当前位置: 仪器信息网 > 行业主题 > >

自组装多孔薄膜

仪器信息网自组装多孔薄膜专题为您整合自组装多孔薄膜相关的最新文章,在自组装多孔薄膜专题,您不仅可以免费浏览自组装多孔薄膜的资讯, 同时您还可以浏览自组装多孔薄膜的相关资料、解决方案,参与社区自组装多孔薄膜话题讨论。

自组装多孔薄膜相关的论坛

  • 【转帖】研究人员发现自组装DNA链的最佳长度

    研究人员发现自组装DNA链的最佳长度   据美国物理学家组织网10月29日(北京时间)报道,美国北卡罗来纳大学研究人员找到了开发DNA(脱氧核糖核酸)自组装材料的最佳方法,该方法在药物输送以及分子传感器等诸多领域具有重要价值。该技术进展的关键是发现了用于自组装的DNA链的最佳长度。   包含遗传密码的DNA链,会跟包含其独特互补序列的另一链结合在一起。如果给材料喷涂一种特殊的DNA涂层,这种材料就会自动找出与其相配的配对物并与之结合。这种被称为DNA辅助自我组装的概念,可创建出具有各种用途的自组装材料,从而为生物医学和材料科学领域开拓广阔前景。实际上,DNA自组装技术不是一个新的概念,但其面临一大障碍——片断太短会无法实现自我组装,而片断太长会使材料变形。  在最新出版的《朗缪尔》杂志上,美国北卡罗来纳大学和澳大利亚墨尔本大学的一个联合研究小组为该问题提出了解决方案,他们从分子动力学角度利用计算机数据模拟,确定了自组装DNA链的最佳长度。  在以DNA为基础的纳米尺度系统,DNA链的长度是一个重要因素。研究人员用计算机模拟DNA链和DNA层间的相互作用效果,以掌握DNA链长度对形成DNA薄膜的影响。  结果显示,短链(少于10个碱基)和长链(超过30个碱基)的单链DNA无法生成最合适的膜,这是因为DNA膜面的形成有一种自我保护机制。这也意味着这些链会互相结合,而不是和“配对”材料结合。这种机制让它们能和其他层的DNA链结合,从而形成对DNA自身最适宜的组装情形。论文合著者、北卡罗来纳大学材料科学与工程副教授亚拉·英林说,最优长度并不是太长,以便与其他的链互相结合;也不是太短,以便能有效地自我折叠。  在利用这种自组装材料开发药物递送工具方面,墨尔本大学已经研制出一种自组装的DNA胶囊,其具有完全的生物适应性、生物降解性,可在遇到特殊物理刺激时释放药物,从而使其成为最理想的药物递送工具。DNA自我组装技术还可用于开发高效分子传感器。利用DNA探测临床上的重要生物分子并发出信号,这在医学领域具有重要的诊断应用价值。  目前,研究人员正计划探索在DNA自组装中发挥重要作用的其他因素,如温度、基因序列和环境等。  总编辑圈点  提起DNA,人们总是首先想到生命科学,其实就材料科学而言,它也是一支极具成长性的潜力股。在地球上进化了几亿年的DNA分子,是自然界中一种最精确和最能程序化自组装的稳定体系。虽说是“自”组装,但只有可控的自组装才能根据人的意愿创造新物质和产生新功能。在分子功能材料和纳米科学领域,DNA链这个超级建筑模块现在用起来还远未得心应手。如果把它比作砖头,我们今天终于知道做成多大尺寸才能又好又快地盖大楼。

  • 【转帖】可变色塑料薄膜可检测食品变质

    当你清理冰箱时,看一下包装纸的颜色有无变化就能知道食品是否已变质。想知道手上的美元是不是假币,只要展开看一下变色没有就行。这是一种新型软塑料薄膜两种很有希望的商业应用。 据美国每日科学网站日前报道,这种新型材料是由英国南安普敦大学和德国达姆施塔特塑料研 究所共同开发的,它把天然和人造光学效果结合在一起,实际上是让物体精确改变颜色的一种新途径。 这些“塑料蛋白石薄膜”属于一种名为光子晶体的物质。光子晶体由许多微小的重复单元组成,其感光特性通常有很大的差别,导致很宽的“光子频带隙”。 跟其他人造蛋白石结构一样,塑料蛋白石薄膜也能“自组装”。在自组装过程中,微粒子自己组装成一种规则的结构。不同波长的光会向不同方向折射。 多年来,光子晶体因各种实际应用引起人们极大兴趣,特别是在光纤通信方面。光子晶体还可以作为有毒且昂贵的布匹染料和墙面涂料的潜在替代品。光子晶体的许多商用潜力尚未挖掘出来,因为用光子晶体制造的人造薄膜颜色在很大程度上取决于观察角度。 自然界也有天然光子晶体,但从不同角度可以看到的颜色比较固定。蛋白石、蝴蝶翅膀、某些种类甲虫以及孔雀羽毛都有许多按一定规则排列的小孔。尽管这些天然结构几乎跟人造制品一模一样,但颜色却比人造制品深得多。 科学家认为,人造和天然光子晶体的工作原理一样:晶格结构造成光从表面反射时其颜色随反射角度而变化。然而,英国南安普敦大学研究人员鲍姆贝格怀疑,自然结构有选择地散射光而不是简单地反射光。 鲍姆贝格和他的同事研制出把人造光子晶体的精确结构和天然光子晶体结构的反光效果结合在一起的塑料蛋白石。这种塑料蛋白石薄膜由在三维空间叠起来的塑料小球组成,在塑料小球中间还包含微小的碳纳米粒子,从而光不只是在塑料小球和周围物质之间的边缘区反射,而且也在填在这些塑料小球之间的碳纳米粒子表面散射。这就大大加深了薄膜的颜色。只要控制塑料小球的体积,就能产生只散射某些光谱频率的光的物质。 英德科学家合作解决了规模生产问题。德国达姆施塔特塑料研究所开发出一种适用于光子晶体的制造程序,能大量生产塑料蛋白石薄膜。 鲍姆贝格说,这种薄膜延展性很好,且在拉伸时颜色改变,因为拉伸这种动作改变了组成晶格结构的塑料小球之间的距离。这就使塑料蛋白石薄膜具有广泛应用的潜力,其中包括用于食品包装和防伪识别,甚至还可以用于国防领域

  • 跪求一篇文献:铜、碳钢表面自组装含羧基席夫碱缓蚀膜的实验与理论评价,万分感谢!

    文献题目如下:铜、碳钢表面自组装含羧基席夫碱缓蚀膜的实验与理论评价作 者: 陈世亮来 源: 桂林理工大学 2012年摘 要: 羧基芳香醛类席夫碱因其含有羧基和甲亚氨基结构,具有孤对电子的O和N原子极易向金属的空轨道提供电子而形成稳定化学键,因此在金属表面形成自组装膜,能有效抑制金属的腐蚀。 本文利用2-吡啶甲酰肼、2-噻吩甲酰肼、水杨甲酰肼、对氨基苯甲酸、间氨基苯甲酸、对氨基苯磺酸、对羧基苯甲醛、邻氧乙酸苯甲醛设计合成了一系列新的席夫碱缓蚀剂,用X-射线单晶衍射、紫外-可见光谱。。。。。。。。。

  • 生物传感器相关知识-巯基萘酚自组装单分子膜的二维同分异构现象研究

    [b]巯基萘酚自组装单分子膜的二维同分异构现象研究取得进展[/b]国家纳米科学中心副研究员江鹏通过与丹尼斯菲周教授领导的法国原子能委员会、法国国家科研中心、巴黎第六大学联合研究小组合作,日前对巯基萘酚自组装单分子膜在Au(111)表面的自然组装行为进行了STM高分辨成像研究,首次揭示了巯基萘酚分子在表面存在旋转同分异构现象。由于这一现象所导致的两种共存的有序超晶格结构被清晰地观察到,这一研究发现对分子电子学的研究具有十分重要的意义。该项研究成果被发表在最新一期出版的《美国化学会志》上。《美国化学会志》的评委们对此研究给予了高度的评价。他们认为,这样一个研究解决了具有简单结构的巯基多芳环有机化合物在金表面的构像问题,为进一步的分子电学特性的研究铺平了道路。 分子电子学是当今纳米科技领域的研究热点之一。在通常情况下,具有共轭结构的巯基多芳环有机化合物是分子电子学研究的首选材料。通过强的Au-S相互作用,这些分子被发现能够在金表面上形成一层单层。但是,迄今为止,这些分子在表面的吸附构像问题仍然悬而未决,这也是分子电子学研究中必须首先加以解决的基本问题之一。 该项研究工作得到中国科学院—法国原子能委员会双边合作计划、国家纳米科学中心以及归国留学人员启动基金的支持。 【巯基萘酚自组装单分子膜的二维同分异构现象研究是下一代生物传感器以及生物芯片研究的潜在技术,请大家关注这方面的研究】[url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url]

  • 薄膜样品如何做透射样品

    我想问一下,我用溶胶凝胶法做的钛酸锶薄膜,现在我想做一下透射电镜,薄膜是多孔的,在不破坏它结构的基础上,想看一下透射电镜图片,请各位大神指点指点!!??????

  • 请教介孔薄膜的做法

    我刚刚学习介孔材料的合成,想合成SBA-15的介孔薄膜,我看了赵东元的文献中提到需要在酸度ph2,加热温度在35-140之间才能得到有序的SBA-15,而在2002年Peter C. A. Alberius等人在CM上发表的介孔薄膜中却使用了PH=2,温度不超过35度的条件,这不与赵等人的条件不符合嘛?不知薄膜制备条件和粉体关键区别在哪?另外,合成的薄膜怎么拨下来进行透射电镜观察?向牛人们虚心请教!非常感谢!

  • 自组装纯水机一个

    自组装纯水机一个

    自组装纯水机一个买了4年了吧http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif当时实验室没钱http://simg.instrument.com.cn/bbs/images/brow/em09509.gif 配件买了后 组装的http://simg.instrument.com.cn/bbs/images/brow/em09511.gif只是换过两次滤芯http://simg.instrument.com.cn/bbs/images/brow/em09510.gifhttp://ng1.17img.cn/bbsfiles/images/2012/03/201203061038_352710_2019107_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/03/201203061039_352711_2019107_3.jpg

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

  • 国家纳米科学中心在巯基萘酚自组装单分子膜的二维同分异构现象研究方面取得进展

    国家纳米科学中心在巯基萘酚自组装单分子膜的二维同分异构现象研究方面取得进展

    [img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609240957_27637_1627011_3.jpg[/img] 分子电子学是当今纳米科技领域的研究热点之一。在通常情况下,具有共轭结构的巯基多芳环有机化合物是分子电子学研究的首选材料。通过强的Au-S相互作用,这些分子被发现能够在金表面上形成一层单层。但是,迄今为止,这些分子在表面的吸附构像问题仍然悬而未决。这也是分子电子学研究中必须首先加以解决的基本问题之一。国家纳米科学中心江鹏副研究员与Denis Fichou领导的法国原子能委员会(CEA)、法国国家科研中心、巴黎第六大学联合研究小组合作,对巯基萘酚自组装单分子膜在Au(111)表面的自然组装行为进行了STM高分辨成像研究,首次揭示了巯基萘酚分子在表面存在旋转同分异构现象。由于这一现象所导致的两种共存的有序超晶格结构被清晰地观察到。这一研究发现对分子电子学的研究具有十分重要的意义。该项研究成果被发表在最新一期出版的美国化学会志(J. AM. CHEM. SOC. 2006, 128, 12390-12391 )上。J. AM. CHEM. SOC. 评委给予本项研究高度的评价。他们认为这样一个研究解决了具有简单结构的巯基多芳环有机化合物在金表面的构像问题,为进一步的分子电学特性的研究铺平了道路。 该项研究工作得到中国科学院-法国原子能委员会双边合作计划、国家纳米科学中心以及归国留学人员启动基金的支持。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=27638]JACS 128 12390.pdf[/url]

  • 测试金属表面薄膜微孔的方法或者设备

    我的样品如下:中间是50μm厚的金属,50μm厚塑料薄膜把金属包裹在里面。测试需求:检测包裹金属的塑料薄膜有没有穿孔。请高手指点方法或者设备,先谢谢了!

  • 【求助】在石英基底上沉积的薄膜断面能看TEM吗?

    对TEM不是很了解,我做的是两种组分在一起组装的多层超薄膜,一种无机组分一种高聚物组分。每层的厚度都在零点几个纳米,想知道能不能做断面的高分辨TEM,得到一层一层组装的信息,请教一下各位能看到不?能的话该怎么制样?

  • 【讨论】聚合物超薄膜 红外光谱

    本人的课题是聚合物超薄膜的构筑,在基底上基于层层组装技术在基片上沉积聚电解质,一层聚电解质膜的厚度只有几个纳米,我想用氟化钙做基底,然后再去做红外,我想问的是,由于量比较少,吸收的肯定也比较少,这样的超薄膜能做红外吗,样品的量是不是太少了,峰会不会被噪声干扰而无法识别?谢谢(由于仪器比较老,做不了衰减全发射,只能做最普通的红外测试,哎,真杯具啊)

  • 求助:检测薄膜孔隙形状和大小,需用什么仪器?

    我司想对锂电池用专用类薄膜的隔膜进行孔隙形状和大小的观察和检测,希望能有一种仪器可以通过图像显示出薄膜表面孔隙形状和大小,并通过系统软件计算出孔大小、间距等信息。 欢迎各位专家给予指导和帮助,由于很急,如有相关仪器厂家,可直接来电 0632-8636291 何冰

  • 多孔玻板吸收瓶和多孔玻板吸收管是不是相同所指?

    多孔玻板吸收瓶原文出处:环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法 HJ 479-20095 仪器和设备 5.4吸收瓶:10ml多孔玻板吸收瓶多孔玻板吸收管原文出处:环境空气和废气氯化氢的测定 离子色谱法(暂行) HJ 549-20095 仪器和设备5.1 多孔玻板吸收管:10ml上述两标准中所指10ml多孔玻板吸收瓶和10ml多孔玻板吸收管是不是同一物体啊?答案依据在哪里找?

  • 【金秋计划】葛根芩连汤成分间自组装纳米粒改善伊立替康所致肠毒性作用研究

    中药汤剂是中医临床用药的重要形式,由于中药成分复杂多样,化学成分存在游离态、结合态、络合态等多种化学结构形态,因此,汤液常包含了真溶液、胶体溶液、混悬液等多种相态分散体系。现代对中药汤剂质量的研究大多集中于汤液中化学成分的种类和含量,但中药成分在煎煮过程中极易发生相互作用,成分间产生范德华力、氢键、静电作用、π-π堆积等物理相互作用,或美拉德反应、氧化反应、水解反应等化学反应[1],从而形成成分聚集体,影响汤液中中药成分的形态和含量。近年来,研究者发现中药汤剂中普遍存在纳米级颗粒[2],尤其是中药成分在煎煮过程经非共价键作用力自组装形成的颗粒、凝胶、纤维等聚集体,常表现出抗炎、镇痛、抗菌等生物活性[3]。如完茂林等[4]研究发现,22种中草药水煎液中均存在大量纳米级颗粒;Zhang等[5]研究发现黄连解毒汤(Huanglian Jiedu Decoction,HJD)中产生的聚集物主要由黄芩苷和小檗碱相互作用形成;Li等[6]证实了小檗碱可分别与黄芩苷、汉黄芩苷通过静电作用和疏水作用共同驱动自组装成纳米粒;Tian等[7]发现通过大黄酸氢键分层、小檗碱π-π堆积与静电相互作用,形成小檗碱在内、大黄酸在外的核-壳纳米结构。除此之外,有研究者证实HJD水煎中化学成分结合而产生的聚集物具有确切的抗神经细胞损伤和抑制神经细胞凋亡的作用,且聚集物的效果优于上清液[5];葛根芩连汤(Gegen Qinlian Decoction,GQD)的组成性聚集物比可溶性成分具有更强的降血糖和抗氧化活性[8]。关于中药汤剂成分互作形成纳米聚集体与其药效作用具有相关性,有待于进一步深入探索。 GQD出自东汉张仲景所著的《伤寒杂病论》,该方由君药葛根、臣药黄连、黄芩,佐使药甘草组成[9],主要包括黄酮类、生物碱类、三萜类及三萜皂苷类等成分。GQD临床常用于治疗急性肠炎、细菌性痢疾、肠伤寒、胃肠型感冒等属表证未解,里热甚者,现代研究发现其具有解热抗菌、抗炎止泻、降糖调脂、抗心律失常、抗缺氧和增强免疫功能等药理作用[10-11]。抗肿瘤药物伊立替康(CPT-11)[12]临床应用过程常引起患者严重肠毒性,即迟发性腹泻,导致病人产生脱水、营养不良、电解质失衡、感染等症状,进而可能导致肾功能障碍、心脏疾病或免疫破坏,甚至死亡。目前,临床常用洛派丁胺、醋托啡烷、布地奈德等药物缓解腹泻[12-14],但效果并不理想。课题组前期研究证实,GQD可显著缓解CPT-11所致的迟发性腹泻,通过降低小鼠腹泻发生率和死亡率,减轻小鼠肠道损伤,抑制炎症因子及降低肠道酶活性等来发挥减毒作用[15-16],但其药效物质基础及作用方式有待于深入研究。 基于中药汤剂中广泛存在成分间相互作用形成聚集体,本研究拟选用源自GQD的6种有效成分(小檗碱、巴马汀、汉黄芩苷、黄芩苷、葛根素、甘草酸),考察成分间组合形成自组装纳米粒的能力和特性,同时基于GQD有效缓解CPT-11肠毒性的药理作用,考察制备得到的几种自组装纳米粒药效作用,从成分互作角度揭示GQD物质基础与药效的相关性,为揭示中药配伍煎煮科学内涵提供新思路。 1 仪器与材料 1.1 仪器与试剂 Agilent1260型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],美国安捷伦科技有限公司;DF-101S型集热式恒温加热磁力搅拌器,上海邦西仪器科技有限公司;Litesizer 500型纳米粒度及ζ电位分析仪,上海安东帕商贸有限公司;HT7800型透射电子显微镜,日立高新技术(上海)国际贸易有限公司;Scientz-10N型冷冻干燥机,宁波新芝生物科技有限公司;A50型紫外分光光度计,翱艺仪器上海有限公司;Thermo Scientific Nicolet iS5型傅里叶红外光谱仪,美国赛默飞世尔科技公司;MK3型酶标仪,芬兰雷勃集团公司;Fresco17型冷冻离心机,美国Thermo Scientific公司;UPR-Ⅱ-10T型优普系列超纯水器,四川优普超纯科技有限公司。 盐酸伊立替康(CPT-11),批号A0813A,质量分数≥99%,大连美仑生物技术有限公司;对照品小檗碱(批号AZBI1408)、汉黄芩苷(批号AF21110611)、黄芩苷(批号AZCD1316)、葛根素(批号AFBL0953)、巴马汀(批号AFCB0951)、甘草酸(批号AFCE1008),质量分数≥98%,成都埃法生物科技有限公司;肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α,批号20230804)、白细胞介素-1β(interleukin-1β,IL-1β,批号20230628)、IL-10(批号20230628)的酶联免疫吸附(ELISA)试剂盒,成都诺舟生物技术有限公司;Bradford蛋白浓度测定试剂盒,批号032023230523,碧云天生物技术有限公司;水为实验室超纯水;甲醇、甲酸、磷酸,色谱纯,上海西格玛奥德里奇贸易有限公司;四氢呋喃、丙酮,色谱级,成都市诺尔施科技有限责任公司。 1.2 动物 ICR种雄性小鼠,体质量(20±2)g,购自斯贝福(北京)生物技术有限公司,生产许可证:SCXK(京)2019-0010。动物实验均按照中国国家科学技术委员会颁布的“实验动物管理条例”和成都中医药大学动物实验伦理委员会批准的议定书(批准文号2020DL-126)规范执行。 2 方法与结果 2.1 组分纳米粒的制备 GQD中有黄连、黄芩、葛根、甘草4种药味,黄连代表性有效成分小檗碱和巴马汀,黄芩代表性有效成分汉黄芩苷和黄芩苷,葛根代表性有效成分葛根素,甘草代表性有效成分甘草酸。采用溶剂挥发法,分别制备小檗碱-汉黄芩苷自组装纳米粒(berberine-wogonoside nanoparticles,Ber-Wog NPs)、小檗碱-葛根素自组装纳米粒(berberine-puerarin nanoparticles,Ber-Pue NPs)、黄芩苷-葛根素自组装纳米粒(baicalin-puerarin nanoparticles,Bai-Pue NPs)、黄芩苷-巴马汀自组装纳米粒(baicalin-palmatine nanoparticles,Bai-Pal NPs)、黄芩苷-甘草酸自组装纳米粒(baicalin-glycyrrhizic acid nanoparticles,Bai-GA NPs)。 精密称定小檗碱3.36 mg溶解于磷酸盐缓冲液(phosphate buffered saline,PBS),精密称定汉黄芩苷4.60 mg溶解于四氢呋喃,按照两者物质的量比为1∶1,将有机相缓慢匀速滴加至水相,边滴加边搅拌,滴加完毕后于在磁力搅拌器上37℃恒温400 r/min搅拌1 h,待有机溶剂挥尽后,0.45 μm微孔滤膜滤过,即得Ber-Wog NPs。同法,制备Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs。 2.2 组分纳米粒的表征 2.2.1 组分纳米粒理化性质 如图1所示,所形成的5种纳米粒均为透明溶液,其中Ber-Wog NPs、Ber-Pue NPs、Bai-Pal NPs呈淡黄色,Bai-Pue NPs和Bai-GA NPs呈无色,且静置稳定性较好。取10 μL样品溶液于碳膜铜网上,静置1 min后将多余液体从铜网边缘除去,将3%磷钨酸水溶液滴加1滴至铜网表面,负染2 min后用滤纸吸附多余染料,待液体挥干后采用透射电子显微镜(transmission electron microscope,TEM)拍摄其形态,结果见图1,TEM显示5种纳米粒均呈现出球状型。量取1 mL纳米溶液,采用Litesizer 500纳米粒度仪测定纳米溶液粒径分布,如表1所示,结果显示5种纳米粒平均粒径均在200 nm左右,多分散指数(polydispersity index,PDI)均小于0.25,粒径分布较均匀,分散性较好。 2.2.2 包封率与载药量的测定 (1)小檗碱、巴马汀、葛根素的HPLC色谱条件[17]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm)。流动相为水-甲醇,检测波长:346 nm(小檗碱、巴马汀),250 nm(葛根素);体积流量1 mL/min;进样量10 μL;柱温25 ℃;梯度洗脱:0~10 min,30%甲醇;10~15 min,30%~82%甲醇;15~18 min,82%~85%甲醇;18~20 min,85%~30%甲醇。 (2)甘草酸的HPLC色谱条件[18]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%磷酸水溶液-甲醇(25∶75);检测波长250 nm;体积流量1.0 mL/min;进样量10 μL;柱温25 ℃;等度洗脱20 min。 (3)黄芩苷、汉黄芩苷的HPLC色谱条件[19]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%甲酸水溶液-甲醇(35∶65);检测波长280 nm;体积流量1.0 mL/min;进样量20 μL;柱温30 ℃;等度洗脱10 min。 (4)包封率与载药量的测定:分别精密量取0.5 mL Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs于超滤离心管中,在超速离心机上以30 000 r/min,离心半径为4.44 cm,超速离心20 min。取外管滤液0.2 mL,用甲醇定容至2 mL,超声20 min(频率40 kHz、功率100 W),按上述色谱条件测定游离药物质量浓度。 另取未经离心的纳米溶液0.2 mL,至2 mL量瓶中,按照“2.2.2”项下方法操作测定样品中小檗碱、汉黄芩苷、黄芩苷、葛根素、巴马汀、甘草酸的含量,根据公式计算包封率和载药量,结果如表2所示。 包封率=(投入药量-游离药量)/投入药量 载药量=(投入药量-游离药量)/投入总药量 2.2.3 组分自组装纳米的光谱特性 (1)紫外光谱测定:分子发生相互作用后,会影响共轭基团电子排布,因此可根据紫外可见光谱的变化推测物质相互作用规律[20]。 采用紫外-可见吸收光谱在200~500 nm对自组装纳米进行扫描,并与2种游离成分的光谱进行对比。结果如图2所示,小檗碱的特征吸收峰在228、263、344 nm,汉黄芩苷的特征吸收峰在205、273 nm,Ber-Wog NPs在206、271、343 nm处出现较强吸收峰,具有与游离小檗碱和汉黄芩苷的特征,但Ber-Wog NPs的吸收峰出现从游离汉黄芩苷273~271 nm的微小蓝移,从游离小檗碱的344~343 nm的微小蓝移,表明小檗碱和汉黄芩苷在Ber-Wog NPs中存在非共价键作用。 同理,Ber-Pue NPs紫外光谱也具有游离小檗碱和葛根素的特征吸收峰,但存在从游离小檗碱的228、263、344 nm吸收峰蓝移至204、262、331 nm处,而游离葛根素的203、252 nm红移,表明小檗碱和葛根素在Ber-Pue NPs中存在非共价键作用。Bai-Pue NPs紫外光谱也具有游离黄芩苷和葛根素的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至206、271、316 nm处,而游离葛根素的203、252 nm红移,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。 Bai-Pal NPs在205、275、329 nm处出现较强吸收峰,具有游离黄芩苷和巴马汀的特征吸收峰,但存在从游离黄芩苷的286 nm吸收峰蓝移至275 nm处,317 nm红移至329 nm处,而游离巴马汀的201、274 nm红移至205、275 nm处,341 nm蓝移至329 nm处,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。Bai-Ga NPs紫外光谱也具有游离黄芩苷和甘草酸的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至271、316 nm处,而游离甘草酸的258 nm红移,表明黄芩苷和甘草酸在Bai-GA NPs中存在非共价键作用。由此可得,5种制剂自组装纳米粒存在两两成分间非共价键相互作用。 (2)傅里叶红外光谱的测定:采用傅里叶转换红外光谱仪对5种自组装纳米药物的光谱性质进行测定,扫描范围为4 000~400 cm?1,与其组成成分游离形式进行对比,分析分子间非共价键力的类型。如图3所示,Ber-Wog NPs中具有类似于游离小檗碱和汉黄芩苷的特征吸收带,但小檗碱中C=N伸缩振动峰在1 601.58 cm?1处,在形成Ber-Wog NPs后向高波段移动至1 635.89 cm?1,汉黄芩苷中C-O伸缩振动峰1 129.50 cm?1,在形成Ber-Wog NPs后向高波段移动至1 145.97 cm?1,由此证明Ber-Wog NPs中小檗碱和汉黄芩苷存在π-π堆积作用。 同理,Ber-Pue NPs中具有类似于游离小檗碱和葛根素的特征吸收带,但小檗碱中的C-O伸缩振动峰在1 103.16 cm?1,在形成Ber-Pue NPs后向低波段移动至1 069.33 cm?1,葛根素中吡喃葡萄糖上的-OH的弯曲振动峰在1 407.22 cm?1,在形成Ber-Pue NPs后向高波段移动至1 457.19 cm?1,由此证明Ber-Pue NPs中小檗碱和葛根素存在氢键和π-π堆积作用。Bai-Pue NPs中具有类似于游离黄芩苷和葛根素的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pue NPs后向低波段分别移动至1 636.98 cm?1和1 394.63 cm?1,葛根素中的C=O的伸缩振动峰在1 632.42 cm?1,在形成Bai-Pue NPs后向高波段移动至1 636.98 cm?1,由此证明Bai-Pue NPs中黄芩苷和葛根素存在氢键和π-π堆积作用。 Ber-Pal NPs中具有类似游离黄芩苷和巴马汀的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1637.54 cm?1和1 397.39 cm?1,巴马汀中的C=N的伸缩振动峰在1 604.41 cm?1,在形成Bai-Pal NPs后向低波段移动至1 554.87 cm?1,由此证明Bai-Pal NPs中黄芩苷和巴马汀存在氢键和π-π堆积作用。Ber-GA NPs中具有类似游离黄芩苷和甘草酸的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,-OH向高波数移动至1 418.16 cm?1,甘草酸中的伸缩振动峰C=O在1 655.10 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,由此证明Bai-GA NPs中黄芩苷和甘草酸存在氢键缔合。 2.3 组分自组装纳米的分子对接 PubChem数据库(https://www.ncbi.nlm.nih.gov/ pccompound/)下载小檗碱、汉黄芩苷、黄芩苷、葛根素、甘草酸、巴马汀的SDF文件。用OpenBabel-2.4.1将SDF文件转换为MOL2文件。AutoDock Tools 1.5.7优化小分子结构,利用软件AutoDock Vina 1.1.2进行分子对接,记录最低结合能,一般认为结合能越低,结合性越好,通常认为结合能低于0时,能自发进行,且分子结合能小于?17.78 kJ/mol,分子与靶点有一定的结合活性;小于?23.01 kJ/mol,分子与靶点有较好的结合活性;小于?33.47 kJ/mol,分子与靶点的结合具有强烈的活性。因此,选择结合自由能(binding free energy,G)最低的对接模型,作为最适合分子模拟的结合模型[21],并用PyMOL 2.5.7软件进行可视化处理。 结果如图4和表3所示,Ber-Wog NPs中存在分子间π-π堆积相互作用,小檗碱与汉黄芩苷的G为?17.15 kJ/mol;Ber-Pue NPs中存在氢键和π-π堆积相互作用,小檗碱与葛根素的G为?17.99 kJ/mol;Bai-Pue NPs中存在氢键和π-π堆积相互作用,黄芩苷与葛根素的G为?16.32 kJ/mol;Bai-Pal NPs中存在氢键和π-π堆积相互作用,黄芩苷与巴马汀的G为?18.41 kJ/mol;BAI-GA NPs中存在氢键,且黄芩苷与甘草酸的G为?24.27 kJ/mol。因此,采用分子对接模型表明所形成的5种自组装纳米的自组装机制均与成分间形成氢键和π-π堆积等非共价键作用相关。 2.4 组分自组装纳米缓解CPT-11所致迟发性腹泻作用研究 2.4.1 CPT-11致迟发性腹泻模型建立、分组与给药 取健康ICR雄性小鼠,体质量(20±2)g,实验开始前将小鼠适应性喂养1周,每天自由饮水、进食,随后分为7组,对照组、模型组、Ber-Wog NPs组、Ber-Pue NPs组、Bai-Pue NPs组、Bai-Pal NPs组、Bai-GA NPs组,每组各8只。除对照组外,其余组均以45 mg/kg剂量连续ip CPT-11,连续注射4 d,每天1次,建立CPT-11致迟发性腹泻模型[15,22],对照组注射等量生理盐水。 自第1天造模开始,Ber-Wog NPs组按照20.0 mg/(kg?d)小檗碱和85.4 mg/(kg?d)汉黄芩苷剂量给予小鼠ig;Ber-Pue NPs组按照20.0 mg/(kg?d)小檗碱和19.4 mg/(kg?d)葛根素剂量ig,Bai-Pue NPs组按照20.0 mg/(kg?d)黄芩苷和30.6 mg/(kg?d)葛根素剂量ig;Bai-Pal NPs组按照20.0 mg/(kg?d)黄芩苷和9.9 mg/(kg?d)巴马汀剂量ig;Bai-GA NPs组按照20.0 mg/(kg?d)黄芩苷和63.4 mg/(kg?d)甘草酸剂量ig,对照组和模型组ig等量蒸馏水,持续给药10 d,每天2次,至第11天断颈处死小鼠,同时取结肠组织,用于后续检测。在给药期间每天记录小鼠体质量、粪便、状态等用于疾病活动指数(disease activity index,DAI)评分,按照表4标准进行DAI评分,S1、S2和S3分别代表体质量减轻评分、粪便状态评分和血便评分,根据下列等式计算出DAI评分。 DAI=(S1+S2+S3)/3 通过SPSS 26.0软件分析多组数据之间的差异,实验数据用表示。计量资料采用独立样本t检验分析;多组间两两比较采用最小显著性差异(LSD)法检验。若P<0.05说明差异有统计学意义。 2.4.2 小鼠一般情况 如图5-A所示,对照组小鼠体质量在实验期间逐渐增加。与对照组比较,模型组小鼠体质量逐渐下降;与模型组比较,而各制剂组可在一定程度上减缓小鼠体质量的减少,第10天小鼠体质量平均值为对照组(38.71±2.13)g、模型组(22.10±1.31)g、Ber-Wog NPs组(25.80±2.54)g、Ber-Pue NPs组(24.10±2.79)g、Bai-Pue NPs组(25.73±3.84)g、Bai-Pal NPs组(23.94±3.95)g、Bai-GA NPs组(26.53±3.97)g。如图5-B所示,根据DAI评分可得对照组小鼠大便正常,而小鼠在注射CPT-11的4 d后大便逐渐出现便稀湿软色黄,肛周污秽。各制剂组一定程度可缓解小鼠腹泻情况,未见明显便血,症状轻于CPT-11组。如图5-C所示,与对照组相比,模型组存活率为37.5%,Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs存活率分别为50.0%、75.0%、62.5%、62.5%、50.0%。如图5-D所示,对照组结肠壁厚薄适中,结肠黏膜完整且清晰可见成型的粪便,无红肿、充血等肉眼可见变化;与对照组相比,模型组结肠组织肠管缩小变细,其长度变短,结肠黏膜呈暗红色,充血水肿比较明显;与模型组相比,制剂组肠管稍变细,结肠黏膜比之色淡稍红,少见有充血、水肿和溃烂情况,可一定程度抑制CPT-11所致结肠萎缩,其中根据测量结肠平均长度发现制剂组中抑制CPT-11结肠萎缩的效果由高到低分别为Bai-Pue NPs、Ber-Pue NPs、Bai-GA NPs、Bai-Pal NPs、Ber-Wog NPs。 2.4.3 小鼠结肠组织病理形态学影响 如图6所示,对照组黏膜结构完整,基本无病变,细胞紧密排列,小鼠肠隐窝和绒毛清晰完整,胞核较清晰可见;模型组表示出严重的凝固性坏死,结肠黏膜可见缺损,黏膜肿胀,出血及炎性渗出,大量隐窝结构破坏,细胞核形态不一,并伴有大量细胞炎性浸润;Ber-Pue NPs组和Bai-GA NPs组黏膜组织无异常,基本无病变,且未看到黏膜中的炎性细胞浸润,隐窝及绒毛结构正常,细胞排列正常;而Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组均可见黏膜层少量细胞脱落,并伴有少量炎性细胞浸润,但与模型组相比,Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组可缓解结肠黏膜的出血及炎性渗出。 2.4.4 对小鼠结肠组织中TNF-α、IL-1β和IL-10含量的影响 CPT-11导致的迟发性腹泻发生时会有大量炎症细胞聚集,分泌大量炎症因子,其中TNF-α和IL-1β为促炎因子,IL-10为抑炎因子。各组对CPT-11所致的炎症因子的影响如表5所示,与对照组相比,模型组中TNF-α、IL-1β的表达显著升高(P<0.05),IL-10含量显著降低(P<0.05);与模型组相比,各制剂组均能降低TNF-α的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs组相比Bai-Pal NPs组显著降低(P<0.05);与模型组相比,各制剂组均能降低IL-1β的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05);与模型组相比,各制剂组IL-10均显著升高(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs和Bai-Pal NPs这2个制剂组显著升高(P<0.05)。 3 讨论 自组装纳米粒主要通过π-π堆积、范德华力、氢键、静电相互作用、卤键等非共价键的相互作用力结合形成,尤其是分子间氢键,自主装作用力主要由氢键之间或其他非共价键的协同作用所构成。分子之间通过氢键作用力结合时,可形成单一氢键和多重氢键,氢键的多重性越强,分子之间的结合能和稳定性越强[23]。如Li等[24]通过氢键和疏水相互作用自组装形成双氢青蒿素纳米颗粒;Wang等[25]将紫杉醇和桦木酸通过氢键和疏水作用形成自组装纳米粒。在本研究中,通过紫外可见吸收光谱和红外光谱实验表明,5种纳米粒的组装均是通过分子间非共价键作用形成;分子对接模型进一步提示,其形成机制与分子间静电相互作用或氢键相关。 在本研究中,为证实GQD中的成分是否具有结合成纳米粒的趋向性,选取GQD中含量较高的的主要有效成分小檗碱、汉黄芩苷、葛根素、黄芩苷、

  • [求助]关于介孔薄膜做小角XRD的问题

    我用P123作为模板剂制备介孔二氧化硅薄膜,理论上在小角度0.5~2范围会有衍射峰,但是我们测试的时候发现在小角度时候总是出现入射平行光的峰,而没有预期的介孔的衍射峰,这让我们很郁闷啊,不知道哪位牛人做过这方面的工作和测试,应该采用什么测试条件。我们现在用的仪器是Rigaku D/Max 2550型号的衍射仪,应该说在国内已经可以了,在很多文献上也有人报道用Rigaku 的衍射仪做小角。希望大家能够给予指导和帮助,谢谢!!

  • [求助]介孔薄膜做小角XRD的测试条件

    版主千万不要删除我的帖子,本来是应该在衍射仪板块中发帖,可惜半天过去了,也没人给我建议,我只有到TEM板块了。因为据我所知,做介孔材料的XRD和TEM是必不可少的两个表征手段,这里一定聚集了很多做介孔材料的高手,故此到这儿来救助!我用P123作为模板剂制备介孔二氧化硅薄膜,理论上在小角度0.5~2范围会有衍射峰,但是我们测试的时候发现在小角度时候总是出现入射平行光的峰,而没有预期的介孔的衍射峰,这让我们很郁闷啊,不知道哪位牛人做过这方面的工作和测试,应该采用什么测试条件。我们现在用的仪器是Rigaku D/Max 2550型号的衍射仪,应该说在国内已经可以了,在很多文献上也有人报道用Rigaku 的衍射仪做小角。希望大家能够给予指导和帮助,谢谢!!

  • 【求助】薄膜xrd掠入射能看薄膜的择优取向吗?谢谢!

    各位大侠帮忙解答:1. 我看文献上有的说xrd掠入射看薄膜物象鉴定,常规的θ/2θ扫瞄看薄膜的择优取向。薄膜xrd掠入射能看薄膜的择优取向吗?2. 我做常规的θ/2θ扫瞄时只有衬底峰没有薄膜信息,所以只能做掠入射,我是在单晶SiC片子上磁控溅射AlN薄膜(约500nm厚),但是我要对比不同参数下薄膜的择优取向,我该怎么测呢?3. 我用的设备是日本理学D/MAX 2500PC X射线粉末衍射仪,做掠入射时加了薄膜附件,采用2θ扫瞄模式,θ角固定(2.5、3、5、8、15、30度),不管θ角多大都没出现衬底峰只有薄膜峰,但是随着θ角的增大,AlN (0002)峰强也增大,而.(10-13)峰强则减小直到消失,这是为什么?另外,掠入射时θ角越小x线在薄膜中的光程应该越大,反应的薄膜信息应该越丰富对吗?为什么我做θ角0.5度和1度时什么峰都没有呢?

  • 薄膜透过率测试

    请问大家,造成薄膜透过率低的原因可能有哪些呢?(利用积分球测试的透过率,薄膜镀在FTO 上的,并且薄膜尺寸小于透射侧孔洞大小)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制