当前位置: 仪器信息网 > 行业主题 > >

金属纳米颗粒

仪器信息网金属纳米颗粒专题为您整合金属纳米颗粒相关的最新文章,在金属纳米颗粒专题,您不仅可以免费浏览金属纳米颗粒的资讯, 同时您还可以浏览金属纳米颗粒的相关资料、解决方案,参与社区金属纳米颗粒话题讨论。

金属纳米颗粒相关的方案

  • 一种在离子液体中制备金属纳米颗粒的新型方法
    本研究提出了一种有效制备金纳米颗粒的方法,其策略为将离子液体(ILs)作为捕获介质并与电弧等离子体沉积技术相结合。这种方法不需要化学反应。通过选择离子液体,可以对金纳米颗粒的粒径进行有效地调控,并可以方便地实现宏量制备。
  • 纳米颗粒与磁控溅射综合系统在1纳米颗粒膜制备中的应用
    日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。
  • 使用ICP-MS对纳米颗粒进行表征:食品中纳米颗粒的优势和挑战
    由于工程纳米颗粒 (EN) 在各行业中的使用不断增加以及对环境和消费者风险开展的后续研究也在不断增加,对纳米颗粒 (NP) 表征的需求在近年呈现爆炸式增长的趋势。
  • 通过中空纤维洗滤纯化纳米颗粒
    相较于传统的纳米颗粒纯化方法,如超速离心、搅拌室过滤、透析或者色谱方法,中空纤维洗滤(中空纤维切向流过滤)是一种更加高效、快速的替代方法。中空纤维洗滤可以用于纯化多种纳米颗粒,包括脂质体、胶乳颗粒、磁珠以及纳米管。中空纤维洗滤是一种基于膜分离的技术,膜孔径的大小决定了大分子或颗粒是被截留还是通过。这是一种流动的过程,样品温和循环通过管状膜。通过缓冲液的置换,可以获得纯化的纳米颗粒。中空纤维膜洗滤可以从研发体积直接线性放大到生产规模。通过增加膜纤维数量并维持关键操作参数,大体积样品可在和小规模研发体积一致的条件下完成。
  • 真空干燥箱在纳米颗粒性能研究中的应用:实验结果与分析
    本文通过使用真空干燥箱对不同类型纳米颗粒进行干燥处理,研究了干燥条件对纳米颗粒性能的影响。实验结果表明,温度、真空度和干燥时间是影响纳米颗粒性能的关键参数。
  • 超细纳米颗粒粒度检测面临的挑战及解决方案之一 ——纳米颗粒检测技术概述
    纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料。由于它的尺寸很小,会产生很多特殊的效应,比如小尺寸效应、隧道效应以及大的比表面积效应等,因此使得纳米材料表现出不同的物理化学特性,例如熔点、磁性、光学、导热、导电特性等等,因而现在纳米材料被广泛应用于医药、化工、冶金、电子、机械、轻工、建筑及环保等行业。但由于其颗粒非常小,因此颗粒大小的检测也就成为了挑战,国际上对于超细颗粒的粒度测试一般有三种方法,即电子显微镜、动态光散射以及激光衍射。
  • 利用NexION 2000 ICP-MS 的高灵敏度精确测定10 nm Au纳米颗粒的粒径和数量
    纳米材料在许多消费产品领域的快速发展和应用要求我们必须快速和准确地对不同粒径和成分的纳米颗粒(NP) 进行表征。有多种技术可用来表征由金属组成的和含有金属成分的纳米颗粒,但均受技术所限无法大规模应用1。相比于这些技术,单颗粒ICP-MS 技术(SP-ICP-MS)具有明显的优势和更广的应用范围,已有大量资料证明它可以快速对金属纳米颗粒和/ 或纳米材料的组成和数量进行表征。欧盟委员会(EC)(2011/696/EU)对“纳米材料”的建议定义为:纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一维或多维尺寸在1 纳米至100 纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。一般而言,SP-ICP-MS 纳米颗粒(NP)分析的挑战之一就是准确地表征粒径小于20 nm 的颗粒。为了检测到尺寸小于20 nm 的纳米颗粒,SP-ICP-MS方法必须具备高灵敏度、快速数据采集速率( 75μ s 驻留时间)和低本底等特点。另外,具有自动阈值检测和实时本底扣除功能的数据处理软件也是至关重要的。本文介绍了搭载了独特射频发生器和离子透镜技术的珀金埃尔默公司NexION® 2000ICP-MS 配合Syngistix ™ 纳米应用软件模块可以准确地测量单一粒径或混合粒径纳米颗粒样品中粒径小于和等于10 nm 的纳米颗粒并对其进行表征。
  • 采用单颗粒ICP-MS评价地表水中银纳米粒子的归宿
    过去二十年中,随着工程纳米材料(ENMs)产量和使用量迅速增加,它们向环境中释放带来了潜在危害。因此,研究他们对环境影响至关重要。对环境中工程纳米材料进行合适的生态危害评价和管理,需要对工程纳米材料准确定量暴露和影响1,最理想方式通过原位分析并给出物理化学特性。然而,由于环境介质中纳米粒子浓度非常低,大多数分析技术并非适合2。最近出版了关于自然新鲜水和合成复杂水样中金属纳米粒子的持久性、聚合和溶解性的研究3-7。一直以来,颗粒尺寸采用色散光散射(DLS)和透射电子显微镜(TEM)测量颗粒尺寸,而溶解量采用超滤测定。这些常规技术对测定复杂水体中存在低浓度的胶体形态非常有限。另外,单颗粒ICP-MS(SP-ICP-MS)被公认为一种定量和定性低浓度的金属纳米粒子最有前途的方法8-10。相对目前方法,SP-ICP-MS可快速有效并提供更多信息的技术。它能够测定颗粒尺寸分布、颗粒数量浓度、溶解金属比例等。而且,它能够区分不同元素粒子。SP-ICP-MS原理基于测量一个单粒子产生的信号强度。悬浮纳米粒子必须有效稀释,以确保一次只有一个单颗粒到达等离子体中,然后被原子化和离子化,产生相对高信号强度,在一个脉冲中被检测出。如果在颗粒悬浮物包含相同可溶性的元素,该元素将产生一个连续不变信号,形成均一分布的结果。Duegeldre11-15首次采用理论方法处理了自然金属胶体的信号强度与时间关系记录图,随后Laborda等16,17支持了该方法。本工作使用珀金埃尔默NexION 350X ICP-MS和纳米应用Syngistix TM模块软件测定和定性环境水体中金属纳米粒子。
  • 单颗粒ICP-MS测定铁纳米粒子:利用通用池技术消除光谱干扰
    随着纳米颗粒兴趣的增加,各种测试方法正被应用。采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米粒子成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。ICP-MS分析挑战之一为干扰导致错误的分析结果。然而,这并非是一个问题,因为迄今为止大多数SP-ICP-MS应用均没有涉及到基体干扰或常规光谱干扰问题。例如,金和银纳米粒子在工业中应用较广,未受到常规干扰。另外,大多数纳米颗粒存在简单基体中,该基体几乎不产生干扰。随着纳米技术领域的拓展,分析需求增加,尤其是需要测定纳米颗粒中受干扰的元素,如扩展为其它受干扰的金属纳米粒子,如钛,铬,锌或硅。例如,由于零价铁纳米(ZVI)颗粒具有独特的化学特性和相对大的比表面积,使之更广泛应用于环境修复项目中。由于他们独特的性质,ZVI纳米粒子具有以下作用:去除有机溶剂中氯,转化肥料中有害化合物,降解杀虫剂和固定金属。然而,为监测ZVI颗粒,铁需被测定,因为存在基于等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。至今为止,已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米粒子,而这种反应模式SP-ICP-MS还未被广泛使用。本工作将专注于证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米粒子。
  • 使用高效进样系统进行单纳米颗粒样品检测
    近些年来,纳米颗粒材料被越来越广泛的应用于衣食住行等各领域内,由此带来的潜在的纳米颗粒污染问题,逐渐引起了人们的重视。单颗粒电感耦合等离子体质谱(spICP-MS)技术是近年来发展起来的可用于进行纳米颗粒表征的方法。使用此方法,可实现一次进样同时完成颗粒粒径、数量浓度、元素含量及粒径分布的分析。
  • 定量评价纳米颗粒的溶解动力学--利用单粒子质谱进行纳米银的研究
    通过准确获取应用于工程新型材料纳米颗粒的环境行为和颗粒大小、溶解率、颗粒团聚以及与样品基体的相互作用的准确数据来对这些新材料可能对环境健康造成危险的情况进行适当的描述。单粒子质谱技术的突破给自然生态系统对ppb级(ng/L)浓度纳米颗粒对环境影响的研究带来非常大的便利。本文使用syngistix™ 纳米应用模块颗粒测量/检测和自动数据处理,传输效率的测定(即颗粒的检测,在溶液百分比)是关键使用校准时确定ENP规模的基础上溶解标准。为了避免重合(即两个粒子在相同的脉冲被检测到),调整粒子浓度,使得在60s的检测时间内不多于1500个粒子被采集。溶解电势不同可能是区分粒子溶解过程和离子溶解过程的一个关键因素。这项研究在表明在各种各样交宽泛的条件下可以通过SP-ICP-MS定量计算Ag粒子的溶解率是可行的。而该方法在只有有限的方法可直接应用于水样的分析,特别是还要考虑ENP预期的溶解情况下显得尤为重要
  • 六种纳米颗粒粒径表征测量技术
    有一系列的分析技术都可以用来测量纳米颗粒的粒径。下面我们列出了六种方法,它们都可以提供总体层面(E)或者单个纳米颗粒层面(SP)的信息:1. 动态光散射(E)2. 圆盘离心(E)3. 纳米粒子追踪分析(SP)4. 可调谐电阻脉冲传感(SP)5. 原子力显微镜(SP)
  • 油墨中纳米颗粒的表征方法
    当表征某一特定过程种颗粒体系的特性时不仅需要考虑到多方面因素的影响还要考虑到最终的使用。表征颗粒体系时必须要包括但不仅仅局限于以下几点:粒径分布、表面积、孔隙率、形状和颗粒的带电性。实际上,将所有的表征参数结合起来可以让我们对颗粒有更清晰的认识。通过粉体流动性、分散性、药物疗效、干燥涂层效果、悬浮稳定性、油墨质量、金属粉末成粉及金属框架强度、压片问题、污染物识别、颗粒堆积行为、颗粒聚集、反射效率、球度和注塑成型等特性均可以对颗粒特性进行描述和表征。上述表征参数适合所有的材料,但本文我们会以油墨中的纳米颗粒作为例子进行分析(ISO中对与纳米颗粒的定义为:小于100nm的颗粒,但在本文中讨论的粒径小于1000nm)。油墨生产环节主要包括:化学混合、胶体稳定、研磨和稀释,从早期的研发到最后的产品质量,各个环节均有严格的质量控制。油墨的生产包含多个过程,其中每一个过程都会对颗粒特性产生影响进而最终影响油墨的质量。市面上有很多种油墨,包括胶印油墨、平版印刷油墨、喷墨印刷油墨、柔印油墨和凹版印刷油墨等。虽然油墨种类很多生产过程大体相似,下面中总结了油墨各个生产过程中颗粒特性测试的重要性。需要注意的是,许多产品的生产过程都过包括下述提到的步骤。对于生产过程控制、质量控制和研发来讲可使用一种或多种分析方法。
  • 激光剥蚀ICP-MS定量成像单个真核细胞中的金、银纳米颗粒(英文原文)
    利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对不同实验条件下培养成纤维细胞中金、银纳米颗粒分布进行空间分辨生物成像。通过优化扫描速度、剥蚀频率和激光能量,获得了较高的空间分辨率。纳米颗粒相对于细胞的子结构是可见的,并且随着孵育时间的增加,纳米颗粒会在核周区域聚集。在矩阵匹配标定的基础上,提出了一种在单细胞水平上定量测定金属纳米颗粒数量的方法。这些结果提供了纳米颗粒/细胞相互作用的见解,并对组织诊断和治疗中分析方法的发展具有启示意义。
  • 使用配备了单纳米颗粒应用模块的 Agilent 7900 ICP-MS 对单纳米颗粒进行自动化、高灵敏度的分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径分布、元素组成和计数浓度。我们对 ICP-MS 硬件和软件的最新升级进一步改善了这一技术。安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 ?s 的采样速率下完成单元素采集,且无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次测定,显著降低了相邻颗粒信号重叠的风险。该方法的另一优势在于可使用较低的样品稀释比例和更短的样品采集时间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用模块管理并处理。本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • 单颗粒ICP-MS测定 铁纳米颗粒:利用通用池 技术消除质谱干扰
    至今为止,已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本工作将专注于证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。
  • 使用配备单纳米颗粒应用模块的Agilent 7900 ICP-MS 实现单个纳米颗粒的自动化高灵敏度分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性 质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一 种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需 求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来 测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径 分布、元素组成和计数浓度 [1-3]。我们对 ICP-MS 硬件和软件的最新升级进一 步改善了这一技术。 安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模 块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。 7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 μs 的采样速率下完成单元素采集,且 无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次 测定,显著降低了相邻颗粒信号重叠的风险。该方法的另 一优势在于可使用较低的样品稀释比例和更短的样品采集时 间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用 模块管理并处理 [4]。 本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳 米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • BeNano检测纳米黑炭黑颗粒的粒径和Zeta电位
    本篇应用报告,我们使用丹东百特仪器公司的BeNano 90 Zeta 纳米粒度及Zeta电位分析仪检测了分散在水性环境中的纳米黑炭黑颗粒的粒径信息和Zeta电位,并得出结论。
  • 湿法珠磨制备米诺地尔纳米颗粒实现高效靶向毛囊
    Oaku团队致力于通过纳米技术,特别是通过珠磨法制备了5%MXD纳米颗粒制剂(MXD-NPs)。该配方既具有MXD纳米颗粒的分散性,又通过使用靶向毛囊的纳米颗粒来增强毛发生长效果,从而解决MXD治疗AGA中的疗效和安全性之间的平衡问题。
  • 使用纳米颗粒的药物递送
    ISO/TS 276871和ASTM E24562都将纳米粒子定义为100nm及以下的粒径,使其成为使用广泛的分类。由于科学和其他原因,不太严格的解释扩大了上限范围。现在许多大于100nm的纳米材料通常被称为纳米颗粒。开发这种尺寸范围的药物产品的动机在于改善其溶出度/生物利用度、靶向性、系统中的循环时间和药代动力学。
  • SP-ICPMS对西红柿吸收金纳米颗粒的表征
    伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米粒子(ENPs)的释放对环境和人类健康造成的影响产生了担心。当研究如何准确测定植物吸收的单颗粒ENPs时,样品制备成该研究的最大的挑战。目前的样品制备技术局限性在于,一旦纳米颗粒ENPs进入植物组织它的浓度及特性就不受控制,因为它们是主要依靠酸来溶解的。这种技术的缺陷我们可以通过仔细选择纳米颗粒ENPs提取执行分析程序来避免。单颗粒等离子体技术允许大量样品的快速分析,同时获得粒度、产量、浓度和粒度分布等信息。这项研究工作的目标是开发一种从植物中提取其吸收的纳米颗粒ENPs的程序并借助单颗粒等离子体质谱仪进行分析。
  • 利用单细胞ICP-MS 监测淡水藻类对金纳米颗粒和金离子的摄入行为
    对于人类健康和环境安全来说,监测单细胞对于金属离子和纳米颗粒(NPs)的摄入都是非常重要的。目前,利用ICP-MS 对于细胞内金属含量的常规测定方法为:通过离心或过滤将细胞从其天然培养介质中分离出来,再用新鲜介质进行清洗,然后用酸消解后上机检测。采用这种方法可以得到一定数量细胞中金属的总量,而无法获得单个细胞的相关数据,单个细胞内金属的含量只能通过假定所有细胞内含有的金属颗粒或离子浓度相同,通过计算获得。而通过透射电子显微镜(TEM)、扫描电子显微镜(SEM) 或荧光示踪法的辅助表征,证明利用这种方法获得的单细胞数据并不准确。如果利用上述显微方法对细胞摄入纳米颗粒进行表征,又存在耗时长、人为误差大的缺点。而且,TEM 和SEM 法只能定性,也容易由于纳米颗粒标示物化学性质不稳定而导致假阳性结果。相比于这些常规方法,全新的基于单颗粒ICP-MS(SP-ICP-MS)的单细胞ICP-MS(SC-ICP-MS)具有可以精确地对单个细胞中金属离子或纳米颗粒进行定量的优势,一次性检测的细胞数量也大于显微镜方法。与SP-ICP-MS类似,SC-ICP-MS 是基于利用等离子体将单个细胞完全离子化后对离子含量进行测定来获得结果的。SC-ICP-MS 的优势在于可以在更短的时间内分析更多的细胞数量;具有快速的数据采集速率,低于100μ s 的驻留时间保证数据具有更高的精密度。NexION ICP-MS 独特的单细胞检测能力可用于研究细胞内部在其自然环境中固有的金属含量和对于金属的摄入行为,从而对生物曝露风险进行研究和评估。本文介绍了利用SC-ICP-MS 技术监测单个淡水藻类(Cyptomonas ovata)对金离子和纳米颗粒的摄入行为。
  • 在反应流中产生的纳米颗粒表征
    用LaVision的图像增强器IRO,Imager Intense 相机和染料激光器构成了一套OH PLIF 自由基测量系统。对在反应流中产生的纳米颗粒特性进行了表征。
  • 载药方法对纳米颗粒体系稳定性的影响
    相比于传统临床手段,纳米颗粒的治疗手段表现出更好的组织特异性和生物相容性,且具有易于功能化的优点,具有潜在的临床应用价值。纳米颗粒载药过程需要利用特定的物理化学性质包裹特定类型的药物,载药策略和实施这些策略的过程对于载药系统的稳定性至关重要。
  • 使用 Agilent 7800 ICP-MS 分析 10 nm 金纳米颗粒
    高灵敏度和低背景噪音对 ICP-MS 法检测小纳米颗粒至关重要。纳米颗粒电离生 成的信号随粒径的立方而减小。这就要求检测极小颗粒(如 10 nm Au 颗粒 (NIST 8011))时,ICP-MS 仪器的灵敏度远高于检测一般 NIST 参比物质(如 NIST 8012 (30 nm) 和 8013 (60 nm))时的要求。 本研究证明了 Agilent 7800 ICP-MS 能够轻松达到测定 10 nm Au 纳米颗粒所需的信噪比,无需复杂的反应池气体或定制调谐条件即可实现。所采用的标准操作条件可 轻松应用于含有其他元素(例如 Ag)的纳米颗粒。
  • SP-ICPMS对西红柿吸收金纳米颗粒的表征
    要研究纳米颗粒(ENPs)对环境的影响,就必须探索纳米颗粒(ENPs)如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒ENPs最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。研究团队研究的是如何准确测定植物吸收的单颗粒ENPs,在具体实验过程中,样品制备成该研究的最大的挑战。就我们所知,目前的样品制备技术局限性在于,一旦纳米颗粒ENPs进入植物组织它的浓度及特性就不受控制,因为它们是主要依靠酸来溶解的。该技术的缺陷可以通过甄选合适的提取方法并结合单颗粒ICPMS(SP-ICP-MS)技术来避免,SP-ICP-MS可最大程度保留颗粒尺寸信息,并在短时间内分析大量样品。同时获得粒度、浓度和粒度分布等信息。?这项研究工作的目标是开发一种从植物中提取其吸收的纳米颗粒ENPs的程序并借助单颗粒等离子体质谱仪进行分析。一旦这些步骤可以确定可行,那么它们都会被用于西红柿摄取金(Au)纳米颗粒含量的测定,这里介绍的内容有更加深入的研究可见参考文献。
  • 使用单颗粒ICP-MS在反应模式下分析SiO2纳米颗粒
    使用ICP-MS测量硅(Si)富有挑战性。等离子体中形成的14N2+和12C16O+ 多原子离子,与丰度最高的Si同位素(28Si 92 %丰度)的m/z相同。因此,当多原子离子未被去除时(标准模式下),m/z 28处的背景等效浓度非常高。它抑制了低水平Si的测定,让SiO2纳米颗粒的检测变得更加困难。此外,Si的电离势相对较高,其电离也更具挑战性,导致其强度低于其它易电离的元素,如Na。然而,如果能提高信背比(S/B),就有可能检测到更小的SiO2纳米颗粒。在之前的应用报告中,2我们介绍过100 nm SiO2纳米颗粒标准品可以使用SP-ICP-MS进行分析,且无需去除干扰(标准模式下)。然而,如果能在反应模式下去除干扰,预期能精准测量更小的SiO2纳米颗粒。本工作将讨论在反应模式下,通过SP-ICP-MS检测、测量和表征SiO2纳米颗粒的能力。
  • 单颗粒ICP-MS测定 化学-机械整平中使用的 元素氧化物纳米颗粒 悬浮物的特性
    本研究概述了定量和表征纳米元素氧化物纳米颗粒(氧单颗粒ICP-MS测定化学-机械整平中使用的元素氧化物纳米颗粒悬浮物的特性ICP - Mass Spectrometry应用文章化铝和氧化铈),这些常用于纳米电子学和半导体制造行业中化学-机械 (CMP)半导体表面的平整。CMP是一个结合了化学和机械外力平滑平面的过程,此步骤为光刻作准备。
  • 简评赛多利斯超滤产品在生物纳米颗粒和医用纳米载体制备中的效果
    免费下载赛多利斯超滤产品应用指南《简评赛多利斯超滤产品在生物纳米颗粒和医用纳米载体制备中的效果》,了解适用于多种纳米微粒类型的具体设备及MWCO建议。
  • 不同污染背景下的环境水体中天然含Ce纳米颗粒和工程CeO2纳米颗粒的区分、表征与SP-ICP-Q-TOF-MS数据分析
    EXPEC 7910型ICP-Q-TOF-MS针对不同污染背景下的环境水体中Ce纳米颗粒表征的详细实验过程与实验数据,为纳米颗粒风险评估提供理论依据。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制