当前位置: 仪器信息网 > 行业主题 > >

材料物理学家

仪器信息网材料物理学家专题为您整合材料物理学家相关的最新文章,在材料物理学家专题,您不仅可以免费浏览材料物理学家的资讯, 同时您还可以浏览材料物理学家的相关资料、解决方案,参与社区材料物理学家话题讨论。

材料物理学家相关的论坛

  • 【分享】让物理学家夜不能寐的7个问题

    2009年10月15-25日在位于加拿大滑铁卢的圆周研究所举办了一个“从量子到宇宙”的主题节日,期间有数位世界最顶尖的物理学家受邀参加了一个脱口秀节目。在这个节目中所有的物理学家都被要求回答同一个问题——什么难题能让你夜不能寐?尽管几乎所有的物理学家都表示自己并不存在睡眠问题,不过在这个谈话节目进行的过程中还是有7个问题浮出了水面。

  • 【趣闻】十大物理学家

    英国《物理世界》杂志评选出了人类有史以来10位最伟大的物理学家。他们是:1.爱因斯坦;2.牛顿;3.麦克斯韦;4.玻尔;5.海森伯格;6.伽利略;7.费曼;8.狄拉克;9.薛定鄂;10.卢瑟福。这十大物理学家无疑是我们学习的榜样,他们的学习、生活和工作是很值得我们研究的。本文拟就十大物理学家的基本情况做一比较分析。1出生与概况爱因斯坦:1879年3月14日出生于德国南部符腾堡的乌尔姆城,父亲经营一家小型工厂,家庭经济较困难,几次搬家。6岁,母亲开始教他拉小提琴。1903年与马立克结婚,1903年和1910年先后生了两个儿子;1919年离婚,后与表妹伊尔萨·罗文莎结婚(近亲结婚!!!)。1955年4月18日在美国新泽西州普林斯敦病逝。牛顿:1642年12月25日(旧的儒略历)出生于英国北部林肯郡乌尔索浦(偏僻农村),是个早产儿。他出生前两个月父亲病逝;3岁时母亲改嫁,将其交由外祖母抚养。终生未娶(少时的伤痕影响终生啊!!!)。1727年3月20日因患泌尿系统疾病而去世。麦克斯韦:1831年11月13日生于英国爱丁堡。8岁丧母。祖辈中有学者、诗人、音乐家等。父亲是位律师,学识渊博,兴趣广泛,常带麦克斯韦听讲座。1877年得了胃癌,1879年11月5日年仅48岁(英年早逝,都是为了伺候老婆!!!)的麦克斯韦病逝于英格兰剑桥。玻尔:1885年10月7日生于丹麦的哥本哈根,父亲是哥本哈根大学著名的生理学教授。玻尔小时侯常昕一些哲学家和物理学家们与他爸爸讨论问题。1912年结婚,儿子A·玻尔也获诺贝尔物理奖。1962年11月18日在哥本哈根死于心脏病。海森伯格:1901年12月5日生于德国维尔茨堡,父亲原是中学教师,海森伯格9岁时父亲成为慕尼黑大学的教授,因此全家迁到慕尼黑。海森伯格共有7个孩子(简直就是一超生游击队!!!)。1976年2月1日因癌症在慕尼黑家中去世。伽利略:1564年2月15日生于佛罗伦萨共和国(现在的意大利)的比萨,父亲是音乐演奏家、作曲家和数学家;母亲出生于贵族,对家庭很挑剔。1642年1月8日在佛罗伦萨共和国的阿塞蒂里去世。费曼:1918年5月11日生于美国纽约市的曼哈顿区,父亲是从白俄罗斯明斯克来到美国的推销员。1942年他与中学时的恋人格林巴姆结婚(早恋!!!),1945年6月16日妻子去世;20世纪50年代第二次结婚,但很快离婚(花花公子!!!);1960年与格温内施·霍瓦施结婚,同年儿子出生(老当益壮!!!);1968年又收养一女儿。费曼晚年患了10年的癌症,1988年2月15日在美国的洛杉机去世。狄拉克:1902年8月8日生于英格兰格洛斯斯特郡的布里斯托尔,父亲是法语教师,他很崇尚读书,对狄拉克的家教很严。1984年在佛里罗达州的塔拉哈西去世。薛定谔:1887年8月12日生于奥地利维也纳,是独生子(符合中国的国策!!!),母亲是一化学教授的女儿,父亲是一家成功的油布厂厂主。薛定诗接受过广泛的教育,兴趣广泛,天赋较好,小学时请家教上课。他认为父亲是他的朋友、导师和不知疲倦的伙伴。1961年1月4日在维也纳去世。卢瑟福:1871年生于新西兰纳尔逊附近的乡村山区春林(后改称布赖特沃特),15岁时随家人迁到蓬加尔胡。父亲在那里种植亚麻并开了一家纺织厂,母亲为教师。因家庭人口多,童年时生活并不富裕。1895年赴英国剑桥大学,后入英国国藉。1937年在英国剑桥医院病逝。这十大物理学家按出生地分:英国有3位,德国2位,丹麦1位,意大利1位,奥地利1位,美国1位,新西兰1位。可以看出:他们中有8位在欧洲。这也充分说明了3个世纪以来,科学发展的中心在欧洲。十大物理学家在家庭出身和教育环境上,玻尔、海森伯格和伽利略3位出自专家教授家庭;麦克斯韦、费曼、狄拉克和薛定诗4位出自生活和教育环境较好的家庭;而爱因斯坦、牛顿和卢瑟福3位则出生在环境条件上较差的家庭。这说明环境好的家庭和环境条件差的家庭都可以培养出杰出人才,家庭经济条件优越和教育环境好不是成才的必备条件。十大物理学家的婚姻家庭情况差别较大。有终生不娶的,也有多次离婚的;有没有子女的,也有子女很多的;有子女非常出色的,也有子女一般的(各有各的变态:P)。简言之,他们在科学上是杰出的,而在婚姻和家庭上与普通人没有什么区别,他们同样要承受着家庭的困扰和生活的压力。十大物理学家除了麦克斯韦仅活了48岁以外,其余9位平均寿命在75.9岁。可见,尽管这些物理学家终生致力于科学,不辞辛苦为之奋斗,但这并没有影响他们的寿命。他们还是比较长寿的,年龄最大的牛顿活了85岁(牛老爷子后半生都是抱着钱睡的,能不长寿么?)。2性格与爱好爱因斯坦:6岁跟母亲学拉小提琴,14岁登台演出。爱好音乐,终生喜欢拉小提琴。历史、地理、语言成绩差,曾遭学校退学(啊哈,不知小爱考试时是否作过弊:P)。在提出相对论之前,常与一些青年在一起讨论各种问题。牛顿:童年成绩很差,是全校有名的“劣等生”。性格有点孤僻。爱动手制作小玩意。麦克斯韦:活泼,会骑马,会制小玩具,是撑杆跳能手。从小数学出众,15岁在《爱丁堡皇家学会学报》发表几何论文(他是中科大少年班毕业的么?)。玻尔:小时候常跟父亲一起做小型物理实验。海森伯格:喜欢同青年朋友一起背上背包,带上干粮、地图长途旅行。旅行中边欣赏景物边讨论问题(户外版名誉版主:P),是个乒乓球迷,不喜欢同仪器打交道。伽利略:从小善于观察,善于思考。10岁已显超常。费曼:聪明,从小学习成绩优秀。狄拉克:从小喜欢自然科学特别是数学。薛定谔:小时请家教辅导已显露才华。除喜欢数学、物理,还喜欢语言。擅长写诗,又热心登山、上剧院(这几项都能用来泡妞;P)。卢瑟福:成绩好,手也巧,很小就会修理钟表。(这句话很押韵:P)从以上情况我们可以看出:十大物理学家并不是个个从小都显得聪明。这说明从小不显聪明的孩子并不一定不能成才。十大物理学家大多数有科学之外的爱好,如爱旅游等,也许正是这些爱好开阔了他们的思维,激发了他们的科学灵感,从而获得成功。他们中的一些人喜欢和别人一起讨论,当然不一定都讨论科学问题,这些讨论可以拓宽知识面,开阔视野,值得学习。他们中的不少人从小爱动手,对小实验、小制作有兴趣,这也是很值得我们学习的。3对科学的主要贡献及做出最杰出成就的年龄爱因斯坦:26岁发表"狭义相对论"和"光电效应"论文,37岁发表"广义相对论"。牛顿:23~24岁创立微积分,发现万有引力定律、三大运动定律及光的许多属性,发明反射望远镜,45岁发表《自然哲学的数学原理》。麦克斯韦:29~34岁创立电磁场理论,42岁出版《电学和磁学论》。玻尔:28岁左右完成3篇关于原子结构理论的论文,51岁提出原子核的液滴模型。海森伯格:24岁发明矩阵力学,26岁发现了"测不准原理"。伽利略:25岁演示他的落体原理,45岁制作望远镜并观测月球,68岁发表《关于托勒玫和哥白尼两种世界体系的对话》。费曼:22岁发表"费曼图",43岁发表《量子电动力学》。狄拉克:25岁开始对量子电动力学进行数学方面的研究,28岁发表《量子力学原理》,30岁提出元限真空极化作用。薛定诗:34~39岁在苏黎世大学研究理论物理,38~39岁发现了薛定湾方程,形成了波动力学。卢瑟福:24岁辨别α,自辐射,40岁发现原子的核式结构,48岁发现质子。可以很明显地看出:十大物理学家所作的开创性工作都是在他们年轻的时候,绝大多数是在20多岁,有6位竟然不超过25岁。岁数较大时,一般只能做些操作性工作和总结性工作。这一点是很值得我们注意的。开创性工作需要活跃的思维和理性的思考。现在很多重大科技创新项目是否一定要高学历(如获得博士学位)的人去主持。按照我国的学制,同学们读完博士后年龄已到30岁左右,这时再参与科技攻关是否已经超过了一般人的黄金创新时间。开设研究性学习课程,开展各种形式的探索和研究应该从小做起。十大物理学家有许多地方值得我们去研究,去学习。

  • 【分享】L理论物理学家——李政道

    理论物理学家——李政道[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703191234_45547_1634962_3.gif[/img]一、生平简介 李政道(Tsung-Dal Lee 1926~)理论物理学家。1926年11月25日生于上海。1943~1944年在浙江大学(当时一年级在贵州永兴)物理学系学习;得到老师束星北的启迪,而开始了他的学术生涯。1944年因翻车受伤停学。1945年转学到昆明西南联合大学物理学系。1946年受他的老师吴大猷的推荐,得国家奖学金,去美国深造,入芝加哥大学研究院,1948年春天,李政道通过了研究生资格考试,开始在费米的指导下作博士论文研究。1949年底,在费米的指导下,李政道完成了关于白矮星的博士论文,获得博士学位。以后在该校天文学系半年和加利福尼亚大学(伯克莱)物理系一年任讲师并从事研究工作。1950年,李政道和来自上海的大学生秦惠君结婚。他们有两个孩子,长子李中清,现任加州理工学院历史教授;次子李中汉,现任密歇根大学化学系助理教授。1951年到普林斯顿高级研究院工作。1953年任哥伦比亚大学物理学助理教授,1955年任副教授,1956年任教授,1957年获诺贝尔物理学奖,1960~1963年任普林斯顿高级研究院教授兼哥伦比亚大学教授。1963年任哥伦比亚大学物理学讲座教授,1964年任该大学费米物理学讲座教授,1983年任该大学全校讲座教授。他还是美国科学院院士。 二、科学成就1.与杨振宁合作提出弱相互作用中宇称不守恒李政道对近代物理学的杰出贡献是:1956年和杨振宁合作,深入研究了当时令人困惑的θ-τ之谜——即后来所谓的K介子有两种不同的衰变方式,一种衰变成偶宇称态,一种衰变成奇宇称态。如果弱衰变过程中宇称守恒,那么它们必定是两种宇称状态不同的K介子。但是从质量和寿命来看,它们又应该是同一种介子。李政道和杨振宁通过分析认识到很可能在弱相互作用中宇称不守恒。他们仔细检查了过去的所有实验,确认这些实验并未证明弱相互作用中宇称守恒。在此基础上他们进一步提出了几种检验弱相互作用中宇称是不是守恒的实验途径。次年,这一理论预见得到吴健雄小组的实验证实。因此,李政道与杨振宁的工作迅速得到了学术界的公认,并获得了1957年诺贝尔物理学奖。一项科学工作在发表的第二年就获得诺贝尔奖,这还是第一次。李政道又是到那时为止历史上第二个最年轻的诺贝尔奖获得者。2.李政道在其它方面的重工作还有1949年与M.罗森布拉斯和杨振宁合作提出普适费米弱作用和中间玻色子的存在。1951年提出水力学中二维空间没有湍流。1952年与D.派尼斯合作研究固体物理中极化子的构造。同年与杨振宁合作,提出统计物理中关于相变的杨振宁-李政道定理(包含两个定理)和李-杨单圆定理。1954年发表了量子场论中的著名的“李模型”理论。1957年与R.奥赫梅和杨振宁合作提出CP不守恒和时间不反演的可能性。同年与杨振宁合作,提出二分量中微子理论。1959年与杨振宁合作,研究了硬球玻色气体的分子运动论,对研究氦Ⅱ的超流动性作出了贡献。同年又合作分析高能中微子的作用,定出此后20多年这方面大量的实验和理论工作的方向。1962年与杨振宁合作,研究了带电矢量介子电磁相互作用的不可重正化性。1964年与M.瑙恩伯合作,研究了无(静止)质量的粒子所参与的过程中,红外发散可以全部抵消问题。这项工作又称李-瑙恩伯定理,或与木下的工作合在一起,称KLN定理。60年代后期提出了场代数理论。70年代初期研究了CP自发破缺的问题。又发现和研究了非拓扑性孤立子,并建立了强子结构的孤立子袋模型理论,还就色禁闭现象提出了真空的“色介常数”的概念。70年代后期和80年代初,继续在路径积分问题、格点规范问题和时间为动力学变量等方面开展工作;后来又建立了离散力学的基础。3.李政道关心中国物理学的发展,自1972年起多次回国访问讲学;并协助中国科学院高能物理研究所建造正负电子对撞机和同步辐射设备,使基础和应用科学能结合。1980年以来,他发起组织美国几十所主要大学在中国联合招收物理学研究生,为培养中国青年物理学家作出了不少贡献。李政道受聘为暨南大学、中国科技大学、复旦大学、清华大学等学校的名誉教授,中国科学院高能物理研究所学术委员会委员。4.李政道已发表约200多篇科学论文和报告,出版过专著《场论与粒子物理学》(上册,1980;下册,1982)和Particle Physics and Introduction to Field Theory(1980) 三、趣闻轶事1.没有中学和大学毕业文凭的物理学家李政道的少年时代是在动乱中度过的,他甚至没有得到过正式的中学和大学毕业文凭。特别是在日寇侵华以后,他经历了一段非常艰苦的时期。日军侵略军进入上海租界后,李政道不愿受日寇统治,于1941年12月离家,由上海取道杭州、富阳,穿过封锁线去大后方求学。在福建、江西旅途中,他得了恶性疟疾,又无路费,过的是流浪生活,直至1943年到达贵阳后才治愈疟疾。

  • 【悼念】悼念著名物理学家--约翰惠勒

    美国当地时间4月13日清晨,著名的物理学家、普林斯顿大学教授约翰惠勒(John Archibald Wheeler)因肺炎医治无效去世,享年96岁。惠勒早已成为物理学中的标志性人物,他是美国麦哈顿计划中的“老兵”、量子引力理论研究先驱和人们耳熟能详的“黑洞”概念提出者。作为普林斯顿大学的教授和美国物理开拓时期的科学家,惠勒主要从事原子核结构、量子理论、广义相对论及宇宙学等研究。他27岁就与丹麦科学家玻尔发展出核分裂理论,后与学生理查德费曼(1965年诺贝尔物理学奖得主)改写了电磁理论,并提出时光回溯移动的构想。可以说,惠勒的研究为20世纪下半叶物理学的发展勾勒出了方向。惠勒的性格严厉却不失风趣,而且他时常会说出一些精辟的甚至接近禅语的话,来表达他深邃的观点和思考。“It from bit”(万物源于比特),“Mass without Mass”等都让惠勒身为伟大科学家的同时,也是一位传奇性的思想家。惠勒说话十分坦率,从不惧怕质疑。实际上,他是一位真正能够跳出条框思考问题的人。正因为如此,惠勒喜欢把科学理论推向极致,并以他恢宏的气度,与其他许多物理学家一道,将物理学不断带向新的前沿。惠勒可以说是一位具有独特个性的物理学大师。美国麻省理工学院的物理学家Max Tegmark曾经评价说,惠勒是最后的巨人,物理学最后的超级英雄。我们一起默哀!!!![em0812] [em0812] [em0812] [em0812]

  • 【分享】B理论物理学家 玻恩

    中文名称: 玻恩   外文名: Max.Born   生卒年: 公元1882年~1970年   洲: 欧洲   国别: 德国   省: 普鲁士   玻恩,德国理论物理学家,量子力学的奠基人之一。玻恩于1882年12月11日出生于普鲁士的布雷斯劳一个犹太知识分子家庭,小时受父亲(医学教授)影响,喜欢摆弄仪器和参加科学讨论。1901年进入布雷斯劳大学,还先后到海德堡大学和苏黎士大学求学。1905年慕名进入哥廷根大学听D.希耳伯特、H.闵可夫斯基等数学、物理学大师讲学,于1907年通过博士考试。还获剑桥大学、牛津大学和柏林大学等十多所大学名誉博士学位。1912年受聘为哥廷根大学无薪金讲师,同年与T.von卡门合作发表了《关于空间点阵的振动》的著名论文,从此开始了他以后几十年创立点阵理论的事业。玻恩在先后任柏林大学教授,法兰克福大学理论物理系主任之后,于1921年接替P.J.W.德拜成为哥廷根大学物理系主任。1933年希特勒在德国掌权后,玻恩由于犹太血统关系被剥夺了教授职位和财产。他流亡到英国,在剑桥大学讲学一个时期后,于1936年接替C.G.达尔文任爱丁堡大学教授,1937年当选为英国伦敦皇家学会会员。1953年玻恩退休,回到哥廷根。1954年荣获诺贝尔物理学奖。玻恩还是柏林、哥廷根、哥本哈根、斯德哥尔摩等许多科学院的院士。在量子理论的发展历程中,玻恩属于量子的革命派,他是旧量子理论的摧毁者,他认为旧量子论本身内在矛盾是根本性的,为公理化的方法所不容,构造特性架设的办法只是权宜之计,新量子论必须另起炉灶,用公理化方法从根本上解决问题。 玻恩先后培养了两位诺贝尔物理学奖获得者:海森堡(1932年获诺贝尔物理学奖);泡利(因为提出不相容原理获1945年的诺贝尔物理学奖)。不过,玻恩似乎没有他的学生幸运,他对量子力学的几率解释受到了包括爱因斯坦、普朗克等很多伟大的科学家的反对,直到1954年才获诺贝尔物理学奖。1970年1月5日玻恩在哥廷根逝世,终年88岁。相关研究领域:玻恩在物理学中的主要成就在于创立矩阵力学和对薛定谔的波函数作出统计解释1920年以后,玻恩对原子结构和它的理论进行了长期而系统的研究。那时,卢瑟福-玻尔的原子模型和有关电子能级的假设遇到了许多困难。因此,法国物理学家德布罗意于1924年提出了物质波假设,认为电子等微观粒子既有粒子性,也有波动性。1926年奥地利物理学家薛定谔(1887—1961)创立了波动力学。同时,玻恩和海森伯、约尔丹等人用矩阵这一数学工具,研究原子系统的规律,创立了矩阵力学,这个理论解决了旧量子论不能解决的有关原子理论的问题。后来证明矩阵力学和波动力学是同一理论的不同形式,统称为量子力学。因此,玻恩是量子力学的创始人之一。为了描述原子系统的运动规律,薛定谔提出了波函数所遵循的运动方程——薛定谔方程。但是,波函数和各种物理现象的观察之间有什么关系,并没有解决。玻恩通过自己的研究对波函数的物理意义作出了统计解释,即波函数的二次方代表粒子出现的几率取得了很大的成功。从统计解释可以知道,在量度某一个物理量的时候,虽然已知几个体系处在相同的状态,但是测量结果不都是一样的,而是有一个用波函数描述的统计分布。因为这一成就,玻恩荣获了1954年度诺贝尔物理学奖。此外,玻恩对固体理论进行过比较系统的研究,1912年和冯卡尔曼一起撰写了一篇有关晶体振动能谱的论文,他们的这项成果早于劳厄(1879—1960)用实验确定晶格结构的工作。1925年玻恩写了一本关于晶体理论的书,开创了一门新学科——晶格动力学。1954年他和我国著名物理学家黄昆合著的《晶格动力学》一书,被国际学术界誉为有关理论的经典著作。他还研究了流体动力学、非线性动力学等。他的相关作品:《晶体点阵动力学》(1915年)《爱因斯坦相对论》(1920年)《固态原子理论》(1923年)《原子动力学问题》(1926年)《原子物理学》(1935年)《晶格动力学》(1954年)《物理学实验与理论》(1943年)《我们一代的物理学》(1956年)《物理学与政治学》(1962年)相关奖项:1、1954年因提出量子力学的统计解释而获诺贝尔物理学奖。2、是美国国家科学院、美国艺术与科学院、英国皇家学会、爱钉堡皇家学会会员。3、是柏林、哥廷根、哥本哈根、斯德哥尔摩等许多科学院的院士。

  • 【分享】A著名物理学家 奥斯特

    中文名称: 奥斯特   外文名: Hans Christian Oersted   生卒年: 公元1777—1851年   故居: 丹麦兰格朗岛鲁德乔宾   洲: 欧洲   国别: 丹麦   省: 朗格兰德岛   奥斯特,丹麦著名物理学家。1777年8月14日,奥斯特生于兰格朗岛鲁德乔宾的一个药剂师家庭。12岁开始帮助父亲在药房里干活,同时坚持学习化学。由于刻苦攻读,17岁以优异的成绩考取了哥本哈根大学的免费生。他一边当家庭教师,一边在学校学习药物学、天文、数学、物理、化学等,1799年获哲学博士学位。1800年任哥本哈根大学副教授,1801~1803年去德国、荷兰、法国访问,结识了许多物理学家及化学家。1806年起任哥本哈根大学物理学教授,1812-1813年再出访法国和德国。1822-1823年又到英国访问。回国后,创立了丹麦科学知识振兴学会。1815年起任丹麦皇家学会常务秘书。1820年因电流磁效应这一杰出发现获英国皇家学会科普利奖章。1821年被选为英国皇家学会会员,1823年被选为法国科学院院士,后来任丹麦皇家科学协会会长。1829年起任哥本哈根工学院院长。1851年3月9日奥斯特在哥本哈根逝世,终年74岁。相关研究领域:奥斯特对物理学、化学和哲学进行过多方面的研究,他在科学上的主要贡献是发现了电流引起的磁效应。由于受康德哲学与谢林的自然哲学的影响,坚信自然力是可以相互转化的,并长期从事探索电与磁之间的联系。早在读大学时奥斯特就深受康德哲学思想的影响,认为各种自然力都来自同一根源,可以相互转化。富兰克林发现的莱顿瓶放电使钢针磁化的现象启发奥斯特,使他认识到电向磁的转化也是可能的,关键是要找出转化的具体条件。他在1812年出版的《关于化学力和电力的统一性的研究》中,根据电流流经直径较小的导线会发热,推测如果通电导线的直径进一步缩小,那么导线就会发光;使通电导线的直径变得更小,小到一定程度时,电流就会产生磁效应。他指出:“我们应该检验电是否以其最隐蔽的方式对磁体有所影响.”寻找这两大自然力之间联系的思想,经常盘绕在他的头脑中.  1819年冬,奥斯特在哥本哈根开设了一个讲座,讲授电磁学方面的课题。在备课中,奥斯特分析了前人在电流方向上寻找磁效应都未成功的事实,想到磁效应可能像电流通过导线产生热和光那样是向四周散射的,即是一种横向力,而不是纵向的。1820年春,奥斯特安排了一个这方面的实验,他采用讲演时常用的电池槽,让电流通过一根很细的铂丝,把一个带玻璃罩的指南针放在铂丝下面,实验没有取得明显的效果。1820年4月的一天晚上,奥斯特在讲课中突然出现了一个想法,讲课快结束时,他说:“让我把导线与磁针平行放置来试试看。”当他接通电源时,发现小磁针微微动了一下。这一现象使奥斯特又惊又喜,他紧紧抓住这一现象,连续进行了3个月的实验研究,终于在1820年7月21日发表了题为《关于磁针上的电流碰撞的实验》的论文。这篇仅用了4页纸的论文,是一篇极其简洁的实验报告。奥斯特在报告中讲述了他的实验装置和60多个实验的结果,从实验总结得出:电流的作用仅存在于载流导线的周围;沿着螺纹方向垂直于导线;电流对磁针的作用可以穿过各种不同的介质;作用的强弱决定于介质,也决定于导线到磁针的距离和电流的强弱;铜和其他一些材料做的针不受电流作用;通电的环形导体相当于一个磁针,具有两个磁极等。这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域——电磁学此外,1812年奥斯特最先提出了光与电磁之间联系的思想。1822年采用精致的压力计并确保增加的压力作用于水容器内外两侧,首次得到水具有压缩性的相当精确的数据,对气体的压缩性也进行了相应实验研究。1823年根据对温差电偶接头的研究结果,得出结论:这种接头在比伏打电池低得多的电位差下,能产生较高电流。1825年提炼出铝,但纯度不高。在声学研究中,他试图发现声所引起的电现象。他的最后一次研究工作是抗磁性。  奥斯特不只是一位著名的物理学家,还是一位优秀的教师。他的讲课有表演,也有分析,非常重视实验。他说过“我不喜欢那种没有实验的枯燥的讲课,因为归根到底,所有的科学进展都是从实验开始的。”他的作品有:1、《关于化学力和电力的统一性的研究》(1812年)2、《关于化学定律的见解》(1812年)3、《关于磁针上的电流碰撞的实验》(1820年)曾获奖项:1、1820年因发现电流磁效应获英国皇家学会科普利奖章。2、被选为英国皇家学会会员和法国科学院院士。

  • 物理学家设计新型装置可用光牵引物体

    2012年08月23日 07:50 环球科学杂志微博 http://i2.sinaimg.cn/IT/cr/2012/0823/3567985218.jpg光的力量 一种新型“牵引光线”提案将会驾驭光能。  牵引光线是科幻作品中的重要角色,现在它却越来越接近现实。今年初春发表的一篇文章中,物理学家设计了一种可以用光拉动物体的装置。  一般情况下,光线只能推动物体,尽管力量很微弱。在光学操控的领域中,光学镊子可以应用这种推力移动微观物体,小至原子大至细菌。同样的,光线牵引的能力也可以提高光学操控的准度和广度。飞行器工程师们也已经设计出各种宇宙飞行帆,用以捕捉光所产生的力。  新设计的牵引光线将被更多地应用在生物或医药中,而不是用来拖动宇宙飞船。“如果你想将一件物品拉向自己,你必须减小物体面向你的方向上的压强,”以色列技术工程学院的物理学家莫迪凯·塞格夫说道。他在4月份《光学快递》(Optics Express)刊登的文章中描述了他的研究小组的设想。“需要创造出一点真空以减小压强,”他补充道。问题是在对环境非常敏感的医药操作中,比如肺部手术,绝对不能改变压强或充入任何新气体。“那么,光线将成为抽吸的装置,”他说,“这样压力不会有任何改变而只有光存在。”  早期对于“牵引光线”的研究通常集中在创建新的引力场来拖曳物体、加热空气从而产生压力差,或是向物体引入电量或是磁性,这样它们就可以沿着入射激光逆向移动。  最新的提案利用了一种被称之为负辐射压的现象。俄国物理学家维克托·维斯拉格在1967年发表的文章中讨论了具有负折射率的材料,并首先建立了负辐射压的理论模型。折射率的数值描述了光线在通过玻璃透镜或其他介质时被弯曲的程度。而这篇文章发表后,大家并不相信物质会出现负折射率。但在过去的几十年里,几组研究人员都证实了负折射率可以出现在一种被称作超常介质的特殊人造材料中。这一发现也导致了半隐形斗篷和无变形现象的“超级”透镜的发明。  负辐射压的原理依赖于光波的两个特性:它的群速度和相速度。一束光波由一组组小波构成;群速度矢量是波群整体的移动速率与方向,相速度矢量代表某个构成光波的小波上的一点的相位改变速率与方向。光波的电磁能沿着群速度的方向辐射传播,而波对粒子产生的影响则是顺着相速度的方向。如果这两种速度的传播方向有相反的分量时,就可以产生负辐射压。  但大部分超常介质是固体,并且扩大粒子之间的间隙会消除负辐射压。这些对通过负辐射压移动粒子的设想产生了阻碍。不仅如此,所有现有的超常介质都包含金属,它们会吸收电磁能,从而使作用在粒子上的牵引效应几乎为零。

  • 【分享】P著名物理学家普朗克简介

    一、生平简介普朗克,M.(Max Planck 1858~1947)近代伟大的德国物理学家,量子论的奠基人。1858年4月23日生于基尔。1867年,其父民法学教授J.W.von普朗克应慕尼黑大学的聘请任教,从而举家迁往慕尼黑。普朗克在慕尼黑度过了少年时期,1874年入慕尼黑大学。1877~1878年间,去柏林大学听过数学家K.外尔斯特拉斯和物理学家H.von亥姆霍兹和G.R.基尔霍夫的讲课。普朗克晚年回忆这段经历时说,这两位物理学家的人品和治学态度对他有深刻影响,但他们的讲课却不能吸引他。在柏林期间,普朗克认真自学了R.克劳修斯的主要著作《力学的热理论》,使他立志去寻找象热力学定律那样具有普遍性的规律。1879年普朗克在慕尼黑大学得博士学位后,先后在慕尼黑大学和基尔大学任教。1888年基尔霍夫逝世后,柏林大学任命他为基尔霍夫的继任人(先任副教授,1892年后任教授)和理论物理学研究所主任。1900年,他在黑体辐射研究中引入能量量子。由于这一发现对物理学的发展作出的贡献,他获得1918年诺贝尔物理学奖。 自20世纪20年代以来,普朗克成了德国科学界的中心人物,与当时德国以及国外的知名物理学家都有着密切联系。1918年被选为英国皇家学会会员,1930~1937年他担任威廉皇帝协会会长。在那时期,柏林、哥廷根、慕尼黑、莱比锡等大学成为世界科学的中心,是同普朗克、W.能斯脱、A.索末菲等人的努力分不开的。在纳粹攫取德国政权后,以一个科学家对科学、对祖国的满腔热情与纳粹分子展开了,为捍卫科学的尊严而斗争。1947年10月4日在哥廷根逝世。二、科学成就1.普朗克早期的研究领域主要是热力学。他的博士论文就是《论热力学的第二定律》。此后,他从热力学的观点对物质的聚集态的变化、气体与溶液理论等进行了研究。2.提出能量子概念普朗克在物理学上最主要的成就是提出著名的普朗克辐射公式,创立能量子概念。19世纪末,人们用经典物理学解释黑体辐射实验的时候,出现了著名的所谓“紫外灾难”。虽然瑞利、金斯(1877—1946)和维恩(1864—1928)分别提出了两个公式,企图弄清黑体辐射的规律,但是和实验相比,瑞利-金斯公式只在低频范围符合,而维恩公式只在高频范围符合。普朗克从1896年开始对热辐射进行了系统的研究。他经过几年艰苦努力,终于导出了一个和实验相符的公式。他于1900年10月下旬在《德国物理学会通报》上发表一篇只有三页纸的论文,题目是《论维恩光谱方程的完善》,第一次提出了黑体辐射公式。12月14日,在德国物理学会的例会上,普朗克作了《论正常光谱中的能量分布》的报告。在这个报告中,他激动地阐述了自己最惊人的发现。他说,为了从理论上得出正确的辐射公式,必须假定物质辐射(或吸收)的能量不是连续地、而是一份一份地进行的,只能取某个最小数值的整数倍。这个最小数值就叫能量子,辐射频率是ν的能量的最小数值ε=hν。其中h,普朗克当时把它叫做基本作用量子,现在叫做普朗克常数。普朗克常数是现代物理学中最重要的物理常数,它标志着物理学从“经典幼虫”变成“现代蝴蝶”。1906年普朗克在《热辐射讲义》一书中,系统地总结了他的工作,为开辟探索微观物质运动规律新途径提供了重要的基础。三、趣闻轶事1.启蒙老师普朗克走上研究自然科学的道路,在很大程度上应该归功于一个名叫缪勒的中学老师。普朗克童年时期爱好音乐,又爱好文学。后来他听了缪勒讲的一个动人故事:一个建筑工匠花了很大的力气把砖搬到屋顶上,工匠做的功并没有消失,而是变成能量贮存下来了;一旦砖块因为风化松动掉下来,砸在别人头上或者东西上面,能量又会被释放出来,……这个能量守恒定律的故事给普朗克留下了终生难忘的印象,不但使他的爱好转向自然科学,而且成为他以后研究工作的基础之一。2.“普朗克行星”普朗克进入科学殿堂以后,无论遇到什么困难,都没有动摇过他献身于科学的决心。他的家庭相继发生过许多不幸:1909年妻子去世,1916年儿子在第一次世界大战中战死,1917年和1919年两个女儿先后都死于难产,1944年长子被希特勒处死。但是普朗克总是用奋发忘我的工作抑制自己的感情和悲痛,为科学做出了一个又一个重要的贡献。他一生发表了215篇研究论文和7部著作,其中包括1959年所著的《物理学中的哲学》一书。在普朗克诞辰80周年的庆祝会上,人们“赠给”他一个小行星,并命名为“普朗克行星”。1946年他虽然体弱,但却非常高兴地出席了皇家学会的纪念牛顿的集会。3.墓碑号刻着他的名和h的值普朗克为人谦虚,作风严谨。在1918年4月德国物理学会庆贺他60寿辰的纪念会上,普朗克致答词说:“试想有一位矿工,他竭尽全力地进行贵重矿石的勘探,有一次他找到了天然金矿脉,而且在进一步研究中发现它是无价之宝,比先前可能设想的还要贵重无数倍。假如不是他自己碰上这个宝藏,那么无疑地,他的同事也会很快地、幸运地碰上它的。”这当然是普朗克的谦虚。洛仑兹在评论普朗克关于能量子这个大胆假设的时候所说的话,才道出了问题的本质。他说:“我们一定不要忘记,这样灵感观念的好运气,只有那些刻苦工作和深入思考的人才能得到。”1947年10月3日,普朗克在哥廷根病逝,终年89岁。德国政府为了纪念这位伟大的物理学家,把威廉皇家研究所改名叫普朗克研究所。普朗克的墓在哥庭根市公墓内,其标志是一块简单的矩形石碑,上面只刻着他的名字,下角写着: h=6.62×10-27尔格秒。

  • 【转帖】核物理学家——费米

    恩利克• 费米(Enrico Fermi 1901.09.29至1954.11.28)。  美国物理学家。生于意大利罗马。  1922年获比萨大学博士学位。  1923年前往德国。在玻恩的指导下从事研究工作。  1924年在哥廷根大学学习一学期,随后到荷兰莱顿大学和保尔厄任费斯脱共同工作。  1925年一月至1926年秋季在佛罗伦萨大学工作,开始研究费米-狄拉克统计问题。  1926年任罗马大学理论物理学教授。  1929年任意大利皇家科学院院士。  1934年用中子轰击原子核产生人工放射现象。开始中子物理学研究。被誉为“中子物理学之父”。  1936年出版的热力学讲义。成为后人教学用书的著名蓝本。  1938年由于 “通过中子照射展示新的放射性元素的存在,以及通过慢中子核反应获得的新发现(demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons)获得诺贝尔物理奖。但是就在这时他却在意大利遇到了麻烦。一是因为他的妻子是犹太人,意大利法西斯政府颁布出一套粗暴的反对犹太人的法律;二是因为费米强烈反对法西斯主义——墨索里尼独裁统治下的一种危险的态度。  1938年12月他前往斯德哥尔摩接受诺贝尔奖,此后就没有返回意大利,而是去了纽约。哥伦比亚大学主动为他提供职位,并为自己的师资队伍中增添了一位世界上最伟大的科学家而感到自豪和骄傲。  1944年费米加入美国籍。  在1939年初,据李泽• 梅特纳、奥特• 哈尔姆和弗里茨• 斯特拉斯曼报导,中子被吸收后有时会引起铀原子裂变。这项报导发表后,和其他几位主要的物理学家一样,费米立即认识到一个裂变的铀原子可以释放出足够的中子来引起一项链式反应,而且还和另外几位物理学家一样,费米马上就预见到这样的链式反应可用于军事目的潜在性。  1939年3月,费米与美国海军界接触,希望引起他们对发展原子武器的兴趣。但是直到几个月后阿尔伯特• 爱因斯坦就此课题给罗斯福总统写了一封信以后,美国政府才对原子能给予重视。  那时候,同盟国的科学家虽然已经在讨论原子弹的可能,但是还没有正式开始进行制造的工作。后来由于同盟国在战事中一再失利,德国又开始禁止由他们占领捷克铀矿区的铀矿出口,使得同盟国意识到,德国可能已经在认真进行原子弹计划。  不久,一位德国科学家傅吉(Siegfried Flugge)出人意料地在德文科学期刊上,公开发表了一些德国核分裂研究的新近成果。这位科学家本来是故意突破当时德国尚未完全开始的信息封锁,让同盟国得知德国研究近况,但是同盟国科学家反倒因而误认为,如果德国能够发布这么多资料,那么他们真正的发展情况,恐怕还要更加先进,这就更加促使美国原子弹计划开始酝酿产生。  匈裔科学家齐拉于是决定采取一些行动。首先他认为要能控制比属刚果的铀矿,于是请求和比利时皇家熟识的爱因斯坦帮忙,爱因斯坦欣然同意。接着他和银行家沙克斯(A.Sachs)共同具名拟就一信,准备敦促罗斯福总统在美国进行原子弹计划,为了增加这封信的分量,他们也要求爱因斯坦共同具名,爱因斯坦同意了。这一封有爱因斯坦共同具名的信函,确实是促成原子弹计划的一个关键因素,而这件事到战后曾引起爱因斯坦相当的后悔。  美国政府一有了兴趣,建立一个模式原子反应堆就成了科学家的首要任务,以探明自保持的链式反应是否确实可行。由于恩利克• 费米是世界上主要的中子权威,且集理论与实验天才于一身,所以被选为世界第一台核反应堆攻关小组组长。他最初在哥伦比亚大学工作,随后又到芝加哥大学工作。  1941年底,费米在哥伦比亚大学主持建造了世界上第一座原子反应堆,实现了自持式链式反应,为制造原子弹迈出了决定性的一步。  1942年12月2日,在芝加哥,费米指导下设计和制造出来的核反应堆首次运转成功。这是原子时代的真正开端,因为这是人类第一次成功地进行了一次核链式反应。试验成功的消息以意味深长的预言形式一下子就传到了东方:意大利航海家进入了新世界。……随着这项实验费米的成功,即刻做出了全速开展哈曼顿工程计划。费米在这项工程中作为一位主要的科学顾问,继续发挥着重要的作用。费米的主要贡献在于他在发明核反应堆中所起的重要作用。十分显然,这项发明的主要功劳应归于费米。他最先对有关方面的基础理论做出了重大的贡献,随后又亲自指挥第一座核反应堆的设计和建造。战后,费米在芝加哥大学任教授。  他于1954年去逝。100号化学元素镄就是为纪念他而命名的。他先后获得德国普朗克奖章、美国哲学会刘易斯奖学金和美国费米奖。  1953年被选为美国物理学会主席。还被德国海森堡大学、荷兰乌特勒支大学、美国华盛顿大学、哥伦比亚大学、耶鲁大学、哈佛大学、罗切斯特大学和拉克福德大学授予荣誉博士。  1954年,为纪念费米对核物理学的贡献,美国原子能委员会建立了“费米奖”,以表彰为和平利用核能作出贡献的各国科学家。   1955年8月,在瑞士日内瓦召开的和平利用原子能国际科学技术会议中,根据人工合成这个新元素者们的建议,将100号元素命名为fermium镄,以纪念20世纪中在原子和原子核科学中作出卓越贡献的著名物理学家费米。100号元素符号定为Fm。   费米之所以成为重要人物,有以下几个原因:  一是他是无可争议的20世纪最伟大的科学家,而且是为数不多的兼具杰出的理论家和杰出的试验家天才的人。他在其生涯中写了250多篇科学论文。二是费米在发明原子爆破方面是一个非常重要的人物,尽管别人在推动这项事业的发展上也起了同样重要的作用。   从1945年以来,原子武器从未用于战争。出于和平目的,大量的核反应堆建成用来产生能源。在未来,反应堆将成为更重要的能源来源。此外,一些反应堆被用来生产有用的放射性同位素,用在医学和科学研究上。反应堆还是钚的一个来源,这是制造原子武器的一种材料。人们对核反应堆可能对人类产生危害存有害怕心理,但没人抱怨它是个无意义的发明。不管是好还是坏,费米的工作对未来世界产生了巨大的影响。

  • 【分享】H固体物理、半导体物理学家——黄昆院士

    【分享】H固体物理、半导体物理学家——黄昆院士

    固体物理、半导体物理学家——黄昆院士[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703191213_45544_1634962_3.jpg[/img]黄昆(1919年9月2日—),出生于北京,祖籍浙江嘉兴。固体物理、半导体物理学家。1955年被选聘为中国科学院学部委员(院士)。1957年加入九三学社。黄昆父亲黄徵是中国银行高级职员,母亲贺延祉也是银行职员。母亲毕业于北京女子师范大学,为人严肃认真,对黄昆少年时期的成长,有过很大的影响。黄昆小学就读北师大附小、上海光华小学,中学在燕大附中、北京通县潞河中学度过。黄昆从小聪明好学,学习成绩优异,高中三年成绩始终是全班第一。1937年,黄昆考入燕京大学物理系,1941年毕业。在大学期间,他对世界上新兴的量子力学产生了痴迷的爱好,完成了“海森堡和薛定锷量子力学理论的等价性”论文,荣获学士学位。毕业后在昆明西南联合大学物理系任助教。1942年,黄昆考取西南联大理论物理研究生,导师为物理学家吴大猷。1944年,黄昆完成了题目为“日冕光谱线的激起”的论文,获北京大学硕士学位。毕业后,在昆明天文台任助理研究员。1944年8月,黄昆考取公费留英,在英国布里斯托大学读研究生,1947年获博士学位。在此期间,黄昆撰写了“稀固溶体的X光漫散射”等3篇论文。黄昆给出了这种漫散射系统理论,21年后得到证实,理论被国际科技界命名为“黄散射”,成为研究固体中杂质状态的重要依据。通过黄散射的研究可以得到溶质原子周围位移场的情况。1947年5月,黄昆到英国爱丁堡大学物理系,与当代物理学大师、诺贝尔奖获得者M

  • 中微子衰变:物理学家探索宇宙“最慢事件”

    据国外媒体报道,宇宙中最“慢”的概念是什么呢?斯坦福物理学家给出了自己所认为的“最慢的事件”。得益于美国EXO探索实验得出的数据,有一种神秘的粒子活动从137.5亿年前的宇宙大爆炸开始到现在,该试验名称缩写为“2nubb”。其代表的是两个中微子双β衰变,这种衰变只存在于理论之中,是放射性元素在某种形式下具有的特性。在两个中微子双β衰变类型中,两个中子,中性亚原子粒子处于一个原子核中,这时候就是自发地衰变为两个质子,两个电子和两个反中微子,而两个反中微子,在物理学家眼中可认为是微小的“反物质双胞胎”,而且几乎没有质量,是一种非常神秘的粒子。

  • 物理学家称曲率驱动或可实现10倍光速飞行

    2012年09月19日 10:07 新浪科技 http://i1.sinaimg.cn/IT/2012/0919/U5385P2DT20120919100442.jpg  一个环状结构可以驱动一个足球形状的飞船,使其达到大大超越光速的速度值。这一概念最初是由墨西哥物理学家明戈·阿尔库贝利在1994年提出来的  新浪科技讯 北京时间9月19日消息,据国外媒体报道,借助曲率驱动实现超光速的飞行,这是一种由于科幻电影《星际迷航》而变得流行一时的概念。现在,科学家们认为这一技术可能并非如原先想象的那么难以实现。  所谓曲率驱动的概念就是指通过对时空本身的改造来驱动飞船,利用物理学定律中的漏洞来打破光速不可超越的限制。1994年墨西哥物理学家明戈·阿尔库贝利(Miguel Alcubierre)首次提出了现实生活中曲率驱动的概念。然而后续进行的计算显示这样一种装置将需要无法达到的极高能量才能实现。  现在,物理学家们表示,原先的曲率驱动模式可以进行改造,从而让它可以用比原先计算少得多的能量条件下实现运行,这一想法将有希望让这种科幻产物成为真正的现实。  “这让人看到曙光。”在周五(9月14日)于美国宇航局约翰逊空间飞行中心举办的星际飞船100周年研讨会上,该局科学家哈罗德·怀特(" Harold "Sonny" White)这样说道。这一研讨会的举办旨在探讨未来星际航行将会遇到的挑战。  时空的扭曲  阿尔库贝利设计的最早期的曲率驱动概念包括一个足球形状的飞船,其周围是一圈大型的环状结构。这一环状结构设想是用某种奇异的物质建造的,它可以让时空在围绕飞船的四周发生弯曲,从而在其面前形成一个缩小版的空间,以及在其后方膨胀了的空间。与此同时,飞船本身将停留在由平滑时空组成的“气泡”内,这里的时空曲率不受影响。  理查德·奥伯塞(Richard Obousy)是伊卡鲁斯星际航行协会(Icarus Interstellar)的主席,这是一个由科学家和工程师们组成的非盈利协会,致力于实现星际航行。他说:“宇宙中的一切都受到光速极限的限制。但是真正酷的东西是时空,也就是空间的网格,它并不受光速极限的限制。”这样一来,飞船理论上便可以实现以10倍光速飞行,而不会打破宇宙光速极限的限制。  然而科学家们立即发现了问题,那就是,他们发现要想实现这种曲率驱动飞行将需要耗费极大的能量,其能量需求几乎相当于将整个木星质量按照爱因斯坦质能方程全部转化之后所得到的能量。  但是最近,哈罗德·怀特开始考虑,如果将围绕飞船的那个环状结构从原先设计中的扁平状改为甜甜圈那样的“圆筒形”,会发生什么情况?计算的结果显示这样一个装置的驱动所需能量仅相当于美国宇航局在1977年发射的旅行者飞船那样的质量按照质能方程转化得到的能量值。另外,怀特还发现如果空间弯曲的强度可以随时间发生起伏变化,那么实现这一装置所需的能能将进一步减少。怀特告诉美国太空网表示:“我今天所介绍的这一发现将这一概念从虚幻变为可行,它值得进行进一步的投资。”他说:“借助气泡强度的震荡起伏实现所需能量的减少将会是一项有趣的预测,我们很期待能在实验室中观察到它。”  实验室测试  怀特和他的同事们现在已经开始在实验室里实验他们的小型曲率驱动装置了。他们在约翰逊空间飞行中心建立了一套被称作“怀特-朱迪曲率场干涉仪”的装置。简单地说基本就是使用一束激光来出发时空在微观尺度上的扭曲。  怀特表示:“我们想看看能否在桌面实验中实现一个非常微小的成功案例,那就是在1000万分之一的尺度上形成一个极微小的时空扰动。”当将他的实验和真正意义上的曲率驱动相比时,怀特将自己的实验评价为“粗陋不堪”,但是他仍然认为这代表迈出了令人兴奋的第一步。  其他科学家对此也持有开放性的态度,他们表示,如果人类真的想认真考虑星际航行的可能性,那么就必须考虑哪怕现在看起来是最离奇的想法,比如曲率驱动。奥伯塞表示:“如果人类真的想最终变为星际文明,那么我们就必须适当地让我们的思维跳出框框,我们必须大胆一些。”(晨风)

  • 【技术@创新】物理学家控制电子束能量不再是难题

    通常的粒子加速器有几个房间那么大,但法国物理学家最近制造出一种粒子加速器,大小如同一张餐桌。 研制该加速器的负责人、法国帕莱索技术研究所的维克托• 马尔卡自豪地说: “对加速器物理学来说,美梦成真啦。”他说,除了体积小外,桌面型粒子加速器的另一优点是,其中的电子束能量比较容易控制。 研制桌面型粒子加速器的一大难点是,尽管向等离子体注入激光束可以制造强大的电场,使电子在相对短的距离内加速到高能量,但要控制电子束能量却很难。 据最新一期《自然》杂志报道,马尔卡领导的研究小组通过加入第二束激光解决了这个问题。两束激光在相交点创造了一种稳定的波,进而使电子加速到所需要的能量。至于控制电子束能量的方式,可以通过微调激光实现。 马尔卡说:“有了两束激光,你就可以调整参数。比如,要获得高达300兆电子伏的能量很容易,只要按一下按钮就行了。” 马尔卡等人研制出的这种小型装置的能量,与一个房间大小的加速器的能量差不多。但这种装置还未完全成熟,目前也只能给电子加速。 物理学家研制粒子加速器的初衷是借此研究神秘的宇宙本性,但现在已扩大应用至医疗等领域。专家说,马尔卡等人开发的新技术最终会被用来制造桌面型医用X射线设备。 来源:科技日报

  • 美理论物理学家研究发现宇宙暴涨论经不起推敲

    请暂把庆祝的香槟放回冰箱 理论物理学家质疑宇宙暴涨直接证据 科技日报讯 就在一个星期前,美国哈佛—史密森天体物理学中心等机构组成的联合研究团队宣布在南极通过BICEP2望远镜在宇宙微波背景辐射中捕捉到宇宙原初引力波的重大消息,在科学界犹如掀起了一场风暴。然而,一些理论物理学家建议庆祝的人们最好先把刚从冰箱里拿出的香槟放回,至少现在是这样。 据物理学家组织网3月25日报道,理论物理学家和宇宙学家詹姆斯·登特、劳伦斯·克劳斯和哈什·马瑟在收集物理学等论文预印本的arXiv网站提交的一份简短论文(编号:1403.5166)中指出,虽然BICEP2项目联合团队的调查结果具有开创性,但尚未排除观察到的B型偏振模式的所有可能的非暴涨源的可能性,和以标量密度扰动张量模式的动力比率。” 登特、克劳斯和马瑟表示,“然而,尽管在统一大尺度规模的暴涨毫无疑问是这种原始波的最佳动力源,但在声称确定暴涨已被证明之前,重要的是当前BICEP2数据对其他可能的来源尚无法解释。” 暴涨很可能是原因,然而也有一种可能性,在遥远的地方,其他一些后来的宇宙事件至少没有被BICEP2全部测量到。 并非有意要取消对这次重大发现的庆祝活动,登特、克劳斯和马瑟也赞扬了BICEP2的研究结果在物理学当中的宝贵价值,他们表示,“无论暴涨与整个BICEP2发现的信号是否有直接联系,以及宇宙学现有数据的强烈暗示,这些发现将对超出标准模型对驱动物理学发展非常重要。” 他们说,如果有谁对于这次质疑想要获得更详细的信息,将被邀请阅读相关研究团队的论文,以及在物理学的arXiv博客上的一篇补充文章。 他们表示,为了更好地进行科学工作,无论其含义是多么诱人,在被视为决定性的结果之前,一定要经得起其他可能性的推敲。这不是一场受人欢迎的竞赛,也不是选美比赛和竞选。经过详细的审查,这只是科学家行为的一个例子。所以,还是让香槟保持冷藏。(华凌)来源:中国科技网-科技日报 作者:华凌 2014年03月27日

  • 【分享】T著名物理学家 约瑟夫.汤姆孙

    中文名称: 约瑟夫.汤姆孙   外文名: Jospeh John Thomson   生卒年: 公元1857~1940年   故居: 英国,曼彻斯特,齐山姆   洲: 欧洲   国别: 英国   省: 曼彻斯特   约瑟夫.汤姆孙,也译做作约瑟夫.汤姆生,英国物理学家。1856年12月8日生于英格烂曼彻斯特郊区齐山姆的一个书商家庭。他的父亲从自己的亲身经历中深刻认识到没有知识的苦处,便发誓要教子成材,请了家庭教师指导儿子的学习。14岁进入曼彻斯特大学欧文学院学习。不久父亲病逝,只能靠微薄的奖学金维持学业。1874年,他年方18岁,便在物理学家B.史迪华指导下完成了第一篇科学论文《绝缘体之间接触电的实验研究》。1876年考试合格,被保送到剑桥大学,成为剑桥大学三一学院的数学研究生,1880年毕业于剑桥大学并留校,次年便成为三一学院研究员,此后便在剑桥度过一生。由于对完全不同压缩流体中两个闭合旋涡相互作用的研究成果,1883年他获得亚当斯奖金,因而当年升任讲师。1884年春被选为英国皇家学会会员,随后转入卡文迪什实验室工作。1884年12月他完成精确测定电量的静电单位与电磁单位两数值之比(结果为2.997×10-10cm/s)等实验研究,即被剑桥大学评选委员会评选为卡文迪什实验室教授,接替瑞利的主任职位;1905年接替瑞利担任皇家学院自然哲学教授。因为发现了电子,汤姆孙获得了1906年的诺贝尔物理学奖。1911~1913年任英国皇家学会副会长,1915~1920年任会长。1918年起担任三一学院院长,1919年他辞去卡文迪什实验室教授的职位,推荐他的学生E.卢瑟福继任,而自己留在实验室继续进行研究工作,指导青年研究生长达21年, 1940年8月30日汤姆孙在剑桥逝世。享年84岁。他的遗体和牛顿、达尔文和开尔文等著名学者一起安放在伦敦市中心的威斯敏斯特教堂。研究领域:物理学1、在气体放电领域的研究和发现汤姆孙在物理学上最重要的贡献是发现了电子的存在。1897年通过对阴极射线的研究,测定了电子的荷质比,从实验上发现电子的存在,这一发现标志着人类对物质结构的认识进入了一个新层次。后来有发现电子的许多性质,指出电子既象气体中的导电体,又像原子中的组分。还同阿斯顿合作,找到有力证据证明元素气体氖至少有两种不同重量的原子。1912年,通过对某些元素的极隧射线研究,指出存在同位素。2、发明质谱方法,后经同时在卡文迪什实验室工作的F.阿斯顿的改造和完善,发展成今天的质谱仪。3、汤姆孙的第一篇重要论文,是关于麦克斯韦电磁理论在带电球的远动中的应用,文中指出,带电球可以具有由电荷产生的表现附加质量,其大小与静电能量成正比。这是想爱因斯坦著名的质能等价定律迈出的第一步。作品:1、《动力学在物理和化学中的应用》(1886年)2、《电磁学数学理论基础》(1895年)3、《气体导电》(1903年)4、《光结构》(1907年)5、《电子和化学》(1923年)曾获奖项:1、1883年获得亚当斯奖金2、1906年获诺贝尔物理学奖3、1908年被封为勋爵4、1912年获梅里特勋章5、此外,还获富兰棵林奖章、道尔顿奖章和法拉第奖章等

  • 【趣谈-转】10大物理学家VS足球10大巨星

    一、伽理略——斯蒂法诺   斯蒂法诺是足球史上第一位绝对巨星。同样,在人类历史上伽理略可以称为第一位真正意义上的物理学家,甚至是物理学的开创者。第一位不一定是最好的,但一定是最早的。没有斯蒂法诺,足球也许要晚上好多年才能展现它的魅力。没有伽理略,物理学也许要晚上上百年才能出现在这个世界。他们将物理学和足球发展成为日后科学界和体育运动中最精彩的领域,是第一位大师!   二、牛顿——贝利   如果问谁是人类历史上最有影响力的科学家,答案非牛顿莫属。牛顿对人类文明进程的贡献是不言而喻的。他的出现,开创了工业文明,他改变了全人类的命运。上帝说:“人类需要光明!”于是牛顿诞生了。上帝又说:“人类需要精彩的足球!”于是贝利诞生了。“球王”的称号说明了一切。足球场上的王者让10号球衣从此不同于其他号码,巴西足球从此成为世界之王。   晚年的牛顿,一改年轻时性格,在追逐名利同时伤害了很多人。晚年的贝利,更凭着一涨乌鸦嘴坑苦了很多球队,这真是让人接受不了的反差。   三、法拉第——贝肯鲍尔   刻苦工作,尽职尽则。不是天才,却依靠更大的努力取得和天才一样的成就。科学上的法拉第,足球上的贝肯鲍尔,有着同样坚强的毅力和不屈的性格。在所有都认为法拉第的实验不会有结果时,他却日以继夜地坚持到了最后,成为第一个证明电磁现象统一的人。当74年世界杯决赛上克鲁伊夫开场便入一球,另全世界都对德国队失去信心的时候,贝肯鲍尔依然信心百倍第领着全队稳扎稳打,以弱胜强,最终从强大的荷兰人手中抢走了第一个大力神杯。   四、麦克斯韦——克鲁伊夫   如果说第一次科技革命是由牛顿开始,经过瓦特等人的发明而出现,那么第二次科技革命的开创者无疑是麦克斯韦。在法拉第实验启发下,麦克斯韦凭借优异的数学基础和敏锐的思维在理论上统一了电和磁,并发现了电磁波的存在,成为继牛顿以后最伟大的物理学家。而在足球世界里,开创第二次足球革命,统一了进攻与防守的伟大球星便是克鲁伊夫。高超的球技,高尚的人格魅力,让他成为继贝利之后最伟大的球星。麦克斯韦方程组,克鲁伊夫的全攻全守,他们分别把物理学和足球运动抬上了一个更高的高度。漂亮的妻子,浪漫的爱情,更增添了两位巨星的共同点。   五、普郎克——普拉蒂尼   在物理学界普郎克的名字是家喻户晓的。除了他那知名的黑体辐射公式开创了现代物理学的核心——量子力学外,他在行政领域上对德国乃至全世界物理学的贡献同样不可估量。爱因斯坦,海森堡,波恩等巨匠均离不开他的支持和提拔。同样,在足球场上,普拉蒂尼是当之无愧的巨星,80年代初期欧洲头号球员。在球场外,身位世界足联重要官员的他更是为足球运动的发展作出了不可磨灭的贡献。当德国人把贝肯鲍尔比喻为足球界的恺撒大帝时,法国人便可自豪地把普拉蒂尼比喻为足球界的拿破仑。   六、爱因斯坦——马拉多纳   足球需要天才,物理学同样需要天才。很难说牛顿和爱因斯坦谁更出色,谁是物理学试上的NO.1。同样也很难说贝利和马拉多纳谁更厉害,谁是足球史上的NO.1。天才不同于常人,他们有着超强的能力,更有着叛逆的性格,他们是各自领域创造力的源泉。爱因斯坦一个人就可以开创并支撑起物理学一个全新的领域,去触及宇宙最深层次的奥秘。马拉多纳一个人的出色发挥,就可以让一支自己所在原本平庸的球队变得天下无敌。这一点,也许只有他们那样天才中的天才才可以办到。   作为各自领域最知名的人物,同时又成为各自时代整个世界最知名的人物,他们两人的辉煌无疑成为各自事业的最顶峰。除非日后出现更为神奇的天才,否则他们将永远是后人不可逾越的高度。   七、玻尔——马特乌斯   爱因斯坦曾说:“我一生中最好的朋友和对手是同一个人——尼尔斯.玻尔。”而马拉多纳在其自传中评价马特乌斯只用一句话:他是我一生中最棒的对手。能与各自领域最伟大的天才成为对手并互有胜负,这种荣誉有些太奢侈了。玻尔和马特乌斯不是天才,却把自己变成了天才。玻尔所创建的哥本哈根研究院如同马特乌斯所率领的德国队,是各自时期物理学和足坛上最强大的一支力量。与爱因斯坦和马拉多纳相比,他们唯一不足也许就是依靠多人的力量才可以战胜天才。如玻尔身边的薛定谔、海森堡等,马特乌斯身边的克林斯曼、布雷莫、沃勒尔等。他们与天才中的天才只差那么一点点,仅此而已。   八、费曼——范.巴斯滕   爱因斯坦过世后,过了很多年才出现一位被誉为天才的物理学家——里查德.费曼。高超的思维技巧和惊人的计算方法使他当之无愧地成为爱因斯坦与玻尔的继承者。而在足坛上,马拉多纳光辉暗淡后那段日子里能与费曼计算同样精彩的只有一个——范.巴斯滕的进球。如果说马拉多纳是为足球而生,那么巴斯滕便是为进球而生。高大的身躯配合着细腻的脚下工夫,造就了最完美的锋线杀手。   英年早逝有是两人一个共同特点。巴斯滕不到30岁便因伤永远告别了绿茵场,费曼在没有过多享受自己荣誉的同时就离开了人世,令人惋惜。   九、霍金——巴乔   有一种天才,拥有着超越常人的灵性和魅力,却必须承受着超越常人的挫折与苦难。然而他们更是以超越常人的勇气与毅力去和自己悲惨命运抗争。在物理学殿堂中,这位天才是史帝芬.霍金,在球场上,这位天才就是罗伯特.巴乔。巴乔留给全世界最宝贵的并不是那一粒粒精彩的进球,而是世界杯决赛时打丢点球那一刻在巴西人狂欢映衬下那个草地上久久没有移动的沉默身影。霍金给人最深的震撼也不是关于宇宙起源和黑洞性质的那一个个辉煌成果,而是坐在轮椅上用枯木般的手指吃力地敲打键盘去写下一个又一个充满智慧的字母。他们代表的早已不是物理学和足球,而是一种精神,一种面对苦难命运毫无惧色,拼死抗挣的精神。胜利可以带给你欢乐,苦难却能带给你生命的意义,这就是霍金和巴乔所给予我们的启迪,给予我们的财富。   十、威藤——齐达内   在这个物欲横流,急功近利的时代,研究理论物理的人已是凤毛麟角。而在理论物理中,最为优美却最难理解,却又最有可能沿着爱因斯坦的遗愿揭示宇宙最本质奥秘的领域叫做超弦理论。身为历史系毕业生的爱德华.威藤义无返顾地走上了这样一条路,如今领导着全世界超弦理论的研究。同样在足球日趋功利的时代,齐达内这样的球员已不多见。有人说他是最后一个10号。现役球员中也只有齐达内的控球技术及步伐如同超弦理论那样优美的引人入胜。他们是各自领域的异类,却是各自领域的大师。但愿他们不是一个结束,而是一个开始,几个反璞归真的开始。

  • 著名物理学家赵景员教授逝世 享年94岁

    著名物理学家赵景员教授逝世 享年94岁http://news.sciencenet.cn/upload/news/images/2011/10/2011101113151950.jpg中国共产党优秀党员,物理学家、教育家赵景员教授因病医治无效,于2011年9月21日5时16分在天津逝世,享年94岁。9月30日,赵景员教授遗体告别仪式在天津市第一殡仪馆举行。赵景员教授1917年6月生于河北省遵化县,1933年考入天津扶轮中学高中,1938年考入燕京大学物理系,1947年受聘于南开大学,历任南开大学物理系基础物理教研室主任、固体物理教研室主任、系副主任等职务,1979年加入中国共产党,1981年10月担任南开大学教务长,1984年8月起先后担任南开大学科技发展总公司副总经理、总经理、董事长职务,1984年9月至1989年2月兼任高等教育研究室主任职务。他还曾兼任中国物理学会常务理事、天津市学会理事长、天津市青少年科技辅导员协会理事长、天津市科协科普工作委员会委员等多项全国和天津市社会职务。赵景员教授在近四十年的教学一线工作中。他所著《热力学》和受教育部委托与人合著的全国统编教材《力学》等被评为全国优秀教材受到推广。在担任教学工作的同时,他还开展了金属强度、晶体缺陷等方面的研究工作。他治学严谨、教学认真,要求学生善于思考,鼓励学生勇于提出问题。他讲课条理分明、逻辑严密、着重哲理、语言生动。他在课上课下为人师表,与同学亲切交流,深受同学热爱。他培养的许多毕业生已成为物理学界有成就的专家。在南开大学工作期间,赵景员教授还投入大量精力从事行政管理工作。他担任南开大学教务长期间,负责领导全校的教学工作,他提出尽快实行学分制,加强基础学科,发展边缘学科,允许学生转系、转专业,这些主张对当时学校的教学指导思想转变起到了催化作用,对南开大学教学管理改革起到了重要的推动作用。他任南开大学科技发展总公司期间,公司建立了电子、应用化学和新材料等三个领域的研究所及戈德防伪技术公司和津科、南高两个中外合资公司。赵景员教授在中国物理学会中作出了突出的贡献,并为华北地区、天津市物理教学研究、交流、青少年科技教育、科学普及做了大量卓有成效的工作。他热心参加科技群众团体工作,多次荣获“天津市科协工作积极分子”称号。赵景员教授一生忠诚党的教育事业,他为人师表,关爱后学,教书育人,桃李天下,为国家培养了大批高层次专门人才;他脚踏实地,推功挽责,委贤让能,在不同历史时期在不同的工作岗位上默默奉献,为南开大学的发展稳定做出了突出贡献;他与时俱进,主动适应国家经济社会发展需要,身体力行地积极推动国家科学技术工作的建设与发展;他淡泊名利,胸怀坦荡,高风亮节,得到广泛的认可和尊重。

  • 物理学家探测到罕见粒子衰变 或颠覆超对称理论

    2012年11月14日 来源: 新浪科技 作者: 晨风 http://www.stdaily.com/stdaily/pic/attachement/gif/site2/20121114/2c27d720c896120d3fe024.gif粒子物理学中的标准模型http://www.stdaily.com/stdaily/pic/attachement/png/site2/20121114/2c27d720c896120d3fe025.png一个Bs介子衰变成为两个μ介子,这种现象极其罕见 新浪科技讯 北京时间11月14日消息,据英国广播公司(BBC)报道,物理学家们近期探测到了自然界中最罕见的粒子衰变现象之一。这项发现对于现行的物理学理论,即超对称理论将是一项重大打击。 超对称理论之所以获得流行,是因为它很好地构成了对现有描述亚原子粒子性质的标准模型的修正。它可以解释标准模型中存在的一些缺陷。而近日在日本京都举行的强子对撞机物理学会议上研究人员们报告的一项发现和超对称理论的诸多最可能的模型不符,研究人员们将于近期发表有关这一结果的论文。 克里斯·帕克斯(Chris Parkes)教授是英国参与大型强子对撞机项目部分的发言人,他告诉BBC新闻称:“超对称理论或许还不至于立即死掉,然而近期的这项观测结果确实足以让它进医院了。” 超对称理论预言现在已经被探测到的这些粒子都还存在着质量更大的版本。如果这些粒子能够被找到,那么它将可以帮助解释诸如暗物质等一些现象。观察显示星系边缘部分的旋转速度太快了,是无法用星系中我们见到的这些物质的量去解释的,因此科学家们认为是暗物质提供了额外的引力作用。然而他们找不到暗物质存在的踪迹,他们认为超对称粒子可能就是构成暗物质的一种可能候选者。 然而大型强子对撞机项目的研究人员们这次则是扎扎实实地给了对于希望发现这类超对称粒子的人们一个沉重打击。 研究人员测量了一种被称为“Bs介子”的粒子衰变成为两个μ介子的过程。这是人们首次观察到这种现象。事实上研究人员们计算指出这种粒子每10亿年才会发生3次这种衰变。 假如超对称粒子存在,那么这种衰变的发生应该要频繁得多。这项实验是检验超对称理论的试金石之一,然而这项观察结果似乎暗示,这一物理学界的主流理论事实上可能是错误的。 这项实验结果的置信区间是3.5Σ,这意味着其中存在着1/4300的可能性这一结果是错误的,实验小组观察到的是假信号,也就是说衰变并没有发生,但是他们恰好在数据中看到了一个同样的信号。这一置信度让这项研究结果值得进行进一步的探讨,而一旦置信度达到或超过5Σ,那么此时就可以将这一结果作为一项发现予以发布。 凡·吉布森(Val Gibson)教授来自英国剑桥大学的LHCb小组,他说这项实验结果让他身边研究超对称理论的同事们“坐立不安”。 事实上如果遵循标准模型,是可以自然地推知这项结果的。之前便已经有物理学家指出,如果存在超对称粒子,那么项目进行到这个时候,大型强子对撞机上的探测器应该已经探测到了,但事实是并没有探测到这样的粒子。 而如果超对称理论并非暗物质的最终答案,那么理论物理学家们将不得不重新寻找替代方案来解释现有标准模型中的不足之处。而到目前为止,那些致力于寻找“新物理”的研究人员们都前前后后的钻进了死胡同。 英国剑桥大学的物理学家马克-奥利弗·巴特勒(Marc-Olivier Bettler)博士是此次实验项目的数据分析组成员,他表示:“如果新的物理学存在,那么它一定就隐藏在标准模型的身后。” 此次研究结果并不能彻底排除超对称粒子存在的可能性。不过按照帕克斯教授的看法,“这一新的物理学的躲藏之处正变得越来越少”。 然而超对称理论的支持者们,如伦敦国王学院的约翰·艾里斯(John Ellis)教授,他们认为这项观察结果“事实上是符合超对称理论的”。他说:“事实上,在一些超对称模型中这是预料之中的。对于这样的探测结果,我晚上可没有因此睡不着觉。”(晨风)

  • 物理学家提出新理论支持循环宇宙模型

    物理学家提出新理论支持循环宇宙模型

    http://ng1.17img.cn/bbsfiles/images/2011/07/201107171134_305283_1609805_3.jpg我们的宇宙正处于加速膨胀过程之中,现在理论物理学家进一步提出,这种膨胀速率可能将达到非常极端的程度,甚至将导致亚原子粒子被撕裂,形成所谓的“大撕裂”

  • 物理学家研发新型时钟 用称重原子的方式计时

    2013年01月18日 来源: 搜狐科学 作者: 尚力 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130118/2c27d720c8961262d6500e.jpg新型时钟用称重原子的方式计时 【搜狐科学消息】据国外媒体报道,物理学家近日表示,一种新型的时钟可以通过称重原子的方式计时。和标准的原子钟相比,它的工作原理有着很大的不同,这种新型时钟能更加精确地记录时间。 标准的原子钟利用了原子吸收电磁辐射这一原理,如某些特定频率的光,它的内部结构可以从一个量子态跳跃到另一个量子态。该时钟本质上就是将原子暴露在辐射中找到这种频率的辐射,然后随着时钟滴答声一直不停工作。 原子钟可以很好的保持官方世界时间的精确度,一亿年内的误差小于1秒。 美国加州大学伯克利分校的物理学家霍尔格-穆勒说,以另一种方式记录时间应该是可行的。任何大规模粒子以量子波的形式描述时都是上下振荡的,即使粒子并没有移动。原子的质量越重其振荡的频率越高,这被称作康普顿频率(Compton frequency)。依此原理,量子振荡可以用在记录时间上。 而事实上,原子的康普顿频率相当之高,高到无法用任何电子计数器测量,美国加利福尼亚大学伯克利分校的博士后研究员蓝劭宇(Shau-Yu Lan)和他的同事采用先进技术构建了一台基于单个铯原子的原子钟,这台设备能够将这个原子超高的天然频率拆分成更容易测量的量。 研究人员最终测出了一个铯原子的康普顿频率,以这个频率为基础,研究人员构建了一台只用到了单个原子的原子钟。(尚力)

  • 愚人节大散分!关于物理学家的电影电视剧,你知道多少?有看过多少?

    最近的美剧《生活大爆炸》很火,更是请到了霍金加入到新的剧集中,其实物理学家的生活也是很有趣的。Leonard和Sheldon还有两个好朋友。自认为是花花公子的Howard Wolowitz,他称自己是加州理工学院的"卡萨诺瓦"(1725-1798,意大利冒险家,以所写的包括他的许多风流韵事的《自传》而著称,后来该词被引申为"风流浪子,好色之徒"),能用六种语言泡妞,参与负责美国的火星探索计划(喜欢邀请看上的女孩去火星兜风,也因此在第二季引发一场事故,遗憾地与“火星生命发现者”的称号失之交臂),其实Howard不过是个喜欢拿一些过时的手段把妹的家伙,很多时候他的把妹手法都让对方感到恶心。来自印度的 Rajesh Koothrappali 患有严重的“与异性交往障碍症”,有异性在场的时候他就无法说话,只有在喝醉以后(ps:心理障碍)才能自在地与女孩交流。 一个美女和四个科学阿宅的故事就这样在笑声中悄然开始上演……除了《生活大爆炸》之外,国内也推出了钱学森的传记片电影《钱学森》,电影讲述了钱学森从留学美国到归国,为祖国建立起导弹事业的故事。在2009年,有一部电影《爱因斯坦与爱丁顿》,讲述的是爱因斯坦提出了狭义相对论,而爱丁顿帮忙证实的故事。在一战阴云密布,德国英国相互对立的时刻,物理学家们为了科学的进步,摒弃国家的概念,相互合作的事情。1943年的电影《居里夫人》。 剧情从波兰女学生玛莉到巴黎求学开始,她因为跟退休科学家皮埃尔居里共享一个实验室而日久生情,后来结为夫妇。同时他们继续从事科学实验,多年后发现了“镭”,因而成为世界知名的科学家,但居里先生却在领奖前因车祸丧生。 幕后花絮 著名科学家居里夫人的传记片。曾合演《忠勇之家》的男女主角在大受欢迎之后再度合作。作为一部科学家的传记,本片写得颇具智能,对白更富有幽默感,使全片看来毫不沉闷。坛友http://image.instrument.com.cn/bbs/UserOnline.asp?username=yu3226033yu3226033推荐《霍金的宇宙世界》剧情:斯蒂芬·霍金,是本世纪享有国际盛誉的伟人之一,出生于伽利略逝世周年纪念日,剑桥大学应用数学及理论物理系教授,当代最重要的广义相对论和宇宙论家。70年代他与彭罗斯一道证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想家和最杰出的理论物理学家。他还证明乐黑洞得面积定理。霍金的生平是非常有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一。他担任的职务是剑桥大学有史以来最为崇高的教授职务,是皇家学会会员。尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到广袤的时空,去解开宇宙之迷。本剧集共六集一、眼见为实 Seeing is Believing二、大爆炸 the Big Bang三、宇宙炼金术 Cosmic Alchemy四、黑暗四周 On the Dark Side五、黑洞 Black holes and Beyond六、终极答案 an Answer to Everything大家还有什么都可以畅所欲言,前100都有分哦!发完之后我会把这个帖子总结一下,看看能不能找到下载地址!

  • 【分享】B原子物理学家 尼尔斯玻尔

    中文名称: 尼尔斯玻尔   外文名: Bohr,Niels   生卒年: 公元1887--1962   洲: 欧洲   国别: 丹麦   省: 哥本哈根   尼尔斯玻尔(Bohr,Niels)1887年10月7日生于丹麦首都哥本哈根,父亲是哥本哈根大学的生理学教授.从小受到良好的家庭教育。玻尔还是一个中学生时,就已经在父亲的指导下,进行了小型的物理实验。1903年进入哥本哈根大学学习物理,1907年,根据著名的英国物理学家,诺贝尔奖获得者瑞利的著作,玻尔在父亲的实验室里开始研究水的表面张力问题。自制实验器材,通过实验取得了精确的数据,并在理论方面改进了瑞利的理论,研究论文获得丹麦科学院的金奖章。1909年获科学硕士学位,1911年,24岁的玻尔完成了金属电子论的论文,从而在哥本哈根大学取得了博士学位。他发展和完善了汤姆生和洛伦兹的研究方法,并开始接触到普朗克的量子假说。论文答辩之后,他起初在英国剑桥大学汤姆生领导下的卡文迪许实验室工作,由于对卢瑟福的仰慕,又在曼彻斯特大学的卢瑟福实验室工作了4个月。当时正值卢瑟福提出了他的原子核式模型.人们把原子设想成与太阳系相似的微观体系,但是在解释原子的力学稳定性和电磁稳定性上却遇到了矛盾.这时玻尔开始酝酿自己的原子结构理论。玻尔早在大学作硕士论文和博士论文时,就考察了金属中的电子运动,并明确意识到经典理论在阐明微观现象方面的严重缺陷,赞赏普朗克和爱因斯坦在电磁理论方面引入的量子学说。玻尔回到哥本哈根以后,在1913年初根椐卢瑟福的原子模型发展了对氢原子结构的新观点。在卢瑟福的帮助下他的一篇《论原子和分子结构》的长篇论文,于1913年分三次发表在《哲学杂志》上。玻尔在这篇幅著作中创造性把卢瑟福、普朗克和爱因斯坦的思想结合起来了,把光谱学和量子论结合在一起了,提出了量子不连续性,成功地解释了氢原子和类氢原子的结构和性质。此论文被他的学生罗森菲尔德誉为“伟大的三部曲”。1913年9月,经福勒的助手伊万斯所做的实验证实,玻尔的说法是正确的,这使玻尔的理论经受了一次实践的考验,并在整个物理界取得了"轰动性的效果"。1916年玻尔接受哥本哈根大学理论物理讲席,1920年哥本哈根大学根据他的倡议,成立了一个理论物理研究所,他担任所长,玻尔担任这个研究所的所长达四十年,起了很好的组织作用和引导作用。在他的周围聚集着许多有为的青年理论物理学家,如海森堡、泡利、狄拉克等。他们互相磋商,自由讨论,不断创新,最后发展成了有名的“哥本哈根学派”。1921年,玻尔发表了“各元素的原子结构及其物理性质和化学性质”的长篇演讲,阐述了光谱和原子结构理论的新发展,诠释了元素周期表的形成,对周期表中从氢开始的各种元素的原子结构作了说明,同时对周期表上的第72号元素的性质作了预言。1922年,发现了这种元素铪,证实了玻尔预言的正确。1922年玻尔获诺贝尔物理学奖。二十世纪30年代中期,玻尔提出了原子核的液滴模型,对由中子诱发的核反应作出了说明,相当好地解释了重核的裂变。1943年,玻尔从德军占领下的丹麦逃到美国,参加了研制原子弹的工作,但对原子弹即将带来的国际问题深为焦虑。1945年二次大战结束后,玻尔很快回到了丹麦继续主持研究所的工作,并大力促进核能的和平利用.1962年11月18日,玻尔因心脏病突发在丹麦的卡尔斯堡寓所逝世,享年75岁。相关研究领域:原子物理核反应理论相关作品:《论原子和分子结构》《各元素的原子结构及其物理性质和化学性质》相关奖项:1、获得丹麦科学院的金奖章2、1922年玻尔获诺贝尔物理学奖。

  • 物理学家首次演示水波“逆时传播”

    表明波物理学中普遍存在着逆时对称性2012年08月25日 来源: 中国科技网 作者: 常丽君 中国科技网讯 多年来,科学家一直在广泛研究声波、弹性波、电磁波的逆时传播而未能成功。据物理学家组织网8月23日报道,最近,一个来自法国巴黎高等物理化工学院和法国国家科学研究院(CNRS)的研究小组首次成功演示了水波的逆时传播。研究人员指出,实验证明要产生高质量的逆时水波是可行的,这些发现为海洋基础应用奠定了基础。相关论文发表在最近出版的《物理评论快报》上。 逆时水波并不是把水波送回过去,而是从一个源头发出水波,在介质传播一段距离后,再发出水波使其能返回到源头位置,就像波向后倒回来一样。波返回源头的路径是精确遵循它最初传播的路径,用数学表达就是一种时间反向。 研究人员解释说,水波虽然普通而且易于观察,却比声波、弹性波和电磁波更加复杂。因为水波会由于小区域内的阻碍而分散,还有流体粘稠性、与容器壁摩擦力等因素会减小振幅。尽管已经有不少理论研究,还从未用水波来做过逆时实验。 实验中,他们在一个53×38立方厘米的水箱里注入了10厘米深的水,在水箱中央用一个垂直振动器做制波器,此处作为源点,并选择了6个不同位置来记录波高,然后再次发出水波,使波纹重新汇聚于源点。实验成功地实现了水波重聚。“检测了衍射波之后,我们选择一些点测量时间信号,用可逆时间数字表示。”论文合著者、CNRS科学家亚当·普拉德卡说,“然后我们用圆锥制波器上下振动,向系统输入能量以产生波纹。” 为了克服耗散,他们利用了水箱边界的多重反射将阻力衰减最小化,以提高最初波和逆时波的相似性。并利用傅立叶变换轮廓术(FTP)精确检测了波的表面高度,重新构建了不同时刻的波面立体图。 “逆时波确实重聚返回到它的源点。尽管水波有着耗散的性质,由水箱边界传来的多重反射信号还是足够强,能有效进入逆时波并产生了更好的聚集效果。”论文合著者、CNRS科学家马赛厄斯·芬克说,“尽管我们做的是水波逆时实验,但研究表明波物理学中普遍存在着逆时对称性,它适用于任何类型的波:地震波、声波、电磁波、水波等。利用这一理论,可以构建任何坚固设备的逆时镜像。” “复杂介质的任何区域都很容易聚集逆时水波,这一点在海港水波控制方面有很多应用。”芬克说,“比如在一个海港中,由于建筑性干扰及其潜水结构的外观,使得某个水区经常产生高振幅波,可以利用一套浸入海中的振动制波器在外面聚波以形成波场,从而达到消波的目的,就像声学中的抗噪音技术。此外,还可以利用逆时波消除运动船只的航行尾迹,这种消航迹的方法还能在水面上远距离牵引一条船或一个固体结构。”(常丽君) 《科技日报》(2012-08-25 二版)

  • 【分享】A著名理论物理学家,相对论的创立者----阿尔伯特爱因斯坦

    【分享】A著名理论物理学家,相对论的创立者----阿尔伯特爱因斯坦

    [img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704181526_49094_1643735_3.jpg[/img]Albert Einstein,1879年3月14日出生于德国乌尔姆-1955年4月18日逝世于美国普林斯顿,著名理论物理学家,相对论的创立者,1921年诺贝尔物理学奖获得者。生平20世纪最伟大的物理学家阿尔伯特爱因斯坦1879年3月14日出生在德国西南的乌耳姆城,一年后随全家迁居慕尼黑。爱因斯坦的父母都是犹太人,父亲赫尔曼爱因斯坦和叔叔雅各布爱因斯坦合开了一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工厂。母亲玻琳是受过中等教育的家庭妇女,非常喜欢音乐,在爱因斯坦六岁时就教他拉小提琴。爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真的思考。在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。这种深刻和持久的印象,爱因斯坦直到六十七岁时还能鲜明的回忆出来。爱因斯坦在念小学和中学时,功课属平常。由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。教他希腊文和拉丁文的老师对他更是厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。”而且因为怕他在课堂上会影响其他学生,竟想把他赶出校门。爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,爱因斯坦的父亲则负责商业的往来。雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。在叔父的影响下,爱因斯坦较早的受到了科学和哲学的启蒙。父亲的生意做得并不好,但却是一个乐观和心地善良的人,家里每星期都有一个晚上要邀请来慕尼黑念书的穷学生吃饭,这样等于是救济他们。其中有一对来自立陶宛的犹太兄弟麦克斯和伯纳德,他们都是学医科的,喜欢阅读书籍、兴趣广泛。他们被邀请来爱因斯坦家里吃饭,并和羞答答、长着黑头发和棕色眼睛的小爱因斯坦交成了好朋友。麦克斯可以说是爱因斯坦的“启蒙老师”,他借了一些通俗的自然科学普及读物给他看。麦克斯在爱因斯坦十二岁时,给了他一本施皮尔克的平面几何教科书。爱因斯坦晚年回忆这本神圣的小书时说:“这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。这种明晰性和可靠性给我留下了一种难以形容的印象。”爱因斯坦还幸运地从一部卓越的通俗读物中知道了自然科学领域里的主要成果和方法,科普读物不但增进了爱因斯坦的知识,而且拨动了年轻人好奇的心弦,引起他对问题的深思。爱因斯坦十六岁时报考瑞士苏黎世的联邦工业大学工程系,可是入学考试却告失败。他接受了联邦工业大学校长以及该校著名的物理学家韦伯教授的建议,在瑞士阿劳市的州立中学念完中学课程,以取得中学学历。1896年10月,爱因斯坦跨进了苏黎世工业大学的校门,在师范系学习数学和物理学。他对学校的注入式教育十分反感,认为它使人没有时间、也没有兴趣去思考其他问题。幸运的是,窒息真正科学动力的强制教育,在苏黎世的联邦工业大学要比其他大学少得多。爱因斯坦充分的利用学校中的自由空气,把精力集中在自己所热爱的学科上。在学校中,他广泛的阅读了赫尔姆霍兹、赫兹等物理学大师的著作,他最着迷的是麦克斯韦的电磁理论。他有自学本领、分析问题的习惯和独立思考的能力。

  • 物理学家通过研究光量子发现制约时空新条件

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120113/2c27d720c896107a1fef0f.jpg两个十分特殊的光量子【搜狐科学消息】据国外媒体报道,来自美国密歇根州科技大学的罗伯特-雷米洛夫(Robert Nemiroff )和他的同事组成的研究小组,近日一直在致力于研究一种光量子,它已随着一束名为“GRB”γ射线(科学家在1989年有过跟踪记录)的出现,在宇宙中穿梭了有70亿光年之远的距离。而恰是这些光量子,成为了新的制约时空的关键要素。据了解,“GRB”射线在爆发时释放出了一些高能量光量子,继而这些光量子就以光的速度开始了在宇宙中的穿梭旅行。而这些光量子的其中两个吸引了物理学家的关注,物理学家认为,这两个光量子几乎在相同的时间中留下了同一个空间,也就是说这两个光量子在同样的时间点到达了同一个地方。而这并不是因为时空的团块结构,或者它们穿梭了很长的距离,因此十分神秘。研究人员从理论上对此现象进行解释,他们认为,这种现象也许是因为一种光量子的高能时标,而随着光量子在宇宙中的分散,对速度和光的能量依赖就恰好出现了一个新的上限。与此同时,研究人员在研究中发现,由于对这两个光量子抵达时间的测量存在差别,因此实际上会给时空团块结构的新制约条件带来了一定的影响。正是因为如此,当光量子仅有普朗克长度的500分之一时,时空的结块结构就变得十分有意义了。因为,这样就会给量子重力理论加上一些新限制。而耶鲁大学的研究人员根据最近研究表示,,虽然这些光量子的体积非常的小,但是它们在宇宙中穿梭的速度却与事实上所记录的速度有很大差别。由于关于科学家对光量子现象的不同研究,因此来自不同领域的科学家也推理出不同观点,有些科学家认为,也许随着光量子的逐渐清晰,事实上时空也不会再继续。而相反,这些光量子的体积却小的惊人,它们的组成元素则就更加微小了,经研究测量,它们的组成元素也许仅有10-35普朗克长度。从该理论来看,光量子不仅拥有着十分高的能量,同时还有着近似普朗克长度的波长。这就意味着,这些光量子更易于同所谓的时空“团块”相混合。虽然这些光量子的速度有微小的下降幅度,但是由于它们已经穿梭了很长的距离,因此所带来的效果仍然是非常引人注目的。而罗伯特—雷米洛夫和他的同事也将会在今年的美国天文社会的会议上探讨所谓的时空结块的新制约条件。(尚力)

  • 【分享】J美国物理学家和化学家 吉布斯

    中文名称: 吉布斯   外文名: Josiah Willard Gibbs   生卒年: 公元1839-1903年   故居: 美国康涅狄格州   洲: 北美洲   国别: 美国   省: 康涅狄格州   吉布斯美国物理学家和化学家,1839年2月11日生于康涅狄格州的纽黑文。他的父亲是耶鲁学院教授。1854-1858年在耶鲁学院学习。学习期间,因拉丁语和数学成绩优异曾数度获奖。1863年获耶鲁学院哲学博士学位,留校任助教,讲授拉丁语和自然科学。1866-1868年先后到巴黎、柏林和海德堡留学。在法、德两国听了不少著名学者的演讲。1869年回国后继续任教。1871年到1903年任耶鲁学院的数学物理教授。1897年被选为英国皇家学会会员。曾获得伦敦皇家学会的科普勒奖章。1903年4月28日在纽黑文逝世,终年64岁。吉布斯从不低估自己工作的重要性,但从不炫耀自己的工作。他的心灵宁静而恬淡,从不烦躁和恼怒,是笃志于事业而不乞求同时代人承认的罕见伟人。他毫无疑问可以获得诺贝尔奖,但他在世时从未被提名。研究领域:1、化学热力学:吉布斯在1873-1878年发表的三篇论文中,以严密的数学形式和严谨的逻辑推理,导出了数百个公式,他提出了化学势的概念,特别是引进热力学势处理热力学问题,在此基础上建立了关于物相变化的规律,把热力学第一定律和热力学第二定律应用于化学,为化学热力学的发展做出了卓越的贡献,并为物理化学奠定理论基础。2、1902年,吉布斯把玻尔兹曼和麦克斯韦所创立的统计理论推广和发展成为系统理论,对由大量微观粒子组成的系统的统计热力学进行研究并取得了一定的成就,从而创立了近代物理学的统计理论及其研究方法。同时提出涨落现象的一般理论。3、吉布斯还发表了许多有关矢量分析的论文和著作,把矢量分析用于解决结晶问题和计算行星和彗星的轨道,奠定了这个数学分支的基础。他的关于矢量分析的论文虽然未正式发表,但被收入到1901年出版的有关教科书中。此外,他在天文学、光的电磁理论、傅里叶级数等方面也有一些研究和著述。作品:《图解方法在流体热力学中的应用》(1873年)《论多相物质的平衡》(1876-1878年)《统计力学的基本原理》(1902年)《用平面方法对物质热力学性质进行几何表示》(1873年)获得奖项:1550年被选入纽约大学的美国名人馆,并立半身像以纪念。

  • 物理学家趣闻轶事集锦

    物理学家卢瑟福(1871-1937)的实验室里有一个学生非常用功。一天晚上,卢瑟福碰到他,就问:“那么你白天也工作吗?”这个学生自豪地回答说,“没错”,以为自己会得到表扬。卢瑟福却吃惊地问,“但是你什么时候思考呢?”匈牙利血统的数学家埃尔德什与不知多少人共同发表过数学论文,但是未必与他们见过面,而是通信来往。或者,即使见过面,他也未必记得住人。有一次,他碰见一位数学家,就问他是哪里的人。那人说,“温哥华”。埃尔多什说,“是吗,那么你一定认识我的好朋友埃利奥特. 门德尔松”。那人说,“我就是你的好朋友门德尔松”。一次, 麻省理工学院的一位学生在走廊里堵住匈牙利血统的美国数学家约翰. 冯. 诺伊曼,“呃,对不起,诺伊曼教授,能不能请您帮我看一道积分题?”“好吧,小伙子,只要是能很快做出的题。我可忙得很啊”。“我做这道积分题有些麻烦”。“让我看看。”(看题)“答案有了,小伙子,是2π/5”。“我知道答案,先生,答案在题的后面。不过我不知道是怎么推导出来的”。“好吧,我再看看。”(看题)“答案是2π/5。”学生有点不知所措,“呃,先生,我――知道――答案,就是不知道怎么推导出来。”“小伙子,你到底要什么?我已经用两种不同的方法解出这道题了”。艾尔伯特.爱因斯坦会拉小提琴,有一次他参加排练海顿的弦乐四重奏。可是,进入二乐章时,他连续四次都出错。此时大提琴手抬头看他一眼,说,“你的问题呀,艾尔伯特,就是不会数数。”一天, 德国化学家李比希(1803-1873)看到自己的助手无比兴奋地跑来了,说刚刚发现了万能溶剂。李比希问,“什么是万能溶剂呢?”助手说,“就是能溶解所有东西的溶剂”。李比希说,“那么,你把这个万能溶剂储存在什么地方呢?”1902年诺贝尔化学奖得主费希尔一次遇见小说家赫尔曼. 苏德曼,苏德曼感谢费希尔发现了佛罗拉(一种安眠药),“你知道,它的效力太强了,我简直不用服药,只要看一眼放在床头柜上的佛罗拉,就足以入睡。”费希尔说,“太巧了,我要是睡不着了,我就拿起你的一本小说。事实上,我只要扫一眼放在床头柜上的任何一本你的美妙的小说,就足以倒头便睡。”德国著名物理化学家能斯特(1864-1941)开发出一种电灯,称为“能斯特灯”,这项技术产品的销售为他带来一大笔可观的收入。他的一位同事不无醋意地问他,下一项开发项目是不是制造钻石。能斯特说,“不是,我现在有的是钱,买得起钻石,不需要造钻石了。”民用航空问世不久,一次大数学家希尔伯特受邀请去外地做数学演讲,题目由他定。于是,它将题目定为“费尔马大定理的证明”。果不其然,听者如潮。可是,演讲内容与费尔马大定理毫无关系。后来有人问他,为什么选一个与演讲内容完全无关的题目,他说:“费尔马大定理的证明这个题目是为万一飞机失事而准备的。”2.feymann那扯淡的直觉 他有个最大的毛病,就是喜欢装牛b,明明自己也是费尽九牛二虎之力才作出来的 非得装着一晚上想出来的,用来打击别人 不过他也碰上过对手,有次碰上个速算的大牛,从此他知道在某些人面前不能吹牛b 3.feymann这人表面上不在乎名声,实际上很虚荣 他有次跟个朋友参加聚会,他路上抱怨说自己为盛名所累,讨厌人围着,他朋友 安慰他说今天没有物理圈的,我不说,没人知道你得过nobel,于是他朋友很老实的 遵守诺言,可是宴会开到一半,几乎所有的人都知道feymann是nobel了 他朋友很郁闷,找了个人一问,原来是feymann自己到处说的 典型的甲方乙方徐帆表演的那个明星的现场版 4.关键是feymann虽然的确不错,但是他自己吹再加上别人帮着吹,吹着吹着就真的 让人受不了了 比如那个所谓的拒领nobel奖 而且这个家伙明显的大嘴巴,作演讲不管对的错的一块儿来 他教学生算是nobel奖里面比较差得了(不知道算不算最差的),大概学生中的牛人 我知道的就一个bjoken 5.说一下schwinger 这个人是大大牛,属于早慧那种,据说他十五岁的时候混得不好,在纽约一个什么社区 大学混日子,但是有一天偶尔RABI和另一个牛牛在谈论一个量子电动力学的问题,这 时候schwinger插进来,"这个少年尖锐的发言结束了这场争论",rabi爱才,特意托关系 把他招进的columbia,从此schwinger一帆风顺。。。。 schwinger大概对数学特别有偏好,做的文章很难看得懂,据说是在他做自己的第一次 场论报告的时候,除了bohr在那里点头同意,剩下的人根本不知道他在那里说什么, 但是既然波尔点了头,大家就认为对了,紧接着feymann上去,也讲场论,讲自己的那 套,这下更糟,连bohr在内,没一个听懂的,bohr据说说了一句特尖刻的话"你应该重 学量子力学" 6.其实当时feymann得理论还是有人听懂了,一个是bethe,是他的同事,不断被他毒害 不懂也差不多了,另一个fermi,fermi以前从来没听过这个idea,但是fermi一下子就抓 住了本质 大牛啊 feymann最郁闷的事情莫过于,在物理上,比他聪明的同时代人有个schwinger,这位是 真的比他聪明,而且功力深厚,无论feymann怎么追,也追不上啊 引文 about schwinger, actually feynman envies him. feynman's mum always compare they two to stipulate feynman and feynman finds it hard to defend himself, hehe. 7.fermi真的是可以跟爱因斯坦,bohr比肩的大师,非但目光锐利,善于抓住主要问题 而且思维敏捷,实验理论都是第一流大牛,还会教学生,作为一个物理学家,简直是 完美 我认为是最好的物理学家之一 关于场论,刚开始大家特别糊涂,自己算出来的是什么东西都不知道,只知道算 然后feimi发了一片文章,结束了混乱。 另外说一句 杨振宁的博士导师不是fermi,他导师是TAYLOR,feimi的嫡传理论弟子是李政道 8.杨振宁说的,现代数学的书可以分成两种,一种是看了一页看不下去的,另一种是看了一行看不下去的。 数学家想打人请便 9.科学家的人品问题,一直是一个忌讳的话题 丁肇中闹的最郁闷的一件事情大概是他怀疑自己组内有内奸,结果导致slac 的人关于j/\psi结果跟他一起发表,他认为是组内有人向slac透露了细节, 这件事情闹的极其不愉快,丁肇中后来一直在cern混不知道有没有这个原因 10.吴健雄的事情也是得罪了合作者,当年宇称不守恒实验肯定能获诺贝尔奖的, 结果没有获得,这个是个很大的原因。 吴不懂低温,是跟标准局的几位低温大牛合作的,实验结果出 来以后,吴一个人写的文章,好像因此得罪了那几位。。。 吴健雄写文章压根没通知那三个,开会的时候别人都以为要讨论文章怎么写 结果吴健雄已经把文章拿出来让他们表态了 据说谈到排名的时候,吴叹了一口气,然后就.....排名第一了 11.大家现在都知道李杨闹翻了,其实何止他们一对儿闹翻了 weinberg 和格拉肖,两人高中同学,同在哈佛做教授,同时拿nobel物理奖,闹翻了 t'hooft and veltman,师生关系,闹翻了 veltman个人感觉不是很牛,但是几个学生都是大牛,奇怪 12.有些人的工作是由于数理功底扎实,水到渠成,他们从事的问题别人同样去做也可能成功 但是海森堡的研究就非常奇怪,比如他不会严格计算湍流,但是猜出了二维湍流解,最后 这个解被林家翘严格证明了,诺伊曼作数值计算也发现他是对的 量子力学的创立也是如此,谁也没想到他能够一开始就完全放弃轨道等经典概念,只从可 观测量出发建立量子力学 戈德史密特作过氦光谱的问题,他想用轨道自旋耦合解释,费尽力气也没找到答案,然后海森堡开始做,他从一开始就意识到这可能与反对称波函数有关,结果作出了答案,这好像是反对称波函数的第一次应用 13.说道轨道自旋耦合,还有一个fermi的故事,Mayer,就是那个女物理学家,大牛(好像终生未婚?) 企图解释原子核的壳层模型,怎么都不成功,去问fermi,fermi问了一句,你考虑过自旋轨道耦合 没有? 于是她就成功了 ft fermi,一句话就能这么牛 14.说道自旋,讲讲自旋的故事 戈德史密特和另一个老大乌伦贝克当研究生的时候发了电子自旋的paper,他们拿给lorentz看,结果lorentz 当时就指出,这样电子表面速度大于光速,违反相对论,不可能 这两个人郁闷阿,赶紧去找自己的老板厄轮菲斯特,(爱因斯坦的好友,自杀了),结果老板告诉他们,文章xxxx了 还安慰他们,没关系,年轻人难免犯错 然后这两个幸运的家伙就因为这个错误发了一片可以说重要无比的文章 15.再说一个倒霉蛋,也跟电子自旋有关 kronig,最早提出电子自旋的概念,可是拿着论文去找pauli,被骂了一顿,因为pauli指出计算不符合相对论 于是他没敢发文章,对比下面两位,悲惨阿 16.戈德史密特和乌伦贝克两个人很郁闷,电子自旋这么重要,却没得nobel 这还不是最郁闷的 最郁闷的是nobel委员会

  • 【转帖】物理学家史之一爱因斯坦的1905年

    1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。 1905年3月,爱因斯坦将自己认为正确无误的论文送给了德国《物理年报》编辑部。他腼腆的对编辑说:“如果您能在你们的年报中找到篇幅为我刊出这篇论文,我将感到很愉快。”这篇“被不好意思”送出的论文名叫《关于光的产生和转化的一个推测性观点》。 这篇论文把普朗克1900年提出的量子概念推广到光在空间中的传播情况,提出光量子假说。认为:对于时间平均值,光表现为波动;而对于瞬时值,光则表现为粒子性。这是历史上第一次揭示了微观客体的波动性和粒子性的统一,即波粒二象性。 在这文章的结尾,他用光量子概念轻而易举的解释了经典物理学无法解释的光电效应,推导出光电子的最大能量同入射光的频率之间的关系。这一关系10年后才由密立根给予实验证实。1921年,爱因斯坦因为“光电效应定律的发现”这一成就而获得了诺贝尔物理学奖。 这才仅仅是开始,阿尔伯特爱因斯坦在光、热、电物理学的三个领域中齐头并进,一发不可收拾。1905年4月,爱因斯坦完成了《分子大小的新测定法》,5月完成了《热的分子运动论所要求的静液体中悬浮粒子的运动》。这是两篇关于布朗运动的研究的论文。爱因斯坦当时的目的是要通过观测由分子运动的涨落现象所产生的悬浮粒子的无规则运动,来测定分子的实际大小,以解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题。 三年后,法国物理学家佩兰以精密的实验证实了爱因斯坦的理论预测。从而无可非议的证明了原子和分子的客观存在,这使最坚决反对原子论的德国化学家、唯能论的创始人奥斯特瓦尔德于1908年主动宣布:“原子假说已经成为一种基础巩固的科学理论”。 1905年6月,爱因斯坦完成了开创物理学新纪元的长论文《论运体的电动力学》,完整的提出了狭义相对论。这是爱因斯坦10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现的古典物理学的危机,改变了牛顿力学的时空观念,揭露了物质和能量的相当性,创立了一个全新的物理学世界,是近代物理学领域最伟大的革命。 狭义相对论不但可以解释经典物理学所能解释的全部现象,还可以解释一些经典物理学所不能解释的物理现象,并且预言了不少新的效应。狭义相对论最重要的结论是质量守恒原理失去了独立性,他和能量守恒定律融合在一起,质量和能量是可以相互转化的。其他还有比较常讲到的钟慢尺缩、光速不变、光子的静止质量是零等等。而古典力学就成为了相对论力学在低速运动时的一种极限情况。这样,力学和电磁学也就在运动学的基础上统一起来。 1905年9月,爱因斯坦写了一篇短文《物体的惯性同它所含的能量有关吗?》,作为相对论的一个推论。质能相当性是原子核物理学和粒子物理学的理论基础,也为20世纪40年代实现的核能的释放和利用开辟了道路。 在这短短的半年时间,爱因斯坦在科学上的突破性成就,可以说是“石破天惊,前无古人”。即使他就此放弃物理学研究,即使他只完成了上述三方面成就的任何一方面,爱因斯坦都会在物理学发展史上留下极其重要的一笔。爱因斯坦拨散了笼罩在“物理学晴空上的乌云”,迎来了物理学更加光辉灿烂的新纪元。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制