当前位置: 仪器信息网 > 行业主题 > >

多维超快光谱

仪器信息网多维超快光谱专题为您整合多维超快光谱相关的最新文章,在多维超快光谱专题,您不仅可以免费浏览多维超快光谱的资讯, 同时您还可以浏览多维超快光谱的相关资料、解决方案,参与社区多维超快光谱话题讨论。

多维超快光谱相关的论坛

  • 多维色谱与多阀多柱色谱

    [align=center][size=21px]多维色谱与[/size][size=21px]多阀多柱[/size][size=21px]色谱[/size][/align][size=16px] 现在随着技术的发展,检测设备的功性能在逐步提高,应用方法也在不断改进,致使检测能力直线提升。对于比较复杂的[/size][size=16px]混合[/size][size=16px]样品,如石油类、原油类、多组分空气、食品、生物制品、化工产品等[/size][size=16px]原来检测难度很大,要么不好准确的检测[/size][size=16px],要么需要经过很多[/size][size=16px]类很多[/size][size=16px]次[/size][size=16px]很长时间[/size][size=16px]试验[/size][size=16px]检测[/size][size=16px],将样品中各组分一一检测出来。现在不一样了,现在有质谱技术、联用技术(几种类型的检测器联用,比如[/size][size=16px]光谱[/size][size=16px]+[/size][size=16px]光谱,[/size][size=16px]光谱[/size][size=16px]+[/size][size=16px]色谱,光谱[/size][size=16px]+[/size][size=16px]质谱,[/size][size=16px]色谱[/size][size=16px]+[/size][size=16px]色谱,[/size][size=16px]色谱[/size][size=16px]+[/size][size=16px]质谱[/size][size=16px],质谱[/size][size=16px]+[/size][size=16px]质谱[/size][size=16px]等)、快检技术、[/size][size=16px]多维色谱等,检测更方便、快捷、准确。[/size][size=16px] 下面我们介绍下多维色谱技术及[/size][size=16px]多阀多柱[/size][size=16px]色谱技术。[/size][size=16px] 二维色谱[/size][size=16px]分离[/size][size=16px]技术一般指[/size][size=16px]一[/size][size=16px]套色谱分离系统中串联有两根不同分离[/size][size=16px]技术[/size][size=16px](或原理)[/size][size=16px]的色谱柱,包括不同选择性分离、不同极性分离、不同类型分离等,样品经过两根不同分离[/size][size=16px]技术[/size][size=16px]的色谱柱,进行一次和二次分离[/size][size=16px]的色谱技术。多维色谱就是分离系统中串联有多根[/size][size=16px]不同分离技术的色谱柱[/size][size=16px],样品在分离系统中经过多次分离,最终[/size][size=16px]完全分离[/size][size=16px]。[/size][size=16px] 二维及多维色谱的优点是分离速度快、分离度好、能同时准确检测复杂样品中多种组分等。在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中应用较多。[/size][size=16px] 多阀多柱[/size][size=16px]分离技术,和多维色谱有点区别,[/size][size=16px]多阀多柱[/size][size=16px]分离技术目前主要应用在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中,它通常多是多根色谱柱并联,通过不断切换各阀(包括进样阀、[/size][size=16px]三通、六通、八通、十通、十六通、三十二通等[/size][size=16px]切换[/size][size=16px]阀等[/size][size=16px])[/size][size=16px]按照时间顺序给不同色谱柱进样,形成不同的分离通道[/size][size=16px]与检测通道[/size][size=16px],一次实验[/size][size=16px]可[/size][size=16px]完成一次或多次进样,一次实验[/size][size=16px]可[/size][size=16px]完成[/size][size=16px]复杂[/size][size=16px]混合样品[/size][size=16px]检测。[/size][size=16px] 多阀多柱[/size][size=16px]分离技术[/size][size=16px]多数是色谱柱并联连接,有少部分是混联连接,所以也有人将其称之为多维色谱。[/size][size=16px] 当然随着技术的发展,以后色谱分离技术会有更加多[/size][size=16px]更加复杂[/size][size=16px]的[/size][size=16px]分离模式,实验会更加[/size][size=16px]方便、快捷、准确。[/size]

  • 【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    [align=center][b]二维/多维相关光谱方法对热重-红外联用双线性数据的解析[/b][/align][align=center]郭然,徐怡庄[sup]*[/sup][/align][align=center]北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北京大学化学与分子[/align][align=center]工程学院,北京 100871[/align][b]摘要:[/b]本工作中,使用基于异步正交的二维/多维相关光谱方法对多类热重-红外联用双线性数据进行分析。结果表明,本方法可以有效地处理包含二组分甚至多组分气体逸出物的热重-红外数据,并得到体系中各纯物质光谱。该方法可以有效识别大量体系中某物质的特征吸收峰,且不需预先得知待差减物质谱图,相比于传统的差减法有较明显的优势。[b]关键字:[/b]二维/多维相关光谱 热重-红外联用[b]背景介绍[/b]热重-红外联用方法被广泛地应用于物质成分鉴定、热分解过程考察等相关研究。在常规的热重-红外联用分析中,不同气体逸出物随加热过程逐渐逸出,并通过红外气体池进行检测。然而,气体逸出物的逸出曲线经常会有重合,在某些情况下,逸出曲线甚至会有严重重叠。例如,两气体组分A及B由同一物质分解产生或是具有接近的沸点,则该两物质的逸出曲线会非常接近。气体逸出物逸出曲线的严重重叠,使得在红外检测过程中,只能得到混合物的红外光谱而非各纯物质光谱,这给气体逸出物的鉴定及后续分析造成了很大困难。一般来说,在对红外光谱进行处理,以期得到各纯物质光谱时,可以通过差减法,将光谱中存在的干扰项去除,从而得到目标物质的光谱。该方法的应用一般需要满足以下条件,即需要扣除的物质及其光谱已知。例如,光谱处理中常见的水汽及二氧化碳背景扣除方法,即是基于水汽和二氧化碳光谱已知的前提下,通过选择合适的峰位,找出差减的比例系数,从而将水汽及二氧化碳光谱从总光谱中移除。然而,随着总光谱复杂程度的加剧,干扰光谱鉴定的物质不仅是水和二氧化碳,而可能包含各类未知且具有不同光谱形状的气体逸出物,单纯进行水和二氧化碳的扣除,对很多体系的分析而言是远远不够的。即使是二氧化碳的扣除,差减法也存在一定问题。在中红外区,二氧化碳的谱峰主要存在于2350cm[sup]-1[/sup]-2200cm[sup]-1[/sup]的光谱区段。由于很少有气体产物在该光谱区段存在吸收峰,目前的二氧化碳扣除算法可以将该区段谱峰全部扣去。然而,实际体系中存在一些物质,在该光谱区段具有具红外活性的振动模式(如乙腈的C≡N三键伸缩振动)。当这些物质对总光谱有贡献时,差减法很难恰好将二氧化碳的成分准确扣除,从而导致得到的谱峰变形,影响后续的数据分析。本工作中,使用本课题组开发的二维/多维相关光谱方法对多类物质的热重-红外数据进行处理,以期得到各纯物质光谱。[b]算法简要介绍[/b]二维及多维异步谱的构建基于以下算法:[align=center] [img=,492,106]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625044178_4191_3237657_3.jpg!w492x106.jpg[/img][/align]式中,为物质k在[i]t[/i][sub]i[/sub]时刻的逸出浓度,为物质k在[i]v[/i][sub]j[/sub]处的红外吸收,N为Hilbert-Noda变换矩阵。通过基于Hilbert-Noda变换矩阵的异步相关乘法,构建二维异步谱。在异步谱上通过寻找特征性的系统缺峰,得到一级特征峰的吸收信息,并由该处的异步谱截线,得到各纯物质的光谱形状。构建多维异步谱时,在构建二维异步谱方式的基础上,对原始一维光谱进行多级分组,在二维异步谱上取各组相同位置的截线,进行基于公式(2)的高维异步谱构建。可以证明,通过异步光谱的升维算法,可以将体系中各成分对于光谱的贡献逐一去除,进而不断简化光谱形式,最终得到纯物质光谱。通过选择不同的升维路径,可以通过选择不同的特定吸收峰,去除不同成分对总光谱的贡献,从而得到不同的物质光谱(证明略)。本方法已应用在多类体系中,并成功得到了体系中各纯物质红外光谱。下面给出一个应用实例。[b]实验条件[/b]仪器:TGA(TGA-8000)-FTIR (Frontier) 联用仪器 (Perkin Elmer);样品:去离子水、乙腈、乙酸乙酯。实验步骤:配制水/乙腈/乙酸乙酯混合溶液(v:v:v=1:4:1)上样于坩埚,以30℃为起始温度,10℃/min速度升温至90℃,30℃/min升温至150℃。红外光谱采集:分辨率8cm[sup]-1[/sup],每张光谱采集时间约2.7s。[b]结果讨论[/b]水、乙腈、乙酸乙酯三组分的沸点相差不大,通过上述算法,可以将体系中各成分逐级去除,最终得到三组分各自的纯物质光谱。[align=center][b] [img=,690,626]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625227884_5273_3237657_3.jpg!w690x626.jpg[/img][/b][/align][align=center]图1 基于三维异步相关方法的水/乙腈/乙酸乙酯混合物热重-红外联用数据分析 (A) 二维异步相关谱 (B) 三维异步谱在x=3746cm[sup]-1[/sup]处的二维截面 (C) 三维异步谱在x=2620cm[sup]-1[/sup]处的二维截面 (D) Trace 1-图(B)在y=2620cm[sup]-1[/sup]处的截线,对应乙酸乙酯光谱(Trace 4);(Trace 2)图(B)在y=1768cm[sup]-1[/sup]处的截线,对应乙腈光谱(Trace 5);(Trace 3)图(C)在y=2982cm[sup]-1[/sup]处的截线,对应水光谱(Trace 6)[/align][b]致谢[/b]本工作由国家自然科学基金(No.51373003)赞助。

  • 超快普克尔斯盒介绍以及用途

    1111型[b]超快普克尔斯盒[/b]和1112型[b]超快电光调制器[/b]是目前全球转换最快的美国lasermetrics公司[b]超快电光Q开关[/b],上升沿时间可达40皮秒,非常适合[b]超快激光脉冲斩波和超快激光脉冲拾取[/b],锁模激光器脉冲中[b]拾取皮秒脉冲[/b]或[b]拾取飞秒激光脉冲[/b].[url=http://www.felles.cn/keerhe/chaokuai.html][img=超快普克尔盒]http://www.felles.cn/Upload/chaokuai.jpg[/img][/url]其中1111KD*P普克尔斯盒使用一块晶体, 上升时间为40皮秒,光程15mm,而1112KD*P型具有两块晶体,上升时间为85皮秒[i].[/i],光程是22mm, 这样就最大程度地减小时间色散.这两款超快普克尔盒,超快电光Q开关同样使用最优质的KD*P晶体制造而成, 晶体安装在配备熔炉石英窗口的密闭铝制外壳里, 也可使用折射率匹配的液体以减少内部光学界面的反射.[b]超快普克尔斯盒超快电光Q开关[/b]产品参数:型号:FP-1111-KD*P材料:KD*P晶体晶体个数:1光程:15mm净孔径:2.5mm半波电压: 约6.5KV@1064nm反射系数 tr=140ps: 5%上升时间:50ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g型号:FP-1112-KD*P材料:KD*P晶体晶体个数:2光程:22mm净孔径:2.5mm半波电压: 约3.3KV@1064nm反射系数 tr=140ps: 5%上升时间:100ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g[b]超快普克尔盒,[/b]超快电光调制器,超快电光Q开关由[url=http://www.felles.cn/][b]孚光精仪[/b][/url]进口销售,[url=http://www.felles.cn/][b]孚光精仪[/b][/url]是中国领先的进口(光学)精密仪器旗舰型服务商!精通光学,服务科学,先后为北京大学,中科院上海光机所,哈尔滨工业大学,中国工程物理研究院,山东大学等单位提供这种优质进口的[b]:[/b]超快普克尔盒,超快电光调制器,超快电光Q开关[b]。更多型号:http://www.felles.cn/keerhe.html[/b]

  • 多维液相色谱分离系统的最新进展

    多维液相色谱分离系统一般采用定量环(loop)或富集柱(trap )作为中转环节,按照用途可分为分析型和制备型,按照运行原理可分为并行系统和串行系统。分析型一般采用并行模式,分离速度快,国外产品占用优势。制备型一般采用串行模式,国内产品具有领先优势。

  • 多维核磁共振波谱学

    多维核磁共振波谱学[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=10802]多维核磁共振波谱学[/url]

  • 【资料】蛋白质的多维色谱分离

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=171584]蛋白质的多维色谱分离[/url]蛋白质的多维色谱分离通常生物体内提取的蛋白质样品成分复杂,应用多维色谱进行分离的方法必将流行。文章简单介绍了多维色谱分离的理论,算是一个入门材料吧。

  • 光谱仪多维度分类

    光谱仪分类有多种。1、按分析目的可分:实验室光谱仪(化验室光谱仪)和工业光谱仪。2、按产生本质可分:原子光谱仪和分子光谱仪。3、按产生方式可分:发射光谱仪、吸收光谱仪、荧光光谱仪和散射光谱仪等。4、按光谱形状可分:线光谱仪、带光谱仪和连续光谱仪。5、按波长范围可分:红外光谱仪、紫外可见光谱仪和X射线光谱仪等。6、按光源可分:电感耦合等离子体发射光谱仪等。7、按发射原理可分:原子发射光谱仪。8、按吸收原理可分:原子吸收光谱仪、分子吸收光谱仪、紫外可见光谱仪、红外光谱仪和核磁共振光谱仪等。9、按散射原理可分:激光拉曼光谱仪等。10、按荧光原理可分:原子荧光光谱仪、分子吸收光谱仪和X射线荧光光谱仪等。11、按磷光原理可分:分子磷光光谱仪。12、按分光原理可分:色散型光谱仪和调制型光谱仪。13、按调制原理可分:傅里叶变换红外光谱仪等。14、按测定的X射线特征可分:X射线能量分散谱仪和X射线波长分散谱仪。15、按测定能量的产生原理可分:紫外光电子能谱仪、X射线光电子能谱仪、俄歇电子能谱仪和电子能量损失谱仪等。16、按结构可分:台式光谱仪和落地式光谱仪。17、按分析规模可分:小型光谱仪和大型光谱仪。 18、按分析对象的属性可分:有机光谱仪和无机光谱仪。19、按用途可分:生物光谱仪、制药光谱仪、化工光谱仪、食品光谱仪、医用光谱仪、金属光谱仪、非金属光谱仪、矿用光谱仪、试验光谱仪和专用光谱仪等。(来自网络)

  • 二维或多维图谱的相关点

    二维或多维图谱的相关点到底是通过什么样的相互作用在图谱上显示出来原子间的相关的呢?恳请专家解答.谢谢!

  • 多维气相色谱

    多维气相色谱

    [align=left]1.多维色谱的概念[/align] 虽然现代毛细管[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]是一种高效分离技术,但对于非常复杂的混合物(如石油样品),仅用一根色谱柱往往达不到完全分离的目的。于是有人提出用多根色谱柱的组合来实现完全分离。第二根色谱柱与第一根具有不同的固定相或选择性。这样,混合物在第一根色谱柱上预分离后,将需进一步分离的组分转移到第二根柱上进行更为有效的分离,这就是多维 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 的基本思想。 多维技术经历了几十年的发展,特别是1984年Giddings的论文发表后,这方面的研究更为活跃。不仅有[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],还有HPLC-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]、LC-LC联用,显示了 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 出色的分离能力。有人用多维色谱技术分离了含上千个组分的混合物。事实上[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS也是一种多维分离技术,即第一维为 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 的保留时间,第二维为MS的质荷比。保留时间坐标轴与质荷比坐标是相互垂直的。与此类似,多维色谱的两维均以保留时间为坐标轴,二者也是相互垂直的。理论上多维分离技术可以从二维到六维,但目前实际研究和应用的多为二维分离技术。我们下面讨论也只限于二维技术,而且仅讨论二维 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 技术([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url])。2.实现多维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的方法 首先我们要明确,只有当第二根色谱柱能提供比第一根色谱柱更为有效的分离,获得更多的定性定量信息时,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]才被称为二维技术。实现此目的的途径有两种,一种是采用不同的色谱柱,包括① 柱尺寸不同,如第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]用填充柱进行预分离,第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]用毛细管柱实现相对完全分离; ②固定相不同,如第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用非极性固定相将混合物按沸点分为几组,第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用相对极性的固定相或特殊选择性固定相实现侮组的进一步分离: ③ 相比不同或柱容量不同,如第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]柱容量大,对大量的样品进行预分离,第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]则采川柱容量相对小但柱效更高的色谱柱对来自第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的样品进行更详细的分离。实现二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的第二种途径是采用不同的操作条件,如不同的柱温程序和不同的载气流速。这往往需要较为复杂的仪器设备,比如要两个柱箱及相互独立的控制系统。 [img=,389,613]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251650574582_4789_2384346_3.png!w389x613.jpg[/img] 两根[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]柱有多种组合方式。如图所示,其中A是普通单通道[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统,可叫做一维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],B为双通道并联柱系统,一次进样两根柱同时分析,可以提高工作效率。C为一维双通道检测系统,可进行选择性检测;D为一维串联柱系统,鼓大的总分离能力为两柱之和,但两根柱的固定相若不同,第一柱分离开的组分也可能在第二柱上共流出。E则为二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统,这里来自第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的组分可被捕集管T收集,然后送入第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]作进一步分离。两根柱的固定相不同,尺寸也可以不同,温度和载气流速等操作条件均可独立控制。3.多维 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 的目的 无论采用何种方式实现[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分离,其目的不外乎下面所列四种:(1)提高峰容量 采用两根色谱柱,如染其固定相不同,则总的峰容最将远大于两柱单独使用时的峰容量之和,最大峰容量可以是两柱单独使用时峰容量之乘积。故[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]对非常复杂的混合物的分离是很有用的。(2)提高选择性如果混合物中只有几种为日标化合物,就采用对这儿种日标化合物有特殊选择性的第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],而第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]只是作为预分离方法将目标化合物与其他组分分离。比如异构体、特别是光学异构体的分离,第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用普通柱进行粗分,然后将相关组分送入第二 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] (如手性柱)进行选择性分离。(3)提高工作效率在很多情况下,待测目标化合物仅是混合物中少数几种组分,因此,只要这些组分从第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]柱流出而进入第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]后,第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]中的其他组分就可以用反吹或快速升温吹扫等技术放空。与此同时,第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]进行目标化合物的分离。这样就大大缩短了分析时间。在制备色谱中,这样做是很有效的。(4)提高定量精度分离效率提高,定量精度当然也就提高了。特别是痕量分析中,当痕量组分的峰紧挨着溶剂或主成分出峰时,我们可以将只含痕最组分的第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]流出物送入第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]进行分离。这样,溶剂或主成分的大峰就不会影响痕量组分的定量。4.多维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的模式 目前,多维优的模式大体上分为两类,即部分多维分离和全多维分离。前者指第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]图上只有部分组分进入第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]进行二次分离。即所骨“中心切割(heat-cutting)”技术。后者则是将第一[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分离后的所有组分都送入第二[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]进行二次分离,即所谓“完全(comprehensive)[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]”。这两种模式在仪器要求上有很大的不同,下面就来讨论其仪器构造。

  • 先睹为快分享ARL iSpark 直读光谱仪

    先睹为快分享ARL  iSpark  直读光谱仪

    先睹为快分享ARL iSpark 直读光谱仪【前言】 世界上第一台商品化直读光谱仪自1946年问世以来,至今已发展近七十年了,直读光谱分析已成为一项技术成熟的分析手段,直读光谱具有样品制作简单、检测速度快、分析精度高、可同时分析多种元素等优点,在钢铁行业、有色金属行业、冶金铸造行业、机械加工行业以及其他金属或合金加工行业,几乎都应用到了直读光谱。 赛默飞世尔新进推出的 ARL iSpark 88xx(简述为ARLiSpark)系列直读光谱仪,以卓越的设计,良好的口碑,为用户提供高速度,高质量,高精确,高可靠的金属分析数据。尤其是在钢铁冶金行业,更高的精度不但减少了原材料的浪费,同时也提高了生产效率和产品质量。可以说高效、高速、高质也为企业节约了生产和营销成本。 直读光谱是进行金属和合金成分分析的最可靠和准确的方法之一。ARL iSpark直读光谱采用了PMT(光电倍增管)和CCD(电荷耦合器件)双检测技术,他们互相弥补了各自的不足,提高了分析性能,拓宽了可分析元素的范围,同时也保持了检测的通用性。本文以图片的形式展示了ARL iSpark直读光谱的最新技术及面貌。供各位同行先睹为快!http://ng1.17img.cn/bbsfiles/images/2017/10/2015112010440889_01_1841897_3.jpg

  • 【实战宝典】什么是多维色谱技术?

    [font=宋体]发帖人:[/font]yhl-87_[font=宋体]链接:[/font][url=https://bbs.instrument.com.cn/topic/2204266][color=windowtext]https://bbs.instrument.com.cn/topic/2204266[/color][/url][b][font=宋体]问题描述:[/font][/b][font=宋体]什么是多维色谱技术?[/font]

  • 多维色谱在汽油组分检测中的应用

    1、检测方法重叠峰的含烯烃汽油样品会影响精度测定,因此,通过建立特定的定性数据库,根据样品性质在实际应用中减小实验误差,避免重叠峰带来的影响。汽油样品含烯烃,具备开发高效、长寿命、定量准确的特点,分析应用MGC汽油组成的关键是烯烃吸附阱。国内外都已推出不同的分析方法,由于国内汽油组成特点与国外汽油产品有明显差别,催化裂化在国内汽油占据80%以上,组分、馏分中含有大量C4、C5以及大于C10烃,所以,烯烃吸附阱分析方法和效率的适用性要求较高。在实验设备方面,要求在石油样品中测定含烯汽油的组成。根据油气类型和碳数对,运用多维色谱法(MGC),采用不同性质的色谱柱与阀切换技术,进行汽油组分的分离。各个色谱柱中多维色谱法,对各种组分有很好的选择性,降低不同类型组分之间的干扰。2、检测过程实验证明,二段分析模式测定烯烃组成的测定结果与荧光色层法比较一致。C5及C6烯烃含量在国内催化裂化中,全馏分汽油样品含量较高,多维色谱法测定汽油馏分,根据吸附温度的烯烃组成,确定影响精度的主要因素,同时终馏点高于200℃。烯烃的穿透性与烯烃阱温度增高呈反比趋势。在实验中,C8、C9烯烃在温度为160℃时,并未降低吸附效率,恰恰相反,温度高于130℃吸附阱C5烯烃出现明显穿透现象。但是温度低于130℃时,十一烷烃吸附明显,影响测定结果。因此,在120℃的较低温度下,烯烃吸附阱小于等于重饱和烃和吸附轻烯烃等通过轻饱和烃后,升高烯烃阱温度,随后轻烯烃及碳九以上饱和烃可释放出去,最后将烯烃吸附阱温度升至更高,可将重烯烃再释放分离。但是,C5、C6轻组分在国内汽油含量较多,甚至有过半的组分来源于催化裂化,为了保证吸附轻烯烃的同一时间减少吸附重饱和烃,大于正癸烷的重组分含较多的沸点,较为适宜的吸附温度分析模式是二段,实验证明二段吸附温度的分析模式应用于轻烯烃含量较高时,一段升温的方式适用烯烃含量较低的样品,采用烯烃阱进行测定,可降低分析时间,同时提高检测精度。分析仪器的调试要考虑实验样品本身的性质以及分析方法和工艺的流程,多维中色谱柱分离切割技术至关重要,一定要确定好切割时间,否则不仅会失去多维的优势,还可能造成错误的数据

  • 中国科学技术大学等单位成功研制超光谱三维靶向成像仪

    中国科学技术大学刘诚教授牵头,中国科学院合肥物质科学研究院、安徽大学、广东省广州生态环境监测中心站等单位参与,自主研制同时具备多组分污染气体垂直成像、水平成像和污染源靶向成像遥感功能的[b]超光谱三维靶向成像仪[/b],荣获2023年第二届“金燧奖”中国光电仪器品牌榜金奖。该奖项由中国光学工程学会、中国计量科学研究院主办,重点评选出中国自主研发、制造、生产的高端光电仪器。超光谱污染气体三维靶向成像仪的垂直成像遥感功能实现了臭氧及前体物无盲区垂直廓线的同步观测,在臭氧污染敏感性的垂直演化规律识别、污染物高空传输和垂直交换影响研究中广泛应用;水平成像遥感能够将排放热点高值区范围从卫星遥感和地面原位监测的公里级缩小到百米级尺度;排放源成像遥感可将排放责任锁定到米级尺度的污染排口,实现排放通量的动态监测。团队研究成果打破了我国超光谱污染气体地基遥感对欧美核心部件和关键技术的依赖,相关成果发表在Earth-Science Reviews、Remote Sensing of Environment、Science Bulletin、Engineering等国内外期刊上,截至目前已授权发明专利4项,实用新型专利1项。超光谱污染气体三维靶向成像装备被生态环境部卫星环境应用中心、中国气象科学研究院等20余家政府部门和企业用于大气环境立体监测,为中国国际进口博览会、成都大运会等国家重大活动的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量保障提供支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【实战宝典】多维液相色谱的优势有哪些?

    【实战宝典】多维液相色谱的优势有哪些?

    [b][font='Times New Roman'][font=宋体]解答:[/font][/font][/b][font=宋体][font=宋体]([/font]1[font=宋体])色谱作为复杂混合物的分离工具,对化合物的分离分析发挥了很大的作用。目前使用的大多数仪器为一维色谱,使用一根柱子,适合于含几十至几百个物质的样品分析。当样品更复杂时,例如有人分析鹿茸蛋白,得到上千个色谱峰,可是经质谱定性表明,平均每个峰又含有二个组分,就要用到多维色谱技术。[/font][/font][font=宋体][font=宋体]([/font]2[font=宋体])多维液相色谱又称为色谱[/font][font=Times New Roman]/[/font][font=宋体]色谱联用技术,是采用匹配的接口将不同分离性能或特点的色谱连接起来,第一级色谱中未分离或需要分离富集的组分由接口转移到第二级色谱中,第二级色谱仍需进一步分离或分离富集的组分,也可以继续通过接口转移到第三级色谱中。[/font][/font][font=宋体][font=宋体]([/font]3[font=宋体])理论上,可以通过接口将任意级色谱串联或并联起来,直至将混合物样品中所有的难分离、需富集的组分都分离或富集之。但实际上,一般只要选用两个合适的色谱联用就可以满足绝大多数难分离混合物样品的分离或富集要求。因此,一般的色谱[/font][font=Times New Roman]/[/font][font=宋体]色谱联用都是二级,即二维色谱。[/font][/font][font=宋体][font=宋体]([/font]4[font=宋体])因此,二维色谱大大降低了样品分析的复杂性,同时由于二维分离机理的正交性,进一步拓宽了样品的分离空间,增强了系统的分离能力。[/font][/font][font=宋体][font=宋体][img=,256,256]https://ng1.17img.cn/bbsfiles/images/2021/03/202103172223030346_4853_3389662_3.jpg!w256x256.jpg[/img][/font][/font]

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 多维液相色谱技术,2020版药典中新增的多维液相色谱你真的了解吗?

    2020版药典高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法中新增了多维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],还不了解的小伙伴们快来看看吧![img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/202308050956071257895204.png[/img][b]一维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的不足[/b]色谱作为复杂混合物的重要分离分析工具,对化合物的分离分析起到了很大的作用。目前使用的大多数仪器都是一维色谱,仅用一根柱子,就可以对含几十种甚至是几百种物质的样品进行分离分析。但是当样品更为复杂时,例如有人分析蛋白组学,这时就需要用到多维色谱技术。[b]多维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的优势[/b]多维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]又叫色谱/色谱联用技术,是采用匹配的接口将不同分离性能或特点的色谱连接起来,将第一级色谱中未分离或需要分离富集的组分由接口转移到第二级色谱中,第二级色谱仍需进一步分离或分离富集的组分,也可以继续通过接口转移到第三级色谱中,以此类推......理论上,是可以通过接口将任意级色谱串联或者并联起来,直至将混合物样品中所有难分离、需富集的组分都分离或富集。但实际上,一般只要选用两个合适的色谱联用就可以满足绝大多数难分离混合物样品的分离或富集要求。因此,一般的色谱/色谱联用都是二级,即二维色谱。[img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/202308050956071244121129.png[/img]以杭州赛智科技的多维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]为例,可以应对各类石油化工、环境污染物、体液、食品等复杂样品,实现更满意的分离结果。同时,搭配自动进样器等设备可升级拓展成为固相萃取联用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统,实现复杂基线样品在线分离、峰聚焦、检测补偿等,大大提高系统分离能力。另外,搭载赛智科技的SURVEY色谱数据工作站,全面符合GLP/GMP、FDA、21 CFR PART 11、2020版药和CTD格式要求,全面匹配色谱柱信息,用户管理,权限设置、电子签名和批处理,系统适应性评价(SST)等审计追踪功能。[img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/20230805095608279903875.png[/img][b]二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分类[/b]二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]可以分为差异显著的两种类型。一种是中心切割式二维色谱,另一种是全二维色谱。中心切割式二维色谱(LC-LC):两种色谱的联用仅是通过接口将前一级色谱中某一组分传递到后一级色谱中继续分离。全二维色谱(LC×LC):两种色谱联用,接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离。此外,这两种类型下还有若干子类型,包括选择性二维色谱(sLC×LC)和多中心切割2D-LC(mLC-LC)等。[img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/202308050956082102493289.jpeg[/img][b]核心技术“接口”的作用[/b]接口技术是实现二维色谱分离的关键之一,是将第一维色谱中组分转移至第二维色谱的切换阀组件,这部分硬件的选择和性能直接影响着第一维和第二维分离的很多方面以及系统的总体性能,并且它充当第一维的收集器和第二维的进样器的角色。原则上,只要有匹配的接口,任何模式和类型的色谱都可以联用。[img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/20230805095608351898567.png[/img]赛智科技专利设计的六通阀,作为推荐的稳定接口,适用于单/多中心切割、全二维、选择性全二维等全部二维分离模式。可以用于一根柱子切换两个流路,主要用于固相萃取、反冲、旁路、系统清洗等;也可以用于一个流路中切换一根柱子方向或者一个流路中切换两根柱子。[img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/202308050956091956923828.png[/img][img]http://objectmc.oss-cn-shenzhen.aliyuncs.com/yhdoc/20230805/20230805095609405322862.jpeg[/img]近年来,由于二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]对样品前处理要求远没有液-质联用方法高,而二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的应用又提高了[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的指向性,减少了峰重叠和多组分保留时间集中的误差,因此成为色谱分析新趋势,被广泛应用于食品分析、维生素分析、蛋白组学分析、体内药物分析、杂质分析等多个研究领域中复杂样品的分析,未来也会被应用到更多新领域。

  • 光谱仪的未来将趋向微小型化发展

    微型光谱仪具有许多大型光谱仪所不具备的优点,如重量轻、体积小、探测速度快、使用方便、可集成化、可批量制造以及成本低廉等,像普通光谱仪一样微型光谱仪有着巨大的应用市场,可以应用在实验室化学分析、临床医学检验、工业监测、航空航天遥感等领域,因而引起了人们广泛的兴趣。微型光谱仪的实现可以应用多种技术,目前常用的方法包括:采用新型滤光技术制作微型光谱仪;利用光纤的化学传感性制成光纤探针进行光谱分析;使用微细加工制作集成式微型光谱仪等。 利用光纤制作的微型光谱仪,光纤传感器的主要特点是具有很高的传输信息容量,可以同时反映出多元成分的多维信息,并通过波长、相位、衰减分布、偏振和强度调制、时间分辨、收集瞬时信息等来加以分辨,真正实现多道光谱分析和复合传感器阵列的设计,达到复杂混合物中特定分析对象的检测,这对电传感器和声传感器而言是望尘莫及的。光纤的探头直径可以小到与其传播的光波波长属于同一数量级,这样小巧的光纤探头可以直接插入那些非整直空间和无法采样的小空间(如活体组织、血管、细胞)中,对分析物进行连续检测。 OceanOptics公司的MichaelJ.Morris等人研制一种紧凑级联光纤DIP探针微小光谱仪,该系统的设计是使用单股光纤以获得高分辨率光谱信息,对于决定液体的吸收、发射和散射,或测量pH或有毒金属浓度使用固定指示材料。光谱仪的模式限制光学设计得到很高的光通量,常规应用中可以使用50μm的光纤。微型光纤光谱仪还有美国Stwenchristesen等人研制的便携式光纤拉曼光谱仪,便携式光纤拉曼光谱仪可以对化学试剂鉴定盒进行非接触分析,它包括二极管激光器、中阶梯摄谱仪、电荷桐合器件(CCD)检测器和一个带有滤光涂层的光纤探针,这种光谱仪被用来分析密封玻璃容器中的化学试剂和其它有毒化学物。拉曼光谱是通过使用一个带有25m光纤的EICRamanProbe探针获得的。探针输出功率在紫翠玉激光器下为80mW,而二极管激光器为137nW。这种微型拉曼光谱仪也可以用T单个活细胞的分析。 由于光谱仪的结构特点以及光谱仪广泛的应用领域,在微小光谱仪的研究中可以采用多种方法和多种思路。比如改善AOTF的波长覆盖范围、波长分辨率和通光本领,可以使它能应用于各种光谱化学分析,而用这样的元件可以制成结构简单、性能良好、成本低廉的光谱仪,或者使用分辨率较高的中阶梯光栅,与一般棱镜结合,进行交叉色散,可以得到分辨率很高的二维光谱图,所以可以根据微小光谱仪的本身特点和工作环境要求来进行设计。 微加工技术的发展以及MEMS、MOEMS的出现使许多学科技术的研究都朝着微小型化的方向发展,更需要一些特殊条件下(如外星、地下、深海、危险区等)的工作仪器。光谱仪在未来的新世纪必将出现高度智能化和微型化的趋势,微型光谱仪可以说是微型仪器的一种。微型仪器实际上是具有仪器功能的MEMS/MOEMS产品,是MEMS技术的实际应用。 微型仪器的核心技术之一是微型传感技术,采用各种新原理、新概念的各类传感器是实现微型仪器的关键和必要条件。现在仪器朝着微小型化、智能化的发展使我们又面临一个新的考验,也是我们发展的一个机遇。

  • 透光度为纵坐标的光谱图波峰朝向

    如题,以透光度为坐标的光谱图中既有朝上的峰又有朝下的峰,该如何分析,透光度曲线的基线位置。另外,这是我测得的sio2的反射光谱(黑色曲线,透光度为纵坐标),红色为其他出处的光谱,纵坐标不太清楚是吸光度还是透光度,如果以透光度来看的话,这两个峰位和峰向是吻合的,我测得的准吗,参考的光谱曲线是透光度吗?http://ng1.17img.cn/bbsfiles/images/2016/07/201607181311_600914_3048573_3.bmp

  • 【分享】实现数据超快存取技术突破

    实现数据超快存取技术突破法国物理学家5月31日表示,他们已利用超高速激光器将硬盘数据的存储和检索速度提高了10万倍,从而为新一代IT技术的开发指明了方向。 此项技术建立于2007年诺贝尔物理学奖获得者、法国科学家阿尔贝费尔和德国科学家彼得格林贝格尔的研究成果之上,这两位科学家在20世纪90年代开创了革命性的小型存储技术,他们发现磁场的微小变化可产生大量的电力输出,这些差异反过来又引起硬盘读取头的电流变化。 这一发现开辟了利用“自旋电子学”原理(不仅利用电荷,还利用单个原子中的电子自旋)实现硬盘高密存储的途径。但是,通过自旋电子的数据读写速度一直受制于相对缓慢的磁传感器。 在5月30日出版的《自然—物理学》上,法国斯特拉斯堡材料物理和化学所的让—伊维斯毕高领衔的研究小组发表了他们的最新研究成果。他们使用飞秒激光器发出的超高速激光改变电子的自旋,从而加快了检索和存储速度。 毕高说,这种方法可称为自旋光子学,因为光子改变了存储介质表面电子的磁化状态。数据可通过持续时间仅为千万亿分之一秒的突发激光得以恢复。飞秒激光器的尺寸为大约30厘米×10厘米,这意味着其目前尺寸过大尚不能应用于消费类电子产品中。 毕高表示,虽然飞秒激光器的微型化有可能在未来十年内实现,但IBM、日立和其他公司目前均已对此项研究表现出浓厚的兴趣。

  • 【资料】多维色谱技术(45讲 待续)

    [B][center]多维色谱技术(1)[/center][/B] 第一章 总论 1.1 前言 自然界是一个复杂的混合物:石油含有十万到一百万个化合物,而在人体中据估计至少有十五万个不同的蛋白质,针对这些复杂混合物所需要的分离技术要依靠色谱和电泳方法,可以这样说,分离是20世纪的科学。实际上分离科学整整跨越了这一世纪,在20世纪之初,有机和天然物质的化学主要是合成及使用降解、化学反应、元素分析方法进行的结构测定。当时蒸馏、液体萃取、特别是结晶的方法是有机化学家所使用的分离方法。 实际上对化合物的表述主要形式是结晶,早期用色谱分离天然物质由于没有得到结晶物质而受到质疑,在上世纪三十年代,一些天然化合物的研究者使用茨维特发明的色谱方法,即在一个开口的管子里进行不断的吸附/脱附过程把植物的萃取物进行分离,特别是Karrer 和 Swab 及 Jockers ,一个早期的实例是把氧化铝吸附色谱和荧光结合在一起,分离和鉴定叶岩油的组成。 Martin 和 Synge 的基础性研究工作是色谱研究的一次飞跃,他们在 1941 年用分配色谱代替逆流液-液萃取,分析了羊毛中的氨基酸,Martin 还认识到可以使用气体代替液体做流动相,在Philips 的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]吸附色谱之后,和James 一起于1951 年首次发展了[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分配色谱。 早期的分配色谱是在填充柱上进行的,但是于 1958 年 Golay 阐明了可以使用一根直的毛细管代替有许多弯弯曲曲通道的填充柱,可以大大提高色谱柱的效率,毛细管可以使用玻璃或金属制做,之后实践证明毛细管柱的确有很高的柱效。但是之后的研究在柱工艺上遇到了困难,限制了毛细管柱的发展,一直到1979 年熔融石英毛细管柱出现,Dndeneau and Zerenner [1]认识到可以把制做光导纤维的设备用于制造柔韧、结实、内壁惰性的毛细管柱。之后 Lee [2]等阐述了在这种熔融石英毛细管柱上涂渍各种固定相的化学问题 (1984)。从此现代高效[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的时代来临了。 参考文献 [1] R. D. Dandeneau and E. H. Zerenner, ‘An investigation of glasses for capillary chromatography’,J. High. Resolut. Chromatogr. Chromatogr. Commun. 2: 351 (1979) [2] M. L. Lee, F. J. Yang and K. D. Bartle, ‘Column technology,’ in Open Tubular Column Gas Chromatography. Theory and Practice, John Wiley & Sons, New York, Ch. 3,pp. 50–99 文献来源:L.MONDELLO, A.C. LEWIS, K. D. BARTLE,” MultidimensionalChromatography”, John Wiley & Sons Ltd, 2002

  • 2020版药典中新增的多维液相色谱究竟是“何方神圣”?

    2020版药典高效液相色谱法中新增了多维液相色谱,各位不了解的小伙伴快来看看吧[b]一维液相色谱的劣势[/b]色谱作为复杂混合物的分离工具,对化合物的分离分析发挥了很大的作用。目前使用的大多数仪器为一维色谱,使用一根柱子,适合于含几十至几百个物质的样品分析。当样品更复杂时,例如有人分析鹿茸蛋白,得到上千个色谱峰,可是经质谱定性表明,平均每个峰又含有二个组分,就要用到多维色谱技术。[b]多维液相色谱的优势多维液相色谱[/b]又称为色谱/色谱联用技术,是采用匹配的接口将不同分离性能或特点的色谱连接起来,di一级色谱中未分离或需要分离富集的组分由接口转移到第二级色谱中,第二级色谱仍需进一步分离或分离富集的组分,也可以继续通过接口转移到第三级色谱中。理论上,可以通过接口将任意级色谱串联或并联起来,直至将混合物样品中所有的难分离、需富集的组分都分离或富集之。但实际上,一般只要选用两个合适的色谱联用就可以满足绝大多数难分离混合物样品的分离或富集要求。因此,一般的色谱/色谱联用都是二级,即二维色谱。[align=center][img]http://img71.chem17.com/9/20190925/637050010323097953487.png[/img][/align][align=center]图1、二维液相色谱示意图[/align][b]二维液相色谱分类[/b]在二维色谱的术语中,1D和2D分别指一维和二维;而1D和2D则分别代表di一维和第二维。[b]二维液相色谱[/b]可以分为差异显著的两种类型。若两种色谱的联用仅是通过接口将前一级色谱中某一些组分传递到后一级色谱中继续分离,这是[b]中心切割式二维色谱[/b](heart-cuttingmode two-dimensional chromatography),一般用(LC-LC)表示。当两种色谱联用,接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离,这种二维色谱称为[b]全二维色谱[/b](comprehensive two-dimensional chromatograghy)一般用LC×LC表示。LC×LC是将1D色谱柱的流出物连续转移至2D色谱柱。相比之下,LC-LC则是将1D流出物选择性地(部分地)转移至2D色谱柱中。此外,这两种类型下还有若干子类,包括选择性二维色谱(sLC×LC)和多中心切割2D-LC(mLC-LC)。LC-LC或LC×LC两种二维色谱可以是相同的分离模式和类型,也可以是不同的分离模式和类型。接口技术是实现二维色谱分离的关键之一,原则上,只要有匹配的接口,任何模式和类型的色谱都可以联用。和一维色谱一样,二维色谱也可以和质谱、红外和核磁共振等联用。[b]SCX/RP二维液相色谱用于珠蛋白酶解产物分析[/b][align=center][img]http://img69.chem17.com/9/20190925/637050011599571773521.png[/img][/align][align=center]图2、 SCX/RP高通量分析珠蛋白酶解产物[/align]🔻 di一维采用SCX强阳离子交换色谱柱,流动相A为5mM NaH2PO4+1%乙腈,B为A+1.0mol/L NH4Cl,流动相pH4.0。🔻 第二维采用两支相同的C18常规反相色谱柱,流动相A为含0.1%TFA的水溶液,B为含0.1%TFA的乙腈。样品进入阳离子交换色谱,由SCX流动相逐步增加盐浓度间断洗脱,通过接口的有效转移将SCX洗脱的产物导入第二维反相色谱中进一步分离。在选定实验条件下的二维分析结果,在离子交换色谱和反相色谱构成的二维液相色谱系统中,因离子交换色谱较高的柱容量通常作为di一维系统,而反相色谱与离子交换色谱流动相有较好的兼容性及较高的分辨率常作为第二维系统。由于SCX对样品的切割分离,二维分离的结果大大降低了样品分析的复杂性。同时由于二维分离机理的正交性,进一步拓宽了样品的分离空间,增强了系统的分离能力。在分析珠蛋白酶解产物中,di一维离子交换切割次数为19次,由图2可知第二维反相色谱峰容量为174,这种台阶式洗脱切割方法峰容量为di一维切割次数乘以第二维峰容量,因此SCX/RP二维液相色谱的峰容量可达到3306。

  • 最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    “多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]及微尺度分析测试新方法的研究与应用”网络会议![b][img]https://simg.instrument.com.cn/bbs/images/default/em09507.gif[/img]9月5日正式开讲!特邀资深专家进行讲解~报告主题:[color=#cc0000]多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术特点及在复杂样品分析中的应用[/color][color=#cc0000] 基于探针电喷雾Paternò-Büchi光化学反应的微尺度脂质组学技术研究及应用[/color]免费报名链接:[url]https://www.woyaoce.cn/webinar/meeting_4443.html[/url]课程详情咨询请添加测小二微信号cexiaoer2018 [img=,253,253]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301703303161_1126_3348354_3.jpg!w253x253.jpg[/img][/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制