当前位置: 仪器信息网 > 行业主题 > >

干扰抑癌基因

仪器信息网干扰抑癌基因专题为您整合干扰抑癌基因相关的最新文章,在干扰抑癌基因专题,您不仅可以免费浏览干扰抑癌基因的资讯, 同时您还可以浏览干扰抑癌基因的相关资料、解决方案,参与社区干扰抑癌基因话题讨论。

干扰抑癌基因相关的资讯

  • 贺福初小组发现干扰抑癌基因的新型蛋白质
    由军事医学科学院副院长、中国科学院院士贺福初领导的军事医学科学院放射与辐射医学研究所蛋白质组学国家重点实验室,在肿瘤研究领域又有重要发现。他们发现了一种重要的新型蛋白质,可以选择性地干扰抑癌基因,可能成为肿瘤防治的新型靶向分子,为人类肿瘤疾病的预防和治疗研究提供新的途径。今年4月中旬国际刊物《自然—细胞生物学》(Nature Cell Biology)在线发表了该项发现。   癌症是人类生命健康的主要杀手。科学家们和医院的医生都寄希望于通过调节一种名叫p53的抑癌基因的活性,达到杀伤肿瘤细胞的目的。然而大量的科学研究数据表明,这种抑癌基因的活性调控异常复杂,强烈依赖于各种类型的不同组织器官的调控蛋白质。   军事医学科学院放射与辐射医学研究所蛋白质组学国家重点实验室的贺福初、张令强、田春艳等科研人员,在前期大规模发掘人类的胎肝新基因、新蛋白的基础上,经过历时六年的潜心探索研究,发现了一种新型蛋白质,这种蛋白质可以选择性地参与抑癌基因p53对死亡基因的调控,他们为这种蛋白质取名为Apak。   当Apak与抑癌基因p53结合在一起时,抑癌基因不会伤及正常细胞,当正常细胞遇到基因组损伤信号时,Apak迅速与p53分离,释放出p53的杀伤细胞功能,从而能及时清除掉对机体带来危害的部分“变坏”的细胞,大大降低了肿瘤发生的风险。这项研究受到国家重大科学研究计划项目“DNA损伤修复蛋白复合体及修复功能相关机制研究”和“人类肝脏蛋白质组重要科学问题研究”、以及国家自然科学基金委创新群体项目“肝脏及肝病相关的系统生物学研究”等的联合资助。这次发现的新型蛋白质Apak隶属于锌指蛋白家族,而这一家族在人类基因组中多达423个成员,这一家族中很可能存在大量没有被人们发现的p53调控蛋白,因而可能为肿瘤研究、药物研发打开了一座巨大的“宝库”。
  • 科学家发现癌基因STAT3竟也可抑癌?!
    近日,来自奥地利维也纳医科大学的研究人员发现,通常在癌症中发挥癌基因作用的IL-6和STAT3信号途径在前列腺癌中发挥着不同的作用。相关研究结果发表在国际学术期刊nature communication上。 IL-6是一种重要的细胞因子,它在调控细胞存活和肿瘤生长方面发挥着重要作用。高活性的IL-6会促进肿瘤生长,而STAT3是其下游一个重要的效应因子,在许多类型的癌症中扮演着癌基因的作用。目前已经有许多靶向抑制IL-6和STAT3的治疗方法用于癌症治疗。 但根据这项研究的结果来看,IL-6和STAT3在前列腺癌中发挥的作用与人们以往的认识有些不同,研究人员发现,在前列腺癌细胞中,激活的STAT3能够激活ARF基因,阻断细胞分裂进而抑制细胞生长。 在这项研究中,研究人员在Pten缺失的前列腺癌小鼠模型中,在基因水平抑制了STAT3或IL-6信号途径,结果发现该信号途径失活可以加速癌症进展并导致癌转移。他们发现p19ARF是STAT3的一个直接靶向目标,STAT3信号途径缺失会扰乱ARF-Mdm2-p53这条肿瘤抑制因子轴,但不会影响细胞衰老。除此之外,研究人员还在人类前列腺癌细胞中发现了STAT3和CDKN2A突变,并且STAT3和CDKN2A缺失突变在转移性前列腺癌细胞中共发生频率非常高。 研究人员还发现,STAT3和p14ARF在病人前列腺肿瘤中缺失与前列腺癌复发和转移风险增加存在显著相关性。因此STAT3和ARF表达水平或可用作区分前列腺癌发生风险高低的诊断标记。 总的来说,这项研究发现在其它类型的癌症中发挥癌基因作用的STAT3在前列腺癌中发挥抑癌作用,并且这种抑癌作用是通过调节ARF的表达影响ARF-Mdm2-p53肿瘤抑制因子轴的作用实现的。STAT3以及ARF的表达水平或可用于预测前列腺癌风险,可以得到进一步开发应用yb-7640R XKR1膜转运蛋白XK抗体yb-5590R phospho-YWHAE(Thr232)磷酸化14-3-3E蛋白抗体yb-2340R 14-3-3 epsilon14-3-3E蛋白抗体yb-12358R CHI3L2软骨细胞蛋白39抗体yb-6754R YY1AP1肝癌相关蛋白2抗体(转录因子YY1结合蛋白1抗体)yb-5921R YBX-1核酸敏感元件结合蛋白1yb-1943R YB1y-盒结合蛋白1抗体yb-3605R YAP1原癌基因Yes相关蛋白1抗体yb-3477R Phospho-YB1(Ser102)磷酸化DNA结合蛋白B抗体yb-3476R Phospho-YAP1(Tyr407)磷酸化原癌基因Yes相关蛋白1抗体yb-1415R YY1核转录调节因子YY1抗体yb-3475R Phospho-YAP1(Ser127)磷酸化原癌基因Yes相关蛋白1抗体yb-4166R YES1原癌基因酪氨酸蛋白激酶Yes1抗体yb-5591R phospho-YES1 (Tyr426)磷酸化原癌基因酪氨酸蛋白激酶Yes1抗体yb-5592R phospho-YES1(Tyr537)磷酸化原癌基因酪氨酸蛋白激酶Yes1抗体yb-3478R Phospho-ZAP70 (Tyr315 + Tyr319)磷酸化zeta相关蛋白70抗体yb-3479R Phospho-ZAP70 (Tyr493)磷酸化zeta相关蛋白70抗体yb-3620R Phospho-Zyxin (Ser142+Ser143)磷酸化斑联蛋白抗体yb-13576R ZBTB41锌指蛋白924抗体yb-11608R ZIC3内脏异位相关蛋白/锌指蛋白203抗体yb-13564R zbtb11锌指蛋白913抗体yb-13557R ZBT24锌指蛋白450抗体yb-13560R ZA20D3锌指蛋白20D3抗体yb-13553R ZBED3锌指蛋白BED3抗体yb-13572R ZBTB38锌指蛋白ZBTB38抗体yb-13562R ZADH2锌结合乙醇脱氢酶结构域蛋白2抗体yb-13567R ZBTB3锌指蛋白ZBTB3抗体yb-13551R ZBBX锌指蛋白ZBBX抗体yb-12253R ZFP219锌指蛋白219抗体yb-12254R ZFP36L1EGF应答因子1抗体抗体yb-12255R phospho-ZFP36L1(Ser334)磷酸化锌指蛋白36抗体yb-12240R ZNF347锌指蛋白347抗体yb-13555R ZBED5锌指蛋白BED5抗体yb-12241R ZNF704锌指蛋白704抗体yb-13586R ZNF434宫颈癌抑癌蛋白5/锌指蛋白434抗体yb-0354R ZCWCC1ZCWCC1抗体yb-0628R ZNF300锌指蛋白300抗体yb-13573R ZBTB39锌指蛋白ZBTB39抗体yb-11609R Zic1锌指蛋白201抗体yb-11610R Zic2锌指蛋白Zic2抗体yb-8641R ZDHHC-18锌指蛋白Zdhhc18抗体yb-6958R ZDHHC-12锌指蛋白Zdhhc12抗体yb-7852R ZWINT着丝粒ZW10相互作用蛋白1抗体yb-9139R ZNRF1锌指/环指蛋白1抗体yb-9140R ZNRF2锌指/环指蛋白2抗体
  • Nature丨癌细胞中的“团伙作案”:ecDNA“犯罪中心”驱动癌基因分子间的协同表达
    DNA不仅可以按其序列编码信息,也可以按其形状编码信息。人类基因组被分割成由染色质纤维折叠成动态的层次结构组成的染色体。这种空间结构(包括许多染色质环)可以将远端元件拉近,并将转录活动组织到不同的区域,从而限制了DNA的调控和转录机制。而在癌症中,这种染色质环境则发生了深远的改变【1】。近年来,编码癌基因的环状染色体外DNA(ecDNA)被证明在癌症中广泛存在,是癌症基因组的普遍特征,也是人类癌症进展的有力驱动因素。ecDNA是共价闭合双链,不同于在健康体细胞组织中发现的千碱基大小的环状DNA,其大小从100千碱基到数兆碱基不等,且被高度扩增【1】。ecDNA缺乏着丝粒,并且在每次细胞分裂后随机分布在子细胞中,使得其可以快速积累,且可以选择具有耐药性或其他适应性优势的ecDNA变体【2】。ecDNAs可以重新整合到染色体中,因此也可能作为某些染色体扩增的前体【3】。ecDNA具有更高的染色质可及性而缺乏更高的染色质致密性,且包含内源性致癌基因增强子元件,这表明癌基因扩增子可能是通过调控依赖性来扩增转录的【1,4】。值得一提的是,ecDNA存在于正常染色体环境之外,但其在细胞核中的空间组织尚不清楚。此外,ecDNA可以在细胞分裂期间或DNA损伤后聚集,但此生物学后果也尚不清楚。2021年11月24日,来自美国斯坦福大学的Howard Y. Chang团队在Nature上在线发表题为 EcDNA hubs drive cooperative intermolecular oncogene expression 的文章,研究了致癌ecDNA的空间、表观遗传学和转录动力学,揭示了由聚集在间期细胞细胞核中的约10-100个ecDNA组成的ecDNA“中心”,可以驱动分子间增强子信号以促使癌基因表达扩增,从而作为癌基因协同转录的组合增强子平台。研究人员利用DNA荧光原位杂交(FISH)技术,使用靶向多个细胞系中的ecDNA扩增的癌基因的探针来观察间期细胞核中ecDNA的定位,包括前列腺癌细胞系PC3(MYC扩增)、结直肠癌细胞系COLO320-DM(MYC扩增)、多形性成胶质细胞瘤细胞系HK359(EGFR扩增)和胃癌细胞系SNU16(MYC和FGFR2扩增)。结果显示,在进行实验的所有ecDNA阳性癌细胞中,尽管有数十到数百个单独的ecDNA分子,这些ecDNA的DNA FISH信号在很大程度上都局限于间期细胞细胞核的特定区域,由此表明ecDNA彼此发生了强烈聚集,该特征被称为ecDNA“中心”。这些ecDNA“中心”所占据的空间比相同大小的相邻染色体片段大得多,提示它们由许多紧密聚集在该空间中的ecDNA分子组成。进一步实验发现,ecDNA的聚集可以发生在具有不同癌基因扩增的各种癌症类型和原发性肿瘤中。随后,研究人员通过联合DNA和新生RNA FISH,在PC3和COLO320-DM细胞系中观察MYC等位基因的活跃转录,并计算每个ecDNA分子的MYC转录概率。结果显示,大多数新生的MYC mRNA转录本来自ecDNA“中心”,而不是来自染色体位点。ecDNA“中心”上致癌基因的转录活性明显高于染色体位点,表明当同一细胞中有更多的ecDNA拷贝时,每个ecDNA分子转录癌基因的可能性更大,尤其是以ecDNA“中心”的形式。人类染色体8q24上的MYC癌基因是癌症中体细胞DNA重排的热点,在人类癌症中近30%的MYC扩增以ecDNA的形式存在,通常包含MYC和PVT1(浆细胞瘤变体转录本1,位于MYC 3’端55kb处,是人类癌症的常发断点)的5’端部分。MYC的两侧是超级增强子,以赖氨酸27处的组蛋白H3乙酰化(H3K27ac)和BET蛋白(如BRD4)为标记,MYC转录对抑制剂JQ1置换BET蛋白高度敏感。为了检测活细胞中的MYC ecDNA,研究人员在COLO320-DM细胞中的MYC ecDNA中插入Tet-operator (TetO)阵列,并用TetR-eGFP或TetR-eGFP(A206K)标记ecDNA,以最小化GFP二聚化。实验结果显示,JQ1能有效降低COLO320-DM细胞(含MYC ecDNA)中MYC mRNA的水平,但对COLO320-HSR细胞(染色体MYC扩增子或均匀染色区)中MYC mRNA的水平没有显著影响(注:这两种细胞来自同一患者肿瘤,除了MYC扩增的背景外,具有高度相似的遗传背景)。此外,TetO-GFP COLO320-DM细胞的活细胞成像显示ecDNA“中心”在有丝分裂期间分解成更小的颗粒,之后又重新形成大的“中心”。值得注意的是,有丝分裂后的ecDNA“中心”的组装会被JQ1阻断。这些结果表明,COLO320-DM细胞中ecDNA“中心”的形成、维持和癌基因转录对BET蛋白的溴域H3K27ac相互作用具有独特的依赖性。为了将ecDNA结构与MYC转录调控联系起来,研究人员使用五种正交方法重建了COLO320-DM ecDNA,报告了迄今为止组装的最大的ecDNA结构——一个4.328 Mb的ecDNA,包含PVT1-MYC融合、标准MYC序列和来自多个染色体起源的序列(染色体6、8、13和16)的多个拷贝,并且利用DNA FISH验证了PLUT、PCAT1和MYC基因在重建预测的ecDNA上的共定位。接下来,研究人员确定了与癌基因高表达相关的ecDNA调控元件。来自72,049个COLO320-DM和COLO320-HSR细胞的配对单细胞ATAC–seq和RNA-seq确定了47个与高MYC表达相关的ecDNA调控元件,而目前驱动ecDNA上MYC癌基因表达的PVT1启动子(PVT1p),在ecDNA“中心”内接受了广泛的组合增强子输入。进一步地实验表明,分子间增强子-启动子在ecDNA“中心”激活,同时研究人员证实PVT1p作为一种DNA元件,能够反式激活ecDNA“中心”。那么分子间增强子-基因的相互作用是否可以被精确定位和干扰呢?以SNU16细胞系(它包含两种不同的ecDNA类型:一种来自8号和11号染色体的MYC扩增子和一种来自10号染色体的FGFR2扩增子)为研究对象,实验结果表明FGFR2和MYC ecDNA是共同选择的,因此这两个扩增子上的增强子可协同激活MYC表达。然后,MYC蛋白又可以反过来激活FGFR2的表达。顺式和反式调控元件之间几乎没有重叠,这也证实分子间增强子元件是直接通过反式而非下游效应修改基因表达。而进一步评估独立癌症类型中的分子间ecDNA的相互作用显示ecDNA“中心”内的分子间增强子基因激活发生在不同的癌基因位点和多种癌症类型中。综上所述,ecDNA“中心”内ecDNA的局部聚集促进了新的分子间增强子-基因相互作用和癌基因过度表达(图1)。与偏向局部顺式调控元件并跨越100-300nm的染色体转录中心不同,ecDNA“中心”可以跨越1000 nm以上,且涉及位于不同ecDNA分子上的反式调控元件。毫无疑问,这一发现对于ecDNA如何进行选择以及ecDNA上癌基因调控的重组如何促进转录具有深远的意义。同时,对于ecDNA“中心”促进癌基因转录的认识为癌症治疗提供新的潜在机会。原文链接:https://doi.org/10.1038/s41586-021-04116-8
  • 发现98%基因组中的隐藏癌基因
    《Nature Genetics》杂志详细介绍了这种称为Cis表达或cis-X的方法,这是一种创新的分析方法,在患者肿瘤的调控非编码DNA中识别新的致病性变体和由这种变体激活的癌基因。cis-X通过识别肿瘤RNA的异常表达发挥作用。研究人员分析了白血病和实体瘤,并证明了这种方法的有效性。不编码基因的非编码DNA占人类基因组的98%。越来越多的证据表明,超过80%的非编码基因组是功能性的,可能调节基因表达。大量人群研究已经确定了非编码DNA中与癌症风险升高相关的变异。但是,在肿瘤基因组中,只有少量的非编码变异导致了肿瘤的发生。发现这些变异需要对大量肿瘤样本进行全基因组测序分析。“cis-X是一个根本性的改变,现有的方法需要数千个肿瘤样本,只识别反复发生的非编码变体,”St.Jude计算生物学系主任Jinghui Zhang博士说。她和上海儿童医学中心的Yu Liu博士是本文的通讯作者。刘博士也是第1作者。“通过使用异常的基因转录来揭示非编码变体的功能,我们开发了cis-X,从而能够在单个肿瘤基因组中发现驱动癌症的非编码变体,”张博士说。“识别导致癌基因失调的变异可以将精-确医学的范围扩大到非编码区域,以确定抑制肿瘤中异常激活癌基因的治疗方案。”cis-X的灵感来源于2014年Dana Farber癌症研究所的Thomas Look医学博士及其同事的一篇科学论文。Look也是这篇论文的合著者。Look的研究小组在细胞系中发现了导致癌基因(TAL1)异常激活导致T细胞急性淋巴细胞白血病(T-ALL)的非编码DNA变体。这项研究促使张博士继续她长期以来的兴趣,即研究基因每个拷贝的表达变化。cis-X通过两种方式寻找表达改变的基因。研究人员利用全基因组和RNA测序来寻找只在一条染色体上表达并在异常高水平表达的基因。“当分析等位基因之间基因表达的不平衡时,可能会产生噪音,”刘博士说。“这项分析使用了一种新颖的数学模型,使cis-X成为一种强大的发现工具。”然后cis-X通过在3D基因组结构中寻找非编码DNA调控区域的变化来寻找异常表达的原因。“这种方法模仿了变种在活细胞中的工作方式。这些变化包括染色体重排和点突变等变化。“如果不确定非编码变体,我们可能无法全面了解导致癌症的原因。”研究人员使用cis-X分析了13例T-ALL患者的癌症基因组,这些数据是由圣裘德和上海儿童医学中心合作收集的。该算法识别已知和新的癌基因激活非编码变体,以及可能的新的T-ALL癌基因PRLR。研究人员还表明,这种方法在成人和儿童实体瘤中有效,包括神经母细胞瘤。实体瘤对分析提出了更大的挑战。与白血病不同的是,实体瘤分布在肿瘤内的染色体数目往往不均匀。“cis-X为研究非编码变体在癌症中的功能作用提供了一种强有力的新方法,这可能会扩大精-确药物治疗由此类变体引起的癌症的范围,”张博士说。
  • Nat Genetics | 染色体碎裂驱动癌基因扩增
    2019年,BioArt曾解读Nature Reviews Cancer上的一篇观点文章(这篇观点文章是3月发表),讲述了染色体外DNA的(Extrachromosomal DNA,ecDNA)过去和未来(详见BioArt报道:特别推荐丨环状DNA的过去和未来),详细介绍了癌基因在ecDNA上扩增的重新发现的过程,强调ecDNA在肿瘤发病机制和加速癌症进化中的重要性。然而ecDNA的结构如何呢?同年11月21日,美国加州大学圣迭戈分校的Paul Mischel教授团队(注:Mischel正是Nature Reviews Cancer的通讯作者之一另外在2017年,Mischel团队曾发表一篇Nature文章揭示了染色体外癌基因扩增与肿瘤的关系)发表了Nature文章对ecDNA进行了详细解析,利用各种技术手段证明了ecDNA的存在形式是—环状,即ecDNA变成了eccDNA(详见BioArt报道:Nature亮点 | 吴思涵等首次解析肿瘤染色体外DNA的环状结构与功能)。功能上,eccDNA在癌症中扮演了重要的角色,尤其是原癌基因(详见BioArt报道:Nat Genet 丨ecDNA:在癌症基因组图谱上画出浓墨重彩的一笔);来源上,eccDNA不仅来自于染色体,甚至可以整回到染色体中(详见BioArt报道:再一篇!Nat Genetics报道染色体外环状DNA新功能:驱动神经母细胞瘤基因组重排),那么,还有一个问题,eccDNA是否有序列或位置特异性,表观遗传学领域大佬哈佛医学院张毅教授于今年10月20日在Nature上给出了否定的回答,并提到eccDNA可能是基因组DNA随机断裂产生片段的环化产物(详见BioArt报道:专家点评Nature | 突破!张毅团队揭秘染色体之外环状DNA的前世今生)。再回到癌症,基因扩增对于癌症的发展“功不可没”,其扩增可以分为染色体外扩增(如双微体,double minutes,DM)和染色体内扩增(如均匀染色区,homogeneously staining regions,HSR)。除了DM和HSR,还有一种是巨型标记染色体(giant marker chromosomes)或者新染色体(neochromosomes)。这些概念也说明了癌症基因扩增中演化的复杂性。尽管扩增演化中的部分形式的机制已经相对比较明确了,比如串联重复等,但大部分还是不甚清楚。2021年11月15日,德国科隆大学儿童医院Matthias Fischer在Nature Genetics上发表了文章Chromothripsis followed by circular recombination drives oncogene amplification in human cancer,利用小儿神经母细胞瘤的全基因组测序发现一种新型扩增,并命名为“地震扩增”(seismic amplification,注:这一术语原本属于地质学或者地震相关学科),这一扩增的特点为多重重排和不连续的拷贝数,并且在38种不同类型肿瘤的发生率为9.9%(在38种不同类型肿瘤共计2756例病人中,出现例数为274,占9.9%)。机制上,地震扩增起始于染色体碎裂,产生染色体外环状DNA,之后是环状重组,由此导致原癌基因拷贝数增加、表达升高,从而促进癌症的发生。首先,研究人员检测了79例神经母细胞瘤样本的全基因组数据,对其基因扩增进行了详细分析,并将经历过14次及以上内部重排的扩增子定义为“地震扩增”。根据这一定义,神经母细胞瘤中228个扩增子中有20个属于“地震扩增”,并且影响了79例样本中的19例。其热点区域主要有两个,2p24(内部有MYCN)和12q13/12q15(内部有CDK4和MDM2)。除了神经母细胞瘤,研究人员进一步分析了TCGA上37种不同类型癌症的2677个肿瘤样本,对其“地震扩增”进行了描述。由于染色体碎裂可产生大规模的基因重组,研究人员比对了染色体碎裂和“地震扩增”的区域,发现77.6%的地震扩增子与染色体碎裂区域至少部分重合,其中34.9%是完全重合。同时研究人员排除了断裂—愈合—染色体桥循环(breakage-fusion-bridge cycles)是地震扩增起始事件的可能性。之后,研究人员对重排和扩增事件进行了分析,描述了“地震扩增”的过程模型:1)一个或多个染色体区域发生染色体碎裂;2)将随机片段整合为环状DNA;3)发生环状重组事件(这些环状重组事件与肿瘤细胞高频突变有关);4)扩增区域或保留在双微体中、或以均匀染色区形式整合进染色体中、或形成新染色体。重要的是,“地震扩增”在肿瘤细胞中是稳定的,而非变化的。总之,该研究定义了一种复杂的基因扩增形式——“地震突变”,并描述了其扩增过程,为理解癌症基因组演化包括染色体外环状DNA提供了新的解读。原文链接:https://doi.org/10.1038/s41588-021-00951-7
  • 像安吉丽娜· 朱莉的乳腺癌基因检测在苏州将很快实现
    p   两年前,好莱坞女星安吉丽娜· 朱莉根据 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 癌症基因检测 /span /a 的结果,做了全乳腺切除和乳房再造的手术,一时之间关注无数。记者从苏大附二院获悉,年底前,相同的乳腺癌易感基因检测也将率先在该院开展。 /p p   据媒体报道,朱莉早前通过基因检测技术,发现母亲把突变的BRCA1基因遗传给了她,这使得她罹患乳腺癌和卵巢癌的风险都大大提升,为了降低风险,她做了相关手术。BRCA1基因究竟是啥?江苏省抗癌协会乳腺癌专业委员会常务委员、苏州市医学会外科学分会甲状腺乳腺学组组长、苏大附二院普外科主任医师蒋国勤告诉记者,这是乳腺癌易感基因1,除它以外,BRCA2即乳腺癌易感基因2也与乳腺癌发病有着密切关系。 /p p   “这两个基因都是抑癌基因,可产生抑制肿瘤细胞的蛋白。”蒋国勤解释说,正常人体每天都有大量的细胞更新,这个过程中会产生少量的癌细胞,但这些癌细胞很快就会被抑癌基因抑制,或是被免疫系统识别而杀死,不会形成肿瘤。BRCA1/2蛋白就是属于这个防线的一部分,如果它们突变,抑癌功能就可能丢失,乳腺癌等肿瘤发病率就会升高。 /p p   因此,如果BRCA1/2检测结果是阳性,市民就可以通过手术、药物预防等一些手段,帮助降低患乳腺癌风险。而乳腺癌易感基因检测十分简单,通过唾液检测,就能得到结果。 /p p   如今,很多人都已经了解,家族遗传是患乳腺癌的高危因素之一,那么是否乳腺癌患者家属都应该做基因检查呢?蒋国勤表示,一般来说,一级亲属(姐妹或母女)中有两位发生单侧乳腺癌或卵巢癌,其中一位在50岁以下,或有一位患上双侧乳腺癌,就建议做BRCA1/2的基因检测,以了解体内有无基因突变。 /p p   如果检查结果为阳性,可以对乳房进行预防性切除。不过蒋国勤指出,即使切除乳房或乳腺,也不能保证绝对不会再患癌,只是降低了患癌风险。 /p p   据苏州市疾控中心统计,去年我市乳腺癌新发病例1421例,发病率为42.51/10万,乳腺癌成为我市发病率最高的女性肿瘤。乳腺癌易感基因检测的开展将在一定程度上有助于降低我市乳腺癌发病率。 /p
  • 百度与协和合作开展食管癌基因测序领域研究
    百度-协和医学院食管癌研究项目”在北京协和医学院举办签约仪式。双方将充分发挥北京协和医学院的医学研究优势和百度大数据与人工智能等技术优势,发现与中国人密切相关的食管癌早期诊断的标志物,为食管癌的早期筛查和诊断提供科学依据,并为食管癌药物的研发提供靶标。据悉,此次合作中,百度CEO李彦宏将个人捐赠3000万元,支持百度与北京协和医学院针对食管癌基因组研究的合作。  百度CEO李彦宏与北京协和医学院校长曾益新院士出席发布会并见证签约仪式, 百度副总裁梁志祥与北京协和医学院副校长,分子肿瘤学国家重点实验室主任詹启敏院士共同签署合作协议。  李彦宏表示:“这次合作是互联网技术与生命科学的一次联手,是大数据、人工智能技术应用于医学研究的一次尝试。相信这样的组合,不管是对中国的生命科学研究、还是对人工智能等互联网技术应用领域的拓展,都是一次非常有价值的探索。我们相信科学技术的发展最终将造福人类。”  北京协和医学院校长曾益新指出:“北京协和医学院与百度此次携手合作,将充分发挥双方专业领域优势。此次合作对深入了解食管癌的分子机理、提高我国食管癌预警、早期诊断和预防能力具有重要的科学和现实意义。”  长期以来,中国食管癌发病率高居世界首位,据估算,全球50%以上的食管癌患者都在中国。由于缺乏早期诊断的标志物,大部分患者发现时已是晚期,加上缺乏有效的临床治疗药物,患者的5年生存率仅为10%左右。另一方面,我国的食管癌患者95%以上是食管鳞癌,而欧美国家多为食管腺癌,欧美的食管癌研究对中国医学界并无太多借鉴作用,进行食管癌全基因组的测序分析和功能研究,找出食管癌早期诊断的生物标志和药物靶标迫在眉睫。  互联网企业首次牵手医学科研机构开展癌症研究  据了解,百度与北京协和医学院的此次合作将是国内互联网企业与国家级医学科研机构在癌症研究领域的首次深度合作。  根据项目计划,北京协和医学院的科研团队将首要负责食管癌患者标本的采集以及基因测序等工作。其中,开展食管癌的医学研究需要进行的全基因组测序和比对过程中会产生大量数据,这些数据的存储、生物学分析、临床相关性分析都需要巨大的数据存储与运算能力。  "基因测序产生的数据需要大量的存储空间,测序后的处理和分析需要强大的计算资源,这些能力正是百度所擅长的。进一步讲,百度在分布式计算方法与算法上有深厚的积累,会有助于测序后结果的比对等分析的效率与效果,”百度研究院副院长张潼告诉记者,百度将为大规模生物信息的存储提供帮助,大数据与人工智能等技术的引入,能够加速生物信息的相关计算,为更精准有效地对食管癌基因变异进行对比提供了可能。  全球最大样本量的癌症基因测序分析  据介绍,该项目在实施层面由北京协和医学院分子肿瘤学国家重点实验室承担。按照计划,此次合作项目将于2016年初启动,在两年时间内完成1500例食管癌患者的组织样本收集,100个食管癌家系血液样本的收集,并将在2017年年前完成整个项目的测序和生物分析工作。  “肿瘤基因测序基本上几百例样本就算是比较大的了,上千例是没有的,”北京协和医学院分子肿瘤学国家重点实验室副主任刘芝华教授表示,此次合作研究将对1500位食管癌患者进行全基因组测序分析,在世界范围内,如此大规模的基因测序分析亦为首次。  据了解,此次合作期望发现与食管癌发生发展相关的基因变异,为我国食管癌的早期筛查、早期诊断和药物研发提供重要依据,为肿瘤精准医学的实施奠定基础。合作双方期望研究成果能为提高我国的食管癌诊疗能力和制定防治策略提供科学依据。
  • ​Science | 炎症记忆如何协同原癌基因突变促进肿瘤发生?
    炎症与肿瘤之间的联系在很早之前就已经被建立起来,大量的研究证据显示,炎性环境会促进肿瘤的发生发展【1】,但是这背后的分子机制却一直没有被完全阐释清楚。其中,胰腺导管癌 (PDAC) 就是炎症和原癌基因协同作用的一个经典范例:多项研究结论表明,在携带KRAS突变的胰腺组织中诱导炎症不仅反应会加速肿瘤的进展,胰腺的炎症反应还会诱发腺泡导管化生 (as acinar-to-ductal metaplasia, ADM) 和胰腺上皮内瘤变 (pancreatic intraepithelial neoplasia, PanIN) 等肿瘤早期病变,而这些早期病变则会慢慢进展成恶性肿瘤。尽管,最近的一些研究证据显示炎症介导的染色质重塑可能会在这一过程中扮演关键角色【2】,但是这其中的具体分子机制却并未研究透彻。近日,来自德克萨斯大学安德森癌症中心的Andrea Viale研究团队在Science上发表了题为Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis的研究文章,揭示了炎症反应和原癌基因KRAS突变通过对胰腺上皮细胞进行表观重塑进而导致PDAC发生的具体分子机制。为了探究炎症对于胰腺上皮细胞转化的影响,作者在PDAC小鼠 (用四环素诱导KRASG12D胰腺特异性表达) 模型中用CAE (一种肠促胰酶肽类似物) 来诱导胰腺的组织损伤和瞬时的炎症反应(图1A),他们发现CAE处理小鼠体内的肿瘤负荷显著增加且生存期大幅降低(图1C)。更加有意思的是,他们发现即使是在CAE处理的3个月后 (CAE诱导的组织损伤约在28天左右恢复正常) 再去诱导KRASG12D的表达也依然观察到了类似的实验现象。这说明即使是瞬时的炎症反应也具有一个长期的效应,并会与原癌基因KRAS协同促进正常上皮细胞向肿瘤的转变。进一步,体外的3D细胞培养实验则证实炎症反应与原癌信号驱动的上皮细胞转变是以一种细胞自主的方式进行,并非由于微环境的改变所致。为了弄清楚炎症的长期效应是如何驱动肿瘤的进展,作者将经CAE处理不同时间(Day 1, 7, 28)的小鼠胰腺组织进行了单细胞测序分析,他们发现腺泡细胞在炎症发生后会很快(Day 1)产生转录组学变化,例如腺泡消化酶表达下降和导管标记物表达升高,而这些改变与ADM的分子表型是一致的。除了这些瞬时的改变,CAE处理7天和28天的小鼠的肺泡细胞的增殖分化、胰腺胚胎发育与肿瘤发生等通路会显著激活。这说明正常的胰腺上皮细胞从瞬时的炎症反应中恢复后,它们会通过转录和表观遗传重编程来获得持续适应性反应,并且作者还证明这些发生表观重塑的胰腺上皮细胞来源于DCLK1阳性的祖细胞。为了更好地在分子层面理解炎症是如何驱动KRAS突变介导的上皮细胞癌变,作者将研究的目光聚焦在了EGR1——一个调控组织再生的转录因子,因为作者注意到EGR1在所有的组学分析中是参与细胞重编程的最显著的转录因子之一。通过构建Egr1-/- PDAC小鼠模型,作者证明EGR1在胰腺肿瘤发生和炎症诱导的上皮细胞重编程中起着关键作用。那么究竟是哪一种免疫细胞和炎症因子参与了上皮细胞的重编程?通过体外和体内的实验,作者发现IL-6是其中起主要作用的细胞因子,而巨噬细胞则是IL-6主要来源。由于上皮细胞对炎症的记忆功能的“初衷”是去提升器官对于损伤的适应能力,那么这一过程又是如何导致了肿瘤的发生呢?为了探讨炎症驱动的上皮细胞重编程与肿瘤发生的内在逻辑关系,作者对CAE-损伤恢复的PDAC小鼠进行了再次CAE处理,作者发现ADM的发生的确会促进机体对于炎症损伤的抵御能力。因此,作者推测基于正向的进化压力,由KRAS等原癌基因突变所致MAPK信号通路激活对于机体抵御二次损伤可能是有益的,小鼠实验也的确证实了这一猜想,然而,这一过程同样会使得ADM变得不可逆,进而导致肿瘤的发生。值得一提的是,同期Science杂志还发表了另外一篇研究文章从另一个不同的角度来揭示炎症与肿瘤发生发展的关系【3】。基于此,Science杂志社邀请了来自约翰霍普金斯大学肿瘤科的Won Jin Ho和Laura D. Wood教授发表了题为Opposing roles of the immune system in tumors的评述文章。在评述中,两位教授认为这两篇同期发表的文章为我们理解免疫系统如何驱动肿瘤发生的分子改变提供了深远的概念创新(“provide far-reaching conceptual innovations in our understanding of how the immune system drives molecular alterations in tumor cells”),同时他们也指出本篇研究的局限性:该研究所用到的基因操作和处理时间只有在小鼠模型中才可能实现,因此这些发现与人类胰腺肿瘤发生的相关性仍需要进一步的实验验证。原文链接:http://doi.org/10.1126/science.abc3734
  • 科学家绘制最大规模中国人群乳腺癌基因突变图谱
    复旦大学附属肿瘤医院乳腺外科主任邵志敏团队成功绘制最大规模的中国人群乳腺癌基因突变图谱,首次系统性揭示了中国人群乳腺癌的基因突变特征。相关研究成果近日发表于《自然—通讯》。作为我国女性发病率最高的恶性肿瘤,乳腺癌堪称“红颜杀手”。在上海等大城市中,乳腺癌已经连续20余年位居女性恶性肿瘤前列。邵志敏表示:“相比于欧美发达国家,中国人乳腺癌的5年生存率仍然有不小差距。导致这一差异的主要原因之一在于国人乳腺癌发病特征较为特殊。例如国人乳腺癌患者发病年龄有45至55岁、70至74岁两个高峰,且多数患者发生在绝经前。这些差异提示我们需要探索更适合国人乳腺癌的精准方案。”“基因突变图谱是乳腺癌精准治疗最基础‘参考索引’。” 该论文共同第一作者、复旦大学附属肿瘤医院乳腺外科博士江一舟告诉《中国科学报》,为此我们提出设想,能否从基因层面分析,揭示国人乳腺癌的独有特征?为突破这一“瓶颈”,邵志敏团队筛选了484个与乳腺癌个性化治疗方案高度相关的基因,几乎覆盖所有国内外已经公布过的乳腺癌突变基因,形成了乳腺癌多基因精准检测“目录”。2018年4月至2019年4月期间,研究人员根据多基因精准检测“目录”,收集了1,134例配对的乳腺癌标本和外周血标本,并统计所有乳腺癌患者的基本临床病理信息,全面分析乳腺癌队列的基因组数据,绘制出国内首个千人乳腺癌基因变异图谱。这也是目前最大规模的单中心中国人群乳腺癌基因突变图谱。研究进一步发现,中外乳腺癌突变谱之间的差异主要集中在HR阳性/HER2阴性型,而在HR阳性/HER2阳性型,HR阴性/HER2阳性型和三阴性型中,并无明显差异。专家表示,这项研究成果为国人乳腺癌精准治疗靶点并在临床上成功应用打下了基础。
  • Cell主刊 | MST助力人体抑癌基因研究取得新发现!
    01研究背景在正常血氧水平的典型细胞中,大多数丙酮酸进入线粒体,并由三羧酸循环氧化生成 ATP 来满足细胞的能量需求。然而,在癌细胞或其他高度增殖的细胞类型中,糖酵解产生的大部分丙酮酸离开线粒体并通过乳酸脱氢酶 (LDH/LDHA) 的作用产生乳酸, 这一过程通常是在低氧状态时才会出现。有氧情况下产生乳酸称为“有氧糖酵解”或 Warburg 效应,它是肿瘤代谢改变的最早证据之一。p53基因,人体抑癌基因。该基因编码一种分子量为43.7KDa的蛋白质,但因蛋白条带出现在Marker所示 53 kDa处,命名为p53蛋白。该蛋白的失活对肿瘤形成起重要作用,是一个关键的肿瘤抑制蛋白。p53作为转录因子,它通过激活控制DNA修复、细胞周期进程靶基因来保护细胞免受恶性转化。在肿瘤发生过程中,p53的活性会受到磷酸化、乙酰化和泛素化等翻译后修饰的调控。癌细胞的代谢改变导致乳酸等糖酵解中间体的积累,这些乳酸不仅支持细胞增殖,还参与调节免疫细胞分化、肿瘤免疫监视等多种生物学过程。尽管目前已知乳酸可以共价修饰蛋白质,但是其乳酸化的具体机制尚不清楚,同样目前对于p53与乳酸化之间的关联也知之甚少。02研究内容2024年4月22日,苏州大学生物医学研究院周芳芳教授团队在 Cell 发表题为“Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis” 的研究论文。DOI: 10.1016/j.cell.2024.04.002IF: 45.5 Q1 在这篇研究中,课题组发现肿瘤源性乳酸是p53的天然抑制剂,可促进p53乳酸化,全基因组CRISPR筛选确定了AARS1是肿瘤细胞中全局赖氨酸乳酸化的介质。AARS1耗竭的肿瘤细胞中增殖、集落形成能力显著降低,并且AARS1的耗竭抑制了乳酸诱导的赖氨酸乳酸化。另外,β-丙氨酸在结构上类似于乳酸,研究者发现用其预处理的细胞赖氨酸乳酸化减少。这些生理表象背后的分子机制,研究者仍需要进行进一步探究。借助NanoTemper公司的MST技术,研究者验证证实了AARS1蛋白(EcAlaRS细菌酶、HsAlaRS人源酶)在分子层面上与乳酸的结合,乳酸与EcAlaRS、乳酸与HsAlaRS的Kd值分别为13 μM和35 μM(图1A),表明EcAlaRS和HsAlaRS可以使用乳酸作为底物直接催化乳酸化。同时,通过MST实验,研究了β-丙氨酸与AARS1的互作,Kd值为2.7 μM(β-alanine与EcAlaRS) 和4.0 μM(β-alanine与HsAlaRS)(图1B), β-丙氨酸有着更强的亲和力。MST的结果在分子层面上非常直观地给出了β-丙氨酸可以抑制乳酸化的结果,从而阐明了生理上β-丙氨酸的拮抗乳酸化的机制(图1C、D)。图1.AASR1与乳酸互作(A),AASR1与β-丙氨酸互作(B), β-丙氨酸与乳酸竞争结合机制(C), β-丙氨酸抑制乳酸结合AASR1(D)但是,AARS1结合了乳酸其后续是如何靶向到p53上的呢? 为了寻找答案,研究人员进行了分子对接模拟及关键位点突变pull-down实验,采用质谱分析结合MST实验的方式,发现AARS1 通过 ATP 依赖的方式催化形成乳酸-AMP 中间体,随后将乳酸转移至目标蛋白的赖氨酸残基上,可实现共价结合。这一过程不仅在人类中,也在大肠杆菌中观察到,表明 AARS1 在物种间具有催化赖氨酸乳酸化的古老功能。 通过MST实验,研究者们得到了验证,HsAlaRS和EcAlaRS在体外直接与p53结合,p53与HsAlaRS和p53与EcAlaRS的Kd分别达到39 μM和21 μM,定量确认了pull-down实验的结果(图2A、B)。结合其他生化实验提出描述AlaRS介导的乳酸化的工作模型(图2C):AlaRS首先与乳酸结合,在ATP存在下形成乳酸AMP和PPi;在底物蛋白存在的情况下,AlaRS将丙酰基转移到底物蛋白上的赖氨酸残基上。图2.p53与HsAlaRS和p53与EcAlaRS定性pull-down结果(A), p53与HsAlaRS和p53与EcAlaRS互作(B), AlaRS介导的乳酸化的工作模型(C)后续进一步通过质谱分析和抗体识别确认了p53上乳酸化的残基是K120和K139。通过MST实验直接比较了乳酸化p53(p53Lac)与非乳酸化p53(p53Non-Lac)对含有p53应答元件的DNA(p53RE-DNA)的亲和力,乳酸化p53(p53K120-Lac、p53K139Lac和p53-Dual-Lac)对p53RE-DNA的亲和力分别降低了约100倍、10倍和1000倍(图3)。之后的生化生理实验进一步表明p53的位点特异性乳酸化减弱了它们的DNA结合和液-液相分离(LLPS),从而降低了p53的抑瘤作用。图3.p53乳酸化减弱了其与DNA结合另外,对于p53上的位点K120和K139, 各种研究表明,p53-K120N可能是无功能的,这些乳酸化模拟变体可能有助于肿瘤发生。研究者通过借助MST实验给出了有力的数据支持(图4),纯化的K120N/Q/E和K139 N/T/Q/E突变体对p53RE-DNA的结合亲和力降低。K120E和K139E的减少更为明显,表明K-to-E突变导致电荷减少更强。在进一步的生化活性实验中发现,K120N/Q和K139N/T/Q部分丧失了刺激p53反应基因表达的能力,而K120E和K139E几乎完全丧失了这种能力。K120、K139上的病理性突变(肿瘤发生)与p53乳酸化(肿瘤发展)都会导致其与DNA结合能力降低,从而活性丧失(图4)。图4.Cy5-p53RE-DNA与p53 WT及其突变蛋白互作(左), p53中乳酸化与模拟突变(右)本项研究中进行了大量的MST实验,通过MST技术,来验证测定AARS1蛋白与肿瘤代谢产物(乳酸)的互作,确认AARS1与p53(蛋白与蛋白)互作的行为, 表征蛋白突变体功能上改变。结合其他生理生化实验完整详细地阐述了关键酶AARS1与肿瘤代谢物(乳酸)在肿瘤发生和发展中重要作用,揭示了p53乳酸化失活机制,提供了一种利用β-丙氨酸阻止p53乳酸化的方法,β-丙氨酸与乳酸竞争结合AARS1,从而加强癌症治疗(图5)。图5.AARS1在赖氨酸乳酸化组和p53乳酸化在肿瘤发生中的作用以及β-丙氨酸的抑制作用03技术优势NanoTemper公司的专利MST技术不依赖于分子量的改变,蛋白用量少,可以轻松进行蛋白与小分子代谢产物实验。MST实验是在溶液中,无需固定蛋白的实验体系,可以便捷地设计多组分的实验方案,验证类似小分子的功能。在这篇研究中,除了采用标记蛋白的方式,在检测多种突变体蛋白与p53RE-DNA互作(蛋白与DNA)时,还选择了标记DNA的方式,使得实验内容设计更加简洁且高效。Monolith系列分子互作平台可以更好的帮助科研人员简便地设计互作方案,在分子层面上直观验证生理机制上的互作结果,为您的实验研究提供强大助力。Monolith 分子互作检测仪 直接在溶液中检测亲和力,无需固定 无惧分子量的变化,轻松检测各种类型小分子 检测一个Kd仅需10min 无微流控系统,无需清洗维护
  • 免费基因检测乳腺癌风险 建立中国女性特有的基因图谱
    p    strong 我国正研究女性乳腺癌基因图谱 /strong /p p   唾液取样进行基因检测,可发现自己有无携带乳腺癌易感基因——BRCA1和BRCA2,并结合生活方式和饮食习惯等评估乳腺癌风险。中国妇女发展基金会女性肿瘤预防基金正与全国30多家三甲医院合作,为全国万名女性免费测试与乳腺癌发生最为相关的基因突变点,希望建立中国女性特有的乳腺癌基因图谱。 /p p    strong 易感基因突变更易患乳腺癌 /strong /p p   近年来中国乳腺癌发病愈演愈烈,数据显示,全球每18秒就有一位女性被确诊为乳腺癌。而在中国,近十年来乳腺癌发病率增长37%,乳腺癌事实上已经成为城市中死亡率最高、增长最快的癌症。 /p p   上世纪90年代,科学家发现了两种直接与遗传性乳腺癌相关的易感基因,简称为BRCA1和BRCA2。BRCA1和BRCA2有害突变可以通过父亲或母亲遗传下来。父母一方携带突变,任一子女都有50%的可能性遗传突变。在整体人群中,女性一生患乳腺癌的风险为12%,而携带BRCA1突变的女性的患癌风险高出5~6倍以上,携带BRCA2比例为4倍以上。 /p p   如何知道自己有没有发生这些基因突变呢?吐口水就可检测出来。专家介绍,只需采集2毫升的唾液细胞,就可以对BRCA1、BRCA2这两个基因进行多达1.6万个位点的全长检测,获得准确度99.95%以上的检测结果。 /p p   而这样的基因检测和我们常见的乳腺癌体检又是什么关系呢? /p p   根据美国NCCN肿瘤临床指引,普通人群建议从40岁开始进行一年一次的乳腺钼靶检查,而检测出基因突变的高危人群则完全不一样,从25岁开始就要进行乳腺核磁共振或者钼靶,到30岁开始每年进行钼靶+核磁共振联合检查。 /p p   近日成立的乳腺癌防治联盟提出了“精准预防”的四部曲:第一是基因检测,准确解析遗传风险;二是评估问卷,全面测评生活和环境风险包括家族因素、过往病史、药物因素、饮食因素等;三是体检建议,根据基因检测和风险评估的结果,给出个性化的影像检查和专科检查建议 四是健康指导,由专科医生给出日常生活健康指导。 /p p    strong 建立万名女性参与的基因图谱 /strong /p p   中国妇女发展基金会女性肿瘤预防基金主任沈天宇介绍,该基金正牵头开展中国女性特有的乳腺癌基因图谱科研项目。项目将在全国30多家三甲医院展开,这些医院分布在全国不同地区,包括东北、西北、华南、华中、东南沿线,计划收集万名女性的基因检测样本,通过大数据分析和样本研究,最后得到整个中国女性特有的基因图谱完善计划。项目预计两到三年完成,参与的女性都可免费进行基因检测。 /p
  • 卵巢癌基因检测已在普通门诊得到推广,或将取代现行标准检测法
    一种精简的基因检测新方法为患卵巢癌的女性提供了快速而经济实惠的检测方法,让更多的病人能受益于个性化的癌症管理,让他们的亲属能受益于癌症预防策略。  这种新方法为癌症患者提供了在日常癌症筛查就能进行基因检测的机会,而不必非得去专门的基因检测诊所。  该方法不仅能提供更精简的就医体验、降低卫生系统资源损耗,如果全国实行的话,还能为NHS省下百万英镑/年。  该检测方法由伦敦癌症研究所的研究人员开发,也是威康信托基金会资助的主流癌症遗传学计划的一部分。  在一项由皇家马斯登NIHR生物医学研究中心和癌症研究协会(ICR)支持的研究中,在皇家马斯登NHS信托基金会对207位女性卵巢癌患者进行了BRCA基因检测。  这项研究今日(星期三)在《科学报告》杂志上公布,报告显示该新的检测方法很受患者欢迎 所有207位卵巢癌患者都接受了BRCA基因检测,测试后的反馈也很积极。  新的检测手段减少了患者去医院的次数,基本上能减少测试所花的时间,确保检测结果能够被纳入到临床决策中。  检测结果对于五分之四正在接受癌症治疗的患者的医疗管理都有用。这包括32名发现有BRCA基因突变的女性,其中许多人因此而符合新药品的适应症—新药品的精度只适合BRCA相关性卵巢癌。  这种新的检测方法需要癌症患者同意由肿瘤科医生或护士完成一个30分钟的在线培训模块,该模块由研究小组设计。所有BRCA基因突变的卵巢癌患者将自动获得与遗传学团队的预约,来详细讨论检测结果对她们自己及其家人的意义。  对于每例确认有BRCA基因突变的患者,平均3个家庭成员也决定去咨询遗传学家,讨论这对于她们的影响。 BRCA突变会增加乳腺癌和卵巢癌发生的风险,而亲属进行检测能给予她们个性化的癌症风险信息。BRCA基因也发生了突变的亲属将有更多种选择,以提高对癌症的早期检测或预防。  新的测试方法现在在皇家马斯登已经成为标准检测方法,英国和国际上的其他医院也正在采用。因此,更多卵巢癌女性已检测了BRCA。  据现行的国家建议,几乎所有的卵巢癌患者都符合BRCA测试的条件,但测试规定一直在NHS修修补补。据估计,已经进行过测试的卵巢癌患者实际上不到三分之一。  研究人员认为,新测试方法的简单性和效率决定了它的实用性,即在现有资源范围内,全英国所有符合条件的卵巢癌患者都能进行测试。研究人员估计,在NHS推行新的检测方法将比沿用现行方法省£2.6M/年。  这组研究人员与DRG Abacus and Astra Zeneca合作的一个伴行研究发现,新的测试方法极具成本效益,因为许多虽然身体健康、但是身为癌症高危人群的亲属会选择接受检测,来减少患癌的几率。  研究发现,如果每年在英国确诊为卵巢上皮癌的所有7000名女性都接受了测试,那么随着时间的推移,只一年内的检测量就有可能预防数以百计的乳腺癌和卵巢癌发生、数十名亲属的死亡。  研究人员发现,为所有卵巢癌患者实施该检测,国家将损耗£4339每质量矫正后的生命年——远低于用来决定NHS应该提供何种检查方法和治疗方法的阈值£20,000。  研究负责人Nazneen Rahman教授是伦敦癌症研究所癌症遗传学和皇家马斯登NHS信托基金会的负责人。他说:  “我们知道,BRCA基因检测可以为卵巢癌女性带来极大好处,让她们能得到针对其个人遗传信息的护理。这也能改进癌症我们可以提供给他们家庭的风险的信息。”  “我们的新基因检测方法比NHS的标准检测方法更快、更简单、更好地满足癌症患者的需求。我们的研究表明,它不仅是为所有符合条件的卵巢癌女性提供BRCA检测的可行办法,还可以预防癌症、为NHS节省数百万英镑/年。”  Martin Gore教授是皇家马斯登NHS信托基金会的肿瘤内科顾问,他说:  “新的基因检测方法已经在临床取得了巨大的成功。这一切都进展得非常顺利,而且我知道,患者及家属真的非常感激。”  来自皇家马斯登的49岁卵巢癌患者Preeti Dudakia参加了研究,她说:  “我的癌症团队很清楚地解释了为什么这个测试方法有用,当结果阳性的时候,我能接受针对BRCA基因突变患者的治疗。如果我的母亲患卵巢癌时就能有这样的测试,那么我很快就能知道我患卵巢癌的风险,那么,我的情况可能就会完全不同。”  伦敦癌症研究所的首席执行官Paul Workman教授说:“二十年前,BRCA2基因在ICR得到确认。这项研究,是将科学变成实际可用的东西的典范,可以改善对病人的护理,拯救生命。我们希望基因检测的新模式可以在全NHS推广。”
  • 全球首款食管癌基因甲基化检测试剂盒获批上市
    8月7日,国家药品监督管理局(NMPA)官网公示,由博尔诚(北京)科技有限公司(下称“博尔诚”)自主研发的思博士® MT-1A、Epo及Septin9基因甲基化检测试剂盒(PCR荧光探针法)获批上市。该试剂盒是NMPA批准上市的首款食管癌血液基因甲基化检测产品。博尔诚研发中心负责人周光朋博士介绍,在思博士® 开发之前,全球范围内,尚无有效的、经过临床验证的针对食管癌的基因甲基化标志物。博尔诚研发团队通过大量的全基因组甲基化测序以及生物信息学分析和实验验证等,首次从全基因组里挖掘出三个与食管癌密切相关、检测性能好、中国人群特异的标志物,填补了国内国际空白。
  • NCCN增加新的女性癌症基因检测
    p   第21届美国国家综合癌症网络(National Comprehensive Cancer Network,NCCN)年会于2016年3月31日至4月2日在好莱坞召开,会议增加了几个针对乳腺癌和卵巢癌遗传风险管理的新基因突变检测。 /p p   最近的研究发现PALB2基因突变与乳腺癌侵袭性相关,而RAD51C、RAD51D、BRIP1基因突变增加卵巢癌的终生危险。美国莫非特癌症研究中心的Tuya Pal博士表示:“在过去一年中,越来越多的数据表明这些新基因与卵巢癌风险相关。以往NCCN指南中推荐或考虑采用降低风险的输卵管卵巢切除术受到BRCA1、BRCA2和林奇综合症的很大限制。” /p p   她说:“当存在BRCA1基因突变时,卵巢癌终生危险达到44% 当BRCA2基因突变时,这一危险达到27% 当存在林奇综合征时,估计该危险在10%左右。基于目前的多个研究,我们认为,和BRCA1、BRCA2相似等级的证据表明 BRIP1、RAD51C和RAD51D基金突变会增加罹患卵巢癌的风险。” /p p   Pal博士注意到,NCCN指南并未将这些新突变作为输卵管卵巢切除的推荐指征。她表示:“这是一个可以考虑的推荐,但我们还可以再讨论。我并不会因此强烈推荐输卵管卵巢切除术,但应该将这一情况与患者进行沟通。如果他们身体有这些突变,那么预防性卵巢切除也是合理的选择。”有卵巢癌家族史的人群也应该了解这一信息,Pal博士补充到:“家族史是重要的参考,如果我们发现了家族内卵巢癌病史的强烈风险,就应该基于新的基因突变推荐预防性的癌症风险管控。”鉴于目前卵巢癌还没有比较好的筛查方法,基因突变检测就显得尤为重要。 /p p   PALB2现已成为乳腺癌高风险基因突变的一员,其他与乳腺癌风险相关基因还有BRCA1、BRCA2、PTEN和PT53。为降低患癌风险而预防性切除乳腺时,要参考这些基因变化情况。 /p p   PALB2突变的女性一生中发生乳腺癌的风险约为35-40%。有研究显示伴PALB2基因突变的乳腺癌侵袭性较强。“如果携带BRCA1突变的个体发展成乳腺癌,或许没什么大不了的,因为绝大多数患者都在早期确诊。但当伴随PALB2突变时,鉴于此类患者肿瘤较强侵袭力,因此需要认真考虑是否采取预防性乳腺切除。” Pal博士说。 /p p   乳腺癌基因检测对治疗有重要的意义。一旦确诊为乳腺癌,患者可以通过检测了解自己的基因易感性,并据此决定采用什么样的治疗方式。如果在肿瘤发生前检测到乳腺癌或卵巢癌的遗传风险,就可以主动预防并阻止这些癌症。 /p p   随着多基因检测的推广应用,乳腺癌基因 a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong 诊断 /strong /span /a 领域发生了许多变化。但技术的发展不能改变医师的作用,对检测结果合理、适当的解释至关重要,无论是阴性结果还是阳性结果都应充分告知患者,讲解这些结果对癌症管理的意义。 /p
  • 美国癌症全基因检测成功治疗原发灶不明的转移癌
    p   2015年7月10日,美国国家癌症研究院(NCI)宣布史上最大精准医学临床试验开始招募病人,这个实验将招募1000名癌症患者,将同时研究20多个靶向药物(包括已上市和尚在临床研究阶段的药物)在癌症基因突变或过度表达人群的疗效。这将进一步巩固和提高美国在癌症基因研究、检测和癌症靶向治疗水平的领先地位。 /p p   美国是癌症基因检测和靶向治疗最发达的国家,拥有最先进的基因检测公司和技术,全球领先的癌症治疗中心和专家和最新研发的抗癌靶向药物。癌症患者通过癌症全基因检测(不是国内的部分基因检测)和大数据分析,会帮助大约82%的患者找到靶向治疗药物或临床试验药物。 /p p    strong 现病史: /strong /p p   59岁女性,每年抽烟60包。2012年5月出现癫痫。磁共振显示病人大脑的前额叶中有一个实性2.6X1.9厘米的肿物,周围有水肿物包围。进一步的18F-FDG-PET成像及CT发现在左腹部有一个2X4厘米的肿块,标准吸收指数为6。脑部肿瘤标本经病理分析,发现癌变病灶,免疫组化表明CK7及表皮膜抗原呈阳性,甲状腺转录因子-1染色有较弱反应,但是S100,P63及CK20染色均呈阴性。即时定量PCR对特殊编译子的分析(热点测试‘hotspot testing’)表明有一个KRAS G12V突变,EGFR正常。分离免疫荧光原位杂交表明ALK重组呈阴性。 /p p   患者初始被诊断为原发灶不明的腺癌,并接受了4个周期的卡铂(carboplatin)和多西他赛(docetaxel)治疗。2012年9月,18F-FDG-PET成像检测发现左腹肿块没有明显改变,同时还检测出4.2X2.2厘米大小新的肿块。这个肿块就在原先肿块的边缘,和小肠袢紧密相连无法分离,表明肿瘤已经扩散。 /p p    strong 基因检测及治疗方案: /strong /p p   美国顶尖基因检测公司平台是进行肿瘤标本检测的靶点分析的新一代测序技术平台。它可以同时分析182个肿瘤相关等位基因的整个编译序列,和14个在肿瘤病人中高频重组基因中的37个内含子的序列,最小覆盖深度为250X。这种分析可以检测到所有类别的基因重组现象(碱基置换,插入或删除,基因拷贝数目变化及重组)。样本组织经过福尔马林固定,石蜡包埋。检测样本组织可小至0.6立方毫米。 /p p    strong 基因检测结果及药物治疗: /strong /p p   石蜡包埋组织切片送至基因检测公司进行基因检测。纯化的肿瘤DNA先被整个编译序列的杂交捕捉(HYBRID CAPTURE),然后对182个肿瘤相关基因的整个编译序列,以及14个在肿瘤中高频重组的基因中37个内含子的序列进行检测。结果表明:该肿瘤组织中MET基因共有16份拷贝,CCND1有8拷贝,MYC有9拷贝。KRAS G12V, TP53 R273L及CARD11 N184S高频出现(突变频率分别为27,46,71)。曾经有报道表明MET-扩增的非小细胞肺癌病人(NSCLC)对克唑替尼(crizotinib)有抗肿瘤反应。基于这个证据,该患者接受了克唑替尼(crizotinib)的治疗(250毫克,口服,每天两次)。 /p p    strong 疗效: /strong /p p   随后每三个月进行的扫描表明,在能够承受的剂量范围内,肿瘤组织的反应期超过了19个月。PET-CT扫描表明FDG-高亲和性的腹部肿块完全消失。 /p p   先进完善的基因检测手段使得我们能够检测到预料之外的基因组变化,并采取有效的针对性治疗手段。部分KRAS突变的肿瘤病人无法用针对RTK靶点的方法来治疗。本例患者肿瘤存在MET扩增和KRAS突变,在卡铂(carboplatin)和多西他赛(docetaxel)治疗无效的情况下,对克唑替尼(crizotinib)却有明显的抗肿瘤反应。因此,检测基因突变将是治疗原发灶不明的转移癌的有效手段。 /p p    strong 癌症全基因检测: /strong /p p   研究表明,罹患癌症时发生的基因改变不同,对药物的反应也不同。靶向药物能够特异地作用于引起肿瘤生长的基因,因而有更好的疗效。在已经发现的数百个致癌基因中,每个基因又有可能发生很多种不同的改变,所以每个癌症患者的基因改变都是独特的。基因检测可以帮助患者和医生指导治疗和发现新的治疗方法。 /p p   在癌症基因检测患者中,有82%的检测结果后来被用于实际的治疗中,包括:1.找到一个已经批准的、针对患者肿瘤基因改变的治疗措施 2.找到一种已经批准用于相同基因改变的其它类型癌症的新药,这样的药物很可能对患者的肿瘤也有显著疗效 3.找到一个临床试验,所使用的试验药物尽管不直接作用于患者肿瘤发生改变的那些基因,但作用于相关的信号通路,因而也可能会有很好的疗效。 /p
  • 基因检测:让癌症治疗模式从“一刀切”转向“量体裁衣”
    p   1999年,54年的王女士(化姓)被诊断出晚期卵巢癌、腹部广泛转移,经过常规的化疗后,医生认为她只有2-3年的寿命。 /p p   目前,针对卵巢癌并有特别有效的针对性治疗手法。通过基因检测发现,王女士卵巢癌细胞的“驱动基因”与肺腺癌基因相似,江苏省人民医院肿瘤中心遂利用“同药异病”治疗办法,将针对肺腺癌的药物,用到王女士的卵巢癌治疗上。 /p p   通过先进的靶向药物治疗,江苏省人民医院将王女士的寿命延长至5年以上。如今王女士的病情仍比较稳定。 /p p   据了解到,基因检测,让癌症患者的治疗模式从“一刀切”转向“量体裁衣”的精准治疗。 /p p   “个体化基因检测能为每个患者建立‘个体基因数据库’,提供治疗的重要靶点,预测疗效、药物并发症发生风险,以及患者复发风险。” 江苏省人民医院肿瘤科主任束永前教授表示。 /p p   据介绍,类似王女士这样,通过基因检测查找出肿瘤的“驱动基因”,从而采用对应的靶向药物治疗、患者进而延长生存年限,类似的案例还有很多。 /p p   什么是驱动基因?据较早提出该概念的广东省人民医院副院长吴一龙教授提出,与癌症发生发展相关的重要基因称为驱动基因,驱动基因决定了这个癌症的最主要的原因。当驱动基因突变后,就会把癌细胞“驱动”起来。 /p p   一旦通过基因检测找到驱动基因,就可以通过针对该基因的药物进行治疗,可谓事半功倍。 /p p   束永前教授介绍说,目前基因检测技术已应用到肺癌、肝癌、肾癌、肠癌、乳腺癌等多个领域,目前最适合的是肺癌患者。 /p p   记者查阅公开资料显示,包括吴一龙教授等国内外专家,已经在肺癌“驱动基因”研究上有了很大突破,目前全球已发现了十多种与肺癌相关的“驱动基因”,使得不少肺腺癌的病人大大延长了寿命。例如,原本按照常规治疗,最多只有10个月寿命的患者,通过基因检测后使用靶向药物,可以延长寿命9-10年以上。 /p p   不过,目前基因检测的费用之高,仍然是不少患者体验该技术的“拦路虎”。据介绍,目前基因检测的费用为1.6万左右,治疗后每天的药物价格也不菲。“不过,随着科学发展,未来两三年内或将会降价,基因检测也将成为临床检测的主要手段。” /p p   束永前教授提到,国家卫计委也在酝酿出台规范,未来使用靶向药物之前,必须要进行基因检测。 /p p   据了解,目前国内只需要5毫升的血,就可以一次就能检测肿瘤患者的400-500个基因,从而发现疾病的驱动基因,进行精准治疗。 /p p   不过,中国肝癌科学中心主任王红阳院士同时提醒,不是所有的病人都能检测出癌症的驱动基因,即便检测出来,其数据也还要再经过详细的分析才能应用。 /p
  • 基因检测如何改变癌症预防?
    p   安吉丽娜.茱丽切除双侧乳腺的行动在全球引起轰动,也促使更多女性去进行基因检测。然而,相当一部分妇女有乳腺癌或卵巢癌的个人或家族史,但她们又没有携带BRCA1或BRCA2基因的突变。她们该如何进行癌症预防呢? /p p   一项新的研究表明,对于这些妇女,基因集合(gene panel)的测序可能会改变癌症预防和管理。这项研究于8月13日在线发表于《JAMA Oncology》上。 /p p   在这项研究中,麻省总医院、斯坦福大学及其他机构的研究人员利用基因集合测序,来搜索1000多名妇女的临床可操作风险突变,这些妇女的BRCA1/2突变呈阴性,但有着乳腺癌/卵巢癌的个人或家族史。后续分析主要集中在40名检测发现有害突变的参与者,以及另外23名检测结果为阳性的妇女。 /p p   作者发现,利用基因集合鉴定出基因突变的存在,可能会改变筛查、预防或其他管理策略。此外,几乎四分之三的患者亲属也需要考虑检测。 /p p   研究小组一开始招募了1,046名妇女,她们有着乳腺癌或卵巢癌的个人或家族史,被认为是基因检测癌症风险的适当候选。之后,研究人员对她们的样本开展了基因集合的检测,分别采用Myriad Genetics的MyRisk检测(25个基因),或Invitae的Hereditary Cancer Syndromes检测(29个基因)。 /p p   在BRCA1/2突变呈阴性的妇女中,研究人员发现40名参与者的中等癌症风险基因中存在可疑的改变,这几乎占了所有参与者的4%。一些有害突变落在乳腺癌高风险基因CDH1内,但大部分都是影响低或中等风险的乳腺癌和卵巢癌基因。8名个体携带了Lynch综合征相关的突变,还有一些存在其他类型癌症相关的突变。 /p p   为了弄清楚这些改变的临床意义,研究小组又增加了23名研究对象,她们同样为BRCA1/2突变阴性,但基因集合的检测结果为阳性。在这63名参与者中,大约有92%的突变与她们之前所患的疾病或家族史匹配。 /p p   作者的分析表明,本组中超过一半的妇女需要进行疾病特异的筛查及其他预防性措施。例如,对于那些有Lynch综合征突变的个体,她们应该更积极地进行结肠直肠癌的筛查,而对于那些PALB2基因存在有害突变的个体,她们应接受更频繁的乳腺检查。 /p p   Ellisen认为,这样的结果也有望影响到参与者的家庭成员,这些近亲可能携带相同的风险突变。“我们计算过,大约72%的时间会建议其他家庭成员进行检测,”他说。 /p p   由于目前的研究是通过研究协议完成的,参与者同意参与研究检测,并声明他们是否想接受检测的临床相关结果。目前,研究小组正在接触那些选择接受临床结果的参与者,并希望对这些个体进行后续追踪。 /p
  • Nature:攻克30年挑战 靶向“无药可及”的癌症基因
    在药物设计领域,K-Ras蛋白是一个传奇。作为人类癌症中最常见的突变癌基因,30多年来它一直位列在所有研究人员的&ldquo 靶点&rdquo 清单上。尽管如此的高调,由于许多的制药、生物技术公司和高校实验室都未能设计出一种能够成功靶向这一突变基因的药物,在科学界里K-Ras被视作是&ldquo 无药可及&rdquo 的靶点。 现在,来自加州大学旧金山分校霍华德休斯医学研究所(HHMI)的研究人员,鉴别并利用了K-Ras一个新发现的&ldquo 阿喀琉斯之踵&rdquo (Achilles heel)。这一薄弱点就是HHMI研究人员Kevan M. Shokat和同事们在K-Ras上新发现的一个 &ldquo 口袋&rdquo (结合位点)。Shokat和他的研究小组设计出了一种化合物,证实它可以进入到这一口袋里,抑制突变K-Ras的正常活性,但不会影响正常的蛋白。 Shokat 说:&ldquo 人们将K-Ras视作是癌症中最重要的癌基因,并广泛认为它&lsquo 无药可及&rsquo 。我们报告称发现了K-Ras上一个药物可及的新口袋。我们相信这对于患者将具有真正的转化意义。&rdquo 在发表于11月20日《自然》(Nature)杂志上的一篇研究论文中,Shokat研究小组描述了一种新型的化合物,其能够进入到K-Ras上一个从前未知的口袋中,干扰该酶的功能。Ras蛋白是一种在细胞内负责传送信号的小GTPase。由于它们在细胞生长和存活中发挥核心作用,对于细胞至关重要。 Ras这一名称也用于指代编码这些蛋白质的基因家族。其中的一个基因K-Ras大约30年前被发现,在30%的人类肿瘤,包括90%的胰腺癌、40%的结肠癌和20%的非小细胞肺癌中存在突变。携带Ras突变的癌症具有侵袭性,对标准治疗反应不佳。 尽管靶向突变Ras基因的研究工作一直遭受挫折,美国国家癌症研究所(NCI)近日强调将继续重视这一难对付的药物靶点,并宣布了一项1000万美元的RAS计划。这项计划将汇集研究人员共同开发阻断Ras的新思路,以激励研发出新药或新疗法让癌症患者受益。 Shokat的HHMI研究小组在大约6年前开始启动对Ras的研究工作。利用他们的化学专业知识,Shokat和两个研究小组成员:博士后研究人员Ulf Peters以及博士生Jonathan Ostrem拟定了一些早期的想法:研发一类新的Ras突变体抑制药物。&ldquo 其中一些早期的策略行不通,&rdquo 他说。 &ldquo 我们不得不开发出一种新的筛选方法,其最终推动研发出了这一新抑制剂。&rdquo Shokat说当确定了他们的攻击范围时他们做了一些不一样的事情。他们将焦点缩小,专注于其他科学家们没有采用的策略。他们还选择了研究一种叫做G12C的K-Ras突变体,这种K-Ras突变体广泛存在于大约7%的肺癌患者中。 这一突变使得K-Ras蛋白中第12位的甘氨酸被半胱氨酸所替代。重要的是,这一半胱氨酸处在对Ras正常功能至关重要的一个位置。偏离从前的研究工作,Shokat和同事们没有试图靶向天冬氨酸和缬氨酸突变的Ras版本&mdash &mdash 这些突变相对常见,因此过去许多的科学家们都将焦点放在这些突变上。反之,他们挑选出了G12C突变体,因为这些Ras突变体影响了大批的肺癌和结直肠癌患者。 Shokat说,这一半胱氨酸所赋予的一些化学特性,为他的研究小组提供了一个独特的药物设计把柄。在20种天然氨基酸中半胱氨酸具有一种独特的能力:可以形成共价键。通常两个半胱氨酸之间形成共价键起稳定蛋白质结构的作用,但如果存在游离半胱氨酸,就如同G12C K-Ras,一种特别设计的药物就可以与这一半胱氨酸形成共价键。 Shokat说:&ldquo 其他人一直认为他们必须去追逐所有的Ras突变体。我们寻找的是别人没有做过的,我们挑选出这一特殊突变是因为它的一些化学特性。&rdquo 在三年的时间里,该研究小组对500多个化合物进行了初步筛查,看看他们能否鉴别出一个可以与K-Ras G12C共价结合和&ldquo 连接&rdquo 的化合物。他们的研究导致鉴别出了一种有效的K-Ras抑制剂。为了获得这一化合物与K-Ras互作机制的更好图像,科学家们解析了这一化合物与K-Ras结合的晶体结构。 当他们检测数据时,Shokat和研究小组发现在靠近这一半胱氨酸残基的K-Ras蛋白表面上有一个之前从未描述过的口袋。Shokat说:&ldquo 这个口袋是新发现的,此前从未有人找到它。&rdquo 通过进一步的调查,他们发现化合物是通过改变Ras与底物GTP的自然亲和力从而对其形成干扰的。&ldquo 其中最重要的一个方面就是这一小分子只抑制突变K-Ras,而不影响正常蛋白,&rdquo Shokat说。 接下来的工作包括:继续优化这一化合物,进一步测试了解这一化合物在多大程度上能够杀死具有G12C突变的细胞。Shokat说他和同事们成立了一家叫做Araxes Pharma, LLC的公司,与强生的下属部门Janssen Biotech建立了合作关系,以开发出有潜力应用于临床的化合物。 人透明质酸结合蛋白(HABP)ELISA试剂盒 Human Hya]uronate binding protein,HABP ELISA试剂盒 人Ⅰ型胶原N末端肽(NTX)ELISA试剂盒 Human cross linked N-telopeptide of type Ⅰ collagen,NTX ELISA试剂盒 人幽门螺旋杆菌IgM(Hp-IgM)ELISA试剂盒 Human Helicobacter pylori IgM,Hp-IgM ELISA试剂盒 人细胞毒素相关蛋白A(CagA)ELISA试剂盒 Human Cytotoxin-associated protein,CagA ELISA试剂盒 人胃抑素(GIP)ELISA试剂盒 Human gastric inhibitory polypeptide,GIP ELISA试剂盒 人胃泌素释放多肽(GRP)ELISA试剂盒 Human gastrin-reliasing peptide,GRP ELISA试剂盒 人胃泌素释放肽前体(ProGRP)ELISA试剂盒 Human pro-gastrin-releasing peptide, ProGRP ELISA试剂盒 人胶原蛋白Ⅱ(HCBⅡ)ELISA试剂盒 Human Collagen-like Bioprotein Ⅱ,HCBⅡ ELISA试剂盒 人促胰液素/胰泌素(Secretin)ELISA试剂盒 Human Secretin ELISA试剂盒 人多肽YY(Peptide-YY)ELISA试剂盒 Human Peptide YY ELISA试剂盒 人促胃液素受体(GsaR)ELISA试剂盒 Human gastrin receptor,GsaR ELISA试剂盒 人胆囊收缩素/缩胆囊素八肽(CCK-8)ELISA试剂盒 Human cholecystokinin octapeptide,CCK-8 ELISA试剂盒 人胰蛋白酶原激活肽(TAP)ELISA Human trypsinogen activation peptide,TAP ELISA试剂盒 人&alpha 1酸性糖蛋白(&alpha 1-AGP)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人内皮型一氧化氮合成酶3(eNOS-3)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人丙二醛(MDA)ELISA试剂盒 Human malondialchehyche,MDA ELISA试剂盒 人胰淀素(Amylin)ELISA试剂盒 Human Amylin ELISA试剂盒 人血管活性肠肽(VIP)ELISA试剂盒 Human Motilin,MTL ELISA试剂盒 人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒 Human cholecystokinin,CCK ELISA试剂盒 人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒 Human N-terminal procollagen Ⅲ propeptide,PⅢNP ELISA试剂盒 人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒 Human Collagen Type Ⅱ,Col Ⅱ ELISA试剂盒 人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒 Human Collagen Type Ⅰ,Col Ⅰ ELISA试剂盒 人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒 Human procollagen Ⅲ N-terminal peptide,PⅢNT ELISA试剂盒 人透明质酸(HA)ELISA试剂盒 Human Hyaluronic acid,HA ELISA试剂盒 人Ⅳ型胶原(Col Ⅳ)ELISA试剂盒 Human Collagen Type Ⅳ,Col Ⅳ ELISA试剂盒 人Ⅲ型胶原(Col Ⅲ)ELISA试剂盒 Human Collagen Type Ⅲ,Col Ⅲ ELISA试剂盒 人层连蛋白/板层素(LN)ELISA试剂盒 Human Laminin,LN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人NOGO-A抗体(Nogo-A Ab)ELISA试剂盒 Human anti-Nogo-A antibody,NOGO-A Ab ELISA试剂盒 人抗组织转谷氨酰胺酶抗体IgA(tTG-IgA)ELISA试剂盒 Human Anti-tissue tranGSlutaminase IgA,tTG-IgA ELISA试剂盒 人抗存活素抗体/生存蛋白(Surv)ELISA试剂盒 Human anti-Survivin antibody,Surv ELISA试剂盒 人粒细胞巨噬细胞集落刺激因子抗体(GM-CSF Ab)ELISA试剂盒 Human anti-Granulocyte-Macrophage Colony Stimulating Factor antibody,GM-CSF Ab ELISA试剂盒 人抗肌联蛋白抗体(TTN)ELISA试剂盒 Human Anti-titin Antibody,TTN ELISA试剂盒 人抗突触前膜抗体(PsmAb)ELISA试剂盒 Human anti-presynaptic membrane antibody,PsmAb ELISA试剂盒 人血管紧张素Ⅱ受体2抗体(AT2R-Ab)ELISA试剂盒 Human Angiotensin Ⅱ Receptor 2 antibody,AT2R-Ab ELISA试剂盒 人血管紧张素Ⅱ受体1抗体(ATⅡR1)ELISA试剂盒 Human angiotension Ⅱ receptor 1 Antibody,ATⅡR1 Ab ELISA试剂盒 人血管紧张素Ⅰ受体抗体(ANG-ⅠR)ELISA试剂盒 Human angiotension I receptor Antibody,ANG-ⅠR antibody ELISA试剂盒 人卵清蛋白特异性IgG(OVA sIgG)ELISA试剂盒 Human ovalbumin specific IgG,OVA sIgG ELISA试剂盒 人抗钙调素特异抗体(CAM-ab)ELISA试剂盒 Human anti-calmodulin specific antibody,CaM-ab ELISA试剂盒 人甲状腺非肽激素抗体(THAA)ELISA试剂盒 Human thyroid hormone autoantibodies,THAA ELISA试剂盒 人抗类固醇生成细胞抗体(SCA)ELISA试剂盒 Human steroid producing cell autoantibody,SCA ELISA试剂盒 人粒细胞特异性抗核抗体(GS-ANA)ELISA试剂盒 Human granulocyte specific antinuclear antibody,GS-ANA ELISA试剂盒 人抗信号识别颗粒抗体(SRP)ELISA试剂盒 Human signal recognization particle antibody,SRP ELISA试剂盒 人封闭抗体(BA)ELISA试剂盒 Human Blocking antibody,BA ELISA试剂盒 人抗细胞膜DNA抗体(cmDNA)ELISA试剂盒 Human anti-cell membrane DNA antibody,cmDNA ELISA试剂盒 人抗钙蛋白酶抑素抗体(ACAST-DⅣ)ELISA it Human autoantibodies against the C-terminal domain Ⅳ,ACAST-DⅣ ELISA试剂盒 人卵清蛋白特异性IgE(OVA sIgE)ELISA试剂盒 Human ovalbumin specific IgE,OVA sIgE ELISA试剂盒 人抗核仁纤维蛋白抗体(AFA/snoRNP/U3RNP)ELISA试剂盒 Human anti-fibrillarin antibody,AFA/snoRNP/U3RNP ELISA试剂盒 人系统性红斑狼疮(SLE)ELISA试剂盒 Human systemic lupus erythematosus,SLE ELISA试剂盒 人抗神经节苷脂抗体(GM1)ELISA试剂盒 Human anti-ganglioside antibody,GM1 ELISA试剂盒 人抗髓鞘相关糖蛋白抗体(MAG Ab)ELISA试剂盒 Human anti-myelin associated glycoprotein antibody,MAG Ab ELISA试剂盒 人抗中性粒细胞颗粒抗体(ANGA)ELISA试剂盒 Human anti-neutrophil granules antibody,ANGA ELISA试剂盒 人抗中性粒细胞抗体(ANA)ELISA试剂盒 Human anti-neutrophil antibody,ANA ELISA试剂盒 人抗载脂蛋白抗体A1(Apo A1)ELISA试剂盒 Human anti-apolipoprotein A1 antibody,Apo A1 ELISA试剂盒 人抗胰岛素受体抗体(AIRA)ELISA试剂盒 Human anti-insulin receptor antibody,AIRA ELISA试剂盒 人抗胃壁细胞抗体(AGPA/PCA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-Reticulin antibody,ARA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-mutated citrullinated vimentin antibody,MCV ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗腮腺管抗体(anti-parotid duct Ab)ELISA试剂盒 Human anti-parotid duct antibody ELISA试剂盒 人抗软骨抗体(anti-cartilage-Ab)ELISA试剂盒 Human anti-cartilage-antibody ELISA试剂盒 人抗人绒毛膜促性腺激素抗体(AhCGAb)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗染色体抗体(anti-chromosome Ab)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗脑组织抗体(ABAb)ELISA试剂盒 Human anti-brain tissue antibody,ABAb ELISA试剂盒 人抗麦胶蛋白/麦醇溶蛋白抗体(AGA)ELISA试剂盒 Human anti-gliadin antibody,AGA ELISA试剂盒 人抗磷脂酰丝氨酸抗体(APSA)ELISA试剂盒 Human Anti-phosphatidyl serine antibody,APSA ELISA试剂盒 人抗磷壁酸抗体(TA)ELISA试剂盒 Human anti-teichoic acid antibody,TA ELISA试剂盒 人抗淋巴细胞毒抗体(ALA/LCA)ELISA试剂盒 Human anti-lymphocytotoxic antibody,ALA/LCA ELISA试剂盒 人抗巨噬细胞抗体(anti-macrophage Ab)ELISA试剂盒 Human anti-macrophage antibody ELISA试剂盒 人抗甲状腺过氧化物酶抗体(TPO-Ab)ELISA试剂盒 Human anti-Thyroid-Peroxidase antibody,TPO-Ab ELISA试剂盒 人抗红细胞抗体(RBC)ELISA试剂盒 Human anti-red cell antibody ELISA试剂盒 人28S抗核糖体抗体(28S rRNP)ELISA试剂盒 Human 28S ribosome RNP antibody,28S rRNP ELISA试剂盒 人抗核仁抗体(ANA)ELISA试剂盒 Human anti-nucleolus antibody,ANA ELISA试剂盒 人抗核膜糖蛋白210抗体(gp210)ELISA试剂盒 Human Anti-glucoprotein 210,GP210 ELISA试剂盒 人抗肝细胞胞质1型抗体(LC1)ELISA试剂盒 Human anti-liver cytosolantibody type 1,LC1 ELISA试剂盒 人抗肺泡基底膜抗体(ABM-Ab)ELISA试剂盒 Human alveoli basement membrane zone antibody,ABM-Ab ELISA试剂盒 人抗胸腺细胞球蛋白(ATG)ELISA试剂盒 Human anti-thymocyte globulin,ATG ELISA试剂盒 人抗表皮细胞基底膜抗体(EBMZ)ELISA试剂盒 Human epidermal basement membrane zone,EBMZ ELISA试剂盒 人抗中性粒/中心体抗体(ACA)ELISA试剂盒 Human anti-centrol and centrosome antibody,ACA ELISA试剂盒
  • 癌症基因扰乱细胞正常生物钟和代谢
    近日 Cell旗下Cell metabolism杂志上发表宾夕法尼亚大学的Chi V. Dang研究团队发现癌基因Myc会扰乱细胞的生物钟和代谢的相关论文。这项研究表明,MYC能结合到关键基因的启动子区域,改变细胞的代谢和昼夜节律。这种蛋白具有双重功能,不仅在代谢通路中起作用,还能抑制BMAL1的抑癌效果。这项研究有助于更好的理解癌细胞如何有效维持快速复制。文章第一作者Brian Altman博士说“MYC癌细胞的节律性振荡发生改变,是因为蛋白REV-ERBα的表达水平被上调,这类癌症应该很适合采取时间疗法(chronotherapy)”。“我们的工作将癌细胞代谢与癌症时间疗法关联起来。”癌症时间疗法的理论基础是,在正确的时间进行治疗,可以有效杀死癌细胞,同时减少对正常细胞的副作用。已知CLOCK-BMAL1二聚体是生物钟的重要调控子,而MYC在基因组中的结合位点与CLOCK-BMAL1相同。因此研究人员推测,癌细胞中的MYC异常表达可能会影响到生物钟。研究中发现,MYC异常表达会提高REV-ERBα的表达,进而影响BMAL1和生物钟。降低REV-ERBα的表达水平,可以部分恢复这些癌细胞中的节律性振荡。此外,在神经母细胞瘤患者中,高水平REV-ERBα和低水平BMAL1都与预后差有关。在神经母细胞瘤中重新表达BMAL1,能够抑制这些癌细胞的复制能力。研究显示,MYC对葡萄糖代谢的振荡和谷氨酰胺的消耗也有很大的影响。葡萄糖和谷氨酰胺都是细胞中的基础代谢分子。研究人员建立了骨肉瘤细胞系,并且在其中分析了MYC和代谢的互作。细胞系的葡萄糖通路原本存在正常的节律性振荡,但MYC增多之后这种振荡就消失了,细胞的葡萄糖摄取速度大大增加。Hsieh说。癌细胞独特的代谢谱为人们提供了癌症治疗的重要线索:当正常细胞休息而癌细胞还在没日没夜地工作时,癌症治疗可以起到事半功倍的效果,对正常细胞的毒性也大大降低。
  • 乳腺癌8年数据 基因测序受患者青睐
    p   随着基因测序技术的发展,成本不断降低,活跃在市场上的乳腺癌基因测序产品也越来越多。然而,患者对乳腺癌BRCA测序持何态度?BRCA基因测序是否对患者的治疗决策有影响?2016年2月11日,《JAMA Oncology》杂志报道了年轻乳腺癌患者BRCA基因检测的调查报告,经调查发现,近年来乳腺癌年轻患者接受BRCA检测的概率在不断增加。 /p p   被诊断有乳腺癌的年轻女性通常被建议进行BRCA检测,但测试结果对医疗决定和患者的影响却有很大的未知。为了描述乳腺癌年轻患者的BRCA检测情况,评估遗传风险以及判断基因信息对治疗决定的影响,研究人员对11个学术社区医疗中心的897名40岁以下乳腺癌患者进行调查。调查指标为BRCA检测的使用频率及趋势、如何利用基因信息对BRCA突变检测为阳性及阴性的女性进行治疗决策。 /p p   大约有87%(780名)的女性在乳腺癌诊断一年后接受了BRCA检测。从2006年至2013年,BRCA检测率持续上升,2006年,被诊断为乳腺癌的39名女性中有30名接受了BRCA检测(76.9%),2007年接受BRCA检测的比例略有降低,为70.2%,然而,在随后的几年里,BRCA检测的频率持续上升,2012年和2013年BRCA的检测率分别为96.6%和95.3%。在未接受BRCA检测的女性中,31.6%的患者病史中未涉及突变话题,然而有43%的患者考虑将来接受BRCA检测。 /p p   在831名女性中,其中248名(29.8%)担心遗传风险信息会对手术治疗决策有影响,在这些女性中,86.4%的突变携带者和51.2%的非突变携带者选择了双侧乳房切除术 很少有女性担心系统性治疗决策受遗传风险的影响。 /p p   作者最后得出结论:BRCA1和BRCA2突变检测在乳腺癌年轻患者中不断增加。鉴于对遗传风险影响手术决策的担忧,应根据美国国家综合癌症网络指南对所有乳腺癌患者进行指导并提供基因检测。 /p
  • 卵巢癌精准治疗,基因检测先行——中国首个多中心卵巢癌患者BRCA突变研究数据公布
    今年10月29日,中国首个大样本多中心卵巢癌患者BRCA突变研究数据在葡萄牙里斯本举办的IGCS(国际妇癌协会)双年会上发布,填补了我国在该研究领域的空白。11月11日,在由上海市抗癌协会妇科肿瘤专业委员会主办,阿斯利康和华大基因协办的“中国首个多中心卵巢癌患者BRCA突变研究数据公布”媒体发布会上,该研究负责人复旦大学附属肿瘤医院妇瘤科主任吴小华教授指出:“中国首个多中心卵巢癌患者BRCA突变研究数据的公布,为学界提供了首个可靠的、具有代表性的中国患者人群BRCA突变状况的数据,为进一步在中国卵巢癌患者中制定精准治疗方案、确立BRCA检测共识提供了理论基础和依据。” BRCA一旦突变,卵巢癌发病风险将大幅增加 卵巢癌是女性中最常见的恶性肿瘤之一,据国家癌症中心资料,我国每年卵巢癌新发病例数约为5.21万人,死亡病例数约为2.25万人,死亡率位居妇科恶性肿瘤的首位。卵巢癌发病隐匿,且缺乏有效的筛查及早期诊断措施,约70%患者在确诊时已属晚期,存在肿瘤的广泛播散和转移,5年生存率仅为30-40%左右。 研究发现BRCA突变与卵巢癌的发生关系密切,BRCA1和BRCA2均为抑癌基因,在调节细胞复制、DNA损伤修复、细胞正常生长方面有重要作用,如果BRCA发生突变,就丧失了抑制肿瘤发生的功能,导致癌细胞大量繁殖。研究发现,一般人群的卵巢癌终生发病风险约为1%,而BRCA1突变携带者的卵巢癌发病风险可高达40%,BRCA2突变携带者的卵巢癌发病风险可升高至11-18%。因此BRCA检测不仅能成为卵巢癌早期筛查的重要参考数据,对卵巢癌患者后期用药也极具临床指导意义。 美国著名影星安吉丽娜茱莉就曾因检测出BRCA1突变而预防性切除了双侧卵巢及输卵管以预防卵巢癌,一时间BRCA检测成为社会热点话题。 BRCA检测:简单方便告知患癌风险BRCA1/2都是典型的抑癌基因,其突变可能出现于基因的各个区域,仅仅检测这两个基因的某几个变异,不仅不能全面解析患癌风险,反而会有大范围漏检的可能,因此传统的测量单个位点的一代测序不适用于检测BRCA突变。另外一个值得关注的点是,每个人都有各类基因变异,但其中大多都是无害的,所以检测机构不仅要找到基因变异,更要有可靠的数据库和遗传解读能力,后者决定了每个找到的基因变异能否被正确地判定为有害还是无害。 大众在选择基因检测机构时首先要看准资质。一般而言,三甲医院进行的遗传性肿瘤基因检测相对可靠,但是三甲医院中能开展该检测项目的比较稀少,目前国内进行遗传性肿瘤基因检测的多为第三方临床检验中心。2015年3月27日,国家首批肿瘤诊断与治疗项目高通量基因测序技术临床试点单位确定,全国仅5家第三方临检机构获得该试点资格,包括深圳华大临床检验中心和天津华大医学检验所。卫生部临床检验中心2016年4月对44家做肿瘤基因测序的实验室(包括医院和基因检测公司)进行了考试,深圳华大临床检验中心、天津华大医学检验所、中山大学附属肿瘤医院、深圳市罗湖区人民医院等都获得了满分。美国病理学会(CAP)的2016年上半年BRCA基因检测能力验证项目结果表示,深圳华大临床检验中心的结果全部合格,满分通过,也标志着华大基因在BRCA1/2基因检测项目的检测流程、信息分析和临床解读整个环节的规范性和准确性均达到了国际标准。 28.45%的中国卵巢癌患者存在BRCA突变 近二十余年,国外很多文献报道过卵巢癌患者中BRCA突变的比例大致在5-29%,但来自亚洲的数据很少,尤其是在中国,由于BRCA检测并不是一项常规检测项目,因此尚无此方面大规模、多中心的研究数据。 由复旦大学附属肿瘤医院、中国医学科学院肿瘤医院、山东大学齐鲁医院、中山大学附属肿瘤医院、四川大学华西第二医院共同完成的中国首个多中心卵巢癌患者BRCA突变研究,共纳入826例上皮性卵巢癌患者,采用目前国际上公认最准确的二代测序方法进行BRCA1/2基因突变的检测,发现我国卵巢癌患者BRCA突变率为28.45%,其中BRCA1突变率为20.82%,BRCA2突变率为7.63%。该研究牵头人,吴小华教授指出:“此项研究证实:中国超过四分之一的卵巢癌患者都存在BRCA突变,彻底颠覆了我国卵巢癌患者BRCA突变率较低的传统观念;同时,研究还发现BRCA突变不仅局限于有卵巢癌家族史的患者或者是某一病理类型,因此非常有必要在中国将BRCA检测作为所有上皮性卵巢癌患者的常规检测之一,该检测对于进一步制定和评估治疗方案必不可少。” 推广BRCA突变检测,助力卵巢癌精准治疗 对卵巢癌患者进行BRCA突变检测,有助于更好地进行预后的判断、化疗方案的选择、家族遗传史患者亲属的风险评估,帮助医生根据患者的基因特点来选取更精准的治疗方案。由于BRCA突变检测对实验室设备和检测人员技能要求很高,目前该检测并没有普及,即使是一些大医院都不能进行该项检测。临床多中心研究中的BRCA1/2基因检测,由华大基因提供。随着第二代高通量测序技术的普及,将会有越来越多的医院能开展BRCA基因检测。 在媒体沟通会上,吴小华教授总结道:“此次中国首个多中心卵巢癌患者BRCA突变研究的成功发布,要感谢阿斯利康和华大基因的大力协助。目前,晚期卵巢癌的治疗一直是妇科肿瘤医生面临的严峻考验,我相信通过对疾病的深入研究,对新药的不断研发,以及基因检测技术的提高和普及,最终将惠及卵巢癌患者,为她们争取更多宝贵的、高质量的生存时间,绽放生命的精彩。”
  • 廖玮的基因检测革命:癌症体液诊断
    p   70后的廖玮近期像是一个空中飞人,从广州到北京,再返回广州,再到美国,他将做每件事情所需的时间计算得越来越精确,他想春节后第一代产品研发完成后再稍作放松。 /p p   他现在忙碌的是一个可以在癌症诊断领域掀起全球变革的项目,即癌症体液诊断,只需30分钟左右就能确定是否存在基因突变,临床试验准确率超过99%。 /p p   目前,全球普遍采用的癌症诊断方式是活检穿刺或者外科手术,将疑似组织取出,通过病理切片和染色免疫组化确定是否罹患癌症。这都会给病人带来痛苦,且需要一到两周时间才能获得检验结果。 /p p   两者的诊断流程相比有着较大的差别,近些年,众多企业都希望通过提高基因检测的灵敏度来实现准确的体液(血液)活检。廖玮的EFIRM基因捕获检测方式或将在癌症诊断领域掀起一场全球性的行业变革。 /p p    strong 大洋彼岸的首次创业 /strong /p p   现在,距离产品上市的时间越来越近,廖玮梦想的目标也终于要实现了。为了这一结果,廖玮已经整整等待了15年。 /p p   15年的坚持和跋涉,几乎凝结了廖玮个人的成长史。 /p p   廖玮用他的经历和研究成果再度验证了北大出科学家的传奇:他2005年从北大博士毕业后到美国匹兹堡大学做神经微电极的研究,发明导电高分子层修饰的传感微电极,主持开发植入式微型生物传感器。 /p p   2007年,廖玮成为美国加州大学洛杉矶分校(UCLA)的助理研究员,加入了当时的美国国内的一个重大项目:检测与重大疾病相关的唾液生物靶标分子,由美国国立卫生院(NIH)主导,它的目标是开发一种非常快速的便携检测仪器,通过检测唾液和血液中的生物标记物,来诊断系统型疾病。那时设计的目标,是从最基础的研究开始,比如解析唾液蛋白质组和基因组,试图弄清楚人的唾液中有多少种蛋白和基因。最终这一研究获得了一项国际专利,成果发表在国际知名杂志《核酸研究》上。 /p p   与此同时,廖玮的另外一部分工作是研发新的诊断技术。基于当时的PCR诊断技术,要实现上述目的,第一很难实现,PCR的放大或者提取操作很麻烦,必须由专业人员操作,而他们研发的目标诊断系统是,让任何人都可以便捷操作,快速得出准确的结果 第二,由于操作的复杂性,成本也很难降低,所以需要另外一种可替代的方法——直接检测,把唾液滴上去就可以自动化检测,以这样的检测方法为基础做出来的检测系统成本很低,效率也会大幅提升。 /p p   2009年,唾液检测的核心技术开发完成,廖玮开始寻找进行产业化开发的机会。2011年,在一次展会上,廖玮认识了美国硅谷的AQS公司。AQS公司最擅长的就是新产品开发和生产,包括许多世界知名公司的产品都出自该公司。 /p p   AQS公司管理层和廖玮沟通后,非常看好医疗检测这一领域,既然有核心技术,就可以真正开发出产品,双方一拍即合。第二天AQS公司高管就到UCLA实验室参观,现场观看了样机演示,详细了解了科学背景和知识产权方面的信息。几天之后,廖玮及其他几位同事一同到硅谷,和AQS公司董事会高层管理人员会面,双方正式确定合作。 /p p   2011年6月,合资公司顺利成立。严格意义上说,这是廖玮的第一次创业,他是创始人。那时,AQS公司已经在中国深圳有分公司,在东莞有工厂和研发队伍。也就是从这时起,廖玮开始了当飞人,中美两国来回跑。 /p p   之后,由于廖玮与AQS公司对于技术转化结果理解的差异,深圳研发团队出来的产品没有超越原型的水平,无法达到商业化阶段。到2013年,廖玮与AQS公司深圳研发部中断了项目,但并没有因此中断与AQS公司的联系。 /p p   2013年廖玮开始与AQS公司商议,对于好的技术,产业化时以占股形式实现发展,如帮某个科学家把产品原型做出来,少量地生产几十台或者一百台,大概估算一个价格,投资公司以这样的价格来入股企业,这样双方收获都比较大。因为在硅谷有很多像廖玮一样的人,有技术,但没有产品原型,更无法产业化。在廖玮的建议下,2014年廖玮又与AQS公司合作成立了一家风险投资公司。 /p p   在此种运作模式下,廖玮先后主持投资了几家公司,其中一家3D打印公司,成立时公司才三个人,平均年龄不到22岁,想做3D打印机,廖玮凭借着帮年轻人成就梦想的信念和独到的投资眼光帮这三个人把3D打印机做成了。这家公司在2014年底以17亿美金的价格整体出售,现在已成为世界排名前三的3D打印公司。廖玮另一个成功的投资项目是一款帕金森病人使用的勺子。帕金森病人手不断抖动,吃饭受影响,而这款勺子有固定装置,可以极大程度上方便病人使用,最终谷歌以1亿美金收购了该项目。 /p p    strong 第二次创业 /strong /p p   2014年底,廖玮主动为自己的第一次创业划上了句号。因为,在创业期间,投资公司基本上是附属于AQS的,没有独立的体系。廖玮觉得如果创始人失去了控制权,有些工作是很难推进的。事实上他也碰到了一些困难。 /p p   廖玮觉得,虽然第一次创业有所成功,但这样耗下去并不是明智的选择。同时,在2014后半年,廖玮所在的研究所开始尝试将基因检测的核心技术应用于肺癌的基因诊断、肾脏移植的排异反应以及兴奋剂检测等领域。研究所的技术也不断在临床上实现应用开发,其中一项技术在临床上得到很好的验证,廖玮和中国的几位投资人聊天后敲定,推动这项成果落地转化,即癌症体液诊断。 /p p   2014年,NIH(美国国立卫生研究院)专门设立了一个国际合作项目,主要是促进最先进肿瘤诊断与治疗技术在中低收入国家的应用。廖玮所在的研发团队希望做成一个小型便携式癌症筛查和诊断仪器,用于边远地区,为那些不方便出来就医的人进行癌症筛查,有疑似症状的就送到大医院进行治疗。 /p p   为了提高准确率、降低患者等待时间,以及减少创口带来的伤害,多数医疗企业希望创新检测方式,以实现基因检测靶向检测,但大都在研发阶段。2014年11月底中美研讨会上,廖玮的团队带着已经成型的一台E-FIRM诊断仪原型和大家见面,大部分专家都认为,这个机器如果能够尽快投入市场,对于整个肺癌的防治将有重大意义。 /p p   事实上,这个产品原型在2010年就已经诞生,第一代原型检测的核心技术在2009年的临床癌症研究杂志封面发表,美国新闻也在2010年对这一技术进行了采访,标志着核心检测技术的方向——新一代不需要PCR扩增的基因检测技术的出现,那时比较轰动。但需要一个很好临床应用来推广,之后几年廖玮和研究团队人士一直持续做临床应用开发。其实,那时是美国大诊断公司找到廖玮团队,问能否试一下血液检测,因为用现有的PCR方法都测不太准。2013年,廖玮和研究团队人士开展了肺癌的检测,随后正式与台湾成功大学医院合作,让他们提供血液样本。测了将近200例的病例,准确率超过99%。 /p p   那时候廖玮觉得,这个检测项目要想落地,投资方恐怕也只能授信于他。因为与会的都是科学家、科室主任,他们不可能做成商业化。而廖玮是唯一兼有资本运作和公司运营经验的商业人士,同时还是这个技术的核心开发者之一,具有产品开发经验。2015年初研究团队派廖玮出马,开始与投资方筹备新购公司新项目的商业转化事宜。 /p p   2015年5月,标志着廖玮二次创业的易活生物科技公司在广州落地。廖玮拿到了1000万元的天使投资。 /p p   目前,易活生物已经在筹备生产中。易活生物的研发团队自豪地称,“我们的准确度肯定是超乎所有的现有方法。”易活生物已经与国内多家肿瘤医院合作,实现临床样本试验。目前的测试效果较好。依目前市场看,或许廖玮的EFIRM基因捕获检测方式将在癌症诊断领域掀起一场全球性的行业变革。 /p p    strong 百亿中国市场 /strong /p p   中国由于人口众多,且环境等各种问题交叉,已经成为全球癌症发生率较高的国家,尤其肺癌的发病率和死亡率更是高居榜首。有关数据显示,仅2014年,中国新增肺癌患者就多达70多万。对于诊断行业来说,中国也必将成为全球最大的市场之一。 /p p   事实上,除了患者增长率高这一原因外,由于肺癌的特殊性,肺癌的主要驱动基因EGFR(表皮生长因子受体)在欧美的基因突变概率要低于在东亚人口的基因突变概率,在东亚大概有30%-50%的肺癌病人是由于基因突变,而在欧美只有不到20%,所以对于肺癌基因突变的检测,欧美市场远没有中国大。 /p p   除了肺癌,2014年,结肠癌也已成为中国发病率较高的疾病。 /p p   廖玮的癌症体液诊断项目恰逢其时。便捷、快速、高效的方式不仅降低了医务人员的工作负荷,同时也减轻了患者的检测痛苦和等待结果的煎熬。 /p p   由于肺癌患者发病率较高,有关医学统计预测,未来几年内,新增数量将达到100万。目前,国家对肺癌基因检测的定价在每人次3000元(人民币)到4000元之间,按确诊的100万病人算,肺癌诊断在确诊的市场中就有30亿市场空间。 /p p   而对于疑似的患者检测数量,分析预计或将更多。因此,关于肺癌检测市场空间,行业分析认为在100亿元人民币到200亿元人民币之间。除此之外,其他高发的肿瘤还有直肠癌、乳腺癌、宫颈癌等等,检测量依然很高,因此,癌症检测的总体市场空间将在千亿左右。 /p p   肺癌检测只是廖玮的一个最初布局。据了解,目前,易活生物公司的研发中心设在加州,紧随肺癌检测技术推出的还将有直肠癌、乳腺癌、宫颈癌等。 /p p   廖玮对于易活生物的定位也不仅仅局限于中国,而是全球性的企业。据了解,产品的研发团队在加州,产业化的布局在中国,临床沟通与验证也在全球范围内同时进行:中国医学科学院肿瘤医院、中山大学肿瘤医院、韩国三星医院、台湾成功大学医院,加州大学医学院,纽约大学医学院等等,已经开始临床样品测试。 /p p   春节后,产品规模化量产即将在中国的工厂实现,对于产品进入市场,廖玮计划分两步走。前期获得国家药监局的临床批复可能要两年,两年后其他同行企业或许也会有同类产品跟上来,而易活将会失去时间优势。所以,前期会和第三方实验室合作,目前中国有上千家第三方实验室,而事实上,多数医院的高端检测也都集中在这里。 /p p   在走第一步的同时,廖玮已经推动了全球医疗诊断产业的实质性布局,廖玮预计在今年6月份美国癌症年会中的主题报告和展会上重点发布这一癌症检测产品,也就是说,今年6月份,易活生物将向全球诊断产业发起进攻。 /p p   对于目前易活生物打造的研发平台,廖玮称未来的商业模式将会像iPhone的APP store一样,易活生物卖iPhone,自己开发的iPhone自带软件有限,但企业和科学家都可以开发跟它兼容的新试剂盒,去增加它的功能,这是市场的选择。当然,廖玮希望的是,未来有科学家在这个平台开发肝炎、艾滋病等更多更高端的检测技术,之后再产业化,走向全球。这个平台可以承载一切新事物的到来。 /p
  • 这个基因突变会致癌?揭开致病BRCA突变的神秘面纱
    作者:青岛大学附属医院王晓囡、邢晓明2013年,好莱坞知名女星安吉丽娜朱莉在《纽约时报》发表了一篇名为《My Medical Choice》的文章,讲到自己的母亲与癌症斗争了近十年,于56岁时去世。而她遗传了母亲的BRCA1突变基因,这使她患乳腺癌的几率高达87%,患卵巢癌的几率也达到50%。为了尽可能地降低患癌风险,她决定接受预防性双乳切除术。两年后她又选择预防性的切除了卵巢和输卵管。BRCA1突变真的这么可怕吗?我们一起走进BRCA以及他的家族HRR来一探究竟。01 BRCA基因是什么?BRCA是breast cancer这两个英文单词前两个字母的缩写,研究者于上世纪90年代先后发现了与遗传性乳腺癌有关的基因,分别命名为乳腺癌1号基因、2号基因,英文简称BRCA1/2。实际上,BRCA1/2是两种抑癌基因,通俗的讲也就是对人体有好处的基因,它们翻译出来的蛋白质就像故障工程师一样,兢兢业业的修补受损伤或者有缺陷的基因。哪里有基因的双链断裂,哪里就有他们忙碌的身影。其实人体内不是只有BRCA1/2具有基因修复功能,而是有一个负责基因修复的大家族,被称为HRR(同源重组修复)通路,它包含的基因有:BRCA1,BRCA2,ATM,ATR,BARD1,BLM,BRIP1,CDK12,CHEK1,CHEK2,FANCA,FANCC,FANCD2,FANCE,FANCF,FANCI,FANCL,FANCM,MRE11,NBN,PALB2,RAD50,RAD51,RAD51B,RAD51C,RAD51D,RAD52,RAD54L,RPA1等。BRCA1/2是其中比较关键的两个基因,是HRR通路中的中流砥柱。02 如何检测BRCA1/2基因有没有突变?穿刺或者手术切取的组织都会被送往病理科,由病理科的医生对其进行处理并最终制作成蜡块(由石蜡包裹着的组织块)。进行BRCA1/2检测,首先需要从蜡块中提取DNA或者直接从血液中提取DNA,然后通过生物学技术对DNA中的BRCA1/2基因进行测序。由于BRCA1/2基因没有热点突变,即它的突变不集中于某几个区域上,而是在所有区域都有可能发生,所以需要利用下一代测序技术(Next generation sequencing,NGS)对BRCA1/2基因进行全外显子测序。最后根据测序数据分析可能的BRCA1/2基因突变,判定是否携带BRCA1/2基因的突变。03 有BRCA1/2突变一定得肿瘤吗?当然不是啦。其实BRCA1/2的突变分为5类,只有被归为第五类和第四类的突变才可能导致肿瘤的发生。第五类的突变被称为致病性突变,有99%的可能导致肿瘤的发生,第四类的突变被称为可能致病性的突变,有95%-99%的可能导致肿瘤的发生。那为什么发生这两类突变的BRCA1/2基因就从原来的好基因变成坏基因了呢?这是因为发生了这些突变的BRCA1/2基因在翻译时遇到了麻烦,不能翻译出具有正常功能的BRCA1/2蛋白,导致其丧失修复基因双链断裂的能力,这会影响基因组的稳定性,并引起多种肿瘤的发生。有研究指出,BRCA1/2胚系突变可使女性患卵巢癌的风险提高10-30倍,也增加了人们患乳腺癌、前列腺癌、胰腺癌、黑色素瘤等多种癌症的风险。04 BRCA1/2突变会遗传吗?BRCA1/2突变分为体细胞突变和胚系突变两种类型。体细胞突变是指只有肿瘤细胞发生了突变,而人体其他部位的正常细胞则没有发生突变。这种突变不会遗传给后代。那胚系突变是什么呢?我们都知道每个人都是爸爸妈妈爱的结晶,精子和卵子结合形成受精卵,再经过妈妈十月怀胎的辛苦最终有了我们每一个个体。精子和卵子里有来自爸爸和妈妈的染色体,这两部分染色体汇集到一起就变成了我们自己的染色体。如果爸爸或者妈妈贡献给我们的染色体里含有BRCA1/2的突变,那么我们就遗传了这个突变。我们体内的每一个细胞(每个细胞都是从最初的受精卵分裂来的,都跟受精卵有相同的染色体)里都带有这个突变,我们的后代也有可能带有这个突变,这就是胚系突变。胚系突变是可以遗传的。05 怎么区分BRCA1/2的突变到底是体细胞突变还是胚系突变呢?抽取静脉血3ML,分离其中的白细胞,提取DNA进行检测,如果检测出BRCA1/2的突变,这个突变就是胚系突变。如果血液里没有检测到突变,却在肿瘤组织中检测到了,那这种突变就是体细胞突变。06 有BRCA1/2的致病性或者可能致病性突变应该怎么办?对于携带BRCA1/2胚系突变的正常人来说,可以找专业的医生进行遗传咨询,并加强高风险疾病(女性如乳腺癌、卵巢癌等;男性如前列腺癌、胰腺癌等)的筛查,做到早发现早治疗。或者根据医生的建议并结合自身状况,选择是否像安吉丽娜朱莉一样进行预防性切除术以降低患癌风险。同时建议对有风险的亲属如父母、兄弟姐妹、子女等进行遗传咨询并考虑是否进行基因检测。对携带BRCA1/2胚系突变的肿瘤患者来说,一方面可以做遗传咨询,另一方面可以选择相应的药物进行治疗。而对于BRCA1/2体细胞突变的患者来说,可直接进行药物治疗而不用做遗传咨询。07 PARP抑制剂为什么可以用来治疗具有BRCA1/2的致病性或者可能致病性突变的肿瘤患者?前面我们提到BRCA是修复DNA双链损伤的酶,而PARP则是一种修复DNA单链损伤的酶,它的全称聚腺苷二磷酸核糖聚合酶。PARP抑制剂可以选择性的抑制PARP介导的DNA单链损伤修复途径,使发生损伤的DNA单链进一步转化成DNA双链断裂。这个时候就需要BRCA闪亮登场,而如果BRCA基因发生致病性或者可能致病性的突变,如同前文所述,DNA双链断裂就得不到修复,DNA损伤不断积累,最终就导致了细胞的死亡,这被称为合成致死效应。所以在选择此类药物进行治疗前,一定要先进行基因检测,BRCA基因确实存在致病性或者可以致病性突变才可用药,用药才有效果。此外,上文我们提到BRCA1/2是HRR通路中的核心成员,其实HRR通路中的其他基因如果出现问题,如发生致病性或者可能致病性的突变,同样可以影响基因的稳定性,导致肿瘤的发生。2020年PARP抑制剂奥拉帕利获得美国FDA(美国食品药品监督管理局)批准一项新的适应症,即用于治疗HRR通路基因突变的前列腺癌患者。 了解了BRCA1/2的前世今生,揭开了它的面纱,是不是觉得它也没有那么可怕了呢?可能不是每个人都能像安吉丽娜朱莉那样喊出自己的医学宣言,但是知己知彼,百战不殆,了解它,走进它,干掉它,愿每一位患者都能战胜病魔拥抱健康。
  • 首次大规模高分辨率揭示从一个携带致癌突变的单细胞演变为侵袭性肿瘤的全过程
    癌症是由渐进的基因和表观遗传变化驱动,在整个过程中,癌细胞可以获得复杂的异质性,进而更具侵袭性和转移性,并扩散到身体其他部位形成新的肿瘤,加速疾病的进程。因此,深入了解肿瘤亚克隆选择和转移的分子基础、转录状态的起源和转变以及肿瘤进化路径的遗传决定因素,不仅有助于阐明肿瘤进化的基本原则,还具有临床意义。基因工程小鼠模型(Genetically engineered mouse models, GEMMs)是研究肿瘤进展的一个关键工具,研究人员能够通过GEMMs研究肿瘤在原生微环境和实验定义的条件下的演化过程。其中,KrasLSL-G12D/+ Trp53fl/fl(KP)模型通过病毒传递Cre重组酶到少量肺上皮细胞引发肿瘤,导致致癌基因Kras的激活、P53肿瘤抑制基因的纯合缺失和肿瘤的克隆生长等,真实模拟了新生细胞转化成侵袭性转移肿瘤的主要步骤,从分子和组织病理学上再现了人肺腺癌的进展。因此,我们可以通过KP模型来探究肿瘤演变过程中尚未解决但非常关键的问题。 近日,美国加州大学Jonathan S. Weissman研究团队及合作者在Cell上发表了题为“Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution”的文章。研究团队将基于单细胞RNA-seq的进化谱系示踪系统引入KP小鼠模型中,连续并全面监测了一个携带致癌突变的单细胞演变为侵袭性肿瘤的全过程,揭示罕见的亚克隆可以通过独特的转录程序驱动肿瘤扩张。此外,研究团队还发现肿瘤通过典型、独特的进化轨迹发展,干扰额外的肿瘤抑制因子可以加速肿瘤的进展。该研究以前所未有的规模和分辨率重建了从单一转化细胞到复杂、侵袭性肿瘤群体的肿瘤演化全过程。 文章发表在Cell主要研究内容KP-Tracer小鼠可以连续和高分辨率追踪肿瘤的起始和进展为生成高分辨率的肿瘤演化系统,研究团队开发了一种具有谱系追踪能力的肺腺癌小鼠模型KP-Tracer,能够连续数月进行细胞谱系追踪。后续实验证实,在5-6个月后,该模型成功追踪了肿瘤发生,并且示踪剂能够在相应部位表达。此外,在对癌细胞进行单细胞转录组测序分析后,发现细胞状态、谱系、样本身份和肿瘤克隆性在肿瘤中的表达与预期一致。 图1. KP-Tracer小鼠模型的构建。来源:Cell罕见的亚克隆在肿瘤发展过程中显著扩增肿瘤进化中的一个关键问题是,基于肿瘤生长促进基因或表观遗传变化的亚克隆选择以及由此产生的亚群动态变化如何导致侵略性亚克隆对同一肿瘤的其他部分的扩展。为研究KP肿瘤的亚克隆动力学,研究团队采用了一种统计检验方法,即将每个亚克隆的相对大小与没有亚克隆被选择的“中性”进化模型中的大小进行比较分析。结果显示,有些肿瘤似乎是中性进化的,即没有证据表明阳性选择;有些亚克隆则显示出明显的阳性选择迹象。此外,研究团队发现肿瘤主要由一个(有时两个)正在扩增的亚克隆驱动。在肿瘤中,扩增细胞的比例分布广泛, 表明了亚克隆扩展的侵袭性;扩增细胞以增加的DNA拷贝数变异、细胞周期评分和适应度评分为标志。 图2. 罕见亚克隆的显著扩增及其特性。来源:Cell绘制细胞状态之间的系统发育关系揭示肿瘤进化的共同路径原则上,KP模型中观察到的细胞可塑性、转录异质性可能来自于通过转录状态的随机或结构化进化路径。为了研究肿瘤进化路径的一致性,研究团队开发了一个称为“进化耦合”的统计数据,扩展了克隆耦合统计数据来量化成对细胞状态之间的系统发育距离。基于不同转录状态的占比和进化耦合的全套肿瘤的数据驱动分层聚类显示,肿瘤可以分为三个不同的组(Fate Cluster1、Fate Cluster2及Fate Cluster3)。Fate Cluster1、2之间共享一些转录状态,Fate Cluster1主要通过包括胃样和内胚层样状态进化;Fate Cluster2通过肺混合状态进化,Fate Cluster3以高适应度状态为主,如前上皮间质转化(Pre-EMT)和间质状态。进一步,研究团队开发了“Phylotime”对Fate Cluster 1、2背后的转录变化进行分析。分析结果证实,Fate Cluster1、Fate Cluster2是两条独立的进化途径,并且每条途径显示出与Phylotime相关的不同转录变化。上述结果表明,KP肿瘤可能主要通过两种途径进化,一条是胃样和内胚层样状态,另一条是肺混合状态,且每种进化轨迹都显示出明显的转录变化。 图3. 细胞状态之间系统发育关系的构建。来源:Cell肿瘤抑制因子的缺失会改变肿瘤的转录组、可塑性和进化轨迹肿瘤抑制基因可以调节多种细胞活动,其丧失与肿瘤侵袭性的增加有关,但这些基因对体内肿瘤进化动力学的影响目前尚不清楚。因此,研究团队结合基因干预和定量系统动力学方法探索了额外的致癌突变如何改变KP肿瘤的进化轨迹,重点研究了人类肺腺癌中两种频繁突变的肿瘤抑制因子LKB1和APC,以及经CRISPR sgRNA敲除LKB1和APC后产生两种动物模型(KPL和KPA)。结果显示,靶向LKB1或APC会增加肿瘤负担,但亚克隆扩增的数量和相对大小没有改变;与肿瘤适应性相关的基因在遗传背景中差异较大。 图4. 遗传扰动会改变肿瘤的转录适应性和可塑性。来源:Cell 为检测LKB1和APC的异常是否改变了KP肿瘤的转录图谱,研究团队整合了KPL、KPA肿瘤和之前的KP肿瘤的单细胞转录组数据集。结果显示,经额外的LKB1和APC干扰后产生了四个新的转录状态。此外,针对LKB1/APC的干预也导致主导转录组状态的改变:KPL肿瘤主要富集在上皮细胞-间充质转化前状态(Pre-EMT),KPA肿瘤富集在APC特异性早期、间质和转移状态。 为研究肿瘤抑制因子的缺失如何改变进化轨迹,研究团队对单个肿瘤的转录状态占比和进化耦合进行了主成分分析。结果显示,靶向性肿瘤抑制因子LKB1或APC均可促进肿瘤生长,但其对细胞状态、可塑性和进化路径的影响差异较大 。具体而言,KPL肿瘤能够迅速发展到Pre-EMT状态下并稳定下来;KPA肿瘤则通过新的APC特异性状态开辟了一条独特的进化路径。图5. 肿瘤抑制因子的缺失对肿瘤进展及细胞状态的影响。来源:Cell结 语综上所述,该研究首次在基因工程肺腺癌小鼠模型中使用基于CRISPR的谱系示踪剂追踪肿瘤从单一转化细胞到侵袭性肿瘤的演化过程,以连续、高分辨率的肿瘤谱系追踪为肿瘤进化建模提供了一个重要参考,绘制了从激活单个细胞的致癌突变发展成为具有侵袭性的转移肿瘤的路径图,揭示了细胞转录图谱、细胞可塑性、进化路径以及肿瘤抑制因子在肿瘤发展中的作用。研究团队表示,随着谱系示踪工具的发展和其他新兴数据的集成,也期望该研究提出的实验和计算框架为未来构建肿瘤演化的高维、定量和预测模型奠定良好的基础,从而为新的治疗策略提供新思路。 图6. 研究总结概图,来源:Cell
  • 浙江首个国家基因检测中心落户宁波 基因检测含80多项
    想知道自己是不是像影星安吉丽娜朱莉一样容易患上乳腺癌?想知道为什么有人喝酒千杯不醉,自己一杯就倒?今后,这些都可以在家门口通过检测基因来寻找答案。  昨天下午,省内首个国家基因检测技术应用示范中心在我市挂牌成立,该中心目前已经开展了80多项基因检测,涵盖癌症、产前筛查、传染病等领域。该示范中心落户宁波后,宁波人做基因检测的时间周期有望缩短,费用也将大幅下降。  在家门口就能做基因检测  基因和人们的生老病死息息相关。很多人了解基因检测是因为好莱坞明星安吉丽娜朱莉。2013年,她接受了基因检测,查出自己的乳腺癌患病风险高达87%,而她的母亲就是因为卵巢癌而早逝。后来安吉丽娜朱莉通过乳腺切除手术,将自己的患癌风险降至5%。一时间,基因检测引来无数关注。  随着基因检测技术的进步,越来越多的人希望通过基因检测来关注自己的健康。今年4月,国家发展改革委批复了全国第一批共27个基因检测技术应用示范中心建设项目,由宁波市临床病理诊断中心、宁波美康盛德医学检验所有限公司承建的宁波市基因检测技术应用示范中心,成为其中之一。据悉,这也是浙江省内首家基因检测技术应用示范中心。今后,宁波人也可以在家门口做和安吉丽娜朱莉同样的乳腺癌基因检测。  “目前的基因检测市场鱼龙混杂,费用和标准都不统一,这都影响基因检测的准确性。基因检测技术应用示范中心成立后,宁波市民做基因检测不用再往外地跑,在当地就能为宁波市民提供更精准的基因检测。”宁波基因检测技术应用示范中心主任金惠铭介绍,基因检测的作用,一方面是可以提前预知自己患某种疾病的风险有多高,提前预防 另一方面就是已经患病后,可以通过基因检测,了解到采取哪一种药物精准治疗效果会最好。  据了解,省内首个基因检测技术应用示范中心落户宁波,一方面是因为宁波的相关实验室硬件过硬,而且宁波有国内首个临床病理检测中心,病源丰富,能起到示范效应。  耳聋基因、老年痴呆基因都能检测  昨天成立的宁波市基因检测技术应用示范中心一期,位于宁波市鄞州区,面积共计2200平方米。目前实验室已开展80多项基因检测项目,包括48 项无创产前筛查与个性化用药基因检测项目,如抗肿瘤药物、心血管药物、神经系统药物等,以及与南方基因中心合作开展个人疾病易感基因37项,包括肝癌、肺癌、宫颈癌、乳腺癌基因检测等。其中,有20多项基因检测项目是在宁波地区首家开展,如耳聋基因、老年痴呆基因、无创产前筛查等。  “比如就像安吉丽娜朱莉做的乳腺癌21基因检测,目前市场上的各类检测机构报价在1万元左右,而且拿到报告需要半个月的时间。今后在宁波当地检测,费用预计至少降低两成以上,拿到检测报告的时间也将缩短到一周左右。”金惠铭介绍,基因检测技术在重大疾病的预警、预防、预后及个体化诊疗等方面日益占据重要地位。随着宁波基因检测技术应用示范中心项目建设的推进,还将开展更多的基因检测项目。
  • 基因治疗,如何走出泥潭
    基因本身是无法自己进入到细胞体内的,必须依靠一定的载体才行,而病毒就是最好的选择,因为病毒可以侵入人体。可是病毒插入染色体后的位置是随机的,谁也无法保证它不会突然触碰到某些癌基因,治病不成,反把它们给激活了。   ①将修饰的DNA注入载体   ②载体结合到细胞膜   ③载体通过囊泡进入细胞   ④囊泡解体释放出载体   ⑤载体将新基因导入细胞核内   ⑥细胞利用新基因表达蛋白   图片来源:百度图片   距离基因治疗的第一例人体试验已经过去二十多年了,然而,这项曾被寄予厚望的治疗手段至今难以真正在临床上实现应用,人们也经历了从开始的盲目乐观与热情到意识到其副作用时的失望与怀疑。也许,回归理性并坚持走下去,基因治疗才有前途。   据2012年12月24日BBC报道,英国科学家分析了20个具有肠癌家族遗传史的人的基因组,发现了两处会引起肠癌发病率显著升高的基因变异,分别是POLE和POLD1。POLE 和 POLD1是负责DNA损伤修复的基因,这两个基因功能异常会导致损伤的DNA积累,从而有可能引起肠癌。而这一结果也被认为有助于医生识别出肠癌高危人群,进行早期诊断和治疗。   事实上,从2000年“人类基因组计划”宣布有史以来的第一个人类基因组草图完成,到2012年“千人基因组计划”公布1092个高分辨率人类基因组遗传变异整合图谱,人类谱写的生命“天书”越来越精细,科学家们也试图从中读出遗传和致病的密码。然而,截至目前,美国FDI尚未批准任何一种用于临床的基因治疗药物或者方法,基因治疗并非如大众希望的那样可以成为一种常态化的治疗手段。   副作用让基因治疗跌入谷底   所谓基因治疗,就是把一个具有治疗作用的基因放到病人的细胞中,借此替换缺失和功能异常的基因,或者,借此过度表达好的基因,把坏的基因遮蔽住,最终达到治疗某种疾病的方法。   医生可以选择体内或者体外治疗,前者是直接将携带基因的载体注射到受损细胞所在区域,后者则是抽取病人的血液或者骨髓,分离出未成熟的细胞,接着将基因送入这些细胞,再重新注射到病人的血液中。这些细胞会移动到骨髓,在那边成熟并大量增殖,最终替换掉那些受损的细胞。   基因治疗在1990年第一次进行了人体试验,截至2004 年6月底,全世界范围内基因治疗的临床试验方案已有987 个。“基因治疗一度在欧美掀起了一股研究热潮。”中科院北京基因组研究所副研究员聂凌虎说。   可正当研究人员信心满怀之时,几起因基因治疗而诱发的事故顿时让这股热潮跌入冰点。   自2000 年以来,法国巴黎内克尔医院Fischer 教授对17 名患有严重联合免疫缺陷病的儿童实施基因疗法,正常的基因植入到患儿体内,修复有缺陷的免疫系统,当时疗效很显著,但是从2003 年开始,其中5名患者出现了类似白血病症状,后有一名患病儿童死亡。   至此,美国FDA开始意识到基因治疗可能具有潜在的、长期的副作用。大量基因治疗临床试验被搁浅,人们对于基因治疗的期望也跌入谷底。   基因载入不可控,一不小心搞破坏   其实,基因治疗产生副作用的“罪魁祸首”就是输送治疗基因到达致病靶点的载体。   基因本身是无法自己进入到细胞体内的,必须依靠一定的载体才行,而病毒就是最好的选择,因为病毒可以侵入人体。   理想的基因治疗应该能根据病变的性质和严重程度的不同,调控治疗基因在适当的组织器官内和以适当的水平或方式表达。可是,目前,科学家还不具备这样的掌控力。   聂凌虎说,病毒插入染色体后的位置是随机的,谁也无法保证它不会突然触碰到某些癌基因,治病不成,反把它们给激活了。   “因为癌基因被激活的原理之一就是外源DNA插入过程中破坏了其本身的结构。”复旦大学生命科学学院教授李瑶解释。   而让李瑶始终不看好基因治疗的,还在于肿瘤疾病几乎都是多基因疾病,致病机制非常复杂。   在肿瘤领域,p53被视为最有分量的抑癌基因,50%以上的肿瘤疾病都与这个基因的功能缺失有关。2004年,深圳赛百诺基因技术有限公司推出了p53 抗癌注射液(又名“今又生”),由我国SFDA批准上市,它也成为了全世界第一个正式用于临床基因治疗的药物。   但聂凌虎告诉记者,此后,因其疗效得不到业内的一致认可,开发者又陷入专利和股权官司,“今又生”并没有获得预想的口碑和经济收益。   “p53的重要性毋庸置疑,但癌症并不是一股只有单个决口的洪流,一旦发病就是诸多关口一齐崩溃,拦得住p53,也很难拦住所有。”他表示。   推进基因治疗,攻克“载体”难题是关键   目前,在基因治疗领域,学界主要攻克的对象就是载体,通过改造使其提高安全性和效率。其中,非病毒载体就是一种新的研究方向。   非病毒载体最初在基因治疗临床试验中的使用率很低,但它的生物安全性显然要高于病毒载体。随着脂质体、多聚物,以及它们的复合物等载体的出现,结合电脉冲、超声等技术,一定程度上可以提高导入效率和靶向性。因此,聂凌虎认为,很难说,现在的小众产品未来就不会超越主流的病毒载体。   而目前被认为最为理想的是一种被称为腺相关病毒(AAV)的载体,它没有毒性,不致病,宿主范围广,稳定性好。   美国费城儿童医院和霍华德休斯医学研究所以及宾夕法尼亚大学联合组成的一个研究小组已经在12名年龄介于8岁到44岁之间的利伯氏先天性黑内障(LCA)病人身上,使用了以这种无毒性小病毒为载体的基因疗法。   研究人员将正常的基因RPE65植入眼部,在眼球后面产生感光色素,取代了那些因病丧失的色素,从而恢复眼部的光敏性。尽管该疗法并没有让所有病人恢复正常视力,但是,有一半的人重见了光明。   不过,据聂凌虎介绍,国外还存在一种新的思路,那就是通过移植基因来改良造血干细胞。造血干细胞属于骨髓细胞,它可以产生血液和免疫系统中所有的细胞,被改良造血干细胞可以使宿主产生新的免疫系统,从而让肿瘤消失,这与直接移植造血干细胞的效果相似。同时,造血干细胞是悬浮的,即使是病毒载体进入,在整个循环系统里面,它们也能相对均匀地接触这些悬浮的细胞,避免冲撞到“要命”的细胞而产生副作用。   美国印第安纳州大学医学院研究人员在动物实验中就用通过改良的慢病毒载体将抗黑色素瘤T细胞受体基因插入到小鼠的造血干细胞中,并最终完全消除了肿瘤。   “基因治疗的突破也许会从造血干细胞开始。”他认为。   基因诊断更成熟,治疗主要靠引导   从开始的盲目乐观与热情到意识到副作用时的失望与怀疑,对于基因治疗,人们正在回归理性。正如李瑶说的,基因治疗的确有一定价值,尤其在一些单基因遗传病以及某些肿瘤疾病上,但它并不是万能的,在当前的认识和技术水平下,大多还在Ⅰ/Ⅱ期临床试验阶段,距离应用还差得很远。   不过,专家们一致认为,相较于基因治疗,基因诊断技术则要现实和成熟许多。据美国国家疾病控制中心基因检测部公开的数据显示,目前已存在1000多种疾病的基因诊断技术。   在那些已知致病基因的疾病诊断中,可以通过个人DNA的检测,观察是否存在染色体异常、对应基因有突变,或者基因表达程度问题,从而判断疾病是否发生。   目前应用非常广泛的应该是对新生儿单基因遗传病以及染色体异常的筛选,比如地中海贫血、唐氏综合症、色盲等等。   此外,对于成年人来说,还有例如线粒体基因突变糖尿病、镰刀型贫血症、老年性痴呆等等,当然还有人们熟悉的一些癌症,比如结肠癌、乳腺癌等等。   而在聂凌虎看来,乳腺癌的基因诊断和治疗模式是当前个体化基因医疗的一个理想模式。   BRCA1和BRCA2被称为是乳腺癌的易感基因,一个女性如果发现携带这种基因,在70岁以前她有65%的几率患乳腺癌,BRCA1和BRCA2基因检测在发达国家作为一项预防乳腺癌的手段早已进行。有意思的是,它们虽然“凶猛”,BRCA1突变者对化疗的临床反应率为100%,可以说非常敏感,化疗的治愈效果自然很好。   “这种模式,即通过基因诊断先使疾病层层分型,再针对每种类型进行对应的引导治疗。”聂凌虎坦言,单指基因治疗,目前在临床应用上也只能做到引导用药、治疗。
  • 基因检测市场大 现实混乱坎难过
    3000元、4500元、9000元,这分别是北京协和医院、深圳华大基因优康门诊和北京迪诺基因公司对女性乳腺癌基因检测一项报出的价格。&ldquo 朱莉效应&rdquo 让乳腺癌、基因检测等专业医疗术语普及全球,并迅速搅动了国内相关基因检测市场。   日前,好莱坞影星安吉丽娜· 朱莉因预防性切除双乳乳腺,首次登上美国《时代》周刊人物封面。&ldquo 朱莉效应&rdquo 引发全球众多女性对乳腺癌的恐慌,为朱莉进行基因检测的万基遗传公司(MYGN.NASDAQ)乳腺癌基因检测业务因此大增。   &ldquo 朱莉效应&rdquo 也影响到国内。日前,北京协和医院急诊科主治医师(新浪微博认证&ldquo 急诊科女超人&rdquo )于莺在个人微博上坦陈:&ldquo 刚花了三千多元做了这项基因检测,因为家族有乳腺癌多发的历史&hellip &hellip &rdquo 这是国内公开的一个朱莉&ldquo 追随者&rdquo 。   &ldquo 朱莉效应&rdquo 迅速搅动了国内长期以来尚未被普及的基因检测商业市场,《第一财经日报》从华大基因、广州金域、迪安诊断等公司了解到,相关公司纷纷认为向社会推广包括基因检测在内的高端临床检测业务的时机已到,市场升温在即。   然而,由于国内相关政策限制等诸多原因,与美国能做的近3000项基因检测技术相比,国内被批准及能开展的基因检测技术仅有20多个。政策限制、指南欠缺、收费标准混乱、人才缺乏等限制着国内基因检测市场的发展。   200亿美元的大市场   在1990年启动的&ldquo 国际人类基因组计划&rdquo 中,美、英、日、德、法以及中国6国的科学家们先后共用了10年时间、花费30亿美元完成了一个人的基因组测序,由此开启了人类基因时代,通过基因检测预防和治疗疾病成为临床应用的常用手段。   从技术到市场的商业转化并不遥远,由基因测序开启的市场正在日益膨胀。有机构预测称,若基因检测能成为欧美两地400万乳腺癌患者的常规检查,仅此一项就可形成200亿美元的市场。   相关公司显然不会错过这样的大好机遇。万基遗传早在1998年就被授予利用BRCA1、BRCA2两大乳腺癌易感基因的专利,该公司已开发出检测这两种基因是否变异的方法,由于市场垄断,近年来万基遗传已从这两种基因的相关专利商业运用中大幅获利。   万基遗传2013年第一季度财报显示,公司营收同比增长近21%至1.565亿美元,其中与乳腺癌易感基因BRCA相关的业务收入达1.154亿美元,同比增长9%,目前约占公司收入比重的74%。   由于主营的基因检测业务市场广阔,万基遗传受到了投资者的持续热捧,其股价自2003年4月(人类基因组序列图宣告绘制成功的时间)迄今的10年间,上涨逾7倍。   国内最大的第三方医学检验机构、广州金域医学检验分子病理学科负责人赵薇薇告诉本报,目前国内已经有金域医学、华大基因及协和医院等多家机构在做乳腺癌基因检测。&ldquo 朱莉事件很好地普及了民众知识,目前是国内推广包括乳腺癌基因检测在内的高端检测项目的一个好时机,我们为此准备了两三年,相关人才、设备都已经到位。&rdquo   在金域医学检验2012年超过10亿元的营收中,来自肿瘤早期筛查、遗传性疾病检测等高端特检项目的收入占比还不到10%,而今年,该公司对高端特检项目业务很有信心。&ldquo 相比去年同期,公司前三个月的营收中,宫颈癌早期筛查、遗传性乳腺癌卵巢癌基因检测及一些广谱癌症的筛查业务都有翻倍的增长。&rdquo 赵薇薇说。   近半月以来,在深圳华大基因位于大梅沙的优康门诊部,关于乳腺癌基因检测的咨询也多了起来。华大基因新闻发言人杨碧澄告诉本报:&ldquo 相关网页点击量明显上升,电话咨询的也不少。&rdquo   华大基因是国内最大的基因检测机构,数年前华大基因落户深圳时,由于给中国明星企业家王石做了第一个亚洲人基因组测试科研项目而名声大噪。该公司2010年的总营收近10亿元,2011年总营收近12亿元,去年的总营收已超过15亿元。而对医院和个人开展高端基因检测技术正是该公司核心业务之一。   &ldquo 目前国内会进行肿瘤基因检测的消费者来自两大类:一类是医院已有的遗传性肿瘤患者,他们来做基因检测是为了获得更合适的治疗方案 另一类就是遗传性肿瘤患者的家属,他们来做的目的主要是进行患病风险评估。&rdquo 赵薇薇告诉记者。   报价相差3倍   虽然&ldquo 朱莉效应&rdquo 搅动了国内基因检测市场,但市场上存在的价格乱象问题也不容忽视。   &ldquo 4500元,这是我们优康门诊部针对个人消费者的价格,也是我们对合作医院的报价,包括乳腺癌和卵巢癌筛查的多个基因检测。&rdquo 杨碧澄告诉本报。   迪诺基因官网则称,浙江大学-迪诺遗传与基因组医学研究中心提供家族遗传性乳腺癌、卵巢癌(HBOC综合征)基因检测服务,针对BRCA1、BRCA2两基因的突变热点进行检测,全部的测序反应有66项,能够全面、准确地检测出这两个基因的突变情况,检测费用为9000元。   据外媒报道,朱莉进行的BRCA1、BRCA2基因检测费用为每次三四千美元。而在国内,同一个基因检测项目为何收费如此悬殊?   浙江大学医学院附属第一医院遗传与基因组医学中心主任祁鸣曾对外提及,目前国内基因检测项目没有纳入临床检测范畴,因而也没有收费标准。   在基因测序收费方面,目前北京市官方报价,一个位点/区域的测序检测价格为500元,浙江省定为600元,广东省定为300元。以乳腺癌、卵巢癌致病基因BRCA1为例,一个基因就包含20多个区域(外显子),最高价与最低价在理论上就相差了6000多元。而实际上,由于市场竞争以及一些小公司低廉价格的冲击,目前平均价格仅为2000元~3000元。   北京协和医院多年前便有能力开展基因检测服务,但苦于没有收费标准。直到2011年才终于在国家发改委备案,正式开展K-ras基因、BRCA1\2以及P53四项基因检测服务,收费标准分别定为1500元、3000元和2100元。   赵薇薇告诉本报:&ldquo 基因检测技术成本很高,检测设备和所有诊断试剂一般都是进口的,而且高端人才的成本也不低。&rdquo   祁鸣曾参加过某些省(市)对于基因检测价格的专家讨论会。其间一些政府官员对于昂贵的报价不作任何调研,只凭一句&ldquo 价格太高,老百姓接受不了&rdquo 就将价格杀到一半。&ldquo 这样无视检测成本,会把这项技术扼杀在摇篮里。&rdquo   在业内看来,收费标准缺失只是基因检测市场混乱的外在表现,而要理顺整个产业,首先需要相关部门加快审批,让已经证实确切有效的基因检测项目尽快上马 其次要梳理不同基因检测手段的标准化流程 最后则是集合该领域专家进行商议,确定合理价格。   目前国内使用基因检测主要分为三类:风险评估、辅助诊断以及用药指导。市场上又以第一类检测更为多见。   不过,目前由原卫生部审批的在临床能够开展的基因检测项目只有20余个,虽然这些基因无一例外有大量循证医学证据支持,同时对临床诊断或治疗决策有直接意义,但相比于美国2900多个临床检测基因悬殊巨大。   在谈及如何看待国内基因检测市场时,迪安诊断副总经理、董秘徐敏告诉本报,目前国内基因检测之所以没有大规模应用的原因,主要在于民众的理解程度尤其是政府的开放程度没有达到一定水平,&ldquo 所以,虽然我们的技术能力具备,但目前还只是谨慎推介,没有大规模推向市场。&rdquo 徐敏说。   杨碧澄则对本报坦陈:华大优康门诊部可以提供基因检测服务受到的限制很多,能提供的检测服务项目很少,大概只有10项。&ldquo 主要是限制技术准入,比如检测技术或仪器不能应用于临床,诊断试剂是国外引入,得不到药监局的审批等。&rdquo   &ldquo 国内现在临床检测服务方面做得不好,政府不够重视,与国外的技术差距也比较大。&rdquo 赵薇薇说,本身在医学检验技术上,国内就与美国相差甚远,金域医学检验是目前国内最大的第三方医学检验机构、市场份额超30%,但只能做1500项临床检验,而美国最大的第三方医检机构QUEST公司能做的检测技术数倍于金域。&ldquo 国内基础检验项目都能做,差的就是包括基因检测在内的高端检测技术。&rdquo   当前我国业已颁布与基因检测有关的规范仅有原卫生部2007年6月印发的《医疗机构临床检验项目目录》以及《临床基因扩增实验室》等文件,一方面上述规定与涉及临床遗传学、分子遗传学、基因组学、遗传咨询的理论和技术的临床基因检测学科要求相去甚远 另一方面,对于鱼龙混杂的基因检测商业市场而言,约束效力近乎为零。   在记者昨日随机采访询问的30位职场人士当中,约有三分之一表示,如果有家族遗传性疾病,愿意花费几千元去做相关基因检测进行早期筛查和预防,并对相关收费标准、技术水平以及检测结果出来之后的预防方案比较关注。   基因检测市场爆发的曙光已现,但阻碍这一技术前进的诸多问题却仍未解决。
  • 武大医学病毒研究所严银芳团队研制出干细胞抗癌新药
    摘要干细胞治疗癌症可能是最有效的办法,国内外已开始有干细胞治疗肿瘤进入临床应用。但由于肿瘤发生的基因突变机制相当复杂,就目前的技术水平还很难以在基因结构水平上彻底治疗肿瘤。肿瘤属表观遗传学疾病☆。针对癌基因治疗工程应该是以表观遗传学为基础理论手段来彻底根治。要通过表观遗传学手段将癌基因复制持久能转变为其他动能或转移至另一分子,这才是根治癌症最有效途径之一。基因工程量子技术手段为我们制备出安全适用的干细胞抗癌药物增添了新的途径。广谱抗癌新药一抑癌间充质干细胞就是这样一种崭新的全能技术。 间充质干细胞低免疫原性,全能性,是发展成广谱抗肿瘤药物的重要支撑间充质干细胞具有独特 低免疫原性和全能性,在大量的同种异体动物 临床移植实验中都表现出和角膜移植类似的免疫豁免特性。无论采用静脉注射、皮下注射、复合骨诱导或其它方式移植, 间充质干细胞的耐受原效应都不受影响。间充质干细胞属于多能干细胞。具有多向分化潜能、可分化为脂肪、骨、软骨、肌肉、肌腱、韧带、神经、肝、心肌、内皮等多种组织细胞,连续传代培养和冷冻保存后仍具有多向分化潜能,间充质干细胞的这种全能性,是发展成广谱抗肿瘤药物的重要支撑。同时干细胞中未分化细胞miRNAs是一类含量丰富的非蛋白编码小分子 RNA, miRNAs主要是与靶 mRNA的 3′UTR区域结合 ,抑制 mRNA的翻译或直接使 mRNA降解 ,能调节多种生物功能。一些 miRNAs,如 miR2 172 92,可能作为致癌基因 而另一些 miRNAs,如 miR2 15,可作为抑癌基因 ,它们在肿瘤的发生、发展过程中起着重要作用。(在干细胞中有致癌基因,又有抑癌基因怎样发挥抑癌基因作用,又怎样消除致癌基因致癌性,全面统一调控它们抗癌生物活性,这才是抑癌间充质干细胞的独特功能。临床应用干细胞之所以不成功矛盾的地方有赖于此)。抑癌间充质干细胞根治癌症原理抑癌间充质干细胞就是利用基因工程技术敲除间充质干细胞中未分化细胞miRNAs,如 miR2 172 92等致癌基因磷酸化物质。保留利用miRNAs,如 miR2 15等抑癌基因,具有独特低免疫原性和全能性的间充质干细胞。抑癌间充质干细胞是一种广谱抗肿瘤新药。抑癌间充质干细胞抗肿瘤药物原理是利用细胞基因平衡原理一利用抑癌间充质干细胞小分子RNA, miRNAs去平衡沉默癌基因的一种基因工程技术。我们是利用高分子生物滤过装置,在滤过装置中配置高效的活性生物分子药物,对流过癌细胞透析仪的间充质干细胞中的癌基因生长因子直接起到逆转作用,逆转后的间充质干细胞,直接生成抑癌间充质干细胞(抑癌基因}重新输入癌基因原发灶(平衡沉默修复癌基因),彻底性的杀灭原发灶中的癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。有句成语叫解铃还须系铃人。比喻谁惹得麻烦就还得需要谁去解决。癌是细胞核DNA裂变。DNA复制持久性增长还得依靠DNA疗法,RNA疗法,蛋白质疗法来解除转移癌的复制持久能。研究癌基因弛豫现象是解除癌症的根本保证。如何解除癌DNA激发态,返回细胞稳定基态不能再通过复制衰变过程,而是要通过分子间转移或将DNA复制能转变为动能或转移至另一分子,这才是根治癌症最有效途径之一。此方法有很多。我们可以从手术切下肿瘤组织、肿瘤术后引流液中、癌性胸腹水获取DNA,RNA来能制取抗癌药物。但都是来自于患者,获取受患者组织局限性不能广泛应用。我们也可以从过继性免疫疗法中获取来解除转移肿瘤复制能。例如肿瘤浸润淋巴细胞TIL、TCR-T以及CAR-T三种过继性免疫疗法中获取免疫球蛋白肽键能,来快速解除DNA核能。但免疫球蛋白分子能比DNA核能小要千万倍。虽然这些方法有很多,但都属制备性技术。不是一种独特的抗癌药物。抑癌间充质干细胞的出现,它意味着抑癌间充质干细胞正在快速成长为一种广谱抗肿瘤药物。抑癌间充质干细胞制备技术抑癌间充质干细胞制备技术及工作原理不同于分子遗传学基因工程技术敲除方法,这种量子生物学技术为我们制备临床安全应用抑间充质干细胞抗癌药物增添了一个新的途径。干细胞开发与化学小分子、生物大分子在内的结构和成分明确药物有着很大的不同,干细胞是活细胞,具有异质性,其大小、形态具有一定的差异,在功能、行为、状态方面也不同。同种间充质干细胞在不同微环境中可以发挥不同作用并有潜在致恶性肿瘤风险.挑战了传统药物开发的一些基本理念和规律。然而抑癌间充质干细胞则不同,它是通过滤过装置中配置高效的活性生物分子药物处理后,消除了干细胞基因中所有的生长因子,只保留了间充质干细胞DNA,RNA分子结构基因和成分.因此是明确并相对稳定的细胞DNA,RNA分子体系。抑癌间充质干细胞全部属抑癌基因结构,质量可控这才是抗癌药物的基础和前提。抑癌间充质干细胞制备方法及工作程序不同于普通透析与过滤。透析(HD)仅仅清除小分子有毒物质排出体外;滤过透析(HDF)是过滤增强对中分子毒素的清除作用。癌细胞透析技术优于单纯透析与过滤。癌细胞透析是在组织液透析的基础上,利用胞质效技术,交换DNA蛋白质分子高低激发态物质来平衡时空的量子技术及药物。抑癌间充质干细胞制备技术由三项专利技术组成:生物时间机器专利技术,癌细胞透析仪专利技术,生物减速剂抗癌技术,可用于生产抑癌间充质干细胞抗肿瘤药物,或者直接应用临床对癌症患者进行癌细胞透析治疗,治疗实体癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。治疗设备及活性生物分子药物都是国家在册药典药物,可以直接应用于临床,并且能立杆见影。根治肿瘤疗效100%.不需投资,可以直接临床应用及推广产品。抑癌干细胞抗癌成果初见成效我们从手术切下的肿瘤组织、肿瘤术后引流液、癌性胸腹水中获取DNA,RNA制取抑癌干细胞miRNAs等药物。输入癌细胞原发灶,能修复沉默癌基因,彻底杀灭原发灶中的癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。抑癌干细胞miRNAs抗癌实验成果展示 (2013年武大医学院病毒所中心实验室)抑癌间充质干细胞给癌症治疗带来了新希望。如果在肿瘤治疗,干细胞应用上有意向合作的老师和企业家请联系我们。让我们一起为治服肿瘤,安全成功应用干细胞而共同努力。武大医学部病毒学研究所严银芳武汉市武昌东湖路115号联系电话15927431505最近几年尤其是癌症基因组测序项目的实施,使得人们开始重新审视这一理论。人们发现基因被激活或失活,并不一定要通过DNA序列改变,表观遗传调控失常也可和基因突变一样造成致癌后果。
  • Nature子刊 | 神奇!中国农业大学赵婧等人首次发现喝绿茶抗癌的机理
    绿茶中的表没食子儿茶素没食子酸酯 (EGCG) 可诱导癌细胞凋亡,但其潜在的分子机制仍知之甚少。 近期,伦斯勒理工学院王春雨团队(中国农业大学为第一单位,赵婧为该文章的第一作者)在Nature Communications 在线发表题为“EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction”的研究论文,该研究使用 SPR 和 NMR,报告了 EGCG 与肿瘤抑制因子 p53 之间的直接相互作用(KD = 1.6 ± 1.4 μM),其中无序的 N 末端结构域(NTD)被确定为主要结合位点(KD = 4 ± 2μM)。 大规模原子模拟(100 μs)、SAXS 和 AUC 表明 EGCG-NTD 相互作用是动态的,EGCG 导致出现紧凑束缚构象的亚群。EGCG-p53 相互作用破坏了 p53 与其调节性 E3 连接酶 MDM2 的相互作用,并在体外泛素化测定中抑制了 MDM2 对 p53 的泛素化,可能稳定了 p53 的抗肿瘤活性。 总之,该研究工作提供了对 EGCG 抗癌活性机制的见解,并通过与小分子的动态相互作用将 p53 NTD 确定为癌症药物发现的靶标。 近年来,以饮食为基础的癌症预防和治疗受到了相当大的关注。绿茶是一种世界范围内流行的饮料,据报道对各种类型的癌症具有抑制作用,例如乳腺癌、肺癌、前列腺癌和结肠癌。绿茶对癌症的大多数化学预防作用归因于多酚化合物,其中表没食子儿茶素-3-没食子酸酯(EGCG)是最重要的。EGCG占绿茶中儿茶素的50-80%。一杯冲泡的绿茶 (240 mL) 中含有 200–300 mg 的 EGCG。通过喝杯绿茶或服用 EGCG 片剂,可以达到 0.1–1 μM EGCG 的血清浓度。EGCG 的抗癌作用已在流行病学、细胞培养和动物研究以及临床试验中得到证实。 Nakachi 和 Imai 进行的一项为期 10 年的前瞻性研究报告说,与每天饮用 3 杯以下绿茶的人相比,每天饮用超过 10 杯绿茶的人患癌症的风险降低。最近,Shin 等人在韩国的一项随机临床试验中发现,绿茶提取物可将结直肠腺瘤的复发率降低 44.2%。在体外,EGCG 被证明可促进多种人类癌细胞系的细胞生长停滞并诱导细胞凋亡,包括前列腺癌细胞、表皮样癌细胞、膀胱癌细胞和结肠癌细胞。EGCG 以相似的亲和力和结合位点结合全长 p53 和 NTD,由 SPR 和 STD NMR 确定(图源自Nature Communications ) 在小鼠体内,口服绿茶或静脉注射纯化的 EGCG 可抑制血管生成并抑制实体瘤的生长。在分子水平上,EGCG 已被证明与癌症相关蛋白相互作用,例如葡萄糖调节蛋白 78 (GRP78) 和 Ras-GTP 酶激活蛋白 SH3 结构域结合蛋白 1 (G3BP1),具有大约 μM 的亲和力。 在 EGCG 诱导的细胞凋亡和细胞生长停滞中,发现 p53 起重要作用。p53,通常被称为“基因组的守护者”,是一种重要的肿瘤抑制因子,在超过 50% 的人类癌症中发生突变。p53 促进细胞周期停滞或细胞凋亡,作为对细胞应激刺激的反应,例如氧化应激、癌基因激活和 DNA 损伤。作为转录因子,p53 受到严格调控,半衰期短。p53 蛋白在健康哺乳动物细胞中通常通过连续泛素化和随后的降解维持在低水平。 在细胞应激下,p53 的泛素化被抑制,p53 被稳定。然后 p53 在细胞核中积累并开启靶基因的表达,从而触发细胞周期停滞、细胞凋亡和 DNA 修复过程。除了作为转录因子,p53 还可以转移到细胞质或线粒体。p53 直接与抗凋亡蛋白如 Bax 和 Bcl2 相互作用以诱导细胞凋亡,并且还参与 EGCG 的抗衰老作用。 全长 p53 由 N 末端结构域 (NTD)、DNA 结合结构域 (DBD)、四聚结构域 (TET) 和 C 末端调节结构域 (REG) 组成。NTD进一步分为两个转录激活域(TAD1和TAD2)和一个富含脯氨酸的域(PRD)。NTD 是一种本质上无序的蛋白质 (IDP),并与许多蛋白质相互作用,充当细胞信号传导的枢纽。NTD 不仅是反式激活所必需的,而且还与 MDM2 结合以介导 p53 的泛素化和降解。EGCG 通过与 p53 的 N 端结合来破坏 p53-MDM2 的相互作用(图源自Nature Communications ) 独立于泛素化,MDM2 还通过阻止一般转录因子与 NTD 结合来抑制转录。EGCG 对人类癌细胞的凋亡作用与其干扰 MDM2 介导的 p53 泛素化有关。据报道,EGCG 还可以稳定 p53,增加关键丝氨酸残基的磷酸化。在最近的一项研究中,EGCG 从 2295 种植物化学物质库中被鉴定为 p53-MDM2 相互作用的抑制剂。然而,EGCG 如何破坏 MDM2-p53 相互作用的分子机制尚不清楚。 在这项工作中,证明了 EGCG 和 p53 之间的直接结合,由 p53 的 NTD 介导。该研究表明 EGCG-p53 相互作用破坏了 p53 与 MDM2 的相互作用并抑制 p53 的泛素化,可能稳定 p53 的抗肿瘤活性,为 EGCG 的抗癌作用提供结构机制。 参考消息:https://www.nature.com/articles/s41467-021-21258-5
  • 一名科学记者的基因测试之旅
    Jennifer Couzin-Frankel与两个孩子正在做游戏。和很多人一样,她希望在孩子成长过程中,通过基因检测在某种程度上保护家人的健康。图片来源:APRIL SAUL   Jennifer Couzin-Frankel是一名记者,不过《纽约时报》的文章标题却很少与她本人具有相关性,这正是今年秋天她对此流连许久的原因。这则报道的标题是&ldquo 对犹太女性研究显示与家族病史无关的癌症致病因子&rdquo ,文章刊登在9月5日的版面上。Frankel心神不安地继续往下阅读:&ldquo 研究人员周四发表的报告称,即便家族史上没有发病情况,德系犹太人后裔的女性罹患乳腺癌与子宫癌的发病率更高。&rdquo   在过去13年中,科学一直是Frankel的专业报道领域。其间,她曾在基因测试领域撰写了大量文章,而且与该领域最前沿的几十位专家有过交流。她曾记录过科研进展、伦理困境、实验挽救的生命以及它点燃的焦虑,但是她从未想过把镜头对准自己的DNA。   预料之外的计划   虽然事情有些突然,但却没必要逃避。Frankel的父母都是德系犹太人后裔。而据她本人了解,母亲的家族中并没有人曾患过乳腺癌或子宫癌。但是突然她想到了那篇文章中所说的基因变异,即BRCA1和BRCA2,可能来自于从未注意过的父亲家族,她父亲与叔叔以及3个堂亲中的两个男性的Y染色体都有问题。   她想起爷爷曾罹患前列腺癌,并在疾病最终扩散至骨骼后去世。而且,她的伯伯后来也得了这种病。BRCA基因突变会导致乳腺癌和子宫癌,反映在男性中就是前列腺癌。她一直都知道德系犹太人容易在这些基因上产生变异。但这也是她知道的全部。   她开始搜寻相关数据,结果并不是那么具有安慰性。通过谷歌引擎快速搜索&mdash &mdash 她后悔自己以前为什么没想到这样做&mdash &mdash 的结果显示,40个德系犹太人中就有1人存在BRCA基因变异,相对而言,一般人群中该基因突变在800人中仅有1人发生。   和几乎所有与癌症相关的基因一样,BRCA1和BRCA2最先在具有家族病史的患者中被发现。但是今年9月由耶路撒冷Shaare Zedek医学中心的医学遗传学家Ephrat Levy-Lahad带领的这项研究却认为,其他家庭如果存在同样的基因突变,也具有一样高的罹患相关癌症的风险。   该文章的其他几位作者,包括华盛顿大学遗传学家以及BRCA1突变基因的发现者Mary-Claire King均认为,无论是否存在家族史,所有的女性都应该了解她们是否存在危险性突变基因BRCA1和BRCA2。其他一些专家对此则不予认同。可能更具争议性的是在过去十年中,科学家曾筛查过数十个风险基因,但其中一些基因与癌症之间的联系非常弱。   或许Frankel可以就双方辩论的焦点写一篇科学报道,但问题涉及到她本人的健康以及486名携带BRCA基因突变的以色列女性,而且其中一半人没有家族病史却存在癌症高发率,这是她迫切需要完成的报道。   时间至关重要。Frankel今年38岁,而摘除携带BRCA基因突变的器官的建议年龄是40岁。她给两个孩子(分别已5岁和2岁)出生的费城郊区医院去了电话,向一位基因咨询师说了此事。她有家族病史,也认为BRCA测试值得做,而且医疗保险也可以覆盖她的检测。   为此,她做了预约,准备人生中首次进行癌症基因测试,这些测试不仅会测试BRCA基因,而且还涵盖更多不确定性的风险基因。   21个基因检测项   随着Frankel的脚步迈向医院癌症中心,自动门无声地打开了。一位留着棕色卷发的基因咨询师手里拿着带纸夹的笔记板微笑着走近她。咨询师取出一张纸,把它放在桌面上,上面是与乳腺癌和子宫癌相关的21个基因的名单。其中11项底色为粉色,旁边标注着&ldquo 高风险&rdquo 3项底色是紫色,属于&ldquo 中度风险&rdquo 其他7项是绿松石底色,用的是斜体字,旁边标注着&ldquo 新基因&rdquo 。   这是马里兰州盖瑟斯堡市GeneDx公司乳腺/子宫癌部门的测试标准,同样也是肿瘤学的相关测试标准,其中很多基因还会导致其他癌症。其中一个基因突变与胃癌的相关性达到40%~83%。如果检测结果呈阳性,会建议做胃切除手术。另一个基因TP53与女性癌症发病率的关联度接近100%,与男性癌症发病率相关性则为73%,与TP53基因变异相关的癌症包括脑癌和恶性肿瘤。   在表格列出的基因中,BRCA1与BRCA2两个基因无疑也位于易发癌症的基因家族之中。基因测试可以挽救生命:对BRCA基因携带器官进行的大量研究发现,那些进行过卵巢摘除手术的患者的子宫癌死亡风险会降低80%,而且乳腺癌死亡率可以降低50%。而预防性乳房切除手术可以使乳腺癌发病率至少降低95%。   纽约市斯隆凯特林癌症纪念中心临床基因服务处主管Kenneth Offit表示,几年前由于其他一些基因对健康的影响不确定,所以不鼓励测试,而&ldquo 现在已经可以提供这些基因的测试&rdquo 。由于更多风险性基因已被发现,基因测序的成本价格大幅下降,使得检测表中的DNA解码项目更多。   然而,这些基因对哪些人、在哪些年龄段的致癌风险更高却是个常规性的困扰问题。&ldquo 临床研究走在我们前头。&rdquo 明尼苏达州罗切斯特市梅奥诊所的BRCA与其他乳腺癌风险基因权威人士Fergus Couch说,&ldquo 测序技术变化得如此之快,我们几乎来不及对病人和医生提出的问题作出回答。&rdquo   2013年夏季,美国最高法院否决了利亚德基因公司对BRCA基因测序的专利申请,受此激励,GeneDx公司成立了乳腺/子宫癌基因检测部门。其他的一些公司,包括利亚德公司和Ambry基因公司以及学术医疗中心都成立了与一系列癌症相关联的数十个基因测序部门。&ldquo 我们在实打实地寻找可以为医生提供治疗方案的靶标。&rdquo GeneDx公司执行主任Sherri Bale说。   列有21项基因检测的表格放在Frankel和咨询师的中间,尽管咨询师并没有给出建议,她还是主动对所有的检测项目签了字。   不过,咨询师把她的注意力引向了一项紫色的中度风险的基因CHEK2,这个基因旁边的相关癌症清单很长:女性乳腺癌、男性乳腺癌、结肠癌、前列腺炎、甲状腺癌、肾癌、子宫癌。&ldquo CHEK2基因突变在德系犹太人中普遍吗?&rdquo 我问。&ldquo 不很普遍。&rdquo 咨询师回答说。但是Frankel的爷爷曾得过结肠癌。这让她再次陷入困扰。   带着困扰,她回了家。   知道总比不知道强   两天后,GeneDx公司仍然在解析Frankel的DNA。她与宾夕法尼亚大学乳腺癌基因研究专家Susan Domchek通了电话,讨论没有家族病史的癌症风险基因。Domchek主动提起了 CHEK2测验。&ldquo 我们不知道怎样把这个基因与照料患者相联系。&rdquo 谈到检测结果呈阳性的女性与家人,她抱怨说。   &ldquo 它与癌症发病相关率达到多少?&rdquo Frankel问道,并未提及自己正在进行CHEK2 检测。Domchek的回答是,大约200名美国人中有1人存在该基因突变,这让她松了一口气。   10月份一个星期二的早晨,Frankel的电话铃声响了。&ldquo 你的检测结果出来了。&rdquo 她的咨询师说,彼时距离上次见面过了19天。&ldquo 你想要知道哪些结果?&rdquo 咨询师问。   &ldquo 当然是致病性突变。&rdquo 她说。咨询师说了好消息:在此前她担心的3个基因中,均没有发现致病性突变。这让Frankel瞬间松了一口气。   &ldquo 您需要了解不确定性突变(VUS)吗?&rdquo 她问。Frankel想到了CHEK2以及此前咨询师所说的1.6%的突变率。&ldquo 几率又有多高呢?&rdquo 她于是请咨询师宣布结果。   &ldquo BRCA基因并未发生不确定性突变,但是CHEK2基因检测到了不确定性突变。&rdquo 咨询师告诉她。根据GeneDx出具的报告,她解释说,Frankel的基因突变是缺失DNA核苷酸15,这种突变曾在两名罹患前列腺癌的男性患者中出现,体外分析表明,它会导致该基因部分功能缺失。   曾经预料的不幸还是出现了,Frankel突然开始耳鸣,恐惧在她的胃里翻转。相反,她却几乎笑出声。&ldquo 这就是我的病,这就是我和其他人一样患的病?&rdquo 她想。两个患前列腺癌的男性&mdash &mdash 培养皿中的细胞分析&mdash &mdash 失去部分功能的基因&mdash &mdash 抑或会又抑或不会发展成致病性的基因:这不值得自己费神忧虑。   &ldquo 人需要更加坦然地面对不确定性。&rdquo 得克萨斯州贝勒医学院临床基因学家Sharon Plon数日之后对她说。但她同时指出,承认不确定性&ldquo 并不是意味着什么都不知道&rdquo 。对很多存在癌症的家庭来说,检测都有提供建设性的指导意见。   考虑到她父亲家族史中癌症案例的多发性,Frankel给她在圣弗朗西斯科的堂妹写信分享了检测结果,这位堂妹是她父亲的一位近亲。她的堂妹对很多基因检测都很熟悉,因为她的母亲正在抵抗子宫癌,还签字参加了华盛顿大学的41项基因检测。   Frankel的堂妹督促她考虑进行同样的基因检测,因为该校的基因检测已增至48项。最后,她解释说这并不是自己想要的。&ldquo 我知道检测结果经常令人灰心。&rdquo 她的堂妹回信说,她并不同意Frankel的看法。即便没有明确的行动,她也希望知道她的基因携带的信息对未来会有哪些影响。唯一一个让她不能进行基因检测的原因是她的保险不涵盖这项医疗服务。&ldquo 知识就是力量。&rdquo 她的堂妹回信说,&ldquo 我根本不觉得有任何负面影响。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制