当前位置: 仪器信息网 > 行业主题 > >

蛋白纤维结构

仪器信息网蛋白纤维结构专题为您整合蛋白纤维结构相关的最新文章,在蛋白纤维结构专题,您不仅可以免费浏览蛋白纤维结构的资讯, 同时您还可以浏览蛋白纤维结构的相关资料、解决方案,参与社区蛋白纤维结构话题讨论。

蛋白纤维结构相关的资讯

  • 电动汽车续航里程有望提高70%,多功能碳纤维结构电池研制成功
    当汽车、飞机、船舰或计算机采用一种既能作为电池又能作为承重结构的材料制造时,其重量和能源消耗将大大降低。据10日发表在最新一期《先进材料》杂志上的论文,瑞典查尔姆斯理工大学研究团队在“无质量储能”研究方面取得进展,开发出一种多功能碳纤维结构电池。这种电池可以将笔记本电脑的重量减半,使手机像信用卡一样薄,或者将电动汽车单次充电的续航里程提高70%。查尔姆斯理工大学研究员里卡乔杜里表示,他们研发出的这种结构电池由碳纤维复合材料制成,其刚度与铝相当,且能量密度足以商业化应用。结构电池是一种既能储存能量又能承载负荷的材料。让电池材料成为产品实际构造的一部分,意味着在电动汽车、无人机、手持工具、笔记本电脑和手机等产品上可以实现更小的重量。2018年,该团队首次证明,刚性和硬度都很高的碳纤维可通过化学方式储存电能,作为锂离子电池电极。这项研究引起广泛关注,也被《物理世界》杂志评为当年十大突破性成果之一。此后,研究团队进一步发展了其概念,提高了电池刚度和能量密度,在2021年将电池的能量密度提高到每千克24瓦时(Wh/kg),相当于同类锂离子电池容量的20%左右。而此次,他们将能量密度提升至30Wh/kg。尽管这仍然低于当前常用电池,但效果却大不相同。当电池成为结构的一部分,并且可以由轻质材料制成,整车重量就能大大降低。这样一来,电动汽车所需的能量就会大大减少。研究人员对电动汽车进行了计算,结果显示,如果配备新的结构电池,续航里程将比现在增加多达70%。结构电池单元的刚度也显著提高,以吉帕(GPa)为单位的弹性模量从25增加到了70。这意味着该材料可以像铝一样承载负荷,但重量更轻。研究人员表示,从多功能性角度来看,新电池的性能优于上一代电池两倍,是世界上迄今为止最好的电池。然而,在电池单元从小规模实验室制造走向大规模生产、应用于科技产品或车辆之前,还需进行大量工程工作。
  • 中国工程院院士陈坚:替代蛋白产业的春天已经到来
    通过车间生产方式制造肉、蛋、奶,变革了食物蛋白制造模式,实现高质量供给,替代蛋白的兴起和发展大大缓解了传统蛋白生产方式存在的问题。在5月18日举办的首届全国微生物蛋白技术创新及产业发展大会上,中国工程院院士、江南大学教授陈坚认为,作为替代蛋白的一种,微生物蛋白有助于提升人类健康水平、改进地球生态质量。随着技术进步,替代蛋白产业发展的春天已经到来。  食物蛋白是人类重要的营养物质,现有的蛋白供应主要依赖于种植业和养殖业。随着人口增长和经济发展,到2050年食品蛋白需求将增长30%至50%,传统食品蛋白供给在数量、质量和可持续方面正面临着严峻考验,如何提高蛋白生产和转化效率,构建可持续的高品质蛋白供给模式迫在眉睫。  践行“大食物观”向微生物要蛋白  替代蛋白包括动物细胞蛋白、植物蛋白、微生物蛋白、藻类蛋白和昆虫蛋白等多种类。陈坚介绍,微生物蛋白是利用可再生物质原料等为底物,通过在发酵罐中培养微生物的方式制造蛋白,与传统畜禽养殖生产方式相比,产生的温室气体更少,占用耕地面积更小,在资源消耗和环境影响等方面更加高效环保。  微生物蛋白合成效率是传统养殖方式获取蛋白效率的上千倍。据介绍,以1000平方米面积为例,种植大豆每年可以生产1.1吨蛋白,满足40人的需求;而通过二氧化碳发酵微生物技术每年能够生产15吨蛋白,满足520人的需求,生产效率大幅提升。  据波士顿咨询公司测算,到2035年,替代蛋白市场规模有望达到2900亿美元,微生物发酵蛋白市场份额将达到22%。  陈坚表示,替代蛋白发展的战略意义远超单纯的食品创新。目前,我国蛋白供给还存在动物蛋白缺口较大、优质蛋白自给率不足等问题,需继续开发优质蛋白资源,提高食物蛋白自给率。  随着人们生活质量的不断提升,消费者对优质蛋白、肉等食品的需求逐步增加,生产替代蛋白是解决肉类资源紧缺的有效途径之一。陈坚认为,发展微生物蛋白产业是落实“大食物观”碳减排和解决优质食品蛋白供给问题的重要途径,是新质生产力的典型代表。  据介绍,针对当前食品加工粗放、营养缺乏人群针对性、膳食结构不合理等问题,微生物蛋白在营养、口感等方面具有一定优势。如酵母蛋白含有人体全部必需的氨基酸,属于全价蛋白,营养丰富,能够满足人体营养需求,没有豆腥味,而且无致敏成分,适用人群广泛。  科技创新 构建多元化蛋白供给体系  利用更少的资源产出更多的蛋白,微生物蛋白具有生产效率高且二氧化碳排放少的优势。陈坚介绍,目前,全球已有超过80家公司从事微生物菌体蛋白的生产。作为重要的替代蛋白,微生物蛋白的高效制造和规模化应用是构建多元化蛋白供给体系,实现可持续蛋白供给的重要途径。  陈坚认为,微生物蛋白一方面可以作为主要蛋白生产原料,从成本、可持续、生产效率等方面解决肉、蛋、奶产业链中的关键蛋白供给难题;另一方面,还可以作为功能蛋白生产配料,作为细胞工厂通过精密发酵获取高附加值的蛋白,从而在口味、口感、营养等方面提升产品品质。  作为食品领域的前沿技术,市场需求是推动替代蛋白发展的动力。据了解,当前“人造肉”在风味、口感、品质等方面仍与真实肉存在较大差异。植物肉缺乏真实肉中的纤维结构,肉质疏松是导致其口感和品质较差的主要原因。而微生物蛋白的发展为人造肉外观、风味、口感、品质等特性的提升提供了新方法。   例如,植物肉中存在醇、醛等挥发性物质,导致其具有一定的豆腥味。使用醇、醛脱氢酶将醇、醛等挥发性物质分解,可以显著提高植物肉的风味。一些特定的人群对植物蛋白肉过敏,筛选特异性的蛋白酶能够将植物肉中特定的过敏原降解,使其分解成为氨基酸和短肽,在去除过敏原的同时保留其营养成分。  “目前,我们正在建立微生物蛋白菌种库,筛选出一批原料廉价、生长速度快、蛋白含量高的菌种,加快生产多种不同类型的蛋白,满足不同应用场景的需求。”陈坚建议,行业发展应该以满足居民多元化消费需求为导向,通过科技创新,优化蛋白品种和品质,满足人民日益增长的美好生活需要。
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5.北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 科学家借助全新非接触式亚微米红外光谱,首次成功直观揭示神经元中淀粉样蛋白聚集机理
    老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(?5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应(Mie scattering effects)的严重影响,使得直接在亚微米尺度上研究淀粉样蛋白质在神经元内的聚集行为十分困难。美国Photothermal Spectroscopy(PSC)公司开发的全新非接触式亚微米分辨红外测量系统mIRage, 是基于的光学光热诱导共振(O-PTIR)技术,它克服了传统FTIR技术的衍射限和米氏散射效应,红外光谱空间分辨率高达500 nm,且无需对样品进行标记, 不再需要衰减全反射(ATR)技术进行厚样品测试,且能够无接触和无损探测样品,全程对样品无污染,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息,使得在亚细胞水平揭示生物分子结构成为了可能。美国Photothermal Spectroscopy(PSC)公司开发的全新非接触式亚微米分辨红外测量系统mIRage(如图1A所示),使用可见探测束(532 nm)来测量样品在脉冲红外光束照射下的红外光热响应,具体体现为样品反射率的变化,由于使用了可见光作为检测光,使得其空间分辨率不再依赖于入射红外光的波长,且单一特定探测光束的使用还可以消除米氏散射效应。 图1. (A) 美国PSC公司非接触式亚微米分辨红外测量系统mIRage实物图;(B)亚微米红外成像示意图:神经元树突的AFM形貌图,其中神经元直接在CaF2基底下生长。mIRage采用两束共线性光束: 532 nm可见(绿色)提取光束和脉冲红外(红色)探测光束,样品的光热响应被检测为样品由于对脉冲红外光束的吸收而引发的绿色光部分强度的损失,使红外检测的空间分辨率提高到?500 nm. (C) 小鼠大脑皮层初神经元, 在CamKII促进下表达为tdTomato荧光蛋白,使得神经元结构填满红色,图片标尺为20 μm。(D) 图C区域放大图片,箭头指示树突上的神经元刺。因为上述的巨大技术优势和突破,非接触式亚微米分辨红外测量系统mIRage在生物学领域技术有广泛的应用前景和潜力,可应用于诸如细胞学研究(蛋白质、磷脂结构分析,红细胞、巨噬细胞成像等),临床致病菌/病原微生物鉴定,癌症诊断(细胞/组织),牙科/骨病变/眼科检测,生物大分子损伤,生物组织识别,以及生物药物检测,法医学等。近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的。在该研究中,他们使用了大脑皮层初神经元,这是因为它们易发生AD病变,且具有特的结构。初神经元的这种形态特征使得可以在单个神经元层面上来测试全新非接触式亚微米分辨红外测量系统的分辨率和准确性。先,他们在反射模式下获得了高质量的红外光谱,且不受米氏散射或基线失真等人为因素的干扰(图2A,B)。值得注意的是,全新非接触式亚微米分辨红外测量系统其约为400 nm的横向分辨率,使得他们能够通过比较1740 cm-1处的峰强度来检测脂质含量的差异,以及通过对比酰胺II (1540 cm?1)与酰胺I特征峰强度(1654 cm?1)的比值来比较氨基酸(蛋白质)的种类和数量上的差异(图2C,D)。这是科学家们次获取单个树突棘的高分辨率的化学图像和红外光谱,以往其它测试方法是无法做到的。图2. 使用非接触式亚微米分辨红外测量系统mIRage观察初神经元结构。 (A) 在1650 cm-1处获得的神经元的红外图像,显示了蛋白质的分布 (B)中对应原始红外光谱的位置用数字和圆点表示,图片标尺为20 μm;(C)在1650 cm-1处获得的树突的红外图像,数字表示D图中获得光谱的位置,图片中标尺为20 μm;(D)在C图中两点处取的归一化红外光谱,体现了该方法的亚微米空间分辨率。红色箭头表示蛋白质结构的化学变化。为了在亚细胞层面上定位神经元中β片层结构,作者对APP-KO神经元进行了为时半小时的合成Aβ(1-42)处理(2×10?6 M),并使用非接触式亚微米分辨红外测量系统mIRage进行了化学结构的成像分析(图3A)。对Aβ处理后的APP-KO神经元的红外光谱进行分析证实,β片层结构可以在亚细胞水平上进行分辨。有趣的是,纯Aβ(1-42)纤维在1625 cm-1位置处有特征的红外峰,当加入到神经元结构中后,β片层结构的特征峰移动到1630 cm-1处,表明淀粉样原纤维结构发生了变化,可能是由于其与细胞蛋白和/或细胞膜发生相互作用导致的(图3B, C)。基于该发现,我们可以得出,在神经元中的淀粉样蛋白的构型变化可能会引发阿尔茨海默症进程中的不同机制。为进一步了解其形成机制,更多的方法学研究变得更加必要,如将非接触式亚微米分辨红外与免疫荧光显微镜结合起来,这种多模态成像模式可以在不同的细胞层面上更详细分析特征蛋白的结构变化,如前突触或后突触,囊泡(溶酶体或内溶酶体)或其他细胞器。图3. 使用非接触式亚微米分辨红外测量系统Mirage观察β片结构在处理后的初神经元中的聚集行为。(A,B)APP-KO初神经元在1650和1630 cm-1处的明场和光热红外成像,彩色标度表示光热振幅的强度,从小值(蓝色)到大值(红色),阈值为50%(以0为中心),插图为放大或叠加后的红外成像图,图片标尺为20 μm;(C)神经元中淀粉样蛋白结构在2×10?6 M Aβ(1-42) (红色)处理或不处理(绿色)后分别对应的红外光谱。β片结构对应的特征红外峰用红色箭头表示,光谱数据点间距为2 cm?1,数据进行50次均一化处理。综上所述,借助全新非接触式亚微米分辨红外测量系统mIRage,科学家成功次揭示了初神经元的分子结构,无需标记,且因为该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。新的技术进步表明,全新的非接触式亚微米分辨红外测量系统mIRage现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。该工作发表在2020年的Advanced Sciences上(DOI: 10.1002/advs.201903004)。
  • Science封面| 冷冻超分辨与FIB-SEM结合新技术:三维蛋白超微结构可视化
    p    strong 仪器信息网讯 /strong 2020年1月16日,《Science》杂志刊登了美国科学家David Hoffman和Gleb Shtengel在Hess和加州大学伯克利分校高级研究员Eric Betzig的指导下的一项关于融合超分辨率荧光和电子显微镜技术的显微表征新技术成果,该技术称为cryo-SR / EM,结合使用超低温超高分辨率荧光显微镜和聚焦离子束铣削扫描电子显微镜,可以在整个细胞的三个维度上可视化蛋白质-超结构关系。凭借其重要性,该研究也荣登本期《科学》杂志封面。 /p p style=" text-indent: 2em " span style=" color: rgb(112, 48, 160) " Eric Betzig同时也是该文章的通讯作者,Eric Betzig何许人也?他正是2014 年诺贝尔化学奖得主,获奖理由是实现了单分子水平的超高分辨率荧光显微技术。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 159px " src=" https://img1.17img.cn/17img/images/202001/uepic/5b338d9a-b6c7-40e6-b266-e27727951cdd.jpg" title=" 0.png" alt=" 0.png" width=" 500" height=" 159" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/de61b3cc-2d43-4121-bbff-f6911b77bfd0.jpg" title=" 01.png" alt=" 01.png" / /p p   封面为哺乳动物小脑颗粒神经元的半透明彩色核,这张3D效果图展示了由电子显微镜(EM)和低温超分辨率荧光显微镜所成像的组蛋白重叠所定义的特异性异染色质亚区类型。围绕细胞核的半透明薄壳代表核膜,而3D渲染的电镜数据(灰色)薄片则穿过细胞核。右下角的圆圈是线粒体的剖视图。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/noimg/775b649e-a426-4670-8069-b079cce58d46.gif" title=" zooming_into_cell_2~2.gif" alt=" zooming_into_cell_2~2.gif" / /p p    span style=" color: rgb(0, 176, 240) " 一种新的显微镜技术将电子显微镜和光学显微镜相结合,以生成细致的三维细胞图像,如图所示。 span style=" color: rgb(127, 127, 127) " 图片来源:D. Hoffman et al./Science 2020 /span /span /p p   有触须的的囊泡在很小的空间内穿梭负责将“货物”进行分类,相邻的神经元通过类似网络的界面相互依附。随着干细胞分化成神经元,DNA在核内重新排列。而一项新的显微镜技术可以将所有这些细节展现得淋漓尽致。 /p p   这项技术被称为cryo-SR/EM,它将电子显微镜和超分辨率光学显微镜捕捉到的图像融合在一起,以3D的形式呈现出细胞内部明亮、清晰、详细的图像。 /p p    strong 技术背景 /strong /p p   多年来,科学家一直在探索细胞内部的微观世界,开发新的工具来观察这些基本的生命单位。但是每种工具都需要综合权衡。光学显微镜可以通过荧光分子标记特定细胞结构能够轻松识别,随着超分辨(SR)荧光显微镜的发展,可以更加清晰的观察这些结构。但是,在一个给定的时间内,荧光只能揭示细胞中10000多种蛋白质中的一小部分,因此很难理解这几种蛋白质与其他物质之间的关系。另一方面,电子显微镜(EM)可以在高分辨率的图片中显示出所有的细胞结构——但是仅仅通过EM来描述一个特征与其他特征是很困难的,因为细胞内部的空间是如此的拥挤。 /p p   霍华德· 休斯医学研究所珍妮莉亚研究园区的高级负责人Harald Hess说,“将这两种技术结合在一起,可以使科学家清楚地了解特定细胞特征如何与其周围环境相关联,这是一种非常强大的方法。” /p p   Janelia科学家David Hoffman和高级科学家Gleb Shtengel在Hess和加利福尼亚大学伯克利分校HHMI研究人员Eric Betzig的高级研究员Eric Betzig的带领下率先开展了该项目。 /p p   首先,科学家在高压下冷冻细胞。这样可以迅速停止细胞的活动,防止冰晶的形成,而冰晶会破坏细胞并破坏成像的结构。接下来,研究人员将样品置于低温室中,在绝对零度以上10度的温度下,用超分辨率荧光显微镜对样品进行三维成像。然后,它们被移除,嵌入树脂中,并在Hess实验室开发的强大电子显微镜中成像,该显微镜向细胞表面发射一束离子,一点一点地研磨,同时为每一层新暴露的细胞拍照。然后,计算机程序将这些图像拼接成三维重构的图像。 /p p   最后,研究人员叠加了两个显微镜的三维图像数据。结果:令人震惊的图像以惊人的清晰度揭示了细胞的内部细节。 /p p   下面,此图像的一些示例说明了科学家如何使用该技术。 “已经引起了很多兴趣,” Hess说, “还有很多实验要做——整个世界的细胞都需要研究。” /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/850d6bc4-7e47-419b-8a2f-fb37e009dc71.jpg" title=" 1.png" alt=" 1.png" / /p p    strong 全细胞相关成像 /strong 。高压冷冻细胞的低温超高分辨率荧光显微镜与聚焦离子束扫描电子显微镜(FIB-SEM)结合使用,可以在全局超微结构背景下对蛋白质进行多色三维纳米可视化。 从左上方顺时针方向:体积渲染的细胞,具有线粒体和内质网(ER)蛋白相关的正交排列(插图) 形态各异的溶酶体区室 由转录活性的蛋白质报道分子定义的异染色质亚结构域 与小脑接触处膜粗糙度相关的粘附蛋白颗粒神经元 过氧化物酶体(粉红色)与ER薄片(红色)和线粒体(青色)并置。 /p script src=" https://p.bokecc.com/player?vid=1AD2E183304AD28E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p   在细胞开始(成年)之前(左)和之后(右),神经元的细胞核看起来截然不同。随着细胞的成熟,DNA被重新包装在细胞核内以开启新的一组基因。这些变化反映在两个细胞内部的灰色斑点和彩色荧光的不同模式中。 “这项技术为分化前后的细胞核状态提供了惊人的详细快照,”参与该项目的圣犹达儿童研究医院的David Solecki表示。 span style=" color: rgb(127, 127, 127) " 图片来源:D. Hoffman et al./Science 2020 /span /p script src=" https://p.bokecc.com/player?vid=7CADAA470388AB6D9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p   发育中的神经元粘在一起。这段视频准确地展示了这些细胞是如何相互粘附的,揭示了类似瑞士奶酪一样的联系,帮助年轻的神经元正确地迁移到它们在神经系统中的最终目的地。黏附蛋白的紫色和绿色超分辨荧光图像与电子显微镜下详细显示膜结构的图像相互关联。资料来源: D. Hoffman et al./Science 2020 /p script src=" https://p.bokecc.com/player?vid=09DED3BA4931A08E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p   细胞内充满了小囊泡——这是一种膜囊,帮助细胞储存蛋白质、分解细胞垃圾和运输货物。仅在电子显微镜下,这些不同种类的囊泡是无法区分的。但通过cryo-SR / EM,它们的明显特征变得清晰起来。这段视频放大了核内体,核内体负责将货物运送到细胞内的不同区域。 span style=" color: rgb(127, 127, 127) " 资料来源: D. Hoffman et al./Science 2020 /span /p p br/ /p
  • AlphaFold的新对手?新AI预测微生物六亿多蛋白结构
    Meta(前身为 Facebook,总部位于加利福尼亚州门洛帕克)的研究人员使用人工智能 (AI) 来预测来自细菌、病毒和其他尚未表征的微生物的约 6 亿种蛋白质的结构。负责人Alexander Rives说:“这些是我们最不了解的神秘蛋白质结构。我认为它们为深入了解生物学提供了潜力。”该团队使用“大型语言模型”生成了预测工具——人工智能AI,这是可以从几个字母或单词预测文本的工具的基础。通常,语言模型是在大量文本上进行训练的。为了将它们应用于蛋白质,Rives 和他的同事将它们输入已知蛋白质的序列,这些蛋白质可以由 20 种不同氨基酸组成的链表达,每一种都用一个字母表示。然后,该网络学会了“自动完成”蛋白质,其中一部分氨基酸被遮蔽。蛋白质“自动完成”Rives 说,“这种培训使网络对蛋白质序列有了直观的了解,这些蛋白质序列保存了有关其形状的信息。第二步,受到 DeepMind 开创性的蛋白质结构 AI AlphaFold 的启发,将这些见解与有关已知蛋白质结构和序列之间关系的信息结合起来,从蛋白质序列中生成预测结构。Meta 的网络,称为 ESMFold,不如 AlphaFold 准确,但它在预测结构方面快了大约 60 倍,这意味着我们可以将结构预测扩展到更大的数据库。”做一个测试案例,研究人员决定将他们的模型应用于来自环境(包括土壤、海水、人类肠道、皮肤和其他微生物栖息地)的批量测序“宏基因组”DNA 数据库。其中绝大多数编码潜在蛋白质的 DNA 条目来自从未被培养过且科学未知的生物体。Meta 团队总共预测了超过 6.17 亿种蛋白质的结构。这项工作只用了 2 周时间(AlphaFold 可能需要几分钟才能生成一个预测)。Rives 说:“任何人都可以免费使用这些预测,就像模型底层的代码一样。”AlphaFold 和 AI 蛋白质折叠革命的下一步是什么在这 6.17 亿个预测中,该模型认为超过三分之一是高质量的,因此研究人员可以确信整体蛋白质形状是正确的,并且在某些情况下可以辨别更精细的原子级细节。数以百万计的结构是全新的,与通过实验确定的蛋白质结构数据库或已知生物体预测的 AlphaFold 数据库中的内容不同。首尔国立大学的计算生物学家 Martin Steinegger 说:“AlphaFold 数据库的很大一部分是由彼此几乎相同的结构组成的,而“宏基因组”数据库应该涵盖了以前看不见的蛋白质宇宙的很大一部分,即现在有一个很大的机会来解开更多的谜底。”Sergey Ovchinnikov教授对 ESMFold 做出的数以亿计的预测感到疑惑:有些可能缺乏明确的结构,至少是孤立的,而另一些可能是非编码 DNA,被误认为是蛋白质编码材料。似乎我们对仍有一半以上的蛋白质空间一无所知。更精简、更简单、更便宜德国慕尼黑工业大学的计算生物学家 Burkhard Rost 对 Meta 模型的速度和准确性印象深刻。但他质疑在预测宏基因组数据库中的蛋白质时,它是否真的比 AlphaFold 的精确度更具优势。基于语言模型的预测方法,他的团队开发了一种更适合快速确定突变如何改变蛋白质结构的方法,显然AlphaFold 无法做到这一点。据称,DeepMind 目前没有将宏基因组结构预测纳入其数据库的计划,但并未排除未来发布的可能性。Steinegger 和他的合作者已经使用了一个 AlphaFold 版本来预测大约 3000 万个宏基因组蛋白的结构。他们希望通过寻找新形式的基因组复制酶来发现新型 RNA 病毒。他认为我们很快就会对这些宏基因组结构的分析产生爆炸式的兴趣。参考资料:https://doi.org/10.1038/d41586-022-03539-1
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 30纳米染色质高精度三维冷冻电镜结构成功解析
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp DNA如何包装成染色体,是科学家们一直努力破解的重要科学问题。近30年来,由于缺乏系统、合适的研究手段,作为染色质包装过程中承上启下的关键部分,30纳米染色质高级结构研究一直是现代分子生物学领域面临的最大挑战之一。 /p p style=" line-height: 1.5em "   科学家已经发现,染色质包装分4步完成,对应了染色质的四级结构:第一级结构是核小体 第二级结构是核小体螺旋化形成30纳米染色质纤维 第三级结构是30纳米染色质再折叠成更为复杂的染色质高级结构,即超螺旋体 第四级结构是超螺旋体进一步折叠形成在光学显微镜下可以看到的染色体。 /p p style=" line-height: 1.5em "   为解析30纳米染色质的高精度三维冷冻电镜结构,中科院生物物理所研究员李国红课题组及其合作者(朱平课题组和许瑞明课题组)在基金委重大研究计划“细胞编程与重编程的表观遗传学机制”支持下,自主建立了染色质体外组装和冷冻电镜技术(11埃)。利用这一技术,研究人员在国际上首次发现30纳米染色质纤维是以4个核小体为结构单元形成的左手双螺旋结构。同时,连接组蛋白H1在单个核小体内部及核小体单元之间的不对称分布及相互作用促成30纳米高级结构的形成,从而明确了H1在30纳米染色质纤维形成过程中的重要作用。 /p p style=" line-height: 1.5em "   2014年4月25日,在DNA双螺旋结构发现61周年的纪念日,《科学》杂志以Double Helix,Doubled(《双螺旋,无独有偶》)为题介绍了这项重要成果,并同期刊发英国剑桥大学教授Andrew Travers撰写的题为The 30-nm Fiber Redux(《30纳米纤维的归来》)的评论。该评论指出:(本文)结果明确地界定了染色质纤维中DNA的走向,解决了染色质到底是单股纤维还是双股纤维这个根本性的问题。本来似乎已经陷入困境的30纳米染色质纤维结构研究,又会重新成为生物学家们继续关注的焦点。该成果发表后受到国内外学术界的广泛关注,被多部世界知名最新版本教科书收录(《生物化学》《结构生物学》等)。 /p p style=" line-height: 1.5em "   据李国红介绍,在30纳米染色质纤维结构解析的基础上,他们通过与中科院物理所李明课题组合作,利用单分子磁镊技术对30纳米染色质纤维建立和维持的动力学过程进行了深入的探讨。在后续研究中,研究人员正在建立和完善描绘全基因组染色质结构的MNase-seq技术——gMNase-seq(细胞核内染色质结构分析方法),通过蛋白质融合或不同大小的金颗粒修饰和改造MNase,提高MNase-seq的空间分辨率,进一步描绘了细胞核内染色质纤维三维结构的动态调控及其分子机制。 /p p style=" line-height: 1.5em "   “30纳米染色质纤维结构”先后入选“十八大以来中国科学院重大创新成果”和“中国科学院‘十二五’标志性重大进展核心成果”。该研究成果表明我国科学家在攻克30纳米染色质纤维高级结构这一30多年悬而未决的重大科学问题上取得了重要突破,这使我国在染色质结构研究领域达到国际领先水平。同时,也为预测体内染色质结构建立的分子基础以及各种表观遗传因素对染色质结构调控的可能机理提供了结构基础。 /p p br/ /p
  • 780万!河南大学蛋白分离纯化及结构解析平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-13582、项目名称:河南大学蛋白分离纯化及结构解析平台建设项目3、采购方式:公开招标4、预算金额:7,800,000.00元最高限价:7800000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20232179-1河南大学蛋白分离纯化及结构解析平台建设项目780000078000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1采购内容:河南大学蛋白分离纯化及结构解析平台建设(包括纳升级蛋白结晶筛选液体工作站及晶体显微成像系统、高通量荧光液相色谱、多模式微孔板检测仪、蛋白纯化与多角度光散射联用仪、超大容量离心机、液冷工作站各1套;蛋白纯化仪2套)等设备采购、施工及安装、调试、验收、培训、质保期内外服务、与货物有关的运输和保险及其他伴随的技术服务(具体数量及设备参数详见招标文件)。5.2供货及安装期:国产设备 30 日历天,进口设备90 日历天供货、安装完毕(技术参数中有特殊规定的按其规定)。5.3质量要求:符合国家或行业规定的合格标准,满足采购人提出的技术标准及要求。5.4质保期:国产设备质保期三年,进口设备质保期一年(技术参数另做要求按要求执行)。6、合同履行期限:同供货及安装期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年12月19日 至 2023年12月25日,每天上午08:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:登录河南省公共资源交易中心(http://www.hnggzy.com)。3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查阅河南省公共资源交易中心网站“办事指南”专区的《河南省公共资源交易平台市场主体信息库登记指南(工程建设、政府采购)》,投标人未按规定时间在网上下载招标文件的,其投标将被拒绝。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南大学地址:开封市河南大学金明校区联系人:蒋老师联系方式:0371-221964182.采购代理机构信息(如有)名称:河南豫信招标有限责任公司地址:郑州市郑东新区商务外环西七街中华大厦19层联系人:王娟、任飞、杨森联系方式:0371-22307212 邮箱:hnyuxin006@163.com3.项目联系方式项目联系人:王娟、任飞、杨森联系方式:0371-22307212
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制
    前 言*图片来源于湖北药检所官网人纤维蛋白原(human fibrinogen, Fg)是一种由肝脏合成的球蛋白,发挥止血和凝血功能。Fg可用于治疗先天性和获得性Fg缺乏症患者的凝血功能障碍。目前Fg制剂是由健康人血浆经分离、提纯并经病毒去除和灭活处理、冻干制成。Fg这类蛋白质药物具有大分子、多电荷、结构复杂等特点,其稳定性往往较差。而稳定性是保证药物发挥其作用的基础。2023年3月,湖北省药品监督检验研究院王文晞博士近期发表“多功能蛋白质稳定性分析仪在人纤维蛋白原制品质量控制中的应用”,借助NanoTemper公司的PR Panta对不同企业生产的Fg产品的质量进行快速分析质控。/ 实验步骤/NanoTemper多功能蛋白质稳定性分析仪PR Panta可用于快速测定蛋白质的热稳定性,通过热变性、粒径分布聚集倾向和粒径大小等参数对产品进行评估。使用毛细管吸取10uL 20mg/ml样品置于PR Panta上,首先在DLS模块上检测Fg的水力学半径(Rh),然后进行1℃/min的升温(25℃-95 ℃)。使用1份样品,同时且实时的检测获得Fg的样品热变性中点温度(Tm)、蛋白质初始去折叠温度(Tonset)、粒径开始变化温度(Tsize)和流体力学半径(Rh)等多种参数。/ 研究结果/nanoDSF检测模块结果显示21批次样品Tm 值为51.20~53.31 ℃(表1)。不同企业产品Tm值存在一定差异,最高相差 2.1 ℃, 表明各企业间产品稳定性存在较大差异。其中企业F产品Tm值最高(53.28℃),企业A产品Tm值最低(51.22℃),差别2.06℃。表1 不同企业Fg蛋白热变性中点温度Tm值测定结果21批次样品的Tonset值为47.29~49.32 ℃(表2),不同企业产品Tonset值存在一定差异。其中企业F的产品Tonset值最高,企业A Tonset值最低,总体与Tm值趋势一致。表2 不同企业Fg蛋白质初始去折叠温度Tonset值测定结果21批次样品Tsize值45.36~46.99 ℃,不同企业产品Tsize值差异较小。表3 不同企业Fg蛋白粒径开始变化温度Tsize值结果 21批次样品Rh值 19.03~30.75 nm,不同企业产品Rh值存在一定差异。表4 不同企业Fg蛋白流体力学半径 Rh 值结果综上可知企业F产品热稳定性最好,企业A产品热稳定最差。除稳定性外,纯度是反映Fg产品中可凝固蛋白与总蛋白的比值是产品有效性的重要指标。作者通过凯氏定氮仪进行样品检测后并依据下方公式计算纯度。结果显示21批次样品纯度80.3%~95.9%(表5),其中企业F产品纯度最高,平均94.6%。企业A产品纯度最低平均83.2%。表5 Fg纯度测定结果作者将纯度与在PR Panta检测得到的Tm值进行相关性分析,结果显示相关系数为0.729,P<0.05 。即产品纯度与Tm值呈显著相关, 热稳定性高的产品纯度较高。为了明确Fg的组分分布,作者采用HPSEC-MALLS测定纯度最高与最低产品的组分分布。企业F产品(稳定性&纯度最佳)由Fg单体和多聚物2个组分组成,企业A产品(稳定性&纯度最佳最差)由 Fg单体、多聚物和蛋白质降解产物3个组分组成。结合以上部分稳定性与纯度呈相关性的结果可以进一步分析得出,Fg热稳定性较差,在生产、存放、复溶后放置的过程中会形成可溶性寡聚体,导致产品纯度降低。因此可根据产品热稳定性测定结果初步分析不同企业产品纯度高低,进而能简单、快速 地对不同企业间产品质量进行初步评估,为企业工艺优化和制剂筛选提供更加快速、准确的依据。多功能蛋白质稳定性分析仪可以测定产品纯度与稳定性,为人纤维蛋白原产品保护剂的筛选和生产工艺优化提供相应数据参考,且能对不同企业产品的质量进行初步分析,仪器操作简便、检测时间短、检测效率高。——摘自本文文献对PR Panta的评价
  • AI助力解析无序蛋白结构,新锐获4000万美元助力
    日前,Peptone公司宣布完成4000万美元的A轮融资。这项融资将用于支持Peptone以人工智能(AI)方式大规模解析那些悬而未解、复杂、极具挑战的内在无序蛋白(intrinsically disordered protein,IDP)结构。在人体内大约有一半的蛋白质,其序列中的一部分无法折叠成固定的结构,因此这部分结构无法通过已知的基因序列准确地预测出来。在这类蛋白质中,有许多在维持健康与疾病起源上扮演重要的角色。而缺少精确蛋白质结构信息的结果也导致了许多药物开发上的困难。自2018年创立以来,Peptone借助原子级的蛋白质分析技术,来准确地了解无序蛋白与蛋白质结构域在生理条件下的结构。这些信息能够有助于以更好的方式来预测靶向这类蛋白质的药物。Peptone的分析技术包含核磁共振(NMR)、氢氘交换质谱(HDX-MS)与机器学习(ML)、超级计算(supercomputing)等。其已经与诺华等大型药企合作建立开发管线,以改进那些靶向含部分无序结构的靶标蛋白质的药物。这项投资会使Peptone能够在瑞士建立顶尖的研究机构,协助将他们专有的原子级实验与超级计算科技进行结合。借此Peptone也将能够开启一系列针对炎症、癌症、糖尿病等疾病中独特靶标的开发管线。此项投资还会被运用在维护Peptone超级计算机运算的算法上。“无序蛋白存在于物理学转变成生物学的交界,”Peptone的共同创始人与首席执行官Kamil Tamiola博士说道,“借由使用严谨并由计算机所驱动的物理实验方式来分析蛋白质,我们能够超越传统药物发现方式,观察到那些像是AlphaFold所观察不到的蛋白质行为。这项投资会让我们能够更进一步地改善我们的平台,并支持我们对无序蛋白领域的研究。这些研究将会支持未来的药物开发。”
  • 冷冻电镜首个新冠病毒蛋白结构解析发布:传染性为何强?
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 2020年2月15日,美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文:Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation( span style=" text-indent: 2em color: rgb(127, 127, 127) " DOI: 10.1101/2020.02.11.944462 /span ),报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构,利用冷冻电镜技术分析了新型冠状病毒表面S蛋白的近原子结构。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 206px " src=" https://img1.17img.cn/17img/images/202002/uepic/29be9fbf-7286-475f-807a-ea01b409b72a.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" color: rgb(127, 127, 127) " (注:预印本网站bioRxiv的所有论文未经同行评议, bioRxiv在所有2019-nCoV相关论文页面增加了突出字体说明(上图黄底黑字):“bioRxiv收到了许多关于2019年ncov冠状病毒的新论文。提醒一下:这些是没有经过同行评审的初步报告。他们不应被视为结论性的,指导临床实践/健康相关的行为,或在新闻媒体中作为既定信息进行报道。”) /span /p p style=" text-indent: 2em " 作者通过生物物理以及结构方面的证据发现,新冠病毒的S蛋白结合人体ACE2(宿主细胞受体血管紧张素转化酶2)的亲和力要远高于SARS-CoV的S蛋白,或解释了新型冠状病毒传染性很强的主要原因。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 322px " src=" https://img1.17img.cn/17img/images/202002/uepic/4ad16a73-5442-4584-899c-bca9a93d4e04.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 322" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " & nbsp 预融合构象 /span span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 中的2019-nCoV S结构 /span /p p style=" text-indent: 2em " 新型冠状病毒(2019-nCov)的爆发代表了一种流行病威胁,已宣布为国际关注的突发公共卫生事件。CoV突刺(S)糖蛋白是疫苗、治疗性抗体和诊断方法的关键靶标。此前的大量研究均基于2019-nCoV突刺蛋白的预测结构或相关病毒(如SARS)的突刺蛋白的已知结构展开。为促进医学对策(MCM)的开发,论文中确定了预融合构象中的2019-nCoV S蛋白三聚体冷冻电镜结构,为3.5埃分辨率。三聚体的主要状态为三个受体结合结构域(RBD)之一向上旋转为受体可及构象。同时,生物物理和结构证据表明, 2019-nCoV S以比SARS-CoV S更高的亲和力结合ACE2(宿主细胞受体血管紧张素转化酶2)。此外,作者测试了几种已发布的SARS-CoV RBD特异性单克隆抗体,发现它们与nCoV-2019没有明显的结合。这表明两种病毒RBD之间的抗体交叉反应性可能受到限制。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 200px " src=" https://img1.17img.cn/17img/images/202002/uepic/96b62197-7abe-467b-b461-e70a6a2a6f3f.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 2019-nCoV S.和SARS /span span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " -CoV S.之间的结构比较(A) /span /p p style=" text-indent: 2em " span style=" text-align: center text-indent: 0em color: rgb(0, 0, 0) " 新型冠状病毒利用高度糖基化的同源三聚体S蛋白进入宿主细胞。S蛋白经历结构变化将病毒融合进入宿主细胞的细胞膜。此过程包括病毒的S1亚基结合到宿主细胞受体上,引发三聚体不稳定性的发生,进而造成S1亚基脱落S2亚基形成高度稳定的融合后结构。 /span /p p style=" text-indent: 2em " 通过该结构分析,作者发现S1亚基中的RBD经历铰链类似运动,此移动特点与SARS-CoV以及MERS-CoV均非常相似,但新型管冠状病毒中则RBD结构则更靠近三聚体的中央部位,其S蛋白中3个RBP中的1个会向上螺旋突出从而让S蛋白形成能够轻易与宿主受体ACE2结合的空间构象。这也说明,新型冠状病毒引发病毒的机制虽然与其他的冠状病毒科的病毒机制异曲同工,但传染性更强。 /p p style=" text-indent: 2em " 论文受到业界的广泛关注,研究中,John Ludes-Meyers博士对细胞转染给予很大帮助,德克萨斯大学奥斯汀分校Sauer结构生物学实验室的Aguang Dai博士在显微镜对准方面做了大量工作。 /p p style=" text-indent: 2em " 论文链接: a href=" https://www.instrument.com.cn/download/shtml/932743.shtml" target=" _self" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " https://www.instrument.com.cn/download/shtml/932743.shtml /span /a /p
  • 新型冠状病毒科研进展之——蛋白靶点结构研究进展
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯& nbsp /strong span style=" text-indent: 2em " 冠状病毒是一类严重危害人类和动物健康的病原微生物,属于具有大量天然宿主的一类RNA病毒。该病毒极易发生基因重组和变异,具有遗传多样性,迄今为止,已不断有新亚型或新的冠状病毒出现。冠状病毒上的S蛋白、PLpro和3CLpro是药物开发的良好靶点,本文整理并总结了基于靶标发现的潜在药物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/38dd544f-4905-4c6c-899f-7d2e0b1a4099.jpg" title=" 截屏2020-03-30上午11.54.47.png" alt=" 截屏2020-03-30上午11.54.47.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 冠状病毒是一种有包膜的、非节段的单股正链RNA病毒,属于巢病毒目(nidovirales)冠状病毒科(Coronaviridae)正冠状病毒亚科(ortho-coronavirinae)。由于病毒包膜上有向四周伸出的突起,形如花冠而得名。冠状病毒亚科进一步细分为四类,即α、β、γ 和 δ 冠状病毒。冠状病毒在自然界中广泛存在,其自然宿主包括人类和其他哺乳动物如牛、猪、犬、猫、鼠和蝙蝠等。 strong 目前,已经鉴定出六种人类冠状病毒,其中包括α属的HCoV-29E和HCoV-NL63;β属的HCoV-OC43、HCoV-HKU1、严重急性呼吸综合征相关冠状病毒(SARS-CoV)和中东呼吸综合征相关冠状病毒(MERS-CoV)。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另外,近期从武汉市不明原因肺炎患者下呼吸道分离出的冠状病毒,世界卫生组织初步命名为2019-nCoV。2020年2月12日,国际病毒分类委员会宣布新型冠状病毒(2019-nCoV)的正式分类名为 span style=" color: rgb(192, 0, 0) " 严重急性呼吸综合征冠状病毒(SARS-CoV-2) /span 。研究者将来源于武汉的新型冠状病毒序列与已知的“SARS冠状病毒”“MERS冠状病毒”进行了比较,发现 strong 6个新型冠状病毒序列几乎一致,其与SARS的同源性更高,相似性约为70%,与MERS相似性约为40%。 /strong strong 序列差异主要在ORF1a和编码S-蛋白的spike基因上,这是冠状病毒与宿主细胞作用的关键蛋白。 /strong /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 冠状病毒蛋白靶点结构研究进展 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 冠状病毒是最大的一种核糖核酸病毒(26~32kb),其基因组为单股、正链RNA。编码非结构蛋白(Nps)的复制酶基因占据了基因组的三分之二,而结构蛋白和辅助蛋白仅占病毒基因组的三分之一。目前已经解析出了许多冠状病毒相关的蛋白质结构,如SARS-CoV S糖蛋白(PDB ID:5WRG)(图1A)、MERS-CoV N蛋白的C末端结构域(PDB ID:6G13)(图1B)、MERS-CoV N蛋白的N末端结构域(PDB ID: 4UD1)(图1C)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/fd7a83a8-25f3-48a0-989e-958bb95bc364.jpg" title=" 截屏2020-03-30上午10.38.54.png" alt=" 截屏2020-03-30上午10.38.54.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 病毒体与宿主细胞的初始附着是通过S蛋白与其受体之间的相互作用而开始的。根据研究报道,S蛋白具有受体结合活性和膜融合活性,是冠状病毒感染细胞的关键蛋白。研究发现在大多数冠状病毒中,S蛋白被宿主细胞弗林蛋白酶(Furin)样蛋白酶切割成S1和S2两种单独的多肽。S1的主要功能是与宿主细胞表面受体结合,而S2亚基则负责介导病毒-细胞以及细胞-细胞膜的融合。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在对近期的SARS-CoV-2 S蛋白进行研究时发现,虽然SARS-CoV-2 S蛋白中与ACE2蛋白结合的5个关键氨基酸中有4个发生了变化,但变化后的氨基酸,却没有影响SARS-CoV S蛋白与ACE2 蛋白互作的构象。与SARS-CoV S蛋白相比,突变体后的SARS-CoV-2 S蛋白结构与ACE2 蛋白相互作用能力,由于丢失的少数氢键有所下降,但仍然达到很强的结合自由能,说明SARS-CoV-2 是通过S蛋白与人ACE2相互作用感染人的呼吸道上皮细胞。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 疫苗和治疗药物研究进展 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为了控制病毒的爆发,研究者们开发了针对 SARS¯ CoV 和 MERS¯ CoV 的疫苗。不同的疫苗有不同的制备方法下表中列出了这些方法的发展和优缺点。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/446bbee2-3399-4764-a3f5-0339be331bc9.jpg" title=" 截屏2020-03-30上午10.59.39.png" alt=" 截屏2020-03-30上午10.59.39.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 迄今为止,大多数研究只集中在SARS疫苗的开发上,研究过程中使用了动物模型,但是这些模型并不能概括人类发生的严重临床疾病。 strong 综合SARS 和 MERS 疫苗的研究经验。发现冠状病毒疫苗的研究主要靶标是冠状病毒的S蛋白。疫苗不仅需要诱导体液和细胞免疫应答,还需要诱导黏膜免疫应答并借助佐剂来诱导 Th1 和 Th2 途径的平衡。也就是说成功的疫苗必须在不引起过度免疫激活的情况下达到保护的平衡。 未来还需加强对 SARS-CoV 和 MERS-CoV 等疫苗的研发。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对于目前的 SARS-CoV-2,据新华社报道,美国医学专家正与中国同行合作研发针对新型冠状病毒的疫苗,美国休斯敦贝勒医学院彼得霍特兹教授通过电子邮件表示,贝勒医学院正在与美国得克萨斯大学、美国纽约血液中心以及中国上海复旦大学合作开发疫苗。目前,尚无针对 SARS-CoV、MERS-CoV、 & nbsp SARS-CoV-2 和其他 HCoV 感染的特异性疗法,患者主要接受支持性治疗,并辅以多种药物组合,包括使用抗体、干扰素以及病毒和宿主蛋白酶的抑制剂。& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,除了针对SARS外,有研究报道了一种针对MERS-CoV S蛋白N端结构域的新型中和单克隆抗体。该研究表明N末端结构域在病毒感染过程中可能很重要,这项发现对于进一步的疫苗设计和针对MERS-CoV感染的预防和治疗性单克隆免疫法的开发具有重要意义。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 理想情况下,疫苗接种和抗病毒治疗都应具有各自明确的作用机制,以避免产生逃逸突变病毒菌株,并提高对不同病毒菌株的活性。 strong 迄今为止,利巴韦林和利巴韦林加各种类型的干扰素已成为SARS和MERS患者最常用的治疗手段。 /strong SARS-CoV-2爆发以来,全国各个攻关团队筛选出一系列具有治疗潜力的药物。 strong 中国科学院上海药物研究所和上海科技大学免疫化学研究所的抗SARS-CoV-2病毒感染联合应急攻关团队报道了综合利用虚拟筛选和酶学测试相结合的策略进行药物筛选,发现了30种可能对SARS-CoV-2有治疗作用的药物、活性天然产物和中药。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 沈阳药科大学、华中科技大学和军事医学研究院国家应急防控药物工程技术研究中心组成的联合攻关小组发现SARS-CoV-2蛋白序列中SARS-CoV-2-PLP序列与SARS-CoV-PLP具有82%的氨基酸同源性。 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp 2020 年 1 月 21 日,中国科学院上海巴斯德研究所郝沛研究员等使用计算机模拟的方法发现了& nbsp SARS-CoV-2的S-蛋白的受体结合结构域(RBD)和人血管紧张素转化酶 ACE2 的结合作用较强。& nbsp SARS-CoV-2通过 S 蛋白 - ACE2 结合途径对人 类传播构成了重大的公共卫生风险。因此ACE2 也可能用于& nbsp SARS-CoV-2的治疗研究。 黄朝林等根据过往洛匹那韦利托那韦片对& nbsp SARS-CoV感染的患者有“ 实质性的临床益处” 的结果 推测这种疗法可能对& nbsp SARS-CoV-2感染的患者有效。此外,武汉病毒研究所与军事医学科学院毒物药物研究所联合发现了在细胞层面上对& nbsp SARS-CoV-2有较好抑 制作用的雷米迪维或瑞德西韦(RemdesivirGS-5734)、氯喹(ChloroquineSigma-C6628)、利托那 韦(Ritonavir)等三种“老药物”。& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 瑞德西韦属于核苷类似物能够抑制 RNA 依赖的 RNA 聚合酶 (RdRp),由美国知名药企吉利德科学公司研发原本用于对抗埃博拉病毒在体外和动物模型中瑞德西韦证实了对 SARS 和 MERS 的病毒病原体均有活性它们与新型冠状病毒结构相似,从理论预测瑞德西韦对新型冠状病毒可能有效。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 目 strong 前瑞德西韦已进入 III 期临床试验该临床试验项目将在武汉市金银潭医院等多家医院同时进行两部分组成均采用随机、双盲、安慰剂对照形式开展。 /strong 据吉利德对外披露,在武汉进行的临床实验有两项,一是研究评估瑞德西韦用于未表现出显著临床症状患者的治疗效果,也就是轻、重症患者。另一项则是评估其用于重症确诊病患的疗效。值得一提的是,来自中国科学院武汉病毒研究所等机构的中国学者已经在细胞水平上验证了瑞德西韦在2019 新型冠状病毒上有较好的活性。 span style=" text-indent: 2em " 研究结果显示在 Vero E6 细胞上瑞德西韦对 SARS-CoV-2的半数有效浓度EC50 =0.77μmol/L,选择指数 SI 大于 129,表明该药物在细胞水平上能效抑制& nbsp SARS-CoV-2 的感染,但其在人体上的作用还有待临床验证。 /span /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参考文献: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.XU X T,CHEN P,WANG J F,et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Science China-Life Sciences,2020.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.FOUCHIER R A,HARTWIG N G,BESTEBROER T M,et al. A previously undescribed coronavirus associated with respiratory disease in humans [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(16):6212 - 6216.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.VANDER HOEK L,PYRC K,JEBBINK M F,et al. Identification of a new human coronavirus [ J] . Nature Medicine,2004,10(4):368 -373.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4.WANG M,CAO R,ZHANG L,et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019¯ nCoV) in vitro [J]. Cell Research,2020 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5.HUANG C,WANG Y,LI X,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China [J]. Lancet,2020.& nbsp /p p br/ /p p br/ /p
  • 《自然》:中国科学家解析出“肥胖基因”蛋白结构
    中国科学家解析出“肥胖基因”蛋白结构   FTO基因会抑制新陈代谢,降低能量消耗效率,从而导致肥胖   许多科学研究表明,基因与肥胖存在千丝万缕的联系。一种被形象地称为“肥胖基因”的FTO基因有可能是导致肥胖的“罪魁祸首”。近日,北京生命科学研究所和天津大学科研人员联手在国际上第一次解析出了FTO基因表达蛋白质的晶体结构,并进一步证明了该蛋白质是一类脱氧核糖核酸(DNA)去甲基化酶。该开创性的研究成果4月7日在线发表于《自然》杂志。   当前,肥胖已成为人类面临的一个严重的公共健康问题。目前我国肥胖者已超过9000万名,超重者高达2亿名。专家预测,未来10年,中国肥胖人群将会超过2亿。肥胖不但会导致糖尿病、高血压、癌症等诸多疾病,还会使人早逝。有数据表明,肥胖者早逝的危险是非肥胖者的1.3—2倍。科学研究显示,FTO基因会抑制新陈代谢,降低能量消耗效率,从而导致肥胖。因此,对于FTO基因及其表达的蛋白质的研究已经成为国际上生物医学领域的热点。   目前,北京生命科学研究所柴继杰博士实验室与天津大学药物化学系副教授雷晓光博士实验室正在进一步紧密合作,基于此项研究,通过计算机辅助药物设计和高通量药物筛选方法,寻找有效的小分子化合物,进而研制出具有我国自主知识产权、创新型治疗肥胖症的药物。专家认为,这是一项具有国际领先水平的开创性成果,为我国治疗肥胖症的创新型药物研发奠定坚实基础。
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 使用Native MS和HDX-MS探究高阶蛋白复合物结构
    血红蛋白(Hb)是红细胞中的一种关键蛋白质,负责氧气的运输。它由α和β亚基组成,形成四聚体结构,通过氧合(relaxed)和脱氧(tense)状态之间的变构转变来实现氧气的运输。Hb作为一个重要的模型蛋白,广泛应用于蛋白质基础特性的研究以及包括质谱技术在内的分析化学方法的开发。研究中使用的Hb样品通常从化学公司购买(商业Hb)或从哺乳动物血液中新鲜提取(血液Hb),尽管理论上商业Hb和血液Hb都应该反映血红蛋白的天然活性和三维构象,但先前的电喷雾离子化质谱(ESI-MS)分析显示,这两种Hb来源的性质存在差异,这可能与商业Hb在制备过程中的变性有关。迄今为止,商业Hb和血液Hb之间的结构差异仅使用Native ESI-MS进行过研究。考虑到Native MS不同纯化方法(缓冲液置换、脱盐)对样品的影响,本文尝试使用氢/氘交换质谱(HDX-MS)对血液Hb和商业Hb中的血红蛋白复合物进行比较研究。与Native ESI-MS相比,HDX-MS对不挥发性盐的耐受性要高得多,这主要是由于肽段的脱溶剂效率高于完整蛋白质。在本研究中,作者直接对商业Hb和血液Hb进行了HDX-MS分析,得到的HDX-MS结果与Native ESI-MS数据非常吻合,证实商业Hb已广泛变性形成二聚体物质。对于Native ESI-MS,作者认为缓冲液置换方法对于检测结果具有一定的影响。图1和图2分别展示了血液Hb和商业Hb样品在经过不同次数的缓冲液置换后得到的Native ESI-MS谱图。由图1可见,血液Hb在经过1-5次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体和四聚体信号峰主导,表明缓冲液置换次数对样品结构的完整性有显著影响。图2表明商业Hb在0-4次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体信号主导,最终在四次置换后显示出二聚体为基峰,表明商业Hb在多次置换后更倾向于形成二聚体结构。图1.缓冲液置换(A)1、(B) 2、(C) 4和(D)5次后获得的血液Hb的ESI质谱图。红色符号αh, βa、D、Q分别代表单体全α亚基、单体apo-β亚基、二聚体αhβh和四聚体(αhβh)2离子。标有星号(*)的信号对应电流噪声。图2.缓冲液置换(A)0、(B) 1、(C) 2和(D)4次后获得的商业Hb的ESI质谱图。红色符号αh, βaox、D、D-h,(D-h)ox,Q代表单体全α亚基、氧化单体apo-β亚基、二聚体αhβh、二聚体αhβa、 氧化二聚体αhβaox和四聚体(αhβh)2离子。B和D的插图分别对应β的扩展峰βaox和(D-h)ox。单氧化、二氧化和三氧化物质表示为βaox/(D-h)ox+O, βaox/(D-h)ox+2O 和βaox/(D-h)ox+3O。标有星号(*)的信号对应电流噪声。由于Native ESI-MS分析的可靠性在很大程度上依赖于样品处理方法,因此有必要开发一种互补方法来分析高阶蛋白质复合物的完整性。作者采用HDX-MS来查看是否可以获得血液Hb和商业Hb样品的一致结构信息。图3展示了血液Hb和商业Hb的HDX-MS速率曲线。这些曲线显示了不同时间点上肽段的氘化水平,揭示了两种样品在结构上的显著差异。血液Hb的肽段氘化水平普遍低于商业Hb,特别是在α亚基的33-46及130-141段和β亚基的33-41及130-146段,这表明新鲜血红蛋白在这些区域的溶剂可及性较低,结构更稳定。相反,商业Hb在这些区域显示出更高的氘化水平,暗示其结构可能已经发生了部分解离,增加了溶剂可及性。 图3.血液Hb(绿色曲线)和商业Hb(红色曲线)酶切片段的HDX速率曲线。每个数据点报告三次试验的平均值,误差线表示三次试验的标准偏差。为了将HDX结果与Hb的三维结构相关联,将t = 180 min时两个Hb样品之间的氘代水平差异映射到天然氧合血红蛋白晶体结构(PDB:1LFQ)中,如图4所示。在 t = 180 min时,商业 Hb 的氘水平分别α 130-141和β 130-146比血液Hb高18.9%和26.6%。更高的氘吸收量意味着在这两个区域中商业Hb的溶剂可及性更高。α 130-141和β 130-146分别属于α 1α 2(图4A)和β1β2(图4B)界面。这两个链段中溶剂可及性的增加可能是因为天然四聚体(αhβh)2解离成二聚体αhβh亚复合物,这将导致α1α2和β1β2界面相互作用的破坏。这一推论与Native ESI-MS分析结果一致,即商业Hb的质谱基峰是二聚体信号(图2D),而血液Hb的质谱基峰是四聚体信号(图1D),进一步验证了商业Hb样品在制备和存储过程中可能经历了结构变化。图4.人氧合血红蛋白(PDB:1LFQ)的晶体结构,包括亚基(A)α1和α2,(B)β1和β2,(C)α1和β2,以及(D)α1和β1。根据t = 180 min时商业Hb和血液Hb之间氘代的百分比差异对结构进行着色。总的来说,本文通过Native ESI-MS和HDX-MS来表征商业Hb和血液Hb之间的差异。发现血液Hb主要保持四聚体结构,而商业Hb则主要表现为二聚体,且在商业Hb中观察到更多的氧化形式。这些发现强调了在进行生物医学研究前验证蛋白质高阶结构完整性的重要性,并展示了两种质谱技术在分析蛋白质结构变化中的互补性。
  • 上海交大曹骎团队成功解析额颞叶变性病人脑组织冷冻电镜结构
    近日,《Nature》以“Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43”为题在线发表了上海交通大学Bio-X研究院长聘教轨副教授曹骎与美国加州大学洛杉矶分校David Eisenberg课题组等的合作研究成果,解析了额颞叶变性病人脑组织中提取的淀粉样纤维的高分辨率结构,为该疾病的病理机制研究提供了重要信息。图1 Nature文章封面淀粉样纤维(amyloid fibrils)是由蛋白质发生液-固相变生成的聚集产物,与人类疾病,尤其是神经退行性疾病有着紧密的联系,如Aβ和tau纤维之于阿尔兹海默症,α-synuclein纤维之于帕金森氏症等。额颞叶变性(frontotemporal lobar degeneration, FTLD)是仅次于阿尔兹海默症及帕金森氏症的第三大神经退行性疾病,早先的研究指出FTLD病人脑组织中也存在淀粉样纤维,然而这一结论并未得到分子层面的证实,同时形成这些纤维的蛋白也未得到鉴定。图2 TMEM106B纤维结构解析(a)本研究中FTLD病人的脑切片免疫用诊断(上)及提取的淀粉样纤维的负染电镜照片(下)。(b)纤维冷冻电镜数据处理,包括二维分类(左)和三维重构(右)。(c)解析的纤维结构。为揭示FTLD与淀粉样纤维的关联,此项工作尝试从40个患有FTLD-TDP(一种FTLD的主要亚型)的捐献者脑组织中提取淀粉样纤维,最终在其中38个患者中发现了纤维,成功从其中4个患者中提取了纤维,并使用冷冻电镜三维螺旋重构的技术解析了这些纤维的近原子分辨率的结构(最高分辨率为0.29纳米)。出人意料的是,纤维的结构显示,这些纤维来自于一种从未被报道可以发生淀粉样聚集的蛋白—TMEM106B。此工作证实了FTLD是一种淀粉样纤维相关疾病,为淀粉样纤维蛋白家族拓展了一个全新的成员,同时为FTLD的病理机制提出了一个全新的假说,即TMEM106B的纤维化参与了FTLD的发病过程,并可能通过抑制TMEM106B的纤维化治疗这一疾病。曹骎博士为论文的共同第一作者,另一位第一作者是Eisenberg课题组博士研究生江逸潇。论文的合作单位有美国加州大学洛杉矶分校、霍华德-休斯研究所、上海交通大学以及美国Mayo Clinic研究所。曹骎博士2008年毕业于上海交通大学生物工程专业,获工学学士学位;2013年毕业于北京大学生物化学与分子生物学专业,获理学博士学位;2013年至2021年在加州大学洛杉矶分校从事科学研究,任博士后及助理研究员;2021年5月全职回国工作,加入上海交通大学Bio-X研究院,任长聘教轨副教授、课题组长、博士生导师。主要研究方向为蛋白相分离相变的分子机理研究及抑制剂设计,代表性论著包括Nature Chemistry (2018), Nature Structural & Molecular Biology (2018, 2019, 2020, 2021)等。论文链接:https://www.nature.com/articles/s41586-022-04670-9
  • 沃特世在京成功举办质谱技术在蛋白表征及高级结构中应用技术研讨会
    沃特世公司(纽约证券交易所代码:WAT)近日在北京成功举办了以“质谱技术在蛋白表征及高级结构中应用”为主题的技术研讨会,吸引了60余位来自国家蛋白质组中心、中国食品药品检定研究院、中国科学院、清华大学、北京大学、军事医学科学院、中国农业科学院等知名高校、科研院所、分析测试平台及生物制药企业等相关领域的研究人员参加了会议。 研讨会的主旨为 “提升国内蛋白表征领域对蛋白高级结构研究的认知”,涵盖三大议题:蛋白药物深度结构表征所需要的质谱技术与生物信息学软件、氢氘交换(HDX)技术及IMS在结构生物学特别是表位学研究、蛋白质相互作用研究领域的最新进展及SONAR技术在蛋白质鉴定和非标记定量蛋白质组学研究中的进展。 会上国际知名学者、日本大阪大学副教授Susumu Uchiyama博士指出,氢氘交换质谱(HDX MS)逐渐成为蛋白质高级结构研究不可或缺的技术,并介绍了氢氘交换质谱技术及其在表位学和蛋白相互作用研究上的具体应用 。同时对其最近发表在Nature Communication上的题为《Haem-dependent dimerization of PGRMC1/sigma-2 receptor facilitates cancer proliferation and chemoresistance》论文的研究成果进行了汇报,获得了与会科研学者的一致高度评价。 日本大阪大学副教授Susumu Uchiyama博士做大会报告 沃特世(Waters® )总部制药业务部高级市场拓展经理Asish Chakraborty博士对生物制药行业普遍关注的宿主蛋白残余测定进行了报告演讲,并介绍了使用通用型UPLC/MS分析对生物治疗性蛋白质中的HCP进行全面鉴定和定量。此分析方法采用在线二维液相色谱法分离多肽,然后利用高分辨率、高质量准确度的质谱仪进行蛋白质鉴定和定量。另外,Chakraborty博士对当前氢氘交换质谱方案的新进展也作了更新介绍。 沃特世公司总部Asish Chakraborty博士做大会报告 来自沃特世亚太区的高级科学家陈熙博士作了题为“非变性质谱技术及IMS行波离子淌度质谱技术在蛋白质高级结构研究上的应用进展”的精彩报告,介绍了行波离子淌度高分辨质谱技术在生物药分析上的最新应用进展,成熟的行波离子淌度分离技术为常规高分辨质谱增加了更多一个维度的分离能力,在蛋白质药物常规结构表征如二硫键错配、氢-氘交换质谱技术进行蛋白质药物高级结构和动态变化研究以及HCP(宿主细胞蛋白)残留的鉴定和定量上发挥着重要作用。 沃特世亚太区高级科学家陈熙博士做大会报告 沃特世中国应用科学家殷薛飞博士作了 “最新DIA质谱技术-SONAR在非标记定量蛋白质组学研究中的应用”的报告。殷博士介绍的 SONAR数据采集模式于今年9月发布,科学家们只需执行一次进样即可完成更准确的定性和定量分析,对复杂样品中脂质、代谢物和蛋白质的定量和鉴定,可免去采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。 大会还邀请了来自美国Genentech的蛋白质化学部科学家甘雨田博士分享了她运用蛋白质组学思路进行生物药物研究开发的思路与实践,甘博士还介绍了她今年8月发表于Nature Biotechnology上的ISDetect快速自动蛋白末端质谱检测法,引起与会人员的强烈兴趣。 会议最后 ,沃特世中国生物制药高级经理宋兰坤女士作了“LC/MS平台化方案助力生物药研究开发”的报告,并对会议进行了总结。宋经理说:“质谱技术是蛋白质研究中不可取代的工具,其在蛋白质常规表征及高级结构研究中均有很好的应用方案及研究文献, 为揭示生命科学的奥秘发挥着越来越重要的作用。作为全球生物制药领域解决方案顶尖供应商,沃特世公司为生物药物产业界及蛋白质研究相关科学领域提供先进的仪器和技术。希望本次会议的议题可以激发与启迪科研工作者的思路,为生物药物产业的从业人员搭建一个学术讨论与经验分享的平台。 会议同期展出的蛋白科学研究先进生物技术墙报
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • DeepMind重磅推出AlphaFold:人工智能预测基因序列蛋白形状结构
    p   Alphabet(谷歌)旗下公司 DeepMind 的人工智能 AlphaGo 曾在国际象棋、围棋等项目中取得了超越人类的表现,其研究不仅震惊世界,也两次登上 Nature。如今,该公司已将人工智能技术应用到最具挑战性的科学研究问题中,其刚刚推出的 AlphaFold 可以仅根据基因“代码”预测生成蛋白质的 3D 形状。 /p p   DeepMind 表示,AlphaFold 是“该公司首个证明人工智能研究可以驱动和加速科学新发现的重要里程碑”。看来,人类医学研究要前进一步了。 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/fc4cf612-a444-4567-b697-76cdcdfc9dea.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center " / /p p style=" text-align: center "    span style=" color: rgb(127, 127, 127) " 2017 年 5 月,谷歌 DeepMind 人工智能项目 AlphaGo(执棋者:黄士杰博士)对战当时世界第一的围棋选手柯洁。 /span /p p style=" text-indent: 2em " 周日,在墨西哥坎昆举办的一场国际会议中,DeepMind 的最新 AI——AlphaFold 在一项极其困难的任务中击败了所有对手,成功地根据基因序列预测出蛋白质的 3D 形状。 /p p   “蛋白质折叠”是一种令人难以置信的分子折叠形式,科学界以外很少有人讨论,但却是一个非常重要的问题。生物由蛋白质构成,生物体功能由蛋白质形状决定。理解蛋白质的折叠方式可以帮助研究人员走进科学和医学研究的新纪元。 /p p   “对于我们来说,这真的是一个关键时刻,”DeepMind 联合创始人兼 CEO Demis Hassabis表示,“这个项目就像灯塔,这是我们关于人和资源的首次重大投资,用于解决一个根本性的、现实世界的重要问题。” /p p   在 2016 年 AlphaGo 击败李世乭后,DeepMind 就开始将目光转向蛋白质折叠。尽管实践证明,游戏是 DeepMind AI 项目的优秀试验场,但在游戏中取得高分并非他们的终极目标。“我们的目标从来就不是赢得围棋或雅达利比赛的胜利,而是开发能够解决蛋白质折叠这类问题的算法,”Hassabis 表示。 /p p    strong 为什么要预测蛋白质结构 /strong /p p   人体能够产生数万甚至数百万的蛋白质。每个蛋白质都是一个氨基酸链,而后者的类型就有 20 种。蛋白质可以在氨基酸之间扭曲、折叠,因此一种含有数百个氨基酸的蛋白质有可能呈现出数量惊人(10 的 300 次方)的结构类型。 /p p   蛋白质的 3D 形状取决于其中包含的氨基酸数量和类型,而这一形状也决定了其在人体中的功能。例如,心脏细胞蛋白质的折叠方式可以使血流中的任何肾上腺素都粘在它们上面,以加速心率。免疫系统中的抗体是折叠成特定形状的蛋白质,以锁定入侵者。几乎身体的每一种功能——从收缩肌肉和感受光线到将食物转化为能量——都和蛋白质的形状及运动相关。 /p p   通常情况下,蛋白质会呈现出能量效率最高的任何形状,但它们可能会纠缠在一起或者折叠错误,导致糖尿病、帕金森和阿茨海默症等疾病。如果科学家可以根据蛋白质的化学构成来预测其形状,他们就能知道它是做什么的,会如何出错并造成伤害,并设计新的蛋白质来对抗疾病或履行其它职责,比如分解环境中的塑料污染。 /p p    strong AI 如何改变研究方法? /strong /p p   正因为蛋白质的结构如此重要,在过去的五十年中,科学家已经能使用低温电子显微镜和核磁共振等实验技术确定蛋白质的形状,但是每一种方法都依赖大量的试验与误差反馈,每种结构可能需要花费数万美元、历时数年进行研究。因此生物学家转攻 AI 方法,以完成这一困难且单调的过程。 /p p   幸运的是,由于基因测序成本快速降低,基因组领域的数据非常丰富。因此在过去几年中,依赖于基因组数据的预测问题正越来越多地借助深度学习方法。DeepMind 非常关注这一问题,并提出了 AlphaFold,这一项工作目前已经提交到了Critical Assessment of Structure Prediction (CASP)。 /p p   DeepMind 用 AlphaFold 参加了 CASP,这是一年两次的蛋白质折叠奥运会,吸引了来自世界各地的研究小组。比赛的目的是根据氨基酸列表来预测蛋白质的结构,这些氨基酸列表会在几个月内每隔几天发送给参赛团队。这些蛋白质的结构最近已经通过费力又费钱的传统方法破解,但还没有公开。提交最准确预测的团队将获胜。 /p p   尽管是首次参加比赛,AlphaFold 就在 98 名参赛者中名列榜首,准确地从 43 种蛋白质中预测出了 25 种蛋白质的结构。而同组比赛中获得第二名的参赛者仅准确预测出了 3 种。值得一提的是,AlphaFold 关注从头开始建模目标形状,且并不使用先前已经解析的蛋白质作为模板。AlphaFold 在预测蛋白质结构的物理性质上达到了高度的准确性,然后基于这些预测可以使用两种不同的方法预测构建完整的蛋白质结构。 /p p    strong 使用神经网络预测物理属性 /strong /p p   AlphaFold 构建的模型都依赖深度神经网络,这些经过训练的神经网络可以从基因序列中预测蛋白质的属性。DeepMind 的研究人员表示,神经网络预测的蛋白质属性主要有:(a)氨基酸对之间的距离 (b)连接这些氨基酸的化学键及它们之间的角度。这些方法的首要进步就是对常用技术的提升,它们可以估计氨基酸对是否彼此接近。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/noimg/d256b4f4-6189-437b-8ead-d45a99ae81de.gif" title=" 2.gif" alt=" 2.gif" width=" 375" height=" 375" style=" width: 375px height: 375px " / /p p style=" text-indent: 2em " 为了构建 AlphaFold,DeepMind 在数千已知的蛋白质上训练了一个神经网络,直到它可以仅凭氨基酸预测蛋白质的 3D 结构。给定一种新的蛋白质,AlphaFold 利用神经网络来预测氨基酸对之间的距离,以及连接它们的化学键之间的角度。接着,AlphaFold 调整初步结构以找到能效最高的排列。该项目花了两周时间来预测其第一个蛋白质结构,但现在几小时内就可以完成了。 /p p   根据神经网络预测的两种物理属性,DeepMind 还训练了一个神经网络以预测蛋白质成对残基(residues)之间距离的独立分布,这些概率能组合成估计蛋白质结构准确率的评分。此外,DeepMind 还训练了另一个独立的神经网络,该网络使用集群中的所有距离来估计预测的结构与实际结构之间的差距。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b1b25d1b-42ba-454c-ae29-93402575df61.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/noimg/3bbdee91-2067-417d-8e22-92b8a5543cc6.gif" title=" 4.gif" alt=" 4.gif" style=" text-align: center width: 533px height: 178px " width=" 533" height=" 178" / /p p    strong 预测蛋白质结构的新方法 /strong /p p   这些评分函数可以用来探索蛋白质内部,以找到与预测匹配的结构。DeepMind 的第一种方法建立在结构生物学的常用技术上,用新的蛋白质片段反复替换蛋白质整体结构的某个部分。他们训练了一个生成神经网络来创造新的片段,这些片段被用来不断提高蛋白质结构的评分。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e657a13d-1262-4040-8074-dda8e8ac5791.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 492" height=" 315" style=" width: 492px height: 315px " / /p p   先通过神经网络预测氨基酸之间的距离和化学键角度,然后再根据两种物理属性对结构进行评分,最后通过梯度下降优化评分。 /p p   第二种方法是通过梯度下降来优化评分,得到的结构高度精确。梯度优化被用在整个蛋白质链,而不是组装前必须单独折叠的片段,这种做法降低了预测过程的复杂性。 /p p    strong 未来可期 /strong /p p   首次涉足蛋白质折叠领域的成功表明,机器学习系统可以整合各种信息来源,帮助科学家快速找到各种复杂问题的创造性解决方案。人工智能已经通过 AlphaGo 和 AlphaZero 等系统掌握了复杂的游戏,与此类似,利用人工智能攻克基本科学问题的未来同样可期。 /p p   雷丁大学的研究人员 Liam McGuffin 在比赛中带领得分最高的英国学术团体。他表示,“DeepMind 今年似乎取得了更大的进展,我想进一步了解他们的方法。我们的资源并不充足,但我们仍然有很强的竞争力。” /p p   “预测蛋白质折叠形状非常重要,对解决很多世纪难题有重大影响。这种能力可以影响健康、生态、环境,基本上可以解决任何涉及生命系统的问题。” /p p   “包括我们在内的很多团队几年来一直都在使用基于机器学习的方法,而深度学习和人工智能的进步似乎也产生了越来越重要的影响。我对这个领域很乐观,我觉得我们会在 21 世纪 20 年代真正解决这个问题。”McGuffin 表示。 /p p   Hassabis 也表示还有很多工作要做。“我们还没有解决蛋白质折叠问题,目前只是迈出了第一步。这是一个极具有挑战性的问题,但我们有一个良好的体系,还有很多想法尚未付诸实践。” /p p   蛋白质折叠的早期进展令人兴奋,它证明了人工智能对科学发现的效用。尽管在能够对疾病治疗、环境管理等方面产生量化影响之前,我们还有很多工作要做,但我们知道人工智能的潜力是巨大的。在一个专注于研究机器学习如何推进科学发展的专业团队的努力下,我们期待看到技术能够有所作为。 /p
  • 科研助攻|“SDL蛋白层析系统”助力逯光文教授团队的痘苗病毒结构研究
    研究背景来自于痘病毒科,正痘病毒属家族的痘病毒是一类大的、具有囊膜的DNA病毒。在痘病毒的12个成员中,有些是重要的人类病毒,例如猴痘病毒(最近暴发的猴痘疫情,截至2023年1月30日,已传播至110个国家或地区,并造成全球范围内85449人感染,89人死亡)、天花病毒(一种可引起天花的高度传染性及致命性的病原体)、痘苗病毒(VACV,一种用于预防天花和猴痘的自然减毒活疫苗)等。正痘病毒的持续性传播及流行对全球的公共卫生安全造成了极大威胁。因此,迫切需要鉴定正痘病毒所编码的入侵相关蛋白,以促进更有效的抗病毒疗法的研发。科研速递入侵是病毒建立感染的第一步,也是机体体液免疫所靶向的重要阶段。与大多数其它囊膜病毒利用一种或少数几种病毒蛋白行使入侵功能不同,痘病毒可编码4种蛋白(A26、A27、D8、H3)和另外的11种蛋白(A16、A21、A28、F9、G3、G9、H2、J5、L1、L5、O3)来分别介导病毒的粘附和膜融合。病毒的11种融合相关蛋白还可进一步组装成一个大型复合物,称为入侵-融合复合体(EFC)。此外,先前的反向遗传学研究表明,几乎每个EFC蛋白都可在痘病毒生命周期的粘附后(半融合或完全融合)过程发挥关键作用。因此,对EFC组分或复合物的结构研究将有助于逐步揭示EFC的神秘融合机制,并进一步促进预防/治疗药物的研发。 然而,在本研究之前,仅有两个EFC组分的蛋白结构(F9和L1)得以解析。 四川大学逯光文教授团队在2023年1月在感染性疾病领域高水平期刊Emerging Microbes & Infections( IF= 19.568)上发表了题目为「Crystal structure of vaccinia virus G3/L5 sub-complex reveals a novel fold with extended inter-molecule interactions conserved among orthopoxviruses」对G3/L5两个蛋白结构做出了最新的研究!(原文地址:https://www.tandfonline.com/doi/full/10.1080/22221751.2022.2160661) 助力设备 逯光文教授团队在该研究中使用赛谱仪器SDL蛋白层析系统,用离子交换色谱,凝胶过滤色谱及蛋白质印迹法鉴定并获得了痘苗病毒G3/L5异源二聚体复合物。
  • 化学所“超高分辨率荧光显微镜”获得方解石中超高分辨率蛋白图像
    近日,记者从中科院化学所获悉,该所胶体、界面与化学热力学重点实验室李峻柏课题组利用其开发的“超高分辨率荧光显微镜”,观测到生物矿化过程中参与结晶的蛋白质分布信息。论文在《德国应用化学》上刊发。  “超高分辨率荧光显微镜”可以超越远场光学显微镜的分辨率极限,直接检测到几十纳米的精细结构。而与能达到相同或更高分辨率的X光显微镜、各类电子显微镜及原子力显微镜相比,超高分辨荧光成像能在常温常压和基本不损伤生物样本活性的条件下,获得其纳米尺度的图像信息。  研究人员介绍,“超高分辨率荧光显微镜”又称为随机光学重建显微镜(STORM),可达到或好于50纳米分辨率。在前期研究中,李峻柏课题组在超高分辨图像采集和数据分析方面发展了实时单分子定位的程序包SNSMIL,该程序包可广泛应用于高背景成像的数据分析。  他们利用STORM观测到方解石中生物矿化过程中参与结晶的蛋白质分布信息,为研究蛋白质诱导生物矿化的机理提供了数据。
  • 刺突糖蛋白结构揭示新冠病毒演化新线索,或助疫苗设计
    p style=" text-align: justify line-height: 1.75em text-indent: 2em " 施普林格· 自然旗下专业学术期刊《自然-结构和分子生物学》最新发表一篇病毒学研究论文称,通过对新型冠状病毒(SARS-CoV-2)及其近缘蝙蝠病毒RaTG13的刺突糖蛋白 strong (刺突糖蛋白可以让病毒与细胞结合并进入细胞) /strong 结构进行比较研究,为进一步了解新冠病毒刺突的演化过程提供了信息,这对疫苗设计或具借鉴意义。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 413px " src=" https://img1.17img.cn/17img/images/202007/uepic/b316467b-3f03-46b6-b0df-d15b9cd8871f.jpg" title=" 111.png" alt=" 111.png" width=" 600" height=" 413" border=" 0" vspace=" 0" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   该论文指,研究人员认为蝙蝠冠状病毒可能是新冠病毒的演化前体,此前研究发现蝙蝠病毒RaTG13与新冠病毒的亲缘关系是已知关系中最近的。不过,尚不清楚新冠病毒如何演化到可以感染人类,也不清楚它是通过某个中间宿主还是直接传播给了人类。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文通讯作者、英国伦敦弗朗西斯· 克里克研究所病毒学研究专家Antoni Wrobel和Donald Benton及其同事,通过 strong 比较新冠病毒 /strong 和 strong RaTG13的刺突糖蛋白 /strong 发现, strong 两者虽然结构相似 /strong , strong 但新冠病毒刺突糖蛋白的形式更稳定,与人受体蛋白ACE2的亲和力要高出1000倍左右。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   他们还发现新冠病毒刺突上的 strong 弗林蛋白酶切位点可能对病毒有利 /strong ,因为 strong 它可能会促进病毒与细胞上受体的结合。 /strong 基于这些观察结果, strong 论文作者认为与RaTG13相似的蝙蝠病毒不太可能感染人类细胞,这也支持了新冠病毒是不同冠状病毒基因组重组后演化而来的理论。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文作者指出,他们进行研究的新冠病毒刺突糖蛋白分辨率高,几近完整,比之前报道的结构有更多的外部环(loop),这对于疫苗研发设计或许具有重要意义。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 关于刺突糖蛋白(spike glycoprotein) /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 刺突即病毒包膜的糖蛋白。有些病毒除了具有包膜外,还有包膜突起。病毒包膜突起的化学本质多为糖蛋白,其功能各不相同。有的是病毒粒子的吸附蛋白,与病毒的吸附有关;有的是病毒的融合蛋白,可以促进病毒包膜与细胞膜融合,与病毒的侵入有关。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 关于论文《SARS-CoV-2 and bat RaTG13 spike glycoproteinstructures inform on virus evolution andfurin-cleavage effects》,点击附件了解更多。 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/5b4a8287-977a-42ff-8b2d-858c8fe5345c.pdf" title=" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf /a /p p br/ /p
  • 世界首次!科学家完成对奥密克戎刺突蛋白分子水平的结构分析
    近日,在一项新研究中,加拿大不列颠哥伦比亚大学医学院的研究人员首次完成了对新冠奥密克戎(Omicron)变体刺突蛋白分子水平的结构分析。研究作者Sriram Subramaniam 博士说:“了解病毒刺突蛋白的分子结构很重要,因为这将使我们能够在未来开发出针对奥密克戎和相关变体的更有效的治疗方法。”研究人员表示,奥密克戎变体在其刺突蛋白上具有37个突变,是德尔塔(Delta)等变体的 3到5倍。进一步的分析结果表明,几个突变(R493、S496 和 R498)在刺突蛋白和人类细胞受体 ACE2 之间产生了新的盐桥和氢键。研究人员得出结论,这些新键似乎增加了病毒与人类细胞的亲和力—。而其他突变(如 K417N),则降低了这种键的强度。此外,奥密克戎刺突蛋白表现出更强的抗体逃逸。与之前的变体相比,奥密克戎对全部 6 种单克隆抗体显示出可测量的逃逸,并完全逃逸其中的5 种抗体。Subramaniam 博士说:“刺突蛋白突变的增加,可能是导致奥密克戎变体传播能力增加的因素。从目前来看,疫苗接种仍然最好的防御措施。”该研究论文题为“SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex”,已发表在《科学》期刊上。论文原文:https://www.science.org/doi/10.1126/science.abn7760
  • Nature:美国布兰迪斯大学研究人员利用核磁技术确定蛋白动态系综中的高能结构
    大家好,这周推荐一篇Nature上近期发表的使用核磁共振波谱高精度确定蛋白质稀少构象的方法。通讯作者Dorothee Kern教授是HHMI研究员,来自美国布兰迪斯大学生物化学系,她的实验室对蛋白质激酶的激活、蛋白酶的势能面有深入的研究。蛋白质在发挥功能时往往需要进入高能级的状态,然而目前缺乏确定这种功能重要、但出现较少的构象的实验方法。本文作者开发了一种通过耦合核磁得到的PCSs(pseudocontact shifts)和CPMG(Carr–Purcell–Meiboom–Gill)弛豫色散的方法,确定高分辨的稀少态构象。同时,作者定义了高能漂移的相应动力学和热力学,从而描述了整个自由能面。 作者在Adk,calmodulin和Src激酶等蛋白上发现高能PCSs可以准确定义已知的高能结构,同时在Adk的激活过程中发现了一种新的底物结合高能构象,回答了一直以来关于这个酶激活决速步骤的争论。底物的结合与产物释放都经由一个构象选择过程随后诱导进入完全关闭的反应发生构象。 不同于其它高能构象解析方法,本方法可以确定较小蛋白的domain重排以及低至0.5%比例的构象,并且同时确定结构、热力学以及热力学信息。原文链接:https://www.nature.com/articles/s41586-022-04468-9文章引用:Doi:10.1038/s41586-022-04468-9
  • 冷冻电子显微学与“细胞器、亚细胞及原位结构生物学研究”专题报告会召开
    p strong 仪器信息网讯 /strong  第六届全国冷冻电子显微学与结构生物学专题研讨会在北京隆重召开,研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。19日下午,“细胞器、亚细胞及原位结构生物学研究”作为大会三大专题之一,在中科院生物物理所孙飞研究员主持下,顺利召开。会议围绕“细胞器、亚细胞及原位结构生物学研究”共安排了6个专题报告,吸引了来自海内外400多名代表与会。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/6d2dd523-e8dd-419b-b1a2-47d32db518f5.jpg" title=" 全景小.jpg" alt=" 全景小.jpg" / /p p style=" text-align: center "   研讨会现场 /p p   中国科学技术大学毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告,分享在A型γ-氨基丁酸受体(GABAARs)的原位结构和组织研究方面的成果。毕国强用高分辨率冷冻电子断层扫描(Cryo-CLEM),确定了GABAARs在培养的海马神经元的抑制性突触中的结构。定位分析显示,GABAARs超复合物具有固定的11nm受体间距离但相对角度可变。这些超级复合物形成多受体网络,与随机分布的受体相比具有更低的Voronoi熵。受体网络进一步组织成具有~18nm的相界的中间组件。这种分层的自组织既保持规律性又灵活性,从而可以在突触信息处理中实现平衡的可靠性和可塑性。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/26ffc5a5-9914-4e50-a103-e06077a70894.jpg" title=" 毕国强.jpg" alt=" 毕国强.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告 /p p   染色质结构的高度动态变化在基因转录调控过程中起重要作用,并受多种表观遗传调控因子,如DNA 的甲基化、组蛋白的化学共价修饰、组蛋白变体置换、染色质结构蛋白的动态结合、ATP 依赖的染色质重塑以及非编码RNA 等的调控。中国科学院生物物理研究所朱平的《细胞核内染色质的电镜结构研究》报告介绍了利用冷冻切片、电镜和电子断层成像、CLEM等技术,在体外组装的染色质纤维纤维结构、以及用不同方法制备的细胞核内染色质结构研究的一些初步结果。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/4ed382f4-dba9-497e-ad1b-0a2ccab43a89.jpg" title=" 朱平.jpg" alt=" 朱平.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   朱平作《细胞核内染色质的电镜结构研究》报告 /p p   中国科学院生物物理研究所纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告。报告内容中展示了所开发的冷冻和干涉单分子定位成像技术、冷冻超分辨光电融合成像技术。展示了使用csCLEM(cryogenic super-resolution correlative light and electron microscopy)精确确定蛋白质与其天然细胞结构之间的空间关系的研究过程和成果。在构建冷冻超分辨成像系统时,发现几种荧光蛋白(FP)是光可切换的并且发射更多的光子,可以得到更高的、与超分辨率成像相当的定位精度。引入冷冻切片,将csCLEM扩展到哺乳动物细胞,并观察到线粒体蛋白与线粒体外膜在三维纳米分辨率下的良好相关性。纪伟分享了最新工作进展,借助新设计的超稳定冷台,将冷冻超分辨成像系统升级为超稳定的超分辨荧光冷冻显微镜。该冷冻显微镜具有出色的热稳定性和机械稳定性,10小时内的温度波动小于0.1K,并且在5小时内三维机械漂移小于200nm。报告中的应用实例表明,超分辨荧光冷冻显微镜系统适合长时间观察和csCLEM实验。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/76fdeaad-1028-4e9b-a7bb-b3164af3baac.jpg" title=" 纪伟.jpg" alt=" 纪伟.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告 /p p   此外还有,生物化学与细胞生物学研究所何勇宁作《Architecture of cell–cell adhesion revealed by electron microscopy》报告,北京生命科学研究所何万中作《Direct synthesis of EM-visible gold nanoparticles on genetically encoded tags for single-molecule visualization in cells》报告,清华大学李赛作《Three-dimensional imaging by Cryoelectron tomography and subtomogram averaging at sub-nanometer resolution》报告。虽然是研讨会的最后一场,但全场观众依然聚精会神,台上台下展开了热烈交流。 /p p   会议期间,借助冷餐会及会议间隙,特别设立了Poster交流环节,并在19日现场颁发了Poster奖。清华大学田元元、北京大学程稼萱、中国生物物理所吴春玲、浙江大学黄子惠、清华大学徐魁、中山大学邵千芊、中国生物物理所黄小俊、北京大学康云路获得Poster奖。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/ea3738f8-7e43-4327-9700-90aaccbf460a.jpg" title=" poster.jpg" alt=" poster.jpg" / /p p style=" text-align: center "   孙飞教授、高宁教授与Poster奖获得者合影留念 /p p br/ /p

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制