当前位置: 仪器信息网 > 行业主题 > >

合金粉末标准

仪器信息网合金粉末标准专题为您整合合金粉末标准相关的最新文章,在合金粉末标准专题,您不仅可以免费浏览合金粉末标准的资讯, 同时您还可以浏览合金粉末标准的相关资料、解决方案,参与社区合金粉末标准话题讨论。

合金粉末标准相关的资讯

  • 如何看清3D 打印合金粉的真实“面貌”?这项分析技术一招搞定
    3D 打印技术是一种新型的快速成形(rapid prototyping)打印技术,其突出优点在于无需机械加工或 任何模具,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体(即“增材制造技 术”),直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降 低生产成本,因此成为先进制造技术。 金属 3D 打印技术近年来发展迅速。然而,对于工业级金属 3D 打印领域,粉末耗材仍是制约该技术规 模化应用的重要因素之一。金属粉体材料是金属 3D 打印的原材料,与传统的减材制造方式相比,3D 打印几 乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大 减少。2021 年 6 月 1 日,8 项有关 3D 打印的国家标准正式实施,其中包括金属粉末性能的表征方法(GB/T 39251-2020)。金属 3D 打印对于粉体的要求主要在化学成分、颗粒形状、粒度及粒度分布、流动性、循环 使用性等几个方面。除了化学成分以外,粒度和粒形及其分布是产品质量控制的关键,它将影响粉末的流 动性、密度等其它性能。 一、对 3D 打印金属粉的粒度粒形要求【1】: 1、金属粉体的粒度要求: 由于粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结的,所以  颗粒越小则比表面积越大,直接吸收能量多,更易升温,更有利于烧结;  粉体粒度小,颗粒之间的间隙就小,松装密度高,成形后零件致密度高。因此,有利于提高产品 的强度和表面质量;  但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。 所以,细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。 2、对金属粉体颗粒形状的要求: 常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。  不规则的颗粒具有更大的比表面积,有利于增加烧结驱动;  球形度高的粉体颗粒流动性好,送粉、铺粉均匀,有利于提升产品的致密度及均匀度;图 1 理想的 3D 打印金属粉(左)和卫星化粉末(右) 理想的 3D 打印金属粉应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起 形成卫星粉(图 1),从而对粉体的许多性质都产生重要影响。合金的粉末制备主要是雾化法,减 少“雾化球型金属粉末”的卫星化【2】, 提高颗粒的球形度,降低表面粗糙度是一个重要研究课题。 因此,3D 打印金属粉体颗粒一般要求是球形或者近球形。二、当前对 3D 打印金属粉的粒度和粒形参数的主要测定方法及存在的问题:1. 粒度及其分布的测定: 3D 打印金属粉末平均粒度小于 50μm,但一般工艺过程是将细粉与粗粉配比使用,通过细粉填充到粗粉 的空隙中,提高熔融/烧结密度,改善打印质量,这就要求粒度测定仪器能够对宽分布的颗粒能够区分不同 的粒群。最新实施的 GB/T 39251-2020,采用目前最流行的激光衍射法粒度分析仪对粒度分布进行检测【3】, 通过等效体积直径的 D50,D10和 D90进行质量控制。然而,对于约为一个数量级的粒度分布宽度,由于基于瑞 利散射的激光衍射法的光散射强度会相差一百万倍,小颗粒的散射光极容易被大颗粒掩盖,且对离散的大 颗粒也不敏感【4】。即使对于具有窄分布的标准颗粒,将两种不同粒径的颗粒混合后,按照常规样品的测定 方法也只能得到单分布曲线和两种颗粒的平均粒度值。除非采用特殊的多峰模型,否则无法区分粒群(图 2)。图 2 用激光衍射法粒度分析仪测定 0.5μm 和 1μm NIST 标准颗粒混合物的粒度分布图 上图:按常规测量方法,在通用模型下测定得到的粒度分布图,为一个单峰; 下图:按厂家指定的只用于标准颗粒的多峰模型进行计算,可以分辨两种颗粒, 但残差增大了一倍,与实验得到光散射曲线吻合程度比通用模型差。自 2000 年以来,随着计算机技术的进步和视觉技术的迅猛发展,图像法对颗粒的粒度和形貌分析正在 成为趋势。它没有理论假设,不需要折射率和吸收率等参数,因此,能够准确地反映样品的真实粒度及其 分布,并且能对颗粒形貌进行定量分析,给出各种形貌分布图【7】。最新一代图像法粒度分析仪能够识别 0.2 μm 以下的小颗粒,在几分钟内完成数万颗粒的图像采集、统计处理,从而快速提供准确的粒径和粒形信息。 它是在获得每一个被成像颗粒的粒度或形状参数后,累加得到的粒度或粒形分布,因此其结果更加可靠, 更加接近真实,分辨率也更高(图 3)【4】。图 3 同一 3D 打印金属粉的激光衍射法(上)和图像法(中、下)粒度分析结果的比较 激光衍射法分析仪器:Mastersizer 2000;图像法分析仪器:Occhio 500nano XY 结果显示,大于 50%数量的颗粒小于 10μm(下图),但在上图中没有任何体现。2. 颗粒形状的测定: 对于金属粉末颗粒的形貌,目前一般通过扫描电子显微镜(SEM)定性分析(图 1)。但是 SEM 视野小 和检测的颗粒数有限的不足,而且制样繁琐,对粉体颗粒形貌的定量统计能力弱,对颗粒的球形度不能做出定量的评价。 最新实施的 GB/T 39251-2020 国家标准采用颗粒图像分析法分析颗粒形状【3】 ,这是一个极大的进步。 但是该标准的题目采用的是“动态颗粒图像分析法”,内容却是基于显微镜的静态图像法,产生了谬误。 显然,该标准的制定人员中缺少颗粒表征专业人士,并且标准的制定者也没有认真阅读他们所引述的“动 态图像法”国家标准。动态图像法由于颗粒的运动,对 10μm 以下的颗粒分辨率极低,造成大量颗粒漏检, 因此不适用于 3D 打印金属粉的粒度和形状分析,确实应该采用静态图像法进行分析。 一般而言,球形度佳,粉末颗粒的流动性也比较好,在金属 3D 打印时铺粉及送粉时更容易进行控制, 更易获得更高打印质量的零部件。GB/T 39251-2020 中有关颗粒球形度的定义,实际是 ISO9276-6 中的圆形 度(circularity)【5】。早已证明【6,9,11】,这个与周长有关的介观粒形参数是一个极其不灵敏的参数,其“优 点”是对 3D 金属打印粉的制造者来说可以获得很高的产品合格率,其缺点在于对于金属粉的使用者来说, 很难发现影响 3D 打印工件质量的真正原因。 根据 ISO9276-6,球形度的定量评价应分为宏观、介观和微观三个层级【5,6】。图 4 欧奇奥(Occhio)500nano XY 静态图像法粒度分析仪(左)及其内部结构(右) 用于干法分析的真空分散器可以很好地分散金属粉末【8】三、图像法技术分析粒度和形貌及其可靠性验证 基于图像的粒度测量技术是从计算机视觉领域中发展起来的新型非接触测量技术,它是把图像当作检 测和传递信息的手段而加以利用的测量方法。通过提取图像的特征,最终从图像中获取被测对象的实际信 息。图像法测量技术在精度、速度和智能化等方面具有很强的适应性,并且具有精度高、稳定性好、可计 数、可重复测量、唯一可准确体现 100%粒度(Dmax,D100)等特点。实验证明,由图像法得到的等效体积分布 (图 3)或等效面积分布(图 6)都比激光衍射法具有更加准确的粒度分布及分辨率,而且欧奇奥(Occhio) 微观粒形参数钝度(bluntness)和赘生物指数(outgrow)对于 3D 金属粉体的球形度和卫星化程度的定量 评价具有独特优势【2,6,11-13】。但是,与周长相关粒度参数(等效周长直径)和粒形参数(圆形度)却存在着 无法忽视的问题。 1、颗粒轮廓周长的确定及其对粒度和粒形结果的影响: 最新一代 Occhio 500nano XY 图像法粒度分析仪(图 4)的计算机视觉系统具有通过二维图像认知三维 环境信息的能力,可以更准确地表达颗粒大小。图像是由像素组成的,但像素的轮廓并不等同于颗粒的轮 廓。传统的图像法仪器提取颗粒的轮廓采取的 4C 或 8C 法,这种方法在低像素密度时计算得到的圆周长偏 低,在高像素密度时则偏高(图 5 左),因此,由周长得到的等效周长直径就会产生极大的偏差,并且对 圆形度(circularity)的评估也存在很大偏差(图 5 右);而 500nano XY 采用 Crofton 算法则能在颗粒 像素数大于 200 时,准确评估颗粒周长、粒度和形状(图 5)【9】。Occhio 500nano XY 不是以传统显微镜为基础的静态图像分析仪器,采用的是蓝色脉冲光源,因此具有 更加低和灵敏的检测下限,可以达到 200nm 以下。对同一进口的优质 3D 打印金属粉进行分析比较,500nano XY 得到了双峰粒度分布图,峰值分别为 13μm 和 50μm,并且可以看到团聚的离散颗粒分布。因采用三维 双曲几何的克罗夫顿模型能更准确地确定每个颗粒的边界、曲率和周长,反映出了颗粒大小分布的细节(图 6)。而其它著名进口品牌的图像法粒度仪分析该样品,只能得到一个峰值 38μm 的粒度分布图,即使转化 成数量分布也看不到10μm 左右的小颗粒群(图 6 右)。因此,用 500nano XY 评价 3D 打印粉更加灵敏、 更加准确、更加符合预期。实验表明,3D 打印金属粉的粒度分布可能是一个离散的分布(图 6 上),如果 为了获得感官愉悦的连续粒度分布而进行数据过滤,往往使粒度数据失真或丢失(如图 6 下,采用 11 点平 均法对曲线进行了平滑处理)。图 5 对半径 100 的圆盘进行一系列平移和旋转,在不同像素密度(从像素数 20 到 20000)时的图像用两种 方法进行粒度(左图)和粒形(右图)的评价【9】 左图:圆盘周长计算(真值=628)。其中 8C 内轮廓法在低像素密度时计算得到的圆周长偏低,在高像素密度 时则偏高;Crofton 方法平均值始终在 628 左右,并且随像素密度升高,标准偏差减小。 右图:不同像素密度与圆形度的关系(Circularity 真值=1)。使用 Crofton 方法时随像素密度升高,圆形度趋近 于 1,而 8C 内轮廓法得到结果则是介于 1.5 到 0.9 之间。2、圆形度(circularity)参数的灵敏性及其用于判断球形度的问题:圆形度因为与周长有关,所以也曾被称作周长球形度【6】 。它在 GB/T 39251-2020 成为判断球形度的唯 一粒形参数。然而,这个参数极其不灵敏,即使颗粒呈正方形,其圆形度还有 0.886(88.6%),甚至三角 形也有 77.7%的高值(图 7a)。图 7b 显示,圆形度值基本无法区分 2:1 的椭圆和圆之间的形状区别。Pirad比较了被普遍当作球形度使用的介观参数圆形度和微观参数钝度,用它们分别表征 Krumbein 从等级 1(10%) 到 9(90%)的标准形状颗粒(图 7d)。可以看出(图 7c),圆形度无法区分从 0.6 到 0.9 的颗粒形状,甚至 与 0.4 和 0.5 也差别不大;而钝度与标准形状分级基本呈线性关系,比圆形度要灵敏得多【11】 。圆形度是椭圆度和粗糙度的函数【14】 ,但在周长轮廓数字化过程中因分辨率低,误差大【9】,粗糙度被忽略,造成了圆形 度参数的不灵敏。因此,对于涉及周长的粒度和粒形参数的使用要特别小心。因为灵敏度差,若以圆形度 (Circularity)作为球形度质量指标,则总能显示出很高的合格率,根本无法代表工业上真正关心的颗粒球 形度【6,11】。图 6 对某进口优质 3D 合金打印粉进行粒度分布测定(等效面积分布)。左:基于体积;右:基于数量 上图:500nano XY 的测定结果,得到双峰粒度分布图,峰值分别为 13μm 和 50μm,并可看到离散颗粒分布。 下图:某一进口著名品牌的测定结果,只能得到一个峰值 38μm 的粒度分布图。数据进行了 11 点平均过滤。四、用于 3D 打印金属粉的典型粒度和形状分析参数 形状描述中的常见问题是如何判断形状描述方法的质量。不是所有的方法都适用于各种形状和应用。 国际标准中给出了形状描述方法的评估标准【10】: ——可达性(Accessibility):用来描述根据计算机存储要求和运算时间计算形状描述参数的容易程度; ——能力范围(Scope):指可通过该方法描述的形状类别; ——唯一性(Uniqueness):描述形状和形状描述符之间是否存在一对一的映射关系; ——稳定性和灵敏度(stability and sensitivity):形状描述参数对形状“微小”变化的敏感程度。 球形度是颗粒的重要特性,但它不是一个参数,而是至少应该包括宏观、介观和微观描述的一组参数【6】。 根据实践,我们推荐的球形度分析参数如下:参数分类推荐的球形度评价参数归一化粒度参数(等效直径)等效体积直径,等效面积直径宏观形状几何描述参数(直径)内径,最小外接圆直径,费雷特直径宏观形状比例描述参数椭圆度、长宽比、无规度介观形状描述参数圆形度、Wadell 圆润度、坚固度微观形状描述参数钝度,赘生物指数图 7 圆形度(circularity)的灵敏性及其和其它粒形参数的关系 a. 圆形度的定义及规则几何形状的评价值。 b. 不同长宽比的一系列椭圆及其圆形度评价值【11】。 用圆形度和钝度曲线(c)分别表征克鲁宾(Kunbbein)从 10%到 90%的颗粒形状图表(d)【11】微观形状参数钝度(bluntness),由于其在图形计算机数字化过程中的鲁棒性,在每个颗粒只有 5000 个体积像素的分辨率下,也可以清楚地测量出明显的差异【12】,具有极为出色的分辨力,并且灵敏度高,可 靠性强。这是与 circularity 参数(圆形度)的最大区别【11】。因此,钝度参数在二维颗粒图像处理中成为目前 颗粒球形度表征的最佳参数【9】,并且已经成功地应用于 3D 打印金属粉的表征【13】。 图 8 是某国产 3D 打印金属粉(样品 A)的钝度分布图。该样品具有极宽的钝度分布,峰值钝度为 67%, D50(P50)只有 62.38%。通过与相应钝度的颗粒形状图片对比可知,只有不到 50%的颗粒球形度较好或属 于类球形颗粒,但还有一半体积的颗粒棱角较多或已经卫星化(卫星粉)。图 8 某国产 3D 打印金属粉的钝度分布图及对应的颗粒形状。右上角为原始成像图片之一。图 9 广西产钨粉赘生物指数分布图 表示方法:0:没有 50%: 有一个;66%:有两个;75%:有三个3D 打印金属粉末分为单质金属粉末和合金粉末。单质金属粉末的制备有还原法和电解法。合金的粉末 制备主要是雾化法。雾化法得到的球形颗粒的主要缺陷是容易卫星化,即颗粒与颗粒的粘连,大颗粒与小 颗粒粘连以及颗粒表面存在未成形的不规则浆料残渣。欧奇奥赘生物指数(Outgrowth)就是定量评价球形 粉末卫星化程度的非常简单和实用的方法,可以清晰地给出球形颗粒和卫星化颗粒(有赘生物)比例及其严重程度(即赘生物比例或数量,图 9)。 用 5oonano XY 对 4 微米以下的细粉进行专门分析。分析表明,即使这么小的颗粒,也存在卫星化现象。 将样品 A 的卫星化颗粒全部过滤,其粒度变化如图 10 左中蓝色线条所示呈离散分布,颗粒数量减少了 3/4, 但圆形度极大地提高(图 10 右)。图 10 3D 打印合金粉过滤掉卫星粉前后的粒度分布变化图和圆形度变化分布图 图左:过滤前后的等效面积直径分布图;图右:过滤前后的圆形度分布图及过滤后保留的颗粒形状。红色:滤前;蓝色:滤后五、 总结 3D 打印合金粉的粒度分布是进行质量控制和评价的重要参数,优质的打印粉应该细粉和粗粉以一定配 比混合,但是因其原理限制,激光衍射法粒度分析仪不能正确给出两个粒群的分布。欧奇奥 500nano 系列 代表图像法粒度粒形分析的最高水平,全自动变焦,无需镜头拼接, 给出最真实的分析结果,干法分析范 围覆盖 0.2μm - 3000μm,使我们对 0.2 至 4 微米的 3D 打印合金细粉有了全新认识。 球形度是颗粒的重要特性,但它不是一个参数,而是至少应该包括宏观、介观和微观描述的一组参数。 微观粒形参数包含了宏观和介观参数的信息,能正确反映颗粒轮廓形状的光滑或粗糙程度。钝度是颗粒球 形度表征的高阶粒形参数,它包含了类球度和圆润度两个参数的特征,钝度高表明颗粒既圆又光滑;赘生 物指数则可以反映球体颗粒的卫星化程度,定量给出分散的球体和粘连球体的各自比例,以及粘连球体附 着微粒的数量及所占比例,可直接用于 3D 打印粉的工艺评估和质量控制。因此,钝度及赘生物指数是 3D 打印合金粉颗粒形貌评价中不可或缺的微观形状定量参数。其它粒形参数如椭圆度,也可以和粉体的流动 性和堆积密度建立起函数关系【14】。参考文献: 1、 吴晟霖. 3D 打印金属原料粉体的要求. 中国模具网. 2017-12-13 2、 杨正红. 卫星化粉末(颗粒)及其微观形态表征参数. 第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨 会论文集, 2013( 贵阳). 43-46 3、 GB/T 39251-2020. 增材制造 金属粉末性能表征方法, 5.3 & 5.4. 2021 年 6 月 1 日实施 4、 徐喜庆,杨正红. 激光衍射法粒度分析的准确性及其与图像法分析结果的比较. 仪器仪表与分析监测. 2020,4:26-32 5、 ISO 9277-6:2008(E). Representation of results of particle size analysis —Part 6: Descriptive and quantitative representation of particle shape and morphology.2008. 6、 李叶, 殷喜平, 杨正红. 颗粒球形度的表征、分级及其应用. 现代科学仪器. 2020, 3:61-69 7、 杨正红,孙志昂,高岩, 王莘泉. 静态图像粒度粒形分析方法对氧化铝颗粒的测定研究. 现代科学仪器. 2019 (5) 51-55+66 8、 杨正红 , 欧阳亚非 . 静态图像粒度分析中真空分散器原理和分散效果解析 . 现代科学仪器 .2019,1:65-68 9、 Pirard E , Dislaire G . Robustness of Planar Shape Descriptors of Particles. Proc. Int. Assoc. Math. Geol. Conf. Toronto, CA,PUB_2005_01 10、ISO 9277-6:2008(E). Representation of results of particle size analysis —Part 6: Descriptive and quantitative representation of particle shape and morphology.2008. 11、Pirard. E. and Dislaire G. Sensitivity of particle size and shape parameters with respect to digitization. Procedings 13 Int. Congress for Stereology. Beijing 2011 12、Pirard, E.et al, Shape processing and analysis using the calypter. Journal of Microscopy. 1994. 175(3):214 – 221. 13、GAO, Chao-feng. Et al. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters. Transactions of Nonferrous Metals Society of China. 2019, 29(2), 374-384. 14、杨正红. 欧奇奥粒度和形貌分析在化肥质量控制中的应用. 化肥工业, 2019(2), 6-11作者:杨正红仪思奇(北京)科技发展有限公司总经理(注:本文由杨正红老师供稿,不代表仪器信息网本网观点)
  • 美国发布首套航天材料增材合金粉末标准
    p style=" text-indent: 2em " 近日,& nbsp SAE(国际自动机工程师学会)旗下的AMS-AM(航空航天材料增材制造委员会)发布了行业首套航天材料规范,四项技术标准主要与激光粉末熔合(LPBF)技术及3D打印合金材料相关。 /p p style=" text-indent: 2em " 此次规范的发布源于美国的联邦航空管理局(FAA)在2015年提出的,成立标准委员会并制定相关文件,协助发展增材制造并指导认证用于生产零部件的材料,这也包括了几乎不能有任何质量问题的大型商用飞机。此次发布规范的四项粉末标准具体是,从AMS7000到AMS7003,包括LPBF法生产镍合金部件的耐腐蚀耐热性能,应力消除,热等静压和固溶退火,还有金属粉末的组成和生产工艺要求,激光熔接工艺几项。 /p p style=" text-indent: 2em " 该委员会还将继续制定包括金属和其他聚合物的增材规范,毫无疑问行业门槛已经开始有了,并且将不断提升。 /p p style=" text-indent: 2em " SAE总部位于美国宾州,由航空航天、汽车和商用车辆行业的工程师和相关技术专家组成的,前身即美国汽车工程师学会。 /p
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 飞纳电镜邀您参加 2017 特种粉末冶金及复合材料制备/加工第二届学术会议
    为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司等单位定于2017年12月7-9日在湖南省长沙市共同举办“2017特种粉末冶金及复合材料制备/加工第二届学术会议”。 介绍 材料工业是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。本次会议旨在促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。 飞纳电镜对粉末冶金材料的分析 微观形貌+成分高效检测设备不锈钢粉末金属粉末3D打印金属粉末铜粉铜锡合金粉飞纳电镜的展位号:7期待您的参与!
  • 飞纳电镜与您相约 2018 特种粉末冶金及复合材料制备/加工第三届学术会议
    为了推动材料产业的技术创新,引领材料工业升级换代,2018 年 12 月 21 日 - 23 日,“2018 特种粉末冶金及复合材料制备/加工第三届学术会议”旨在促进学术界、产业界、企业界的沟通与联系,围绕材料产业的进展展开讨论。时间:2018 年 12 月 21 日 - 23 日地点:长沙市融程花园酒店分会场设置先进粉末冶金材料分会场高温、难熔金属及硬质合金材料分会场金属基、陶瓷基复合材料分会场高性能轻合金材料分会场增材制造和特种制造分会场表面涂层与防护分会场数值模拟仿真、性能检测与微结构表征分析技术分会场先进凝固科学与技术分会场放电等离子烧结 (SPS) 技术分会场台式扫描电镜在粉末冶金领域的应用一、粉体形貌、粒度观察 同样是黑色的金属粉末,在高倍下呈现出不同的微观结构,这些微观结构将影响金属粉的烧结、力学性能等 铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状 (左),有的呈多孔疏松结构(右)二、烧结件缺陷检查使用飞纳电镜软件 “超大视野自动全景拼图” 进行烧结件缺陷检查。45张扫描电镜图拼成一张大图,实现大面积杂质位置自动寻找三、金属粉体粒度统计飞纳电镜的颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。了解更多精彩内容,欢迎大家到飞纳电镜展位与飞纳工程师一起探索。飞纳电镜展位号:10号
  • 盘点2022年增材制造国家标准、行业标准、地方标准
    随着近几年3D打印行业的快速发展,国家也相继出台了几十项增材制造标准,从设计到材料、工艺、设备、测试以及后处理等。相信随着相关标准的陆续发布及不断完善,将能够让从业人员有规可循,助推行业进一步发展。一、国家标准通过在”全国标准信息公共服务平台“查询得知,2022年我国已发布8项增材制造国家标准,其中4项已在今年开始实施,另外4项即将在明年开始实施。同时,2022年还有4项增材制造国标正在制定中,接下来为大家做详细介绍。2022年新增并且处于现行的国家标准序号标准名称发布日期实施日期1增材制造用镍粉(GB/T 41335-2022)2022-03-09 2022-10-012增材制造用钨及钨合金粉(GB/T 41338-2022)2022-03-092022-10-013粉末床熔融增材制造镍基合金(GB/T 41337-2022)2022-03-092022-10-014增材制造 金属粉末空心粉率检测方法(GB/T 41978-2022)2022-10-122022-10-122022年新增并且处于即将实施的国家标准序号标准名称发布日期实施日期1增材制造 术语 坐标系和测试方法(GB/T 41507-2022)2022-07-112023-02-012增材制造 通则 增材制造零件采购要求(GB/T 41508-2022)2022-07-112023-02-013增材制造用铜及铜合金粉(GB/T 41882-2022)2022-10-142023-05-014粉末床熔融增材制造钽及钽合金(GB/T 41883-2022)2022-10-142023-05-012022年正在起草当中的国家标准序号计划号项目名称起草单位120220748-T-610增材制造用镍钛合金粉西安欧中材料科技有限公司220220735-T-610增材制造用铝合金粉中车工业研究院有限公司 、宁波众远新材料科技有限公司 、飞而康快速制造科技有限责任公司320220736-T-610增材制造用金属粉末的包装、标志、运输和贮存西安欧中材料科技有限公司 、西北有色金属研究院420220074-T-604增材制造 云服务平台产品数据保护技术要求中国海洋大学 、青岛海尔智能技术研发有限公司 、中机生产力促进中心等二、行业标准据统计,2022年新增正式实施的增材制造行业标准共计5项,其中医药行业2项,机械行业3项。此外,还有一项关于医药的标准将在2023年实施。具体内容如下:1、标准号:YY/T 1802-2021项目名称:增材制造医疗产品 3D打印钛合金植入物金属离子析出评价方法行业领域:医药批准日期:2021-09-06实施日期:2022-09-012、标准号:YY/T 1809-2021项目名称:医用增材制造 粉末床熔融成形工艺金属粉末清洗及清洗效果验证方法行业领域:医药批准日期:2021-09-06实施日期:2022-09-013、标准号:JB/T 14279-2022项目名称:增材制造 材料挤出成形3D打印笔行业领域:机械批准日期:2022-04-08实施日期:2022-10-014、标准号:JB/T 14280-2022项目名称:增材制造 桌面级材料挤出成形设备安全技术规范行业领域:机械批准日期:2022-04-08实施日期:2022-10-015、标准号:JB/T 14190-2022项目名称:增材制造设备 桌面型熔融挤出成形机行业领域:机械批准日期:2022-04-08实施日期:2022-10-016、标准号:YY/T 1851-2022(明年实施)项目名称:用于增材制造的医用纯钽粉末行业领域:医药批准日期:2022-08-17实施日期:2023-09-01三、地方标准截至目前,据资源库统计,国内关于增材制造的地方标准共计8项,其中2022年起正式实施的只有一项,适用于陕西省,具体内容如下。标准号:DB61/T 1503-2021标准名称:医用增材制造 金属粉末生产技术规范所在地址:陕西省批准日期:2021-12-17实施日期:2022-01-17无论是哪个行业,想要正规化发展,都离不开标准的制定,无论是国家标准,还是行业标准、地方标准等。3D打印有标准可依,才能走得更远、更稳、更好。
  • 飞纳电镜邀您参加2018第十一届上海国际粉末冶金展览会暨会议
    上海国际粉末冶金展(PM CHINA)创办于2008年,经过十余年的持续培育,PM CHINA现已发展成为世界粉末冶金行业最具影响力的专业展会之一。PM CHINA推动技术创新、促进成果转化,是中外企业加强交流合作、提升品牌形象、拓展目标市场的首选商贸平台。时间:2018年3月25日-27日地点:上海光大会展中心 西馆一、二、三楼展位号:西馆一楼 B150展品:飞纳台式扫描电镜能谱一体机Phenom ProX第五代飞纳电镜能谱一体机 Phenom ProX 是终极的集成化成像分析系统,分辨率提升 20%,进一步增加应用范围,更加适用于对电子束敏感的样品。借助该系统,既可观察样品的表面形貌,又可分析其元素组分。研究样品时,得到样品的形貌信息只是解决了一半问题。获得样品的元素组分信息往往也是非常必要的。借助全面集成、特殊设计的能谱探测器,飞纳电镜能谱一体机 Phenom ProX 可以完善解决上述所有问题。颗粒统计分析测量系统颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。台式扫描电镜在粉末冶金领域的应用粉体形貌、粒度观察((a)(b)铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状(a),有的呈多孔疏松结构(b)更多关于飞纳电镜在粉末冶金领域的精彩内容尽在《2018第十一届上海国际粉末冶金展览会暨会议》。在此,飞纳电镜诚挚地邀请您参加此次展会,期待您的参与!飞纳电镜
  • 研磨应用的珠穆朗玛峰——SPEX机械合金化
    机械合金化(MA) 最早是由美国国际镍公司的本杰明(Benjamin)等人,于1969年前后研制成功的一种新的制粉技术,并被成功应用到弥散强化高温合金的制备中。从其严格定义上讲是指,金属或合金粉末在高能球磨仪中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。时至今日,人们对机械合金化理论理解进一步加深,机械合金化所需的高能球磨机性能也进一步提升,其应用已扩展至非晶态合金、准晶、纳米晶以及非平衡态材料的研究。(图片来源于网络)机械合金化过程 机械合金化是一个复杂的过程,要获得理想的相和微观结构,对实施机械合金化的高能球磨机提出了极高的要求,因此机械合金化也被称之为研磨应用的“珠穆朗玛峰”。在大多数情况下,在有限的球磨时间内仅仅使各组元在那些相接触的点、线和面上达到或趋近原子级距离,并且最终得到的只是各组元分布十分均匀的混合物或复合物。当球磨时间非常长时,在某些体系中也可通过固态扩散,使各组元达到原子间结合而形成合金或化合物。(图片来源于网络)机械合金化利器——SPEX三维∞高能球磨仪 目前在全世界范围内,已有数千篇使用SPEX高能球磨仪做机械合金化和纳米材料研究的高端文献,甚至可以说,每个做机械合金化研磨的实验室里,都至少有一台SPEX三维∞式高能球磨仪。SPEX发明了三维∞式研磨方式,高能效,可连续工作10000分钟以上,完美契合机械合金化需求,在研磨界没有其他厂家的性能与之匹敌,成就SPEX在研磨界的领导地位。首先,机械合金化需要极高的动能,球磨设备需要具备极高的研磨能力。为了增加研磨介质,研磨罐和物料粉末撞击力和摩擦力,为物料粉末达到原子间结合提供提供极高的动力源泉,SPEX高能球磨仪采用更有效的∞式三维运动方式,其碾磨能量密度达到传统行星式二维运动的6-8倍。其次,研磨时间也是影响机械合金化效果的重要因素。随着研磨的进程,合金化程度会越来越高,因此需要球磨设备提供足够长时间的稳定研磨能力;SPEX高能球磨仪机械工作耐久性极限达10000分钟以上,充分保证了机械合金化进程的有效性。最后,研磨温度也是机械合金化进程中必须考量的重要因素。因为无论机械合金化的最终产物是固溶体、金属间化合物、纳米晶、还是非晶相都涉及到高温扩散降解问题,研磨温度越高,合金化产物高温扩散降解越快,合金化效率越低下;SPEX独特专利设计的∞式三维运动方式,更高比例输出正面撞击力,而非摩擦力,因此热生成更低,合金化效率更高。
  • Retsch高能球磨仪Emax机械合金法制备半导体合金
    文章摘要: 机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。本文以硅锗合金和碲化铋半导体材料合金化制备实验为例,介绍了高能球磨仪Emax的使用方法和技术优势,对合金样品制备的应用有借鉴作用。 传统方法制备不锈钢类合金要求高温下进行熔融,如果需求量很小抑或无法熔融,机械合金法就是一个很好的替代方法,传统上会用行星式球磨仪来完成。上世纪60年代末,美国国际镍公司用机械合金法第一次制备成功耐高温镍铁合金并以此申请专利。机械合金研磨需要有强劲的动能把固体粉末结合在一起,行星式球磨仪产生的高能撞击可以提供所需能量。在研磨球的撞击和挤压下,细粉颗粒会发生塑性形变并且焊合在一起。所以机械合金法可以弥补传统高温熔融无法制备的样品的不足,并且可以制备更大自由度混合比的样品。热电合金材料硅(Si)和锗(Ge)都是最通用常见半导体材料—是光电电池和晶体管产业的基石。硅锗合金材料性质如带隙可以由改变硅和锗混合比例来调整。热电合金材料用于制造航天热偶发电机,保证了空间探索和试验设备的动力供应。在商用热电材料领域,碲化铋(Bi2Te3)因其热电效能转化率高,是研究最多的材料,被用来做半导体制冷元件。 高能球磨仪EmaxEmax的转速能达到每分钟2000转,特殊设计的跑道型研磨罐可以产出更大的粉碎能。结合了高速撞击力和密集摩擦力,高能球磨仪的强劲能量输入可以做快速纳米研磨实验和机械合金应用。跑道型的研磨罐和偏心轮运动方式,有效保证了样品的混合,样品最后不仅可以磨得很细,粒度分布范围也会变很窄。内置水冷管路可以快速带走样品子啊研磨中产生的热量,保护样品免受过高温度影响,从而可以不像行星式球磨仪一样需要间歇停转,大大提高研磨工作效率。如果有更严格的控温需要,Emax还可以外接冷水机,进一步降低研磨温度(最低工作温度不能低于5摄氏度)。 图1:研磨前样品XRD 分析结果 Si(红)Ge(绿)整个扫描范围从10-60°,可以看出Si和Ge晶面特征峰。图2:研磨5小时后XRD分析结果 可以看出晶面特征峰已经偏移和合并,机械合金化已有效果图3:研磨5,8,9小时后XRD分析结果 晶面特征峰值会有所变窄和迁移,显示5-6小时的反应后机械合金反应已经基本完成原来硅和锗的机械合金化反应用是用行星式球磨仪进行的,但是会有很多问题导致结果不尽如人意。行星式球磨仪需要至少80分钟才能把样品处理到可以进行机械合金化的初始细度,接下来即使用中低转速400转/分也会导致样品在研磨罐中结块,无法使用其全部能量来进行机械合金反应。另一个问题是研磨罐过热需要间歇,在整个13小时的反应时间中需要额外加入至少90分钟停止时间。而高能球磨仪Emax自带水冷功能,高速运行也无需间歇,没有样品结块的现象,同时还大大提高了反应效率。 图4: 图 5:Bi和Te机械合金反应 1小时后XRD分析结果 图4为球料比10:1 (体积比)图5为球料比5:1(体积比) 机械合金法制备硅锗合金硅锗合金比为SI 3.63克 Ge2.36克,用50ml碳化钨研磨罐,10mm碳化钨研磨球8个(球料比10:1)。硅料和锗料的原始尺寸为1-25mm和4mm。2000转/分20分钟后,样品已经微粉化无结块现象。接下来1200转/分 9个小时(每隔1小时中间间歇1分钟后反转样品以避免样品结块)。机械合金反应前20分钟样品做了XRD定性和定量分析,Si和Ge的特征峰值都可以很清晰地辨认出来,说明碳化钨球几乎没有产生摩擦效应。在整个反应过程中合金始终保持微粉化,Emax的温度没有超过30℃。经过9个小时的反应后,整个样品基本消除了不定形态,呈微晶状态。机械合金法制备碲化铋研究不同球料比(10:1或5:1)对反应的影响,50ml 不锈钢研磨罐, 10mm不锈钢研磨球 10个。 球料比10:1的罐子中加入2.09克Bi和1.91克Te。 球料比5:1的罐子中加入4.18克Bi和3.83克Te。800转/分 70分钟(每10分钟间歇1分钟并反转),结果做了XRD分析。在经过近1小时机械合金研磨,Bi和Te的特征峰都有明显可辨的偏移,显示化合物Bi2Te3开始形成。球料比10:1的样品形成速度比5:1的更快,因为5:1样品中Te的特征峰值强度更大,说明10:1样品中的Te反应地更多。合金反应继续1200转/分3小时后,没有样品结块。和原来用混合研磨仪1200转/分 6.5小时制备相比,高能球磨仪Emax只需要2-3个小时候就能轻松完成任务。
  • “2017特种粉末冶金及复合材料制备/加工第二届学术会议”第二轮通知
    p style=" text-align: center " strong 2017特种粉末冶金及复合材料制备/加工第二届学术会议 /strong /p p    strong 各相关单位: /strong /p p   为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。 /p p    strong 中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司 /strong 等单位定于 span style=" color: rgb(255, 0, 0) " 2017年12月7-10日在湖南省长沙市 /span 共同举办“ span style=" color: rgb(0, 176, 240) " strong 2017特种粉末冶金及复合材料制备/加工第二届学术会议 /strong /span ”。 /p p    span style=" color: rgb(255, 0, 0) " strong 材料工业 /strong /span 是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。 /p p    span style=" color: rgb(255, 0, 0) " strong 本次会议旨在 /strong /span 促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。 /p p    span style=" color: rgb(255, 0, 0) " strong 本次会议将邀请 /strong /span 国家相关部委、中国有色金属工业协会、中国有色金属学会领导,中国工程院、中国科学院院士和知名专家、学者和企业代表就国家相关政策和技术水平的发展做专题报告。欢迎各企业单位、科研院所、高等院校、设备厂家积极参加。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f4151a0a-4db3-4e68-b036-343e7692c4ea.jpg" title=" 微信图片_20171118195259.jpg" / /p p style=" text-align: center "    span style=" text-decoration: underline " strong 现将有关事项通知如下 /strong /span br/ /p p    span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " strong 组织机构 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 主办单位 /strong /span /p p   中国有色金属学会 /p p   中南大学 /p p   中国科学院金属研究所 /p p   西北有色金属研究院 /p p   株洲硬质合金集团有限公司 /p p    span style=" color: rgb(255, 0, 0) " strong 联办单位 /strong /span /p p   新型陶瓷纤维及其复合材料国家级重点实验室 /p p   硬质合金国家重点实验室 /p p   span style=" color: rgb(255, 0, 0) " strong  承办单位 /strong /span /p p   湖南省宁乡高新技术开发区管理委员会 /p p   粉末冶金国家重点实验室 /p p   北方中冶(北京)工程咨询有限公司 /p p    span style=" color: rgb(255, 0, 0) " strong 支持单位 /strong /span /p p   北京工业大学 & nbsp 江西理工大学 & nbsp 华南理工大学 & nbsp 昆明理工大学华中科技大学 & nbsp 广东省科学院 & nbsp 河南科技大学 & nbsp 上海交通大学 & nbsp 北京理工大学 & nbsp 西北工业大学 & nbsp 西安交通大学 & nbsp 哈尔滨工业大学 & nbsp 山东科技大学 & nbsp 西安理工大学 & nbsp 南昌航空大学 & nbsp 北京航空航天大学 & nbsp 合肥工业大学广东省材料与加工研究所 & nbsp 先进结构功能一体化材料与绿色制造技术工业和信息化部重点实验室 /p p   (...陆续更新中) /p p    span style=" color: rgb(255, 0, 0) " strong 支持媒体 /strong /span /p p   《中国有色金属学报(中英文版)》《金属学报》 /p p   《稀有金属材料与工程(中英文版)》《中国金属通报》 /p p   《稀有金属(中英文版)》 /p p   《有色环保》中冶有色技术网 /p p    strong span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " 时间、地点 /span /strong /p p    span style=" color: rgb(255, 0, 0) " strong 时间 /strong /span :2017年12月7-10日(其中7日全天报到,8-9日大会及分会学术交流,10日去宁乡考察。) /p p    strong span style=" color: rgb(255, 0, 0) " 地点 /span /strong :湖南省长沙市长沙融程花园酒店 /p p    strong span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " 拟邀嘉宾及演讲方向 /span /strong /p p    span style=" color: rgb(255, 0, 0) " strong 拟邀嘉宾 /strong /span /p p    strong 中国有色金属工业协会领导 /strong /p p strong   中国有色金属学会领导 /strong /p p    strong 黄伯云 /strong 中南大学、中国工程院院士 /p p    strong 何季麟 /strong 郑州大学、中国工程院院士 /p p    strong 屠海令 /strong 北京有色金属研究总院、中国工程院院士 /p p    strong 王华明 /strong 北京航空航天大学、中国工程院院士 /p p    strong span style=" color: rgb(255, 0, 0) " 大会部分报告 /span /strong (陆续更新...) /p p    strong 杨 & nbsp 锐 /strong 中国科学院金属研究所所长 /p p   发言题目:钛基复合材料和粉末冶金近净成形研究进展 /p p    strong 周科朝 /strong 中南大学副校长 /p p   发言题目:高强耐蚀铜合金的连铸与加工制备技术研究进展 /p p    strong 关绍康 /strong 郑州大学副校长 /p p   发言题目:高速连铸连轧新工艺生产高性能铝合金板材的研究与开发 /p p    strong 易健宏 /strong 昆明理工大学副校长 /p p   发言题目:新型粉末冶金复合材料 /p p    strong 范景莲 /strong 中南大学教授 /p p   发言题目:超高温轻质难熔金属基复合材料 /p p    strong 王 & nbsp 军 /strong 新型陶瓷纤维及其复合材料国家重点实验室主任 /p p   发言题目:耐高温透波陶瓷纤维制备 /p p    strong span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " 分会场部分报告(陆续更新...) /span /strong /p p    span style=" color: rgb(255, 0, 0) " strong 粉末冶金专题分会场 /strong /span /p p    strong 张德良 /strong 东北大学教授 /p p   发言题目:通过粉末加工和热机械固结制备超细结构金属基纳米复合材料 /p p    strong 梁淑华 /strong 西安理工大学教授 /p p   发言题目:CuW系假合金在高压电器中的应用 /p p    strong 蔡晓兰 /strong 昆明理工大学冶金与能源工程学院教授 /p p   发言题目:高能球磨设备与金属基复合粉体制备技术 /p p    strong 郎利辉 /strong 北京航空航天大学机械工程及自动化学院教授 /p p   发言题目:钛合金粉末的热等静压数值模拟研究 /p p    strong 张朝晖 /strong 北京理工大学博士生导师 /p p   发言题目:放电等离子烧结机理及其应用研究进展 /p p    strong 白玉龙 /strong 西安龙华微波冶金有限责任公司董事长 /p p   发言题目:不颠覆,无突破,微波技术在有色金属冶炼上的应用 /p p   span style=" color: rgb(255, 0, 0) " strong  硬质合金专题分会场 /strong /span /p p    strong 杜 & nbsp 勇 /strong 粉末冶金国家重点实验室教授 /p p   发言题目:硬质合金的集成计算材料工程 /p p    strong 王社权 /strong 株洲钻石切削刀具股份有限公司 副总经理、研究员 /p p   发言题目:立方相成分对梯度硬质合金结构的影响---理论计算和实验研究 /p p    strong 周武平 /strong 安泰科技股份有限公司总裁兼党委书记/教授级高工 /p p   发言题目:矿用硬质合金研究进展 /p p    strong 邓 & nbsp 欣 /strong 广东工业大学教授 /p p   发言题目:非常规硬质合金及超硬材料研究 /p p    strong 张 & nbsp 立 /strong 中南大学粉末冶金研究院教授 /p p   发言题目:从2017Plansee会议看硬质合金的国际发展动态 /p p    strong 时凯华 /strong 自贡硬质合金有限责任公司研发中心主任/博士 /p p   发言题目:欧洲陶瓷材料研究新进展 /p p    strong 张 & nbsp 颢 /strong 株硬集团研发中心副主任/高级工程师 /p p   发言题目:钻掘硬质合金制备技术发展动态和展望 /p p    strong 龙本夫 /strong 厦门金鹭特种合金有限公司经理/硕士 /p p   发言题目:碳酸钴煅烧工艺对氧化钴性能的影响 /p p    strong 李 & nbsp 毅 /strong 江苏泰尔新材料股份有限公司总工程师/博士 /p p   发言题目:基于石蜡改性的环境友好型硬质合金成型剂的研究 /p p    strong 王明智 /strong 燕山大学材料学院研究员 /p p   发言题目:过渡族金属共价键化合物的合金化—高熵化合物及其应用 /p p    strong 乔竹辉 /strong 中国科学院兰州化学物理研究所研究员 /p p   发言题目:硬质合金宽温域摩擦磨损机理研究及自润滑硬质合金的设计制备 /p p    strong 张 & nbsp 聪 /strong 北京科技大学助理研究员 /p p   发言题目:Ti(C,N)基金属陶瓷相图热力学数据库及其组织结构设计 /p p   高温、难熔金属专题分会场 /p p    strong 王金淑 /strong 北京工业大学教授 /p p   发言题目:稀土钼金属陶瓷次级发射材料研究 /p p    strong 李树奎 /strong 北京理工大学教授 /p p   发言题目:新型穿甲弹弹芯材料研究 /p p    strong 沙江波 /strong 北京航空航天大学教授 /p p   发言题目:放电等离子烧结Nb-Si基合金的组织与性能研究 /p p    strong 曹顺华 /strong 中南大学教授 /p p   发言题目:连续梯度钨铜材料制备技术 /p p    strong 秦明礼 /strong 北京科技大学教授 /p p   发言题目:高性能金属钨制品的精密制备技术 /p p    strong 韩胜利 /strong 广东省材料与加工研究所高级工程师 /p p   发言题目:增塑挤压-熔渗烧结制备W-Cu合金组织性能研究 /p p    strong 胡 & nbsp 鹏 /strong 北京工业大学教授 /p p   发言题目:球形钨粉的热等离子制备及其烧结性能研究 /p p    strong 王伟丽 /strong 西北工业大学研究员 /p p   发言题目:快速凝固高熵CoCrFeNiMnx合金组织演化规律及其性能特征 /p p    strong 孟军虎 /strong 中国科学院兰州化学物理研究所研究员 /p p   发言题目:高熵合金基高温自润滑复合材料的设计制备和减摩耐磨机制 /p p    span style=" color: rgb(255, 0, 0) " strong 金属基复合材料专题分会场 /strong /span /p p    strong 张 & nbsp 荻 /strong 上海交通大学教授 /p p   发言题目:待定 /p p    strong 耿 & nbsp 林 /strong 哈尔滨工业大学教授 /p p   发言题目:金属基复合材料构型设计与调控 /p p    strong 武高辉 /strong 哈尔滨工业大学教授 /p p   发言题目:金属基复合材料尺寸稳定设计及应用 /p p    strong 马宗义 /strong 中国科学院金属研究所研究员 /p p   发言题目:高体份金属基复合材料制备与应用 /p p    strong 彭华新 /strong 浙江大学教授 /p p   发言题目:金属-陶瓷复合材料的组织调控 /p p    strong 赵乃勤 /strong 天津大学教授 /p p   发言题目:三维网络碳纳米增强相的构筑与复合 /p p    strong 王慧远 /strong 吉林大学教授 /p p   发言题目:待定 /p p    strong 王快社 /strong 西安建筑科技大学教授 /p p   发言题目:累积叠轧制备Ti/Ni多层结构复合材料界面扩散及性能研究 /p p    strong 郑开宏 /strong 广东省材料与加工研究所教授 /p p   发言题目:铁基复合材料制备技术及应用合 /p p    strong 肖伯律 /strong 中国科学院金属研究所研究员 /p p   发言题目:铝基复合材料变形加工图研究 /p p    strong 王祖敏 /strong 天津大学教授 /p p   发言题目:金属-半导体界面的原子传输与相变 /p p    strong 杨亚锋 /strong 中国科学院过程工程研究所研究员 /p p   发言题目:陶瓷包覆型粉体的设计、制备及应用 /p p    strong 魏秋平 /strong 中南大学副教授 /p p   发言题目:金刚石/铜复合材料的研究 /p p    strong 何春年 /strong 天津大学教授 /p p   发言题目:碳材料增强金属基复合材料的设计与强韧化机制 /p p    strong 黄陆军 /strong 哈尔滨工业大学教授 /p p   发言题目:多级多尺度钛基复合材料设计与调控 /p p    strong 贾均红 /strong 中科院兰州化学物理研究所研究员 /p p   发言题目:金属基宽温域润滑复合材料的设计---AgTMxOy相的原位分解和摩擦诱导重生 /p p    strong 陈体军 /strong 兰州理工大学教授 /p p   发言题目:粉末触变成形制备芯—壳结构粒子增强铝基复合材料的研究 /p p    span style=" color: rgb(255, 0, 0) " strong 铜合金及铜基材料专题分会场 /strong /span /p p    strong 李 & nbsp 周 /strong 中南大学教授 /p p   发言题目:高性能铜合金设计及应用 /p p    strong 牛立业 /strong 中铝洛阳铜业有限公司教授级高工 /p p   发言题目:汽车电阻焊电极用弥散强化铜合金材料工艺研究 /p p    strong 王强松 /strong 北京有色金属研究总院教授 /p p   发言题目:铜合金材料特种应用 /p p    strong 阮 & nbsp 莹 /strong 西北工业大学教授 /p p   发言题目:多孔铜的结构特征与力学性能研究 /p p    strong 赵红彬 /strong 宁波博威合金材料股份有限公司研发总监 /p p   发言题目:致力于社会资源和环境压力降低的高性能铜合金研究 /p p    strong 王鹏云 /strong 中国船舶重工集团公司第七二五研究所高级工程师 /p p   发言题目:国内外电阻焊电极用弥散铜性能评价指标体系对比及应用 /p p    strong 周登山 /strong 东北大学讲师 /p p   发言题目:杂微量元素Ti抑制纳米晶铜基复合材料中的氧化物颗粒粗化和铜晶粒长大 /p p    strong span style=" color: rgb(255, 0, 0) " 高性能轻合金材料专题分会场 /span /strong /p p    strong 杨院生 /strong 中国科学院金属研究所研究员 /p p   发言题目:纳米析出相增强镁合金 /p p    strong 王俊升 /strong 北京理工大学教授 /p p   发言题目:ICME技术用于高强铝合金的设计 /p p    strong 赵永庆 /strong 西北有色金属研究院教授 /p p   发言题目:高强钛合金研制 /p p    strong 王卫国 /strong 福建工程学院教授 /p p   发言题目:高纯铝再结晶晶界界面匹配研究 /p p    strong 周吉学 /strong 山东省科学院新材料研究所研究员 /p p   发言题目:镁合金及镁-铝异种材料连接件整体表面处理技术 /p p    strong 吴伊平 /strong 江南工业集团有限公司总经理 /p p   发言题目:大规格TC11钛合金件热处理工艺试验 /p p    strong 王建华 /strong 常州大学材料科学与工程学院教授 /p p   发言题目:Al-3P变质Al-18Si合金显微组织与力学性能研究 /p p    strong 李庆林 /strong 兰州理工大学教授 /p p   发言题目:稀土变质过共晶Al-Si合金微观组织及力学性能的研究 /p p    strong 冯小辉 /strong 中科院金属所副研究员 /p p   发言题目:碳纳米管增强镁基复合材料研究 /p p    strong 罗天骄 /strong 中科院金属所副研究员 /p p   发言题目:固溶和淬火处理对挤压态ZK60镁合金残余应力的影响 /p p    strong 杨 & nbsp 昭 /strong 江南工业集团有限公司工程师 /p p   发言题目:TC11钛合金材料验收检验中的试样热处理问题 /p p    span style=" color: rgb(255, 0, 0) " strong 增材制造与特种成形技术专题分会场 /strong /span /p p    strong 史玉升 /strong 华中科技大学教授 /p p   发言题目:智能金属材料及其增材制造技术 /p p    strong 伍尚华 /strong 广东工业大学教授 /p p   发言题目:复杂形状陶瓷零部件的增材制造技术 /p p    strong 刘 & nbsp 奇 /strong 重庆材料研究院有限公司教授级高工 /p p   发言题目:3D打印用钨铼合金粉体材料制备及性能研究 /p p    strong 吴文恒 /strong 上海材料研究所副主任 /p p   发言题目:增材制造金属粉末的制备与检测 /p p    strong 邱耀弘 /strong 安泰(霸州)特种粉业有限公司 MIM技术项目科学顾问/副教授 /p p   发言题目:跃进的不锈钢粉末之成形技术 /p p    strong 张 & nbsp 升 /strong 中国航空工业集团公司北京航空制造工程研究所博士 /p p   发言题目:激光选区熔化成形大尺寸钛合金制件技术研究 /p p    strong 林 & nbsp 峰 /strong 清华大学教授 /p p   发言题目:粉末床电子束选区熔化(EBSM)技术 /p p    strong 钱 & nbsp 波 /strong 华东理工大学副教授 /p p   发言题目:SLM实时预熔重熔的新型工艺研究 /p p    strong 胡梦龙 /strong 江苏昆山工业技术研究院副主任 /p p   发言题目:高性能陶瓷光固化成型技术 /p p    strong 杜开平 /strong 北京矿冶研究总院博士 /p p   发言题目:3D打印用Inconel 718合金粉末的制备及应用技术 /p p    span style=" color: rgb(255, 0, 0) " strong 表面涂层与防护专题分会场 /strong /span /p p    strong 彭 & nbsp 晓 /strong 南昌航空大学研究员 /p p   发言题目:促进金属材料热生长-Al2O3膜的方法探索 /p p    strong 李争显 /strong 西北有色金属研究院教授 /p p   发言题目:钛表面防护涂层技术的发展 /p p    strong 崔洪芝 /strong 山东科技大学教授 /p p   发言题目:耐磨蚀涂层高通量等离子熔射制备技术及应用 /p p    strong 李伟洲 /strong 广西大学研究员 /p p   发言题目:铌合金C103表面复合涂层的高温抗蚀性 /p p    strong 邱万奇 /strong 华南理工大学教授 /p p   发言题目:低温反应溅射沉积α-(Al,Cr)2O3薄膜 /p p    strong 朱圣龙 /strong 中国科学院金属研究所研究员 /p p   发言题目:抑制涂层-基体间互扩散的高温防护涂层研究 /p p    strong 鲍泽斌 /strong 中国科学院金属研究所研究员 /p p   发言题目:活性元素Zr改性铂铝涂层高温氧化及其腐蚀性能研究 /p p    strong 杨冠军 /strong 西安交通大学教授 /p p   发言题目:航机燃机热障涂层结构设计与制备调控方法 /p p    strong 王建强 /strong 中国科学院金属研究所研究员 /p p   发言题目:高耐蚀耐磨HVAF喷涂铝基非晶涂层研究 /p p    strong 耿树江 /strong 东北大学教授 /p p   发言题目:(Cu,Fe)3O4尖晶石涂层的制备及性能研究 /p p    strong 陈明辉 /strong 东北大学教授 /p p   发言题目:高温搪瓷涂层 /p p    strong 张小峰 /strong 广东省新材料研究所博士 /p p   发言题目:Al-ZrO2原位反应改善热障涂层性能 /p p    strong 何 & nbsp 健 /strong 北京航空航天大学博士后 /p p   发言题目:γ& #39 +β双相Ni-Al-Hf合金氧化膜/合金界面钉扎物的不同形成机制 /p p    strong 董志宏 /strong 中国科学院金属研究所金博士 /p p   发言题目:Cr12MoV合金钢空心阴极放电辅助离子渗氮研究 /p p    strong 高丽红 /strong 北京理工大学副教授 /p p   发言题目: 基于等离子喷涂的反射型激光防护涂层研究 /p p    strong 石 & nbsp 佳 /strong 北京航空航天大学博士 /p p   发言题目:等离子物理气相沉积热障涂层生长机理及制备技术研究 /p p    span style=" color: rgb(255, 0, 0) " strong 先进粉末冶金及复合材料青年科技工作者学术交流分会场 /strong /span /p p    strong 杨亚锋 /strong 中国科学院过程工程研究所研究员 /p p   发言题目:粉末冶金钛合金的致密化和杂质控制 /p p    strong 王玉敏 /strong 中国科学院金属研究所副研究员 /p p   发言题目:复合材料整体叶环损伤失效机制研究 /p p    strong 刘 & nbsp 涛 /strong 中南大学粉末冶金研究院副教授 /p p   发言题目:CuCrZr与Cu的低温扩散连接 /p p    strong 罗来马 /strong 合肥工业大学副教授 /p p   发言题目:液相法W-Y2O3复合粉体制备与烧结特性研究 /p p    strong 牛红志 /strong 东北大学副教授 /p p   发言题目:TiH2颗粒为原料制备低成本低氧含量PM -TC4钛合金及其生成过程 /p p    strong 谭 & nbsp 鑫 /strong 中机国际工程设计研究院有限责任公司高级工程师 /p p   发言题目:密度泛函理论计算在材料表面性能研究中的应用 /p p    strong 宋晓杰 /strong 山东科技大学材料科学与工程学院博士研究生 /p p   发言题目:原位合成Ti2AlC(N)增强TiAl基复合材料的显微组织和力学性能研究 /p p    strong 魏 & nbsp 娜 /strong 山东科技大学材料科学与工程学院博士研究生 /p p   发言题目:TiO2基复合薄膜的制备及其对金属的光电化学防腐研究 /p p    strong 张犁天 /strong 中国科学院力学研究所博士生 /p p   发言题目:铜铬合金激光表面细晶化及其电性能 /p p    strong 黎毓灵 /strong 华南理工大学材料科学与工程学院硕士研究生 /p p   发言题目:靶功率对YG10x上反应直流磁控溅射沉积纳米W-N涂层显微结构的影响 /p p    span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " strong 会议安排及说明 /strong /span /p p   1、本次会议代表收取注册费2400元/人、在校学生凭学生证收取注册费1400元/人,包括会务、论文审稿、出版、专家演讲资料费、餐费、考察费。 /p p   2、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(大会主旨报告30分钟,分会邀请报告25分钟、一般报告20分钟,分别包含5分钟提问与讨论时间)。 /p p    span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " strong 会议说明与其它 /strong /span /p p   1、会议将设置分会场,鼓励年轻学者展示研究成果,促进年轻学者之间的交流和学习,请提前联系会务组,以保证会议议程安排。 /p p   2、食宿安排:会议推荐酒店,请代表自行联系预定房间,用餐为会议统一安排。 /p p   3、欢迎国内外有关公司及机构支持、赞助本次会议。我们将以会议论文集刊登广告、提供小型展位等多种形式宣传支持、赞助单位,为支持、赞助单位提供广大市场、拓展业务的良机。 /p p   4、请参会代表务必将回执发至 span style=" color: rgb(0, 176, 240) " ysgc@china-mcc.com /span 或发送传真至 span style=" color: rgb(0, 176, 240) " 010-88796961 /span ,没有报名回执不能保证会议资料。 /p p    strong span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) " 组委会联系方式 /span /strong /p p   联系人:许 & nbsp 飞 /p p   手 & nbsp 机:13439831435 /p p   电 & nbsp 话:010-68807312 /p p   传 & nbsp 真:010-88796961 /p p   邮 & nbsp 箱:xufei627@163.com /p p   网 & nbsp 址:www.china-mcc.com /p
  • 美国金属粉末工业联合会发布新版标准
    美国金属粉末工业联合会(MPIF)最近发布了2010新版金属粉末和粉末冶金制品检测方法标准及标准35,粉末冶金自润滑轴承材料标准。检测方法标准共130页,包含了39个关于专业术语以及金属粉末、粉末冶金零件、金属注射成型(MIM)零件、金属过滤器和粉末冶金设备的推荐检测方法标准。自润滑轴承标准共28页,包括有一个扩散合金化铁-青铜轴承的新的材料部分,油浸渍效率新资料,青铜轴承的修正资料以及数据表的修改。  除了增加了一个新标准――粉末冶金材料的总碳含量测定试样制备(硬质合金除外),新版的测试方法标准对10个标准进行了修改。   两版标准都参照了相关的ASTM和ISO标准。   检测方法标准可提供平装、电子版以及CD-ROM格式,每份75美金。轴承标准也同样提供这3种格式,每份35美金。
  • 客户案例 | 合金材料研究中金属粉末自动称量分装应用
    探索未来的关键材料!合金材料研究正在掀起科技浪潮,为我们的生活带来无限可能。其应用前景非常广阔,无论是在航空航天、汽车制造、电子产品、可再生能源还是医疗领域,高性能的合金材料都是推动进步的核心力量。随着科技的飞速发展,对合金材料的需求和性能要求不断提升,研究人员正致力于开发出更多高性能、低成本、环境友好的的新型合金材料,以满足不断变化的应用需求。对于晶泰科技的客户——合金材料研究实验室的研究人员而言,精确的金属粉末称量是影响他们研究的重要因素之一。整个研究中金属粉末称量面对各种挑战,如流动性差的粉末、静电吸附、环境因素影响以及潜在的安全风险。为了应对挑战,客户选择使用晶泰科技 ChemPlus® 桌面型固体加样仪,来确保金属粉末加样称量的精准性,为合金材料研究提供坚实的基础。客户在合金材料研究实验过程中,选择了 3 种代表性的金属粉末,设置了 50/1000/2000mg 3 个目标加样量,记录 ChemPlus® 桌面型固体加样仪对于不同粉末在不同目标加样量下的称量数据:平均加样值、加样偏差、加样时间等。&bull 测试粉末样品:3 种(因研究保密性,不展示具体粉末名称,有相似需求的客户,晶泰科技提供样品免费测试服务,可联系我们);&bull 目标加样量:50mg、1000mg 和 2000mg;&bull 每种粉末样品分装到定制实验小瓶。表1.三种金属粉末自动加样称量实验数据经过对测试数据的综合分析,我们得出以下结论:ChemPlus® 桌面型固体加样仪在称量合金材料研究中具有代表性的三种金属粉末方面表现出高度的准确性和稳定性。具体的性能表现如下:&bull ChemPlus® 能够有效处理吸潮结块、流动性差以及易氧化的金属粉末,在测试过程中表现出良好的操作性,没有出现堵塞现象表明其适用性广泛,能够满足多样化的实验需求。&bull 在进行加样称量时,ChemPlus® 对于所有预定目标重量的偏差控制在了 0.1mg 的精确范围内,反映出其突出的称量精度。&bull 当进行中量程加样操作时,ChemPlus® 能够以更快的速度达成目标加样,展示出较高的友好性和快速精确的加样称量能力。&bull 将 ChemPlus® 系统置于手套箱内进行操作,能够顺利执行金属粉末 C 的自动加样称重任务,并且支持与其他系统的集成。综上所述,ChemPlus® 桌面型固体加样仪在精确控制金属粉末加样过程中展现出了高效性和可靠性,适用于进行合金材料研究中金属粉末加样称量。&bull 高通量:可放置多种固体原料和接收容器,全面提升效率;&bull 适用范围广:样品无需特殊处理,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末;&bull 智能算法参数调节:自适应加粉算法,多类型粉末智能识别;&bull 压电陶瓷激振技术:多类型粉末出粉更流畅;&bull 除静电:有效降低静电效应,加样更准确;&bull 成本可控:耗材价格低廉,节省成本;&bull 占地小:整机尺寸小,桌面型;&bull 兼容性广:可兼容多种实验室常用尺寸小瓶;&bull 数据追踪:条形码或二维码样品管理,支持审计追踪;&bull 简易交互软件:可视化操作软件,易上手使用。ChemPlus® 这款结构紧凑的桌面型固体加样仪,帮助客户合金材料研究实验室,提高了金属粉末加样称量的效率、精准性和安全性,为研究人员节省了宝贵的科研时间。ChemPlus® 适用性非常广泛,支持多种固体原料和兼容不同接收容器,无需人工值守,自动完成重复耗时的称重固体加样操作;同时,ChemPlus® 自动化粉末加样技术能够处理多种粉末,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末,自适应加粉算法,多类型粉末智能识别,无需针对特定粉末进行设置或者优化加样参数;自动化高通量的加样,避免研究人员直接接触可能具有毒性或易燃性的粉末。在此客户案例中也为客户定制专属实验小瓶和托盘;并且支持集成到无水无氧体系手套箱中。
  • 材料领域重大变动!2019年重点新材料指导目录
    p    strong 仪器信息网讯 /strong 近期,工信部发布了《重点新材料首批次应用示范指导目录(2019年版)》,自2020年1月1日起施行,同时《重点新材料首批次应用示范指导目录(2018年版)》(工信部原〔2018〕262号)宣布废止。新版目录包含重点新材料331种,相比2018年数量增长了一倍。其中,先进钢铁材料、铝材、铜材、特种橡胶及其它高分子材料、工程塑料、高性能纤维及复合材料、先进半导体材料和新型显示材料、前沿新材料的数量均翻倍增长,显示这些领域进入了国家政策红利下的迅猛发展期。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 413px " src=" https://img1.17img.cn/17img/images/201912/uepic/93d610b9-d020-4e21-92e3-5096cc7be49f.jpg" title=" 重点新材料.png" alt=" 重点新材料.png" width=" 600" height=" 413" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年重点新材料同比2018年变化情况 /p p   除材料类型以及数量的变化外,对于重点新材料的性能检测也提出了更高的要求,以前沿新材料为例。 /p p   2018年对于石墨烯改性防腐涂料的性能要求为: /p p   附着力1级,耐盐雾≥6000 小时,耐盐水≥3000 小时,耐水≥6000 小时。 /p p   2019年其检测项目更加细化且检测要求更为严格: /p p   油性防腐体系:耐中性盐雾实验≥3600h,体系耐盐雾≥8000h,附着力1级别,耐冲击≥70cm 水性防腐体系:耐体系盐雾≥6000小时,耐湿热性≥2000小时,附着力≥5MPa 导静电:表面电阻率和体积电阻率为4× 105~109Ω· m。 /p p   再以3D打印用合金粉末为例,2018年对于3D打印用合金粉末的性能要求为: /p p   3D 打印用合金粉末材料:粒度分布:15-53um,球形度:≥0.85,流动性≤20s/50g,氧含量≤300ppm。 /p p   钛合金粉末:粉末粒度15~150 微米,球形度≥94%,增氧量& lt 100ppm,霍尔流速& lt 30s/50g,空心粉≤0.8%,非金属夹杂个数& lt 10 个/kg 松装密度≥50%。 /p p   高温合金粉末:粉末粒度15~150 微米,球形度≥98%,增氧量& lt 50ppm,霍尔流速& lt 14s/50g,空心粉≤0.8%,非金属夹杂个数& lt 10 个/kg。 /p p   2019年其检测项目并未减少,检测标准发生了变化: /p p   3D打印用合金粉末材料:粒度分布:15~53um,球形度≥0.85,流动性≤20s/50g,氧含量≤300ppm (2)钛合金粉末:粉末粒度15~200μm,球形度≥94%,增氧量& lt 100ppm,霍尔流速& lt 30s/50g,空心粉≤0.8%,非金属夹杂个数& lt 10个/kg,松装密度≥50% (3)高温合金粉末:粉末粒度15~150μm,球形度≥98%,增氧量& lt 50ppm,霍尔流速& lt 14s/50g,空心粉≤0.8%,非金属夹杂个数& lt 10个/kg。 /p p   国家高度关注重点新材料领域的发展,按照《关于开展重点新材料首批次应用保险补偿机制试点工作的通知》(工信部联原〔2017〕222号)要求,生产《重点新材料首批次应用示范指导目录(2018年版)》内新材料产品,且于2019年1月26日至2019年12月31日期间投保重点新材料首批次应用保险的企业,符合首批次应用保险补偿工作相关要求,可提出保费补贴申请。先进材料始终是保证国民生产和军工国防的重要组成部分,值得行业高度关注。 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/e48b5b8f-455e-46e0-a7ef-ec6f34f4fe63.pdf" title=" 重点新材料首批次应用示范指导目录(2019年版).pdf" 重点新材料首批次应用示范指导目录(2019年版).pdf /a /p p br/ /p
  • 德国莱驰:研磨利器破合金制备难题,精兵团队保粉碎市场江山
    p style=" text-align: justify text-indent: 2em " 机械合金化是指利用机械能的作用使材料的组元在固态下实现合金化的材料制备技术。近年来广泛的应用于制备各种高性能材料,包括弥散强化合金、金属间化合物,磁性材料、储氢合金、纳米晶合金、纳米晶陶瓷、纳米复合材料等。 /p p style=" text-align: justify text-indent: 2em " 为了帮助业内人士了解机械合金化最新技术以及研磨仪最新应用等内容,仪器信息网特别策划了“研磨仪VS机械合金化”专题,并邀请到弗尔德科学仪器事业部总经理董亮就相关问题发表了看法。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202009/uepic/7d4d18aa-97dc-4dcc-b335-2d9a58d17c38.jpg" title=" 5 (1)_wps图片_副本.jpg" alt=" 5 (1)_wps图片_副本.jpg" width=" 450" height=" 354" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 450px height: 354px " / /p p style=" text-align: center " strong 弗尔德科学仪器事业部总经理 董亮 /strong /p p style=" text-align: center " strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 仪器信息网:研磨仪对机械合金化技术的发展有何意义?机械合金化技术的发展有哪些方面值得特别关注? /strong /span /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 回答这个问题之前,先聊聊什么是机械合金化技术。 /p p style=" text-align: justify text-indent: 2em " 机械合金化技术是上世纪1969年美国国际镍公司Benjamin提出的一种制备合金粉末的高能球磨技术,它最初主要用于制备氧化物弥散强化镍基合金,一开始被叫做球磨混合,后来国际镍公司专利代理律师Mr. Ewan C. MacQueen第一个在专利申请中将此工艺称为“机械合金化”。接着80年代初又在机械合金化过程中发现了非晶化现象,然后发现了准晶、难熔金属化合物、稀土硬磁合金等新材料。1990年,Schlup等人发表了机械合金化制备纳米晶材料的报道,使该技术更加引人注目。 /p p style=" text-align: justify text-indent: 2em " 到目前为止,用机械合金化技术已成功制备出纳米晶纯金属、不互溶体系固溶体纳米晶、纳米非晶、纳米金属间化合物及纳米金属-陶瓷复合材料等。应该说,机械合金化技术的发展是非常迅猛的,尤其是在纳米材料研究领域备受关注。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网:目前,研磨仪技术发展到了哪一个阶段,市场上的仪器是否能满足用户在机械合金化技术方面的应用? /span /strong /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 高能球磨仪是目前制备机械合金的主要仪器,按照研磨球的运动方式,主要分为3大类,即行星式、振荡式和搅拌式。其中行星式和振荡式在实验室中更为常见,搅拌式(砂磨机)可能在生产企业中运用更多。 /p p style=" text-align: justify text-indent: 2em " 研磨机的研磨时间、研磨速度、研磨介质、球配比,甚至于气体环境和研磨温度等因素都会对机械合金的制备结果产生重要影响。机械合金化制备技术归根结底,就是都需要更高的能量(可换算为g加速度)输入,更好的气氛保护(可以充惰性气体),更方便准确的温度监控(可以定制温度极限来设定研磨时间和运转速度),更为安全可靠的研磨设备(可以满足长时间稳定工作)。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网:贵公司在机械合金化技术领域的主推仪器?贵公司研磨仪产品的定位及发展历史?有哪些独具优势的技术? /span /strong /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 德国RETSCH(莱驰)是弗尔德旗下的第一个实验室仪器品牌,也是固体样品前处理领域的行业领头羊,已经有超过100年的历史了,其研磨粉碎设备的应用面是非常广泛的。 /p p style=" text-align: justify text-indent: 2em " 针对机械合金制备,莱驰的设备主要是两大类:行星式球磨仪PM系列(PM100/200/400)、高能振荡式球磨仪Emax和MM500。莱驰的球磨机定位于高端实验室的研发和质量控制,有许多独家领先的技术。 /p p style=" text-align: justify text-indent: 2em " 例如,PM行星球磨仪太阳轮直径大,转速比高,研磨效率因子高,FFCS(自由运动补偿底座)技术确保了行星球磨仪可以在高速下长期稳定工作,研磨罐的安全挡片装置防止使用意外的发生。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C18660.htm" target=" _self" img style=" max-width: 100% max-height: 100% width: 450px height: 600px " src=" https://img1.17img.cn/17img/images/202009/uepic/b82ef4a7-a520-4f40-8bb4-905011c1249b.jpg" title=" PM 400行星球磨仪.png" alt=" PM 400行星球磨仪.png" width=" 450" height=" 600" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C18660.htm" target=" _self" style=" text-decoration: underline " strong PM400& nbsp 行星球磨仪 /strong strong /strong /a strong /strong /p p style=" text-align: justify text-indent: 2em " Emax高能球磨仪的研磨罐采用独家专利跑道型设计保证了研磨球运动方式与能量输出的完美控制,全球领先且目前唯一的水冷式控温技术又使得其成为了第一台可以稳定运行在2000 rpm的球磨仪。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C210582.htm" target=" _self" span style=" font-family:宋体 font-size:14px" img style=" max-width: 100% max-height: 100% width: 450px height: 337px " src=" https://img1.17img.cn/17img/images/202009/uepic/bb43fb4e-09ba-4daf-a8cb-d8276f74e843.jpg" title=" Emax高能球磨仪.png" alt=" Emax高能球磨仪.png" width=" 450" height=" 337" border=" 0" vspace=" 0" / /span /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C210582.htm" target=" _self" style=" text-decoration: underline " strong style=" text-indent: 0em " Emax 高能球磨仪 /strong strong style=" text-indent: 0em " /strong /a /p p style=" text-align: justify text-indent: 2em " MM500采用高频振荡方式,可以同时使用多个研磨罐的多工作平台设计等等。 /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C330815.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202009/uepic/4bd69f95-99a2-4fb2-90dc-ddcbecc40979.jpg" title=" MM 500高能混合型球磨仪.png" alt=" MM 500高能混合型球磨仪.png" width=" 450" height=" 338" border=" 0" vspace=" 0" style=" text-align: center text-indent: 0em max-width: 100% max-height: 100% width: 450px height: 338px " / /a /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C330815.htm" target=" _self" style=" text-decoration: underline " strong style=" text-indent: 0em " MM500 高能混合型球磨仪 /strong strong style=" text-indent: 0em " /strong /a /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网:贵公司研磨仪产品最具优势的应用领域是哪些?主推哪些解决方案?这些方案可以为用户解决什么研究难题? /span /strong /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 德国莱驰在中国的主要客户群为四类:科研院校、政府实验室、外资企业、大中型国有企业。其中传统的行星式球磨仪覆盖面很广,客户基础雄厚。比如环境地质的样品前处理,比如纳米材料和合金制备领域,当然也包括一些企业的研发部门。 /p p style=" text-align: justify text-indent: 2em " 近几年,我们主要推广Emax高能水冷球磨仪,这是目前莱驰绝对强势的产品。前面提及了多个影响到合金制备技术的主要因素,其中最重要的就是能量输入及温度控制,这些Emax都具有无可比拟的优势。 /p p style=" text-align: justify text-indent: 2em " 首先,速度越快,能量输入越大,合金化的效率就越高,Emax可以用到最高2000 rpm转速,产生非常大的能量输入。同时,它具备了水冷技术,可以控制研磨温度在某一个范围之内,这样即避免样品发热产生的晶体结构变化,又不需要像传统球磨机一样需要采用间歇模式进行散热,极大的缩短了研磨时间。Emax也可以配置通气罐,采用气氛保护进行研磨,也有定制的Apps,适合远程控制或操作。 /p p style=" text-align: justify text-indent: 2em " Emax的出现,代表了最先进的球磨技术,解决了客户之前许多难题(比如研磨时间太长,担心样品发热等),得到了广大客户的肯定,在中国的销售量也是节节攀升。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网:您认为目前国内外研磨仪产品技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? /span /strong /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 十年前,可能大家对样品前处理或者取制样技术还没有概念,也不知道用什么仪器或者怎么选择解决方案,最为典型的就是用家用食品料理机或者中药粉碎机来处理很多实验室样品,那个时候,德国莱驰是在培育市场,引导客户的理念,应该说德国莱驰或者其中国公司弗尔德(上海)仪器设备有限公司是整个中国实验室研磨粉碎市场的奠基者。 /p p style=" text-align: justify text-indent: 2em " 现在客户对前处理都相对重视起来了,也懂得了分析的误差绝大部分来自于样品前处理,基本上都会配套购买前处理设备。当然,现在市场上也出现了许多五花八门的产品或者莱驰的模仿者,这对德国莱驰是个挑战,因为国内外客户对样品前处理的要求是不同的。 /p p style=" text-align: justify text-indent: 2em " 国外主要是企业客户,考虑的是人工成本高,逐步用仪器设备代替,国外客户更重视细分的应用,更重视研磨的效率(比如花费的时间和精力),相对更重视仪器的品质和使用寿命。 /p p style=" text-align: justify text-indent: 2em " 国内客户则更希望仪器功能多,通量大,价格低,考虑短期的效果多于长期的效果,尤其对售后服务和使用寿命这些买了之后用了很久之后才能体现的东西不敏感。另外,就是中国的很多行业对前处理的标准化还比较落后,很多标准已经很陈旧,也没有十分明确的前处理实验流程,这也影响到德国莱驰和中国市场的同步发展。 /p p style=" text-align: justify text-indent: 2em " 当然中国市场是潜力巨大的,作为一个国际性公司,要在能保证产品质量稳定的前提下,更多的因地制宜,发展符合中国的业务策略或者符合中国客户口味的产品,现在不是要Made& nbsp In& nbsp China,而是要Made& nbsp For& nbsp China,在这个方面,德国莱驰或者我们中国分公司还有很长的一段路要走。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网:针对当前的市场格局,贵公司在研磨仪产品方面有什么样的布局?重点拓展的新领域有哪些? /span /strong /p p style=" text-align: justify text-indent: 2em " strong 董亮: /strong 德国莱驰的传统强势领域是食品或者环保的质量检测,但看看近几年推出的产品线:2016年推出高能水冷球磨仪Emax;2019年推出了MM 500 nano高能振荡球磨仪;2020年推出了MM 500多平台版vario。可以看到,莱驰的研发重心逐步转向了材料制备领域,这和目前国内外对先进材料的重视程度是一致的,比如新能源电池、航空航天、军工等领域都需要更好更为先进的原材料。 /p p style=" text-align: justify text-indent: 2em " 未来几年,德国莱驰在产品的布局主要体现在几个方面:①稳固传统领域的产品,加快产品外观细节的更新速度,大家应该会看到未来几年莱驰每一个系列产品的外观或设计细节的更新;②以新材料应用为导向,加强优势产品(比如Emax、MM& nbsp 500、全自动冷冻研磨机等)的市场推广和力度;③以行业标准为指导,加强和后端设备的配套,包括弗尔德仪器旗下其他品牌设备,提供客户整体解决方案;④仪器的小型化,自动化,数据化等。 /p p style=" text-align: justify text-indent: 2em " 德国莱驰,一直被模仿,从未被超越,打江山易,保江山难,莱驰在中国能有这样的市场份额和知名度,与中国优秀的销售团队,技术服务团队和良好的代理商网络是分不开的。 /p p style=" text-align: justify text-indent: 2em " 2020年是很特殊的一年,新冠疫情很大程度上改变了中国的业务模式甚至影响到了全球的经济。在这个背景下,弗尔德(上海)仪器设备有限公司还要保持良性的发展,实属不易,难度大才更能体现管理者的勇气和魄力,体现团队坚韧不拔的上进心,我希望能和所有关心德国莱驰的人一起努力,一起成长,不负韶华! /p p br/ /p
  • 聚焦3D打印:2018 IPB上海粉体展巡展首站北京召开
    p    strong 仪器信息网讯 /strong 2018年4月20日下午,2018IPB上海国际粉体加工/散料输送展览会北京巡展在北京港澳中心瑞士酒店召开。来自京津冀地区的40余位粉体行业专家、粉体原材料企业、设备供应商等参加。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8e3b33e8-e62b-4d43-9b8e-ee8e6745ac03.jpg" title=" IMG_6341.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 会议现场 /strong /span /p p   会议由中国颗粒学会和纽伦堡会展(上海)有限公司主办,在每年一届的IPB上海粉体展成功举办16载之计,集各方意见与调研,IPB决定开展各地巡演活动,并将北京作为巡演首站。此次巡演活动主题聚焦时下热门的“3D打印”,并围绕3D打印技术、对粉体品质要求等话题进行专家报告及行业交流。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/edefa2e7-2f3e-42c7-8340-97d5cf6a2f12.jpg" title=" IMG_6262_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 中国颗粒学会副理事长蔡小舒教授致辞 /strong /span /p p   在开幕致辞中,蔡小舒表示,粉体技术设计领域广泛,其发展对推动多领域的经济发展有着积极作用。IPB上海粉体展自2003年首次成功举办以来,已成为中国粉体加工及散料输送领域 “一站式”展览会。接着,祝愿巡展首站北京站能够旗开得胜,并对与会着表示了感谢。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/4cb26a7c-791c-41fd-a7be-b0b60cd349aa.jpg" title=" IMG_6273_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong IPB德国工业粉体展项目经理Beate Fischer视频致辞 /strong /span /p p   Beate Fischer对本次北京巡展活动表示了祝贺,并向大家预告了“IPB 2018 第十六届中国国际粉体加工/散料输送展览会”大体情况,预计将有来自中、美、德、日等国家的约150家参展商,约8000名观众学者参加。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/81d6e284-0d4b-4f29-95dd-b6674b0a5afb.jpg" title=" IMG_6286.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告人:全国增材制造标准化技术委员会秘书李海斌 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 0, 0) " 报告题目:增材制造标准化工作现状及展望 /span /strong /span /p p   根据2017年年底“增材制造”国家标准中的定义,增材制造(又称为3D打印)是以三维模型数据为基础,通过材料堆积的方式制造零件或实物的工艺。李海斌表示,增材制造已成为近些年全球的关注热点,发展迅速。我国也对之高度重视,2015年发布的《中国制造2025》中六次提到“增材制造”,2016年《“十三五”国家科技创新规划》中十二次提到“增材制造”,各地也都在“大兴土木”(推动增材产业园建设)等。据第三方数据,中国增材制造专利申请占到全球的一半以上,增材系统装机占10%以上,而增材系统出货量只有约4.5%。呈现出“高端产业低端化”、高端设备靠进口、产业化程度不高、产业化质量偏低等现状。因此开展增材制造标准化工作显得十分迫切。接着,李海斌介绍了全球及我国的增材制造标准化现状,全球已呈现出ISO标准=美国标准=欧洲标准的局面,我国标准化工作也在进行之中,并在2016年提出我国首个增材制造国际标准预备工作项目(ISO/PWI 52913)“增材制造云平台及其模式规范”。相信不久将来,中国增材制造标准工作也能够走向世界舞台,真正实现ISO标准=美国标准=欧洲标准=中国标准。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d5158520-edfd-49ff-a439-65ec4fb1785c.jpg" title=" IMG_6330.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告人:德国新帕泰克有限公司耿建芳博士 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告题目:专利的干法激光粒度仪HELOS-RODOS及粒度粒形仪QICPIC在3D打印材料测试中的应用 /strong /span /p p   报告中,耿建芳首先介绍了 a href=" http://www.instrument.com.cn/netshow/SH100645/" target=" _self" title=" " style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 德国新帕泰克公司 /span /strong /a 的概况。公司30余年专注粒度粒形测量技术,可提供从纳米到毫米广尺度范围的颗粒表征测量设备及技术服务。接着介绍了粉体测量在增材制造中的应用及重要性,应用即3D打印用金属粉末的评价,并表示,能获得正确粒度测试结果的关键是:减小取样误差、分散成原始颗粒、选择最佳测试系统等。认为采用激光粒度仪、干法分散是对3D打印粉体粒度检测的最佳选择。最后结合RODOS及QICPIC详细介绍了两款产品在3D打印用金属粉末干法分散粒度测量及粒形测量方面的优势。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e8ec3603-4ddf-40e3-be71-8fe4a446eda6.jpg" title=" IMG_6381.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告人:西北有色金属研究院朱纪磊教授6381 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告题目:PREP法制备球形钛合金粉末及其孔隙缺陷对比分析 /strong /span /p p   球形钛合金粉末制备技术包括PREP(等离子电极雾化技术)、PA、FFGA、EIGA等,朱纪磊报告中通过球形钛合金粉末粒度、成分、形貌、空隙等表征结果数据,分析了PREP的技术优势。通过以上几种技术制备的粉末孔隙缺陷表征结果对比,表明PREP粉末具有球形度好、流动性好、低氧含量、振实密度高等良好物理化学性能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/762c87af-0c8f-48b6-bdb0-91caf6061003.jpg" title=" IMG_6410.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告人:弗尔德科学仪器有限公司叶上游 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告题目:弗尔德科学仪器在金属粉末及3D打印领域的应用 /strong /span /p p   叶上游首先介绍了 a href=" http://www.instrument.com.cn/netshow/SH101146/" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " strong span style=" color: rgb(0, 176, 240) " 弗尔德科学仪器 /span /strong /a 事业部全球架构模式,旗下品牌包括德国Retsch(莱驰)、德国Retsch Technology(莱驰科技)、Carbolite· Gero(卡博莱特· 盖罗)、Eltra(埃尔特)等。接着介绍了弗尔德仪器在金属粉末及3D打印领域一站式供应产品及服务,包括莱驰Emax高能球磨仪、Retsch Sieving的筛分系列、莱驰科技Camsizer系列动态图像粒度粒形仪、埃尔特元素分析仪等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/bc4e1e6b-c82a-4125-b533-d5a389369934.jpg" title=" IMG_6448.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告人:英国富瑞曼科技有限公司张志俊 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 报告题目:先进的粉体流动性表征方法用于增材材料制造 /strong /span /p p   张志俊首先介绍了 a href=" http://www.instrument.com.cn/netshow/SH103669/" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " strong span style=" color: rgb(0, 176, 240) " 英国富瑞曼科技有限公司 /span /strong /a 概况,成立于1989年,一直专注于粉体特性测试。接着以动画的形式,引导大家重新认识粉体的定义,表明粉体中颗粒复杂多变,需要一系列的物理化学性质来描述,单一指数表征或单一技术无法完整描述在每个流程或者应用中粉体的行为,需要多元分析方法。接着介绍了测量粉体行为的最新技术,包括动力学表征方法、剪切仪等,并重点介绍了富瑞曼粉体流变仪FT4的全面测试方法。最后介绍了粉体测试技术在3D打印中的应用案例及注意事项。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/decd0b5d-f194-45e8-b82d-d03b488dc0a2.jpg" title=" IMG_6372.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 设备展示区之干法激光粒度仪HELOS-RODOS /strong /span /p
  • 飞纳电镜展会邀请|中国国际粉末冶金及硬质合金展览会
    飞纳电镜展位号:B047 我们诚邀您与飞纳电镜一起参加中国国际粉末冶金及硬质合金展览会,探讨最新的台式扫描电镜技术与行业解决方案。 1. Phenom ParticleX 全自动扫描电镜 —— 颗粒分析及过程控制的工业级解决方案 粉末的尺寸、形状和化学性能对于粉末床的行成、熔池和微观均质性可能会产生重大影响。ParticleX 以扫描电镜和能谱仪为硬件基础,可以全自动对大量粉末颗粒进行快速识别、分析和分类统计,为客户的研发以及生产提供快速、准确和可靠的定量数据支持。 Ti64 粉末 球形颗粒、卫星球颗粒和变形 / 团聚颗粒 用 ParticleX 对两批次的 Ti64 粉末颗粒粒度进行统计,获得粒度分布。并按照设定好的形态规则识别颗粒类型,分离出每种形态类型颗粒的粒径体积分布。 2. Phenom ProX G6 电镜能谱一体机 快捷,出众,可靠的电镜成像分析设备,最佳台式扫描电子显微镜,创新型用户使用界面,直观的操作方式,高分辨率背散射电子成像,EDS 能谱一体化设计。高性价比、操作简便、快速成像的飞纳台式扫描电镜成为工程师,技术员,研究员以及科教专家观测微米以及纳米结构的首选。 规格参数 放大倍数:350,000 X 分辨率:优于 6 nm 灯丝材料:1,500 小时 CeB6 灯丝 抽真空时间:小于 15 秒 探测器:背散射电子探测器(选配二次电子),能谱探测器
  • 上海硬质合金展邀请函-新诺仪器要您2024第十六届中国国际粉末冶金及硬质合金展览会
    2024第十六届中国国际粉末冶金及硬质合金展览会上海新诺仪器集团有限公司诚意邀请您参观将于2024年3月6-8日在上海世博展览馆隆重举行的中国国际粉末冶金及硬质合金展览会。备受瞩目的2024第十六届中国国际粉末冶金及硬质合金展览会将比上一届届展览会规模更大,专业性、国际性更强,亮点更多,活动更为精彩纷呈,为您提供更多学习交流机会和无限商机。新诺邀请函上海新诺仪器集团有限公司是一家专注于粉末成型解决方案供应商,位于上海闵行区。公司主营:压片机、热压机、等静压机、红外压片机、荧光压样机、纽扣电池封口机、以及冷热压模具等红外荧光光谱仪配套设备。旗下医诺凯生物公司致力于高端实验室箱体设备的研发智造,主营:干燥箱、培养箱、试验箱、电阻炉等实验室常规设备。 源头工厂,可提供OEM,上海新诺仪器集团有限公司,上海医诺凯生物技术有限公司期待您更多合作!上海硬质合金展中国国际粉末冶金及硬质合金展览会(PM CHINA)是全球粉末冶金行业的旗舰级展会,自2008年创办之初的数百平方米,到2023年增长到40,000平方米,以年均增长30%的速度发展壮大,拥有广泛的国际知名度和全球影响力。本届展会(2024年)展览面积将超过45,000平方米,中外展商约900家,参展品牌1500+个,国内外观众预计将达到65,000+人次。PM CHINA将搭建技术交流与商贸合作的优质平台,汇聚国内外优秀企业和业界精英,分享世界前沿技术、创新应用和解决方案,为行业高质量发展注入磅礴动力。展品范围五展联动展馆:上海世博展览馆地址:上海市浦东新区国展路1099号(近世博轴西侧)地铁:8号线中华艺术宫站(3号口出)、7号线/8号线 耀华路站(4号口出)、13号线 世博大道站(4号口出)
  • 2023年11月份有129项标准将实施——涉及多款分析仪器检测项目
    我们通过国家标准信息平台查询到,在2023年11月份将有129项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在11月份新实施的标准中,与食品相关的标准有43个,占据了33%,据统计,食品相关标准已连续6个月“霸榜”榜首。紧随其后的领域为轻工纺织、医药卫生和能源。与食品相关的43个标准中,主要为地方标准,包括农业种植类技术规程、各种食品产品标准。轻工纺织标准22个,主要涉及纺织仪器、纺织品、织物等。在11月份新实施的标准中,包含了多品类科学仪器,如:火花放电原子发射光谱 仪 、高效液相色谱 仪 、X 射线荧光光谱仪 、X 射线衍射仪 、气相色谱质谱联用仪 、差示扫描量热仪 、电感耦合等离子体发射光谱 仪 等。具体2023年11月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(43个)GB/T 41716-2022 漆树中主要有效成分含量的测定 高效液相色谱法 NB/T 11243-2023 设施农业太阳能季节蓄热供热工程技术规范 NB/T 11242-2023 家禽养殖场太阳能多能互补采暖系统通用要求 NB/T 11237-2023 养殖用低环境温度空气源热泵 热风机 DB63/T 1133-2023 柴达木绿色枸杞生产质量控制规范 DB63/T 2167-2023 林业碳汇造林 项目监测与计量技术规程 DB63/T 2157-2023 林草科技示范推广示范项目工作规范 DB63/T 2155-2023 马 尿泡种苗及生产技术规范 DB63/T 2154-2023 山莨菪种苗生产技术规范 DB63/T 2153-2023 山莨菪栽培技术规程 DB5227/T 129-2023 龙里豌豆 尖生产 技术规程 DB41/T 1395-2023 无性系良种茶树栽培技术规程 DB41/T 716-2023 信阳红茶初制加工技术规程 DB41/T 715-2023 信阳毛尖茶清洁化生产技术规程 DB41/T 2461-2023 玉米籽粒联合收获机操作技术规程 DB41/T 2457-2023 冬小麦育种气候风险等级 DB41/T 2452-2023 豫南黑毛茶加工技术规程 DB41/T 2451-2023 迎春花培育技术规程 DB41/T 2450-2023 淫羊 藿 ( 箭叶淫羊藿 )栽培技术规程 DB41/T 2449-2023 豫南酿酒小麦生产技术规程 DB41/T 2448-2023 沿黄稻麦两熟秸秆全量还田轮作技术规程 DB41/T 2447-2023 沿黄粳稻直播化肥 农药减施栽培 技术规程 DB41/T 2446-2023 沿黄 稻鸭共 作生态种养技术规程 DB41/T 2444-2023 黄山松立木材积表 DB41/T 2443-2023 花 绒寄甲 人工繁育技术规程 DB41/T 2441-2023 果园生 草技术 规程 DB41/T 2440-2023 苹果带分枝苗木繁育技术规程 DB4101/T 72-2023 刺槐萌生林培育技术规程 DB4101/T 70-2023 女贞花果化学控制技术规程 DB4101/T 69-2023 悬铃木插干育苗技术规程 DB5206/T 158-2023 农产品地理标志产品质量要求 铜仁珍珠花生 DB5206/T 156-2023 淀粉型甘薯地膜覆盖栽培技术规程 DB5206/T 155-2023 淀粉型甘薯贮藏技术规程 DB5206/T 154-2023 藤 椒 种植技术规程 DB44/T 2435—2023 水稻全程机械化生产技术规程 DB44/T 2434—2023 机插水稻基质育秧技术规程 DB5202/T 039—2023 地理标志产品质量要求 老厂竹根水 DB4408/T 25-2023 汤类湛江菜名品菜典 DB4408/T 24-2023 小吃类湛江菜名品菜典 DB4408/T 23-2023 植物类湛江菜名品菜典 DB4408/T 22-2023 禽畜类湛江菜名品菜典 DB4408/T 21-2023 水产类湛江菜名品菜典 DB4408/T 20-2023 湛江菜术语及定义 环境环保标准(4个)NB/T 11254-2023 重金属污染土壤千年 桐 栽培技术规程 NB/T 11253-2023 重金属污染土壤蓖麻栽培技术规程 SY/T 7680-2023石油类污染场地岩土工程勘察与修复技术规范DB41/T 2456-2023 频域反射法自动土壤水分观测站维护规范 医药卫生标准(14个)GB/T 2766-2022 外科器械 非切割铰接器械通用要求和试验方法 GB/T 42063-2022 锐器伤害保护 要求与试验方法 一次性使用皮下注射针、介入导管导引针和血样采集针的锐器伤害保护装置 GB/T 36917.4-2022 牙科学 技工室用 刃具 第 4 部分: 技工室用 微型硬质合金刃具 GB/T 36917.3-2022 牙科学 技工室用 刃具 第 3 部分:铣床用硬质合金刃具 GB/T 42062-2022 医疗器械 风险管理对医疗器械的应用 GB/T 42061-2022 医疗器械 质量管理体系 用于法规的要求 GB/T 19042.5-2022 医用成像部门的评价及例行试验 第 3-5 部分: X 射线计算机体层摄影设备成像性能验收试验与稳定性试验 GB/T 14233.1-2022 医用输液、输血、注射器具检验方法 第 1 部分:化学分析方法 YY/T 0688.1-2023 感染病原体敏感性试验与抗微生物药物敏感性试验设备的性能评价 第 1 部分:抗微生物药物对感染性疾病相关的快速生长需氧菌的体外活 性检测的肉汤微量稀释参考方法 DB63/T 1201-2023 小蠹虫防控技术规范 DB63/T 2156-2023 草原有害生物防控服务质量评价规范 DB41/T 1160-2023 茶树主要病虫害测报调查与绿色防控技术规程 DB41/T 2442-2023 杨树黑斑病防治技术规程 DB4101/T 71-2023 悬铃木食叶害虫无人机防治技术规程 石油天然气标准(11个)SY/T 7695-2023石油工业标准化文件的俄文译本通用表述SY/T 7694-2023 石油天然气钻采设备 井口装置和采油树的修理和再制造 SY/T 7693-2023石油天然气钻采设备 防喷器胶芯SY/T 7692-2023 石油天然气钻采设备 海洋钻井隔水管检验、修理与再制造 SY/T 7685-2023 陆地节点地震仪 SY/T 5585-2023 地震勘探电缆 SY/T 6841-2023 电法勘探时频电磁 仪 SY/T 0523-2023 油田水处理过滤器 SY/T 4113.12—2023管道防腐层性能试验方法 第12部分:耐水浸泡SY/T 4113.10—2023管道防腐层性能试验方法 第10部分:冲击强度测试SY/T 4113.11—2023管道防腐层性能试验方法 第11部分:漏点检测冶金矿产标准(7个)YB/T 6089-2023 连铸坯火焰切割机 YB/T 6088-2023 氮化硅铁 钙、铝、铬、锰、钛、磷含量的测定 电感耦合等离子体原子发射光谱法 YB/T 6087-2023 高铬合金磨球 多元素含量的测定 火花放电原子发射光谱法(常 规法) YB/T 6086-2023 球磨机用锻(轧) 钢段 YB/T 5265-2023 耐火材料用铬矿石 YB/T 4066-2023 铬 精矿 YB/T 6084-2023 激光熔覆用铁 基合金粉末 化工塑料标准(11个)HG/T 6152-2023 甲基异丁基甲醇脱氢制甲基异丁基甲酮催化剂化学成分分析方法 HG/T 6151-2023 常温氧化锌脱硫剂 硫容试验 方法 HG/T 6150-2023 润滑油加氢异构催化剂化学成分分析方法X 射线荧光光谱法 HG/T 6149-2023 加氢催化剂及其载体中 二氧化硅晶相含量 的测定 X 射线衍射法 HG/T 6148-2023 铬系乙烯 聚合催化剂活性试验方法 HG/T 6147-2023 铂钯系脱氧剂 化学成分分析方法 HG/T 6091-2023 煤矿用芳纶 阻燃输送带 HG/T 6092-2023 一般用途芳纶帆布芯输送带 HG/T 6090-2023 地下矿井用抗撕裂钢丝绳芯阻燃输送带 HG/T 6089-2023 地下矿井用多层织物芯阻燃输送带 HG/T 6153-2023 甲基氯硅烷中乙基二氯硅烷的测定 气相色谱质谱联用法 轻工纺织标准(22个)FZ/T 92063.5-2023 纺织纸管机械与附件 第 5 部分:纸管尾丝槽用刃具 FZ/T 92063.4-2023 纺织纸管机械与附件 第 4 部分:螺旋纸带卷管机用环形平带 FZ/T 92083-2023 纺织机械与附件 卷布 辊 技术条件 FZ/T 92064-2023 纺纱机械 梳毛机用搓条胶板技术条件 FZ/T 91007-2023纺织机械产品涂装工艺FZ/T 54140-2023 相变储能粘胶长丝 FZ/T 50010.8-2023 再生纤维素纤维用浆 粕 尘埃度的测定 FZ/T 50010.5-2023 再生纤维素纤维用浆 粕 灰分含量的测定 FZ/T 50061-2023 化学纤维 相变材料蓄热和 释热 性能试验方法 差示扫描量热法( DSC ) FZ/T 43024-2023 伞用织物 FZ/T 43065-2023 蚕丝拉绒织物 FZ/T 43064-2023 丝棉交织物 FZ/T 40004-2023 蚕丝含胶率试验方法 FZ/T 13059-2023 涤纶与涤纶工业长丝交织本色帆布 FZ/T 13058-2023 涤纶本色帆布 FZ/T 13004-2023 再生纤维素纤维本色布 FZ/T 12078-2023 粘胶纤维与腈纶 混纺色 纺纱 FZ/T 12077-2023 棉与腈纶 混纺色 纺纱 FZ/T 12076-2023 棉涤纶低弹丝 包芯色 纺纱 FZ/T 12012-2023 棉粘胶纤维涤纶混纺本色纱 FZ/T 01170-2023 纺织品 防花粉性能试验方法 模拟环境吸附法 FZ/T 01169-2023 纺织品 定量化学分析 聚丙烯酸酯 纤维与某些其他纤维的混合物 能源标准(14个)NB/T 11244-2023 太阳能供热工程全过程管理规范 NB/T 11241-2023 光伏光热一体组件技术规范 NB/T 11240-2023 空气源热泵干燥系统节能量和减排量计算方法 NB/T 11239-2023 低环境温度空气源热泵用导流集热装置技术规范 NB/T 11238-2023 空气源热泵供暖系统运 维管理 规范 NB/T 11255-2023 木质纤维素类生物质原料结晶度的测定 NB/T 11251- 2023 能源用 山苍子 苗木培育及质量分级 NB/T 11250-2023 木质纤维素类生物质原料聚合度的测定 NB/T 11249-2023 秸秆类生物质能 源原料储存规范第 3 部分消防 安全 NB/T 11248-2023 秸秆类生物质能 源原料储存规范第 2 部分监测 NB/T 11247-2023 秸秆类生物质能 源原料储存规范第 1 部分存放 NB/T 11245-2023 固体生物质燃料中微量元素的测定 电感耦合等离子体原子发射光谱法DB41/T 2453-2023 煤矿带式输送机保护装置安装及试验技术规范 DB41/T 2460-2023 地热能供热制冷计量与核算规范 其他标准(3个)BB/T 0053-2023 模内标签 DB36T 1778-2023 锂云母渣在水泥和混凝土中的应用技术规程 DB41/T 2454-2023 测量仪器检定校准证书有效性确认技术规范
  • 3D打印粉体材料粒度粒形分析的“黄金CP”
    3D打印技术对多数普通人来说还属于“只闻其声未见其人”的技术。它是一项不同于以往的新型制造技术。3D打印是一种主要用于构建复杂结构三维物体的增材制造技术。主要优势在于制造复杂结构、个性化定制产品。目前在汽车工业、航天航空、医疗领域里的一些复杂结构体,均有望通过3D打印轻松实现。3D打印技术期望在制造业普及程度提高,核心要素之一是新兴材料的发展。3D打印材料的技术水平和产品多样性支撑着整个产业的发展。目前,市场上使用比较普及的3D打印材料主要包括:塑料(ABS、PLA、尼龙、光聚合物等),金属(钢、银、金、钛、铝等单质或者合金)两大类,其形态一般有粉末状、丝状、层片状、液体状等。就目前的市场来看,塑料类材料在消费级产品制造中是主流。其生产材料主要是ABS、PLA、尼龙和光聚合物这四种。但如果从市场需求和大工业、高科技产业角度来看,金属类材料3D打印制作的产品更具有广阔前景。尤其是在航空航天、军工、汽车、医疗等行业的运用上具备很大的发展空间。目前全球3D 打印耗材市场的年增长率超过了20%,其中金属粉末的需求量的增长速率远高于塑料材料。尽管目前塑料3D 打印材料扔占据整个市场接近50%的份额,但是以钛合金粉末为代表的金属粉末,将在未来几年里全面赶超塑料3D 打印耗材。1、金属3D打印技术基本原理:首先在计算机中用CAD设计软件创建出三维模型并导出STL文件,然后将模型横向分割成多层。3D打印机使用生成的数字三维数据,控制高能激光束或电子束逐层熔化金属粉末,形成立体复杂工件。根据加工过程金属粉末材料的使用工艺差异,金属3D打印技术常见的有以下几类:1)激光选区熔化(SLM)技术。采用高能激光束照射熔融预先铺展好的金属粉末原料,逐层“打印”出工件。2)激光近净成型(LENS)技术。其原理是在用高能激光按预先编制的打印轨迹熔化同步供给的金属粉末适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等金属粉末的3D打印制造。3)电子束选区熔化(EBSM)是采用电子束照射预先铺展好的金属粉末原料,形式上跟SLM技术相似。4)纳米颗粒喷射金属成型(NPJ)。这种技术采用的是高温液态“铁水”(内含纳米合金颗粒)。这些金属以液体的状态进入3D打印机,打印机用含有金属纳米颗粒的“铁水”喷射成型。2、3D打印金属粉体材料金属粉体材料是金属3D打印工艺的原材料,其基本性能对成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形貌、粒度分布、流动性等方面。当前主流的3D 打印金属粉末制备方法包括:气雾化法(GA)、等离子旋转电极法(PREP)、等离子雾化法(PA),以及射频等离子球化法(PS)等等。气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。采用气雾化法所得粉末粒度分布宽,平均粒径小,杂质易于控制。但生产出的粉末由于工艺特性导致颗粒内部易产生气泡,粉末形状不均匀以及出现行星球等问题。 左图:粉体理想状态 ;右图:A卫星球 B不规则、内部气泡(缺陷)等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成,制备的粉末球形度可达99.5%以上。但是这种工艺制造的粉末粒径分布较窄,主要介于50~150μm,存在平均粒径偏大的问题。射频等离子球化工艺是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子。例用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。该工艺得到的粉末粒度范围可以达到20~50μm。国内一些知名企业有成熟的工艺应用。应用该工艺生产的AlSi9Cu3打印粉具有较好的耐高温、耐腐蚀性能。经验证的打印力学性能(SLM工艺,打印态)抗拉强度可达480MPa,屈服强度可达300MPa。综上所述,3D打印金属粉末的性能跟粉末的粒度分布、颗粒形貌息息相关。同时,现有的各种生产工艺生产的粉体都存在粒形、粒径相关问题。这使得粒型、粒度分布检测和生产工艺过程控制成为3D打印技术中的重要环节。引入先进的粒度、形貌检测设备,为工艺改进、生产控制、产品质检提供科学数据是势在必行的。3、金属粉体粒度分析仪器原理及特点在粒度分析领域,存在多种不同测量原理、集多门现代科学技术为一体的粒度测量仪器。例如:激光粒度分析仪、库尔特计数器、颗粒图像处理仪、离心沉降仪等等。激光粒度分析仪是现今广为流行的粒度测试仪器,它具有量程大、测量动态范围宽等诸多优点,被广泛的运用到粉体的生产、科研领域。3.1 激光粒度仪原理激光粒度仪3D结构图激光粒度仪光学原理简图(GB/T 19077-2016)光是一种电磁波。它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,这种物理现象称之为光的散射(衍射)。一束平行光在传播过程中遇到障碍物颗粒,光波发生偏转,偏转的角度跟颗粒的大小相关。颗粒粒径越大,光波偏转的角度越小;颗粒粒径越小,光波偏转角度越大。激光粒度分析仪就是根据这种光波的物理特性进行粒度分析的。TOPSIZER参数:量程:0.01-2000μm ,红、蓝激光双光源技术激光粒度分析仪是目前使用领域较广的粒度分析仪,这是由于激光粒度分析仪的内在技术优势决定的。激光粒度分析仪测试量程大,通常可以达到0.1μm到750μm以上。而且不需要任何形式的软件、硬件换挡操作即可实现全量程范围内的样品测试(这种特性通常被称为仪器的动态测量范围)。仪器动态测量范围大,则使用的局限性小,测试宽分布样品的能力强。激光粒度分析仪测试重复性精度高、测试速度很快,一个样品的测试过程一般只需2~3分钟,测试标准粒子重复性精度可达到0.5%以内。3.2 颗粒图像处理仪原理颗粒图像处理仪将电子图像捕捉分析技术与光学成像设备相结合,用数字摄像机拍摄经过光学设备放大、成像的颗粒图像,由计算机自动的对颗粒的形貌特征和粒度进行分析和计算。PIP9.1 量程0.5-3000μm颗粒图像处理仪适用于粉末颗粒的粒度测量、形貌观察和圆度分析,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散、形貌状况。PIP9.1颗粒图像处理使用生物显微镜加工业级高清数码摄像机的硬件组合,有效满足了5-1000μm范围内的粉体颗粒形貌分析需求。该形貌分析范围覆盖了大多数3D金属打印粉体的粒径分布区间。这样的硬件组合在满足技术需求的前提下,具有高性价比。3.3 图像法粒度分析仪、激光粒度分析仪的优缺点一图简述优缺点可以说,激光粒度仪加颗粒图像处理仪是3D打印粉体材料粒度粒形分析的黄金搭档检测设备。通过这两种仪器,能够有效分析粉末耗材的粒度分布及颗粒形貌是否到达理想状态。为进一步优化粉末生产工艺,提供科学数据支持。同时,仪器还能够作为生产企业的粉体产品物性参数检测仪器,为产品质量提供保障。参考资料:1.中国粉体网,曲选辉,《金属3D打印对粉末有何要求,有哪些新工艺,听听专家怎么说》2.材料导报,程玉婉、关航健、李博、肖志瑜,《金属3D打印技术及其专用粉末特征与应用》
  • 会议邀请|中国国际粉末冶金及硬质合金展览会
    会议邀请 欧波同(集团)有限公司诚挚邀请您参加 2021 年5 月 23 - 25 日在上海世博展览馆举办的中国国际粉末冶金及硬质合金展览会会议时间:2021 年 5 月 23 日 - 25 日会议地点:上海 浦东 世博展览馆展位坐标:B052主要展品01COXEM-30+EM-30+超高分辨率台式扫描电镜,将台式电镜的分辨率提高到优于5nm的水平,可与 传统大型扫描电镜相媲美。EM-30+同时配置了二次电子探测器及背散射电子探测器。使得台式电镜具备了完备的表面形貌及元素衬度的观测分析功能。 02 Axia ChemiSEM扫描电镜全新一代Axia ChemiSEM扫描电镜,采用独特方法进行样品成分信息的采集、处理和展示其成像平台即时可用,集成独特的实时定量能谱面分析功能,成像即刻并融合成分信息,专为快速分析而设计,操作轻松自如。本次会议将现场展示COXEM台式电镜,欢迎您参观试用。更多产品细节及应用问题,欢迎与展台工作人员现场交流。
  • 中关村材料试验技术联盟关于《金属材料 管 压扁-胀形试验方法》等10项的立项公告
    各位专家、委员及相关单位:经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)审查,CSTM标准化委员会批准以下 CSTM标准立项,特此公告。序号标准名称标准立项号1金属材料 管 压扁-胀形试验方法CSTM LX 0100 01259—20232金属材料 薄板和薄带 非等轴胀形试验方法CSTM LX 0100 01260—20233硅酸二钙-硫铝酸钙-硫硅酸钙水泥熟料CSTM LX 0301 01261—20234固废基无熟料、少熟料硅铝质水泥CSTM LX 0301 01262—20235预处理铝灰制备水泥混凝土砌块的技术要求CSTM LX 0324 01263—20236催化裂化催化剂酸性可接近性 指数测定方法CSTM LX 0500 01264—20237民用飞机纳米陶瓷铝合金TiB2颗粒粒径测试方法CSTM LX 6600 01265—20238铝制多层复合钎焊板 氧化膜厚度的测试方法 俄歇电子能谱法CSTM LX 9802 01266—20239粉末冶金钛合金材料CSTM LX 9900 01267—202310增材制造用高温合金粉末CSTM LX 9900 01268—2023如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。请登录CSTM官网http://www.cstm.com.cn/channel/details/3-2-CSTMgonggao?page=1查看立项公告通知。CSTM标准委员会秘书处联系方式联系人:陈鸣,罗倩华 办公电话:010-62187521手机:13011072266,13611338417 邮箱:chenming@ncschina.com, luoqianhua@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081 CSTM标准化委员会
  • News|欧波同亮相2018上海国际粉末冶金、硬质合金与先进陶瓷展览会
    3月27日,“2018上海国际粉末冶金、硬质合金与先进陶瓷展览会”在上海光大会展中心圆满落幕。此次展会由上海机械工程学会粉末冶金专委会和上海市新材料协会粉末冶金分会等多家机构联合举办。展览会为期三天(3月25日至27日),聚集了粉末冶金行业相关的数百家单位参展,旨在促进我国在新型材料领域的学科进步和技术提升,加强粉末冶金制造商、设备制造商、高等学府和科研院所、终端客户群之间的沟通与合作。欧波同(中国)有限公司在展会上隆重亮相,吸引了大批观众围在展台前,咨询了解光镜和电镜产品。欧波同现场进行展示的蔡司(Zeiss)光学显微镜,可应用于材料分析、冶金、电力、石化、航天、机械等多个领域。扫描电镜的突出优势吸引了众多冶金、合金领域的工程师前来咨询交流,并在现场进行样机体验,用电镜进行样品拍摄。在试用之后,工程师们纷纷给出高度评价,与欧波同的工作人员进行了更深层次的合作意向沟通。作为科研领域不可或缺的工具,欧波同推出的产品,发挥着越来越突出的作用,尖端品质获得专业级的充分肯定,在粉末冶金领域新材料、新技术、新工艺产业界的科技创新、发展中做出诸多贡献,促进了新型材料领域的学科进步和技术提升。 随着十三五规划的全面实施,科研领域新技术飞速发展,光学显微镜和电子显微镜应用领域也在不断地扩大。欧波同紧随市场脚步,在各应用领域的专业展览及高峰论坛上震撼亮相,提升品牌形象。并且致力于与科研机构和企业的交流共赢,为中国制造加油助力,更为广大用户提供全方位的实验室解决方案和优质服务。
  • 2023年10月份有236项标准将实施 ——GB/T 5750-2023正式实施
    2023年10月份有236项标准将实施——GB/T 5750-2023正式实施我们通过国家标准信息平台查询到,在2023年10月份将有236项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在10月份新实施的标准中,与食品相关的标准有51个,占据了21%,据统计,食品相关标准已连续5个月“霸榜”榜首。紧随其后的领域为环境保护、电力半导体和机械车辆。与食品相关的51个标准,主要为地方标准,包括农业种植类技术规程、各种食品产品标准。环境保护领域标准39个,主要涉及土壤、噪声、饮用水、废水、空气和废气等。环境重点标准《GB/T 5750-2023生活饮用水标准检验方法》实施。在10月份新实施的标准中,包含了多品类科学仪器,如:离子色谱仪、原子吸收光谱仪、波长色散X射线荧光光谱仪、电感耦合等离子体发射光谱仪、高效液相色谱仪、液相色谱质谱联用仪、气相色谱仪、气相色谱质谱联用仪、电感耦合等离子体质谱仪等。具体2023年10月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(9个)GB/T 42413-2023玻璃仪器 玻璃容器耐冷冻性试验方法 GB/T 42399.1-2023无损检测仪器 相控阵超声设备的性能与检验 第1部分:仪器 GB/T 42403-2023激光器和激光相关设备 激光光谱特性测量方法 GB/T 19700-2023船用热交换器热工性能试验方法 GB/T 10592-2023高低温试验箱技术条件 GB/T 42399.2-2023无损检测仪器 相控阵超声设备的性能与检验 第2部分:探头 GB/T 42399.3-2023无损检测仪器 相控阵超声设备的性能与检验 第3部分:组合系统 GB/T 42387-2023玻璃量器 质量分级技术要求 GB/T 21109.2-2023过程工业领域安全仪表系统的功能安全 第2部分:GB/T 21109.1—2022的应用指南农林牧渔食品标准(51个)DB5226/T 212-2023地理标志产品质量要求 凯里平良贡米 DB5107/T 136—2023北川白山羊饲草料生产技术规范 DB5107/T 135—2023北川白山羊种羊饲养管理技术规范 DB5107/T 134—2023“三青”系列莴笋种植技术规范 DB5107/T 133—2023彩色马铃薯优质高效栽培技术规程 DB5107/T 132—2023丘陵区 水稻机 直播适宜作业机具及配套管理技术规程 DB5107/T 131—2023附子–水稻轮作栽培技术规程 DB5107/T 130—2023附子 优质种根繁育 技术规程 DB5107/T 129—2023工业专用高芥酸油菜全程机械化栽培技术规程 DB5107/T 128—2023结球甘蓝杂交制种技术规程 DB5107/T 127—2023丘陵区麦(油)茬杂交稻节水保肥栽培技术规程 DB5107/T 126—2023山区马铃薯原原种一年两季繁育技术规程 DB5107/T 125—2023设施番茄水肥一体化栽培技术规范 DB5107/T 124—2023饲用麦类作物栽培技术规范 DB5107/T 123—2023珠芽魔芋种植技术规程 DB11/T 2123-2023核果类水果采后处理技术规范 DB11/T 2116-2023农村集体聚餐餐饮加工管理导则 DB11/T 2122-2023 榉 属植物苗木繁育与栽培技术规程 DB11/T 2125-2023主要树种母树林营建技术规程 DB11/T 2121-2023 槭 属植物苗木繁育与栽培技术规程 DB11/T 672-2023城市绿地再生水灌溉技术规范 DB11/T 1297-2023城市绿地节水技术规范 DB52/T 448-2023贵州小叶苦丁茶 DB52/T 1732-2023黑木耳地栽栽培技术规程 DB36/T 751-2023早春辣椒大 苗设施 栽培技术规程 DB36/T 1776-2023林下灵芝野外嫁接栽培技术规程 DB36/T 1772-2023桑叶绿茶加工技术规程 DB36/T 1771-2023毛木耳栽培技术规程 DB36/T 1770-2023茶树 菇 液体菌种生产技术规程 DB36/T 1769-2023红壤旱地“油菜-花生-芝麻”周年轮作栽 培技术规程 DB36/T 1768-2023幼龄茶园套种绿肥技术规程 DB36/T 1767-2023双季优质稻栽培技术规程 DB36/T 1766-2023鲜食春大豆- 籼粳 杂交晚稻栽培技术规程 DB36/T 1765-2023双季稻早直播晚机插栽培技术规程 DB36/T 1764-2023双季直播水稻栽培技术规程 DB36/T 1763-2023福 禄紫枫 苗木培育技术规程 DB36/T 1758-2023双季早稻高温热害评价等级 DB36/T 1762-2023车前子规范化生产技术规程 DB36/T 1761-2023草珊瑚实生 苗质量 分级标准 GB/T 42492-2023高山美利奴羊 GB/T 42491-2023饲料中淀粉总含量的测定 酶法 GB/T 3157-2023中国荷斯坦牛 GB/T 42365-2023农产品流通服务可持续性评价技术导则 GB/T 42305-2023肉桂栽培技术规程 GB/T 42306-2023软木粒和软木粉 分类、性质和包装 GB/T 23188-2023松茸 GB/T 42299-2023大米加工企业设计规范 GB/T 42304-2023屠宰动物福利准则 GB/T 22346-2023 栗 产品质量等级 GB/T 21015-2023稻谷 干燥技术 规范 GB/T 8937-2023食用动物油脂 猪油 环境环保标准(39个)GB/T 4214.5-2023家用和类似用途电器噪声测试方法 电动剃须刀、电理发剪及修发器的特殊要求 GB/T 4214.3-2023家用和类似用途电器噪声测试方法 洗碗机的特殊要求 GB/T 42490-2023土壤质量 土壤与生物样品中有机碳含量与碳同位素比值、全氮含量与氮同位素比值的测定 稳定同位素比值质谱法 GB/T 42488-2023土壤质量 土壤中无机态氮15N丰度的测定 稳定同位素比值质谱法 GB/T 42487-2023土壤质量 土壤硝态氮、亚硝态氮和铵态氮的测定 氯化钾溶液浸提流动分析法 GB/T 42489-2023土壤质量 决策单元-多点增量采样法 GB/T 42485-2023土壤质量 土壤硝态氮、亚硝态氮和铵态氮的测定 氯化钾溶液 浸提手工分析 法 GB/T 27522-2023畜禽养殖污水监测技术规范 GB/T 42473-2023声学 噪声烦恼度的评价和预测方法 GB/T 17729-2023长途客车内空气质量要求及检测方法 GB/T 33521.31-2023机械振动 轨道系统产生的地面诱导结构噪声和地传振动 第31部分:建筑物 内人体 暴露评价的现场测量指南 GB/T 5750.1-2023生活饮用水标准检验方法 第1部分:总则 GB/T 5750.2-2023生活饮用水标准检验方法 第2部分:水样的采集与保存 GB/T 5750.3-2023生活饮用水标准检验方法 第3部分:水质分析质量控制 GB/T 5750.4-2023生活饮用水标准检验方法 第4部分:感官性状和物理指标 GB/T 5750.5-2023生活饮用水标准检验方法 第5部分:无机非金属指标 GB/T 5750.6-2023生活饮用水标准检验方法 第6部分:金属和类金属指标 GB/T 5750.7-2023生活饮用水标准检验方法 第7部分:有机物综合指标 GB/T 5750.8-2023生活饮用水标准检验方法 第8部分:有机物指标 GB/T 5750.9-2023生活饮用水标准检验方法 第9部分:农药指标 GB/T 5750.10-2023生活饮用水标准检验方法 第10部分:消毒副产物指标 GB/T 5750.11-2023生活饮用水标准检验方法 第11部分:消毒剂指标 GB/T 5750.12-2023生活饮用水标准检验方法 第12部分:微生物指标 GB/T 5750.13-2023生活饮用水标准检验方法 第13部分:放射性指标 GB/T 16731-2023建筑吸声产品的吸声性能分级 GB/T 6913-2023锅炉用水和冷却水分析方法 磷酸盐的测定 GB/T 13277.8-2023压缩空气 第8部分:固体颗粒质量浓度测量方法 DB46/613-2023餐饮业大气污染物排放标准 DB31/ 1405-2023水产养殖尾水排放标准 DB11/T 1764.10-2023用水定额 第10部分:仓储 DB11/T 936.18-2023节水评价规范 第18部分:数据中心 DB51/ 3061-2023四川省水产养殖业水污染物排放标准 DB11/T 1764.6-2023用水定额 第6部分:城市绿地 DB11/T 2124-2023污泥产品林地施用技术规范 DB11/T2113-2023城镇排水泵站运行与维护技术规程 DB11/T 2109-2023生活垃圾焚烧厂运行评价规范 GB/T 42481-2023小微湿地保护与管理规范GB/T 42307-2023肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法 GB/T 42395.1-2023人类工效学 家电噪声 声 品质限值和测试方法 第1部分:冰箱 医药卫生标准(28个)WS/T 820—2023医院电力 系统消防 安全管理标准 YY/T 1880-2022血清淀粉样蛋白A测定试剂盒 YY/T 1877-2022体外循环器械中双酚基丙烷(BPA)残留量测定方法 YY/T 1865-2022BRCA基因突变检测试剂盒及数据库通用技术要求(高通量测序法) YY/T 1859-2022动物源性心血管 植入物抗钙化 评价 大鼠皮下植入试验 YY/T 1857-2022牙科学 挖匙和骨刮匙 YY/T 1855-2022组合式陶瓷股骨头疲劳性能试验方法 YY/T 1844-2022麻醉和呼吸设备 导气管和相关设备的通用要求 YY/T 1464-2022医疗保健产品灭菌 低温蒸汽甲醛 医疗器械灭菌过程的开发、确认和常规控制要求 YY/T 1293.2-2022接触性创面敷料 第2部分:聚氨酯泡沫敷料 YY/T 0989.5-2022手术植入物 有源植入式医疗器械 第5部分:循环支持器械 YY/T 0952-2022医用控温仪 YY/T 0719.10-2022眼科光学 接触镜护理产品 第10部分:保湿润滑剂测定方法 YY/T 0698.2-2022最终灭菌医疗器械包装材料 第2部分:灭菌包裹材料 要求和试验方法 YY/T 0633-2022眼科仪器 间接检眼镜 DB36/T 1775-2023规模化蛋鸭养殖场疫病综合防控技术规范 DB36/T 1774-2023桑螟虫情监测与防控技术规程 DB36/T 1773-2023地方猪遗传资源保种场保种技术规范 DB31/T 1408-2023医学检验实验室管理规范 DB11/T 2118-2023社区卫生服务机构老年健康教育服务规范 DB31/T 1413-2023药品生产企业信用评估指南 DB31/T 1412-2023新生儿先天性心脏病筛查规范 DB31/T 1411-2023新型冠状病毒(2019-nCoV)抗原检测试剂盒数字化编码规则 DB14/T 2799—2023中药材标准体系 GB/T 18090-2023猪繁殖与呼吸综合征诊断方法 GB/T 42364-2023传染性无乳症诊断技术 GB/T 42398-2023细胞培养洁净室设计技术规范 GB/T 42392-2023洁净手术部通用技术要求 冶金矿产标准(13个)GB/Z 42358-2023铁矿石 波长色散X射线荧光光谱仪 精度的测定 GB/T 26416.6-2023稀土铁合金化学分析方法 第6部分: 钼 、钨、钛量的测定 电感耦合等离子体发射光谱法 GB/T 42345-2023钒钛磁铁矿 矿物定量检测方法 GB/T 42346-2023钒钛磁铁矿综合利用 术语和定义 GB/T 42355.2-2023钢筋混凝土用锚固板钢筋 第2部分:试验方法 GB/T 42352-2023金属覆盖层 钢铁上物理气相沉积 镉涂层 技术规范与试验方法 GB/T 239.1-2023金属材料 线材 第1部分:单向扭转试验方法 GB/T 28053-2023铝合金内胆碳纤维全缠绕气瓶 GB/T 7233.1-2023铸钢件 超声检测 第1部分:一般用途铸钢件 GB/T 8464-2023铁制、铜制和不锈钢制螺纹连接阀门 GB/T 42355.1-2023钢筋混凝土用锚固板钢筋 第1部分:技术条件 DB31/T 1410-2023 增材制造 用钛及钛合金粉末材料通用规范 GB/T 42400-2023 激光熔覆修复 金属零部件硬度试验方法 化工塑料标准(16个)GB/T 28627-2023抹灰石膏 GB/T 42475-2023化学品 中华蜜蜂急性经口毒性试验 GB/T 42469-2023纳米技术 抗菌银 纳米颗粒 特性及测量方法通则 GB/T 42471-2023纳米技术 柔性纳米储能器件弯曲测试方法 GB/T 42470-2023纳米技术 基于斑马鱼胚胎的纳米材料毒性评价 GB/T 13530-2023乙氧基化烷基硫酸钠试验方法 GB/T 28209-2023硼硅酸盐玻璃化学分析方法 GB/T 42414-2023玻璃黏度测定 旋转黏度计法 GB/T 42367-2023化学品 原生动物活性污泥抑制试验 GB/T 42366-2023化学品 静水 椎实螺 繁殖试验 GB/T 42311-2023纳米技术 吸入毒性研究中呼吸暴露舱内纳米颗粒的表征 GB/T 42310-2023纳米技术 石墨烯 粉体比表面积的测定 氩气吸附静态容量法 GB/T 42303-2023表面活性剂 洗织物用洗涤剂 性能比较试验导则 GB/T 42426-2023化学品 蒸气压试验 GB/T 42349-2023光催化材料抗病毒活性的测定 Q-β噬菌体试验方法 GB/T 30020-2023玻璃缺陷检测方法 光弹扫描法 轻工纺织标准(9个)GB/T 42462-2023化妆品色谱分析结果确认准则
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 资讯快报-2024第十六届中国国际粉末冶金及硬质合金展览会 新诺新品抢先看
    您有一份来自新诺的邀请函-2024第十六届中国国际粉末冶金及硬质合金展览会展商:上海新诺仪器集团有限公司展位:H1馆 B765展会时间:3月6日-8日展会地点:上海世博展览馆重磅出击:No.1:电动等静压机产品特点: 1、采用等静压制坯致密度高且均匀,烧成收缩小,不易变形; 2、能成型常规模压工艺难以制备的细长棒状或管状压坯; 3、制品具有高强度和良好的可加工性,大大降低内应力; 4、模具制作方便,寿命长,成本相对较低; 5、能成型大尺寸的压坯,每缸可以压制多件压坯; 6、可以卸下等静压腔体更换冷压模具,具有一机多用的特点;新诺电动等静压机更多优点: 1、XNNETS 7寸 触摸液晶屏 2、5段程压系统,波段加压-波段保压-自动补压-定时泄压 3、数据管理、储存、查看、USB导出,免费升级。 4、紧急制停按钮 5、可定制热等静压机No.2 自动热压机产品特点: 热压机主要满足于需要对粉末样品、颗粒样品、塑料薄膜以及其它固体样品等进行高温、高压制样或测试的一些实验室及单位,样品的颗粒或粉末经加热加压后使其化学稳定性提高,有不易破碎利于切割保存等优点。新诺平板热压机特点: 1、上下平板分开空控温,增加温度补偿功能 2、加热板可选风冷降温,可避免水冷降温的水分残留,增加使用寿命 3、XNNETS 7寸 触摸液晶屏 4、5段程压系统,波段加压-波段保压-自动补压-定时泄压 5、数据管理、储存、查看、USB导出,免费升级。No.2 荧光专用压片机产品特点: 荧光专用压片机是我公司在自动压片机基础上升级改款研制出的一种专为X射线荧光光谱仪配套的设备。造型美观,体积小,操作简单制样效果好,效率高等优点,专机专用。新诺荧光专用压片机特点: 1、台式结构,体积小,操作简单。 2、内嵌硼酸模具,效率高。 3、7寸触摸屏,中英互换 6、5段程压系统,波段加压-波段保压-自动补压-定时泄压 7、数据管理、储存、查看、USB导出,免费升级。
  • 微纳粒度仪亮相第十四届粉末冶金、硬质合金和先进陶瓷展
    2021年5月23-25日,2021中国粉末冶金硬质合金与先进陶瓷展览会在上海世博展览馆举行,此次展会吸引了大批量陶瓷、粉末冶金客户前来参观,济南微纳颗粒仪器股份有限公司作为粒度测试仪器研发厂商受邀参展。此次参展,济南微纳展出了专门针对冶金和陶瓷领域的粒度仪,winner2005智能湿法激光粒度仪,该仪器测试精度好,测试数据稳定,量程分布宽,0.01-1000μm,且为全自动操作模式,方便快捷,受到了不少咨询客户的青睐,均留下联系方式,表示会后到公司实地参观和测样。 展会上还吸引力一批老客户前来拜访,其中有一个老客户,陶瓷企业的技术总监,表示购买的仪器已经使用了11年,仪器性能和测试数据一直稳定,对微纳粒度仪的产品质量赞不绝口,表示会一如既往的支持微纳公司,下一台还会购买微纳的激光粒度仪。 济南微纳颗粒仪器股份有限公司从创立伊始,坚持以产品质量做为企业的生命,秉承发展与普及当代先进颗粒测试技术的宗旨,30年兢兢业业,不断推动国产颗粒测试行业的进步与发展。
  • 3D打印材料测试国标正式实施 哪些仪器出圈?
    2021年6月1日起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项增材制造领域国家标准正式实施,填补了多项国内空白。本文整理了《增材制造 金属粉末性能表征方法》标准中提到的金属粉末性能参数及表征方法,以及主流的3D打印技术和材料,供大家参考(文末附标准全文下载)。3D打印用金属粉末性能参数及检测技术检测项目检测仪器外观质量目视检查化学成分ICP粒度及粒度分布激光粒度仪、筛分仪粒形粒度粒形分析仪流动性粉末流动性测试仪密度振实密度仪夹杂物体视显微镜、扫描电镜、工业CT纯净度体视显微镜空心粉工业CT、光学显微镜、扫描电镜除以上检测项目外,在金属3D打印过程中,金属重熔后元素以气体形态存在,可能在局部生成气眼等缺陷,影响工件致密性及力学性能。所以,对不同体系的金属粉末,氧含量均为一项重要指标,业内对该指标的一般要求在1500ppm以下,在航空航天等特殊应用领域,客户对此指标的要求更为严格。同时,部分客户也要求控制氮含量指标,一般要求在500ppm以下。针对这些复杂元素及其含量,可通过氧/氮元素分析仪等进行检测。另外,孔隙度也是评估3D打印过程的重要指标,孔隙度是表征部件或粉体致密程度的指标,为材料中孔隙的体积占总体积的百分比。金属粉末的孔隙度会严重影响成型过程及成品部件的机械强度和表面质量,通常,孔隙度低的粉体成型后部件致密度高,表面光洁度更好。金属粉末的孔隙度可通过压汞仪等进行表征。3D打印技术分类3D打印又称增材制造 ,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。该技术具有精度高、周期短、省材料、能制备复杂一体成型零件等优点,已经成为国内外最新关注的研究重点。根据成型原理及工艺类型,3D打印技术可分为很多种,目前比较成熟的有以下几种:3D打印技术打印材料特点光固化成形(SLA)液态树脂精度高、表面质量好激光选区烧结(SLS)高分子、金属、陶瓷、砂等粉末材料成形材料广泛,应用范围广激光选区熔化(SLM)金属或合金粉末可直接制造高性能复杂金属零件熔融沉积制造(FDM)低熔点丝状材料零件强度高、系统成本低电子束选区熔化(EBSM)金属粉末可成形难熔材料分层实体制造(LOM)片材成形速率高、性能不高立体喷印(3DP)光敏树脂、粘接剂喷粘接剂时强度不高、喷头易堵塞3D打印材料是3D打印技术发展的重要物质基础,在某种程度上,材料的发展决定了3D打印能否得到更广泛的应用。目前,3D打印材料主要包括主要包括金属材料、无机非金属材料、有机高分子材料以及生物材料等几类。随着技术的发展和进步,材料的种类还会越来越丰富。3D打印材料的分类和应用领域3D打印材料分类材料名称应用领域金属增材制造材料钛合金、高温合金、铝合金等金属粉末、液态金属材料等航天航空、船舶工业、核工业、汽车工业、轨道交通等高性能、难加工零部件与模具的直接制造非金属增材制造材料高性能陶瓷,非金属矿、宝玉石材料、树脂砂、覆沙膜、硅砂、硅酸盐类等航天航空、汽车发动机等制造用模具开发及功能零部件制造;工业产品原型制造及创新创意产品生产有机高分子增材制造材料树脂类:光敏树脂;丝材类:PLA、ABS、PC、PPSF、PETG 等;粉末工/模具制造、原型验证、科研教学、文物修复与保护、生物医疗等生物增材制造材料生物可降解材料、生物相容性材料、活细胞等药物控制释放、器官移植、组织和软骨质结构再生与重建等GB∕T392512020增材制造金属粉末性能表征方法.pdf
  • 工信部发布第四批行标制修订计划 一大波分析检测标准2020年完成
    p   日前,工业和信息化部办公厅印发2018年第四批行业标准制修订计划的通知,涉及化工、石化、建材、钢铁、有色、稀土、黄金等行业,共计355项。 /p p   本次发布的标准中,包括了条仪器及分析检测标准,涉及火焰原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、电位滴定法、离子色谱法、分光光度法等仪器分析方法。 /p p   仪器信息网摘录部分内容如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 13%" p style=" text-align:center " 计划号 /p /td td width=" 10%" p style=" text-align:center " 领域 /p /td td width=" 17%" p style=" text-align:center " 项目名称 /p /td td width=" 5%" p style=" text-align:center " 性质 /p /td td width=" 5%" p style=" text-align:center " 制修 br/ & nbsp & nbsp & nbsp 订 /p /td td width=" 5%" p style=" text-align:center " 完成 br/ & nbsp & nbsp & nbsp 年限 /p /td td width=" 10%" p style=" text-align:center " 主管部门 /p /td td width=" 14%" p style=" text-align:center " 技术委员会或 br/ & nbsp & nbsp & nbsp 技术归口单位 /p /td td width=" 17%" p style=" text-align:center " 主要起草单位 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=HGCPZT18592018" 2018-1893T-HG /a /p /td td width=" 10%" p style=" text-align:center " 肥料和土壤调理剂-腐植酸肥料 /p /td td width=" 17%" p style=" text-align:center " 腐植酸肥料中氯含量的测定 & nbsp & nbsp 自动电位滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国肥料和土壤调理剂标准化技术委员会腐植酸肥料分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 辽宁普天科技有限公司、上海化工研究院有限公司、沈阳农业大学等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22482018" 2018-1994T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 二氧化钛含量的测定-二安替比林甲烷分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22452018" 2018-1995T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 硅含量的测定 硫酸亚铁氨还原-硅钼蓝分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22502018" 2018-1996T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 磷含量的测定 铋磷钼蓝分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22512018" 2018-1997T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 硫含量的测定 红外线吸收法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22432018" 2018-1998T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 全铁含量的测定 三氯化钛还原重铬酸钾滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22422018" 2018-1999T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 碳含量的测定 红外线吸收法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22462018" 2018-2000T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 氧化钙含量的测定 络合滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22472018" 2018-2001T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 氧化铝含量的测定 EDTA滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22442018" 2018-2002T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 氧化亚铁含量测定-重铬酸钾滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBGLZT22552018" 2018-2003T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 炼钢转炉一次烟气颗粒物测定技术规范 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国钢标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 马鞍山钢铁股份有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBGLZT22572018" 2018-2004T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 钢铁企业低品位余热检测与评价方法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国生铁及铁合金标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 首钢京唐钢铁联合有限责任公司、北京科技大学、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBFFZT22492018" 2018-2005T-YB /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 含铁尘泥 & nbsp & nbsp 氧化锰含量的测定 高碘酸钾(钠)分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国生铁及铁合金标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东省冶金科学研究院、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSJNZT20652018" 2018-2022T-YS /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 再生锌原料化学分析方法 & nbsp & nbsp 第12部分:铟含量的测定 火焰原子吸收光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 深圳市中金岭南有色金属股份有限公司、韶关市质量计量监督检测所 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSJNZT20662018" 2018-2023T-YS /a /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用 /p /td td width=" 17%" p style=" text-align:center " 再生锌原料化学分析方法 & nbsp & nbsp 第13部分:铊含量的测定 电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 节能与综合利用司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 深圳市中金岭南有色金属股份有限公司、韶关市质量计量监督检测所 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT19962018" 2018-2024T-YS /a /p /td td width=" 10%" p style=" text-align:center " 轻金属 /p /td td width=" 17%" p style=" text-align:center " 高纯镓化学分析方法 & nbsp & nbsp 痕量元素的测定 电感耦合等离子体质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 中铝矿业有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT19982018" 2018-2025T-YS /a /p /td td width=" 10%" p style=" text-align:center " 轻金属 /p /td td width=" 17%" p style=" text-align:center " 铝电解质中氧化铝浓度的测定 & nbsp & nbsp 重量法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 山东南山铝业股份有限公司、云南云铝润鑫铝业有限公司、包头铝业有限公司、中国铝业郑州有色金属研究院有限公司、中铝山东有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT19992018" 2018-2026T-YS /a /p /td td width=" 10%" p style=" text-align:center " 轻金属 /p /td td width=" 17%" p style=" text-align:center " 铝土矿石化学分析方法 & nbsp & nbsp 第28部分:氧化锂含量的测定 火焰原子吸收光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 中国铝业郑州有色金属研究院有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20112018" 2018-2027T-YS /a /p /td td width=" 10%" p style=" text-align:center " 重金属 /p /td td width=" 17%" p style=" text-align:center " 铋化学分析方法 & nbsp & nbsp 第14部分:铜、铅、锌、铁、银、砷、碲、锑含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 云南驰宏锌锗股份有限公司、昆明冶金研究院、湖南柿竹园有色金属有限责任公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20102018" 2018-2028T-YS /a /p /td td width=" 10%" p style=" text-align:center " 重金属 /p /td td width=" 17%" p style=" text-align:center " 高铋铅化学分析方法 & nbsp & nbsp 第7部分:铜、锌、铁、镍、镉、砷、锑、铋和锡含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 北矿检测技术有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20122018" 2018-2029T-YS /a /p /td td width=" 10%" p style=" text-align:center " 重金属 /p /td td width=" 17%" p style=" text-align:center " 混合铅锌精矿化学分析方法 & nbsp & nbsp 第11部分:砷、铋、镉、钴、铜、镍、锑含量的测定 电感耦合等离子原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 北矿检测技术有限公司、白银有色集团股份公司、株洲冶炼集团股份有限公司、河南豫光金铅股份有限公司、山东恒邦冶炼股份有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20162018" 2018-2030T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第1部分:锰含量的测定 电位滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20172018" 2018-2031T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第2部分:钴含量的测定 电位滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20182018" 2018-2032T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第3部分:镍含量的测定 丁二酮肟重量法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20192018" 2018-2033T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第4部分:锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20202018" 2018-2034T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第5部分:氯含量的测定 氯化银比浊法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20212018" 2018-2035T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 富锂锰基正极材料化学分析方法 & nbsp & nbsp 第6部分:硫酸根含量的测定 离子色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20222018" 2018-2036T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 高纯钼化学分析方法 & nbsp & nbsp 痕量杂质元素的测定 辉光放电质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20142018" 2018-2037T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 锆合金管材高温内压爆破试验方法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 西部新锆核材料科技有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20132018" 2018-2038T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 锆及锆合金高低倍组织检验方法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 西部金属材料股份有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20152018" 2018-2039T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 锆英砂化学分析方法 & nbsp & nbsp 钡含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国家钨与稀土产品质量监督检验中心、江西省晶安高科技股份有限公司、江西金源有色地质测试有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT20332018" 2018-2040T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 锑铍芯块化学分析方法 & nbsp & nbsp 第5部分:硅含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 西北稀有金属材料研究院宁夏有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT20342018" 2018-2041T-YS /a /p /td td width=" 10%" p style=" text-align:center " 稀有金属 /p /td td width=" 17%" p style=" text-align:center " 锑铍芯块化学分析方法 & nbsp & nbsp 第6部分:氧化铍含量的测定 溴甲醇-电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 西北稀有金属材料研究院宁夏有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20442018" 2018-2042T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第1部分:钴含量的测定 碘量法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20452018" 2018-2043T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第2部分:铬含量的测定 硫酸亚铁铵滴定法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20462018" 2018-2044T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第3部分:钨含量的测定 重量法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20472018" 2018-2045T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第4部分:镍含量的测定 丁二酮肟分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20482018" 2018-2046T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第5部分:硅含量的测定 钼蓝分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20492018" 2018-2047T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第6部分:铁、锰含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20502018" 2018-2048T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第7部分:碳含量的测定 高频燃烧红外吸收法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20512018" 2018-2049T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 钴铬钨系合金粉末化学分析方法 & nbsp & nbsp 第8部分:氧含量的测定 脉冲加热惰气熔融-红外吸收法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广东省工业分析检测中心 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20372018" 2018-2050T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 镍基高温合金粉末夹杂物含量检测方法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 西安欧中材料科技有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20422018" 2018-2051T-YS /a /p /td td width=" 10%" p style=" text-align:center " 粉末冶金 /p /td td width=" 17%" p style=" text-align:center " 镍基高温合金粉末球形率测定方法 & nbsp & nbsp 扫描电镜法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20532018" 2018-2052T-YS /a /p /td td width=" 10%" p style=" text-align:center " 贵金属 /p /td td width=" 17%" p style=" text-align:center " 高纯钯化学分析方法 & nbsp & nbsp 杂质元素含量的测定 辉光放电质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、 & nbsp & nbsp 金川集团股份有限公司、贵研检测科技(云南)有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20542018" 2018-2053T-YS /a /p /td td width=" 10%" p style=" text-align:center " 贵金属 /p /td td width=" 17%" p style=" text-align:center " 高纯钌化学分析方法 & nbsp & nbsp 杂质元素含量的测定 辉光放电质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、 & nbsp & nbsp 金川集团股份有限公司、贵研检测科技(云南)有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20522018" 2018-2054T-YS /a /p /td td width=" 10%" p style=" text-align:center " 贵金属 /p /td td width=" 17%" p style=" text-align:center " 高纯铱化学分析方法 & nbsp & nbsp 杂质元素含量的测定 辉光放电质谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、 & nbsp & nbsp 金川集团股份有限公司、贵研检测科技(云南)有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20592018" 2018-2056T-YS /a /p /td td width=" 10%" p style=" text-align:center " 半导体材料 /p /td td width=" 17%" p style=" text-align:center " 硅碳复合负极材料化学分析方法 & nbsp & nbsp 第1部分:硅含量的测定 重量法和分光光度法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、广东省工业分析检测中心、北矿检测技术有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20602018" 2018-2057T-YS /a /p /td td width=" 10%" p style=" text-align:center " 半导体材料 /p /td td width=" 17%" p style=" text-align:center " 硅碳复合负极材料化学分析方法 & nbsp & nbsp 第2部分:碳含量的测定 高频加热红外吸收法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、广东省工业分析检测中心、北矿检测技术有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20612018" 2018-2058T-YS /a /p /td td width=" 10%" p style=" text-align:center " 半导体材料 /p /td td width=" 17%" p style=" text-align:center " 硅碳复合负极材料化学分析方法 & nbsp & nbsp 第3部分:铁、镍、锆、钙、铅、铝、铪含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、广东省工业分析检测中心、北矿检测技术有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT20882018" 2018-2088T-YS /a /p /td td width=" 10%" p style=" text-align:center " 黄金 /p /td td width=" 17%" p style=" text-align:center " 氰化液化学分析方法 & nbsp & nbsp 金量的测定 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2019 /p /td td width=" 10%" p style=" text-align:center " 原材料工业司 /p /td td width=" 14%" p style=" text-align:center " 全国黄金标准化技术委员会 /p /td td width=" 17%" p style=" text-align:center " 长春黄金研究院有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21202018" 2018-2114T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 水溶性焦磷酸盐和三聚磷酸盐的检测方法 离子色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 好来化工(中山)有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21212018" 2018-2116T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 牙膏中表没食子儿茶素没食子酸酯的测定 高效液相色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广州薇美姿实业有限公司、好来化工(中山)有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21172018" 2018-2117T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 牙膏中三氯蔗糖的测定 高效液相色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广州薇美姿实业有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21222018" 2018-2118T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 牙膏中生物酶抗菌活性的测定 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 江苏雪豹日化有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21182018" 2018-2119T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 牙膏中甜菊糖苷的测定 高效液相色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广州薇美姿实业有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=QBCPZT21192018" 2018-2120T-QB /a /p /td td width=" 10%" p style=" text-align:center " 口腔护理用品-牙膏 /p /td td width=" 17%" p style=" text-align:center " 口腔清洁护理用品 & nbsp & nbsp 牙膏中叶绿素铜钠盐含量的测定 高效液相色谱法 /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2020 /p /td td width=" 10%" p style=" text-align:center " 消费品工业司 /p /td td width=" 14%" p style=" text-align:center " 全国口腔护理用品标准化技术委员会牙膏分技术委员会 /p /td td width=" 17%" p style=" text-align:center " 广州质量监督检测研究院 /p /td /tr /tbody /table p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制