最终导致预期寿命缩短、终生收入和生产力下降。在英国,SCD 患者的平均死亡年龄约为 40 岁。关于β地中海贫血β地中海贫血是一种遗传性血液疾病,会影响红细胞,而红细胞对于将氧气输送到身体的所有器官和组织至关重要。红细胞缺乏,也称为贫血,是β地中海贫血的主要表现。由于这种贫血,患有β地中海贫血的人可能会感到疲劳和呼吸急促,婴儿可能会出现发育迟缓、黄疸等问题。β地中海贫血的并发症还包括脾脏、肝脏和/或心脏肿大 骨骼畸形 以及青春期延迟。β地中海贫血的治疗是个性化的,取决于每个人所经历的疾病的严重程度。许多人必须定期输血才能将健康的捐赠血液输送到身体中。这需要多次去医院就诊,并且还会导致不健康的铁积聚。如今,来自匹配捐献者的干细胞移植是一种治疗选择,但仅适用于一小部分β地中海贫血患者。β地中海贫血需要终身治疗并大量使用医疗保健资源,最终导致预期寿命缩短、生活质量下降以及终生收入和生产力下降。在英国,TDT 患者的平均死亡年龄约为 55 岁。关于 CASGEVY疗法    exa-cel的工作原理CASGEVY是一种转基因自体 CD34+ 细胞富集群,其中含有通过 CRISPR /Cas9 在BCL11A基因的红系特异性增强子区域进行离体编辑的人类造血干细胞和祖细胞。正在进行的关键试验的最新数据已在欧洲血液学协会大会在2023 年 6 月。Exa-cel 也正在接受审查欧洲药品管理局、沙特食品和药品管理局,以及美国食品和药物管理局(FDA)。FDA 已授予 SCD 优先审查和 TDT 标准审查,并在今年年底或明年年初正式批准上述两种疗法。
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制