当前位置: 仪器信息网 > 行业主题 > >

导电纳米材料

仪器信息网导电纳米材料专题为您整合导电纳米材料相关的最新文章,在导电纳米材料专题,您不仅可以免费浏览导电纳米材料的资讯, 同时您还可以浏览导电纳米材料的相关资料、解决方案,参与社区导电纳米材料话题讨论。

导电纳米材料相关的资讯

  • 美创建首个可实用的运动发电纳米器件
    心“动”来“电” 多根纤维组成的纳米纤维发电机示意图   也许在不久的未来,你一边走路一边就可为装在你口袋里的iPod充电,甚至你那怦怦跳动的心脏还能驱动便捷式血压传感器。美国研究人员在最新一期《自然纳米技术》杂志上报告说,他们创造出了第一种可实际使用的运动发电纳米器件,新的“纳米发电机”在受到挤压、弯曲或摇动的情况下能输出与一节AA电池几乎相同的电压,从而为研发出可自供电的电子器件敞开了大门。   先前,研究人员已开发出利用机械能为电子器件供电的器件,但此类运动发电纳米器件原型无法达到理想的电压,因此并不具备应用价值。2008年,研究人员就开发了一个可为手机供电的护腿,但是其尺寸越小,输出的电力也越小,无法实现为电池充电。迄今为止,研究人员一直未能展示出可为任何纳米或非纳米器件供电的基于纳米技术的发电机原型。   美国佐治亚理工学院的材料学家王中林和同事表示,他们已克服了输出功率太小的难题。王中林的实验室创造出了两种塑装的新型纳米发电机,每一种都特别薄且可弯曲,长度和厚度与一根回形针相仿。其关键部分是由晶状氧化锌制成的纳米线,氧化锌晶体是一种可将机械压力转化为电能的压电材料。每根纳米线的厚度为几百纳米。   其中一种发电器件的纳米线的外形酷似钉床,里面充填着塑料材料以增强其耐用性,这些塑料材料被夹在导电材料层之间。在研究人员轻轻挤压该纳米发电机时,其能产生0.24伏特的电压。这已足以驱动研究人员开发的两种不同的纳米传感器:一种用以测量流体的酸度 另一种用于探测紫外光。   另一种供电能力更强器件的纳米线看起来更像铁路枕木,搭在铬和金制成的相对轨道上。研究人员在一张薄片上安排了700个这样的轨道。当研究人员轻轻弯曲该纳米发电机时,其产生了超过1.26伏特的电压,这比先前创建的纳米发电机原型高出60倍,已接近标准碱性电池的1.5伏特。这个电压增加了其实际应用的可能性,譬如可在不用插座的情况下给手机电池充电。   与此前的器件相比,新型纳米发电机具有几大优势。首先,研究人员并没有像许多压电材料那样使用有毒的重金属,这使其是环境友好的,在体内使用时也更安全。其次,其可在低于水的沸点的温度条件下制成,这一温度远远低于制作标准电子器件所需的温度。此外,其还具有按比例放大制作的潜力,这将使其更为普及。   研究人员表示,器件的小型化是发展趋势,但光是将器件制作得小并不足够,还必须使其获得持续的电力供应以适应移动生活的需要。利用新型的纳米发电机,未来可将这些器件放置在任何环境中,这些器件将在无需电池的情况下独立地、可持续地工作。环境中的各种机械能,如潮汐运动、海波、机械振动、旗帜迎风飘扬、徒步者运动鞋的压力以及衣服的飘动等,在未来都可成为电力的来源。   王中林对建立运动发电的传感器网络颇感兴趣。他表示,未来的家中可能会有无数无形的传感器,其担负着探测家中是否着火、淹水或泄露有害气体的重任,一旦发现问题,这些传感器将向计算机发送无线信号,更重要的是,这些传感器根本不需要联至插座上进行充电或更换电池。   有关专家评价说,该项工作将会对纳米技术产生广泛影响,其首次为“无所不在”的未来电子世界提供了可能。   不过,研究人员也表示,纳米发电器件真正在衣服或手机中展现其魅力之前,还必须缩减尺寸,改善整体电力输出并增强其存储电力的能力,这将成为研究人员接下来需要面对的挑战。   该研究得到了美国国家科学基金会、国防部高级研究计划局和能源部的资助。
  • 光电纳米材料及元器件重大专项通过验收
    中国科学院福建物质结构研究所承担的福建省科技重大专项新颖光电纳米材料及其原型器件研发日前通过了省级验收。   据介绍,该项目主要研发应用于显示和发光中的强荧光纳米高聚物材料、低核有机金属电致发光纳米材料、蓝光/紫外激光材料等纳米光电材料与器件。在强荧光纳米高聚物材料研发方面,获得10多种在紫外可见光范围内光致或热致变色、荧光可调等具有良好发光性能的新型高聚物发光材料,高聚物发光材料的粒度分布均匀,热稳定温度大于200℃ 在低核有机金属电致发光纳米材料与器件的研发方面,获得了系列含有机膦配体的低核铜化合物,基于低核铜磷光配合物的器件达到5V以内启亮,最大电流效率超过5cd/A,寿命长达55小时 在蓝光/紫外激光纳米材料与器件的研发方面,获得了在半导体激光泵浦下蓝光/紫外发光肉眼可见的新型纳米复合材料,材料直径和厚度分别超过过30毫米和3毫米。   项目申请中国发明专利23件。
  • Nature Communications:AFM-IR研究铁电纳米晶极化所罗门环结构
    所罗门环是数学扭结理论中的一个重要拓扑结构,它由两个分量和四个交叉点组成。最近人们发现,这种拓扑结构可以通过化学和生物分子的自组织形成。本研究中来自北京理工大学和清华大学的学者首次在BiFeO3铁电纳米晶体中观察到了极化所罗门环,并且极化所罗门环和中心型四瓣畴之间的拓扑相变可以通过电场可逆调控。AFM-IR测量结果显示两种拓扑极性结构具有不同的太赫兹红外吸收行为,这一特征可以用于设计具有纳米级分辨率的红外显示器。相关成果以Polar Solomon rings in ferroelectric nanocrystals为题,发表在Nature Communications上。在本项研究中,作者采用了几种先进的理论和实验方法,包括压电力显微镜,相场模拟分析和纳米红外技术来验证BiFeO3纳米晶的拓扑结构,电场可逆调控和红外吸收特性。图1所示,采用压电力显微镜,作者在自组装BiFeO3纳米晶中观察到极化所罗门拓扑畴结构,该结构由两个三维涡旋环组成:R+ 4 ,R-3 ,R+ 2 ,R-1(蓝色环)和R- 4 ,R+ 3 ,R- 2,R+ 1(红色环);两个涡旋相互扭抱,在三维空间共有四个交点。通过相场模拟分析(图2),作者表征了极化所罗门环的拓扑特性。通过计算纳米岛各层中畴结构的三维极化分布,验证了纳米岛极化所罗门环的存在,并通过计算极化缠绕数验证其拓扑特性。进一步的测试表明,通过施加外部电场,BiFeO3铁电纳米晶体的畴可以在极化所罗门环和中心型四瓣畴之间可逆地转变(图3)。未施加偏压下,纳米晶的极化畴呈所罗门环结构;-4V偏压下,环形结构消失,出现中心型四瓣畴结构;施加2V翻转偏压后,中心型筹结构又转变为所罗门环结构;增加偏压至3V,所罗门环结构转变为中心收敛的筹结构;继续施加翻转偏压-2V后,又变回所罗门环结构。通过AFM-IR探索了极化所罗门环结构与中心型四瓣畴结构不同的太赫兹红外光吸收性能(图4)。AFM-IR光谱显示两种筹结构在1100cm-1处存在出宽的吸收带,对应O-Fe-O键的倍频信号。向上和向下的四元域对该波段吸收更强,所罗门环吸收较弱。1100cm-1处的AFM-IR成像也证实了具有不同拓扑结构的BiFeO3纳米晶体的相对吸收强度的差异。铁电纳米晶筹结构对红外光的吸收取决于极化方向与红外光偏振方向的相对角度,以及畴壁的体积分数。所罗门环和中心型筹结构与红外光平行或反平行,吸收都较强。但所罗门环的畴壁的体积分数更大,畴壁对红外波段不活跃,因此,在所罗门环中观察到的光吸收最弱。在进一步的实验中(图5),选择具有极化所罗门环的大面积BiFeO3纳米晶体阵列作为弱的红外光吸收基体,向纳米晶体交替施加电压以产生交替的中心型畴和所罗门环。高分辨率红外图像清楚的显示出交替的强吸收和弱吸收。证实了所罗门环和中心型畴之间的可逆相变。通过外加电场调控BiFeO3纳米晶阵列畴结构类型,在纳米红外吸收图像中显示出”BIT”字样。本研究在实验和计算上证实了极化所罗门环的存在和电学调控,AFM-IR验证了两种筹结构不同的光吸收响应,这种具有不同光吸收特性的新型可控拓扑极化结构,可能为红外显示器的设计铺平道路。
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style=" text-indent: 2em " 透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。 /p p style=" text-indent: 2em " 因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。 /p p style=" text-indent: 2em " 最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。& nbsp /p p style=" text-indent: 2em text-align: center " span style=" text-align: center text-indent: 0em " img src=" http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title=" 1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 图1. 单根分散、具有碳焊结构的SWCNT网络。 /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (A)典型TEM照片;(B)单根SWCNT的百分含量统计; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。 /span /p p style=" text-indent: 2em " 通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。 /p p style=" text-indent: 2em " 研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title=" 2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " 图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。 /span /p p style=" text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " (A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。 /span /p p style=" text-indent: 2em " 该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。 /p
  • 网络讲堂:导电原子力显微镜(C-AFM)在二维材料及纳米电子器件中的应用
    讲座时间:北京时间10月31日(周四)下午15:00-16:00 导电原子力显微镜(C-AFM)是一种非常有用的扫描探针显微镜(SPA)纳米表征技术,它不仅可以对样品的形貌进行表征,更重要的是可以探测许多介质材料和电子器件的局部电学性质。C-AFM技术已经成功表征了介质薄膜的许多重要的纳米级现象,比如:局部缺陷、电荷捕获和释放、应力诱导漏电流、负偏置温度不稳定性等。 目前,随着电子器件尺寸和介电材料厚度的不断缩减,纳米级电学性质表征技术手段的应用和发展变得日益重要。本讲座首先简要介绍C-AFM技术的发展历程、工作原理、工作特点及方式;其次重点介绍C-AFM技术在二维材料和忆阻器中的电学表征应用。 具体内容是利用C-AFM技术:1.研究化学气相沉积法制备的六方氮化硼(h-BN)的电学性质:介质击穿特性和厚度及电学性质均一性;2.在不同环境(大气和真空)下探测h-BN基忆阻器的阻变特性及导电细丝的形态表征;3.通过与其它电学设备相结合,实现更高性能的技术表征。最后,探讨未来多探针SPA技术的发展概念,有望实现在真空环境下对材料或器件的原位制备和表征。主讲人介绍: 惠飞博士,现以色列理工学院博士后,2018年7月获得巴塞罗那大学和苏州大学双博士学位。在攻读博士期间,她曾先后到世界顶级名校美国麻省理工学院和英国剑桥大学进行为期12个月和6个月的访学。在科研方面,5年时间内,她共参与发表SCI期刊学术论文38篇,其中,一作论文11篇,包括顶级期刊Nature Electronics, AdvancedFunctional Materials, ACS Applied Materials & Interfaces, 2D Materials, Nanoscale等。另外,她还参与德国Wiley出版的专著篇章一部,获批国家发明专利一项,申请国际专利两项,参与申请国际间/国家自然科学基金项目等8项。曾获得2019 ParkAFM博后奖学金、英国皇家化学会学者奖学金等。她的主要研究领域是化学气相沉积法制备二维材料及其在电子器件领域内的应用。请扫码免费申请网络讲座
  • “航空纳米材料联合实验室”成立
    p   以纳米材料“改性”碳纤维,增强飞机的韧性、导电性,提升飞机的安全性能,被视作下一代飞机材料的重大方向。8月31日上午,中国科学院苏州纳米技术与纳米仿生研究所正式与空客(北京)工程技术中心签署合作协议,并宣布成立“航空纳米材料联合实验室”。据悉,双方将以市场化为方向,加快纳米材料在民用飞机上的应用,这也是空客在纳米领域首次与中国方面签署的战略合作。 br/   自2010年起,空客民航A350逐渐以碳纤维材料取代金属、玻璃纤维等,截止目前,碳纤维在A350上的应用占比已超过50%。与传统金属材料相比,碳纤维具有密度低、强度高、可设计性强等优点,然而也存在韧性低、导电性差等不足,此次自带“粮草”合建实验室,空客需求明确。“我们需要通过纳米材料改性碳纤维,并迅速形成规模化、产业化,进一步减轻飞机重量,提升飞机的安全性、舒适性。”空客(北京)工程技术中心董事长程龙告诉记者,此次签约前,曾全球范围寻找“解决方案”,最终落地苏州纳米所,是看重这里技术转化的“高效率”,同时也了解到这里已研发出“碳纳米管薄膜”,这为成果的最终产业化奠定了基础、给足了信心。 /p p   “面向经济发展需求,加强科技与产业的融合,是中科院纳米所的职责所在。”签约活动中,中科院南京分院院长杨桂山表示,此次共建实验室,一方面可以加快实现纳米材料在民航的应用,另一方面也将提升苏州纳米所在应用领域的研发实力,是一个优势互补、赢在双方的“典范性”合作模板。 /p p   联合实验室建成后,将旨在通过纳米材料改良机身、机翼,还将为飞机健康运行提供“智能化服务”。苏州纳米所先进材料部研究员吕卫帮介绍,实验室将组建20多人的研发队伍,以纳米材料改性空客A350中的碳纤维,此外,还将在所用的纳米薄膜中增加“感应元件”,建立智能感知系统,随时监测机身材料的损伤位置、损伤程度,为机身的保养、运维提供数据参考。 /p p br/ /p
  • 碳纳米管:个性十足的神奇材料
    p style=" text-indent: 2em text-align: justify " 近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。 /p p style=" text-indent: 2em text-align: justify " 无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧? /p p style=" text-indent: 2em text-align: justify " 空间结构像“挖空的足球” /p p style=" text-indent: 2em text-align: justify " 1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。 /p p style=" text-indent: 2em text-align: justify " “可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。 /p p style=" text-indent: 2em text-align: justify " 杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。 /p p style=" text-indent: 2em text-align: justify " 制备方法是挑战 /p p style=" text-indent: 2em text-align: justify " “通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。” /p p style=" text-indent: 2em text-align: justify " “随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。 /p p style=" text-indent: 2em text-align: justify " “碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。 /p p style=" text-indent: 2em text-align: justify " “如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。 /p p style=" text-indent: 2em text-align: justify " 性能及尺寸超越硅基材料 /p p style=" text-indent: 2em text-align: justify " “碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。 /p p style=" text-indent: 2em text-align: justify " 2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。 /p
  • 浅谈纳米材料的表征与测试方法
    p style=" text-align: justify text-indent: 2em " 纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。 /p p style=" text-align: justify text-indent: 2em " strong 1 纳米材料的表征 /strong /p p style=" text-align: justify text-indent: 2em " 纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 纳米材料的表征 /span /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title=" 纳.png" alt=" 纳.png" / /strong /p p style=" text-align: justify text-indent: 2em " strong 2 纳米材料的测试技术 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 光子相关光谱法(photo correlation spectroscopy,PCS) /p p style=" text-align: justify text-indent: 2em " PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。 /p p style=" text-align: justify text-indent: 2em " 2.2 X 射线衍射法(X-ray diffraction,XRD) /p p style=" text-align: justify text-indent: 2em " X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。 /p p style=" text-align: justify text-indent: 2em " 2.3 X 射线小角散射法(small angle X-ray scattering,SAXS) /p p style=" text-align: justify text-indent: 2em " SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。 /p p style=" text-align: justify text-indent: 2em " 2.4 电子显微镜法(electron microscopy) /p p style=" text-align: justify text-indent: 2em " 电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。 /p p style=" text-align: justify text-indent: 2em " SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。 /p p style=" text-align: justify text-indent: 2em " TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。 /p p style=" text-align: justify text-indent: 2em " 由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。 /p p style=" text-align: justify text-indent: 2em " 2.5 扫描探针显微镜法(scanning probe microscopy,SPM) /p p style=" text-align: justify text-indent: 2em " SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。 /p p style=" text-align: justify text-indent: 2em " 近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。 /p p style=" text-align: justify text-indent: 2em " 2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS) /p p style=" text-align: justify text-indent: 2em " XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。 /p p style=" text-align: justify text-indent: 2em " 2.7 俄歇电子能谱法(aguer electron spectroscopy,AES) /p p style=" text-align: justify text-indent: 2em " AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。 /p p style=" text-align: justify text-indent: 2em " 2.8 其他方法 /p p style=" text-align: justify text-indent: 2em " 除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " 纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于 span style=" color: rgb(255, 0, 0) " 2019年12月18日 /span 组织举办 strong 第二届“纳米表征与检测技术”主题网络研讨会 /strong ( a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 免费报名中" i span style=" color: rgb(255, 0, 0) " 免费报名中 /span /i i span style=" color: rgb(255, 0, 0) " /span /i /a ),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" / /a /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 报名链接:第二届“纳米表征与检测技术”主题网络研讨会" strong span style=" color: rgb(255, 0, 0) " 报名链接 /span /strong : i strong span style=" color: rgb(112, 48, 160) " 第二届“纳米表征与检测技术”主题网络研讨会 /span /strong /i /a /p p style=" text-align: center " strong 扫一扫,参与报名 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title=" 报名.PNG" alt=" 报名.PNG" / /p p style=" text-align: center " strong 扫一扫,进入纳米表征与检测技术群 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title=" 群.PNG" alt=" 群.PNG" / /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " 文章摘自: /i /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " span style=" font-family: " microsoft=" " font-size:=" " background-color:=" " 谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21. /span /i /strong /p
  • 论碳纳米材料产业化的“三部曲”
    p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px line-height: 1.75em " 碳纳米材料作为新型材料界的“红人”,具有高端应用与复合应用的双重优势;其突出的力学、电学和化学性能引发了国内外持久的研究热潮,被誉为推动传统产业创新转型和升级换代的重要推手。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 近期,中国粉体网联合江苏省纳米技术产业创新中心、中国科学院苏州纳米技术与纳米仿生研究所主办了以“碳纳米材料产业化”为主题的“2018低维碳纳米材料制备及应用技术交流会”。综合来看,碳纳米材料要实现产业化需要走这三步。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 第一步:料要成材 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 以石墨烯为例,大规模制备高质量石墨烯是其应用的基础,石墨烯原料主要为鳞片石墨,目前制备的方法有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法等。具体对比如下: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_135974_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2018低维碳纳米材料制备及应用技术交流会上,来自北卡罗莱纳州中央大学的戴贵平教授为我们带来一种新鲜的研究思路:采用三聚氰胺作为原料制备三维石墨烯与氮沉积碳纳米管复合材料。因为三聚氰胺里既有N原子又有C原子,可以同时提供实验所需的氮源和碳源。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 第二步:材要成器 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 第二步是实现石墨烯等碳纳米材料产业化最为关键的一步,是联通材料与应用的纽带。石墨烯的表面状态非常稳定,亲油性和亲水性都很差,不能有效地与复合材料基体进行复合,并且易形成团聚体。因此,对石墨烯进行表面改性以及分散尤其重要。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_038265_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 石墨烯的分散方法 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 除了了解分散方法,分散结果的表征也尤为重要,常用的表征方法主要有测量沉降速度、测量堆积密度、采用浊度计、测量Zeta 电位以及测量粒度分布,其中粒度分布的测量已为人们所熟知。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 用激光粒度仪测量粉末的粒度分布来表征分散性,主要是应用光的散射原理和仪器的光学结构,计算机事先计算出了仪器测量范围内各种直径粒子对应的散射光能分布,通过适当的数值计算,得到与之相应的粒度分布。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 通常颗粒的平均粒径越小,表明颗粒分散性越好,即没有或只有少量软团聚,该方法可以用来检验各种方法的分散效果。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " br/ /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " 第三步:器要成用 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 碳纳米材料应用广泛,以石墨烯为例,石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其根据复合材料的不同主要分为以下几类: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 1、“石墨烯+涂料” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯同时具备优异的导电性和防腐蚀性能,因此可以用于导电涂料和防腐涂料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_256561_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 石墨烯防腐涂料“迷宫效应”示意图 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2018低维碳纳米材料制备及应用技术交流会上,青岛德通纳米于锦女士(代萧小月博士)介绍了石墨烯的化学以及物理分散方法以及应用于防腐涂料的实际案例。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 2、“石墨烯+新能源汽车” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯复合材料可替代金属或玻璃钢用于汽车壳体,具有质量轻,强度高,可设计性强的特点。除此之外,还可用于新能源汽车的储能材料: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_264687_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 来自中国科学院苏州纳米技术与纳米仿生研究所刘立伟研究员介绍的高质量薄层石墨烯薄膜可用于锂电电芯正极导电浆料、锂电前驱体材料制备导电浆料以及锂电铝箔涂炭浆料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 常州大学的马昕教授分析了锂电池及原材料的发展现状及趋势,并介绍了低维碳纳米材料作为锂电池导电剂的多项优势以及新研发的硅负极材料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 3、“石墨烯+导热材料” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯是一种超级新型纳米材料,具有超高强度、超高导热系数,通过工艺处理可以得到性能良好的碳基导热膜。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_281555_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 中国科学院宁波材料技术与工程研究所林正得提出将石墨烯附着到海绵等多孔结构的材料,得到的三维石墨烯材料的导热率会大幅度提高,而且成本较低。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 中国科学院过程工程研究所崔彦斌研究员将石墨烯加到环氧树脂中,通过大大提高导热率制备出碳基导热膜,而且相比于国外市场的导热膜,具有价格低的优势。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " ?? /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 综述: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 一个材料的兴起必然要经过三个阶段:料要成材;材要成器;器要成用。石墨烯产业目前尚处于技术概念期,要真正进入产品导入期和市场扩张期,还有相当长的一段时间。但是从“书架”走向“货架”已成必然,让我们共同期待碳纳米材料即将带给我们的崭新未来! /span /p
  • 美国开发出检测纳米材料磁性特征新方法
    美国仁斯里尔工业学院12月8日宣布,研究人员成功地将直径为1纳米至10纳米的钴纳米结构团镶嵌于多层碳纳米管中,开发出了一种检测纳米材料磁性特征的新方法。   在经过一系列实验之后,研究人员最终确定,他们获得的由钴纳米材料和碳纳米管组成的混合结构具有足够的导电性灵敏度,可用来探测钴纳米结构这样微小的磁性材料的磁行为。据悉,这是研究人员首次展示利用独立的碳纳米管实现探测微小磁性材料磁场的技术。相关报道刊登在新出版的《纳米快报》上。   当人们常见的材料小到纳米级时,它们展示出了有趣和有用的新特征。纳米技术面临的一个重要的挑战就是要了解这些新特征,即特性的变化。磁性材料的磁性变化同材料本身的尺寸大小变化密切相关,过去纳米材料磁性变化的难以测量影响了人们对该课题的深入研究。   “由于在我们的混合材料中,钴纳米结构团是镶嵌在碳纳米管中而不是在其表面上,因此它们不会引起电子散射,从而不会影响碳纳米管宿主的传导特性。”仁斯里尔工业学院物理、应用物理和天文系助理教授兼研究带头人斯瓦斯迪克卡尔表示,“从根本上讲,这种混合纳米结构属于一类新的磁性材料。”   同系副教授萨偌吉纳亚克认为,这种新的混合纳米结构不仅为基础和应用物理研究开创了新方法,而且还有望帮助人们利用磁性自由度,为增加碳纳米管电学功能铺平道路。该混合结构的潜在应用包括新型纳米级导电传感器、新的电子存储器件、自旋电子器件和人体定向药物微型输送器组件等。
  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。 /p p style=" text-indent: 2em " 碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。 /p p style=" text-indent: 2em " 有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。 /p p style=" text-indent: 2em " 针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。 /p
  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“复合/纳米材料的形貌及粒度表征”
    p img style=" WIDTH: 600px HEIGHT: 75px" title=" sj0213xuan01_副本.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/insimg/8c21f2e9-490e-4a10-b5be-359d731bbccf.jpg" width=" 600" height=" 75" / /p p strong span style=" COLOR: rgb(0,0,0)" “复合/纳米材料的形貌及粒度表征”网络主题研讨会 /span /strong /p p br/ strong span style=" COLOR: rgb(0,0,0)" 会议时间:2015年12月9日 14:00-17:00 /span /strong /p p br/ 报告日程: /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告一:纳米材料的形貌和粒度分析方法及应用 /strong /span /p p br/ 报告人:朱永法 /p p br/ 清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。 /p p br/ 报告概要: /p p br/ 主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告二:基于PeakForce Tapping模式的纳米材料表征 /strong /span /p p br/ 报告人: 孙昊 /p p br/ 布鲁克中国北方区客户服务主管 /p p br/ 报告提纲: /p p br/ PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告三:纳米材料的粒度表征 /strong /span /p p br/ 报告人:方瑛 /p p br/ HORIBA 应用工程师 /p p br/ 报告概要: /p p br/ 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告四:尺度表征用纳米标准样品 /strong /span /p p br/ 报告人:刘忍肖 /p p br/ 博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。 /p p br/ 报告提纲: /p p br/ 纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。 /p p br/ 报名条件:仪器信息网个人用户,自助报名当天参会。 br/ br/ span style=" COLOR: rgb(255,0,0)" strong 报名方式:扫描下方二维码或点击链接。 /strong /span br/ br/ img title=" 12-9纳米材料研讨会.png" src=" http://img1.17img.cn/17img/images/201511/insimg/3c15c368-57fd-486a-a4ab-b1df6999103e.jpg" / br/ br/ 仪器信息网“复合/纳米材料的形貌及粒度表征”网络主题研讨会 /p p br/ a title=" “纳米材料的形貌及粒度表征应用技术”网络主题研讨会" href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target=" _blank" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749 /a /p
  • 南理工纳米储能材料研究进展发表在《Advanced Materials》
    p   近日,南京理工大学材料学院/格莱特研究院纳米能源材料(NEM)实验室夏晖教授团队在超级电容器氧化铁电极材料研究方面又取得新的突破。相关研究成果“Achieving Insertion-Like Capacity at Ultrahigh Rate Via Tunable Surface Pseudocapacitance”于2018年2月在线发表在材料科学领域顶尖期刊《Advanced Materials》(Adv. Mater., 2018, 1706640 IF=19.791)上。青年教师翟腾为第一作者,夏晖教授为通讯作者。这是该团队近一年内发表的第十篇影响因子10以上的论文。 /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/65ea0c55-1754-4fe1-9d91-1251d20715d3.jpg" title=" 1cf9e2e6-cadc-4938-be3e-aa30c04f9a31.jpg" / /p p   图 改性氧化铁/亚硫酸钠体系容量随扫速变化及储能机理 /p p   与超级电容器的其它负极材料如碳材料相比,三氧化二铁(Fe2O3)不但拥有较高的比电容量,而且资源丰富、价格低廉、环境友好,是一种极具应用潜力的高性能负极材料。但是其弱电子、离子传导性能,导致功率密度偏低和稳定性较差,严重制约着它在高性能超级电容器中的广泛应用。自2017年以来,夏晖教授团队在超级电容器电极材料的研究上取得了一系列研究进展,其研究结果均发表在国际材料能源领域的顶尖期刊上。在前期工作中,青年教师徐璟等人利用超细镍纳米管阵列上生长Fe2O3纳米片(Adv. Funct. Mater., 2017, 27, 1606728 IF=12.124),有效的提高了复合电极的赝电容性能。尽管如此,氧化铁的本征弱电子、离子传导性能依然亟待提升。在此基础上,NEM实验室的博士生孙硕首先发明了一种利用硼氢化钠溶液还原处理的普适方法制备具有本征高导电性和高离子传导性的Fe2O3结晶/非晶-核壳异质纳米结构(Nano Energy, 2018, 45, 390 IF=12.343):通过构筑非晶壳-结晶核异质结构并引入氧空位,成功在不损失能量密度的前提下有效地提高了赝电容超级电容器的功率密度以及循环稳定性。在这一工作进行的同时,夏晖教授团队通过同种改性方法引入的氧空位,调控改性氧化铁电极“牵手”氧化还原电解液中可贡献赝电容量的亚硫酸钠电解质。增量吸附的亚硫酸根为电极提高了可存储的电量,同时不受离子扩散限制的储能反应的快速动力学过程保证了大充放电倍率下实现更高的比容量(3.2 V s-1,290 C g-1)。高性能氧化铁负极材料/体系的研发,为高能量密度水系超级电容器的构筑提供了新的思路。此外,青年教师翟腾等人通过在金属氧化物表面实现磷酸根离子的表面改性,从而大幅度提高材料的表面反应活性而显著提高其赝电容贡献(Adv. Mater., 2017, 29, 1604167)。除了电极材料/体系比容量的提升,工作电压的拓展是获得高能量密度水系超级电容器的另一个关键。夏晖教授与化工学院朱俊武教授合作的2.6 V水系不对称超级电容器的研发成果于2017年6月在线发表在《Advanced Materials》(Adv. Mater., 2017, 29, 1700804)上。系列研究成果的结合将为水系高电压不对称超级电容器的应用研究提供有力的技术支撑,有望在未来取代铅酸电池。 /p p   习近平总书记在十九大报告中关于“建设美丽中国”中指出,要“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”。能源存储材料作为高效储能装置的关键,是大力发展清洁能源不可或缺的一环。夏晖教授团队立足于清洁能源高效利用,围绕多种储能系统的关键材料开展研究,在过去一年中取得了一系列进展。 /p p   其中围绕锂离子电池研究方向,取得的研究成果包括博士生薛亮完成的三维自支撑多孔LiCoO2纳米片阵列正极(Adv. Funct. Mater., 2018, 28, 1705836 IF=12.124)、青年教师岳继礼和硕士生嘉蓉完成的碳包覆SnO2-x多孔纳米片阵列负极(Energy Storage Mater., 2018, 13, 303 即时IF=13.39)、博士生夏求应完成的简易可控的硼(B)氮(N)双掺杂三维多孔碳纳米纤维正负极用于锂离子电容器(Adv. Energy Mater., 2017, 1701336 IF=16.721)、青年教师徐璟和硕士生蒋瑶完成的多孔氧化锰纳米立方负极的研究工作(Small, 2018, DOI:10.1002/smll.201704296 IF=8.643)。 /p p   围绕钠离子电池研究方向,取得的研究成果包括青年教师杨梅和硕士生马依凡完成的氮(N)硫(S)共掺类石墨烯材料(Energy Storage Mater., 2018, 13, 134)、青年教师杨梅和博士生陈婷婷完成的功能化石墨烯/硫化钴量子点复合电极(J. Mater. Chem. A, 2017, 5, 3179 IF=8.867)、博士生郭秋卜完成的CoSx量子点内嵌氮硫共掺类石墨烯材料(ACS Nano, 2017, 11, 12658. IF=13.942)、硕士生陈琪等完成的硫化镍嵌入的柔性三维碳纤维电极材料用于柔性钠离子电池(Adv. Energy Mater., 2018, DOI:10.1002/aenm.201800054 IF=16.721)的研究工作。上述研究工作受到了能源存储领域的专家学者以及新能源企业的广泛关注。 /p
  • iCAM 2017新材料网络会议Day2:纳米材料最新研究进展与应用
    p    strong 仪器信息网讯 /strong 2017年11月1日,由仪器信息网主办的首届“新材料技术专题网络研讨会(iCAM 2017)暨仪器信息网材料周”正式开幕。会议为期三天(11月1日-3日),目前报名人数已突破1000人次。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/09ac264a-07cc-4927-8703-8c33a2271197.jpg" title=" 01.png" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/ef851138-16e5-441c-ab52-ec92b1efce79.jpg" title=" 02.png" / /p p   iCAM 2017的首日, a style=" text-decoration: underline color: rgb(0, 176, 240) " title=" " target=" _self" href=" http://www.instrument.com.cn/news/20171101/232520.shtml" span style=" color: rgb(0, 176, 240) " strong 新能与材料研究进展与应用会场 /strong /span /a 已成功进行完毕。11月2日,会议的Day2,纳米材料研究进展与应用会场如期拉开帷幕,8位纳米材料技术研发、应用专家及厂商技术专家分享了纳米材料在新技术与应用方面的精彩报告。以下为报告内容简要及报告专家解答的部分在线网友提问问题,以飨读者。 /p p style=" text-align: center " span style=" color: rgb(112, 48, 160) " strong 纳米材料研究进展与应用会场 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/fea9f79d-ab1b-4dda-9d62-1eb27badf287.jpg" title=" 03.png" / /p p   近来,纳米载药体系、纳米药物的研究受到研究人员的日益关注。纳米材料的体内代谢研究是其安全性评价的重要内容和医学应用的前提。基于核技术的研究方法在纳米材料的体内分布、代谢研究中能够发挥重要作用。张智勇首先简介了基于核技术的纳米材料分析检测方法,包含分子级检测的SRCD、XAFS、CS、AFM等,细胞级检测的CLSM、TEM、STXM、μ-XRF等,宏观级的ICP-MS/NAA、MRI、HE等。接着分别以氧化物纳米材料、金属纳米材料、碳纳米材料的检测为例,详细介绍了核及相关技术在纳米材料体内代谢研究中的应用。表明,多种检测手段结合,相互补充验证,有助于获得纳米材料体内分布与代谢的全面信息。 /p p    strong 以下为在线网友提问的部分问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/80cdfbb4-ba99-4d70-abf9-cb98c5e0934c.jpg" title=" 04.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/cb6a9d25-1744-4dfb-a1c6-4eeb0a9ffcd8.jpg" title=" 05.png" / /p p   据介绍,TESCAN拉曼光谱一体化电镜RISE集拉曼成像、SEM、EDS、EBSD等于一体,应用领域包括碳材料、有机物试样、无机综合分析、二维材料、农生医药、半导体等。张芳通过具体案例分别介绍了RISE在这些领域的分析能力,如利用不同碳材料的典型拉曼特征光谱,分别对类金刚石、纳米碳管、石墨、石墨烯、石墨烯复合材料等进行碳结构表征 对岩浆岩等无机物进行相鉴定、结晶度、应力表征 对二维材料表征等。表明,RISE在传统电镜高分辨图像能力的基础上,大大增强了分析能力。 /p p    strong 以下为部分网友提问问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/86d8fa6b-1000-4abd-930d-25244c161294.jpg" title=" 06.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/73f56efd-80cc-4fee-890d-267e51573f5a.jpg" title=" 07.png" / /p p   数据显示,2015年我国橡胶工业总产值达10600亿人民币,占我国GDP的1.67%。橡胶制品不仅伴随着人类日常生活的方方面面,在武器装备、载人航天等科技中也是关键材料之一。卢咏来在报告中系统回顾了北京化工大学先进弹性体材料研究中心近20年来在橡胶材料纳米增强理论、橡胶纳米材料制备新技术以及在高性能轮胎中的应用研究进展,包括:采用分子动力学方法模拟研究橡胶纳米复合材料低成本大规模制备技术、碳纳米管和石墨烯增强橡胶纳米复合材料。研究成果支撑了我国最高水平的绿色节油轮胎的研发和生产,并获得了2015年度国家技术发明二等奖,有力的促进了我国橡胶工业从大国向强国的迈进。 /p p    strong 部分网友在线提问问题如下: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/636a8aaa-0673-45b8-8f0c-5f6020af5e14.jpg" title=" 08.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/ac744990-5f61-4e77-9a16-607bb939a6af.jpg" title=" 09.png" / /p p   静电纺丝具有成本低、耗能少、原料范围广等优点,其应用也十分广泛,如2D静电纺丝纤维常用在过滤、电池隔膜、传感器、隔热涂层、药物传输、伤口处理的方向,3D静电纺丝纤维常用在细胞培养和组织支撑等生物医学方面、电池电极等方向。蔡云屾在报告中介绍了静电纺丝的加工工艺、控制方法及静电纺丝微纳米纤维结构。表明,虽然静电纺丝具有复杂的物理过程,但其生产的微纳米纤维直径可控。静电纺丝能应用在很多领域,主要是因为各种功能性材料能加工成微纳米纤维、极高的表面积比、高多孔性、小孔径等。 /p p    strong 以下为部分网友在线提问问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/d7d82991-b2ed-44e0-b084-af1dac689eb3.jpg" title=" 010.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/6c155c2c-6718-4e17-8496-9a836ed5e423.jpg" title=" 011.png" / /p p   纳米药物研究一直是一个热门研究领域,但受纳米药物的安全性和有效性的制约,临床转化很少。但随着相关研发的大量投入,纳米药物已经开始走入市场。早期诊断、实时监测和可视化治疗是提高患者生存质量和治愈率的关键。因此,诊疗一体化近年来作为一种新的理念迅速发展起来,陈春英在报告中重点综述了构建双功能多模态的纳米载体,实现诊疗一体化以及成像介导的肿瘤治疗,例如同时实现光学成像、CT增强成像与光热治疗,或者磁共振成像与化疗及磁热治疗等联合方式。 /p p    strong 以下为部分在线网友提问问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/8a22e896-bd9d-4db3-b406-ed4ec508657d.jpg" title=" 012.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/53ae63ba-7455-4015-a014-5c31b87888c8.jpg" title=" 013.png" / /p p   材料的性能对其微观结构非常敏感,而透射电镜作为一种先进的微结构分析工具,可以帮助科研工作者更加深刻的认识材料宏观性能与微观结构之间的联系。2000年前后的球差校正技术将空间分辨率提升到了亚埃水平,并进入球差电镜时代。球差校正透射电镜可以实现原子尺度的结构观察和化学成分与价态分析,对深入理解材料制备-微结构-性能三者之间关系具有极为重要的作用,是现代材料科学研究的有力武器。黄荣在报告中以锂离子电池正极材料中锂离子的直接观察、新型热电材料中一种纳米尺度网格状有序-无序混合结构对其晶格热导率的影响为例,介绍了HAADF、ABF、EELS和原子分辨EDS技术在研究这类纳米能源材料微结构方面的具体应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/558b2591-88aa-417a-bd3c-a18a0c125d22.jpg" title=" 014.png" / /p p   纳米材料由于其自身在熔点、磁性、光学、导热、导电等方面所表现的特性,应用领域十分广泛。包括污水处理、催化剂、抗菌剂、添加剂、照明等。纳米材料的表征也显得尤为重要,其表征项目包括化学组成、粒径和粒径分布、形状、表面积、电荷、聚集状态等。贠照军在报告中主要介绍了安捷伦sp-ICP-MS在纳米材料检测中的应用实例和解决方案,表明,安捷伦ICP-MS纳米颗粒分析解决方案具有快速(1min分析得到粒径、粒径范围、成分、质量浓度、质量浓度等信息) 灵敏(可分析小于10nm至微米级颗粒) 灵活(可与HPLC、CE、FFF等系统联用进行纳米颗粒表征)等优点。 /p p    strong 以下为部分网友在线提问问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/43fb8330-5504-4577-a5a8-f3c49d757e6c.jpg" title=" 015.png" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/a4510745-9dab-42ef-be0a-9dda9f91e57a.jpg" title=" 016.png" / /p p   润湿性是液体在固体表面的铺展能力。特殊润湿性指液体在其表面极易铺展或极不易铺展的性质,称为“超亲”或“超疏”特性。特殊润湿性在节能环保、防雾防冰等领域有着重要的应用前景。王波在报告中讲到表面化学状态和表面微观结构是润湿性的两个决定因素。通过表面化学修饰与表面微纳米尺度结构的组合,可以实现表面特殊润湿调控。最后分享了浸润科学在21世纪的最新进展,包括微纳结构的作用、电致浸润变换、力致浸润变换、光致浸润变换、低温自清洁、非对称各向异性微结构等。 /p p    strong 以下为在线网友部分提问问题: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/9373099e-98ca-4746-98b6-d26fbf0e6ad2.jpg" title=" 017.jpg" / /p p style=" text-align: center " ---------------------------------------------------------------- /p p   iCAM 2017网络会议 strong Day1 /strong : a style=" color: rgb(112, 48, 160) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/news/20171101/232520.shtml" span style=" color: rgb(112, 48, 160) " strong 新能源材料研究进展与应用会场 /strong /span /a /p p   明天(11月3日)将继续进行 strong 新材料在多领域的研究进展与应用分会场 /strong 报告,请继续关注仪器信息网后续报道。 /p p    span style=" color: rgb(255, 0, 0) " strong 报名参加 /strong /span iCAM 2017或了解更多专家在线解答请 strong 点击 /strong iCAM 2017直播网站: /p p    a style=" text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/webinar/meetings/iCAM2017/" strong http://www.instrument.com.cn/webinar/meetings/iCAM2017/ /strong /a /p
  • 研究人员利用原位TEM技术揭示ZnO微/纳米线疲劳行为
    近日,北京科技大学材料科学与工程学院张跃教授研究团队指导的博士生李培峰在一维纳米材料在各种场下的服役方面的研究取得新进展,并以第一作者身份在《Nano Letters》(影响因子12.94)和《ACS Applied Materials and Interfaces》(影响因子5.90)分别发表论文一篇。   在张跃教授的指导下,李培峰与中科院物理所的合作者利用原位TEM机械共振,研究了ZnO微/纳米线在高周应变下的疲劳行为。系统研了ZnO微/纳米线的弹性模量随直径的变化以及ZnO微/纳米线共振振幅在阻尼效应作用下随共振时间及周次衰减的区别。ZnO微/纳米线经过108&minus 109周次共振都显示了良好的疲劳性能,而遭受电子束辐照10 min后的ZnO纳米线共振几秒后即发生断裂,这在国际上尚属首次发现。   研究结果为我们设计、构建、优化及应用基于ZnO纳米材料的力电纳米器件提供了有益的指导,也为工作在紫外光、X射线下的纳米材料及器件的安全服役提供了参考。   另外,李培峰还利用自己实验室搭建的纳米操控系统研究了ZnO纳米线在电场中的服役行为。研究发现ZnO纳米线电致损伤的阈值电压随直径的增大呈线性增大,而电流密度随直径的增大呈指数减小。并提出了热核-壳模型对ZnO纳米线的电致损伤机制进行解释。纳米材料电致损伤研究对指导光电、力电和压电纳米器件的实际应用是非常有必要的。   此外一系列利用AFM研究ZnO纳米线在力场及力电耦合场中的服役行为的研究结果尚未公开发表。
  • 木材衍生的纳米纤维素纸半导体制成
    日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创建有用的微观和宏观结构并实现出色的功能和最终用途的多功能性,仍然具有挑战性。  纤维素是一种源自木材的天然且易于获取的材料。纤维素纳米纤维(纳米纤维素)可制成具有与标准A4纸张尺寸相似的柔性纳米纤维素纸(纳米纸)片材。纳米纸不导电,但加热可引入导电特性。不过,这种受热也可能破坏纳米结构。  大阪大学研究人员与东京大学、九州大学和冈山大学合作,设计出一种处理工艺,使纳米纸能够加热,又不会破坏从纳米尺度到宏观尺度的纸结构。  “纳米纸半导体的一个重要特性是可调性,因为这允许为特定应用展开设计。”研究作者古贺博隆副教授解释说,碘处理对保护纳米纸的纳米结构非常有效。将其与空间控制的干燥相结合,意味着热解处理不会显著改变设计的结构,并且可使用选定的温度来控制电性能。  研究人员使用折纸和剪纸技术来提供纳米纸在宏观层面的灵活性。他们将鸟和盒子折叠起来,冲压出苹果和雪花等形状,并通过激光切割产生更复杂的结构。这证明了新工艺可能达到的细节水平,以及热处理没有造成损坏。  成功应用的例子是,纳米纸半导体传感器结合到可穿戴设备中,以检测穿过口罩呼出的水分和皮肤上的水分。纳米纸半导体也被用作葡萄糖生物燃料电池的电极,产生的能量点亮了一个小灯泡。  古贺博隆表示,新研究展现的将纳米材料转化为实际设备的结构维护和可调性非常令人鼓舞,新方法为完全由植物材料制成的可持续电子产品的下一步发展奠定了基础。
  • 仪器情报,科学家实现将光场压缩至原子尺度的奇点介电纳米激光!
    【科学背景】光场的衍射限制基于光子动量的不确定性关系,制约了光场局部化的极限,尤其是在使用介质结构时更为显著。传统的等离子体技术虽然能够实现较小的模体积,但却不可避免地伴随着能量损耗和相干时间的限制,这限制了其在高效能计算和通信中的应用。为解决这一问题,近年来,北京大学的马仁敏团队提出将介质结构与纳米技术相结合的新思路。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔中,实现了光场的超越衍射限制的极端局部化。这一研究不仅发现了介质蝴蝶形纳米天线中的电场奇异性,源自动量的发散,还成功制备了具有单纳米间隙的高精度纳米结构。【科学亮点】1. 本研究首次在介质纳米激光器领域实现了对光场的亚波长限制局域化。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔的中心,作者创造性地实现了超小尺度的模体积,迈向了极端光场局域化的新境界。2. 作者采用了刻蚀和原子层沉积的两步法制备所需的介质蝴蝶形纳米天线,精确控制了其顶端的纳米级间隙。3. 在实验中,作者发现介质蝴蝶形纳米天线顶端的电场奇异性源于动量的发散,导致高度集中的场。该结构在1纳米尺度上实现了异常小的特征尺寸,并实现了约0.0005 λ3的超小模体积。【科学图文】图1:奇异介质纳米激光器中的电场无限奇点。图2:具有原子尺度间隙尺寸纳米天线的奇异介质纳米激光器的制备。图3:单介质纳米激光器的激光特性。图4:奇异介质纳米激光器的模式特性。图5:非积分拓扑电荷与原子尺度定域光场。【科学结论】这项研究通过整合介质纳米结构和光子晶体的独特设计,突破了传统光学衍射限制,实现了光场在原子尺度上的极端局部化。传统上,光场的空间局部化受到材料介电常数的限制,难以将光场压缩至亚波长尺度。然而,本研究通过设计介质蝴蝶形纳米天线和扭曲格子纳米腔的协同结构,有效地利用了动量的发散机制,产生了在纳米尺度上高度集中的电场。这一发现不仅展示了介质纳米器件在光场控制方面的潜力,还为超精密测量、超分辨率成像和高效计算通信等应用提供了新的技术路径。本研究不仅拓展了光场压缩的实现途径,还挑战了人们对介质材料局部化能力的传统认知。通过实验验证介质蝴蝶形纳米天线的电场奇异性是由动量发散引发的,为进一步理解和优化介质纳米结构的设计提供了理论基础。原文详情:Ouyang, YH., Luan, HY., Zhao, ZW. et al. Singular dielectric nanolaser with atomic-scale field localization. Nature (2024). https://doi.org/10.1038/s41586-024-07674-9
  • 纳米服装,真的有纳米材料吗?
    越来越多的高科技已经进入到我们日常生活之中,比如纳米服装。将纳米级的微粒覆盖在纤维表面或镶嵌在纤维甚至分子间隙间,利用纳米微粒表面积大、表面能高等特点,在物质表面形成一个均匀的、厚度极薄的(肉眼观察不到、手摸感觉不到)、间隙极小(小于100nm)的‘气雾状’保护层。使得常温下尺寸远远大于100nm的水滴、油滴、尘埃、污渍甚至细菌都难以进入到布料内部而只能停留在布料表面,从而产生了防水、防油、防紫外线等特殊效果。但是这些衣物经过洗涤,直到最终被丢弃,其中的纳米颗粒又会对环境造成负担。如何测定和评价纳米科技纺织品的纳米颗粒数量和尺寸分布,是纺织行业面对的新课题。 二氧化钛(TiO2)纳米颗粒具有紫外线防护功能和抗菌特性,并且能够提高织物的亲水性并减少异味,因此被越来越多的应用到纺织行业。本应用报告使用单颗粒电感耦合等离子体质谱法(SP-ICP-MS),研究了几种商业纺织产品中TiO2纳米颗粒的释放情况。样品用于评估的五种纺织样品均从当地商店购买,如表1所述。40%TiO2纳米颗粒(30-50 nm)悬浮液购自美国研究纳米材料公司(US Research Nanomaterials™ ,位于美国德克萨斯州休斯顿市)。为了促使纳米颗粒分散,将Triton X-100(购自西格玛奥德里奇公司Sigma- Aldrich™ ,位于美国密苏里州圣路易斯)添加到所有溶液中,最终浓度为0.0001%。实验测量总钛时,将0.25g的每种纺织样品切成小片,放入5mL浓硝酸(65%)和1mL的浓氢氟酸(49%)中,放入微波炉中消解。消解后,每个样品添加6mL 10%H3BrO3(v/v),放入微波炉中与HF络合15分钟。然后,用去离子水将样品定容至50mL,并采用常规ICP-MS进行分析。检查TiO2纳米颗粒从织物中的释放情况时,每个样品取400cm2,浸入200mL去离子水中。对容器超声处理15分钟,然后将其放在摇床上(每分钟150次)24小时。对容器进行第二次超声处理,然后取出等分液体进行分析。向空白去离子(DI)水中掺入2.7μg/L TiO2纳米颗粒,作为对照品。如有必要,用去离子水进一步稀释样品,并在两次稀释之间进行超声处理,以最大程度地减少纳米颗粒团聚。所有分析均在珀金埃尔默(PerkinElmer)的NexION® 电感耦合等离子体质谱仪上进行,该质谱仪上运行Syngistix™ 以用于ICP-MS软件。进行纳米颗粒分析时,使用Syngisitix纳米应用模块进行数据收集和处理。表2示出了进行TiO2纳米颗粒分析的NexION工作条件。实验结果图1示出了TiO2纳米颗粒(对照品)和三个样品的信号。这些图表清晰地显示了样品之间的差异:虽然TiO2纳米颗粒对照品显示出可重复的、均匀的粒度分布,但样品的纳米颗粒粒度分布更大,高达200nm。此外,同一类型的样品之间也存在差异,如样品A和D所示。样品B和样品C不含大量TiO2纳米颗粒。下面的表3和表4,分别为A~E样品中的总Ti含量和TiO2纳米颗粒的尺寸和浓度。婴儿连体衣A和B形成了有意思的对比:A含有的基本全是TiO2纳米颗粒,而B含有的基本都是其他形态的Ti离子。结论本研究表明,SP-ICP-MS能够检测和测定纺织品中释放的TiO2纳米颗粒。使用SP-ICP-MS可以快速分析大量颗粒,能够提供单个颗粒的信息,克服了常规纳米颗粒分析技术的局限性。本研究结果表明,各个纺织产品都含有粒度和浓度不等的TiO2纳米颗粒。了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默单颗粒电感耦合等离子体质谱法(SPICP-MS)表征织物中TiO2纳米颗粒的释放相关资料。
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。
  • 2016年能量纳米技术和能量纳米材料国际会议
    2016年6月13-15日,巴黎,法国 2016年能量纳米技术和能量纳米材料国际会议将于2016年6月13-15号在法国巴黎召开。所有被会议接受的文章将作为会议论文集发表在Key Engineering Materials (ISSN: ISSN: 1662-9795, Trans Tech Publications)上,并提交EI核心,Scopus检索。 大会召开时间为3天,6月13日为大会注册日,6月14日为会议召开日,6月15日暂定为巴黎一日游。此次大会将为能量纳米技术相关专业的科研人事提供面对面的交流与合作讨论。我们热忱欢迎从事相关技术研究的专家、学者和专业技术人员向ICNNE2016踊跃投稿,并积极参加大会。 大会委员会 国际咨询委员会 Prof. Peter Lund, 阿尔托大学理工学院, 芬兰Prof. Jordi Llorca, 纳米工程研究中心, 西班牙Prof. Sergej NEPIJKO, 美因茨大学, 德国Prof. Mohamed HABOUSSI, 巴黎大学, 法国 大会主席 Assoc. Prof. Salma BARBOURA, 巴黎大学, 法国Prof. Dr. Jean-Jacques DELAUNAY, 东京大学,日本 程序委员会主席 Prof. Sofoklis Makridis, 马其顿西部大学, 希腊Prof. ZITOUNE Redouane, 图卢兹大学, 法国Prof. Zdeněk Chobola, 布尔诺理工大学, 捷克共和国Prof. Witold Daniel Dobrowolski, 波兰科学院, 波兰 投稿主题 纳米技术与材料科学材料科学与工程:纳米技术在纳米科学和纳米技术先进的应用程序碳纳米管与生物分子纳米材料纳电子学纳米系统纳米力学纳米操作纳米磁学纳米光学和纳米光子学纳米线纳米流体力学纳米生物纳米科学与技术分子电子学 请将您的论文于2016年3月1日之前投至会议邮箱:icnne@saise.org更多疑问,请咨询会议负责人:聂老师
  • 纳米材料将成环境“杀手”?
    PM2.5颗粒对人体的危害已被公众熟知,那么只有PM2.5千分之一大小的纳米颗粒对人体是否有危害呢?答案是肯定的。前日,来蓉参加中国化学会第28届年会的不少科学家发表的研究成果显示,纳米颗粒对生物细胞具有相当“毒性”,纳米材料已对环境构成潜在威胁,或成人类未来面临的重要环境“杀手”。   纳米材料或成环境杀手   纳米材料已在化妆品、衣服等日常生活物品中出现,纳米技术也被预测为可能超越网络和基因技术而成为21世纪最有前途的技术。那么,纳米材料究竟会有哪些危害呢?   中国化学会第28届学术年会环境化学分会上,北京航空航天大学副教授范文宏,江苏大学杜道林、薛永来,以及中科院生态环境研究中心的专家,都报告了有关纳米材料的毒性研究成果。   江苏大学杜道林、薛永来做了关于“纳米二氧化钛通过ROS诱导的氧化损伤途径抑制水稻生长”的研究。薛永来前日在现场报告中表示,他们的研究表明,纳米二氧化钛除了对动物细胞有损伤外,对植物细胞也同样存在损害。   中科院生态环境研究中心有关专家在有关“纳米材料的潜在环境与健康风险”研究中也发现,纳米材料对生物细胞具有一定的危害作用,对细胞的凋亡、功能损伤甚至死亡都存在威胁。   纳米污染研究是未雨绸缪   北京航空航天大学副教授范文宏做了关于“不同表面改性二氧化钛与铜在大型水蚤体内的生物积累和生物毒性”的研究。前日,范文宏接受成都商报记者采访时表示,她的研究显示,即使本身毒性不显著的纳米材料,也可以使重金属在生物体内的毒性大大增强。   在范文宏的实验中,她把铜对大型水蚤的生物毒性,以及纳米二氧化钛和铜同时存在时对大型水蚤的生物毒性分别做了研究。结果发现,纳米二氧化钛和铜同时存在时,对大型水蚤的毒性有明显增强,纳米二氧化钛确实增加了大型水蚤对铜的毒性效应。   范文宏表示,纳米材料虽然现在已大量使用,但是还没有产生明显环境污染,估计短期也看不到其污染危害。目前对其环境影响的研究,“是前瞻性的研究,算是未雨绸缪。”   虽然自己做的是纳米材料在水环境中对生物的毒性研究,但范文宏认为,纳米材料对空气的潜在危害可能要大于对水环境的危害。不过,公众不必就此拒绝穿纳米材料的衣服,因为纳米材料一般要变成粉末才会显现出其危害性。就目前的纳米材料使用情况看,大规模的纳米环境污染短期内还谈不上,公众不必因学界的研究而产生恐慌。   纳米材料:纳米是长度计量单位,1纳米等于十亿分之一米。纳米技术是指研究结构尺寸在1到100纳米之间的材料的技术。用纳米技术制造的材料,通常会有许多优越的性能。纳米技术已广泛应用在电子、纺织、建材、化工、石油、汽车、军事装备等领域。
  • 国家纳米中心“活体自组装”生物纳米材料研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院国家纳米科学中心王浩课题组通过发展“活体自组装”技术,在细胞内构建了不同拓扑结构的纳米材料,并提出了全新的细胞内原位聚合和组装策略,为功能性纳米材料的设计提供了新思路。相关研究成果发表在 em Nature Communications /em 上,并已申请中国发明专利。 /p p   纳米材料在生物医学领域已被广泛研究和认可,例如药物递送、组织工程等均得到了深入研究。但纳米材料独特的生物界面效应,使其在复杂生命体中的递送过程、物理化学转化以及蓄积代谢等问题变得十分棘手。因此,王浩课题组提出了“活体自组装”理念,独特设计纳米材料的建筑单元,将外源引入的分子参与到生命体的功能性组装过程中,实现了在生理环境下自发的纳米材料构建和功能化。这一独特思路,为生物医用纳米材料领域的设计和应用提供了新视角和新途径。 /p p   在纳米材料的生物功能应用中,拓扑结构对活体器官、组织和细胞的功能影响显得尤为重要。前期报道指出,特定拓扑结构在生命体中扮演者独特的角色,例如双螺旋结构的DNA、具有特定3D结构的蛋白大分子,以及各种传导信号的分子复合体等。材料和界面的拓扑结构影响生物功能,例如界面的形态会诱导干细胞定向分化、决定细胞迁移和内吞等功能。因此,深入研究在特定区域内材料拓扑结构与生物功能之间的关系,将为精准功能化纳米材料的设计提供指导。目前,体外构筑的纳米材料,不能区分界面和胞内作用,干扰了限域拓扑结构和生物功能关系的分析和理解。 /p p   针对特定区域内材料与功能之间的关系研究,王浩课题组发展了细胞内原位聚合和组装的新方法,首次实现了在细胞内平行构筑不同拓扑结构的纳米材料,为研究胞浆拓扑结构和功能的关系提供了有效手段。通过设计不同氨基酸序列的多肽聚合单体,实现了在胞内聚合过程中,对聚合物分子量大小、温敏性质以及组装后的拓扑结构的调控;在细胞和组织水平原位的证实了多肽单体的聚合和组装过程;综合评价了不同拓扑结构的纳米组装体的滞留效应和细胞毒性等生物功能,为精准设计功能化纳米材料提供基础参考。 /p p   研究工作得到了国家自然科学基金、创新群体项目、中科院国际合作、交叉团队、青促会等的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171108529108817694.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4a4278be-71e4-47d4-87a7-0fc2df981d1b.jpg" uploadpic=" W020171108529108817694.png" / /p p style=" text-align: center " 国家纳米中心“活体自组装”生物纳米材料研究工作获进展 /p
  • 《纳米研究前沿分析报告》发布 拉曼、电镜等技术成主流分析手段
    p   日前,中科院科技战略咨询研究院国家纳米科学中心联合发布《纳米研究前沿分析报告》,报告内容显示,近年来,全球主要国家纳米技术研究投资不断加大,科研人员数量和相关企业数均大幅增加,在生物医药等新兴领域受到重视,并且纳米技术研究迈向新阶段,由单一的纳米材料制备和功能调控转向纳米技术的应用和商业化。 br/ /p p   报告选择了“锂电池”“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”“纳米催化”和“测量标准”9个前沿研究领域分别进行分析,其中,纳米检测研究主要围绕量子点、贵金属纳米簇、上转换材料等纳米探针等技术以及纳米生物传感器几个方面开展。纳米生物和医学检测技术的热点主要集中在用于分子影像诊断的纳米探针技术 在贵金属纳米簇纳米探针研究高被引论文主要以核苷酸作为保护模板合成荧光银纳米簇探针的研究,以增加其稳定性,并将其用于核苷酸、汞离子及蛋白等的生物检测。 /p p   在 “测量表征”部分,报告指出,纳米测量表征技术主要有两个发展方向,即光干涉测量技术和扫描纤维测量技术。该领域的研究前沿共涉及高被引论文153篇,研究内容包括光谱测量研究、电子显微测量研究以及利用多种表征手段研究纳米材料的表面/界面等。其中光谱测量研究对超分辨成像、纳米尺度磁共振研究、表面等离激元共振(SPR)以及表面增强拉曼光谱(SERS)四个研究方向进行了分析,指出当前各研究技术主要进展及研究内容。此外,报告中指出,原位透射电子显微镜(in situ TEM)技术实现了对物质在外部激励下的微结构响应行为的动态、原位实时观测。该方向的研究聚焦在利用原位透射电子显微镜技术对纳米电极材料的锂化和退锂化过程进行原位表征。 /p p style=" text-align: center " img width=" 305" height=" 329" title=" 2017931928553512.jpg" style=" width: 305px height: 329px " src=" http://img1.17img.cn/17img/images/201709/noimg/352e77bf-1c41-43b7-adfd-897c393923f6.jpg" / /p p style=" text-align: center " 报告全文如下: /p p style=" text-align: center " 纳米研究前沿分析报告 /p p style=" text-align: center " 中国科学院科技战略咨询研究院 /p p style=" text-align: center " 国家纳米科学中心 /p p style=" text-align: center " 2017年8月 /p p   《纳米前沿分析报告》编写组 /p p   指导顾问 /p p   国家纳米科学中心 刘鸣华 /p p   总体设计 /p p   中国科学院科技战略咨询研究院 冷伏海 边文越 /p p   国家纳米科学中心 吴树仙 /p p   各国计划分析 /p p   中国科学院科技战略咨询研究院 张超星 /p p   研究前沿解读 /p p   中国科学院科技战略咨询研究院 王海名(锂电池、太阳能电池、测量表征) /p p   中国科学院科技战略咨询研究院 邢颖(纳米药物、纳米检测、仿生纳米孔、纳米安全性) /p p   中国科学院科技战略咨询研究院 边文越(纳米发电机、纳米催化) /p p   数据分析化与可视化图谱 /p p   中国科学院科技战略咨询研究院 李国鹏 王小梅 /p p style=" text-align: center " img width=" 323" height=" 330" title=" 1.jpg" style=" width: 323px height: 330px " src=" http://img1.17img.cn/17img/images/201709/noimg/1f315276-e54e-4d26-9586-3f9e3d74714a.jpg" / /p p style=" text-align: center " strong 摘要 /strong /p p   纳米技术是具有广泛应用前景的战略性前沿技术。本研究采用内容分析、文献计量、图谱可视化等分析方法,结合专家和领域情报人员的研究,对美国、英国、法国、德国、俄罗斯、欧盟、日本、韩国、印度、澳大利亚以及我国纳米技术的战略规划和发展布局进行了调研分析 基于高被引论文的共被引关系,形成纳米技术前沿科学图谱,揭示了纳米技术的前沿方向,对比了主要国家的高被引论文数量 并选择了“锂电池”“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”“纳米催化”和“测量标准”9个前沿研究领域分别进行了分析解读。研究得出以下结论: /p p   1. 通过对比分析主要国家的纳米技术研发计划发现:(1)各国对纳米技术的信心普遍增强,资金投入和人员投入普遍加大 (2)各国将纳米技术列入促进国家经济发展和解决重要问题的关键技术领域,能源和生物医药等领域尤其受到重视 (3)纳米技术研发重心由最初单一的纳米材料制备和功能调控转向纳米材料的应用和商业化 (4)各国通过公共研发平台、产业园区等方式,促进产学研合作及与其他领域的融合 (5)各国纷纷开展环境、健康、安全和伦理、限制等方式,社会研究以及国际标准和规范的制定,促进纳米技术相关产业被社会接受 (6)各国普遍重视纳米技术的基础教育和高等教育。 /p p   2. 基于科睿唯安公司Essential Science Indicators数据库中的11814个研究前沿,筛选出纳米领域研究前沿1391个,综合考虑论文的被引用情况和发表时间,遴选出41个热点前沿和37个新兴前沿。1391个研究前沿涉及高被引论文6639篇,美国和中国高被引论文数量遥遥领先于其他国家。 /p p   3. 美国在“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”和“测量标准”7个前沿研究领域中高被引论文数量排名第一,在“锂电池”和“纳米催化”中高被引论文数量排名第二。我国在“锂电池”和“纳米催化”2个研究领域中高被引论文数量排名第一,在“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米安全性”5个研究领域中排名第二,在“测量标准”中排名第四,在“纳米仿生孔”方面还有待提高。 /p p   4. 我国在纳米科技领域已形成一批达到世界领跑水平的优势研究方向和优秀团队。例如中科院化学所、南开大学、华东理工大学、北京大学等机构在太阳能电池领域,中科院大连化物所、中科院上海高等研究院和上海科技大学等机构在高效合成低碳烯烃领域,均取得突出成果。 /p p   综观纳米研究的前沿分布和变化趋势,我们相信:纳米科技正在深入到科技与社会的变革领域,向绿色、健康等国际前沿和国家需求的大方向发展,中国在世界竞争格局中逐渐占据优势地位,并具有改变未来发展秩序的潜力。 /p p   由于数据研究和专业水平的限制,本报告可能有些观点有待商榷,恳请各位专家读者批评指正。 /p p style=" text-align: right "   《纳米研究前沿分析报告》编写组 /p p style=" text-align: right "   2017 年 7 月 /p p style=" text-align: right "   北京 /p p style=" text-align: center " strong 一 主要国家纳米研究计划分析 /strong /p p   2001年,美国率先制定了《国家纳米技术计划》,英国、德国、俄罗斯、欧盟、中国、日本、韩国、印度、澳大利亚等国家随后也制定了本国或本地区的纳米技术发展计划。进入本世纪第二个十年,各国纷纷对原有计划进行了更新和调整。 /p p   纵观各国纳米技术研发计划,既有共性又有各自的特色和侧重。共性之处至少包括以下6点:(1)对纳米技术的信心普遍增强,投资力度普遍加大,核心科研人员数量和相关企业数均大幅增加 (2)将纳米技术列入促进国家经济发展和解决关键问题的关键技术领域,在能源和生物医药等领域尤其受到重视 (3)研发重心由最初单一的纳米材料制备和功能调控转向纳米材料的应用和商业化,纳米技术的研究走向了新的阶段 (4)通过公共研发平台、产业园区等方式,促进产学研合作及与其他领域的融合,缩短从“提案”到“产业化”的时间 (5)开展EHS(环境、健康、安全)和ELSI(伦理、限制、社会课题)研究以及国际标准和规范(ISO、IEC)的制定,促进纳米技术新型产业被社会接受 (6)重视纳米技术的基础教育和高等教育。 /p p   在各自特色和侧重方面,首先各国计划的总体方向和实现目标不尽相同。作为纳米创新战略的领先者,美国的纳米战略和研究目标更为具体,近几年先后制定了关于碳纳米管研究、纳米纤维素商业化及纳米技术在水资源的可持续利用等使命导向型的研究计划。同时,其战略规划更致力于通过多学科融合解决一些重大挑战问题,例如2015年发布了《纳米技术引发的重大挑战:未来计算》项目。日本的战略规划强调利用纳米技术“尖端化”和“融合化”的已有成果,将那些能够应对社会需求的纳米技术进一步体系化,促进课题解决型研究的发展。韩国的战略规划在继续重视战略性纳米技术基础研究的前提下强调促进纳米技术产业化,实现信息技术融合型新兴产业、未来发展动力、整洁便利环境、健康长寿及安全放心的社会5大国家战略技术目标。德国的纳米研究计划将研究重点放在了对现有研究成果的有效转化上,希望借此能提高德国企业的竞争力。欧盟近几年的纳米技术战略计划侧重于石墨烯的研发和应用上,尤其是其在能源领域的应用。澳大利亚的纳米战略计划希望在已有研究实力基础之上实现能源、环境、健康、国家安全及振兴制造业等重大挑战性问题的解决。至于中国,除国家自然科学基金委外,其它相关机构没有设立单独针对纳米科学和技术的全谱规划。国家自然科学基金委的规划更偏重于基础研究,重在纳米制造和测量及机理/机制的研究,部分规划涉及应用领域,如能源、医药、环境等,但多数处于应用研究的最前端,离真正的商业化或者产业化还有较长距离。 /p p   其次,各国计划中具体研究方向/领域也存在着显著的区别。本文选取了生物、环境、能源、器件与制造、测量、仪器设备、标准与安全7个领域进行比较分析,发现如下特点。 /p p   1)生物领域:英国偏重于生物纳米技术的产业化,如建立纳米纤维的生产平台,设计纳米工厂等 中国较重视碳纳米材料的生物应用及具有免疫应答的生物医用材料的开发 澳大利亚偏重于人体仿生纳米器件的研究 印度希望利用纳米粒子开发抗虫害植物品种。俄罗斯、德国、韩国及欧盟等把纳米植入材料作为其重要的研究方向 美国、俄罗斯、澳大利亚、日本及印度等把纳米药物的靶向输送列为重点支持方向 美国、日本、德国等高度重视医学成像。 /p p   2)环境领域:欧盟和德国将CO2的捕获和利用作为重要的研究方向,英国更为关注纳米材料对环境的毒性研究,日本把放射性物质的去除技术作为其战略方向之一,韩国较为重视大气净化纳米催化剂研究,中国较为重视极端环境材料的研发。美国、俄罗斯、英国、澳大利亚、日本等高度重视纳米材料水处理技术。 /p p   3)能源领域:美国在纳米储能材料领域较为重视锂电池固体聚合物电解质、热自发电池等的研发,在纳米发电材料领域较为重视多孔固体氧化物燃料电池电解质及光伏发电增强材料的研发。欧盟重视柔性电池、轻型电存储及储氢系统的研发以及发展包括渗透能发电在内的新型可再生能源。俄罗斯较为重视太阳能电池、重型陶瓷磁铁及替代能源材料的研发,英国将研发重点放在了钙钛矿型电池模块化上,日本强调对高温超导输送电的研究,韩国主要部署了柔性电极、智能窗户及隔热元件等研究方向,澳大利亚较为重视安全动力电池和太阳能电池的研发,中国较为重视热电材料和长续航动力电池的研究。 /p p   4)器件与制造领域:美国、俄罗斯和欧盟都将纳米传感器的研发列为其战略研究方向,美国和中国都很重视芯片的研发,欧盟和中国都将柔性智能器件、非易失性存储器列入研究方向。美国较为重视软物质制造技术,俄罗斯较为重视基于忆阻器的电子元件,欧盟较为重视基于石墨烯的集成电路、等离子体光开关及晶体管的研发,中国较为重视极低功耗器件和电路、3D打印、硅基太赫兹技术等。 /p p   5)测量领域:美国关注异质材料的表征,欧盟重视选择性单分子探测,俄罗斯强调原子分辨率的材料表面成像系统,中国将重点研发具有极限分辨能力的表征和测量技术。 /p p   6)仪器设备领域:欧盟和韩国在柔性显示器方面均有战略部署。美国、德国、欧盟、韩国、澳大利亚等重视功能探测器/传感器(如分子探测器、光电探测器、感应传感器)研究。欧盟较为重视利用太赫兹技术的相关器件的研发,德国则较为重视危险物质探测和救援人员防护设备的研发,俄罗斯较为重视对纳米机器人的研究,中国将纳米绿色印刷和纳米刻蚀作为重要的研究方向。 /p p   7)标准与安全领域:美国强调了对石墨烯的监管及其对基因等的影响,德国重视应用纳米技术时的必要保护措施及对食品材料的创新研究,韩国提出要研究感染性生物物质检测与监测,中国更为重视纳米领域应用的重要标准和检测技术。美国、德国、韩国、中国关于纳米标准与安全领域的战略部署均涉及纳米材料的生物安全技术研究。 /p p style=" text-align: center " strong 二 国际纳米研究前沿分析 /strong /p p   (一)数据、方法论及可视化图谱 /p p   科睿唯安公司Essential Science Indicators(ESI)数据库基于高被引论文(Top 1%)之间的共被引关系,聚类形成若干高被引论文簇,每一簇包括研究主题相同或相近的若干篇高被引论文,形成一个“研究前沿”。本报告以ESI数据库中的11814个研究前沿为基础,通过文献检索、专家遴选等方法筛选出和纳米研究相关的研究前沿1391个,涉及高被引论文6639篇。ESI数据获取时间为2016年1月,高被引论文发表时间为2008-2015年。 /p p   为了可视化展现纳米研究前沿在全领域研究前沿中的分布,本报告以研究前沿为基本单元,基于文本向量空间相似性计算了研究前沿间的相似性,然后用OpenOrd布局算法将研究前沿映射到二维空间,得到基于研究前沿的科学全景图谱(图1)。图谱中的每个点代表一个研究前沿,研究前沿的相似度越高则点的距离越近。通过不同颜色区分研究前沿中纳米领域论文比例的高低。本报告发现,一般比例达到60%以上才能归为纳米领域研究前沿。图1基本反映了纳米研究前沿在全领域研究前沿中的分布情况。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/0c4e8849-3e3f-4814-9805-6f95164908c0.jpg" / /p p style=" text-align: center " br/ /p p   本报告对6639篇高被引论文的通讯作者国别情况进行了统计,如表1所示,美国和中国分居前两位,遥遥领先于其他国家。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/7cdd8138-2a06-475d-8f6f-c68362f35e19.jpg" / /p p   国家纳米科学中心组织专家对1391个研究前沿进行了命名。本报告按照“纳米制造”“纳米能源”“纳米生物”“纳米测量”对其进行分类,结果如表2所示,可视化图谱如图 2 所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/3db71f97-64dd-48cc-a409-302d5560aa03.jpg" / /p p   本报告采用文献计量学方法从1391个纳米研究前沿中遴选出热点前沿41个和新兴前沿37个(详见附录)。热点前沿的遴选主要考虑前沿的施引文献数量。根据表1中的分类,对每个类(包括“其他”类)中的研究前沿按照施引文献总量进行排序,提取排在前10%的最具引文影响力的研究前沿,再根据高被引论文出版年的平均值重新排序,找出那些“最年轻”的研究前沿。每个类分别选出10个热点前沿(不足10个,取全部前10%),共计41个热点前沿。新兴前沿的遴选主要考虑组成前沿的高被引论文的时效性。首先选取高被引论文平均出版年在2014年1月之后的研究前沿,然后根据总被引频次从高到低排序,选取被引频次在60次以上的研究前沿,共计37个新兴前沿。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/aae5bf9e-3913-4042-8484-f05ceaad5866.jpg" / /p p   (二)研究前沿分析解读 /p p   本报告从“纳米能源”“纳米生物”“纳米制造”“纳米测量”四个大类中选择了“锂电池”“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”“纳米催化”和“测量标准”9个前沿研究领域进行分析解读。每个领域包括若干个研究前沿。 /p p   1 锂电池 /p p   锂电池领域的研究前沿共涉及高被引论文413篇,研究内容主要围绕锂离子电池、聚合物锂电池、锂离子电池表征研究等。如表3所示,中国在该领域的高被引论文数量最多,具有显著的优势,美国和新加坡的高被引论文数量分列第2、3位。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/a015763d-1c43-4597-a61a-63bf7c6d2251.jpg" / /p p   (1)锂离子电池 /p p   a.负极材料 /p p   硅基材料由于具有高化容量、相对较低的充放电平台及储量丰富等优点,是目前负极材料的研究热点之一。在该研究方向上,斯坦福大学崔毅团队表现突出,设计制备了核壳、空心硅纳米球、中空硅纳米管、硅纳米线阵列等不同结构,进一步优化了其电化学性能。美国西北大学黄嘉兴研究团队的表现也较为抢眼,其研究聚焦在利用石墨烯改进硅基负极材料的相关性能。 /p p   常温下,锗拥有比硅更高的电子电导率和锂离子扩散率,因此锗是高功率锂离子电池负极材料强有力的候选者。目前,研究人员尝试制备各种锗纳米结构材料以改进其电极性能。韩国学者Park等获得了零维的空心锗纳米颗粒以及三维的多孔锗纳米颗粒,显示出较好的循环性能。 /p p   金属锡作为锂离子电池负极材料时的理论容量高达994 mAh/g,但其容量易迅速衰减、循环性能差。近年来研究人员开发出一系列纳米颗粒、纳米管、纳米片、纳米纤维、多孔结构等多种形貌的锡氧化物的合成与制备方法,显著改善了其循环性能和倍率性能。中国科学院、南京师范大学、上海交通大学、浙江大学等在该研究方向表现较为突出。 /p p   二氧化钛是有望替代石墨电极的锂离子电池理想负极材料。近年来,研究人员围绕不同形貌纳米结构的TiO2负极材料进行了大量的研究工作。新加坡南洋理工大学楼雄文研究团队在该方向表现突出,通过将TiO2和高导电性的石墨烯复合,获得了具有较高的可逆比容量、优异的循环和倍率性能的复合材料。复旦大学、中科院金属所、上海交通大学等均在该方向也取得了若干突破。 /p p   氧化铁由于其理论容量高、资源丰富、价格便宜等优势吸引了研究人员的极大关注。新加坡南洋理工大学楼雄文研究团队对α-Fe2O3应用于锂电池负极材料进行了大量研究,团队制备的α-Fe2O3纳米管、α-Fe2O3纳米盘,其中空和多孔的结构一方面增加了储锂空间,提高了嵌锂容量,另一方面对充放电过程中电极材料的体积变化均有缓解作用,从而显示出较优异的电化学性能。 /p p   其他获得了较多研究的可用作锂离子电池负极材料的金属氧化物还包括氧化钼、铜氧化物、氧化钴、氧化锰等。研究人员通过制备纳米结构的过渡金属氧化物、与导电聚合物复合、与金属复合等改善电极材料的电化学性能。浙江大学涂江平教授团队、新加坡南洋理工大学楼雄文团队、中科院物理所李泓研究员团队等均发表了多篇高被引研究论文。 /p p   石墨烯具有很高的杨氏模量和断裂强度,同时还具有很高的电导率和热导率、优异的电化学性能以及易功能化的表面,这些特点都使石墨烯成为锂离子电池负极材料的首先研究材料。中国在该领域表现突出,主要研究机构有南开大学、复旦大学、中科院化学所、国家纳米科学中心、中科院上海硅酸盐所、上海大学、浙江大学等。国外方面,美国西北大学、新加坡南洋理工大学、澳大利亚卧龙岗大学等也在该研究领域表现活跃。 /p p   二维MoS2纳米片作为锂离子电池负极材料时显示了较高的电化学储锂容量和较好的循环性能。中国研究人员在该领域较为活跃,浙江大学陈卫祥教授研究团队通过多种手段制备了MoS2/石墨烯复合材料并用作锂离子电池负极材料,不仅具有较高的可逆容量,而且其循环稳定性和倍率性能也十分优异。 /p p   b.正极材料 /p p   最具代表性的正极材料LiFePO4是目前锂离子电池正极材料研究的热点领域,研究人员致力于研究利用碳包覆、导电金属离子包覆、金属离子掺杂和电极材料纳米化等方法提高LiFePO4的性能。改性后LiFePO4的放电容量、高倍率放电性能、循环性能均获得了不同程度的提升。中国科学院、复旦大学、中南大学等国内研究机构在该领域表现活跃。 /p p   c.隔膜材料 /p p   该方向的高倍引论文集中在系统研究包含二氧化硅、三氧化二铝涂层的聚酰亚胺、聚乙烯、聚丙烯、聚偏氟乙烯等新型锂离子电池隔膜材料对锂离子电池的容量、循环性能和倍率放电性能的影响方面。韩国在该研究方向表现较为突出。 /p p   d.机理研究 /p p   随着锂离子电池研究的日益兴起,对锂离子电池电极材料机理的探索也愈发受到关注和重视。美国桑迪亚国家实验室黄建宇(已经全职加入燕山大学)研究团队在该领域的表现较为突出。浙江大学、中国科学院等在该领域也发表了多篇高被引论文,但多为合作研究。 /p p   e.柔性锂离子电池 /p p   中科院金属所、半导体所、中国科技大学、北京大学、中南大学、中山大学等在该方向的研究主要聚焦在利用石墨烯泡沫为集流体装载氧化铁和钛酸锂等材料改进柔性锂离子电池的性能以及开发基于碳纳米管的柔性电极材料等。 /p p   (2)锂硫电池 /p p   锂硫电池具有巨大理论容量和能量密度优势,但在实际应用中还存在室温下的电导率极低、充放电过程中正极硫材料容易流失等技术瓶颈。清华大学张强教授研究团队在锂硫电池领域表现最为突出,提出具有自分散特性的石墨烯-碳纳米管杂化物、柱撑石墨烯等纳米碳材料担载活性材料,进而获得高面容量的高效正极。加拿大滑铁卢大学Nazar团队、斯坦福大学崔毅团队、德克萨斯大学奥斯丁分校Manthiram团队较为活跃。 /p p   (3)锂空气电池 /p p   锂空气电池的能量密度预计高达600 Wh/kg,但面临稳定性、效率、实用性和安全性等挑战。麻省理工学院Yang S. H.研究团队通过化学气相沉积过程为存储固体氧化锂提供了更多孔隙,因此提升了锂空气电池的能量密度 开发出Au-Pt合金纳米催化剂,将锂空气电池的充放电效率提升至77%。 /p p   2 太阳能电池 /p p   太阳能电池领域的研究前沿共涉及高被引论文516篇,研究内容主要围绕量子点敏化太阳能电池、有机太阳能电池、无机太阳能电池等。如表4所示,美国在该领域的高被引论文数量最多,中国位列第二,与美国的差距较小。韩国、英国在高被引论文数量方面处于第二梯队,与美国和中国相比有明显差距。 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/a8f769a9-0448-476c-9c0d-dac38577feb4.jpg" / /p p   太阳能电池按照制作材料和发展历程可以分成三代:第一代太阳能电池主要是单晶硅和多晶硅的硅基太阳能电池 第二代太阳能电池主要是非晶硅和多元化合物的薄膜太阳能电池,如GaAs、CdS、CdTe、铜铟镓硒等材料 第三代太阳能电池同时具有绿色环保、成本低廉、转化效率高等特点,主要包括有机聚合物太阳能电池、染料敏化太阳能电池、量子点敏化太阳能电池和钙钛矿太阳能电池等。 /p p   (1)量子点敏化太阳能电池 /p p   量子点敏化太阳能电池(QDSCs)因其制备成本低、工艺简单及量子点本身的优异性能(如尺寸效应、多激子效应)等优点,近年来受到广泛关注。加拿大多伦多大学Sargent E. H.研究小组、美国国家可再生能源实验室Nozik A. J.研究小组以及华东理工大学钟新华教授团队在该方面较为突出。2012年,Sargent小组实现了迄今为止红外量子点电池的最高能量转化效率7%。2013年,华东理工大学钟新华课题组合成了基于CdSeTe的量子点,获得了高达6.36%的光电转换效率。2015年,该团队通过对TiO2/CdSeTe表面依次沉积ZnS和SiO2,获得8.21%的认证效率。 /p p   (2)有机太阳能电池 /p p   a.钙钛矿太阳能电池 /p p   2013年以来,以钙钛矿相有机金属卤化物(CH3NH3PbX3(X = Cl、Br、I))作为吸光材料的薄膜太阳电池(简称钙钛矿太阳电池,PSCs)因其兼具较高的光电转换效率和潜在极低的制备成本等优点引起学术界的高度关注?PSCs光电转化效率的快速提高使得PSCs被Science评为2013年十大科学突破之一? /p p   瑞士洛桑联邦理工学院Grä tzel M、牛津大学Snaith, H. J.、韩国成均馆大学Park N. G.等研究团队在钙钛矿太阳能电池领域取得了一系列重大成果,目前在PSCs研究领域处于领先地位。2011年韩国成均馆大学Park课题组优化了TiO2表面和钙钛矿的制作工艺,将PSCs效率提高到6.5%?2012年牛津大学Snaith课题组提出了“介孔超结构太阳电池”的概念,使PSCs效率首次达到10.9%?2013年,Grä tzel课题组和牛津大学Snaith课题组将PSCs效率提高到15%和15.4%?年仅30余岁的牛津大学青年科学家Snaith也因此被Nature评为2013年十大科学人物之一。和英国、瑞士、韩国等相比,中国在该研究方向的高被引论文相对较少。 /p p   b.染料敏化太阳能电池 /p p   20世纪60年代,德国科学家Tributseh等首次发现了染料吸附在半导体上在一定条件下能产生电流,成为染料敏化太阳能电池的重要基础。 /p p   瑞士洛桑联邦理工学院的Grä tzel M为染料敏化太阳能电池领域的发展做出了一系列重要贡献。2011年,Grä tzel等制备出光电效率为12.3%的电池 2014年,课题组再次刷新染料敏化太阳能电池效率,达13%。除此之外,Grä tzel研究团队在染料光敏化剂、电极等方面也取得了一系列重大成果。中国研究人员在该领域也有突出表现,代表性的研究团队包括中国海洋大学唐群委团队、中山大学匡代彬团队、中科院长春应化所王鹏团队、大连理工大学马廷丽团队等。唐群委研究团队在导电聚合物方面做了很多有意义的工作,采用基于高氯酸掺杂的聚苯胺纳米颗粒制成染料敏化太阳能电池用对电极,获得了大于7%的光电转化效率。匡代彬研究团队在特殊形貌TiO2在染料敏化太阳能电池中的应用以及光电极研究方向取得了一系列成果。2009年,王鹏课题组率先研制出转化效率达9.8%的染料敏化太阳能电池。 /p p   c.聚合物太阳能电池 /p p   与硅基太阳能电池相比,聚合物太阳能电池具有器件结构简单、重量轻、可低成本大规模制备等突出优点。根据受体情况,聚合物太阳能电池可以划分为基于富勒烯受体的聚合物太阳能电池、基于非富勒烯小分子受体的聚合物太阳能电池、全聚合物太阳能电池等。 /p p   基于富勒烯的聚合物太阳能电池的研究主要集中在以受体材料C60衍生物PCBM和给体材料导电聚合物聚己基噻吩(P3HT)混合作为光活性层而形成的体相异质结结构。英国帝国理工学院、美国能源部、加州大学系统、斯坦福大学、中科院化学所李永舫院士等在该研究方向表现活跃。 /p p   发展高性能的非富勒烯受体是有机太阳能电池领域的挑战性难题。中国和美国是非富勒烯聚合物电池研究方向的主要研究国家。北京大学占肖卫团队率先提出了稠环电子受体的概念,设计合成了一系列高性能有机稠环电子受体材料,取得了一系列重大突破。2015年,该课题组报道了效率高达6.8%的非富勒烯聚合物太阳能电池。2016年,该团队报道的电池效率达9.6%,刷新了世界最高效率。中科院化学所侯建辉团队也是该研究方向最为活跃的研究团队之一。2016年,该研究团队在小面积非富勒烯型聚合物太阳能电池器件(13 mm2)中取得了创纪录的11.2%的能量转换效率,使非富勒烯型聚合物太阳能电池效率达到了富勒烯受体的最好水平。 /p p   在全聚合物太阳能电池方面,中科院化学所李永舫团队表现活跃。2015年,该团队将全聚合物太阳能电池的能量转换效率提高到8.27%。 /p p   除上述外,2016年,南开大学陈永胜研究团队利用寡聚物材料的互补吸光策略构建了一种具有宽光谱吸收特性的叠层有机太阳能电池器件,实现了12.7%的光电转化效率,创造了当时文献报道的有机/高分子太阳能电池光电转化效率的最高纪录。 /p p   (3)无机太阳能电池 /p p   a.表面等离激元(surface plasmon)增强太阳能电池 /p p   加州理工学院Atwater H. A.研究团队是该研究方向的主要开拓者。2010年,Atwater H. A.等指出在保证活性层厚度不增加的情况下等离激元纳米结构存在三种有效提高活性层吸收的光捕获策略。基于上述光捕获策略,表面等离激元太阳能电池己取得了很大进展,短路电流密度、功率转换效率等参数均实现了大幅提升。 /p p   b.化合物薄膜太阳能电池 /p p   薄膜太阳能电池的种类较多,主要类型包括碲化镉、砷化镓、铜铟硒(CIS)、铜铟镓硒(CIGS)、铜锌锡硫(CZTS)等薄膜太阳能电池。2010年,德国太阳能和氢能研究中心研究的铜铟镓硒(CIGS)太阳能电池的光电转化率达到20.3%。2011年,美国国家可再生能源实验室研制的小面积GaAs薄膜太阳能电池实现了28.3%的光电转换效率。在该研究方向,美国的研究实力较为突出,知名研究机构包括加州大学系统、IBM公司、劳伦斯伯克利国家实验室等 中国科学院、香港中文大学、华东师范大学等国内机构也表现活跃。 /p p   3 纳米发电机 /p p   纳米发电机领域的研究前沿共涉及高被引论文有32篇,研究内容主要分布在摩擦纳米发电机和压电纳米发电机两个研究方向。如表5所示,该领域的高被引论文基本都来自美国,其中25篇来自美国佐治亚理工学院教授、中国科学院北京纳米能源与系统研究所所长王中林院士。 /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/da922adb-5e3b-471c-802a-76af5fc89ff2.jpg" / /p p   发电机原理主要有电磁、压电、热电和静电四种类型。纳米发电机主要采用压电和静电(即摩擦)两条技术路线。在纳米发电机发展过程中,王中林院士做出了重要开创性贡献。2006年,王中林课题组首次报道了压电纳米发电机,利用压电极化电荷和所产生的随时间变化的电场来驱动电子在电路中的流动。2012年,王中林课题组首次报道了摩擦纳米发电机,利用两种不同材料接触所产生的表面静电荷所导致的随时间变化的电场来驱动电子的流动。迄今为止,摩擦纳米发电机已发展至四种工作模式(垂直接触-分离、水平滑动、单电极、独立层),输出功率密度从每平方米3.67毫瓦飙升至300多瓦,可将日常环境中的各种机械能转化为电能,作为微纳电源为微小型设备供电,作为自驱动传感器用于健康监测、生物传感、人机交互等。最近,王中林课题组致力于将摩擦纳米发电机用于收集海洋能,并首次用于设备仪器(质谱仪)中。除了应用研究,王中林院士还论证了纳米发电机的理论源头来自于麦克斯韦的位移电流的第二项,并由此推导出压电纳米发电机和摩擦纳米发电机的基本输运方程。 /p p   压电纳米发电机虽然发明较早,但过低的输出电流限制了其发展和应用。核心材料从最初的ZnO纳米线,正在朝BaTiO3、PZT等钙钛矿型材料、PVDF聚合物材料、MoS2等二维材料等方向发展,结构既有一维纳米线、纳米纤维,也有二维平面薄膜。 /p p   4 纳米药物 /p p   纳米药物领域的研究前沿共涉及高被引论文488篇,研究内容主要围绕纳米药物载体与药物递送、肿瘤治疗纳米药物、抗菌治疗纳米药物等。如表6所示,在高被引论文数量方面,美国最多,中国排名第二,美国和中国的表现明显优于其他国家。 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/5cd9bca1-d697-42f2-bf61-6025eaa0f05f.jpg" / /p p   近年来,纳米材料和纳米技术越来越多地进入到临床应用阶段。经临床实践证实,根据纳米材料对肿瘤细胞和肿瘤组织靶向性的特性设计出的纳米药物能明显改善肿瘤治疗。其中,肿瘤光热治疗技术作为一种新型的治疗策略,已经在肿瘤治疗方面引起了高度关注。早期的光热治疗主要通过高热量来直接破坏、消除肿瘤细胞。近年来很多研究者发现这些纳米材料产生的热除具有直接杀伤肿瘤细胞的作用外,还可通过抑制肿瘤转移、克服化疗耐药从而发挥抗肿瘤作用。目前研究较多的光热材料以金纳米材料为主,研究内容主要围绕金纳米棒、金纳米笼等金纳米材料的肿瘤光热治疗,及光声成像-光控释放-光热治疗化疗等纳米金多手段多功能的诊疗一体化研究。2008年,美国佐治亚理工学院El-Sayed MA团队利用金纳米棒对小鼠鳞状上皮细胞癌进行等离激元光热治疗,论文被引521次。2012年,国家纳米科学中心陈春英和吴晓春团队把介孔二氧化硅包被的金纳米棒用于肿瘤的成像、化疗和热疗,论文被引395次。其他知名机构包括美国德克萨斯大学安德森癌症中心、美国华盛顿大学以及我国东华大学、苏州大学、哈尔滨工程大学和南京大学等。 /p p   纳米药物载体与药物递送方向近年发展迅速。主要用于药物载体的纳米材料包括纳米脂质体、聚合物胶束、纳米囊和纳米球、纳米磁性颗粒、介孔二氧化硅纳米粒等。氧化石墨烯具有良好的生物相容性、易于表面功能化,其巨大的比表面使它具有超高载药率。2008年美国斯坦福大学戴宏杰教授团队率先报道了利用氧化石墨烯作为难溶性含芳香结构抗癌药物的载体,其具有良好的水溶性,可用于难溶性药物的增溶,并可有效杀伤肿瘤细胞。两篇相关论文分别被引用达1789和1533次。其中介孔二氧化硅因多孔性、比表面积大、便于修饰性、毒性低等特点,得到广泛应用,具有极大的发展前景。相关核心论文主要围绕介孔二氧化硅的合成、特性及癌症治疗等生物医药应用。主要研究团队包括美国加州大学洛杉矶分校Zink Jeffrey I.和Nel Andre E.团队、美国西北大学Stoddart J. Fraser团队、中科院理化所唐芳琼团队、芬兰埃博学术大学Sahlgren Cecilia团队、美国新泽西州立大学Minko Tamara团队、美国爱荷华州立大学Vivero-Escoto Juan L.团队、福州大学杨黄浩团队、新加坡南洋理工大学Zhang Quan和Zhao Yanli团队等。其中Nel Andre E.团队关于siRNA修饰的负载抗癌药物的介孔二氧化硅纳米输运体系以克服肿瘤多重耐药性的研究被引用455次。 /p p   脂质体近年来也是给药系统研究领域中的研究热点,已经在许多方面显示出其潜在的应用价值,知名研究机构包括美国哈佛大学、美国德州大学奥斯丁分校、澳大利亚哥廷理工大学以及我国南京大学等。 /p p   5 纳米检测 /p p   纳米生物和医学检测领域的研究前沿共涉及高被引论文325篇,研究内容主要围绕量子点、贵金属纳米簇、上转换材料等纳米探针技术以及纳米生物传感器。如表7所示,在高被引论文数量方面,美国最多,中国排名第二,美国和中国的表现明显优于其他国家。 /p p style=" text-align: center " img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/0365a241-efc8-4e9c-9983-b06cc28a10a3.jpg" / /p p   纳米生物和医学检测技术的热点主要集中在用于分子影像诊断的纳米探针技术。纳米探针具有影像信号强度大、靶向效果好、代谢动力学可控等显著的优点。近年来,基于贵金属纳米材料(金、银等纳米颗粒)、量子点、上转换荧光纳米颗粒的荧光纳米探针迅速发展,成为纳米生物医学检测领域的前沿热点。 /p p   在贵金属纳米簇纳米探针研究方向上,高被引论文主要研究以核苷酸作为保护模板合成荧光银纳米簇探针,以增加其稳定性,并将其用于核苷酸、汞离子及蛋白等的生物检测。美国佐治亚理工学院Dickson Robert M.团队、美国阿拉莫斯国家实验室Martinez Jennifer S.团队和中国科学院长春应用化学所汪尔康院士团队在该研究方向较为突出。 /p p   在量子点纳米探针研究方向上,美国海军实验室生物分子科学工程中心Mattoussi Hedi、Medintz Igor L.团队的高被引论文主要研究量子点共振能量转移,斯坦福大学戴宏杰团队和中科院苏州纳米技术与纳米仿生研究所王强斌团队的高被引论文主要研究Ag2S量子点应用于近红外影像,福州大学池毓务团队的高被引论文主要研究功能化碳量子点,南开大学严秀平团队的高被引论文主要研究ZnS量子点。 /p p   在纳米生物传感器研究方向上,斯坦福大学鲍哲南团队、加州大学伯克利分校Javey Ali团队、首尔大学Pang Changhyun团队、中科院苏州纳米技术与纳米仿生研究所张珽团队等主要研究用于电子皮肤压力传感的生物传感器,美国西北太平洋国家实验室林跃河团队、康涅狄格大学Rusling James F团队、中国西南大学袁若团队、清华大学李景虹团队、南京大学朱俊杰团队等主要研究免疫生物传感器。 /p p   6 仿生纳米孔 /p p   仿生纳米孔道领域的研究前沿共涉及高被引论文45篇,研究内容主要集中在利用纳米孔进行生物大分子分析识别的基础研究和应用研究。如表8所示,美国在该领域具有非常显著的研究优势,高被引论文有23篇,超过了总数的一半 英国和德国分别有8篇和4篇高被引论文,分列2、3位 中国只有1篇高被引论文。 /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/2243f232-b65a-43fb-ac1d-5ccbb557c644.jpg" / /p p   上世纪90年代,科学家提出了将单链DNA拉过蛋白孔,检测碱基穿过时电导的微小改变,进而实现纳米孔DNA测序的设想。进入21世纪后,越来越多的科研人员致力于该领域研究,让纳米孔测序成为现实,研究成果也逐步向商业实用方向迈进。开发的纳米孔类型主要包括生物纳米孔和固态纳米孔等,测序主要包括核酸测序(主要是DNA测序)和蛋白质分析等。 /p p   生物纳米孔利用天然生物学通道,如α-溶血素结构和耻垢分支杆菌孔蛋白A(MspA)等。牛津纳米孔技术(Oxford Nanpore)公司Bayley Hagan团队开发了可商业化的α-溶血素生物纳米孔。2009年,该公司发表论文《单分子纳米孔DNA连续碱基测序》,实现了碱基连续测定,准确度平均为99.8%。该文被引用677次,是本领域被引频次最高的论文。此后,牛津纳米孔技术公司推出了商业化的纳米孔测序仪——MinION和GridION。基于纳米孔的单分子DNA读取技术不再需要光学检测和同步的试剂洗脱过程,也被称为第四代测序技术,相比更早的测序技术有着更快的数据读取速度和更大的应用潜能。 /p p   2010年,美国华盛顿大学的Jens Gundlach首次证明,耻垢分支杆菌孔蛋白A可用于DNA测序,并与阿拉巴马大学微生物学家Michael Niederweis合作证明MspA孔隙结合“棘轮系统”便可读取短DNA序列。2012年,该团队又一次利用MspA和噬菌体Phi29聚合酶相结合,实现单核苷酸的分辨率和DNA易位控制,该成果推动了长期以来生物纳米孔遇到的两个主要障碍的解决。同年,美国加州大学圣克鲁兹分校Mark Akeson团队也利用MspA和Phi29聚合酶相结合,使DNA正向和反向棘轮以每秒2.5-40个核苷酸的速度通过纳米孔实现实时单核苷酸分辨率的检测。 /p p   生物纳米孔在稳定性、持久性等方面存在不足,难以满足持续的大规模测序的需求。随着微加工技术的不断进步,固态纳米孔应运而生。人工制备的固态纳米孔具有孔径稳定、物化性能良好、具有低成本、高读长、易集成等的优点,被认为是下一代纳米孔技术。固态纳米孔的材料主要是石墨烯、氮化硅、硅、金属氧化物等。 /p p   石墨烯在检测DNA上具有出色的潜力。哈佛大学Jene Golovchenko团队和美国麻省理工学院的研究人员2010年在nature上发表论文证实石墨烯可以制成人工膜材料进行DNA测序,指引了石墨烯纳米孔DNA检测的方向。哈佛大学Jene Golovchenko团队制备了与DNA分子的直径紧密匹配的石墨烯纳米孔,发现其对DNA具有非常好的灵敏度和分辨率。荷兰代尔夫特技术大学科维理纳米科学研究所的Dekker, C团队将石墨烯薄片放置在氮化硅膜的微孔上并使用电子束在石墨烯中钻出纳米尺寸的孔来获得纳米孔。在其他仿生纳米孔材料方面,德国慕尼黑工业大学、美国哥伦比亚大学的研究人员利用氮化硅修饰纳米孔,阿根廷拉普拉塔国立大学的研究人员利用聚(4-乙烯基吡啶)大分子构建块修饰固态纳米孔,瑞士洛桑联邦理工学院的研究人员将亚纳米厚度的单层或几层厚的剥离的二硫化钼(MoS2)固定在氮化硅纳米孔上,均可以改善DNA的分析。 /p p   同时,纳米孔的检测物范围也不断扩大,从DNA发展到RNA、蛋白质、金纳米颗粒和有毒分子等的分析。如牛津大学Bayley Hagan团队、美国加州大学圣克鲁兹分校Mark Akeson团队和荷兰代尔夫特技术大学科维理纳米科学研究所的Dekker, C团队等利用生物纳米孔开展蛋白检测,研究的重点是蛋白质解折叠和易位问题。此外,美国宾夕法尼亚大学Drndic, M 和Wanunu, M团队利用薄的纳米孔快速检测小RNA分子。英国东英吉利大学利用牛津纳米孔技术公司开发的MinION纳米孔平台测序鉴定细菌抗生素抗性岛的位置和结构。 /p p   7 纳米安全性 /p p   纳米安全性领域的研究前沿共涉及高被引论文157篇,研究内容主要围绕纳米物质和生物体及环境的相互作用,着重研究纳米物质的物理化学特性等与生物学毒性效应之间的关系。如表9所示,美国在该领域的高被引论文数量最多,有59篇,明显高于其他国家 中国在该领域的高被引论文数量排在第2位,有25篇。 /p p style=" text-align: center " img title=" 12.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/a27bcb55-e522-465c-9c53-1b9e048af90f.jpg" / /p p   碳纳米管、介孔二氧化硅、石墨烯等纳米材料在医学检测、纳米药物递送、纳米治疗等方面开辟了新的应用途径。同时,关于其生物安全性、毒性的研究也逐渐引起关注。该领域研究前沿的高被引论文的主要分为两个研究方向:纳米材料对人体健康的风险研究和纳米材料的环境风险研究。健康风险研究主要围绕肺毒性、皮肤毒性、细胞毒性、生物相容性等,关注的主要纳米物质包括碳纳米管、纳米锌、纳米银、石墨烯、介孔纳米二氧化硅、纳米二氧化钛和纳米金等。环境风险研究主要围绕环境释放、环境归趋、生态毒理学、生物降解、植物吸收等。 /p p   纳米银的毒性作用研究包括纳米银颗粒的细胞毒性、遗传毒性、发育毒性、炎症反应及毒性作用机制,纳米银在生物体内的分布动力学,纳米银对癌细胞系增殖和凋亡的影响等。新加坡国立大学Valiyaveettil S教授团队2009年发表的论文《银纳米粒子对人体细胞的细胞毒性和遗传毒性》被引用1153次。此外,韩国环境及商品检测研究所、美国空军研究实验室、荷兰国家公共卫生和环境研究院等研究机构也有高被引论文贡献。 /p p   碳纳米管的安全性研究包括单壁/多壁碳纳米管的生物相容性、体内分布循环、细胞内吞、慢性毒性、间皮损伤和致癌性、毒性的影响因素(如长度、尺寸依赖性)等。2008年,苏格兰爱丁堡大学Donaldson K团队研究发现石棉状长碳纳米管可能导致小鼠产生一种以往由石棉引起的恶性间皮瘤,该论文被引用1329次。此外,美国斯坦福大学、麻省理工大学和美国国家职业安全卫生研究所、德国巴斯夫公司和拜耳公司、我国北京大学等也有高被引论文贡献。 /p p   介孔二氧化硅材料的生物安全性研究包括介孔二氧化硅纳米材料的生物相容性、生物分布、细胞毒性和溶血活性的影响因素(如尺寸、形状、表面效应)等,中科院理化所唐芳琼团队表现较为突出。 /p p   纳米金颗粒的体内分布研究主要集中在金纳米颗粒在生物体内的分布、累积及粒径和表面电荷等影响因素研究,主要研究机构包括德国环境健康研究中心等。 /p p   纳米材料释放进入环境的估算与环境影响评价研究包括纳米材料在环境多介质中的分布、在环境中的排放、归趋建模等,主要研究机构包括瑞士联邦材料科学与技术实验室等。 /p p   氧化石墨烯的毒性作用及安全性评价研究集中在氧化石墨烯的毒性作用与生物安全性研究方面,来自中国和美国的研究机构比较活跃。 /p p   8 纳米催化 /p p   纳米催化领域的研究前沿共涉及高被引论文303篇,研究内容围绕纳米催化剂的制备和应用展开。如表10所示,我国在该领域的高被引论文数量排名第一,所占份额超过1/3,反映出我国近年来在纳米催化领域具有较强的研究优势。美国的高被引论文数量排名第二,所占比例接近1/4。其余国家高被引论文数量相对较少。 /p p style=" text-align: center " img title=" 13.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/f3cdaa70-dee7-4b77-841d-bb6d01fe75d1.jpg" / /p p   纳米催化剂通常由活性组分和载体两部分组成。常见的活性组分包括金属(及其化合物)、半导体、碳基材料(石墨烯、碳纳米管、石墨相C3N4等)等。尺寸、形貌、结构、组成等是影响活性组分催化活性的重要因素。出于成本考虑,活性组分的总体研究趋势是在保证活性的前提下,尽量减少贵金属的使用,用储量丰富、价格低廉的普通金属或者非金属材料替代贵金属。常用的载体包括氧化物(SiO2、TiO2、Fe3O4等)、碳基材料(石墨烯、碳纳米管、石墨相C3N4等)、多孔材料(沸石、介孔材料、金属有机框架化合物等)等。载体不仅为活性组分高度分散提供了表面,而且还可以参与催化过程,例如促进光生电荷分离等。对于多孔载体,孔道的限域可以起到择形催化作用。由于易于分离回收,磁性可回收载体近年发展迅速。 /p p   纳米催化的特点介于均相催化和非均相催化之间。中科院大连化物所张涛院士团队首次发现单原子催化剂具有与均相催化剂相当的活性,从实验上证明单原子可能成为沟通均相催化与多相催化的桥梁。 /p p   纳米催化的反应类型大致分为传统催化、电催化和光催化三类。在传统催化中,C1化学占据重要位置,包括费托合成、甲烷转化、CO氧化、CO2还原、甲醇氧化等。近年来,我国C1化学取得一系列重大突破。中科院大连化物所包信和院士团队构建了硅化物晶格限域的单中心铁催化剂,成功地实现了甲烷在无氧条件下选择活化,一步高效生产乙烯、芳烃和氢气等高值化学品。包信和院士团队还利用自主研发的新型复合催化剂,创造性地将煤气化产生的合成气高选择性地直接转化为低碳烯烃,乙烯、丙烯和丁烯的选择性大于80%,突破了费托合成低碳烯烃选择性最高58%的极限。中国科学院上海高等研究院和上海科技大学联合科研团队自主研发了暴露面为{101}和{020}晶面的Co2C纳米平行六面体结构催化剂,实现了温和条件下(250 oC、1~5个大气压)合成气高选择性直接制备烯烃,低碳烯烃选择性可达60%,总烯烃选择性高达80%以上,烯/烷比可高达30以上。 /p p   在电催化中,燃料电池和金属-空气电池的阴极氧还原反应是研究重点之一。铂是重要的氧还原反应电催化剂。受铂成本高等缺点影响,催化剂一方面朝着减少铂的用量方向发展,采用二元或三元合金的形式,例如Pt-Fe、Pt-Co、Pt-Fe-Cu等。另一方面朝着非铂催化剂方向发展,例如钯及其合金,以及氮掺杂的碳材料(石墨烯、碳纳米管)等。电解水是另一类重要的电催化反应,新型析氢催化剂包括硫化钼化合物(MoS2、MoS3等)、氮掺杂的碳纳米管封装的金属催化剂等,新型析氧催化剂包括氮掺杂的石墨烯等。美国斯坦福大学戴宏杰团队制备的Co3O4/氮掺杂石墨烯电催化剂同时具有很高的氧还原和析氧活性,文章被引次数超过1900次。二氧化碳的转化也是研究热点,中国科学技术大学谢毅院士团队采用新型钴基电催化剂,将二氧化碳高效清洁转化为液体燃料,得到国际同行高度评价。 /p p   在光催化中,水和空气中污染物的降解是研究重点之一,常用的催化剂包括TiO2等半导体、BiOX(X = Cl, Br, I)、Ag/AgX(X = Cl, Br, I)、石墨相C3N4等。二氧化碳还原制甲烷、甲醇等碳氢燃料正处于研究热点,在减少温室气体的同时还可提供替代能源,常用催化剂包括TiO2等半导体、Ag/AgX(X = Cl, Br, I)、金属有机框架化合物、石墨烯、石墨相C3N4等。光解水一直是光催化研究的重要课题,国家纳米科学中心宫建茹研究员和武汉理工大学余家国教授合作制备的石墨烯负载CdS光解水制氢催化剂很受高度关注,文章被引次数超过1000次。 /p p   9 测量表征 /p p   纳米测量表征技术主要是指纳米尺度和精度的测量技术。近十几年来,随着测量技术的飞速发展,至今已经出现了多种可以实现纳米测量的技术和仪器。近期纳米级测量技术主要有两个发展方向,即光干涉测量技术和扫描显微测量技术。 /p p   纳米测量表征领域的研究前沿共涉及高被引论文153篇,研究内容包括光谱测量研究、电子显微测量研究以及利用多种表征手段研究纳米材料的表面/界面等。如表11所示,美国在该领域的高被引论文数量最多,德国和英国分列第2、3位,中国在高被引论述数量方面与美国相比有明显差距。 /p p style=" text-align: center " img title=" 14.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/56982b05-3f35-4980-9181-8f1f4a45162e.jpg" / /p p   (1)光谱测量研究 /p p   a.超分辨成像 /p p   近年来随着超分辨荧光显微术的兴起,研究人员研制了多种突破衍射极限的超分辨光学显微镜,分辨率可达约20 nm左右,某些情况下甚至可小于2 nm。这些超分辨显微镜主要分为两类:一类以Stefan W. Hell发明的受激辐射耗尽(STED)显微镜为代表,通过调制光照明方式来实现超分辨 另一类是基于单分子定位的超分辨显微镜,通过对具有光开关功能的荧光基团进行单分子成像和定位而实现,光活化定位显微术(PALM)技术、随机光学重构显微术(STORM)技术、荧光活化定位显微术(fPALM)技术均是这一技术方向的研究热点。2014年诺贝尔化学奖授予发展超分辨率荧光显微成像技术的3位科学家,分别是美国霍华德· 休斯医学研究所教授Eric Betzig(PALM技术)、德国马克斯普朗克生物物理化学研究所教授Stefan W. Hell(STED技术)和美国斯坦福大学教授William E. Moerner。 /p p   b.纳米尺度磁共振研究 /p p   当前通用的磁共振谱仪受制于探测方式,其成像分辨率仅为毫米级。纳米尺度弱磁探测技术将磁共振技术的研究对象推进到单分子,成像分辨率提升至纳米级。 /p p   2008年,德国斯图加特大学Wrachtrup团队和美国哈佛大学Lukin团队首次报道了利用金刚石中的氮-空位色心(NV)进行纳米尺度弱磁探测的工作,开创了纳米测磁研究方向。此外,哈佛大学Yacoby研究团队、Walsworth研究团队,中国科技大学杜江峰研究团队均是该方向中最为活跃的研究团队。2008年以来,杜江峰研究团队陆续取得了微波场的百纳米级分辨率矢量重构、绘制世界首张单个生物分子的磁共振谱等重大研究突破。 /p p   c.表面等离激元共振(SPR) /p p   光(或电磁波)与金属纳米粒子相互作用能够在纳米尺度范围聚焦很强的电磁能量,突破传统光学中的衍射极限,即表面等离激元共振(SPR)现象。该方向的研究主要集中在氧化钨、硫化铜、硒化铜、金纳米颗粒、多种胶体纳米颗粒的表面等离激元共振和局域表面等离激元共振性质研究以及基于表面等离激元光镊系统对金属纳米颗粒和生物分子的稳定捕获和动态操控能力研究等。 /p p   d.表面增强拉曼光谱(SERS) /p p   当分子接近或吸附在贵金属纳米材料表面时,其拉曼信号能被放大多个数量级,因此近年来表面增强拉曼光谱(SERS)作为一种快速、灵敏的检测技术已获得广泛认可。该方向的研究主要聚焦在基于纳米材料(主要是金纳米粒子)的拉曼基底的研发以及SERS在生物检测领域的应用。美国杜克大学和西班牙维戈大学在该方向研究较为活跃。 /p p   (2)电子显微测量研究 /p p   原位透射电子显微镜(in situ TEM)技术实现了对物质在外部激励下的微结构响应行为的动态、原位实时观测。该方向的研究聚焦在利用原位透射电子显微镜技术对纳米电极材料的锂化和退锂化过程进行原位表征。美国能源部桑迪亚国家实验室黄建宇(已经全职加入燕山大学)研究团队在该研究方向非常活跃。黄建宇等人首次实现了在透射电子显微镜下搭建锂离子电池体系,研究纳米线在锂化过程中的形貌变化和作为锂离子电池电极的锂化机理。此外,桑迪亚国家实验室Liu Xiao Hua团队、佐治亚理工朱廷研究团队等也是该领域中的重要研究队伍。 /p p style=" text-align: center " strong 三 总结 /strong /p p   本报告通过纳米领域各国发展规划调研和文献计量分析,结合领域情报人员的研究,得出以下发现。 /p p   1.通过对比分析美国、英国、法国、德国、俄罗斯、欧盟、日本、韩国、印度、澳大利亚以及我国的纳米技术研发计划,发现各国规划具有以下共同之处:(1)对纳米技术的信心普遍增强,投资力度普遍加大,核心科研人员数量和相关企业数均大幅增加 (2)将纳米技术列入促进国家经济发展和解决关键问题的关键技术领域,在能源和生物医药等领域尤其受到重视 (3)研发重心由最初单一的纳米材料制备和功能调控转向纳米材料的应用和商业化,纳米技术的研究走向了新的阶段 (4)通过公共研发平台、产业园区等方式,促进产学研合作及与其他领域的融合,缩短从“提案”到“产业化”的时间 (5)开展EHS(环境、健康、安全)和ELSI(伦理、限制、社会课题)研究以及国际标准和规范(ISO、IEC)的制定,促进纳米技术相关产业被社会接受 (6)重视纳米技术的基础教育和高等教育。 /p p   2.基于科睿唯安公司Essential Science Indicators(ESI)数据库中的11814个研究前沿,通过文献检索、专家遴选等方法筛选出和纳米研究相关的研究前沿1391个,涉及高被引论文6639篇(2008-2015年)。在高被引论文数量方面,美国和中国分居前两位,遥遥领先于其他国家。综合考虑论文的被引用情况和发表时间,从1391个纳米研究前沿中遴选出41个热点前沿和37个新兴前沿。 /p p   3.选择了“锂电池”“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”“纳米催化”和“测量标准”9个前沿研究领域进行分析解读(每个研究领域包括若干研究前沿)。在高被引论文数量方面,美国在“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米仿生孔”“纳米安全性”和“测量标准”7个研究领域中排名第一,在“锂电池”和“纳米催化”中排名第二。我国在“锂电池”和“纳米催化”2个研究领域中排名第一,在“太阳能电池”“纳米发电机”“纳米药物”“纳米检测”“纳米安全性”5个研究领域中排名第二,在“测量标准”中排名第四,在“纳米仿生孔”中未进入前五。 /p p   4.我国在纳米科技领域已形成一批达到世界领跑水平的优势研究方向和优秀团队。例如,(1)太阳能电池:中科院化学所侯建辉研究员团队2016年在小面积非富勒烯型聚合物太阳能电池器件中取得了创纪录的11.2%的能量转换效率,使非富勒烯型聚合物太阳能电池效率达到了富勒烯受体的最好水平 南开大学陈永胜教授团队2016年创造了文献报道的有机/高分子太阳能电池光电转化效率的最高纪录12.7% 华东理工大学钟新华教授团队2016年创造了量子点太阳能电池11.6%的效率纪录 此外北京大学占肖卫教授团队、中科院化学所李永舫院士团队等也非常突出 (2)C1化学:中科院大连化物所包信和院士团队成功实现了甲烷在无氧条件下选择活化,一步高效生产乙烯、芳烃和氢气等高值化学品 包信和院士团队还将煤气化产生的合成气高选择性地直接转化为低碳烯烃 中科院上海高等研究院和上海科技大学联合科研团队实现了温和条件下合成气高选择性直接制备烯烃。 /p p style=" text-align: center " img title=" 16.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/7ccf6bd2-a199-48d2-b5e2-0463b0cc3250.jpg" / /p p style=" text-align: center " img title=" 17.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/7e7cbd3e-2fd7-4133-807c-24fc724a168f.jpg" / /p p style=" text-align: center " img title=" 18.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/7f112894-a87a-42bc-a301-4167dc4ed390.jpg" / /p p style=" text-align: center " img title=" 19.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/525cea15-325d-4835-a31b-7645b644efe4.jpg" / /p p style=" text-align: center " img title=" 20.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/50f984fa-490e-4a0c-85f7-56228a3595a5.jpg" / /p p style=" text-align: center " br/ /p
  • 新型纳米材料的流动合成法
    p    strong 爱沙尼亚塔尔图大学物理研究所选用了一款搭载Flow-UV& #8482 探测器的Uniqsis FlowSyn& #8482 连续流动反应器来帮助他们开发可用于下一代应用的新型纳米材料。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/aac6b0cc-ddae-46ee-b9eb-5de725939aa7.jpg" / /p p   材料科学研究小组的Aile Tamm博士在采购Uniqsis FlowSyn系统之前评估了不同种合成纳米材料的技术路径。 /p p   Aile Tamm博士谈到:“我们已研究过具有先进电磁性能的纳米颗粒和纳米复合材料。例如,我们已成功制备出含有平均粒径在5-50纳米的氧化铁、氧化铁铒、氧化锰铁和氧化镧微粒的薄固体膜粒子复合涂层。这些新型复合材料已被证明具有电子设备开发所需要的非线性饱和磁化及强制磁滞现象。除这些纳米材料以外,我们研究所也正在研究若干其他形式的纳米颗粒。” /p p   Uniqsis总经理,Paul Pergande评论道:“我们很高兴欢迎Tamm博士的知名研究团队加入到这一日渐发展的群体中来,这一群体涵盖了多家国际领先的使用Flowsyn来研究纳米颗粒合成的材料科学实验室。”他还补充道:“Flow-UV内嵌式二极管阵列探测器可被用于确定何时达到稳态,从而可确定何时开始与停止收集反应产物。紫外-可见吸收光谱测量法对于纳米颗粒分布具有特别重大的意义,并可提供有关粒径及是否发生团聚的信息。” /p p   FlowSyn& #8482 是一种被设计成可简单、安全、有效运行的集成化持续流动反应系统。FlowSyn& #8482 包含了一系列可进行单重或多重的均相或非均相反应的产品型号,并具有手动或自动运行功能。反应的范围通过Uniqsis的集成模块化流动化学系统的不断探究,已变得越来越广,并被越来越多发表于学术刊物和Uniqsis应用注释中的应用文章所证明。 /p p br/ /p p   获取更多有关FlowSyn& #8482 连续流动反应器的信息,及讨论该系统的试验请联系Uniqsis的电话+44-845-864-7747或电子邮箱 info@uniqsis.com /p p   Uniqsis擅于设计中等规格的,用于各种不同化学和药学研究应用的持续流动化学系统。公司目标是使初学者和经验丰富的使用者都易于使用我们的流动化学系统。 /p p /p
  • 聚焦纳米能源与催化材料设计与应用——LDMAS2021分会场侧记
    2021年10月9-10日,2021年第四届低维材料应用与标准研讨会(简称:LDMAS2021)在北京西郊宾馆成功召开。会议吸引了低维材料与器件相关领域的400余名专家学者与企业代表出席,云端参会人数超过1万人。10日下午,5个不同主题的分论坛同期举办,吸引了相关领域与会者的热烈关注。纳米能源与催化材料分会场共设置16个特邀报告和6个口头报告,精彩纷呈。以下为部分精彩报告摘要。报告题目:《缺陷水滑石基纳米光催化材料》中国科学院理化技术研究所研究员 张铁锐目前全球正面临比较严重的能源和环境问题,绿色的光催化技术被认为是解决上述问题的有效手段之一,而发展高效、廉价的光催化材料是光催化技术工业实用化的关键。光催化领域水 滑石基纳米材料因组成结构易于调控、制备简便等优点而备受关注。近两年,张铁锐研究员课题组通过在水滑石表面创造缺陷位和构造界面结构的手段,分别实现了对反应物CO2、N2等吸附和活化的增强,以及中间反应物种反应路径的调控,进而提升了光催化CO、CO2和N2加氢反应的催化活性和生成高附加值产物的选择性。报告题目:《典型二维材料在下一代锂电池中的应用展望 》清华大学长聘教授 张强金属锂因其具有极高的理论比容量(3860 mAh g−1 )和最低的标准电极电势(−3.040 V) 而成为下一代锂二次电池(如锂硫、锂空电池等)最为理想的负极材料。然而,金属锂枝晶问题和不稳定的固液界面膜(SEI膜)问题极大地限制着金属锂电池的发展和应用。如何充分利用与之高效匹配的正极材料也是构筑下一代电池的关键。报告展示了典型二维材料在下一代锂电池中的应用展望,分析二维材料实现下一代锂电池有效利用的原理和方法,进而成就二维材料在能源存储与转化的实际应用。报告题目:《界面工程构建高性能复合电催化剂》浙江大学研究员 孙文平基于可再生能源的电解水制氢和氢燃料电池技术是发展绿色氢能经济、实现碳中和的关键技术。开发低成本、高性能的电催化剂材料是促进电解水制氢和燃料电池技术大规模产业化应用的重要基础。孙文平研究团队基于界面工程发展了一系列兼具高稳定性和高活性的负载型异质结构电催化剂体系。研究发现,构筑富含高活性界面的负载型催化剂是提高贵金属催化活性、稳定性及原子利用率的有效策略;且界面处的强相互作用、配位效应、协同效应以及限域效应等对电催化剂活性和稳定性具有重要影响。报告题目:《室温锂(钠)硫电池电极材料设计与储能机理研究》中国科学技术大学教授 余彦室温锂(钠)硫电池因具有高的能量密度和低成本等优势,被认为是最具潜力的储能器件之一。然而,室温锂(钠)硫电池面临着硫正极电子电导差、循环过程中中间产物易溶解穿梭、材料体积膨胀及金属负极枝晶生长等问题,导致电池的可逆容量低、倍率性能差且循环寿命短,限制了其商业化应用。合理设计和构筑复合电极结构是提高硫利用率、提升电池能量密度和循环稳定性的关键。鉴于此,余彦教授课题组通过理论计算筛选预测及材料结构调控和优化,有效增强了复合电极的导电性、抑制了多硫化物的溶解穿梭并催化其快速转化,提高了电极的电化学性能,并揭示了其储能机理。报告题目:《锂-空气电池催化剂的设计、合成及构效关系研究》中国科学院大学长聘教授 刘向峰可充放的锂空气二次电池因具有高比容量(其理论比容量最大可达3828mAh/g)和高能量密度 (800~1000 Wh/kg)而受到了很大关注。但是,其缓慢的氧还原/氧析出(ORR/OER)反应动力学以及由此导致的严重极化、效率低、循环性能及倍率性能差等问题限制了锂空气电池的实际应用。因此,设计、开发具有氧还原/氧析出双重催化功能的高效电催化剂体系以促进ORR/OER进程,减小电极极化,提高循环稳定性和寿命,是目前锂空气电池亟待解决的关键问题之一。报告重点介绍刘向峰课题组在锂-空电池高效催化剂设计、表界面结构调控以及构效关系研究方面的最新进展,主要包括:晶面调控、氧缺陷、界面协同等材料设计策略及同步辐射原位X射线衍射、吸收谱、原位拉曼光谱等催化剂或产物结构分析手段的应用。报告题目:《钙钛矿半导体光电器件的新进展》中国科学院半导体研究所研究员 游经碧卤素钙钛矿的发现已有一百多年的历史,上世纪 90 年代其材料设计与物性研究尤为活 跃。自从 2009 年钙钛矿电池发明以来,近十多年钙钛矿半导体光电器件的研究已扩展到太阳能电池、发光显示及探测等多个领域,且发展态势迅猛。报告介绍了钙钛矿半导体材料与光电器件的历史与现状,以及未来发展趋势,以及游经碧研究员课题组在钙钛矿半导体光电器件方面的研究进展:1)载流子输运调控以及表界面缺陷钝化等,实现了超过 25%的钙钛矿太阳能电池;2)钙钛矿太阳能电池关键活性层无机化,研制了数千小时稳定的全无机钙钛矿太阳能电池;3)维度调控及非辐射复合中心钝化等,实现了钙钛矿发光二极管在红、绿、蓝波段发光效率的突破。报告题目:《二维聚合物氮化碳异质结光催化全分解水》西安交通大学教授 沈少华实现高效、稳定、低成本、大规模分解纯水制氢是太阳能光催化分解水制氢技术的最理想途径和最终目标。为此,开发满足要求的光催化剂是该领域研究的核心内容和主要任务。非金属聚合物氮化碳(g-C3N4)因其具有前驱体来源广泛、制备方法简单、环境友好、光化学稳定性高、且能带结构适合光催化产氢/产氧等优点而在光催化分解水领域得到广泛的持续性研究。在过去十年,科研工作者们通过多种改性策略去提升 g-C3N4 的光催化分解水性能,取得了一定的成果。然而,目前其光催化分解水性能仍旧偏低,尤其是分解纯水性能。沈少华教授以 g-C3N4 为主要研究对象,针对其可见光吸收能力差、光生载流子复合率高和反应驱动力弱等问题,以超薄纳米片、调控能带结构、构建异质结等为改性手段,提升 g-C3N4 的光催化分解纯水性能,并深入探讨构效关系,为光催化分解水技术的发展提供了可借鉴的新思路。报告题目:《微型电化学能源材料与器件研究》中国科学院大连化学物理研究所首席研究员 吴忠帅针对可穿戴与微电子系统用储能器件的重大需求,吴忠帅研究员围绕微型电化学能源材料理性设计与器件构筑的关键科学问题,开展了深入系统研究,取得一系列重要研究进展:(1)提出二维结构界面化学组装与有序介孔精准调控的策略,研制出与平面化微器件特性相匹配的高活性二维赝电容材料;(2)制备出高效电子-离子输运的高精度图案化微电极,研制出与微电极匹配的耐高压凝胶电解质,建立了高效微电极-耐高压电解质强界面作用规律,获得了高比能、高功率微型储能器件,揭示了离子多方向传质反应机制;(3)提出了功能导向一体化设计、复杂多界面协同耦合与调控策略,实现了输出电压和容量可调,研制出大于100 V的微型超级电容器模块,创制出柔性化、集成化等多功能微型储能器件,验证了作为可穿戴与微电子系统储能器件具有广泛应用前景。
  • 宁波材料所二维氮化硼纳米片增强复合涂层长周期腐蚀机理研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近期,中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室博士生崔明君利用可溶性导电聚合物聚(2-丁基苯胺)将层叠的h-BN粉末剥离获得了少层的h-BN纳米片,并将其加入环氧涂层中制备导电聚合物和h-BN协同增强的纳米复合涂层。电化学和吸水率研究结果表明,制备的复合涂层具有高阻抗模量和低吸水率,有利于实现复合涂层对金属基底的长效腐蚀防护。通过微观结构及成分表征研究发现,复合涂层表现出优异长效的腐蚀防护性能的机理——“阻隔和钝化协同效应”。在长效腐蚀防护过程中,复合涂层中任意分散的h-BN纳米片可以延长腐蚀介质的扩散路径,有效地阻隔了水分子、氧气以及腐蚀离子的渗入,延缓了基底的腐蚀;导电聚合物的存在导致在金属表面形成一层致密的金属钝化膜,能够有效防止金属的局部腐蚀。 /p p   相关研究成果发表在腐蚀专业期刊 em Corrosion Science /em ,并申请了发明专利(申请号:2016110095929)。该研究得到了中科院率先行动“百人计划”、前沿科学重点研究计划以及国家重点基础研究发展计划的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171213643945510096.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/066f324c-92f4-4d99-a91e-b5da1f6cb31d.jpg" / /p p style=" text-align:center " 氮化硼分散机理图 /p p style=" text-align:center " img alt=" " oldsrc=" W020171213643945535364.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/f2acf9a9-e924-4e00-ac81-f129819fe419.jpg" / /p p style=" text-align:center " 氮化硼改性复合涂层的耐腐蚀性能及防腐机理 /p p style=" text-align: center " br/ /p
  • 苏州纳米所与苏州大学共建功能纳米材料与器件重点实验室
    7月5日上午,中国科学院苏州纳米技术与纳米仿生研究所与苏州大学联合共建的功能纳米材料与器件重点实验室揭牌成立。   功能纳米材料与器件重点实验室以苏州纳米所和苏州大学现有的重点实验室为基础,瞄准国家重大需求,开展高水平功能纳米材料与器件的基础研究和应用基础研究,围绕&ldquo 功能纳米材料的设计与可控制备&rdquo 、&ldquo 功能纳米材料与器件的界面调控&rdquo 、&ldquo 功能纳米器件与应用&rdquo 三大研究方向展开合作研究,为解决纳米战略新兴产业的核心技术问题提供科学依据。同时凝聚和培养相关领域科学发展所需的高层次人才,开展高层次国内外科技合作与交流,提升我国在功能纳米材料与器件领域的国际影响力。   苏州工业园区科技发展局副局长徐健表示,联合实验室的成立对于形成一加一大于二的合作优势,扩大交流机制,迈向国家重点实验室的发展目标,加速推进园区纳米技术及相关产业发展,具有重要而深远的意义。   中科院院士李述汤代表联合实验室作了情况汇报,详细介绍了实验室概况、研究水平与贡献、队伍建设与人才培养、开放交流与运行管理和实验室发展规划的基本情况。   苏州大学副校长袁银男希望联合实验室能够为高校与科研机构之间的合作树立新的标杆,为纳米技术人才培养注入新的活力,成为纳米科技合作研究、教育和创新方面的先行者与领导者,并最终建设成为国家重点实验室。   苏州纳米所所长杨辉回顾了苏州纳米所自成立以来与苏州大学在纳米技术研究领域的合作历程,期待双方以共建联合实验室为契机,进一步加强合作,共同为构筑纳米技术产业生态圈做出积极贡献。 揭牌仪式现场
  • 苏州市纳米新材料协会成立!
    12月23日,苏州市纳米新材料协会成立大会暨第一次会员大会以线上形式召开。会议宣读了苏州市纳米新材料协会成立批文,汇报了协会筹备情况,审议通过了《苏州市纳米新材料协会章程(草案)》等相关文件,确认了协会第一届会长、副会长、秘书长、理事、监事。苏州市科技局高新处处长韩文佳,苏州纳米科技发展公司董事长、总裁张淑梅,苏州纳微科技股份有限公司董事长兼首席科学家江必旺,以及来自苏州各板块的初始会员企业负责人参加会议。纳米公司会场纳米技术是引领21世纪全球科技发展的重要力量。苏州工业园区从2006年就开始围绕第三代半导体、微纳制造、纳米新材料、纳米大健康等领域,布局发展纳米技术应用产业,截至2021年底,实现产值1255亿元,成为国家级纳米技术产业高地,跻身全球八大纳米产业集聚区。2021年以苏州工业园区为核心区的苏州市纳米新材料集群入选工信部第一批先进制造业集群。作为纳米新材料产业的主要集聚区,截至2022年9月底,苏州工业园区培育纳米新材料相关企业400余家,实现产值规模超370亿元,从业人数超过1.5万人,涌现上市企业7家。为贯彻落实江苏省“十四五”战略性新兴产业发展规划,进一步推动纳米新材料集群发展,在苏州市科技局的牵头推进下,苏州市纳米新材料协会应运而生。苏州市纳米新材料协会是由苏州市纳米新材料领域相关企事业单位自愿结成的全市性、行业性社会团体,将立足苏州,充分利用现有地方优势,搭建苏州市纳米新材料企业之间的桥梁,整合国内外纳米新材料产业技术资源,开展纳米新材料产业技术交流与合作,为苏州打造纳米新材料领域技术创新高地、人才高地和产业化高地提供有力支撑,推动纳米新材料产业和相关战略性新兴产业跨越式发展。在发起单位和上级有关部门的共同努力下,协会前期筹备组建工作进展顺利,明确了发展定位,搭建并健全了协会管理运行体系,同时经广泛征集筛选,会员队伍持续壮大,目前初始会员达52家。会上宣读了于会前进行的协会第一届会长、副会长、秘书长、理事、监事选举结果。纳微科技江必旺当选协会第一届会长,桐力光电石东、汉纳材料陈新江、纳维科技王建峰担任副会长,纳米公司仇苏宇担任秘书长,同时在52家初始会员单位中选举出12家理事单位、2家监事单位。园区科创委王正宇主持会议韩文佳宣读协会成立批文江必旺发言桐力光电石东发言海狸生物任辉发言南大光电王陆平发言作为协会发起单位和会长单位,江必旺博士表示,新材料是现代产业的基础支撑,其发展不仅关系到这个产业本身,而还关系到很多其它战略性新兴产业,是一个国家产业实力和竞争力的重要标志。苏州历代以来都保持着追求创新和精益求精的工匠文化,恰好契合了新兴产业的发展需求,正是基于这样的文化基因,以及各级政府的大力支持,苏州的纳米新材料产业才会实现从空白到国内领先的突破,同时以中国唯一一家新材料实验室落户苏州为契机,更好地承担国家重大需求。纳米新材料协会的创建会进一步促进纳米新材料产业的发展,为该领域的创业者提供一个很好的交流和合作平台。协会可以对接科研院所新材料领域技术专家资源,联系相关专家帮助创业公司解决核心技术问题;对接产业上下游关系,明确客户需求,加速创新成果产业化;对接政府资源关系,协同相关领域产业园及中试生产平台解决新材料创业过程中涉及的共性问题。我们非常欢迎新材料创始人积极参与纳米新材料协会,共同为苏州纳米新材料发展做出贡献。张淑梅代表苏州纳米科技发展有限公司对协会的成立表示祝贺,她表示,苏州纳米城是苏州纳米新材料产业的主要集聚区,集聚了一众创新企业、上市企业、成长型企业、明星企业,技术应用广泛辐射各领域、各环节。作为秘书长单位,纳米公司会把协会建设作为重要工作内容,切实发挥协调、联络、组织等功能,搭建好政企沟通平台,促进产业链上下游企业、科研院所联动发展,实现优势互补、合作共赢,打造社会组织服务企业的标杆,推动纳米新材料产业集群做大做强。
  • 纳米材料绿色印刷技术走向市场
    无须感光成像、不会污染环境、印刷流程缩短……由我国自主研发的纳米材料绿色制版印刷技术,日前在中科院怀柔科教产业园纳米材料绿色打印印刷技术产业化基地开始运用于国家正式出版物印刷,且运行情况良好,标志着该技术从实验室走向市场,北京怀柔成为全球纳米材料绿色印刷原创地。   “纳米材料绿色制版技术摒弃了传统感光成像的思路,通过开发新型纳米转印材料,直接打印制版,实现真正的印刷制版数字化。”纳米材料绿色制版技术项目负责人、中科院化学所新材料实验室主任宋延林介绍说,非感光、无污染、低成本是纳米材料绿色制版技术的三大特点。   据了解,这项绿色节能技术成为取代激光照排和计算机直接制版技术的前沿印刷制版技术。使用纳米绿色版材,理论上是传统版材涂布成本的20% 从应用效果看,印刷品成品锐利度更高,文字更清晰,色彩更丰富。   据悉,北京纳米材料绿色打印技术产业化基地包括中科院化学所两项重大产业化项目,即基于纳米材料新一代制版技术项目和纳米材料绿色打印印刷线路板项目,未来产品包括纳米材料印刷线路板、绿色打印制版设备、打印介质及相关软件等。   今年4月,致力于纳米科技在能源、电子、环境、生物医药等四大领域应用的北京纳米科技产业园揭牌,并以下游应用带动上游纳米材料、纳米加工、纳米器件等产业链各环节实现快速聚集发展,预计可实现产值120亿元。产业园完全建成后,将成为国内重要的纳米科技研发生产基地。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制