当前位置: 仪器信息网 > 行业主题 > >

基础研究成果

仪器信息网基础研究成果专题为您整合基础研究成果相关的最新文章,在基础研究成果专题,您不仅可以免费浏览基础研究成果的资讯, 同时您还可以浏览基础研究成果的相关资料、解决方案,参与社区基础研究成果话题讨论。

基础研究成果相关的资讯

  • 国家科技奖获奖专家呼吁各界耐心等待:基础研究成果急不来的
    p style=" text-indent: 2em text-align: left " 近日,2018年度国家科学技术奖获奖代表们走进人民大会堂,迎来属于他们的高光时刻。山东大学齐鲁医院教授张澄是其中的一位,他所在团队获得国家自然科学奖二等奖。 /p p style=" text-indent: 2em text-align: justify " 作为一名80后的正高级教师,张澄完全理解人们希望基础研究多出成果、快出成果的迫切心情。“但科学研究有自身的规律,尤其基础科学研究需要长期积累、坚持不懈,重大科技成果的出现也绝非朝夕之功。”张澄在接受科技日报记者采访时说道。 /p p style=" text-indent: 2em text-align: justify " 同样,在国家自然科学奖一等奖获得者、清华大学薛其坤院士看来,不同于企业追求今年、明年有多少产品,基础研究不是一个以“计件”为主要目标和评价标准的行业,它追求的是科学问题的解决和科学目标的实现。 /p p style=" text-indent: 2em text-align: justify " 正如罗马不是一天建成的,每一个获奖项目背后都凝聚了科研人员多年的心血。据统计,2018年度国家自然科学奖、技术发明奖、科学技术进步奖三大奖获奖项目从立项到成果发表或应用平均时间为11年,其中,近一成的项目经历了超过20年的攻关和积累。 /p p style=" text-indent: 2em text-align: justify " 张澄所在团队此次获奖的项目为“心血管重构分子机制、检测技术和干预策略的基础研究”。张澄介绍,该项目基础研究攻关进行了10多年,目前,部分研究成果已进入新药设计、临床试验阶段。 /p p style=" text-indent: 2em text-align: justify " “5年、10年的时间对于潜心基础研究来说太短,科研人员很难持续深入研究并实现成果转化。基础研究进行到三五年时能发表文章就很不错了,另外临床应用转化还需时间,就我的研究领域来说,从基础研究走到临床应用,10年时间都紧巴巴的。”张澄说道。 /p p style=" text-indent: 2em text-align: justify " 基础研究无疑是一个持续累积的过程,然而,一路走来,科学家收获的并不都是鲜花与掌声。当一个科学家几年没出成果时,公众可能会质疑,为什么他花了这么多钱却没有任何产出。 /p p style=" text-indent: 2em text-align: justify " “事实上,在基础研究领域,一个科学家可能一辈子就出一个重大成果,也不知道成果会在哪天出现。”薛其坤指出,如果天天催科学家报成绩、出结果,他们难以静下来潜心研究,也就不可能做出高质量的原创性研究成果。 /p p style=" text-indent: 2em text-align: justify " 对此,薛其坤认为,需要通过科普宣传和科学精神传播,让公众了解基础研究是干什么的,以及基础研究的性质特点,理解基础研究领域的科学家短期内可能做不出成果的困难,即使有成果,它有时很可能不是通过一个显现性的指标来体现的。 /p p style=" text-indent: 2em text-align: justify " 迫切期待出成果的不只是公众。中国科学院国家空间科学中心原主任吴季认为,基础研究需要长期、独立的对自然界根本性问题的思考,因此需要对相关科学家及其团队给予长期和稳定的支持。除了长期稳定支持外,维护科学家不受行政干扰和利益驱动的独立思考也是非常重要的。 /p p style=" text-indent: 2em text-align: justify " “而过于急功近利的管理和评估,可能会干扰科学家的独立思考,那些经过独立的、不受干扰的思考获得的洞见、突破,一定不是催生出来的。”吴季指出,政府和管理部门即使催,也催不出“洞见、突破”来,因此,还不如把精力和资源放到选人、培育人、鼓励人、建设环境,以及提供设备和试验条件上来。 /p p style=" text-indent: 2em text-align: justify " 采访中多位专家表示,要尊重基础研究发展的自然规律,为相关的科研人员营造一个心无旁骛、潜心科研的良好氛围,按照基础研究的自然规律来规划项目周期,建立长期稳定的支持机制,让基础科学领域科研人员敢于触碰有原创性、前瞻性和引导性,但周期长、出好成果的课题。只有这样,才能真正做到“十年不鸣,一鸣惊人”。 /p
  • 李灿院士:建议设立基础研究和应用基础研究两项国家杰出青年基金
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/b20760a6-beb0-4753-8bf7-183bbb6149b4.jpg" title=" 2018-03-12_224355.jpg" width=" 500" height=" 336" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 336px " / /p p style=" text-align: center " 全国政协委员、中科院院士李灿 /p p   今年政府工作报告中明确提出:“加快建设创新型国家。强化基础研究和应用基础研究。” 然而在基础科学研究领域,目前却依然存在着人才培养和选拔“以论文为导向的一刀切”的现象。 /p p   10日下午,全国政协委员、中科院院士李灿在接受记者采访时表示:“如此下去,尽管我国研究队伍进一步扩大、文章数量继续攀升,但仍不一定能做出相应的创新性成果,不利于加快创新型国家的建设。” /p p   因此李灿委员建议,将目前的国家杰出青年基金改进重组为“基础研究”和“应用基础研究”两项国家杰出青年基金。 /p p   strong  加快创新型国家的建设 评价体系不能一刀切 /strong /p p   国家杰出青年基金自90年代初成立以来,激励和培养了一大批优秀科技工作者,极大促进了我国基础研究工作。但随着我国科技的发展,一些不足也暴露出来。 /p p   李灿委员认为,目前国家杰出青年基金在人才培养和选拔上存在的问题就是“以论文为导向的一刀切”。 /p p   “比如很多做应用基础研究的学者,为了完成评价体系的论文数量要求,也会拿一些文章出来。”李灿委员表示。 /p p   “另一方面,这也造成了另一些做基础科学研究的学者,不能静下心来坐冷板凳,针对重大的前沿基础科学问题做研究,长线的去坚持。” /p p   “不可否认,论文是需要的,但完全依靠这一个指标,就会在实践中略显偏颇。”李灿委员指出:“其实除了论文之外,应用基础研究学者的优秀专利,或者其研究成果在实践中表现出来的成效,都可以作为评价标准。” /p p   李灿委员认为:“评价体系本身就是具有导向作用,以论文为核心就会导致一些年轻工作者上不着天、下不着地,既没有去攻克基础课学里的难题,又没有解决应用科学中的核心问题。如此下去,尽管我国研究队伍进一步扩大、文章数量继续攀升,但仍不一定能做出相应的创新性成果,不利于加快创新型国家的建设。” /p p    strong 建议:国家杰出青年基金改进重组 /strong /p p   “我国学术界往往混淆了基础研究的内涵,将基础科学研究(Fundamental Research)和应用科学的基础研究(Basic Research)放在一起评审。对于不同领域,不同性质的研究均‘一刀切’,以论文和论文影响因子为主要判据,这就使一些应用基础研究领域的工作和人才队伍受到严重影响。评审工作简单化,缺乏对研究工作本身的判断,弱化了对工作本身的意义和价值的评价。” /p p   最近中办、国办也发布《关于分类推进人才评价机制改革的指导意见》,旨在分类健全人才评价标准,改进和创新人才评价方式。 /p p   因此李灿委员建议,将目前的国家杰出青年基金改进重组为“基础研究”和“应用基础研究”两项国家杰出青年基金。两项基金各有侧重,使得人才和成果的评价更加科学化和精准化。 /p
  • 国家“973”项目《陆相致密油高效开发基础研究》成果检查会暨核磁技术交流会在苏州落下帷幕
    国家“973”项目《陆相致密油高效开发基础研究》成果检查会暨核磁技术交流会在苏州落下帷幕 2018年5月25-28日,初夏之时,国家“973”项目《陆相致密油高效开发基础研究》2018年成果检查会暨核磁共振技术交流会在美丽的太湖之滨——苏州高新区落下帷幕。来自全国的近60位专家和学者,汇聚一堂,针对该项目的学术和技术问题做了细致的讨论,参会课题组分别来自中国石油大学(北京),中国石油大学(华东),西南石油大学,东北石油大学,北京大学,中科院力学所,中石油勘探院,新疆油田公司及苏州纽迈分析仪器股份有限公司。国家重点基础研究发展计划(973计划)是由国家科技部领导的旨在解决国家战略需求中的重大科学问题,以及对人类认识世界将会起到重要作用的科学前沿问题的专项研究。 本次“陆相致密油高效开发基础研究”是国家973计划为国家能源安全设置的研究项目,这个项目共分为6个课题,课题下包括了24个专题研究。 973项目会议代表在苏州高新区科技城合影973项目首席科学家为中国石油大学(北京)姜汉桥教授,由姜教授和973 项目跟踪专家罗治斌教授等组成的专家组对24个专题进行了逐一检查。首先,各专题长对所负责的专题做了主要技术成果、进展、下一步工作和经费情况等做了汇报;接下来,专家组针对汇报的内容做了提问、探讨以及下一步工作的详细指导。973项目的6个课题组经过近4年的研究努力,在《陆相致密油高效开发基础研究》项目上取得了可喜的研究成就,尤其是在SCI论文发表的数量、发明专利和软件著作权方面均已完成或提前完成了项目预定指标,部分成果已经应用于现场。 该项研究的标志性成果包括了以下六个方面,它们是陆相致密油甜点成因机制及精细表征;多相多尺度流动机理及渗流理论研究;储层人工缝网形成与重复压裂改造控制机理研究;提高储层采收率机理与方法研究;高效开发油藏工程理论与方法研究;以及典型陆相致密油藏高效开发模式研究。这些研究的完成将为中国的陆相致密油藏的开发和创新做出巨大的贡献。 973项目汇报课题组汇报 首席科学家中国石油大学姜汉桥教授及跟踪专家罗治斌教授中国仪器仪表学会分析仪器分会核磁共振仪器专业委员会和苏州纽迈分析受973项目管理办公室的委托,协办了本次会议,借助于973项目平台,纽迈分析的技术专家和973 会议代表对核磁共振测试技术和发展做了深入的交流。在会议开幕式上纽迈分析杨培强董事长和李向红副总经理致辞,欢迎国家973项目的专家和学者们;就核磁共振技术在石油能源领域内的快速发展,纽迈分析国家级博士后工作站站长燕军教授汇报了“核磁共振的原油含水率快速测试分析的新方法",纽迈分析吴飞博士介绍了纽迈公司核磁共振应用的常规和新技术的发展近况。 纽迈分析专家和技术人员在973会议上的报告学术讨论会场一角27日下午,973项目代表参观了纽迈分析坐落在苏州高新区科技城的核磁共振研发基地、CNAS核磁共振分析测试实验室、核磁设备的生产工厂和仪器调试车间等,对苏州纽迈在核磁共振领域的飞速发展,973专家们给予了高度的赞扬。 973项目代表参观苏州纽迈分析设备研发基地和实验室973项目代表参观纽迈分析的CNAS核磁实验室和调试车间最后,我们预祝国家973项目《陆相致密油高效开发基础研究》顺利完成课题各项研究目标,在2019年圆满结题,并期待该项目的诸多研究成果早日投入到我国的石油工业致密油的开发应用之中。纽迈专注于“低场核磁共振”技术及应用推广、具备强大的研发能力、完备的生产、服务和成熟的运营管理体系。公司自主开发多款核磁共振分析仪器并已获得多项国家奖项和资质认证,产品广泛应用于农业食品、能源勘探、高分子材料、纺织工业、生命科学等行业领域,获得业界一致认可。
  • 2012年我国基础研究投入达498亿元
    量子反常霍尔效应、中微子振荡、诱导多功能干细胞&hellip &hellip 近一年来,我国基础研究领域高水平的成果频出。基础研究投入大、耗时长,许多成果还不能立即转化为社会生产力,但却是一个国家科技发展水平的风向标。改革开放35年来,我国基础研究水平上升明显,国际影响力显著提高,从一个方面体现了我国整体科研水平的巨大进步。   科技部部长万钢指出,经过多年积累,中国科技逐步从跟随者转变为并行者,在一些领域已有领跑能力。作为基础研究成果标志性的指标,SCI收录的中国科技论文数量快速增长,连续4年居世界第二位,且引用率也有大幅增长,一些重要的基础科学研究成果,引起国际科技界高度关注,在世界科学论坛上中国的话语权逐年提高。   据介绍,改革开放以来,我国的基础研究科技计划及管理不断调整和完善,基本适应了各个阶段科技发展的要求,反映了不同时期发展和改革的重点,相继设立了国家自然科学基金、组织实施攀登计划,国家重点基础研究发展计划(简称973计划)、重大科技研究计划,基础研究重大专项等等。形成了自由探索和国家目标相结合的基础研究计划布局,为经济社会发展和科技自身发展做出了重要贡献。   近年来,我国基础研究学科体系愈发完备,新兴学科和交叉学科得到更多重视,形成了较为合理、多层次的科研和学科布局。物理、数学、信息、生命等学科领域的交叉研究获得更多资助,各学科整体水平进步较大,部分学科进入世界前列。   在注重学科布局的同时,也注重基础科研设施的建设,中央财政投入大幅增长。自然科学基金、973计划经费快速增长,中国基础研究投入在2012年已经达到498.8亿元,5年间年均增长22.6%。国家重点实验室、国家重大科技基础设施和大科学工程等基础研究创新基地发展迅速,已成为我国基础研究、应用研究和公益性研究的骨干基地,在国家自主创新能力建设中发挥越来越重要的作用。   任何科研成果的取得都离不开人,改革开放以来,我国基础研究人才队伍不断壮大,不仅培养和造就了一批领军人才和优秀团队,也注重从海外吸引众多高层次创新人才,形成了一支规模适度、创新能力较强的基础研究队伍。   基础研究水平的提高,也为经济社会发展提供了更大的引领作用。我国载人航天、青藏铁路、南水北调等各项重大工程的巨大成功,都离不开基础研究的长期积累和多学科的综合交叉。在材料科学、信息科学、制造科学领域取得的前瞻性基础研究成果,推动了我国传统产业的升级换代和高新技术及新兴产业的发展。在能源科学、农业科学、生命科学、环境科学的深入研究以及对深海、深地、深空的认识不断深化,则为解决粮食安全、气候变化、资源短缺、生态脆弱等制约我国可持续发展的瓶颈问题奠定了重要的科学基础。
  • 基础研究合作 京津冀将建重点实验室战略联盟
    近日,北京市科学技术委员会、天津市科学技术委员会、河北省科学技术厅正式签署《京津冀协同创新发展战略研究和基础研究合作框架协议》,加快建立和完善三地战略对话、信息交流、工作对接、科技资源与成果开放共享协同机制和长效机制,推进协同创新发展战略研究和基础研究。   根据这一协议,三地将围绕京津冀协同创新发展的顶层设计、产业创新等开展战略研究,建立和完善战略对话、信息交流、工作对接的协同和长效机制,共享战略研究成果和信息。在科技部指导下,采用&ldquo 1+3&rdquo 的研究机制和组织模式,共同启动&ldquo 京津冀协同创新发展战略研究&rdquo 相关课题,联合申报科技部相关项目(课题),并在三方各自的软科学研究专项经费中,设立专门研究资金,开展相关研究工作。三地科技战略研究机构可吸纳另外两方的研究机构参与课题研究,积极探索新型智库建设。在《首都科技创新发展报告》中新增加京津冀协同创新篇,吸纳三地各自最新战略研究成果,并定期发布。   在基础研究层面,京津冀三地将提高科技资源在三地间的充分利用与开放共享,推动科技创新资源的自由流动与优化配置。进一步完善三地专家资源交换机制,充分利用专家智力资源 探索建立三地共享科技报告体系,实现基础研究项目成果的开放共享 针对三方共同关心的热点、难点科学问题和产业共性关键技术需求,探索设立三地合作专项,分别予以支持,并鼓励三地科学家合作申请。合作专项项目由三方共同确定重点领域、编制指南 共同组织,整合资源,凝聚优势研究力量开展合作研究 共同研究,开展区域联合攻关,解决重大共性科学问题 共同推进成果利用,促进成果在三地共享与转化落地。整合京津冀重点实验室等创新资源,在重点领域建立重点实验室战略联盟。以三地重点实验室等创新平台为载体,建立三地创新主体间零距离对话机制,搭建起实验室联盟之间跨界融合、协同创新平台 实现重点实验室开放基金在联盟内部开放,鼓励实验室联盟成员在重点领域联合研究攻关,联合争取更大范围的科技项目支持 探索后补助机制,引导重点实验室更好地服务于中小企业创新需求。   省科技厅副巡视员陈卫滨认为,三地合作框架协议的签定,对于整合优质创新资源、创新合作机制、推动京津冀科技经济融合发展具有重要意义。我省将坚持优势互补、分工合作、互利共赢的原则,以京津冀科技一体化为依托,深化战略研究,加强基础研究合作,服务京津冀协同创新发展重大目标。
  • 北京将认定首批市级重点实验室,实施基础研究领先行动
    从市科委、中关村管委会获悉,北京市将持续实施基础研究领先行动,从多方面加强基础研究前瞻性、战略性、系统性布局,今年将认定首批30家左右市级重点实验室。近年来,北京基础研究投入逐年增加。2022年,北京基础研究经费为470.7亿元,位居全国第一,同比增长11.4%,占全国基础研究总经费的23.3%。去年,新一代量子计算云平台、新一代256核区块链专用加速芯片、国际上速度最快能耗最低的二维晶体管等一批重大创新成果在北京涌现。北京理工大学教授陈端端认为,北京重视交叉学科发展,以产业需求带动科技发展,围绕基础研究开展科学布局,已在基础研究方面形成了显著优势。“尤其是在人工智能等前沿科学领域和医学工程等重要民生需求领域,形成了一系列标志性成果,直接服务社会发展。”领先行动还将基础研究和青年人才培养相结合。为推动青年科技人才挑大梁、担重任,北京市自然科学基金推动实现超过50%的项目由40岁以下青年科技人才承担。今年,北京市将继续实施基础研究领先行动,聚焦“数理化生”四大领域开展前瞻性研究;围绕新一代信息技术、医药健康、航空航天等领域开展目标导向型研究;鼓励打破学科边界和壁垒,推动学科交叉融合研究。持续支持新型研发机构产出重大原创科研成果,支持科技领军企业与重点实验室、研究型大学、国家科研机构、新型研发机构等建立基础研究创新协作机制,并将认定首批30家左右的市级重点实验室。围绕“三城一区”主平台优势,北京市还将依托大科学设施发起国际大科学计划,持续推动首都科技条件平台科研设施与仪器开放共享,推进数据基础制度先行区建设。在体制机制改革方面,北京市将探索分类构建符合基础研究规律的管理体制机制,探索总结科研经费“包干制”成效,引导企业、基金会等社会力量积极参与基础研究,并鼓励概念验证平台对接高校院所,助力基础研究成果走出实验室。
  • 我国分析化学基础研究的质量和国际影响明显提升
    在国家自然科学基金的持续和快速增长的支持下,我国分析化学基础研究近年来取得了长足的发展。不仅在电化学分析、光谱分析和色谱分析等传统分析化学三级学科研究中保持了已有的优势,还在纳米分析、微纳流控分析、质谱和核磁共振分析、以及单分子单细胞分析等分析化学热点和前沿领域跃居世界先进行列。据统计,我国2007-2011年五年间发表在本领域最有影响的刊物Analytical Chemistry(ACS刊物)上的论文已达704篇,是上一个五年在该刊物上发表的论文数(247篇)的近3倍,排在第二位,仅次于美国学者在该刊物上发表的论文数。如果从单篇论文的平均引用率看,美国学者近五年在该刊物上的单篇论文平均引用率为12.03,而我国学者发表论文的单篇平均引用率达到17.92,表明我国学者分析化学研究成果的质量和受关注程度正在快速升高。更可喜的是,今年中国分析化学取得了历史性的突破,自2013年3月1日起清华大学张新荣教授被美国ACS聘为Analytical Chemistry副主编,厦门大学田中群院士、北京大学刘虎威教授和中科院大连化物所邹汉法研究员被聘为Analytical Chemistry编委(2013年1月1日起),彻底改变了2012年前该刊没有来自中国编委的现状,一次从美国以外的一个国家同时聘请这么多专家担任副主编、编委,这在美国化学会刊物中尚属首次。   国际同行对我国学者的研究也给与了越来越多的关注,与我国学者进行高水平学术交流的积极性日益增高。在中-日-韩分析化学会议、中-加分析化学会议的基础上,在美国国家自然科学基金会和中国国家自然科学基金委共同支持下,2010年在美国召开了第一届中-美分析化学会议,由美国艺术与科学院院士Cooks教授承办,美国NSF分析化学负责人Kelsey D.Cook、美国Analytical Chemistry主编Murry和多数副主编都出席了这次会议。我国分析化学学者15人出席了这次会议。会议达成了两个重要共识,一是中-美分析化学家之间的高水平交流对国际分析化学研究水平的提高十分重要,这种交流应该形成一种2年一次的固定形式 另一个是美国学者普遍认识到美国化学会主办的杂志Analytical Chemistry应该有中国学者参与。在2012年北京召开的第二届中-美分析化学双边会议上,Analytical Chemistry新任主编Sweedler教授与中国学者进行了广泛交流,还顺访了北京大学、清华大学、中科院化学所、北京蛋白质研究中心及国家自然科学基金委化学部,充分肯定了近几年中国分析化学的发展。   虽然我国分析化学基础研究已经取得了长足的进步,但是,我们充分的认识到,在分析仪器装置原始创新研究方面我国还有相当大的提升空间,今后应更加注重青年学者的培养,重视原创性工作,使我国分析化学基础研究跃上一个更高的台阶。
  • 西安光机所基础研究类成果获2022年度中国光学学会科技奖
    7月29至31日,2023年中国光学学会学术大会在武汉召开,会上颁发了2022年度中国光学学会科技奖。由中国科学院西安光机所姚保利研究员团队、西安电子科技大学郜鹏教授团队合作完成的《高精度定量相位显微成像方法研究》荣获基础研究类三等奖。此次西安光机所获奖项目围绕定量相位显微成像方法中的基础科学问题开展研究,对提高测量精度和稳定性、提高横向空间分辨率、扩大纵向无包裹测量范围、抑制相干噪声、实现图像自动调焦等方面开展了深入系统的研究,形成了高精度定量相位显微成像为核心的理论和技术体系。 相位分布是光波除强度分布之外的另一重要特性,直接影响聚焦光斑的三维分布、光学成像的空间分辨率,也直接关联物体三维形貌或透明物体厚度/折射率分布。然而,光波的相位分布无法直接采用普通的成像器件来探测。 如何进行高质量的相位成像一直是当今光学领域研究的热点。通过对光波的相位进行定量成像和测量,可以对透明物体的三维形貌或折射率分布进行定量测量,在工业检测、生物医学、特殊光束产生、自适应光学成像等领域具有重要的科学意义和应用价值。   据悉,中国光学学会科技奖由中国光学学会设立,该奖旨在鼓励在光学、光学工程学科及其相关学科领域有突出贡献的科技工作者,并促进我国光学的发展和人才培养。凭借高学术水平的候选成果及严格公正的评审机制,中国光学学会科技奖公信力和影响力极高,广受业界认可。 2022年度中国光学学会科技奖评选活动根据《中国光学学会光学科技奖评选条例》,经中国光学学会光学科技奖评审委员会初评和复评、评审结果公示、中国光学学会理事长批准,基础研究类和应用成果类共评选出一等奖4项、二等奖5项、三等奖2项。
  • 赛默飞支持中国癌症基础研究发展
    ——赛默飞与清华大学邓海腾教授签订全球科研合作伙伴协议 2014年1月16日,北京 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于1月15日宣布与清华大学生命科学学院邓海腾教授签署了全球科研合作伙伴协议。双方将就“通过对肿瘤组织进行定量磷酸化蛋白质组学分析,发现癌症诊断和预后的生物标记物”项目进行长期的合作与研究。全球科研合作伙伴-授权书授予仪式该合作是赛默飞全球科研合作伙伴项目的重点之一。期间,赛默飞将为邓海腾教授提供蛋白质组学相关的试剂、耗材、及其质谱技术的支持,包括赛默飞10-plex串联质谱标记试剂,轨道阱质谱仪,Q Exactive 和Orbitrap Fusion等技术。配合清华大学生命科学学院在蛋白质组学领域的科研团队,包括国家重点实验室,发现用于肿瘤早期诊断和预测预后的生物标志物、为肿瘤的早期诊断和治疗奠定基础。“赛默飞是科学服务领域的世界领导者,始终致力于推动全球范围内的科学发展。此次与清华大学生命科学学院邓海腾教授的合作正是我们践行这一使命的重要举措,”在全球科研合作伙伴授权仪式上,赛默飞分析技术集团首席科学官良科灵(Klaus Lindpaintner)说道,“我们与邓海腾教授将在磷酸化蛋白质组学鉴定及肿瘤标志物等研究领域共享技术资源、实现优势互补,通过追踪和研究肿瘤组织发现一系列与肿瘤诊断、预后及化疗耐药性相关的生物标记物,推动我们目前癌症基础研究的发展。”赛默飞分析技术集团首席科学官良科灵讲话“清华大学生命科学学院是我国最具特色和最有影响力的生命科学研究和教学基地之一,培养和造就了一批知名的生物科学家,产生出一批在世界范围内颇具影响力的研究成果。”邓海腾教授在签约仪式上表示,“赛默飞拥有世界一流的质谱设备仪器和耗材,并拥有全球领先的研发和服务能力。我坚信此次合作必定会推进我国肿瘤诊断以及抗肿瘤药物的研究,并进一步促进基础研究的成果推向临床应用,造福于广大癌症患者。”清华大学生命科学院邓海腾教授讲话赛默飞、清华大学生命科学院合影赛默飞全球科研合作伙伴项目计划在全球范围内多个国家和地区实施,目前在中国已经全面启动,每年将会为签订此项目的科学家或机构提供高达25000美元的项目基金。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity? Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2500名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 全国政协常委、中科院院士袁亚湘:建设科技强国 必须真正重视基础研究
    世界正处于百年未有之大变局,国家之间的竞争归根结底是科技与人才的竞争。习近平总书记指出:“自主创新是我们攀登世界科技高峰的必由之路。”我国要成为科技强国,就必须勇于探索、敢于突破、锐意进取,最关键的是始终坚持独立自主、自主创新。基础研究是自主创新之基,放眼全球,世界科技强国无一不是基础研究强国,我国要建成科技强国,要持续增强自主创新能力,从根本上解决“卡脖子”问题,就必须真正重视、稳定支持、有效推进基础研究工作,切实提升基础研究的地位。重视基础研究,要“正其名”。当前,亟须对基础研究的内涵作清晰界定,使其“名实相符”。根据国际通行的定义,基础研究不以“实际应用”为指挥棒,而是追求新知识、构建新体系、提出新概念、建立新理论、给出新方法、揭示新规律。长期以来,我国通常将实际应用科技领域或有应用背景的科技领域中提炼出来的基础性问题称为基础研究,而对当下看似“无应用价值”的科学研究称为纯基础研究。因此,许多部门反复强调要高度重视“基础研究”,所重视的是“应用基础研究”而不是“纯基础研究”。作为发展中国家,强调科学技术为国民经济建设服务是完全正确的,但看似“无用”的纯基础研究是技术创新的源泉,它为技术创新指明方向、提供路径与方法。把应用基础研究等同于基础研究的观点与做法使纯基础研究居于边缘,被长期忽视甚至遗忘,这非常不利于我国科学研究的长足进步,更影响我国科学技术水平的持续提高与健康发展。重视基础研究,要“给其养”。基础研究需要长期稳定的支持。基础研究主要是由科学家的好奇心和探知欲所驱动,重大的基础研究成果通常需要科学家坚持数年乃至数十年专注某一课题才能获得。由于这一特点,基础研究特别需要科学家具有“十年磨一剑”的精神。因为基础研究的成果大多不能马上得到应用,我国除了华为等屈指可数的几个企业之外,很少有企业热衷于资助基础研究。现阶段我国基础研究经费还只能主要依靠公共财政。为了让从事基础研究的科学家能真正安心、潜心、痴迷于其所研究的课题,有必要给予他们长期稳定的支持。重视基础研究,要“宽其境”。基础研究需要宽松的环境。重大的基础研究成果不少是出自奇思妙想,而不是靠布置任务、设定目标所得到的。基础研究依靠的是科学家的自由探索,需要有勇气异想天开、大胆走前人没有走过的路。从事基础研究的科学家应该具有不迷信权威、勇于质疑、追求真理的科学精神。基础研究需要的是良好的环境、肥沃的土壤、浓郁的学术氛围。所以从事基础研究的科学家在思想上和学术上应该有充分的自由。基础研究的评价考核也应该和应用性研究和技术研究不同。当前,迫切需要解决青年科研人员中长期学术积累的体制机制,尤其要制定符合基础研究学科特点的评价考核制度,使从事基础研究的科研人员不必整日忙于立项、评估、总结、汇报,忙于说服领导和评委;使他们不必夜以继日地追评奖、争“帽子”,谋名誉,以此提升社会地位、改善生活条件;使他们不必在科研没开始前,就要为几年后烦琐复杂的交账报销流程而烦躁操心。可以说,什么时候广大科技工作者,特别是青年科研人员对科研环境满意了,中国就有望成为基础研究的世界强国了。重视基础研究,要“育其才”。创新型人才是建设科技强国的力量源泉。基础研究最重要的是人才,没有优秀人才,一切都是空谈。当前,一些科研单位在引进人才方面下足功夫,但在培养和使用人才方面缺乏诚意与作为。培养与使用是人才问题的根本,用人单位关键要培养好、使用好现有人才。首先,培养人才必须依靠现有人才,一个单位只有极大发挥了现有人才的聪明才智,使其有英雄用武之地,才能吸引更多外来人才良禽择木、凤凰来仪。其次,用好现有人才,要立足对青年人才的培养使用。重视基础研究,要“殊其制”。长期以来,相关部门以工程、技术等应用研究领域的立项模式、管理模式、考核模式为标准进行基础研究经费的拨款与管理考核,比如组建国家实验室、设立重大专项、重大项目等。但现实情况是,一些基础研究,例如数学、理论物理等领域,往往不适合建立大型团队,不宜写出明确的研究目标和技术路线,不适合组建国家实验室。因此,应针对基础学科自身的特殊性,在拨发经费、日常管理、评判考核等方面形成与应用型学科不一样的支持模式。要以求实精神总结基础研究出成果的规律,使科学家在良好的科研环境与浓郁的学术氛围中释放想象、绽放激情、捕捉灵感、勇于创新、采撷硕果。
  • 科技部司长:企业国家重点实验室如何玩转基础研究?
    p & nbsp & nbsp & nbsp & nbsp 《国务院关于全面加强基础科学研究的若干意见》(简称《意见》)近日发布,在“建设高水平研究基地”中特别提到企业国家重点实验室,这让半导体照明联合创新国家重点实验室理事长吴玲很是振奋,“《意见》不仅对全面加强基础科学研究做出部署,也为企业国家重点实验室的发展指明了方向。” /p p & nbsp & nbsp & nbsp & nbsp 那么,我国企业国家重点实验室现状如何?面向行业共性问题的应用基础研究路向何方?怎样激活企业投身基础科学研究的新动能?记者就此展开了采访。 /p p & nbsp & nbsp & nbsp & nbsp strong 创新先行& nbsp 有成绩也有烦恼 /strong /p p & nbsp & nbsp & nbsp & nbsp 作为国家科技创新体系的重要组成部分,国家重点实验室是国家组织高水平基础研究和应用基础研究、聚集和培养优秀科学家、开展高层次学术交流的重要基地。 /p p & nbsp & nbsp & nbsp & nbsp 2017年9月,科技部对已通过验收的99个企业国家重点实验室进行评估。吴玲所在的半导体照明联合创新国家重点实验室,也开始接受为期5年的“评估大考”。 /p p & nbsp & nbsp & nbsp & nbsp “其意在发挥企业国家重点实验室的评估导向作用和科技创新能力。”吴玲告诉记者,成立于2012年的半导体照明联合创新国家重点实验室,是我国首个依托联盟建立的国家重点实验室。在这个体制机制完全创新的公共研发平台上,企业以项目资金投入,科研机构、大学和其他社会组织以研发人员和设备的使用权投入,推动基础研究、应用研究、成果转化和产业化、先进技术标准研制紧密结合,取得了可喜的成绩。 /p p & nbsp & nbsp & nbsp & nbsp 同时,她也并不避讳企业国家重点实验室“成长中的烦恼”,“首先,发展过程中缺乏国家和部委政策层面的稳定支持和资金层面的可持续投入。其次,企业国家重点实验室主要依托于国有大中型企业布局。”她解释说,民营企业、中小型创新企业等特别是依托产业联盟建设的国家重点实验室占比很小。对颠覆性技术和产业变革而带来的新兴产业来说,创新主体弱小,以民营中小企业居多,尤其需要依托产业联盟、产业链条上优秀企业共同投入的联合研发模式。更为深层次的是,对于大企业来说,目前实验室研发经费主要用于完善自身现有的产品和技术,前瞻性基础研究和产业共性技术研究支持不足。 /p p & nbsp & nbsp & nbsp & nbsp 科技部基础研究司司长叶玉江表示,从整个科技创新的链条来看,基础研究依然是短板,体现为重大原创性成果缺乏、顶尖基础研究人才和团队较匮乏、投入总体不足、环境待优化四方面的问题。 /p p & nbsp & nbsp & nbsp & nbsp strong 面向行业& nbsp 尚存三大难题待解 /strong /p p & nbsp & nbsp & nbsp & nbsp 《意见》强调,加强企业国家重点实验室建设,支持企业与高校、科研院所等共建研发机构和联合实验室,加强面向行业共性问题的应用基础研究。 /p p & nbsp & nbsp & nbsp & nbsp 而现实中,国内基础研究与企业的“天然断电”却是常态。基础研究成果的高度不确定性,使得企业难以在短期内获得回报。然而,当企业进入行业技术前沿领域后,要解决卡脖子难题,又必须沉下心从源头创新,攻关行业共性问题。 /p p & nbsp & nbsp & nbsp & nbsp “加强面向行业共性问题的应用基础研究,企业国家重点实验室目前有三大难题待解。”吴玲坦言,一是缺乏可操作且开放共享的研发和中试平台,无法实现企业和研发机构的协同创新、推动科技成果转化和产业化;二是缺乏行业共性应用基础研究的创新链和创新体系,目前上下游企业协同研发的机制不成熟,缺乏必要的经费支持;三是创新的体制机制特别是人才支撑还不够,无法聚集战略性、引领性的全球创新资源。 /p p & nbsp & nbsp & nbsp & nbsp 以半导体照明新兴产业为例,该产业不仅涉及基础材料和芯片技术,还涉及光、电、热、化学、装备等领域,是典型的多学科交叉融合的复杂系统工程。然而,我国现阶段半导体照明企业规模小、研发投入少,研究机构力量分散,没有统筹协调的机制,无法围绕产业链打通技术链,解决制约行业发展的共性关键技术,进而支撑产业发展。 /p p & nbsp & nbsp & nbsp & nbsp strong 创新机制& nbsp 推动各主体对接融通 /strong /p p & nbsp & nbsp & nbsp & nbsp 推动基础研究与应用研究融通,通过应用研究衔接原始创新与产业化,是企业国家重点实验室一直努力的方向,也是《意见》在优化基础研究发展机制和环境中强调的部分。 /p p & nbsp & nbsp & nbsp & nbsp 《意见》提出,创新体制机制,推动基础研究、应用研究与产业化对接融通,促进科研院所、高校、企业、创客等各类创新主体协作融通,把国家重大科技项目等打造成为融通创新的重要载体。充分发挥企业特别是转制科研院所在产学研深度融合中的作用,推动基础研究和应用研究工程化,吸引国内外资金、技术,提升产业竞争力。 /p p & nbsp & nbsp & nbsp & nbsp “我国基础研究投入中,政府投入占90%多,企业和其他社会力量投入较低。”科技部资源配置与管理司司长张晓原透露,随着《意见》发布实施,中央财政基础研究投入将进一步加大,除继续大幅增加稳定支持外,2030年的重大项目实施将考虑基础研究的长期部署,并且引导地方财政和企业社会力量增加对基础研究的投入。 /p p & nbsp & nbsp & nbsp & nbsp 那么,哪些具体举措将助力企业投身基础科学研究?为优化基础研究发展机制和环境,促进科技资源开放共享,《意见》提出了多个创新举措。 /p p & nbsp & nbsp & nbsp & nbsp “比如完善分类评价机制,调动科学家、科研院所、高校、企业等方面的积极性创造性;支撑组建人才团队国际化、投入模式多元化、运行机制市场化的新型研发机构,围绕产业链,部署创新链,形成研发、中试、应用各环节贯通的创新体系,激发基础研究的需求和活力。”在吴玲看来,《意见》明确提出创新政府管理方式尤为重要,在政策、项目、资金投入等方面形成合力,将使国家重点实验室在行业创新体系和环境建设上成为重要力量。 /p
  • 30万/项!基金委试点资助博士生开展基础研究项目
    2023年12月1日,国家自然科学基金委员会计划与政策局发布《关于开展2023年度国家自然科学基金青年学生基础研究项目(博士研究生)推荐工作的通知》。为深入贯彻习近平总书记关于新时代人才工作的新理念新战略新举措,落实教育、科技、人才一体化发展的要求,自然科学基金委决定于 2023 年起试点设立国家自然科学基金青年学生基础研究项目(博士研究生)(以下简称博士生项目)。博士生项目资助强度为 30 万元/项,支持博士研究生在国家自然科学基金资助范围内自主选题,开展基础研究工作。试点实施期间,资助期限为 2 年或 3 年,申请人可根据自身情况进行选择,应尽可能确保在校期覆盖项目执行期,以保证项目研究的顺利开展。据了解,2023年5月,国家自然科学基金委形成设立青年学生项目的初步构想。6月,自然科学基金委党组书记、主任窦贤康带队先后前往清华大学、北京大学等八所高校进行调研,与各高校主要负责同志、科研人员、学生及管理人员代表围绕进一步加强对青年人才支持开展深入交流。7月,正式启动青年学生(优秀本科生)项目,组织试点高校推荐申请。8月,组织会议评审择优遴选。12月,试点开展对博士生的直接资助。通知如下:国家自然科学基金委员会计划与政策局关于开展2023 年度国家自然科学基金青年学生基础研究项目(博士研究生)推荐工作的通知(节选)为深入贯彻习近平总书记关于新时代人才工作的新理念新战略新举措,落实教育、科技、人才一体化发展的要求,自然科学基金委决定于2023年起试点设立国家自然科学基金青年学生基础研究项目(博士研究生)(以下简称博士生项目)。博士生项目采用“推荐+评审”制,由部分科研实力雄厚且博士生培养质量高的依托单位按名额择优推荐,自然科学基金委组织评审进行遴选。具体事宜如下。一、项目定位博士生项目支持博士研究生在国家自然科学基金资助范围内自主选题,开展基础研究工作,着力培养其独立开展科学研究的能力,增强科研兴趣,激发创新思维,提升科学素养,为其踏上科研之路打下坚实基础,为构建高水平基础研究队伍提供高质量人才储备。二、推荐条件1.遵纪守法,品行端正,具有良好的学风和科研作风;2.专业属于自然科学领域;3.研有余力,能高质量完成在校学习研究任务,已具备一定研究基础;4.对基础研究有浓厚兴趣,能够独立提出明确的研究方向且具有较强创新性,具备独立设计研究内容和研究方法的能力;5.拟开展的研究工作没有其他渠道经费资助。推荐申请的博士生应当经过导师同意。在职攻读博士学位的不得推荐作为申请人。三、资助期限及强度试点实施期间,资助期限为2年或3年,申请人可根据自身情况进行选择,应尽可能确保在校期覆盖项目执行期,以保证项目研究的顺利开展。在项目结题前,如果负责人已博士毕业且继续在境内依托单位工作,可将项目变更至新的依托单位;如果负责人已博士毕业但不在境内依托单位工作,应当及时终止。项目资助强度为30万元/项。为赋予申请人充足的经费使用自主权,使其将更多时间用于科学研究,经费使用实行包干制,申请人无需编制预算,可在允许范围内自主决定经费使用(原则上劳务支出不能超过30%),鼓励开展国际交流研究及合作,具体要求执行《国家自然科学基金资助项目资金管理办法》以及各依托单位制定的包于制实施细则。四、申请及评审流程依托单位应根据申请条件,结合本单位实际情况,公平公正地开展推荐工作。获得推荐的博士研究生应独立开展文献调研,提出研究方向并凝练科学问题,设计研究思路及研究内容,独立撰写申请书。研究内容应为博士论文以外的新研究方向,或在博士论文的基础上有实质性拓展延伸。不得直接照搬照抄博士论文研究内容或其他已批准科研项目相关内容。申请时应当提供导师同意其申请项目的证明材料并作为申请书附件上传。对于提交申请的项目,自然科学基金委负责进行初审,主要审查申请人的资格和申请材料的规范性、完整性,符合条件且材料规范的予以受理,不符合条件或材料不规范的不予受理。对于经初审受理的项目,通过通讯评审和会议评审两个阶段择优遴选,由自然科学基金委统一组织。评审会后,自然科学基金委按程序审议批准。五、管理方式项目负责人应按照项目计划书组织开展研究工作,做好资助项目实施情况的原始记录,填写项目年度进展报告。鼓励项目负责人开展学科交叉研究。项目结题时应撰写结题报告、编制项目资助经费决算,取得成果的应同时提交研究成果报告。项目负责人负责对整个研究工作进行总体设计、规划、管理。要养成依法依规合理使用科研经费的自觉性,树立良好的科研道德和学风。导师应在项目申请和实施过程中提供必要的指导和咨询意见,与博士研究生开展经常性的学术交流和研讨,为项目研究顺利开展提供良好条件。依托单位应为项目的组织实施提供必要的条件支撑和保障,应为承担该项目的博士研究生开通科研经费账户。对于承担博士生项目且研究工作进展顺利的博士研究生,应在评奖评优中予以支持。自然科学基金委负责审查年度进展报告并提出下一步研究工作建议;在资助期内为项目负责人提供参加多种高层次学术交流的机会;在项目结题时组织同一批会议评审专家以学术交流的形式进行结题审查。国家自然科学基金委员会计划与政策局2023年12月1日
  • 2009仪器信息网特别聚焦之“我国基础研究十大进展”
    由科技部基础研究管理中心组织的2009年度中国基础研究十大科技进展揭晓。   这十大基础研究进展分别是:   北京正负电子对撞机重大改造工程通过国家验收   查明中国陆地生态系统的碳平衡状况   揭示A1型短指症致病机理   发现β-抑制因子-2复合体信号缺损可导致胰岛素耐受   实验证实诱导性多能干细胞具有发育全能性   发现金属钠在高压条件下可转化为透明绝缘体   阐明纳米孪晶纯铜极值强度的形成机制   高温铜氧化物超导体物性和超导机理研究取得重要进展   鉴别出与超级杂交水稻杂种优势相关的潜在功能基因   找到鸟类起源的一些关键证据。   据介绍,本次评选活动的新闻来源由《科技导报》、《中国科学基金》、《中国科学院院刊》和《中国基础科学》共同推荐。通过初评,从184项推荐新闻中遴选出30项候选新闻。随后以问卷形式将候选新闻送中国科学院院士、中国工程院院士、“973”计划顾问组和咨询组专家、“973”计划项目首席科学家、国家重点实验室主任等专家进行无记名投票获得结果。   本次入选项目呈现出两个主要特点。   首先,我国具有传统优势的学科领域显示出持续创新能力。如我国在古生物学研究方面有独特的学术资源和地域优势,已形成较为完整的研究体系,在诸多领域已经与国际同步。我国科学家发现的澄江、瓮安动物化石群,引起了全球古生物学界的轰动。2009年,我国又在鸟类起源方面取得了重大突破,发现了一些关键证据,为研究恐龙向鸟类进化过程中有关手指进化问题提供了有力证据,产生了重大的国际影响。   在材料科学研究领域,物理学家对纳米孪晶纯铜极值强度形成机制的阐释、高温铜氧化物超导体物性和超导机理研究均有良好发挥。在高温超导研究领域,有关铁基超导的重要成果不仅入选中国基础研究十大进展,且入选了《科学》杂志评出的2008年十大科技进展,引起国际同行的广泛关注。今年又有一项高温铜氧化物超导研究的成果入选,表明我国在高温超导方面经过长期的积累沉淀,具有了扎实的基础和雄厚的潜力。   其次,群体性突破不断涌现。科技部基础研究司司长张先恩说,医学一直是我国的薄弱领域,但近年来呈现出快速发展的态势,具有国际影响的重大成果不断涌现。2009年,有3项医学领域的成果入选基础研究十大进展,表明我国医学领域在多年积累的基础上,已经出现群体性突破的势头。这样的势头往往孕育着重大的革命性突破。   如由中科院动物研究所周琪研究小组和上海交通大学医学院曾凡一小组合作开展的诱导性多能干细胞,也被称为iPS细胞的全能性验证研究,一直困扰着生命科学向纵深推进。两个研究小组合作,在实验中通过对iPS细胞的培养基以及iPS克隆挑取时间等因素的优化,提高了iPS细胞的获得效率及iPS克隆的质量,制备出37株iPS细胞系,并利用其中6株iPS细胞系注射了1500多个四倍体囊胚后,其中3株iPS细胞系获得了共计27只成活小鼠。经多种分子生物学技术鉴定,这些小鼠确实是由iPS细胞发育而成。目前,这些小鼠现已发育成熟并繁殖了后代。此项研究首次证实,iPS细胞具有与胚胎干细胞相同的全能性。相关研究发表在2009年9月3日《自然》杂志上。   此外,关于全球性热点、焦点问题的研究,我国科学家也取得了世界瞩目成绩。在全球气候变化研究中,2006年关于成熟森林土壤可持续积累有机碳的成果入选了基础研究十大进展,2007年有关碳汇的研究成果入选,2008年通过氧同位素研究东亚季风变化的成果入选,2009年又有中国陆地生态系统的碳平衡状况的研究成果入选。这些研究不断深入,为我国应对全球变化,解决制约我国经济社会发展的环境问题提供了理论基础。
  • 李克强:强化基础研究和应用基础研究
    p   国务院总理李克强5日在作政府工作报告时说,加快建设创新型国家。把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力。 /p p   加强国家创新体系建设。强化基础研究和应用基础研究,启动一批科技创新重大项目,高标准建设国家实验室。鼓励企业牵头实施重大科技项目,支持科研院所、高校与企业融通创新,加快创新成果转化应用。国家科技投入要向民生领域倾斜,加强雾霾治理、癌症等重大疾病防治攻关,使科技更好造福人民。 /p p   落实和完善创新激励政策。改革科技管理制度,绩效评价要加快从重过程向重结果转变。赋予创新团队和领军人才更大的人财物支配权和技术路线决策权。对承担重大科技攻关任务的科研人员,采取灵活的薪酬制度和奖励措施。探索赋予科研人员科技成果所有权和长期使用权。有悖于激励创新的陈规旧章,要抓紧修改废止 有碍于释放创新活力的繁文缛节,要下决心砍掉。 /p p   促进大众创业、万众创新上水平。我国拥有世界上规模最大的人力人才资源,这是创新发展的最大“富矿”。要提供全方位创新创业服务,推进“双创”示范基地建设,鼓励大企业、高校和科研院所开放创新资源,发展平台经济、共享经济,形成线上线下结合、产学研用协同、大中小企业融合的创新创业格局,打造“双创”升级版。设立国家融资担保基金,支持优质创新型企业上市融资,将创业投资、天使投资税收优惠政策试点范围扩大到全国。深化人才发展体制改革,推动人力资源自由流动,支持企业提高技术工人待遇,加大高技能人才激励,鼓励海外留学人员回国创新创业,拓宽外国人才来华绿色通道。集众智汇众力,一定能跑出中国创新“加速度”。 /p
  • 十四五期间,基础研究占研发总经费比重将增加60%以上
    3月5日上午,十三届全国人大四次会议开幕,大会审查国民经济和社会发展第十四个五年规划和2035年远景目标纲要草案。根据“十四五”规划和2035年远景目标纲要草案,我国将制定实施基础研究十年行动方案,重点布局一批基础学科研究中心,基础研究经费投入占研发经费投入比重提高到 8%以上等。而基础研究经费投入占研发经费投入比重此前多年徘徊在5%左右,此次“十四五”规划制定,这一比例将增加60%以上。研发经费投入,是衡量一个国家科技投入的重要指标,也是观察和分析科技发展实力和竞争力的重要指标。一方面我国研发经费投入逐年提高,另一方面,基础研究经费投入占研发经费比重也将提高,未来基础研究将获得大量经费。这些基础研发经费很大一部分用于大科学装置的建设。实际上,此前“十三五”规划就提出了国家基础研究专项规划,王志刚表示,“十三五”期间我国的基础研究经费投入基本上增长了1倍,2019年达到了1336亿元。在“十三五:期间,我国基础创新能力取得很大成绩,在铁基超导、干细胞、量子信息、类脑芯片等领域,以及在数学、物理、化学等基础学科都取得一批基础研究成果。与此同时,我国部署建设了一批国家重大科技基础设施,建设了500米口径的球面射电望远镜、散裂中子源等一批“国之重器”,支持建设了20个国家科学数据中心,31个国家生物种质和实验材料资源库,98个国家野外科学观测研究站。基础研究指为了获得关于现象和可观察事实的基本原理的新知识(揭示客观事物的本质、运动规律,获得新发展、新学说)而进行的实验性或理论性研究,它不以任何专门或特定的应用或使用为目的。很大程度上,要求任何一个具体的基础研究项目的成果在30年,50年内一定要对人类生活有实在的好处,都是不合理的。对基础研究项目要计算什么投入产出比更是荒谬。但基础研究是其他研究的基石,只有重视基础研究,才能站在未来科技发展的”高地“。
  • “纳米材料治理水体复合污染的应用基础研究及工程示范”项目总结会议召开
    p   2018年1月28日,国家重点研发计划纳米科技重点专项“纳米材料治理水体复合污染的应用基础研究及工程示范”项目在惠州召开2017年度总结会议。专项指南编制专家组专家朱星教授、王琛研究员、庞代文教授及江桂斌院士、李亚栋院士等10余位专家,项目依托单位中国科学院生态环境研究中心代表及科技部高技术中心代表参加了会议。 /p p   会上,项目负责人刘景富教授及各课题负责人汇报了项目及课题2017年度研究工作,主要进展和实施成效等内容,重点汇报了项目研究成果在惠州龙溪电镀示范产业园区的应用示范,建立起处理能力1000吨/天的废水处理系统。李亚栋院士等与会专家对项目研究成果大规模应用于电镀污水处理给予了高度肯定,指出水体污染治理是我国面临的重要战略性问题,而纳米技术应用于污染水体治理有着广阔的应用前景。与会专家进一步提出项目要紧密围绕专项的总体目标和核心研究任务。希望项目要坚持以解决国家水体污染治理的重大需求为导向,围绕开发有效的水体污染治理技术的目标不断创新 从机理研究、技术研发到应用示范开展系统研究,形成较完整系统的水体污染治理策略 力争在解决国家水体污染治理方面提供有力的技术和理论支撑 各课题负责人要根据项目的总体目标,加强各课题之间的合作和资源共享。 /p p /p
  • 加强基础研究,从“评人”和“投钱”入手
    p   “我国的基础研究存在一些问题必须要改革。”在6日的科技界联组会议上,中科院院士、地球物理学家朱日祥委员争取到了一个主题发言的机会,他要说说他最关注的基础研究。他的发言很快受到不少委员的当场“点赞”。中国科学院空间科学与应用研究中心主任吴季委员也发言表示,“进一步加强由政府主导、有组织的定向基础研究”。 /p p   这几天,科技界的小组讨论中,“基础研究”一直都是热词。政府工作报告明确提出要强化基础研究和应用基础研究,更让委员们“激动”和“期待”。 /p p    strong 人才评价,从评“帽子”转为评“创新” /strong /p p   “在基础研究领域,出现了‘帽子’人才满天飞、原始创新乏力的尴尬局面。”在朱日祥看来,基础研究面临的众多问题中,人才评价体系是最亟待解决的。 /p p   更让他着急的是,最近几年,这个问题反而因为“双一流”带来的高校人才抢夺战而愈演愈烈。他表示,为了评上“双一流”,高校都在抢夺“帽子人才”,挖人的看重数量,被挖的看重待遇,这种乱象蔓延十分不利于基础研究的发展。 /p p   千人计划、青年千人计划、长江学者、优秀青年科学基金、国家杰出青年科学基金等正是被频繁提及的“帽子”。朱日祥提出,这些种类繁多的“帽子工程”扰乱了正常的学术生态,加剧了学术界的浮躁学风,不利于青年人才心无旁骛地做研究。 /p p   朱日祥认为,为了营造长效机制,国家应尽快建立以科学贡献量为核心的人才考核。他说,基础研究有很多难以预料的可能性,更要鼓励青年人才大胆探索创新。创新人才的培养不能靠大跃进,让优秀青年人才享受宽松的科研环境和探索过程才是关键。要实现这一目标,必须要把帽子品牌转向创新品牌。 /p p    strong 资金投入,从政府为主转为多元化 /strong /p p   基础研究的投入一直是各界关注的话题。政府工作报告中特别指出,要“启动一批科技创新重大项目,高标准建设国家实验室”,这让科学家们很振奋,但这背后需要大量资金投入。“钱从哪里来”一直是不少科研人员必须面对的问题。 /p p   一直以来,我国的基础研究以政府投入为主。基础研究投入多、周期长、回报慢且具有极大的不确定性,让企业和个人都望而却步。朱日祥表示,下一步应该加入一些资金投入的解决途径,比如制定相关政策,引导社会和民间资本进入基础研究,创新基础研究的结构,只有这样才有民族创新的能力。 /p p   也有委员表示,这个问题可以学习美国的基础研究投入体系,毕竟像盖茨基金会在癌症研究领域投入巨资的案例,曾经广为传播。 /p p   科技部政策法规与监督司司长贺德方也参加了当日的联组会,他表示,基础研究投入的问题,相关政策很快就会出台。下一步科技部将和地方政府建立联动投入机制,与此同时,还将在广泛调研基础上出台相关财税政策,引导企业和基金对基础研究进行投入。 /p p   就在两会召开前夕,国务院发布《关于全面加强基础科学研究的若干意见》,对许多基础研究管理中存在的“顽疾”都提出了解决方案。这让吴季对基础研究的未来充满期待,但他也表示,在强调自发性兴趣基础研究的同时,也要强调有组织的大型项目。吴季建议,加强有组织的定向基础研究。他希望,政府部门把眼光放得更长远。如果要实现科技强国,必须有科技前沿的成果,而这些成果大多是长线的。 /p p br/ /p
  • 我国化学科学发展的战略思考与建议丨战略性基础研究
    化学是一门以实验为基础的自然科学,在原子、分子、纳米等跨尺度、多层次上研究物质世界的组成、结构、性质、互作过程和演变规律。化学对整个科技领域的发展起到了强有力的支撑和推动作用,现代社会经济发展中的材料、能源、环境、生命与健康、资源与可持续发展等问题,均需要化学的理论与方法。当今很多科技创新活动面临的“卡脖子”问题的本质是化学问题,如微纳加工技术、芯片加工技术的光刻胶、特高纯化学试剂等。我国历来高度重视化学学科建设和发展,同时注重化学科学的基础研究与重大应用任务相结合,产生了诸如人工合成结晶牛胰岛素、人工合成酵母丙氨酸转移核糖核酸、青蒿素的提取等重大成果,为科技和经济社会发展作出了重要贡献。目前,我国化学人才队伍和论文数量均居世界前列,但仍然没有改变关键核心技术被“卡脖子”的局面。未来,仍需要加强化学的基础研究,加速与化学密切相关的重大科学问题和技术挑战的研究,加大化学领域的重大原创成果产出与应用,促进我国化学科学的快速发展。为此,本文在分析化学科学基本特征和领域发展历史经验的基础上,围绕我国化学科学发展的问题与挑战,结合优势与短板,提出我国化学科学的新研究架构,并提出适应新架构的对策与建议。1化学科学的基本特征1化学是一门承上启下的中心科学化学不仅是一门理解化学现象、发现化学过程的独立科学,更是一门连接物质科学和应用科学的“中心科学”(central science),其在人类认识世界、改造世界中的作用是无可替代的。其他门类的自然科学之间,以及自然科学与工程技术之间的联系都需要以化学为中间媒介。例如,自然科学中的物理科学,需要通过化学作为中介,才能更好地开展生命科学和材料科学的研究;信息工程也需要将化学的基础性知识与信息传输、转换、存储等材料加工工艺、制造过程等相结合,才能实施高水平建设。化学作为一门中心科学,并不是指化学在所有学科中最重要,而是说明化学在社会和科学系统中的多边关系和地位,是一门承上启下的学科。2化学是一门既传统又不断发展的基础科学,新的化学交叉分支不断涌现化学是创造新物质、新材料的基础科学,同时也与物理学、生物学、地理学、医学等学科相互渗透、相互促进发展。例如,化学与生物学的交叉科学问题研究一直是当代科学中一个极其重要和备受关注的领域。合成生物学、仿生化学、生物化学、酶化学和化学生物学等与生命科学密切相关的研究领域在我国越来越受到化学领域研究人员的关注和重视。又如,纳米科学与技术在纳米尺度研究和精准控制物质世界的组成、结构、性质、互作过程和演变规律,是当今最为热门的研究领域之一,几乎渗透到物质研究的各个方面。3化学是一门渗透于经济社会发展各个方面的实用科学化学已经渗透到国民经济发展和人民物质文化生活改善和提高的几乎所有方面,无论是高新尖端技术,还是国民经济发展的各种支柱性和支撑性产业,或是人们的衣食住行、生活休闲、医疗保健,无不与化学科学的发展密切相关。化学塑造了世界,在能源、材料、微电子、环境、化工、医疗等各行业领域的科技支撑作用愈发显著。根据国际化工协会联合会 2019 年发布的《全球化学工业:催化增长并解决我们的全球可持续性挑战》显示,化学工业几乎涉及所有生产行业,通过直接、间接和诱发影响为全球国内生产总值(GDP)作出了 7% 的贡献,是全球第 5 大制造业。2主要国家化学科学发展的历史经验当前,世界大国正在把构建引领未来的能力,作为科技创新的战略导向。科技和创新,已经成为大国之间争霸的主要领域,全球正面临发展格局的新演变阶段。过去 70 多年,科学及其所服务的社会发生了巨大变化,政治、经济、安全、气候等全球性问题凸显。化学作为渗透到各个领域的中心科学,尤其备受关注;世界主要国家纷纷加大投入,且积极研究化学科研资助形式是否适应当今的社会变革和科技发展趋势,更新完善化学科学发展政策,不断升级化学科学研究规划。理论研究和实际应用结合使得德国化学率先占据领先地位作为现代自然科学的重要基础,现代意义上的化学发轫于 18 世纪的欧洲,英国和法国先后成为化学的学术中心;从 19 世纪 30—40 年代开始,德国逐渐成为化学的学术中心,直到二战之前德国化学一直保持世界领先地位。1901—1939 年的共 40 位诺贝尔化学奖得主中,德国学者有 17 位,远超同期英国和法国诺贝尔化学奖学者的数量。德国化学保持世界领先地位长达 1 个世纪之久,除了其先进的教育制度、科学的教育方法和优越宽松的科研环境外,最重要的原因是德国非常重视化学的基础理论研究和实际应用研究的结合。以染料工业为例,在德国政府的支持下,于 1877 年成立了德国国立化工研究所;该研究所以有机结构理论为指导,进行煤焦油的综合利用,使德国的染料工业及制药、香料工业迅速赶超英国。产业化应用实践及其带来的经济收益使得化学基础研究的课题源源不断,基础研究成果又迅速转化应用,形成正向循环。自 2006 年起,德国政府陆续出台了“高技术战略”(High-tech Strategy),包括“纳米行动计划”“氢和燃料电池技术国家创新计划”“能源战略 2050”等,聚焦尖端技术发展领域,体现了较强的国家需求导向。在科技计划和项目管理中,德国采用分类分级管理的方式,对不同的科技计划采取不同的组织模式。德国对化学的支持嵌入在各类科技计划中,很好地体现了化学的中心地位和领域交叉的特征;其分类分级管理方式增加了项目管理的灵活性,有利于将企业、高校、科研机构等更多主体纳入管理中来,更好地促进了基础研究与实际应用的结合。长期稳定支持造就了美国成为全球的化学研究中心二战之前,美国一直以应用研究为主,而基础研究主要依靠欧洲。二战以后,美国逐渐认识到,依靠他国输入新知识在科技领域不可能长期发展。以 1945年《科学:无止境的前沿》为发端,美国政府一直在有计划、持续、高强度地支持基础科学研究;由此,美国化学的基础研究在世界上占有绝对的优势和稳固的地位,逐渐成为全球的化学研究中心。美国联邦政府通过采用合同制、科研资助制等方式来确定研究方向,从而影响和引导科研机构和大学开展化学研究的内容,以此来体现国家意志,达到用经济手段控制和指导国家科技发展的目的[8]。美国政府以重大科学项目为依托,遴选最优秀的科研骨干,开展高水平的持续攻关,有效推动了化学的快速崛起。例如,在“曼哈顿计划”的牵引下,美国芝加哥大学的化学团队在著名化学家 Glenn Theodore Seaborg 带领下,为制备超铀、分离钚、诱导铀核裂变等提供了决定性的技术支持。过去 80 年,美国及其培养的化学家获得了约 2/3 的诺贝尔化学奖,彰显了美国成为世界化学创新源头的地位。进入 21 世纪前后,美国又密集部署了多项战略性研究计划,如 “国家纳米计划”“材料基因组计划”等,有些通过立法保证稳定支持。例如,2000 年美国开始实施“国家纳米科技行动(NNI)计划”;到 2020 年,美国政府先后 6 次发布“国家纳米科技研究战略”,仅联邦政府就累计投入 280 亿美元。持续的投资反映了美国对创新战略的优先支持,并大力促进了美国化学研究率先进入学科交叉领域并引领全球的发展方向。美国体制决定了其科技计划制定具有如下特点:有效的分权与制衡。各联邦部门以国家目标和优先领域为指导,在白宫的协调下,编制本部门的研发计划。2.科技计划具有较强的连续性和稳定性。跨部门研发计划通常具有较长的时间周期,从而确保了联邦研发计划的总体稳定。
  • 基础研究的乐趣是满足好奇心——访华南理工大学自旋科技研究院蒋尚达
    1945年,物理学家Zavoisky首次提出了检测电子顺磁共振信号的实验方法,经过70多年的发展,电子顺磁共振(EPR)技术已经在物理学、化学、生物与医学等许多领域获得了越来越广泛的应用。我国的电子顺磁共振研究起步较早,卢嘉锡、裘祖文、徐元植等教授为该领域在我国的发展付出了巨大的努力。浙江大学徐元植教授从1960年开始从事电子顺磁共振波谱学研究,是我国在该领域研究的开拓者之一。为促进我国电子顺磁共振学科的发展,徐先生在浙江大学教育基金会设立顺磁共振发展专项奖励基金。华南理工大学自旋科技研究院的蒋尚达教授在使用电子顺磁共振技术研究磁性分子量子相干性方面做出了创新性的贡献,荣获2021年度“徐元植顺磁共振波谱学优秀青年奖”。近期,蒋尚达教授接受了仪器信息网的采访,分享了他的科研经历与科研成果,以及他利用电子顺磁共振仪器开展的一系列工作。远离“舒适圈” 填补知识空白蒋尚达在博士阶段主要从事单分子磁体合成方面的研究,但苦于缺乏先进的表征手段去研究磁性分子的电子结构,因此博士毕业后他并没有继续博士阶段更为熟悉的研究,而是选择门槛较高、难度更大的电子顺磁共振技术作为博士后的主要研究内容。蒋尚达就这样进入了顺磁共振研究的研究领域。蒋老师起初并不熟悉顺磁共振的相关知识,花费大量时间阅读基础书籍、查找原始文献,巩固基础知识,后来深入了解搭建EPR谱仪的基本原理和技术方案,再到使用商用顺磁共振仪器开展科学研究。从频域到场域再到时域顺磁共振,从“EPR小白”到“优秀青年专家”,顺磁共振的相关技术,蒋尚达都能够娓娓道来。而正是在理论知识足够扎实的基础上,才有了后面相对“平坦”的科研之路。但当他已经清晰掌握系综电子顺磁共振波的相关技术和研究范式之后,蒋尚达再次选择退出“舒适圈”,继续去探索新的研究方向:光探测单分子顺磁共振。蒋尚达提到,现在这个研究方向是基于几年的调研工作,经历了选定-推翻-再选定这样不断反复的过程最终选择出来的,创新的科研工作不会是凭空想出来的,是需要通过大量阅读文献、长期积累的过程。这无疑是一条艰难的道路,但对蒋尚达来说却是极具吸引力并充满乐趣的。九篇文章申基金 不靠数量靠深度当被问到自己引以为豪的科研成果时,蒋尚达戏称自己的文章少的可怜,但提到每篇文章都是自豪的语气。他分享了发表在npj Quantum Information上的工作,他和课题组成员使用脉冲激光将富勒烯分子激发至三线态,并在该三线态上制备了三能级叠加态,进而观测到新奇的量子相位干涉现象。蒋尚达说,这篇工作具有比较强的代表性,因为这是他们课题组在多能级磁性分子中观测到新奇物理现象的第一篇工作。与传统的量子比特不同,磁性分子往往具有更多的可调控能级,因此一个磁性分子的希尔伯特态空间也就更大,具有更多的量子相位,物理内涵也就更加丰富,量子拓展性更强,但其缺点是量子相干性较差。蒋尚达的研究团队提出化学分子的笼状结构保护方案可以很好的延长磁性分子的量子相干时间,比较典型的分子就是内嵌富勒烯。例如蒋尚达研究团队报道的Gd2@C79N分子的自旋基态为S=15/2,其相干时间可达5微秒,是可以观测到量子相干行为的最高自旋分子。此外,蒋尚达团队还搭建了五族元素内嵌富勒烯分子的合成和纯化装置,他们制备的N@C60分子浓度可达5000 ppm,相干时间在液氮温度下则有上百微秒,是目前报道的最长相干性的高自旋分子(S=3/2)。基于这类高自旋分子的较长量子相干时间,蒋尚达团队还发现了电子能级中的几何量子相位,并实现了具有纠错功能的量子算法演示。蒋尚达的研究成果可以用“少而精”来概括。今年3月,他参加国家自然科学基金委员会优秀青年科学基金的结题答辩,专家对蒋尚达的研究工作评价很高,认为他的研究更加深入、透彻和系统。蒋尚达在该项课题中仅有9篇文章,但他提出的笼状结构保护磁性分子量子相干性的学术思想,以及高自旋分子拓展量子态空间的研究思路极具创新性。经过评审专家的考评,蒋尚达的优秀青年基金项目结题被评为优秀。蒋尚达说:“做基础研究的最大乐趣就是满足求知欲和好奇心。”把每一个课题都研究透彻,进行更深层次的挖掘,确保每一篇文章的产出都能够清晰地说明一个问题,而非单纯的追求发文速度与数量。当被问及科学研究的初心时,蒋尚达说:“我做科研的初心是为了填补科学认知的空白。”电子顺磁共振波谱仪是实验室里的“生命线”蒋尚达之前在北京大学工作时使用的是布鲁克E580电子顺磁共振波谱仪,现在来到了华南理工大学自旋科技研究院,又采购了一台E580,由于疫情原因暂未安装,对于课题组来说,电子顺磁工作波谱仪就是实验室里的“生命线”。“应该说,我们课题组是E580的重度使用客户”,蒋尚达在采访中这样说道。布鲁克的顺磁共振谱仪开发也有二十余年了,特别是脉冲式顺磁共振波谱仪,国内外的用户很多,这是比较成熟的商业化产品,设置的应用场景能够满足99%以上的用户对于仪器的使用。以E580为例,一个主要功能是进行电子-电子双共振实验,E580对于该类测试已经做的比较成熟了。但是对于蒋尚达而言,课题组研究则会更多的关注涉及商业产品之外一些其他的应用,例如外部脉冲电场的使用、复杂任意波形的应用、多频率、高带宽谐振腔的设计等等。蒋尚达提到,自己的团队对于仪器内部的功能已经非常的熟悉,当需要对仪器功能进行进一步开发时,常常会与布鲁克国内外的技术人员沟通,布鲁克的工作人员响应非常积极,在联系过程中双方建立了深厚的友谊。在交流过程中,布鲁克工作人员会深度详细地介绍仪器的拓展性,蒋尚达团队则基于这些介绍,对其进行新功能的开发。电子顺磁共振技术应用领域及未来发展前景电子顺磁共振技术在化学、材料、生命科学中的应用十分广泛:在无机化学反应领域,电子顺磁共振可以很好的研究研究产物微观电子态,南京大学王新平教授、大连化物所叶生发教授、国科大的李剑锋教授在该领域都有很好的研究成果;在有机化学领域,顺磁共振技术可以研究自由基的机理,武汉大学雷爱文教授在该方向有很好的成果;在材料科学中的应用,华东师范大学胡炳文教授开辟了很重要的方向,探究锂电池里氧化还原反应的机理;在生物领域,通常使用脉冲式电子顺磁共振研究生物大分子的构象,清华大学的方显杨教授做出了重要的研究;蒋尚达教授的研究方向也是基于脉冲电子顺磁共振技术的重要应用,即研究磁性分子作为电子自旋载体在量子信息科技中的应用。关于电子顺磁共振技术的未来发展,蒋尚达认为自旋微观态在化学反应和催化中的作用有较大的发展潜力,这涉及到原位电子顺磁共振波谱与超快光谱等的联用。蒋尚达认为,电子顺磁共振技术具有不可替代性和技术门槛较高的特点,尽管很多人需要该技术,但能够熟练使用该技术的科学工作者较少。华南理工大学自旋科技研究院就是一个具有交叉学科背景的新型科研创新平台,成立于2021年。研究院以磁性分子为主要研究对象,探索自旋相关的化学反应和物理效应,突破单分子自旋操控和读出技术,发展自旋相关量子材料和器件,开发相关分子诊疗技术与药物。研究院涵盖自旋化学、自旋操控、自旋材料与器材、自旋生物医学等多个研究方向,旨在解决自旋国际科学前沿的重大科学问题,研发自旋关键技术,建设国际自旋创新交流平台。后记:蒋尚达要求学生在选择的研究领域中理解应当力求深刻,只有在自己的小方向上的认知超过了导师才算一名合格的研究生。对待每一个学生,课题团队都会对学生进行非常详细地仪器培训,要求学生们在较高的科学素养基础上,了解研究的目的,清楚实验设置的含义,预设有可能出现的问题以及对应的解决方案。蒋尚达分析道:对待在研究上没有锐气的学生,应当给予鼓励和帮助,和他共同解决困难,找到新的方向;对待相对浮躁的学生,则应要求他做充分的文献调研,将不断涌出的新想法成熟化。蒋尚达说:学生应当打好基础,切忌盲目追求热点,务必要把研究做得更有深度!
  • 财政部、税务总局发文明确企业投入基础研究税收优惠政策
    财政部 税务总局关于企业投入基础研究税收优惠政策的公告财政部 税务总局公告2022年第32号为鼓励企业加大创新投入,支持我国基础研究发展,现就企业投入基础研究相关税收政策公告如下:一、对企业出资给非营利性科学技术研究开发机构(科学技术研究开发机构以下简称科研机构)、高等学校和政府性自然科学基金用于基础研究的支出,在计算应纳税所得额时可按实际发生额在税前扣除,并可按100%在税前加计扣除。对非营利性科研机构、高等学校接收企业、个人和其他组织机构基础研究资金收入,免征企业所得税。二、第一条所称非营利性科研机构、高等学校包括国家设立的科研机构和高等学校、民办非营利性科研机构和高等学校,具体按以下条件确定:(一)国家设立的科研机构和高等学校是指利用财政性资金设立的、取得《事业单位法人证书》的科研机构和公办高等学校,包括中央和地方所属科研机构和高等学校。(二)民办非营利性科研机构和高等学校,是指同时满足以下条件的科研机构和高等学校:1. 根据《民办非企业单位登记管理暂行条例》在民政部门登记,并取得《民办非企业单位(法人)登记证书》。2. 对于民办非营利性科研机构,其《民办非企业单位(法人)登记证书》记载的业务范围应属于科学研究与技术开发、成果转让、科技咨询与服务、科技成果评估范围。对业务范围存在争议的,由税务机关转请县级(含)以上科技行政主管部门确认。对于民办非营利性高等学校,应取得教育主管部门颁发的《民办学校办学许可证》,记载学校类型为“高等学校”。3. 经认定取得企业所得税非营利组织免税资格。三、第一条所称政府性自然科学基金是指国家和地方政府设立的自然科学基金委员会管理的自然科学基金。四、第一条所称基础研究是指通过对事物的特性、结构和相互关系进行分析,从而阐述和检验各种假设、原理和定律的活动。具体依据以下内容判断:(一)基础研究不预设某一特定的应用或使用目的,主要是为获得关于现象和可观察事实的基本原理的新知识,可针对已知或具有前沿性的科学问题,或者针对人们普遍感兴趣的某些广泛领域,以未来广泛应用为目标。(二)基础研究可细分为两种类型,一是自由探索性基础研究,即为了增进知识,不追求经济或社会效益,也不积极谋求将其应用于实际问题或把成果转移到负责应用的部门。二是目标导向(定向)基础研究,旨在获取某方面知识、期望为探索解决当前已知或未来可能发现的问题奠定基础。(三)基础研究成果通常表现为新原理、新理论、新规律或新知识,并以论文、著作、研究报告等形式为主。同时,由于基础研究具有较强的探索性、存在失败的风险,论文、著作、研究报告等也可以体现为试错或证伪等成果。上述基础研究不包括在境外开展的研究,也不包括社会科学、艺术或人文学方面的研究。五、企业出资基础研究应签订相关协议或合同,协议或合同中需明确资金用于基础研究领域。六、企业和非营利性科研机构、高等学校和政府性自然科学基金管理单位应将相关资料留存备查,包括企业出资协议、出资合同、相关票据等,出资协议、出资合同和出资票据应包含出资方、接收方、出资用途(注明用于基础研究)、出资金额等信息。七、非营利性科研机构、高等学校和政府性自然科学基金管理单位应做好企业投入基础研究的资金管理,建立健全监督机制,确保资金用于基础研究,提高资金使用效率。八、本公告自2022年1月1日起执行。特此公告。财政部 税务总局2022年9月30日
  • 重磅!基础研究税收优惠政策发布|财政部&税务总局官宣
    关于企业投入基础研究税收优惠政策的公告财政部 税务总局公告2022年第32号  为鼓励企业加大创新投入,支持我国基础研究发展,现就企业投入基础研究相关税收政策公告如下:  一、对企业出资给非营利性科学技术研究开发机构(科学技术研究开发机构以下简称科研机构)、高等学校和政府性自然科学基金用于基础研究的支出,在计算应纳税所得额时可按实际发生额在税前扣除,并可按100%在税前加计扣除。   对非营利性科研机构、高等学校接收企业、个人和其他组织机构基础研究资金收入,免征企业所得税。   二、第一条所称非营利性科研机构、高等学校包括国家设立的科研机构和高等学校、民办非营利性科研机构和高等学校,具体按以下条件确定:   (一)国家设立的科研机构和高等学校是指利用财政性资金设立的、取得《事业单位法人证书》的科研机构和公办高等学校,包括中央和地方所属科研机构和高等学校。   (二)民办非营利性科研机构和高等学校,是指同时满足以下条件的科研机构和高等学校:   1.根据《民办非企业单位登记管理暂行条例》在民政部门登记,并取得《民办非企业单位(法人)登记证书》。   2.对于民办非营利性科研机构,其《民办非企业单位(法人)登记证书》记载的业务范围应属于科学研究与技术开发、成果转让、科技咨询与服务、科技成果评估范围。对业务范围存在争议的,由税务机关转请县级(含)以上科技行政主管部门确认。   对于民办非营利性高等学校,应取得教育主管部门颁发的《民办学校办学许可证》,记载学校类型为“高等学校”。   3.经认定取得企业所得税非营利组织免税资格。   三、第一条所称政府性自然科学基金是指国家和地方政府设立的自然科学基金委员会管理的自然科学基金。   四、第一条所称基础研究是指通过对事物的特性、结构和相互关系进行分析,从而阐述和检验各种假设、原理和定律的活动。具体依据以下内容判断:   (一)基础研究不预设某一特定的应用或使用目的,主要是为获得关于现象和可观察事实的基本原理的新知识,可针对已知或具有前沿性的科学问题,或者针对人们普遍感兴趣的某些广泛领域,以未来广泛应用为目标。   (二)基础研究可细分为两种类型,一是自由探索性基础研究,即为了增进知识,不追求经济或社会效益,也不积极谋求将其应用于实际问题或把成果转移到负责应用的部门。二是目标导向(定向)基础研究,旨在获取某方面知识、期望为探索解决当前已知或未来可能发现的问题奠定基础。   (三)基础研究成果通常表现为新原理、新理论、新规律或新知识,并以论文、著作、研究报告等形式为主。同时,由于基础研究具有较强的探索性、存在失败的风险,论文、著作、研究报告等也可以体现为试错或证伪等成果。   上述基础研究不包括在境外开展的研究,也不包括社会科学、艺术或人文学方面的研究。   五、企业出资基础研究应签订相关协议或合同,协议或合同中需明确资金用于基础研究领域。   六、企业和非营利性科研机构、高等学校和政府性自然科学基金管理单位应将相关资料留存备查,包括企业出资协议、出资合同、相关票据等,出资协议、出资合同和出资票据应包含出资方、接收方、出资用途(注明用于基础研究)、出资金额等信息。   七、非营利性科研机构、高等学校和政府性自然科学基金管理单位应做好企业投入基础研究的资金管理,建立健全监督机制,确保资金用于基础研究,提高资金使用效率。   八、本公告自2022年1月1日起执行。   特此公告。 财政部 税务总局 2022年9月30日
  • 两会聚焦科技基础设施建设见成效,赛默飞助力顶级研究成果
    科技部部长王志刚:“中国科技创新有“三步走”战略,到2020年进入创新型国家,到2035年左右进入创新型国家前列,到2050年要成为世界科技强国。” 3月14日,据CCTV2报道,提出要深入实施创新驱动发展战略,特别强调加强重大科技基础设施及科技创新中心的建设,从而保障并提升国家重大科技的基础研究。 新闻中提到,近期国际学术期刊《Nature》发表的《Proteomics Identifies Therapeutic Targets of Early-tage Hepatocellular Carcinoma》文章引起学术界广泛关注。 该研究由军事科学院军事医学研究院、凤凰中心-国家蛋白质科学中心(北京)、蛋白质组学国家重点实验室贺福初院士团队、钱小红教授团队,与复旦大学附属中山医院樊嘉院士团队等共同完成,将有助于目前临床上认为的早期肝细胞癌患者进一步分类诊治。新闻中, 研究人员强调:“这一突破背后离不开整个科研团队软硬件设施的提升,其中高分辨质谱仪就是设备升级的典型代表。”工欲善其事必先利其器,赛默飞助力中国蛋白质组学研究驶入快车道新闻中提到及展现的就是赛默飞超高分辨率质谱仪Orbitrap系统,国家蛋白质科学研究中心北京(凤凰中心)拥有高分辨质谱涵盖赛默飞Orbitrap Fusion Lumos、Fusion、QE HF-X、QE-HF、QE Plus、QE多个型号。 新闻中,研究人员告诉记者:“没有这些设备的话,我们现在还达不到这么大规模临床样本的数据产出,之前一例样本要做2-3天,有国家大科学基础设施的支撑,一个样本能达到2-3个小时。2014以来,中国蛋白质组计划启动后,5-600万元的质谱仪,这里就有20多台,对比曾经使用的老设备,变化太大。完全不在一个量级,产出也好很多。”单个样品从2-3天到2-3个小时的跨越,正是运用Orbitrap高通量、高分辨质谱技术,经过科研工作者的不断探索,带给蛋白质组学分析的进展。越来越多国内外的蛋白质组学分析工作者的共同选择,铸就了Orbitrap成为蛋白质组学金标准;而广泛的技术通量提升,也帮助中国蛋白质组学研究驶入快车道。 赛默飞科研解决方案,助力中国科技发展,成就创新型国家赛默飞优势的技术与完善的科研解决方案,助力重大科技发展,为国家建设、高校学科改革、完善科研重大基础设施、建设科技创新平台、成就创新型国家等诸多科技发展进程上,提供有力的技术支撑。无论是助力中国蛋白质组学计划、离子色谱IC(URG)技术助力北极科考、推动健康医疗中心、还是共建学科平台助力建设,都有赛默飞的身影;创新的技术、有针对性的科研细分领域解决方案,极大程度的帮助生命科学、医学、药学、农林、食品、环境等研究领域用户实现新的科研成就;全流程解决方案,涵盖丰富的产品组合和完善的研究工作流程,更是极大程度的助力科学家解决研究面临的前处理、样品分析、数据处理等诸多挑战,不断实现突破。 赛默飞作为科学服务领域世界,携手客户,让世界更健康、更清洁、更安全。同时,也愿意与中国科研工作者一起,完成科技强国的中国梦!
  • 习近平:加强基础研究,实现高水平科技自立自强
    基础研究处于从研究到应用、再到生产的科研链条起始端。习近平总书记在中央政治局第三次集体学习时指出:“加强基础研究,是实现高水平科技自立自强的迫切要求,是建设世界科技强国的必由之路。”习近平总书记的重要论述深刻阐明了加强基础研究的重大意义。作为国家战略科技力量的重要组成部分,高水平研究型大学要始终胸怀“国之大者”,坚持把加强基础研究作为重大使命,强化创新策源功能,努力攀登世界科技高峰,为夯实科技自立自强根基贡献高校力量。加强高水平有组织科研。习近平总书记指出:“世界已经进入大科学时代,基础研究组织化程度越来越高,制度保障和政策引导对基础研究产出的影响越来越大。”我国高校要充分发挥优势,加快科研组织模式和范式变革,全面加强创新体系建设,在服务国家战略和区域经济社会发展中提升高水平自主创新能力。一是坚持目标导向和自由探索相结合。凝练关键科学问题是基础研究高质量发展的前提。提出一个问题往往比解决一个问题更重要,因为提出新的问题就意味着新的可能性。高校既要鼓励支持科研人员立足科学前沿、发现新的重大问题,也要鼓励支持他们把科技前沿与重大需求前景结合起来,从重大应用研究中凝练高水平基础科学问题,完善问题聚焦、任务耦合、路径协同、成果集成的联合攻关机制,持续提升基础研究整体效能。二是优化基础学科建设布局。基础学科是所有学科的基石,是高校发挥基础研究主力军作用的基础载体。既要给予数学、物理、化学、生物学等基础学科更多支持,深耕细作、倾心浇灌,激活传统学科潜能,孵化新兴前沿学科,也要推动基础学科与应用学科协调发展,鼓励跨学科研究,促进学科交叉融合,不断开辟新领域新赛道,构筑学科发展新优势。三是强化国家战略科技力量建设。国家战略科技力量代表国家科技创新的最高水平,是国家创新体系的中坚力量,对于我国进入创新型国家前列、建设世界科技强国至关重要。高校要积极参与国家实验室建设,推进全国重点实验室重组工作,建好国家自然科学基金基础科学中心。聚焦科研范式变革超前部署,大力推进工具软件迭代、方法算法革新、模型标准建构和高端仪器装备研制等基础性研究,加大大科学装置、大数据平台、检测分析平台等设施布局建设力度。营造良好创新生态。习近平总书记强调:“要深化科技体制改革,大力培育创新文化,健全科技评价体系和激励机制,为创新人才脱颖而出、尽展才华创造良好环境。”推动基础研究实现高质量发展,离不开良好创新生态的孕育滋养。要不遗余力打造引领、原创、开放、包容的学术生态和制度环境,打通创新链条、集聚创新要素,让科学家心无旁骛做研究、大胆创新攻难关。一是弘扬科学家精神。科学家精神是科技工作者在长期科学实践中积累的宝贵精神财富,科学成就的取得离不开科学家精神的支撑。我们要传承弘扬老一辈科学家以身许国、心系人民的光荣传统,大力宣传新涌现的先进典型,引导科技工作者涵养卓越自主的胆气、寂寞深究的静气、团结协作的大气,追求真理、勇攀高峰,弘扬优良学风,把论文写在祖国大地上。二是健全科技评价体系。有什么样的评价体系,就会有什么样的科研活动。要着力推行代表性成果评价制度,摒弃简单量化的评价模式,健全以创新能力、质量、实效、贡献为导向的科技人才评价体系,不断完善评价方法。完善长周期评价制度,加强对长期研究项目、重点团队和研究基地的稳定支持,形成鼓励潜心创新的良好氛围。三是优化创新制度环境。基础研究往往面临着方法不确定、失败率比较高的问题,营造宽容宽松的研究环境显得更为重要。完善政府、企业、社会对基础研究的多元投入和风险分担机制,发挥好科技领军企业“出题人”“答题人”“阅卷人”作用。通过设立校企联合实验室、打通人才旋转门、成立科创母基金等,实现难题共答、平台共建、资源共聚、风险共担、成果共享。培养造就基础研究拔尖人才。习近平总书记强调:“加强基础研究,归根结底要靠高水平人才。”拔尖人才是基础研究最关键的战略资源、最核心的基础支撑、最强劲的驱动力量。高校在培育人才、集聚英才方面承担着重要责任,要为国家为社会源源不断培养造就拔尖人才,让更多基础研究拔尖人才竞相涌现。一是提升人才自主培养能力。基础研究人才培养周期长,须花大气力完善招生培养联动、本硕博贯通的全周期全链条培养体系。近年来,复旦大学厚植基础学科人才培养沃土,高质量推进“基础学科拔尖学生培养计划”“强基计划”等,构建“高精尖缺”研究生教育格局,有效提升了自主培养拔尖人才的能力。今后,要进一步探索超常规、长链条的基础研究未来顶尖人才培养模式,对有潜质学生早发现早培育,推动教育链与创新链、人才链深度融合。二是努力汇聚天下英才。坚持引育并举,广泛延揽战略人才和青年英才,围绕顶尖人才建设创新平台和团队。抓住国际人才转移“窗口期”,提高精准荐才引才能力,千方百计引进全球优秀人才。同时,尊重人才成长规律和科研活动规律,根据人才发展不同阶段需要和个性化需要,全周期、全方位培育人才,落实资源跟着人才走,让人才引得进、长得快、干得好。
  • 中国基础研究投入年均增幅达16.9%
    中国科技部部长王志刚27日在北京表示,中国基础研究投入快速增长,年均增幅达到16.9%,基础研究占研发投入比重首次超过6%。  中国国务院新闻办公室27日在北京举行新闻发布会,介绍为全面建成小康社会提供强大科技支撑有关情况。王志刚在会上表示,中国基础研究水平大幅提升,化学、材料、物理等学科处在世界前列,取得了一批以量子通信、铁基超导、干细胞为代表的重大原创性科技成果。  王志刚指出,中国科技人才队伍不断发展壮大,2019年全社会研发人员总量达到712.93万人,是2015年的1.3倍。企业创新主体地位进一步增强,研发经费已占全国总额的76.4%,是科技投入的主体 技术合同及成交额占全国总额的91.5%,是技术输出的主体。  王志刚表示,中国涌现出一批创新型领军企业,科技型中小企业、高新技术企业均突破20万家。高校、科研院所创新活力进一步增强,2019年,3450家高校、科研院所签订技术合同近42万项,合同金额达到940亿元人民币。  科技部战略规划司司长许倞亦表示,经过多年努力,中国基础研究整体水平和国际影响力大幅提升。中国成为全球高质量科技论文第二大贡献国。在材料科学、化学、工程技术、数学、物理学等12个学科,中国高水平学术论文被引次数进入世界前两位。  许倞指出,中国持续推进建设了五百多家国家重点实验室,布局了13个国家应用数学研究中心,优化调整形成20个国家科学数据中心、31个国家生物种质和实验材料资源库、98个国家野外科学观测研究站,这些科研基础条件和基础设施建设,为国家科学研究奠定了很好的基础。  在引导有优势的地区创新发展方面,王志刚表示,中国积极推动区域创新高地建设,鼓励有条件的区域率先实现创新驱动,积极发挥21个国家自主创新示范区、169家国家高新区的辐射带动作用。高新区内,企业研发投入占全国企业总投入的50%,创造的GDP占全国的比重超过12%,人均劳动生产力是全社会的3倍,万元增加值综合能耗是全社会平均水平的2/3。
  • 西藏重点实验室初具规模 特色研究成果显著
    西藏冰湖灾害与水资源重点实验室是自治区重点实验室之一,近年来该实验室科技基础条件平台建设稳步推进,取得了《西藏自治区冰湖灾害防治规划》等一系列的科研成果。下图为实验室工作人员在进行冻融试验。   作为中国天文界在西藏发展大科学装置的一个重要实验平台,西藏自治区——中国科学院联合天体物理重点实验室成立一年多来,已逐渐开始在大质量恒星形成、超新星遗迹、银河系大尺度结构等相关学科的研究和发展方面发挥出了重要作用,同时带动了西藏大学在射电天文、机电、通讯、控制等领域交叉学科的发展,为推动全区科技创新体系建设等方面发挥出积极作用。   从目向星辰的天体实验室,到检测细胞的马铃薯实验室,还有兽药实验室、藏区青稞生物学与育种实验室等与我区农牧业息息相关的特色实验室,如今一大批国家和自治区重点实验室在我区经济社会发展中正发挥着越来越重要的作用。   近年来,通过制定《西藏自治区重点实验室管理办法(试行)》、《西藏自治区工程技术研究中心管理办法(试行)》,增加专项经费投入,进一步完善重点实验室建设和运行管理,加强人才团队建设,促进实验室开放运行,加大优势科技资源的整合力度,发挥重点实验室平台作用。自治区级重点实验室在科学研究、人才培养、合作交流、资源整合、提高自主创新能力等方面取得了较大进展和可喜成绩。   重点实验室初具规模 特色研究成果显著   自治区重点实验室是区域科技创新体系的重要组成部分,是组织高水平基础研究和应用基础研究、聚集和培养优秀科技人才、开展高水平学术交流、科研装备先进的重要基地。目前,包括西藏自治区——中国科学院联合天体物理重点实验室在内,我区已建设重点实验室(工程技术中心)19个,其中自治区级重点实验室9个,自治区级工程技术中心4个,区院共建实验室4个,省部共建实验室2个,此外在建自治区级重点实验室8个。   2010年至今,自治区科学技术厅安排重点实验室建设专项投入1600万元,调动依托单位和主管部门的配套投入,重点实验室环境和布局得到进一步优化。通过资源整合和优化,科学仪器设备数量、质量、水平和档次都有较大提高,特别是一批大型仪器设备的添置,为实验室发展提供了有力的保证。   重点实验室紧紧围绕我区经济社会和科技发展需求,突出自身优势,不断调整凝练实验室研究方向和目标,积极承担国家和自治区科研任务。坚持应用基础研究定位,形成了宇宙线观测、环境监测、高山病防治、高原大气环境、高原生态环境、藏药筛选与评价、藏医药与高原生物、高寒生态学与生物多样性等一批特色研究方向。   强化创新研究队伍 提高科研学术水平   各实验室在建设过程中,始终将队伍建设和人才培养放在所有工作的突出位置,营造宽松和谐、学术创新气氛浓厚的研究环境,充分发挥各自优势,引进凝聚优秀人才,培养应用研究和成果转化人才。目前,我区各重点实验室汇聚正高职称人员近30人,博士20余人,硕士20余人。   重点实验室在建设运行过程中,十分重视开展国内外交流和合作,通过凝聚特色、优势互补、强强联合、短期出国进修和培训、合作研究、参加国际国内学术会议和讲座等多种形式,加强与国内著名高校和研究所以及世界一些知名大学和研究机构的合作与交流,及时了解和掌握有关领域的国际前沿研究动态和最新进展。   创新运行管理机制 重点实验作用初显   各重点实验室积极创新运行机制和管理模式,在建设与运行管理中,按照 “开放、流动、联合、竞争”的基本要求,探索优势学科联合、优秀人才集中、仪器设备统一管理、项目课题分级负责、管理责任明确到人、开放共享的运行管理模式,实行实验室主任负责制、学术委员会评审制,建立和完善开放研究机制、人才引进培养机制、激励分配机制、设备开放共享机制、成果转移机制和管理联席会议机制,制定和完善岗位责任制、考核和考勤制度、仪器设备档案管理制度等一系列的规章制度。
  • 自然资源部发布5大领域69项重要基础研究方向,涉及“天空地网”智能化监测技术
    7月2日,为落实党中央、国务院关于加强基础研究工作的有关要求,充分发挥基础研究对全面提升自然资源领域高质量发展的源头供给和引领作用,促进2035年建成科技强国战略目标的实现,自然资源部印发《关于加强自然资源领域基础研究的若干举措》的通知。此通知发布了自然资源领域重要基础研究方向,共5大领域64项研究方向,分别是:地质矿产领域8项研究内容、海洋极地领域14项研究内容、测绘地理信息与调查监测领域19项研究内容、国土空间规划与土地可持续利用领域18项内容、生态保护修复10项内容,其中,包括海洋自主观监测模式与预测预警,空-天-地-海-底的多要素立体观测网关键技术,“天空地网”协同的自然资源一体化智能化监测监管,机载、星载高光谱激光雷达系统,生态状况与碳汇监测装备与软件等。研究提出以下举措:一、优化突出国家战略需求导向的基础研究任务布局聚焦战略性矿产资源成矿规律与深地资源勘探开采、深海深渊系统认知与海洋极地资源环境安全保障、智能化测绘与地理信息安全、土地系统科学与国土空间数智治理、山水林田湖草沙生命共同体理论与资源资产核算、土地退化与防治、生态系统安全与保护修复、地质和海洋灾害预警与自主模式等自然资源重要基础研究方向,面向重大应用场景,强化战略导向的体系化基础研究,提供关键理论和方法支撑。鼓励学科交叉融合,系统提升我国地球系统科学认知水平,逐步构建原创性自然资源理论体系。突破自然资源核心技术、科研仪器、关键装备与软件中的基础原理问题,为变革性、原创性、颠覆性技术突破提供源泉。二、强化自然资源科技基础性工作和重大科学工程建设基于自然禀赋特征,依托资源、生态、海洋、林草等领域野外科学观测研究站,按统一指标、技术、标准的原则,拓展优化代表性、典型性观测研究站和本底观测场的布局,支持业务观测站网通过升级改造提升服务基础研究的功能,强化山水林田湖草沙等多要素、长时序定点综合观测和站网建设。鼓励建立自然资源观测研究站等重大科技基础设施联盟。推进实施自然资源重大科学工程、基础性工作和科学考察专项。三、加强自然资源科学数据和样品的共享利用自然资源领域科学数据共享服务平台或样品馆要发布自然资源科学数据分类分级和数据、样品汇交标准指南,动态更新数据及样品目录清单,研制高精度、长时序的系列基础数据集并提升共享服务水平,完善用户评价反馈与数据使用权益保护机制。科技项目承担单位建立汇交监督考评和汇交数据质量把控机制,向自然资源各领域科学数据共享服务平台或样品馆有序汇交科学数据和样品,优先推荐汇交完整、质量高的项目负责人申报科技计划项目。鼓励科研人员依托平台研制发布专题数据集,研编系列基础图件、图集、志书等产品。四、培养造就基础研究领军人才支持一批自然资源部高层次科技创新领军人才在自然资源重大基础研究与业务实践的融合中,担当领衔重点攻关任务,培养造就一批基础研究战略科学家。在自然资源领域基础研究重大战略、重大规划咨询和重大任务实施中,加大对青年科技人才的使用,培养领军人才。鼓励充分利用“科教融合”平台和政策,给予承担国家重点研发计划等专项任务的优秀青年科学家单列招生指标,培养后备人才队伍。五、完善支持基础研究人才潜心研究的评价考核机制科学建立长周期、低频次、差异化的评价考核机制。应用基础研究项目重点评价解决自然资源领域事关国家经济社会发展和国家安全需求的关键科技问题的效能和应用价值。基础研究项目重点评价新发现、新方法、新规律的原创性科学价值,注重评价代表性成果水平。鼓励有条件的单位实施基础研究科技人才年薪制。优化实验技术人才等基础研究支撑人员的考核机制,支持凭技能提升待遇。建立对自由探索和颠覆性创新活动的容错机制。六、发挥科技创新平台的引领作用加快创建自然资源领域全国重点实验室,完善自然资源部重点实验室建设布局,联合企业共建实验室,探索部省共建新型研发机构,落实科技创新平台“科研特区”政策。围绕重要应用场景,定期发布关键科技问题攻关目录,鼓励国家和部级重点实验室联合优势研究力量联合攻关,定期发布基础研究成果。七、建立目标导向与需求导向相结合的选题机制围绕国家战略、资源能源安全和经济社会高质量发展重大需求,形成自上而下的自然资源目标导向和自下而上的科学实践需求导向相结合的上下联动科学问题凝练机制。定期发布选题榜单,动态调整,滚动更新,揭榜挂帅、持续攻关。鼓励科研人员独立提出科学问题和科学思想,加大支持非共识和颠覆性项目。八、构建网络化科研组织模式以基础研究重大任务为牵引,实施首席科学家负责制,发挥自然资源各创新平台和人才协同优势,统筹科研院所、高校、应用单位和高科技企业,组建开放、流动、包容、灵活、有弹性的任务协同攻关研究团队,开展有组织体系化的基础研究。围绕重点领域方向和重大科学问题,支持建立课题组群、实验室群,提升体系化研究能力。九、发展需求-数据-知识驱动的科研范式以自然资源数据为基础,以专业领域知识为引导,以地球系统模拟为场景,推动大数据、人工智能、商用密码等先进技术在自然资源系统性复杂性问题研究上的创新应用,催生新的自然资源研究方向,提升自然资源创新效能。十、积极融入全球基础研究创新网络推进实施深时数字地球、海洋负排放、深海典型生境、海洋与气候无缝预报等国际大科学计划,鼓励积极参与化学地球、国际大陆科学钻探计划(ICDP)、国际大洋发现计划(IODP)等重要国际大科学计划。鼓励创建自然资源领域国际性科技组织、联合实验室与研究中心等,支持有关国际重要组织、知名科研机构在国内设立分支机构。鼓励与港澳台等地区开展高频次定期交流和联合申报基础研究项目。培育世界一流科技期刊。十一、构建政府、企业和社会力量多元投入渠道自然资源领域在国家科技计划项目中加强自然资源领域基础研究任务的布局,设立长周期项目,提升国家重点研发计划青年科学家项目占比。积极推动与国家自然科学基金委设立自然资源联合基金项目。推动实施自然资源部年度重点基础问题和科技项目清单制管理。鼓励科研院所利用基本科研业务费、按规定可使用的结余经费和自有资金,引导地方、企业和社会资金等,以多元化方式支持基础研究工作。依托单位应对国家级、部级基础研究科技创新平台提供稳定支持。
  • 从基础研究到临床应用:单细胞质谱成像技术发展趋势
    随着单细胞研究的持续深入,单细胞质谱成像技术正日益成为辅助解锁生物复杂性的重要工具。这项技术能够在单细胞水平上进行分子的空间定位和分析,为揭示细胞异质性及其在疾病发生和发展中的机制提供了强有力的检测手段。回顾自2022年以来的研究成果可以发现,科研人员愈加专注于质谱成像空间多组学的研究以及多模态分析上,为生命科学研究带来了新的突破。空间多组学是一个新兴的全息研究领域,它能够定位组织和细胞中的小分子。质谱成像(MSI)以其无标记、非靶向、高灵敏度、高质量分辨率和高空间分辨率等特点,被公认为是分析复杂样品中元素和分子位置的强大工具。 当MSI 与空间多组学相结合,能够产生大量可视化信息,将多个生物学组学数据从点扩展到面,从而更全面地揭示生命活动。新方法的开发进一步揭示细胞异质性中国医学科学院药物研究所贺玖明研究员等人提出了基于质谱成像的空间代谢组学和脂质组学与基于微阵列的空间转录组学的整合,以分层方式可视化同一胃癌样本中肿瘤内代谢异质性和细胞代谢相互作用,在系统水平上改变了对癌症代谢的理解,该成果于2023年已发表在Nature Communications上。另外,还有多个研究团队提出了新的单细胞质谱成像方法,如13C-SpaceM方法用于对葡萄糖依赖性新生脂肪生成进行空间单细胞同位素追踪;针对CD19+淋巴细胞的单细胞MALDI TOF MSI方法等为研究细胞代谢途径提供了更加多样化和精确的技术。此外,美国伊利诺伊大学芝加哥分校的Ruixuan Gao团队开发的凝胶辅助质谱成像(GAMSI)将现有MALDI-MSI的空间分辨率提高3-6倍,达到亚微米级,为探测单个细胞内微量元素、代谢物、蛋白质等关键分子提供了新方法。多模态成像与纳米材料的突破多模态成像技术的融合成为单细胞质谱成像研究的一大亮点。通过将质谱成像与荧光成像、电子显微镜等技术结合,科研人员能够从多个维度获取单细胞的详细信息,增强了对细胞内部复杂环境的理解。例如,威斯康星大学麦迪逊分校李灵军教授团队在2023年发表了利用离子迁移率分离与双极性电离质谱成像(MSI)这种集成的多模态技术对单细胞脂质体进行高通量原位分析。还有研究结合MALDI-MSI和荧光原位杂交的相关成像方法,以识别和定位微生物细胞。而将拉曼光谱(RSI )成像和MALDI-MSI结合起来,能有效整合从同一样本的 RSI 和 MALDI MSI 中获取的分子信息,这将推动细胞生物学、生物医学和病理学的发现,并推进组织学的发展。还有解吸电喷雾电离质谱成像(DESI-MSI)与传统组织学染色相结合等等,这些新技术的开发整合显著提升了空间分辨率和单细胞水平的分析能力,为单细胞研究提供了更强大的工具。另外,纳米材料所具有的特殊物理和化学性质,在生物医学和治疗学领域也显示出巨大的潜力。中国科学技术大学潘洋教授团队利用自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。杭纬教授团队则基于纳米激光探针(NLP)的MSI技术来观察单细胞内的二氧化钛纳米粒子。从技术到临床疾病方面的研究MSI技术不仅在基础研究中取得了进展,还在疾病研究领域展现了其广阔的应用前景。特别是在癌症等复杂疾病(如慢性淋巴细胞白血病、乳腺癌等)的研究中,MSI提供了新的思路和方法。例如,MALDI-MSI技术已被用于衰老成纤维细胞的脂质和蛋白质单细胞分析,帮助科学家深入理解细胞衰老过程。而在乳腺癌研究中,MSI技术揭示了不同细胞系在单细胞和亚细胞水平上分子特征的差异,为癌症的早期诊断和个性化治疗提供了新方向。中国科学院深圳先进技术研究院赵超老师所在团队基于质谱流式和空间多组学的研究手段进行了肿瘤演进分析。另外,除临床疾病的研究外,中药材的代谢途径分析研究也是不可或缺的一部分。中国药科大学李彬老师就长期致力于质谱成像新技术和新方法的开发与应用,以此研究活性次生代谢产物在各类生物组织中的空间分布特征,旨在去发现中药药效物质以及作用机制。高通量与高分辨率技术的崛起MSI技术的发展不仅体现在分析深度的提升,还体现在分析效率的提高上。高通量与高空间分辨率的质谱成像方法,如傅立叶变换质谱成像(MSI)与单细胞分析结合可以绘制和分析生物样本和单细胞中成百上千个分子的图谱;还有研究通过研磨光纤制成的微光导纤维实现对亚细胞空间分辨率的 MSI,该技术可适用于大多数基于激光的质谱分析方法中。香港浸会大学王佳宁老师的团队同样致力于对亚细胞分辨MALDI质谱成像方面的研究。那么高通量分析所获得的数据应该如何有效的处理,使研究成果得到充分的体现?深度学习技术的兴起就为处理和解析大规模质谱数据提供了新的可能性。例如,Nature Methods上发表的一项研究开发了一种创新的实验与计算相结合的方法,旨在通过深度学习技术加速高质量质谱成像数据的处理和分析。该框架可将高分辨率质谱加速15倍、可创建三维分子分布以及可将细胞特异性质谱拟合到三维数据集从而更全面的对数据进行分析,对研究结果进行呈现。多种仪器方案助力研究推进随着技术的不断发展,越来越多的厂商提供了关于质谱成像的相关仪器和解决方案。例如,布鲁克、沃特世、岛津、科瑞恩特等公司提供了多种类型的质谱成像仪和行业应用方案,以满足不同研究领域的需求。以下是收录在仪器信息网行业应用中关于质谱成像的行业应用方案部分清单:方案标题厂商名称超高分辨率质谱成像系统TransMIT AP-SMALDI 10及其在生物学研究中的应用科瑞恩特(北京)科技有限公司德国TransMIT 1.4μm超高分辨率MALDI质谱成像技术诞生TransMIT AP-SMALDI质谱成像技术在贯叶金丝桃Xanthone生物合成部位研究中的应用运用解吸电喷雾电离质谱成像技术分析人参中人参皂苷的空间分布沃特世科技(上海)有限公司(Waters)利用解吸电喷雾电离质谱成像技术分析指纹质谱成像进行草莓中花青素分布分析布鲁克道尔顿(Bruker Daltonics)MALDI质谱成像揭示老鼠肺部内独特的空间分子磷脂分布激光剥蚀-电感耦合等离子质谱成像阿尔茨海默病额叶皮层白质和灰质铁分布(英文原文)上海凯来仪器有限公司无需基质的鼠脑质谱成像方案滨松光子学商贸(中国)有限公司无需基质的草莓质谱成像利用质谱成像实现米曲中磷脂质及葡萄糖的可视化岛津企业管理(中国)有限公司摄入药物的毛发的纵横两截面的高空间分辨率质谱成像基于质谱成像技术进行不同营养状态下小鼠肾脏脂质组学分析基于质谱成像技术对人肝癌及癌旁组织进行原位脂质组分析基于多重衍生化策略的质谱成像技术助力临床空间代谢组学研究利用质谱成像实现米曲中磷脂及葡萄糖的可视化利用质谱成像研究酶组织化学单细胞质谱成像技术在过去三年中的诸多令人瞩目的成就不仅在技术上取得了突破,也在应用层面上展现出巨大的潜力。我们有理由相信,单细胞质谱成像将在未来的生物医学领域中扮演更加重要的角色,为人类健康和生命科学研究提供更加精准和有效的工具。更多精彩内容↓关于单细胞质谱成像研究最新进展内容,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有国内外多名单细胞质谱成像研究专家围绕质谱成像技术的最新进展与应用进行深入探讨,赶紧点击下方的图片报名吧。
  • 中国散裂中子源:“国之重器”支撑基础研究
    11月28日一大早,中科院高能物理研究所(以下简称高能所)研究员李晓就走进了中国散裂中子源的办公室,开始了新一天的工作。李晓2005年进入高能所攻读研究生,2010年博士毕业留所工作。2014年初,他来到东莞松山湖,参与到中国散裂中子源的建设中,见证着这个“大国重器”的建设和运行。目前,中国散裂中子源一年开放机时超过5000小时,运行效率达到97%;自2018年对外开放以来,已完成8轮用户实验共800多项课题。通过聚焦“四个面向”,中国散裂中子源有力地支撑了我国的科技前沿研究和基础研究,为实现高水平科技自立自强作出了贡献。设备国产化率超过90%散裂中子源就像“超级显微镜”,是研究物质微观结构的理想探针,能够为我国材料科学、物理、化学化工、生命科学、资源环境和新能源等领域提供技术先进、功能强大的科研平台。我国早在本世纪初就开始谋划建设散裂中子源,并于2011年在东莞开工建设。李晓目前在高能所东莞研究部加速器技术部工作,研究领域是“粒子加速器”的高频技术。“粒子加速器”是利用电磁场将带电粒子加速至高能量的装置,对中国散裂中子源意义重大。走别人没有走过的路,自然会遇到不少“拦路虎”。遇到瓶颈之时,李晓和团队都会想到中国散裂中子源建设中的一些人和事——70多岁的中科院院士陈和生为推进中国散裂中子源建设,长期在北京和东莞两地奔波。面对技术封锁,陈和生掷地有声——“回国自己干”“国家急需这样的大科学装置,我们不管怎么辛苦,都要坚持”。散裂中子源科学中心主任陈延伟在东莞一扎就是16年,把最美好的青春年华奉献给了科技事业……中国散裂中子源历经多年的设计与预制研究,在工程建设尤其是关键技术攻关中,凝聚了几代科学家的心血和汗水。2018年,中国散裂中子源完成验收,成为我国首台、世界第4台脉冲式散裂中子源,设备国产化率超过90%,一举填补了我国在脉冲中子应用领域的空白。谱仪数量将增加到20台新起点,再出发。中国散裂中子源正在准备升级工程,未来的谱仪数量将增加到20台,覆盖广大用户各方面的研究领域,加速器打靶和靶站功率将从100千瓦提升到500千瓦,设备研究能力大幅度提升。近日,国内首台高功率高梯度磁合金加载腔在中国散裂中子源正式投入运行。高功率高梯度磁合金加载腔是中国散裂中子源二期工程中必须突破的关键技术。李晓团队经过近10年预研,从基础材料和基本工艺着手,在国产高功率高梯度磁合金加载腔的研制上取得重大成果,其中磁环最关键的技术指标,比目前国际上公开报道的最高性能指标提高约30%。“作为年轻的科技工作者,要发挥自己的主观能动性,要敢于挑战这个世界最前沿或是最先进的技术,同时要把自己的视野打开,更多地参与到国际最前沿的竞争里面去。”李晓说。目前,中国散裂中子源拥有一支500多人的科研和工程团队,平均年龄不到37岁,许多青年科研人员已担任系统负责人。党的二十大报告指出,以国家战略需求为导向,集聚力量进行原创性引领性科技攻关,坚决打赢关键核心技术攻坚战。陈延伟说:“党的二十大报告赋予了科技工作者新的历史使命,我们将强化科技自立自强的行动自觉,久久为功,扎根基础研究和应用基础研究,为全面建成社会主义现代化强国贡献力量。”
  • 王贻芳院士:要大力加强我国企业的基础研究
    “我国企业研发经费的结构失衡,基础研究和应用研究仅分别占4%和8%。”23日,在2021未来青年论坛上,中国科学院院士、中国科学院高能物理研究所所长王贻芳透露一组数据并呼吁,要大力加强我国企业的基础研究。 王贻芳表示,基础研究能带来重大发现,帮助解决关键技术问题,推动技术发展,同时也是国家软实力的标志之一,体现的是最核心的竞争力。国内曾生产过小光电倍增管,后被日本滨松垄断。为了满足江门中微子实验“世界最高探测效率”要求,中国科学院高能物理研究所与中国兵器北方夜视、中国科学院西安光学精密机械研究所成立联合体,研制20英寸光电倍增管。经过6年努力,国产光电倍增管成功达到要求,并实现批量生产。王贻芳称:“科学家与工程师的合作是提高创新能力的最佳途径。” 但是,由于产业偏重实用主义和解决短期问题,导致企业的基础科学和基础技术供给能力不足、原创能力不足、缺乏核心技术。而企业研究力量薄弱,又会影响产学研合作和科技成果转化效果。王贻芳认为,应当大力加强我国企业的基础研究。 王贻芳提出,企业可以内部设立基础研究机构,支持国内外大学或研究所的联合研究,或支持大学教授开展独立专题研究,或是成立公益基金奖励有贡献的研究人员等。他表示,在共同富裕的道路上,第三次分配将起重要作用,对基础科学的投入是最佳方式之一,“社会力量支持基础研究是未来发展的一条必经之路,需要有人去开拓支持方式、操作方法、政策支持等”。 王贻芳建议设立专注于基础研究的私人基金会,引入更加国际化的规范评审机制和操作方式,弥补政府支持基础科学研究的不足,在项目内容和支持方式上更加灵活、敏锐。他认为,社会力量可以选择一些社会影响力大、成果可能会比较突出、国内人力基础较强但设备基础薄弱的领域,支持建设一些关键设备和核心研究单位。
  • “十三五”国家基础研究专项规划印发 聚焦高端通用仪器产业化
    p   基础研究是整个科学体系的源头,是所有技术问题的总机关。一个国家基础科学研究的深度和广度,决定着这个国家原始创新的动力和活力。党的十八大提出实施创新驱动发展战略,统筹部署以科技创新为核心的全面创新,主动适应科技革命和产业变革的新趋势,积极谋求掌握新一轮全球科技竞争的战略主动。“十三五”期间,经济社会发展和国家安全各领域对源头创新的巨大需求将集中释放,迫切需要基础研究发挥战略引擎作用。为加快建设世界科技强国、大力推动基础研究繁荣发展,按照《国家创新驱动发展战略纲要》和《“十三五”国家科技创新规划》的总体部署,特制定本专项规划。 /p p    span style=" color: rgb(255, 0, 0) " strong 一、形势与需求 /strong /span /p p   “十二五”期间,我国基础研究工作全面贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》部署,通过实施国家自然科学基金、973计划、国家重大科学研究计划等国家科技计划和知识创新工程、985工程、211工程,持续加大投入力度,全国基础研究投入年均增长保持在20%以上。基础研究持续快速发展,学科布局进一步优化,科研力量和基础条件建设进一步加强,科研产出持续规模化发展,整体科研实力和原始创新能力显著提高,进入世界领先或先进水平的领域不断增多,取得了一批具有世界影响的重大原创成果,国际影响力大幅提升,整体上呈现从量变到质变的加速发展态势,已发展成为具有全球重要影响力的基础研究大国,在国家经济社会发展中发挥了重要的引领作用,为创新型国家建设作出了重要贡献。主要表现在: /p p   ——基础研究水平大幅提升。学科体系、人才队伍、科研基地和条件保障能力建设进一步加强,一批研究院所成为有重要国际影响的科研机构,一些研究型大学跻身世界一流大学行列。国际科技论文数量连续多年稳居世界第2位,2015年,我国国际科技论文总量为29.68万篇,占全球的份额从2004年的5.4%增长至2015年的16.3%。我国国际科技论文被引用次数稳步增加,影响力显著增强,2006年至2016年9月,我国论文共被引1489万余次,居世界第4位。农业科学、化学、计算机科学、工程技术、材料科学、数学、药学与毒物学、物理学等8个学科领域的论文被引用次数排名世界第2位。 /p p   ——学科布局进一步优化。数学、物理、化学、天文、地学、生物学等基础学科稳步发展,信息、空间、资环、海洋等综合学科,以及认知科学、纳米科学、数据科学、管理科学等交叉学科得到高度重视并加快发展,基础医学、农学、材料、能源和工程科学等应用基础学科得到大力支持,学科布局不断完善,多学科以及跨学科之间的交叉融合日益显著并取得重要进展,部分学科水平进入国际先进行列。 /p p   ——原始创新成果不断涌现。在量子调控、纳米、蛋白质科学、干细胞、发育与生殖、全球变化等领域取得重要进展,基础研究重大原始创新成果呈加速产出的趋势。获得了一批诸如铁基超导、多自由度量子体系的隐性传态、量子反常霍尔效应、中微子振荡、四夸克物质发现、细胞剪接体等一批重要蛋白质的精细结构解析、小分子化合物诱导体细胞重编程为多潜能干细胞、小鼠-大鼠异源杂合二倍体胚胎干细胞构建等在世界上具有重大影响的原创成果。 /p p   ——对经济社会发展的支撑引领作用不断增强。在重大传染病防控基础研究体系建立、农业生物遗传改良和农业可持续发展、油气资源高效利用等领域取得重大突破 理论基础和前沿技术的突破对载人航天、南水北调、应对气候谈判等领域提供有力支撑 材料科学、信息科学、制造科学等前瞻性研究,推动了我国传统产业的改造升级和战略性新兴产业的培育与发展 能源科学、生态科学、环境科学以及对深海、深地、深空、极地的探索等,为我国解决可持续发展和改善民生的重大瓶颈问题奠定了科学基础。 /p p   ——基础研究队伍建设不断加强。从事基础研究的全时人员总量由2006年的13.13万人年增长到2014年的23.54万人年。吸引国外优秀人才回国,领军人才快速成长,中青年科学家成为主力,后备人才队伍逐步成长,一批优秀团队正在崛起。 /p p   ——国际影响力进一步提升。我国科学家越来越多地参与国际热核聚变实验堆(ITER)、大型强子对撞机(LHC)、全球海洋观测计划(ARGO)、国际大陆钻探(ICDP)、国际大洋钻探(IODP)、全球综合地球观测系统(GEOSS)、人类蛋白质组研究等国际大科学研究计划,发挥重要作用。大亚湾中微子实验、地球空间双星探测等我国科学家提出的重大国际合作项目逐步增多,国际科学影响力不断提升。在国际学术组织和国际知名科技期刊担任重要职务的人数明显增加。 /p p   经过持续努力,我国基础研究总体水平已进入世界先进行列。同时,我国基础研究发展尚存在一些突出问题:重大原创成果偏少 支撑产业技术创新的应用基础研究薄弱 在引领前沿方向、主导国际大科学计划和大科学工程等方面欠缺 基础研究队伍结构不够合理,具有世界影响力的科学家数量匮乏 基础研究经费稳定性支持的机制有待完善,科研评价机制和创新环境有待进一步改善。 /p p   当今世界正处于发展、变革和调整的关键时期,新一轮科技革命加速演进,一些基本科学问题孕育重大突破,产生新的重大科学思想和科学理论,催生颠覆性技术,可望引发世界经济格局的重大深刻调整。国际科技竞争日益加剧,综合国力的竞争已前移到基础研究。切实加强基础研究,提升原始创新能力,对于提升我国综合国力、建设科技强国具有不可替代的重要作用。 /p p   我国经济发展进入速度变化、结构优化和动力转换的新常态。推进供给侧结构性改革,促进经济提质增效、转型升级,迫切需要依靠科技创新解决产业共性技术基础问题,提升产业核心竞争力,培育发展新动能。来自经济社会发展和国家安全各领域对源头创新的巨大需求将集中释放,迫切需要基础研究发挥战略引擎作用。 /p p   面对新形势新任务,我们必须切实加强基础研究,提升原始创新能力,着力解决我国基础研究发展过程中的问题,在提出原创科学思想、探索重大科学前沿、解决国家战略需求和产业共性技术基础等重大科学问题、完善科研基地建设以及引领重大国际科学合作等方面取得重大突破,造就一流的基础研究人才队伍,引导企业加强基础研究,推进我国基础研究实现从量变向质变的跃升,为全面提升自主创新能力、建成创新型国家提供知识基础、人才储备和发展动力。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、总体要求 /strong /span /p p    strong (一)指导思想 /strong /p p   高举中国特色社会主义伟大旗帜,全面贯彻党的十八大和十八届三中、四中、五中和六中全会精神,以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观为指导,深入贯彻习近平总书记系列重要讲话精神,坚持“五位一体”总体布局和“四个全面”战略布局,坚持创新、协调、绿色、开放、共享发展理念,全面贯彻落实全国科技创新大会精神、《国家创新驱动发展战略纲要》和《“十三五”国家科技创新规划》部署,遵循科学发展和创新活动的规律和特点,坚持继承与创新,强化基地和能力建设,培养一流人才,着眼未来国家竞争力,聚焦在创新链的前端,坚持把强化基础研究、提升原始创新能力作为根本任务,发挥基础研究对建设创新型国家和世界科技强国的重要引领作用。 /p p    strong (二)基本原则 /strong /p p   坚持鼓励自由探索和目标导向相结合。面向科学前沿,进一步加大对好奇心驱动基础研究的支持力度,引导科学家将学术兴趣与国家目标相结合,解决重大科学问题。面向国家重大需求和国民经济主战场,针对事关国计民生、产业核心竞争力的重大战略任务,超前部署基础研究,促进基础研究与经济社会发展需求紧密结合,为创新驱动发展提供源头供给。 /p p   坚持把加速赶超引领作为发展重点。把握世界科技前沿发展态势,在关系长远发展的基础前沿领域,超前规划布局,强化原始创新。鼓励科学家在独创独有上下功夫,勇于挑战最前沿的科学问题,提出更多原创理论,做出更多原创发现。在重要科技领域实现跨越发展,解决产业共性技术基础,跟上甚至引领世界科技发展新方向,掌握新一轮全球科技竞争的战略主动。 /p p   坚持把深化体制机制改革作为核心动力。尊重科学研究的灵感瞬间性、方式随意性、路径不确定性等特点,着眼长远,鼓励科学家自由探索、认真求证。完善基础研究分类评价机制,改进人才评价考核方式,赋予学术领军人才更多的学术自主权,完善基础研究投入结构和动态调整机制。 /p p   坚持把不拘一格发挥人才作用作为本质要求。牢固树立科学人才观,深入实施人才优先发展战略,遵循人才成长规律,完善更加开放、更加灵活的人才培养、吸引、使用机制,努力培养造就一大批科技领军人才,优秀青年科技人才,建设一批优秀创新团队。 /p p   坚持把全球视野作为重要导向。坚持开放发展,主动融入全球创新网络,共同应对全球关注的重大科学挑战,充分利用全球科技资源,在更高水平上开展基础研究创新合作。积极参与和组织实施国际大科学计划和大科学工程,提高国际话语权和影响力,为世界科学发展作出贡献。 /p p    strong (三)总体目标 /strong /p p   基础研究原始创新能力和国际竞争力显著提升,重要领域方向跻身世界先进行列,整体水平向并跑和领跑为主转变,支撑引领创新驱动发展源头供给能力显著增强,为我国到2020年进入创新型国家行列奠定坚实的基础。 /p p   主要目标如下: /p p   ——持续稳定支持基础研究,基础研究占全社会研发投入比例大幅度提高。 /p p   ——形成全面均衡的学科体系,科学产出的水平、质量和国际影响力大幅提升。学科整体水平进入世界前三名,部分学科学术影响力达到世界领先,国际科技论文被引次数达到世界第二。 /p p   ——在若干重大创新领域组建一批国家实验室 优化国家重点实验室布局,完善国家重点实验室体系,显著增强科学创新基础能力。 /p p   ——建设一流的人才队伍,形成一批跨学科、综合交叉的创新团队。 /p p   ——在科学前沿重要领域取得一批重大原创成果 解决一批面向国家战略需求的前瞻性重大科学问题,基础研究对经济社会发展引领支撑作用显著增强。 /p p   span style=" color: rgb(255, 0, 0) " strong  三、发展重点与主要任务 /strong /span /p p    strong (一)加强自由探索研究与学科体系建设 /strong /p p   加强原创导向,激励新概念、新构思、新方法、新工具的创造,力争在更多领域引领世界科学研究方向。加强科学前沿探索,进一步加大对好奇心驱动基础研究的支持力度,加大对非共识创新研究的支持力度,鼓励质疑传统、挑战权威,重视可能重塑重要科学或工程概念、催生新范式或新学科新领域的研究。 /p p   构筑全面均衡的学科体系,为我国实现从科学大国迈向科学强国奠定扎实的学科基础。推动学科均衡协调和交叉融合发展,统筹基础学科、应用学科、新兴学科、交叉学科布局,形成多学科均衡协调可持续繁荣发展局面,促进基础研究百花齐放。 span style=" color: rgb(255, 0, 0) " 推动数学、物理学、化学、天文学、地学、生命科学等基础学科持续发展,推进能源科学、环境科学、海洋科学、材料科学、工程科学和临床医学等应用学科发展,加强信息、纳米等新兴学科建设,鼓励开展跨学科研究,促进学科交叉与融合。 /span /p p    strong (二)组织实施重大科技项目 /strong /p p   “十三五”期间,着眼于更长远的国家重大战略需求,凝练事关我国未来发展的重大科技战略任务,构建未来我国科技发展制高点,组织若干项基础研究类重大科技项目,努力实现以科技发展的重大突破带动生产力的跨越发展。 /p p    strong 1. 量子通信与量子计算机 /strong /p p   奠定我国在新一轮信息技术国际竞争中的科技基础和优势方向。量子通信研究面向多用户联网的量子通信关键技术和成套设备,率先突破量子保密通信技术,建设超远距离光纤量子通信网,开展星地量子通信系统研究,构建完整的空地一体广域量子通信网络体系,与经典通信网络实现无缝链接 量子计算机研究解决大尺度量子系统的效率问题,研发量子系统、量子芯片材料、结构与工艺、量子计算机整体构架以及操作和应用系统,实现量子信息的调制、存储、传输和计算,最终实现可实用化的量子计算机原型机 量子精密测量研究利用量子通信和量子计算所发展的量子探测、测量和操纵技术,实现对重力、时间、位置等的超高灵敏度测量,大幅提升卫星导航、潜艇定位、医学检测、引力波探测等的准确性和精确性。 /p p    strong 2. 脑科学与类脑研究 /strong /p p   围绕脑与认知、脑机智能和脑的健康三个核心问题,统筹安排脑科学的基础研究、转化应用和相关产业发展,形成“一体两翼”的布局,并搭建相关关键技术平台。以脑认知原理(认识脑)为主体,阐述脑功能神经环路的构筑和运行原理,绘制人脑宏观神经网络、模式动物介观神经网络的结构性和功能性全景式图谱 发展类脑计算理论,研发类脑智能系统(模仿脑)。基于对脑认知功能的网络结构和工作原理的理解,研究具有更高智能的机器和信息处理技术 促进智力发展、防治脑疾病和创伤(保护脑),围绕高发病率重大脑疾病的机理研究,揭示相关的遗传基础、信号途径和治疗新靶点,实现脑重大疾病的早期诊断和干预。 /p p    strong (三)加强目标导向的基础研究和变革性技术科学研究 /strong /p p   针对事关国计民生的农业、能源资源、生态环境、健康等领域,以及事关产业核心竞争力、整体自主创新能力和国家安全的领域,进一步聚焦国家目标,充分发挥基础研究的战略支撑作用。同时,围绕战略性、基础性、前瞻性重大科学问题,对科学和技术发展有很强带动作用的基础研究进行重点部署,为创新发展提供源头供给。 /p p    strong 1. 加强国家重大战略任务部署基础研究 /strong /p p   面向现代农业、健康、资源环境和生态保护、高新技术产业、节能环保和新能源、新型城镇化等领域的国家重大战略任务,选择可有力带动基础研究、重大共性关键技术和重大应用示范结合的战略性、全局性、长远性的方向进行全链条设计一体化组织,强化基础研究对经济社会发展的支撑作用。 /p p    strong (1)在现代农业方面 /strong ,围绕粮食丰产增效、农业面源污染和农田综合防治修复、智能农机装备、食品加工及粮食收储运、林业资源培育及高效利用、海洋(蓝色)粮仓、作物优质高产、化学肥料和农药减施增效、七大农作物育种、主要畜禽水产动物育种、农业病虫害防治等重点任务,部署精确栽培、分子遗传变异、优良性状形成机理、种间互作和定向培育等基础研究。 /p p    strong (2)在节能环保和新能源方面 /strong ,围绕煤炭清洁高效利用和新型节能技术、可再生能源与氢能、先进核能与核安全、智能电网、深层油气勘探开发、能源基元与催化,加强碳基能源清洁转化、源网荷协同机制、深层油气成藏机理和生态监测预警等基础研究的支撑引领。 /p p    strong (3)在产业转型升级方面 /strong ,围绕网络协同制造、3D打印和激光制造、智能机器人、重点基础材料、先进电子材料、材料基因工程、制造基础技术与关键部件、云计算和大数据、高性能计算、宽带通信和新型网络、网络空间安全、地球观测与导航、光电子器件及集成、科技服务业、新能源汽车、重大科学仪器设备、精细化学品生产、功能分子材料与器件部署基础研究,解决产业共性关键技术基础问题,为培育战略性新兴产业提供科学支撑。 /p p    strong (4)在资源环境和生态保护方面 /strong ,围绕土壤及地下水污染防治、生态修复、深地资源勘探开发、废物处置与资源化、海洋环境安全、深海技术装备、重大自然灾害监测预警与防范、水资源综合利用、大气污染成因与控制、青藏高原多层圈相互作用及其资源环境效应、海洋生态环境与可持续发展、土壤-生物系统功能及其调控等开展重大科学问题研究。 /p p    strong (5)在健康方面 /strong ,面向重大慢性非传染性疾病防控、精准医疗、生物制品与生物治疗、中医药现代化研究、生殖健康及重大出生缺陷、人口老龄化、生物安全关键技术、移动医疗与健康促进、生物医用材料与组织器官修复替代、食品药品安全、数字诊疗装备、个性化药物、典型污染物的环境暴露与健康危害机制等重大社会公益性研究,全链条部署自主神经干预、基因组学、三维微环境营造、分子设计和超快激光制造等基础研究。 /p p    strong (6)在新型城镇化方面 /strong ,围绕物联网与智慧城市、综合交通运输与智能交通、先进轨道交通及其关键部件、绿色建筑及建筑工业化、公共安全风险防控与应急技术装备等领域的科学问题,强化基础研究与共性关键技术、示范应用的衔接。 /p p   strong  2. 加强战略性前瞻性重大科学问题研究 /strong /p p   围绕世界科学前沿的重点方向,凝练战略性前瞻性重大科学问题,以实现重点跨越、引领未来发展为目标,重点部署基础研究。 /p p    strong (1)量子调控与量子信息 /strong /p p   认识和了解量子世界的基本现象和规律,通过对量子过程进行调控和开发,在关联电子体系、小量子体系、人工带隙体系等重要研究方向上建立突破经典调控极限的全新量子调控技术,实现量子相干和量子纠缠的长时间保持和高精度操纵,实现可扩展的量子信息处理。 /p p   strong  (2)纳米科技 /strong /p p    span style=" color: rgb(255, 0, 0) " 围绕纳米科学重大基础问题,新型纳米制备与加工技术,纳米表征与标准,纳米生物医药,纳米信息材料与器件,能源纳米材料与技术,环境纳米材料与技术等方面开展研究,加强基础研究与应用研究的衔接,推动纳米科技产业发展。 /span /p p    strong (3)蛋白质机器与生命过程调控 /strong /p p    span style=" color: rgb(255, 0, 0) " 揭示蛋白质机器复杂的结构和功能、调控网络、以及动态变化规律,发挥蛋白质科学研究设施的支撑优势,围绕重要细胞器及生物膜相关蛋白质机器等重大科学问题,高分辨率冷冻电镜、磁共振技术等重大技术方法,以及肿瘤、免疫类等疾病防治等重大应用研究领域部署研究任务。 /span /p p    strong (4)全球变化及应对 /strong /p p   围绕全球变化关键过程、机制、趋势与表现,全球变化影响、风险、减缓和适应,数据产品及大数据集成分析,地球系统模式和高分辨率气候系统模式的开发、改进与应用等开展研究,提升我国全球变化研究的竞争力和国际地位,为应对全球变化国家战略提供科技支撑。 /p p    strong (5)干细胞及转化研究 /strong /p p   以增强我国干细胞转化应用的核心竞争力为目标,以我国多发的神经、血液、心血管、生殖等系统和肝、肾、胰等器官的重大疾病治疗为需求牵引,重点部署多能干细胞建立与干性维持,组织干细胞获得、功能和调控,干细胞定向分化及细胞转分化,干细胞移植后体内功能建立与调控,基于干细胞的组织和器官功能再造,干细胞资源库,利用动物模型的干细胞临床前评估,干细胞临床研究。 /p p    strong (6)大科学装置前沿研究 /strong /p p   依托我国已建成的专用和平台型大科学装置,主要支持粒子物理、天文等领域探索物质世界的结构及其相互作用规律等的重大前沿研究,以及 span style=" color: rgb(255, 0, 0) " 依托 /span span style=" color: rgb(255, 0, 0) " 先进光源、先进中子源、强磁场装置等为多学科交叉前沿提供先进实验技术和方法,推动大科学装置向社会用户开放共享。 /span /p p    strong (7)合成生物学 /strong /p p   围绕生命体计算设计、合成再造与人工调控等核心科学问题,面向提升人工生物装置与系统的设计构建能力,创建一批具有特定功能的人工基因线路、人工生物器件、人工细胞等人工生物体,构筑智能疾病诊疗、人工生物固碳、药物高效规模合成、重要化工材料构建等重大应用的科学支撑,促进生物产业创新发展与经济绿色增长。 /p p    strong (8)发育编程及其代谢调节 /strong /p p   面向科学前沿及健康和农业发展需求,以生命体发育和代谢的精准调控机制为主线,揭示胚胎和组织器官发育、成年组织器官可塑性及衰老、胚胎和组织器官发育的代谢调控等规律,鉴定发育与代谢的关键调控因子,创建大动物遗传修饰品系,揭示大动物发育与代谢的重要调控机制。 /p p    strong (9)微生物组学 /strong /p p   开展微生物组形成、遗传稳定性及与环境互作机制研究,农业微生物组与作物生长和发育的相互关系、抵抗环境压力和病虫害的机理研究,基于生态环境污染监测与预警的微生物组技术研发,我国人群体内微生物组及健康相关功能研究。推动科学前沿发展,为我国健康、农业、环境可持续发展提供支撑。 /p p    strong (10)催化科学 /strong /p p   在催化理论、催化剂的理性设计与表征、催化新方法与新反应、资源的绿色催化转化与高效利用等相关催化领域中获得重大原始创新和重要应用成果,提高自主创新能力和研究成果的国际影响力 为解决能源、环境、资源以及人口健康等领域的关键问题提供物质基础以及技术支撑。 /p p    strong (11)极端制造的科学基础与创新技 /strong 术 /p p   围绕极端制造需求和技术发展面临的关键科学问题,研究超大规格高柔性高性能航天复杂构件一体化制造和高均匀性近零残余应力航空构件制造, span style=" color: rgb(255, 0, 0) " 10纳米以下集成电路器件三维集成制造和光子集成器件制造,复杂曲面强光光学元件的抗损伤纳米精度制造和光学元件微纳结构的超快激光制造 /span ,热电高效转化的热防护构件制造、高性能复合声学结构制造和生机电一体化制造。为中国制造2025的顺利实施提供科学基础和支撑。 /p p    strong (12)磁约束核聚变能发展 /strong /p p   以参加国际热核聚变实验堆(ITER)计划为契机,全面吸收消化关键技术,以聚变堆未来科学研究为目标,加快国内聚变发展,开展高水平的科学研究,开展聚变堆工程设计和关键技术预研,发展氚技术、聚变材料等ITER未涵盖的聚变堆技术。加快我国磁约束核聚变能的基础与应用研究,培养并形成一支高水平核聚变能研发队伍,大力提升我国核聚变能发展研究的自主创新能力,在2020年前后具备自主建造聚变工程堆的能力,适时启动高效安全聚变堆研究设施建设,加快聚变能走向应用进程,跨入世界核聚变能研究开发先进行列。 /p p    strong (13)空间科学系列卫星计划 /strong /p p   研制并发射3-4颗新的空间科学卫星,在黑洞、暗物质、时变宇宙学、地球磁层-电离层-热层耦合规律、全球变化与水循环、量子物理基本理论和空间环境下的物质运动规律与生命活动规律等方面取得重大科学发现与突破。 /p p   strong  3. 加强面向培育变革性技术的科学研究 /strong /p p   以实现“重点科技领域战略领先”为目标,围绕重要科学前沿或我国科学家取得原创突破、学科交叉创新带动的特征明显、有望产出具有变革性技术原型的基础研究和应用基础研究,进行前瞻部署,建立快速响应机制、创新组织管理模式,培育有望推动产业变革和经济发展模式转变的变革性技术,抢占未来经济社会跨越发展的先机。 /p p    strong (四)加强国家科技创新基地和科研条件建设 /strong /p p   “十三五”期间,以提升原始创新能力为目标,完善科学与工程研究类国家科技创新基地建设与布局,在重大创新领域组建若干国家实验室,推进国家重点实验室的优化布局和发展。进一步推进国家重大科研基础设施的建设和运行,加强野外科学观测研究站建设和科技基础资源调查,夯实孕育原始创新的物质技术基础。 /p p    strong 1. 建设国家实验室,加强国家重大战略性基础研究能力 /strong /p p   国家实验室是体现国家意志、实现国家使命、代表国家水平的战略科技力量,是突破型、引领型、平台型一体化的大型综合性研究基地。主要任务是突破世界前沿的重大科学问题,攻克事关国家核心竞争力和经济社会可持续发展的核心技术,率先掌握能够形成先发优势、引领未来发展的颠覆性技术,确保国家重要安全领域技术领先、安全、自主、可控。 /p p    strong 2. 加强国家重点实验室体系建设 /strong /p p   面向世界科技前沿、面向国家重大需求、面向经济社会发展主战场,立足体系建设和能力提升,强化开放共享和协同创新,构建定位清晰、任务明确、布局合理、开放协同、分类管理、投入多元的国家重点实验室建设发展体系,实现布局的结构优化、领域优化和区域优化。 span style=" color: rgb(255, 0, 0) " 深化学科国家重点实验室改革,带动省部共建、企业、军民共建和港澳伙伴实验室等国家重点实验室发展。 /span 主要任务是面向前沿科学、基础科学、工程科学开展基础研究、应用基础研究和竞争前共性技术研究,推动学科发展,促进技术进步。提高实验室原始创新能力,加强引领带动作用,为科技创新由跟跑为主向并跑、领跑为主转变提供支撑。 /p p   strong  3. 加强国家重大科技基础设施建设 /strong /p p   聚焦能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域,以提升原始创新能力和支撑重大科技突破为目标,布局建设一批重大科技基础设施。强化国家重大科研基础设施绩效评估,形成以开放共享为核心的运行机制,提高成果产出质量和效率。 /p p    strong 4. 建设完善野外科学观测研究站,提升野外观测研究示范能力 /strong /p p   围绕生态保障、现代农业、气候变化和灾害防治等国家需求,建设布局一批野外科学观测研究站,完善国家野外观测站体系,推动野外科学观测研究站的多能化、标准化、规范化和网络化建设运行,促进联网观测和协同创新。开展科技基础资源调查,为认识自然现象、发现科学规律、推进基础学科发展奠定基础。 /p p    strong 5. 加强科研条件研发,增强基础支撑能力。 /strong /p p    span style=" color: rgb(255, 0, 0) " 鼓励和培育具有原创性学术思想的探索性科研仪器设备研制,聚焦高端通用和专业重大科学仪器设备研发、工程化和产业化 加强国家质量技术基础的研究,研发具有国际水平的计量、标准、检验检测和认证认可技术 加强实验动物新品种(品系)、动物模型的研究与应用 注重研发具有自主知识产权的通用试剂和高端高纯专用试剂 组织开展跨学科、跨区域的重大科学考察与调查 强化夯实科技创新的物质条件基础。 /span /p p    strong 6. 完善科技资源共享服务平台体系。 /strong /p p   根据科技资源类型,对现有国家科技基础条件平台进行优化整合 面向重大科技创新需求,在重大领域新建一批共享服务平台,完善平台布局 建设一批具有国际影响力的国家级科学数据中心、生物种质和实验材料资源库(馆),形成覆盖重点领域的科技资源支撑服务体系。 /p p    strong (五)加强基础研究人才队伍建设 /strong /p p   “十三五”期间,遵循人才成长规律,加强基础研究人才引进和培养,凝聚和造就一批具有国际影响力的高水平领军人才、青年人才、实验技术人才和优秀创新团队。 /p p    strong 1. 培养高水平领军人才 /strong /p p   在我国具有优势的重要领域,选择有较大发展潜力的科学家设立杰出科学家工作室,进一步推进“国家杰出青年科学基金项目”、“千人计划”和“万人计划”等高层次人才培养和引进计划的实施,加快培养一批在国际前沿领域具有较高影响力的领军人才。 /p p    strong 2. 加强中青年和后备人才培养 /strong /p p   瞄准世界科学研究前沿,培养和支持一批中青年科学家。实施“国家自然科学基金青年科学基金项目”、“国家自然科学基金优秀青年科学基金项目”、“长江学者奖励计划青年学者项目”、“中青年科技创新领军人才”“国家重点研发计划青年科学家专题”等青年人才资助计划,加强优秀青年人才的培养。加大博士后支持力度,积极吸引国内外优秀的博士毕业生在国内从事博士后研究。推进国家科研机构与大学合作培养基础研究后备人才。 /p p   strong  3. 稳定高水平实验技术人才 /strong /p p   加强实验技术人才培训工作,提升实验技术人员技术能力和水平。建立健全符合实验技术人才及岗位特点的评价体系和激励机制,提高实验技术人才的地位和待遇。优化实验技术人才队伍,形成合理的科研队伍组成结构。 /p p   strong  4. 培育和支持优秀科技创新团队 /strong /p p   聚焦科学前沿,支持高水平大学和科研院所组建一批跨学科、综合交叉的科研团队,加强协同合作,提升创新实力。发挥国家重点实验室等研究基地的凝聚作用,稳定支持一批优秀创新团队。结合科技重大专项、国家科技计划的实施和重大科技设施的建设与运行,加大对优秀创新团队的培育和支持力度。 /p p    strong (六)组织和加强重大国际科技合作与交流 /strong /p p   “十三五”期间,以全球视野谋划我国基础研究发展,积极融入和主动布局全球创新网络,有效利用和整合全球创新资源,服务“一带一路”重大战略需求,推动基础研究多层次、全方位和高水平的国际合作服务国家战略,提升国际话语权和影响力,使我国成为引领科学前沿、解决重大全球性问题的主导国家之一。 /p p    strong 1. 发起和组织国际大科学计划和大科学工程 /strong /p p strong   /strong  加强顶层设计,长远规划,择机布局,重点在数理天文、生命科学、地球环境科学、能源以及综合交叉等我国已相对具备优势的领域,研究提出未来5至10年我国可能组织发起的国际大科学计划和大科学工程。调动国际资源和力量,在前期充分研究基础上,力争发起和组织若干新的国际大科学计划和大科学工程,为世界科学发展作出贡献。 /p p    strong 2. 积极参与国际大科学计划和大科学工程 /strong /p p   面向基础研究领域和重大全球性问题,结合我国发展战略需要、现实基础和优势特色,积极参与国际热核聚变实验堆(ITER)计划、平方公里射电望远镜(SKA)建设、大型强子对撞机(LHC)、地球观测组织(GEO)、国际大洋发现计划(IODP)等国际大科学工程和大科学计划合作研究,“以我为主”创新参与模式,在共享国际优势科技资源的同时,提高我国的科研能力和大科学工程、大科学计划项目管理能力。 /p p    strong 3. 积极支持双边、多边基础研究科技合作 /strong /p p   深化基础研究领域政府间合作,完善合作机制,加强双多边基础研究科技合作。加大国家科技计划、国家重点实验室等对外开放力度。鼓励和支持国际联合实验室和研究中心建设。 /p p    strong 4. 走出去,请进来,吸引海外人才 /strong /p p   深化基础研究领域科研人员国际交流,支持和推荐我国科学家到国际学术组织交流和任职,选派优秀青年科研人员到国外一流研究机构深造。大力引进从事科学前沿探索和交叉研究、具有创新潜质的优秀科学家,支持高校、科研院所在重点学科领域建立联合研究中心或创新团队,支持国际知名高校、科研机构来华开展科研合作,成立研究中心。 /p p    strong 5.促进基础研究活动国际化 /strong /p p   鼓励国际科研合作交流,共同开展基础研究,合作发表论文 研究基础研究评审活动国际化,建立基础研究国际同行专家库,邀请国际高水平科学家参与项目评审,开展国际同行评议。 /p p    span style=" color: rgb(255, 0, 0) " strong 四、保障措施 /strong /span /p p    strong (一)加强顶层设计,完善管理机制 /strong /p p   加强顶层设计和整体布局,建立部门间沟通协调机制,按照新的国家科技计划体系对基础研究工作进行全面部署。统筹国家自然科学基金、国家科技重大专项、国家重点研发计划、国家基地和人才专项等国家科技计划系统支持基础研究,建立健全各类科技计划支持基础研究的资助政策与管理机制。 /p p   strong  (二)建立基础研究多渠道经费投入和分配机制 /strong /p p   建立基础研究多元化资助体系,多渠道增加基础研究投入。加大中央财政对基础研究的支持力度,完善稳定支持和竞争性支持相协调的机制 引导和鼓励地方、企业和社会力量增加对基础研究的投入,建立对非共识的探索性风险资助机制,提高基础研究占全社会研发投入比例。 /p p    strong (三)支持高等学校与科研机构自主布局基础研究 /strong /p p   结合国际一流科研机构、世界一流大学和一流学科建设,支持高等学校与科研机构自主布局基础研究,扩大高等学校与科研机构学术自主权和个人科研选题选择权,鼓励开展长周期、高风险的基础研究。 /p p    strong (四)引导和鼓励企业加强基础研究 /strong /p p   引导有条件的企业特别是大中型企业和企业化转制院所重视并开展基础研究。建立企业国家重点实验室,开展应用基础、前沿技术和共性技术研发。在企业内与高校、院所建立联合实验室,围绕自主创新能力建设,开展基础性、前沿性创新研究。鼓励社会力量通过设立科学研究基金、捐赠等形式支持基础研究。 /p p    strong (五)推动区域基础研究发展 /strong /p p   鼓励地方把基础研究纳入地方总体发展规划,围绕区域发展的实际需求和在资源、产业等方面的优势研究确定基础研究发展模式和路线。引导地方加大对基础研究的投入,结合国家目标、行业发展方向和区域创新发展需求,开展有特色和优势的基础研究,提升行业未来竞争力、公共服务水平和区域创新能力。 /p p   strong  (六)进一步优化科研和学术环境 /strong /p p   改善学术环境,建立符合基础研究特点和规律的评价机制。强化分类评价和第三方评价,建立长效评价机制,确立以学术贡献和创新价值为核心的评价导向,让学术评价回归学术。建立以原创性和学术水平评价考核人才的机制,探索科研人员代表作制度,避免以人才计划“头衔”评价考核科研人员。探索有别于传统同行评审的特别项目甄别与评价方式,建立包容和支持“非共识”基础研究项目的制度。加强科技成果权益管理改革,允许科研人员依法依规适度兼职兼薪。 /p p    strong (七)促进科技资源开放共享 /strong /p p   促进国家重大科研基础设施和大型科研仪器向社会开放,完善开放共享的评价考核和管理制度 开展考核评价,落实后补助激励机制 积极探索仪器设施开放共享市场化运作新模式,培育一批从事仪器设施专业化管理与共享服务的中介服务机构。 /p p   推进国家实验室、国家重点实验室等基础研究基地的对外开放与共享,完善开放共享机制,加大开放力度,强化面向科学研究和创新创业的高水平服务,提高全社会利用基础研究资源的效率和效益。 /p p   制定国家科学数据管理与开放共享办法,在保障知识产权的前提下推进资源共享。加强生物资源和实验材料收集、加工和保藏的标准化,提高资源存储数量和管理水平,完善开放模式,提高服务质量和水平,为国家科技创新、重大工程建设和企业创新提供坚实的资源保障支撑。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制