当前位置: 仪器信息网 > 行业主题 > >

原子与分子物理

仪器信息网原子与分子物理专题为您整合原子与分子物理相关的最新文章,在原子与分子物理专题,您不仅可以免费浏览原子与分子物理的资讯, 同时您还可以浏览原子与分子物理的相关资料、解决方案,参与社区原子与分子物理话题讨论。

原子与分子物理相关的资讯

  • 西安交大前沿院邵金友教授在原子/分子团簇与器件制造领域取得新进展
    原子/分子团簇是物质结构的一种新形态,具有独特的本征性质。从原子/分子团簇到器件的跨尺度制造,将为高端装备和新兴电子等产业发展带来深刻变革。团簇的多物质构效关系、宏量制造、团簇结构跨尺度构筑以及团簇器件的高性能制造等是原子/分子团簇器件制造的关键发展方向,主导着从原子到产品制造的发展历程。把握这些发展背后的重要机遇,将有助于占领原子级制造研究的制高点,引领原子级制造方法的变革。由原子/分子团簇直接构筑功能器件或构件,是产品制造的新形式,在先进制造领域具有重要的意义,其中包括两个方面。首先,可以微缩器件的特征尺寸并提高制造精度。在集成电路的发展中,越小的器件尺寸意味着更高的集成度和更好的性能。利用原子/分子团簇直接构筑功能器件或构件可以将器件尺寸缩小到原子水平,将成为在后摩尔时代提高芯片性能的重要途径。其次,该策略更具颠覆性的意义,因为它可以突破分子和晶体的限制,通过对原子的精细操控来创造新分子、新材料和新器件。因此,原子/分子团簇直接构筑功能器件或构件不仅是由原子尺度物质科学支撑的先进制造技术,而且是推动物质科学发展的一种未来技术,甚至是未来物质科学的一种新形态,其必将颠覆现有制造方式获得的产品性能,深远影响高端国防装备和新兴电子产业的未来发展。另一方面,通过对原子结构的调控,能够提高材料的工作温度,实现陶瓷增韧,为高超航天器提供新型耐高温材料与结构。在电子产业领域,将原子/分子团簇等按照一定的方式进行组装能构筑具有特定功能的器件,如具有超高分辨率、超高亮度、超快响应能力的新型显示器、红外光电探测系数数倍增强的超敏传感器以及单分子电子器件及其构建的下一代集成电路等。基于上述背景,西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授等从团簇新材料的宏量制造、新型功能器件的原子/分子团簇构筑、团簇—器件的跨尺度制造工艺和装备等三个方面概括了原子/分子团簇与器件制造领域的主要研究进展,总结了原子/分子团簇与器件领域的关键科学问题及面临的挑战,并对其未来发展方向和发展战略给出了建议。特别地,建议从以下三个方面重点关注其中的科学问题研究:1. 在原子/分子团簇及晶胞结构的形性调控机制与宏量制造方面。建议重点研究量子力学在团簇生成及晶胞结构调控过程中的作用机制与控制方法,为原子/分子团簇和晶胞的高性能制造提供量子力学调控原理;研究团簇和晶胞结构形态与材料特性之间的构效关系,为优异特性的材料制造提供合理设计;研究特定形性团簇和晶胞的稳定性和一致性控制方法,为团簇及晶胞的宏量制造提供关键方法保障。2. 在团簇结构的定域组装方法及异质/异构界面特性的调控方面。建议重点研究团簇组装和图形化过程中的界面力学作用机制,为团簇结构制造提供关键理论支撑;研究“自下而上”与“自上而下”相结合的团簇结构定域组装机制与调控方法,实现团簇微纳结构的一致性、批量化制造;研究团簇异质/异构界面的力、热、光、电等基本物理特性形成机制与控制方法,实现团簇结构的基本性能调控。3. 在团簇—微纳结构—器件性能映射关系与一体化高性能制造工艺和装备方面。建议研究团簇形性特征、微纳结构功能特征、器件性能表现三者之间的相互映射关系,为器件功能和性能设计提供理论依据;研究由团簇材料到宏观器件的一体化制造新工艺和新方法,为高性能团簇器件制造提供创新工艺技术;研究典型团簇器件的创新印刷装备,为团簇器件的制造和应用提供制造装备范式。该研究成果以《基于原子/分子团簇结构的材料与器件制造》(Manufacturing From Atomic and Molecular Clusters to Devices)为题发表于材料领域高水平期刊《中国科学基金》。西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授为论文的第一/通讯作者。论文链接:DOI: 10.16262/j.cnki.1000-8217.2024.01.028 邵金友教授简介邵金友,现任西安交通大学科研院常务副院长、曾任职前沿科学技术研究院院长、机械学院副院长、国家杰出青年基金获得者、机械工程学院领军学者、博士生导师。主要从事微纳制造、电子皮肤与可穿戴电子、生物仿生与软体机器人、医工交叉等方面的研究工作。国家自然科学基金“纳米制造的基础研究”重大研究计划重大集成项目首席、国家重点研发专项项目首席,担任国家第六次科技预测(2020-2035规划)极端制造领域专家、十四五国家重点研发计划“高性能制造技术与重大装备”重点专项指南专家。已发表SCI论文160余篇,其中以第一和通讯作者在Nature Communications、Advanced Materials,ACS Nano等国际高水平期刊发表论文80余篇,SCI他引约3100余次,在第一、通讯作者SCI论文中,多篇被Advanced Materials,Advanced Functional Materials,Small,Nanoscale,IEEE Nanotechnology等期刊选为封面亮点论文,入选英国物理学会、美国化学学会和英国化学学会的精选论文或热点论文,被Wiley Video Abstracts,Material View,Advanced Science News,Nanowerk等国际知名学术新闻网站作为研究亮点评述。以第一发明人获得国家授权发明专利22项,获得美国PCT发明专项2项。
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 第十八届全国原子与分子物理学术会议在鲁东大学成功召开
    p   8月10日-14日,由中国物理学会原子与分子物理专业委员会主办,鲁东大学物理与光电工程学院承办的第十八届全国原子与分子物理学术会议在烟台隆重召开。来自吉林大学、中国国防科技大学、中科院武汉物理与数学研究所、北京应用物理与计算数学研究所、中国科学院近代物理研究所、清华大学、北京大学、南京大学、四川大学、西华大学、华中科技大学、华东师范大学、山东大学、山东师范大学、鲁东大学等138所单位的641名代表参加了本次会议。开幕式由鲁东大学物理与光电工程学院院长王美山教授主持。首先,鲁东大学校长李清山教授致开幕词,对来自全国各地原子分子物理及相关学科专家光临我校表示最热烈的欢迎。随后,清华大学中科院院士李家明院士、山东物理学会理事长陈峰教授、第七届原子与分子物理专业委员会主任丁大军教授分别讲话,对本次会议的召开表示热烈祝贺,并预祝大会取得成功。 /p p style=" text-align: center " img style=" width: 462px height: 292px " title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/b3e4dee5-065f-422b-ad3f-a1ca6a9b0bd5.jpg" width=" 477" height=" 303" / /p p   会议期间,有2位专家做了邀请报告、11位专家做了大会报告、 29位专家作了分会报告,291个代表提供了墙报论文。这些报告和论文充分展示了我国近年来原子与分子物理及其相关交叉学科的研究现状、最新成果、发展动态,代表们还对今后原子与分子物理学科发展趋势和研究热点进行了深入探讨。国家自然学科基金委数理一处倪培根主任就近几年原子与分子物理学科国家自然科学基金申报情况做了专题报告,南京大学王广厚院士对我国原子与分子物理未来发展提出了殷切希望。此外,还召开了原子与分子物理专业委员会七届七次会议和原子与分子物理专业委员会八届一次会议,分别投票选出了第八届专业会员会委员和第八届专业委员会的主任、副主任及秘书长。 /p p style=" text-align: center " img style=" width: 456px height: 302px " title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/fb81d70c-c3fe-4a47-be57-85b5091a2618.jpg" width=" 564" height=" 373" / /p p   闭幕式上,新一届专业委员会对本次会议取得的成果表示热烈祝贺,对会议的承办方鲁东大学表示衷心感谢,并为本次会议中评选出的优秀论文颁发了荣誉证书。大会在热烈的掌声中圆满闭幕。 /p p   本次会议是原子与分子物理学界一次层次高、范围广、影响大、人数多的学术盛会,对原子分子物理及其相关学科的发展具有深远意义。 /p p /p
  • 中国在原子分子超快动力学研究方面取得重要进展
    p   飞秒强激光为在原子时空尺度(阿秒时间与亚埃空间尺度)探测物质微观结构及电子超快动力学提供了重要手段。近日,我国专家在利用飞秒强激光探测原子分子结构及电子超快动力学研究方面取得重要进展。 /p p   飞秒强激光诱导的电离电子波包或可重新返回母离子实并与之发生再散射过程,由再散射引起的高次谐波谱或光电子谱为探测原子分子结构及电子态超快演化提供有效途径。当前,发展时空高分辨的原子分子结构及动力学探测方法为研究领域广泛关注。 /p p   中国科学院武汉物理与数学研究所柳晓军研究员、全威研究员等人与北京应用物理与计算数学研究所陈京研究员、吴勇副研究员等合作,提出一种新的激光诱导非弹性电子衍射方案,并采用这一方案实验测定了电子与惰性气体离子碰撞引起的非弹性散射微分截面。 /p p   据介绍,在这一方案中,专家利用飞秒强激光驱动原子产生的再散射电子波包替代传统电子束,通过电子碰撞的方法对惰性气体母离子结构进行探测。结合武汉物数所前期建成的高分辨电子-离子动量谱仪装置与符合测量方法,他们实验测量了对应于电子-离子碰撞电离过程的光电子二维动量谱,并从中提取出电子与母体离子作用的非弹性散射微分截面,实验结果与扭曲波波恩近似理论计算结果吻合。 /p p   这一方案继承了传统电子衍射方法的超高空间分辨优点,而且具有超高时间分辨能力,为在飞秒乃至阿秒时间尺度研究激光诱导的原子分子超快动力学过程提供了重要手段。相关研究成果近期发表在学术期刊《物理评论快报》上。 /p
  • 专家解读诺贝尔物理学奖:配合阿秒技术可以检测生物分子“指纹”
    今年诺贝尔物理学奖授予法国科学家皮埃尔阿戈斯蒂尼(Pierre Agostini),匈牙利裔奥地利科学家费伦茨克劳斯(Ferenc Krausz)和法国/瑞典科学家安妮吕利耶(Anne L'Huillier),以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。 华中科技大学是国内少数几个实现阿秒脉冲的产生和测量的高校之一。据该校超快光学实验室主任、物理学院教授兰鹏飞介绍,通过阿秒时间分辨超快测量技术,他们最近还拍摄了氮气、二氧化碳和丁二炔等分子内部电荷从一个原子核移动到另一个原子核的过程,“相当于一部‘分子电荷迁移电影’”。围绕什么是阿秒脉冲,该项技术能解决什么问题,以后又将应用哪些场景等问题,新京报记者专访了兰鹏飞。 阿秒脉冲的产生基于高次谐波辐射 新京报:10月3日,瑞典皇家科学院决定将2023年诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶。在你看来,三人的贡献在哪里,为何得奖? 兰鹏飞:三位科学家提出了为研究物质中的电子动力学而产生阿秒脉冲的实验方法。具体而言,阿秒脉冲的产生是基于高次谐波辐射,L’Huillier于1988年在实验上利用波长为1064纳米的红外激光驱动稀有气体产生了高次谐波。13年之后,也就是2001年,Agostini基于高次谐波辐射首次在实验上产生了阿秒脉冲串,并测得每个脉冲脉宽都为250阿秒;同年,Krausz首次在实验上产生了孤立阿秒脉冲,并测得其脉宽为650阿秒,从此打开了阿秒科学的大门。 新京报:什么是阿秒脉冲,它是如何产生的? 兰鹏飞:阿秒脉冲就是脉冲宽度为阿秒(10-18秒)量级的光脉冲。实验上,是用超强飞秒激光与气体介质相互作用,通过操控原子或分子中的电子运动产生高次谐波辐射,高次谐波的频率通常是飞秒激光频率的奇数倍,最大频率可以达到飞秒激光频率的几十倍甚至上百倍。由于不同频率成分高次谐波之间具有相干性,选择若干频率成分的高次谐波进行叠加就可以在时域上得到一个或一系列的光脉冲,脉冲的宽度刚好为阿秒量级,即阿秒脉冲。 阿秒脉冲实现了目前最快的“快门速度” 新京报:有专家指出“阿秒脉冲正是当前人类所能接触到的最快的时间尺度”,如何通俗地去这理解这个表述? 兰鹏飞:形象地说,就像拍照片和录视频,我们看到的电影和电视节目通常是每秒几十帧,每一帧就是一幅静止的画面。把静止的画面以每秒几十帧的速率播放出来,就是我们所看到的电影。在拍照时,每秒所能拍摄的帧数取决于快门的速度,快门速度越快,单位时间内拍摄的帧数就越多,记录下的动态过程就越精细。目前,实验上所能得到的最快的“快门速度”就是通过阿秒脉冲实现的,这大概是光穿过人类头发丝直径所用时间的万分之一。 新京报:据悉,华中科技大学是国内少数几个实现阿秒激光脉冲的产生和测量的高校之一,这些实验揭示了什么? 兰鹏飞:华中科技大学在实验上产生了阿秒脉冲,并对原子分子内的电子运动进行了测量。通俗地讲,拍摄了氩原子内部电子运动过程。我们最近还拍摄了氮气、二氧化碳和丁二炔等分子内部电荷从一个原子核移动到另一个原子核的过程,相当于给分子内部的电子运动拍摄了一部“分子电荷迁移电影”,拍摄时间分辨率达到阿秒。 阿秒脉冲为未来超快信息处理奠定基础 新京报:此次诺贝尔物理学委员会主席伊娃奥尔森认为,人们现在可以打开电子世界的大门。阿秒物理学让科学家有机会了解电子控制的机制,也让人们能够进一步理解一些基本问题。你认为,这些基本问题具体指哪些? 兰鹏飞:阿秒脉冲目前主要是用于测量原子、分子或者固体中电子运动过程,可以让人们更好地理解很多光与物质相互作用的基本问题,比如电子如何从势垒隧穿出来?是否需要时间,需要多长时间等。此外,发生光化学反应时,反应的具体过程是如何进行的,能否像拍摄电影一样把化学反应过程“拍摄”下来等。 新京报:除此之外,阿秒脉冲还有哪些应用前景? 兰鹏飞:阿秒脉冲除了测量电子超快过程,还可用来操控电子运动,进而实现超快操控,有可能为未来的超快信息处理奠定基础。同时,阿秒脉冲还可以用于生物医学方面的精密检测,通过结合超快激光和精确飞秒-阿秒光场分辨技术,可以检测生物分子的“指纹”。这有望成为一种新的体外诊断分析技术,如用于检测癌症病变等。
  • 量子物理学促进电镜技术两大新成果:敏感样品高分辨成像和原子级粒子相互作用测量
    作者:俄勒冈州大学Laurel Hamers   UO CAMCOR工厂的扫描电子显微镜。物理学家Ben McMorran和他的团队想出了一种改进研究工具性能的方法。图片来源自俄勒冈州大学  量子怪诞正在为电子显微镜打开新的大门,成为高分辨成像的强大工具。  UO物理学家Ben McMorran实验室的两项新进展正在改进显微镜。这两种方法都源于量子力学的一个基本原理:电子可以像波和粒子一样同时运动。这是许多奇怪的量子级怪诞的例子之一,在这些怪诞中,亚原子粒子的行为似乎往往违反了经典物理定律。  其中一项研究发现了一种在显微镜下研究物体而不与之接触的方法,从而防止显微镜损坏易碎样品。第二种方法设计了一种同时对一个样本进行两次测量的方法,提供了一种研究该物体中的粒子如何跨距离相互作用的方法。  McMorran和他的同事在两篇论文中报告了他们的发现,这两篇论文都发表在《物理评论快报》杂志上。  “通常很难在不影响它的情况下观察到一些东西,尤其是当你观察细节时。”McMorran说道:“量子物理学似乎为我们提供了一种在不破坏事物的情况下更深入地研究它们的方法。”  电子显微镜被用来近距离观察蛋白质和细胞以及非生物样本,比如新材料。电子显微镜将电子束聚焦在样品上,而不是传统显微镜中使用的光。当光束与样品相互作用时,其某些特性会发生变化。探测器测量光束的变化,然后将其转换为高分辨率图像。  但这种强大的电子束会对样品中的脆弱结构造成破坏。随着时间的推移,它可能会削弱科学家试图研究的细节。  作为一种解决方法,McMorran的团队使用了20世纪90年代初发表的一项理想实验,该实验提出了一种在不触碰敏感炸弹、不冒引爆风险的情况下探测敏感炸弹的方法。  这个技巧依赖于一种叫做衍射光栅的工具,衍射光栅是一种带有微小缝隙的薄膜。当电子束击中衍射光栅时,它被一分为二。  McMorran实验室的研究生Amy Turner是第一项研究的主导人,她解释说:“在这些分束衍射光栅正确对准的情况下,电子进入并分裂成两条路径,但随后重新组合,使其只流向两种可能输出中的一种。其原理是,当你放入样品时,电子与自身的相互作用会被打断。”  在这种装置中,电子不会像传统的电子显微镜那样击中样品。相反,电子束重组的方式揭示了范围内样本的信息。  在另一项研究中,McMorran的团队使用类似的衍射光栅装置同时在两个地方测量样品。他们将电子束分开,使其在一个小金粒子的两侧通过,测量电子传递到每一侧的粒子的微小能量。  这种方法可以揭示样本在原子水平上的敏感细微差别,了解样本中粒子相互作用的方式。  劳伦斯伯克利国家实验室的博士后研究员Cameron Johnson在McMorran的实验室做了博士研究,并领导了这项研究。他认为:“这项研究的特殊之处在于,你可以观察它的两个独立部分,然后将它们结合在一起,看看这是一种集体振荡,还是它们之间不相关。我们可以超越显微镜的能量分辨率和通常无法达到的探针相互作用的极限。”  虽然这两项研究进行了不同类型的测量,但它们使用的是相同的基本设置,即所谓的干涉测量法。McMorran团队的成员认为,他们的工具可能在他们自己的实验室之外有用,可以用于各种不同类型的实验。  Turner自豪道:“这是第一台此类电子干涉仪。人们以前使用过衍射光栅,但这是一种功能灵活的版本,可以根据不同的实验进行调整。”  McMorran谈到,如果有合适的材料和说明,这种装置可以被添加到许多现有的电子显微镜上。他的团队已经引起了其他实验室研究人员的兴趣,他们希望在自己的显微镜中使用干涉仪。参考资料:Amy E. Turner et al, Interaction-Free Measurement with Electrons, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.110401Cameron W. Johnson et al, Inelastic Mach-Zehnder Interferometry with Free Electrons, Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.147401
  • 吉林应用原子分子光谱重点实验室在吉大建设启动
    5月29日,吉林省应用原子分子光谱重点实验室(以下简称“实验室”)建设启动会暨青年教师学术报告会在吉林大学中心校区举行。该实验室依托吉林大学原子与分子物理研究所、由吉林省科技厅批准建立。   启动会后,王志刚等4名青年教师围绕各自研究领域作了学术报告。与会嘉宾围绕实验室建设任务和人才队伍建设等提出了意见和建议,并就学术问题进行了现场交流。
  • Nature|潘建伟、白春礼团队合作,首次实现利用射频场相干合成三原子分子
    中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。在该研究中,他们在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月10日,这一重要研究成果发表在国际权威学术期刊《自然》杂志上。图:从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现这一目标需要制备大规模的量子纠缠并进行容错计算,仍然需要长期不懈的努力。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,它能够在某些特定的问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛的应用前景。超冷分子将为实现量子计算打开新的思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级非常复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新的途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到上世纪八十年代。激光冷却原子技术的出现使得光合成双原子分子得以快速的发展,并在高精度光谱测量中取得了广泛的应用。在光合成双原子分子取得成功之后,人们开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局的Paul Julienne教授等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的一个重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,一直无法用来研究三原子分子的合成。后来随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛地应用于超冷化学和量子模拟的研究中。超冷基态分子的成功制备重新唤起了人们对合成三原子分子的研究兴趣。2015年,法国国家科学研究中心的Olivier Dulieu教授等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用极其复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学的研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振,相关成果发表于《科学》杂志 [Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测为合成三原子分子提供了新的机遇。但由于原子和分子的Feshbach共振非常复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子依然是实验上的巨大挑战。在该项研究中,中国科学技术大学的研究小组和中科院化学所的研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到了射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。这一工作为量子模拟和超冷化学的研究开辟了一条新的道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题极其复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题一直都是少体物理中的一个重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,这为刻画复杂的三体相互作用势能面提供了重要的基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要的信息。该研究工作得到了科技部、自然科学基金委、中科院、安徽省、上海市等单位的支持。论文链接: https://www.nature.com/articles/s41586-021-04297-2
  • 第十九届全国原子与分子物理学术会议
    参加第十九届全国原子与分子物理学术会议8月6日到9日,爱万提斯员工参加了由物理学会主办的第十九届全国原子与分子物理学术会议。各位老师前来参观爱万提斯的一系列产品,并做了交流。
  • 中科大盛东教授与卢征天教授团队在基于原子器件的精密测量物理上取得进展
    中国科学技术大学工程科学学院盛东教授与物理学院卢征天教授联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。相关成果以“Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer”为题于6月10日发表在《物理评论快报》[Phys. Rev. Lett. 128, 231803 (2022)]上。原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,所以共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用是由诺奖得主维尔切克(Franck Wilczek)提出的,它可由一种至今尚未被探测到的“轴子”粒子来传播。为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法[Phys. Rev. A 102, 043109 (2020)];同时也发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11 - 0.55 mm 的作用程范围里(对应的传播子质量范围为0.36 -1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm 附近,本项工作的实验精度比前人结果提高了30 倍。图1核子(左)与极化氙原子(右)的单极-偶极相互作用示意图。物理学院博士生丰宇焜为论文第一作者,盛东和卢征天是共同通讯作者。该研究工作得到了国家自然科学基金委和中科院先导项目的资助。论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.128.231803
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • “人造原子”近日成国际物理学界大明星
    俄日科学家用“人造单原子”制成量子放大器   “人造原子”这两天成了国际物理学界的“大明星”。就在《物理评论快报》宣告这项成果之前,最新一期《自然—纳米技术》刚刚发布了世界上最小的晶体管——由7个原子在单晶硅表面构成的一个“量子点”,它是另外一种人造原子。接踵而至的这些“不可思议”尤其让我们对人造原子啧啧称奇。完全可以期待,科学家在人造原子这个微型实验室里必将制造更多的惊喜,引领人类走向未知的新天地。   相关新闻:世界最小晶体管问世 仅由7个原子构成   俄罗斯和日本科学家利用“人造单原子”方法,成功研制出量子放大器,使在芯片上建立量子放大器等量子元件的技术向前推进了一步,该科研成果将在电子和光学等领域得到广泛应用。相关研究报告发表在近期出版的《物理评论快报》上。   作为利用量子效应来放大信号的设备,量子放大器以多种不同形式呈现在人们眼前。其中最普遍的形式应该是激光,借助受激辐射过程将光子从原子中激发出来。而实现量子放大器可调可控的一种途径就是利用单个原子或分子建立相关系统。然而,由于自然的原子与需放大的电磁波的耦合性很弱,单原子的量子放大器迄今为止都难以制成。   俄罗斯科学院列别德物理研究所和日本电气公司(NEC)纳米电子研究实验室组成的研究小组,利用“人造单原子”方法成功解决了这一问题。   研究人员介绍说,所谓“人造单原子”,就是一种在普通硅基芯片上人工制成的金属薄膜,它由多个单元组成,包括高频辐射传输线、共振器和一个纳米超导结构等。这一“单原子”能与一维空间的电磁模式强烈耦合,从而可实现电磁波放大过程的可调可控。   研究人员表示,研究的关键在于粒子数反转的准备,这在激光中也是一样。实验中所用的“人造单原子”具有三个分立能级,研究人员通过向该“人造单原子”发射特定频率的电磁信号,可使其从基态激发至第二受激态。此后,“人造单原子”将部分恢复至基态,部分恢复至第一受激态。当处于第一受激态的光子数多于处于基态的光子时,就会发生粒子数反转。随后科研人员将另一个需放大的脉冲信号传递给“人造单原子”,这时,就会与基态粒子和第一受激态的粒子状态转换产生共振,刺激这一转换使光子从“人造单原子”中释放出来,从而实现了信号的全面放大。   研究人员计算出的放大器的最大增益可达1.09,相当于平均每100个入射光子就会释放109个辐射光子,而理论最大增益为1.125。研究人员称,如果使用更多的原子,则可获得更大的增益。   研究人员表示,“人造单原子”为制造基本的量子放大器提供了新思路,其可被用作大规模、可调整的量子放大器组件,也为实现量子太阳能电池的量产带来了希望。
  • 原子光谱与生物技术 “百家争鸣”—2020分子光谱会议分会场一
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2020年10月31日,第21届全国分子光谱学学术会议暨 2020年光谱年会在成都召开,本次会议由中国光学学会和中国化学会主办,四川大学分析测试中心承办。本次会议共收到论文摘要近320篇。大会组委会特别邀请了知名院士、专家学者参会并做报告,共安排了6个大会报告,11个主旨报告,70个邀请报告,36个口头报告,20个青年论坛报告和70余个墙报展。 /p p style=" text-align: justify text-indent: 2em " 大会第一天,南京大学陈洪渊院士、厦门大学孙世刚院士、北京大学张锦院士等13位院士和专家带来精彩的分享。( strong 相关报道: a href=" https://www.instrument.com.cn/news/20201031/563502.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " 《院士领衔 第21届全国分子光谱学学术会议在成都开幕》 /span /a 、 a href=" https://www.instrument.com.cn/news/20201031/563515.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " 《前沿光谱技术分享——2020分子光谱会议首日下午干货不断》 /span /a /strong ) /p p style=" text-align: justify text-indent: 2em " 11月1日,大会进入分会报告环节,组委会精心安排了5个分会场,共8个主题的分会报告,包括:原子光谱新技术及应用、光谱生物技术及应用、拉曼光谱新技术及应用、红外光谱技术及应用、发光及可视化新技术及应用、荧光光谱新技术及应用、光谱新技术及应用和青年论坛。 /p p style=" text-align: justify text-indent: 2em " 分会场一的主题为:原子光谱新技术及应用和光谱生物技术及应用,26位光谱领域的顶尖专家分享了他们研究的最新进展,让参会专家尽享“光谱盛宴”。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/2fc62204-dd1e-4d66-91ea-aa3d2c9eb52a.jpg" title=" IMG_7345.jpg" alt=" IMG_7345.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 分会场一 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/853ab7e1-7545-4ef6-9d85-d1f06b2973eb.jpg" title=" 胡斌.jpg" alt=" 胡斌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:武汉大学 胡斌 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于ICP-MS的生物医学分析策略 /strong /p p style=" text-align: justify text-indent: 2em " 胡斌教授在报告中介绍了他课题组构建的集成化、阵列化微流控芯片样品前处理平台,以及微流控芯片-time-resolved ICP-MS单细胞分析方法,并将其应用于单细胞水平的痕量元素定量及纳米粒子的摄取研究中。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/1d4ca434-9ae8-47a7-90e4-69fa3a9e8186.jpg" title=" 汪正.jpg" alt=" 汪正.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院上海硅酸盐研究所 汪正 研究员 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:大气压辉光放电微等离子体光谱技术研究及其环境应用 /strong /p p style=" text-align: justify text-indent: 2em " 现有金属元素定量分析技术仍然存在一定的缺点,报告中,汪正研究员介绍了他课题组研发的大气压辉光放电等离子体技术、液体阳极辉光放电-原子发射光谱技术、氦气氖常压辉光放电-原子发射光谱技术等,有效的提高了部分元素的检测灵敏度,同时显著降低了基质的干扰。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d9bc2ac0-ed09-44d4-8477-35e4af079d15.jpg" title=" 陈明丽.jpg" alt=" 陈明丽.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:东北大学 陈明丽 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:ICPMS用于细胞中金属相关形态转化研究探索 /strong /p p style=" text-align: justify text-indent: 2em " 金属形态包括游离态、共价结合态、络合配位态和超分子结合态等,微量元素在生物体中含量很低,却是酶和维生素不可或缺的活性因子,因此,探究细胞中的金属形态显得尤为重要。陈明丽教授在报告中介绍了她通过毛细管电泳与ICPMS联用实现了对细胞中的金属元素/金属纳米粒子的定性定量分析。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/a8eb44c2-0ea2-4630-9724-6c7184abc8e2.jpg" title=" IMG_7478.jpg" alt=" IMG_7478.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院化学所 王铁 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:生命流动体系中的分析检测 /strong /p p style=" text-align: justify text-indent: 2em " 生命体系并非静止,其一直处在变化的状态,因此对生命流动体系的研究意义重大。报告中,王铁教授介绍了他课题组首次引用化工领域的Shilov方程到生命流动体系中,并通过纳米颗粒、多孔MOF等方式提高了检测中对耐药细菌的捕获能力,并设计了肺癌患者呼气分析检测的新方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/fe6caf1f-6890-4275-8df6-267bfe665afe.jpg" title=" 王哲.jpg" alt=" 王哲.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:清华大学 王哲 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:LIBS定量化及应用 /strong /p p style=" text-align: justify text-indent: 2em " 报告中,王哲教授首先介绍了LISB技术的优势,并提出了其重复性低、误差大的问题。随后,他叙述了他如何通过使用等离子体调制和主导因素偏最小二乘法有效的克服了上述的两个问题,并分享了这项研究成果在实时煤质分析、手持式金属分析仪和水泥生料在线控制中的实际应用。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/314eb2ac-f3df-40dd-8125-c86bab06fc56.jpg" title=" 俞进.jpg" alt=" 俞进.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:上海交通大学 俞进 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:机器学习在LIBS光谱数据处理中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 基体效应是LIBS应用的瓶颈问题,报告中,俞进教授介绍了他研制的机器学习LIBS数据校正方法,并优化训练了样品的采集和制备过程,有效的降低了LIBS分析中的基体效应,推进了LIBS产业化应用。他还介绍了这种技术在土壤中金属元素定量分析、钢铁样品中碳的分析、钾肥在线同时测定水分和钾元素含量等领域的应用实例。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/ee284298-85a1-4b4e-8683-b99a3e0a45d6.jpg" title=" 邢志.jpg" alt=" 邢志.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:清华大学 邢志 研究员 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:含氢等离子体蒸汽发生直接固体样品分析的方法研究 /strong /p p style=" text-align: justify text-indent: 2em " 原子荧光光谱仪一直存在长期稳定性差的问题,邢志研究员在报告中介绍了他课题组提出的非THB蒸汽发生元素检出方法以及研制的加氢等离子体的固体直接进样分析装置,可使氢等离子诱导固体直接产生化学蒸汽,大大提高了原子荧光光谱仪的稳定性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/47c99b1c-dd08-4fa0-b00d-38c62b10bdcc.jpg" title=" 高英.jpg" alt=" 高英.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:成都理工大学 高英 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:元素协同光化学还原及分析应用 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/f7eee848-016d-4503-b543-87096ee9a469.jpg" title=" 朱振利.jpg" alt=" 朱振利.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国地质大学 朱振利 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于等离子体技术的锑元素及同位素分析方法开发 /strong /p p style=" text-align: justify text-indent: 2em " 此外,四川大学蒋小明副教授、四川大学林瑶副教授、四川师范大学黄科副教授、武汉大学何蔓副教授、澳门科技大学伍建林副教授5位专家带来了精彩的报告。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d59fefb4-8958-4b2b-ad8b-47b4dbe1a4d0.jpg" title=" 蒋小明-1.jpg" alt=" 蒋小明-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:四川大学 蒋小明 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:基于放电激发源的小型化原子发射光谱分析 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e2338e1c-b6e6-4e52-9c63-e0f0aa80a0df.jpg" title=" 林瑶-1.jpg" alt=" 林瑶-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川大学 林瑶 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:微等离子体原子发射光谱用于汞的现场分析 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/bb531858-7d22-4615-af3f-611b283828e0.jpg" title=" 黄科-1.jpg" alt=" 黄科-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川师范大学 黄科 副教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:基于量子点阳离子交换反应的原子光谱新方法研究 /b /p p style=" text-indent: 0em text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/b1b55bca-3565-4c2c-805a-9683cc5a70d3.jpg" title=" 何蔓-1.jpg" alt=" 何蔓-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:武汉大学 何蔓 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:HepG2细胞中硒汞拮抗作用初探 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/54d48b27-16dc-4c07-b29c-7071d6b85f11.jpg" title=" 伍建林-1.jpg" alt=" 伍建林-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:澳门科技大学 伍建林 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:少即是多,基于质谱的低丰度成分分析及应用 /strong /p p style=" text-align: justify text-indent: 2em " 在分会场一的第二个主题光谱生物技术及应用环节,中国科学院生态环境研究中心汪海林研究员、四川大学刘睿副教授、国家纳米科学中心孙佳姝研究员、赛默飞世尔科技(中国)有限公司徐菁博士、湖南大学陈卓教授、复旦大学卢建忠教授、安捷伦科技(中国)有限公司张晓丹博士、四川大学李峰研究员、华中农业大学韩鹤友教授、东北大学杨婷教授分别带来了精彩的学术分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c2af4272-00a4-4f1e-9eff-3f93cb6e1590.jpg" title=" 汪海林-1.jpg" alt=" 汪海林-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院生态环境研究中心 汪海林 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:核酸修饰分析与DNA表观遗传 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c1d56ec0-99ad-4c51-8c08-cbb87e3cb6ef.jpg" title=" 刘睿-1.jpg" alt=" 刘睿-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川大学 刘睿 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:金属稳定同位素标记-准确定量生物分析探索 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c28d887d-3f6b-40c8-877c-aafc9f0d9796.jpg" title=" 陈佳-1.jpg" alt=" 陈佳-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:中科院兰州化学物理研究所 陈佳 博士 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:碳纳米材料在生物标志物检测中的应用研究 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/58ada246-ee4f-4daa-9bee-8e427cf3b1e9.jpg" title=" 徐菁-1.jpg" alt=" 徐菁-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:赛默飞世尔科技(中国)有限公司 徐菁 博士 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:赛默飞分子光谱在生物分析及环境领域应用进展 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e9df18fd-8cd6-48c5-b793-13a1e185bc09.jpg" title=" 陈卓-1.jpg" alt=" 陈卓-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:湖南大学 陈卓 教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:基于烯碳纳米探针的活体拉曼分析 /b /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/9b53bbc2-12e3-49d0-9160-3700be33b798.jpg" title=" 卢建忠-1.jpg" alt=" 卢建忠-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:复旦大学 卢建忠 教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:多组分microRNA流式荧光检测 /b /p p style=" text-indent: 0em " strong /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 421px " src=" https://img1.17img.cn/17img/images/202011/uepic/18edff5c-6f1c-4e93-9555-68d70ea1e3ab.jpg" title=" 张晓丹-1.jpg" alt=" 张晓丹-1.jpg" width=" 600" height=" 421" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:安捷伦科技(中国)有限公司 张晓丹 博士 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:生物样品控温测试的创新技术—安捷伦新一代 Cary3500 UV-Vis /b /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d112b8f8-3adc-4dc5-932c-29e7a6a4dbd3.jpg" title=" 陈佳姝-1.jpg" alt=" 陈佳姝-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong 报告人:国家纳米科学中心 孙佳姝 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:微流控肿瘤液体活检技术 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e91a0717-4783-4cb9-a317-45070b816a3c.jpg" title=" 韩鹤友-1.jpg" alt=" 韩鹤友-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:华中农业大学 韩鹤友 教授 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:抗超级细菌的新策略新进展 /strong /p p style=" text-indent: 0em " strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/801e8b1d-c2c3-4396-9307-9487ab1440f2.jpg" title=" 李峰-1.jpg" alt=" 李峰-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:四川大学 李峰 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:三维DNA纳米机器的构建及在生物分析中的应用 /strong /p p style=" text-indent: 0em " strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/be003f59-18cd-41cf-b372-3e5a22ae7b5b.jpg" title=" 杨婷-1.jpg" alt=" 杨婷-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:东北大学 杨婷 教授 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:基于硼酸识别的免疫传感器 /strong /p p style=" text-align: justify text-indent: 2em " 另外由于疫情原因,中国科学院青岛生物能源与过程所徐健研究员没能来到会议现场,他特别远程直播为参会者进行了报告。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/6830ef75-03db-4bb2-9f7e-d0484efa27eb.jpg" title=" IMG_8062.jpg" alt=" IMG_8062.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p
  • 谈微纳光电子领域对原子力显微镜的应用与售后需求—访南开大学物理科学学院王晓杰
    近年来,中国分析表征仪器设备市场蓬勃发展。随着设备性能越来越完善,消费者在采购仪器时对于售后服务质量的考量比重也与日俱增。为提升仪器售后服务质量,促进中国分析表征仪器设备市场的健康发展,仪器信息网特邀请企业和用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了南开大学物理科学学院的王晓杰老师。访谈中,王晓杰老师介绍了微纳光电子领域对相关研究设备售后服务的需求,并表示牛津仪器售后服务工程师的服务态度良好,专业水平高,为其科研工作提供了不可或缺的支持。南开大学物理科学学院助理研究员 王晓杰王晓杰,南开大学物理科学学院助理研究员,主要从事铌酸锂微纳光电子学相关的研究及大学物理实验教学研究。目前主持国家自然科学基金项目1项,省部级项目5项。在Applied Physics Letter、European Journal of Physics等期刊发表论文多篇,获全国科创项目式学习方案征集活动一等奖、南开大学教学育人先进个人等荣誉。此外,长期从事科普教育工作和科学教育研究,现为中国物理学会“蒲公英计划”科普宣讲团专家、Light科普坊科普作者、中级青少年科技辅导员。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?王晓杰老师:我主要从事微纳光电子学相关的研究,主要的工作内容是铌酸锂铁电畴结构的制备及其表征。在工作中利用原子力显微镜可以很好的完成铁电畴结构的制备、PFM表征以及电学测试,特别是可以在纳米尺度实现图案化的铁电畴结构直写,并且对铁电畴结构进行实时表征。目前这一研究在数据存储、传感器、光电器件等方面具有广泛的应用潜力。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?王晓杰老师:我主要使用的仪器是MFP-3D系列的原子力显微镜,主要用于材料形貌、电学和铁电方面的表征和测试。在采购设备时,首先关注仪器的性能和功能,确保它能够提供稳定和高分辨率的表征数据。其次比较关注售后服务和支持,主要考虑售后服务团队的专业程度、响应速度以及是否提供定期培训服务等。牛津仪器MFP-3D系列原子力显微镜仪器信息网:您体验过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?王晓杰老师:体验过牛津仪器的在线支持、仪器培训以及现场技术支持等服务。感觉牛津仪器的售后服务响应速度快、专业,微信几乎是全天在线,节假日无休。而且每年都会举办线上线下培训班,可以使课题组和实验室的新生及时得到来自厂家的专业的培训。另外我们也会定期从牛津仪器在线商城上购买原子力显微镜探针,目前商城里的探针已经足够满足我们的各种应用需求,商城中的探针选取指南使用起来也十分便捷。仪器信息网:对于牛津仪器提供的在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等售后服务,您有哪些印象深刻的案例分享?王晓杰老师:有两件事让我们印象深刻。第一个是疫情期间,我们实验室的原子力显微镜背板损坏,检修完发现需要送到总部维修,由于当时有一篇论文审稿回来需要补充数据,时间很紧张。和牛津仪器的工程师联系后,工程师紧急调用了一台备用仪器背板给我们使用。协调好仪器背板的相关事项后,突然被通知要封校,如果等到第二天就无法进校安装了。我们和工程师沟通后,工程师连夜打车将背板送到实验室并安装测试完毕,非常辛苦也非常敬业。第二件事是由于实验室调整,需要进行设备搬迁。牛津仪器工程师知道这件事情之后,很快和我们协调好搬迁时间,并告知我们提前需要准备的事项。搬家当天,牛津仪器派了经验丰富的工程师来校进行了拆装和测试,整个过程只用了不到一天就完成了。并且在拆装过程中,工程师不断和我们讲解一些需要注意的事项。安装后进行仪器测试,竟然发现机器性能比装机时的性能还要优秀。这完全得益于工程师专业的素养和极高的工作效率。在整个设备拆装过程中,工程师全程像朋友一样和我们沟通,感受非常好。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?王晓杰老师:牛津仪器的售后服务工程师在与我们对接过程中展现了极高的专业素养:熟知设备内部结构和运行原理。在解决问题的过程中,能够迅速定位并诊断故障,提供有效的解决方案。此外,在与售后服务工程师的交流中,他们非常细心、耐心。无论是在现场支持、远程支持还是技术培训过程中,都能够详细解答我们的问题。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?王晓杰老师:听说牛津仪器目前正在国内建立本地备件库,希望可以进一步加强零配件需求的时效性。当设备需要更换零部件或者维修时,能够直接在本地进行替换和维修,减少因维修时间对于研究进度的影响。
  • 中国科大在基于原子器件的精密测量物理方面取得进展
    中国科学技术大学工程科学学院教授盛东与物理学院教授卢征天联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。6月10日,相关研究成果以Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer为题,发表在《物理评论快报》上。   原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,因而共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用由诺奖得主维尔切克(Franck Wilczek)提出,它可由一种至今尚未被探测到的“轴子”粒子来传播。  为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法【Phys. Rev. A 102, 043109 (2020)】;同时,发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11-0.55 mm的作用程范围里(对应的传播子质量范围为0.36-1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm附近,本工作的实验精度比前人结果提高了30倍。  研究工作得到国家自然科学基金和中科院战略性先导科技专项的支持。  论文链接 核子(左)与极化氙原子(右)的单极-偶极相互作用示意图
  • 原子光谱前沿技术进展 第22届全国分子光谱学学术会议暨2023 年光谱年会报告集锦
    仪器信息网讯 7月15日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开。本次会议由中国光学学会、中国光学学会光谱专业委员会、中国化学学会主办,云南师范大学承办。(相关阅读:15日上午《再聚昆明 第22届全国分子光谱学学术会议暨2023年光谱年会开幕》;15日下午《新技术新成果 第22届全国分子光谱学学术会议精彩报告来袭》)。7月16日,大会设置了拉曼光谱新技术及新方法、生物传感及光谱成像、红外光谱新技术及新方法、超快光谱新技术及新应用、拉曼光谱新技术及新材料、原子光谱新技术及新方法、青年论坛等7大主题分会场,各参会人员按照自己的工作领域与需求在相应的会场进行深入的探讨交流。其中,在原子光谱新技术及新方法分会场上,共有18位行业资深专家进行了报告分享。会议现场四川大学 侯贤灯 教授《原子光谱/质谱分析中的分离技术》武汉大学 胡斌 教授《微流控芯片-ICP-MS 单细胞分析》福州大学 付凤富 教授《纳米金锥的精准调控及其在可视化检测中的应用》中国地质大学 朱振利教授博士生 刘星《等离子体蒸气发生元素/同位素分析方法》四川师范大学 黄科 教授《基于微滤膜辅助分离原子光谱/手机比色生物分析新方法研究》16日上午,原子光谱分会场上半场报告中,侯贤灯教授介绍了其课题组所做的基于ICP的单检测器原子光谱多物理量同时测量系统、光化学蒸汽发生进样技术等的相关研究进展,他提出可以把分离技术与光谱技术结合起来进行研究,并对样品前处理技术进行了分享等;胡斌教授课题组构建了集成化、阵列化微流控芯片样品前处理平台,实现了低至600个细胞的细胞样品中痕量元素及其形态分析,并成功用于硒汞拮抗作用。同时他们还建立了微流控芯片/微流体-time-resolved ICP-MS单细胞分析方法,并将其用于单细胞水平的痕量元素定量、形态分析、纳米粒子的摄取以及胞内纳米粒子的稳定性研究等;付凤富教授课题组建立了NADH-AA 金锥生长调控体系,可有效抑制空白、提高AA调控金锥生长的灵敏度,可以在更低的AA浓度范围内调控金锥生长,产生更多和更清晰的颜色变化。课题组建立的HCI-NADH-AA 金锥生长调控体系,可精确调控AA促进金锥 (AuNBPs) 生长的速度,产生双通道多颜色信号等;刘星博士与大家分享了其所在的朱振利教授课题组在等离子体化学蒸气发生高灵敏元素分析,等离子体化学蒸气发生快速、准确同位素分析两方面的研究内容及研究进展;黄科教授课题组成功建立基于微滤膜辅助分离的原子光谱生物分析方法,实现了基于酶调控策略的原子光谱生物分析的初步探索。他表示,下一步将继续在多目标物同时分析及滤膜修饰方向开展研究。上海交通大学 俞进 教授《机器学习算法赋能激光诱导击穿光谱助力火星科学探测》清华大学 邢志 教授《高纯非导体材料纯度分析方法探索》四川大学 刘睿 教授《金属稳定同位素标记均相免疫分析》武汉大学 何蔓 教授《大气颗粒物中痕量重金属及持久性有机污染物的分析方法研究》中国科学院上海硅酸盐研究所 钱荣 教授《基于常压辉光放电质谱的单胺类神经递质分析新方法》16日上午,原子光谱会场下半场报告中,俞进教授指出基体效应是LIBS走向应用的瓶颈,机器学习展现出强大的LIBS光谱反演功能,将为LIBS发展为成熟分析手段开辟新的前景。报告中,他还与大家分享了机器学习赋能LIBS助力中国首次火星探测实现了原创性科学发现等;邢志教授分享道,高纯非导体材料的理想分析手段是固体直接进样分析。GDMS是固体材料中痕量及超痕量杂质分析的理想手段,分析非导体材料时需要导电介质。报告中,他还对粉体或颗粒非导体材料、高纯晶片的分析要求和注意事项等进行了详细的分享;刘睿教授分享了其课题组开展的金属稳定同位素标记均相免疫分析研究,包括简便快速分析、多组分分析、自验证分析等;何蔓教授课题组通过研究发现当地Cd、Pb、Zn的污染程度较高,其主要来源是土壤、交通运输以及人为活动引起的灰尘再悬浮,通过设计选择性好的分离富集方法,可实现APM中极低浓度重金属或有机污染物的定量等分析;钱荣教授课题组通过开发APGD离子源、表征活性中间体,研究了多酚氧化酶(PPO)催化DA发生氧化的过程,建立了一种新型APGD-MS高效、便捷表征DA及氧化过程的方法,为黑色素病变、神经退行性等疾病早期筛查与诊断提供一种新思路。东北大学 于永亮 教授《元素质谱在金属形态与疾病标志物分析中的应用》大理大学 温晓东 教授《云南道地药材中痕量金属元素分析方法的建立及相关药效学的初步研究》成都理工大学 高英 教授《元素新型光化学蒸汽发生及应用》四川大学 蒋小明 教授《尖端放电结构与参数设计以构建高性能的小型化原子发射光谱仪》中国科学院上海硅酸盐研究所 汪正 教授《大气压辉光放电微等离子体光谱技术研究及其环境应用》中国科学院高能物理研究所 李玉锋 研究员《基于同步辐射光源的空间金属组学助力碎米荠富硒机制研究》四川大学 张金懿 副教授《基于碳点的比色和荧光现场分析策略研究》东北大学 陈明丽教授博士生《激光剥蚀电感耦合等离子体质谱用于生物组织成像方法探索》16日下午,原子光谱会场中,于永亮教授报告中分享了其课题组研发的简单便捷的样品预处理系统,结合色谱分离与元素质谱检测实现了适于复杂体液样品的金属形态分析,将会有助于评估某些金属的暴露,并研究其代谢和毒性等;温晓东教授介绍了其课题组基于新型纳米复合材料和DES/NADES等绿色试剂的研究,其建立了准确测定药材中的痕量金属元素的分析方法,并将超声辅助-DES的消解方法与ICP-OES 联用,首次应用于滇龙胆等药材的快速、绿色前处理等;高英教授研究发现了过渡金属离子辅助PVG、气液界面增强PVG和协同增强PVG等新型光化学反应体系。其课题组建立的痕量元素的分析新方法,分析灵敏度最大可提高70倍等;蒋小明教授分享了其课题组对于放电结构的设计、放电性质的调控、蒸气发生与钨丝电热蒸发进样等的研究成果;汪正教授表示,电极冷却可以提高电极的耐受电压从而提升微等离子体的激发效率,同时改善检测稳定性。通过HG,CVG,ETV以及微等离子体诱导蒸汽发生等技术能够显著提升检测灵敏度,同时显著降低基质干扰等;李玉锋研究员介绍道,金属组学是多学科研究工具,空间金属组学可助力碎米荠富硒机制研究,大科学装置也为金属组学研究提供了有力工具;张金懿副教授介绍道,基于碳点的光化学活性,他们构建了快速高效的光催化显色体系,通过离子中间体对催化活性进行调控,实现了中性及碱性条件下的催化显色等;陈明丽教授课题组在报告中分享道,LA-ICP-MS用于组织样品中元素成像,可以获得金属元素代谢紊乱的位置信息。同时,他们发现,保持低温的剥蚀条件,能最大程度的保持生物组织样品的原始状态,获得金属组分的精确分布信息等。
  • 多原子分子反应过渡态光谱研究取得进展
    近日,中国科学院精密测量科学与技术创新研究院理论与计算化学研究组副研究员宋宏伟与美国加利福尼亚大学伯克利分校教授Daniel M. Neumark团队、美国新墨西哥大学教授郭华合作,结合慢光电子速度成像光谱实验和量子动力学理论,获得了多原子分子反应过渡态区域目前最为完整的图像,对于剖析多原子分子反应的反应机理具有重要意义。   化学反应过渡态决定化学反应的基本特性。对于多数化学反应,反应过渡态的寿命非常短,实验观测非常困难,因此,直接观测反应过渡态被认为是化学研究的“圣杯”。共振态是反应体系在过渡态区域形成的具有一定寿命的准束缚态,为探索化学反应在过渡态附近的行为提供契机,因而可以通过研究共振态的结构与动力学揭示化学反应的微观机理。  该研究结合慢光电子速度成像光谱实验和量子动力学理论,观测到多原子分子反应 F + NH3 → HF + NH2过渡态区域的多个振动Feshbach共振峰(图1)。共振波函数表明这些Feshbach共振态位于产物端势阱、过渡态和反应物端势阱等区域(图2),成因于单个或多个反应体系振动模式的激发。由于部分Feshbach共振态的能量高于反应物势能,因而可能影响化学反应的速率和量子态分布。本研究获得了多原子分子反应过渡态目前最完整的图像,表明过渡态光谱方法已具备探究多原子分子反应过渡态区域复杂动力学行为的能力。  Feshbach共振态是特殊的量子动力学现象,其标记依赖精确的量子动力学计算。宋宏伟自2016年开始致力于开发计算五原子分子体系光电谱的理论方法,提出了高精度势能面的构建方法(J. Phys. Chem. A 126, 352 (2022))和精确的量子动力学计算方法(Phys. Chem. Chem. Phys. 23, 22298 (2021)),为标记实验光电子谱和理解多原子分子反应微观机理打下良好的理论基础。  相关研究成果发表在《自然-化学》上。研究得到国家自然科学基金创新研究群体项目和面上项目的支持。实验测量与理论计算的F-NH3光脱附谱F-NH3负离子基态与不同Feshbach共振态波函数的分布
  • 钱义祥——高分子物理与聚合物热分析
    p style=" text-align: center " strong span style=" font-size: 24px " 高分子物理与聚合物热分析 /span /strong /p p style=" text-align: right " 热分析老人 钱义祥 /p p style=" text-align: right " 2018-05-10 /p p   « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。 /p p   一、高分子物理与聚合物热分析 /p p   1.聚合物热分析 /p p   热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有: /p p   研究结构及动态变化 /p p   表征玻璃化转变和熔融行为 /p p   分析多组分高聚物体系的组成 /p p   研究高聚物链缠结及化学交联 /p p   研究高聚物的结晶行为 /p p   表征高聚物的微相结构 /p p   研究高聚物共混相溶性 /p p   反映共混高聚物中组分间的相互作用 /p p   研究聚合物的热历史和处理条件对高聚物结构的影响。 /p p   动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。 /p p   聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。 /p p   热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。 /p p   热分析方法是在不断发展的。如示差扫描量热仪DSC 技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC 的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。 /p p   其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC 所能提供的降温速率,因此很难利用常规DSC 模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC 的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。 /p p   近年来,出现了商业化的闪速示差扫描量热仪Flash DSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪Flash DSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。 /p p   Flash DSC在高分子的结晶方面的应用有:Flash DSC 可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,Flash DSC 所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。 /p p   Flash DSC 研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。 /p p   Flash DSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。 /p p   Flash DSC 研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。 /p p   总之,Flash DSC 在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1] /p p   2.高分子物理 /p p   高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。 /p p   高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。 /p p   高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2] /p p   高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐 僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3] /p p   3. 高分子物理与聚合物热分析 /p p   高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。 /p p   1)« 高分子物理» 关于高分子物理的研究方法的论述 /p p   何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。 /p p   « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。 /p p   2)高分子物理是一门理论和实验结合的精确科学 /p p   高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。 /p p   3)高分子物理理论解析热分析曲线 /p p   热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。 /p p   用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。 /p p   4)运用高分子物理和近代研究方法研发新材料 /p p   新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。 /p p   由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴, 在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。 /p p   在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。 /p p   南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的Flash DSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了Flash DSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。 /p p   4.用高分子物理解析高聚物热分析曲线 /p p   论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。 /p p   下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。 /p p   用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。 /p p   为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。 /p p   下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/949131bc-639b-4526-bf50-e274436c8e6b.jpg" title=" 典型非晶态聚合物的DMA曲线(温度谱).jpg" / /p p style=" text-align: center " 典型非晶态聚合物的DMA曲线(温度谱) /p p   由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。 /p p   玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。 /p p   当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4] /p p   以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。 /p p   二. 高分子物理著作 /p p   五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。 /p p   1. 胡文兵 « 高分子物理» 英文版 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1aa4cea4-6b0f-494d-a8a3-5ee692a50104.jpg" title=" Polymer Physics.jpg" width=" 400" height=" 597" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 597px " / /p p style=" text-indent: 2em " A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands. /p p   该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是: /p p   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金 译《高分子物理学》,北京:科学出版社,2009。 /p p   胡文兵教授最新研究:高分子结晶和熔融行为的Flash DSC研究。 /p p   2. 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/88e02164-b40b-4d8a-855b-151089d39859.jpg" title=" 新编高聚物的机构与性能.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 前言 /p p   自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的& quot 高聚物结构与性能& quot 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。 /p p   高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。 /p p   作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。 /p p   本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。 /p p   值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。 /p p   如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。 /p p style=" text-align: right "   何平笙 2009年4月 /p p 内容简介 /p p   本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。 /p p   本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。 /p p   3. 何曼君 张红东 陈维孝等. « 高分子物理» 第三版 复旦大学出版社2007 /p p   是国内有代表性的高分子物理教材,为多所高校所选用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8d4bba6b-93c0-4f52-be05-deb5b6a543d9.jpg" title=" 高分子物理.jpg" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p 序 /p p   本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。 /p p style=" text-align: right "   于同隐 /p p style=" text-align: right "   2006年10月 /p p style=" text-align: left " 1990年修订版序 /p p   高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。 /p p   60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger ,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。 /p p   本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。 /p p   本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。 /p p   由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。 /p p style=" text-align: right "   于同隐 /p p 第三版前言 /p p   本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。 /p p   建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。 /p p   随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。 /p p   首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了de Gennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。 /p p   本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。 /p p   在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。 /p p style=" text-align: right "   何曼君 /p p style=" text-align: right "   2006平10月1日 /p p 内容提要 /p p   本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。 /p p   全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。 /p p   本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。 /p p   4. 过梅丽 赵得禄 主编 « 高分子物理» 北京航空航天大学 2005 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/2ff9663c-26c9-48de-97e6-13af091fd610.jpg" title=" 高分子物理2.jpg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /p p 序 /p p   处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。 /p p   与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。 /p p   自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。 /p p   本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下: /p p   普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。 /p p   紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。 /p p   本书所涉及量的名称和单位符合国标规定,但有下列例外: /p p   聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。 /p p   高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。 /p p   温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。 /p p   本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。 /p p   在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。 /p p   编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。 /p p style=" text-align: right "   编者 /p p style=" text-align: right "   2005年3月14日 /p p 内容简介 /p p   本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。 /p p   本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。 /p p   5.过梅丽 « 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4208e7e3-d019-4baa-ac7f-eeab1bb30bb7.jpg" title=" 高聚物与复合材料的动态力学热分析.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 前言 /p p   著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(If you are allowed to run onlyone test on a polymer sample, the choice should be a dynamic mechanical test of a solid sample over a wide temperature range)”。 /p p   材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。 /p p   测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanical thermal analysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。 /p p   推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。 /p p   ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。 /p p   ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。 /p p   ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。 /p p   ④ 态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析 技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。 /p p   目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。 /p p   但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。 /p p   笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPont DMA 982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了Rheometric Scientific DMTA Ⅳ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB 7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。 /p p   动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。 /p p   动态力学热分析能提供哪些信息? /p p   这些信息的物理意义是什么? /p p   如何处理与应用这些信息了? /p p   为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。 /p p   在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。 /p p   但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。 /p p   在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。 /p p   在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。 /p p   在本书撰写过程中,美国Rheometric Scientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。 /p p   在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。 /p p   内容提要 /p p   本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p   6. 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-align: left text-indent: 2em " 该书用101页的篇幅介绍了热分析方法。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201807/insimg/84c55c0a-7579-43f9-b5fe-e1dd74957aef.jpg" title=" 聚合物结构分析.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 第一版序 /p p   聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。 /p p   由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。 /p p   与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。 /p p   相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。 /p p style=" text-align: right "   程镕时 /p p style=" text-align: right "   中国科学院 院士 /p p 第一版前言 /p p   随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。 /p p   本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。 /p p   本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。 /p p   特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。 /p p   由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p 第二版前言 /p p   本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。 /p p   参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。 /p p   与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。 /p p   修订较大的章节有: /p p   第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。 /p p   第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。 /p p   第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。 /p p   全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章 小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。 /p p   本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。 /p p   鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p style=" text-align: right "   2009年7月16日 /p p 内容简介 /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p   7.现代高分子物理学(上、下册) 殷敬华 莫志深主编 科学出版社 2001 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f9697a33-0ebd-4e17-9955-760bc0976eeb.jpg" title=" 现代高分子物理学上.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/220cdbe7-135f-46c5-b68e-0ccd89169b70.jpg" title=" 现代高分子物理学下.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 内容简介: /p p   本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。 /p p   8. 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4e055736-d49c-48ed-a4cc-f7992a9da969.jpg" title=" 高分子物理近代研究方法.jpg" width=" 400" height=" 541" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 541px " / /p p style=" text-indent: 2em " 该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。 /p p   序言 /p p   高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。 /p p   同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。 /p p style=" text-align: right "   中国科学院院士 /p p style=" text-align: right "   南京大学教授 /p p style=" text-align: right "   2002年5月 /p p 内容简介 /p p   本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。 /p p   9. 刘振海 « 聚合物量热测定» 化工出版社2002 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/84786940-732a-4fb5-999e-aa7cb65e5742.jpg" title=" 聚合物量热测定.jpg" width=" 400" height=" 548" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 548px " / /p p 前言 /p p   自1963年差示扫描最热法(differential scanning calorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A. Turi ed. Thermal Characterization of Polymeric Materials. NewYork:Academic Press, 1981 2nd Edition, 1997), 该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T. Hatakeyama, F. X. Quin, Thermal AnalysisFundamentals and Applications to Polymer Science, Chichester:JohnWiley & amp Sons,1994 2ndEdition, 1999) 《高分子DSC》(V. A.Bershtein, V. M. Egorov. Differential Scanning Calorimetry ofPolymers. New York:Ellis Horwood, 1994) 国际刊物Journal ofThermal Analysis and Calorimetry于2000年第1期出版专辑Advances in Thermal Characterization of polymeric Materials。 /p p   尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulated differential scanning calorimetry, TMDSC ), 这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JTherm Anal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。 /p p   作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社, 1999 英文版, Chichester: John Wiley & amp Sons, 1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与& quot Thermal Analysis Fundamentals and Applications to PolymerScience& quot (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。 /p p   这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由Academic Press(New York)出版的学术专著: Macromolecular Physics Vol 3 Crystal Melting (1980),ThermalAnalysis (1990)和 Thermal Characterization of Polymeric Materials(2nd Edn,Turi E D ed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger, H. J. Flammersheim所著Differential ScanningCalorimetry An Introduction for Practitioners ( Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。 /p p   本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。 /p p   借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。 /p p   受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。 /p p style=" text-align: right "   刘振海(长春)畠山立子(东京)2001年9月 /p p 内容提要 /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。 /p p   本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p   近年来,国内又出版了几本新的高分子物理著作,如马德柱主编 « 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8d46319-7149-4855-9981-f1bc2f4732d9.jpg" title=" 聚合物结构与性能结构篇.png" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8ab8609d-34fd-45b9-b521-9b7c8af3bcd2.jpg" title=" 聚合物结构与性能性能篇.png" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p style=" text-indent: 2em " 华幼卿 金日光 2013,« 高分子物理» ,第四版,北京:化学工业出版社 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/01683dd6-bae7-4b66-8ee0-953320ede7f3.jpg" title=" 高分子物理3.png" width=" 400" height=" 556" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 556px " / /p p   焦 剑主编 2015 高分子物理 西北工业大学出版社 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/61354d67-bc56-4530-8714-c418d24e384f.jpg" title=" 高分子物理4.png" width=" 400" height=" 606" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 606px " / /p p   本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢! /p p style=" text-indent: 0em "   参考文献 /p p style=" text-indent: 0em "   [1] « 高分子结晶和熔融行为的Flash DSC 研究进展» 李照磊1,2周东山1胡文兵1 /p p style=" text-indent: 0em "   [2] 何曼君 张红东 陈维孝. « 高分子物理» 第三版 复旦大学出版社2007 /p p style=" text-indent: 0em "   [3] 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-indent: 0em "   [4] 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-indent: 0em "   [5] 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-indent: 0em "   附录 /p p style=" text-indent: 0em "   有关高分子物理的教学参考书 (按出版时代排列) /p p style=" text-indent: 0em "   Alfrey. 1948.Mechanical Properties of High Polymers. New York:Interscience Publishers /p p style=" text-indent: 0em "   是早期有关高聚物力学性能的专著、至今仍有参考价值。 /p p style=" text-indent: 0em "   Flory P J. 1953. Principle of Polymer Chemistry. Ithaca: Cornell University Press /p p style=" text-indent: 0em "   是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。 /p p style=" text-indent: 0em "   钱人元,1958,高聚物的分子量测定,北京:科学出版社 /p p style=" text-indent: 0em "   是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。 /p p style=" text-indent: 0em "   柯培可Ⅱ Ⅱ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社 /p p style=" text-indent: 0em "   介绍原苏联学者的研究成果和观点,对我国有相当影响。 /p p style=" text-indent: 0em "   Mason P. Wookey N. 1958. The Rheology of Elastomers. Paris:Pergamon Press /p p style=" text-indent: 0em "   是为数不多专门讲授弹性体力学性能的著作。 /p p style=" text-indent: 0em "   徐僖,1960,高分子物化学原理。北京:化学工业出版社 /p p style=" text-indent: 0em "   为国内高校工科院校早期的高分子专业教科书,有一定影响。 /p p style=" text-indent: 0em "   Tobolsky A V. 1960. Properties and Structure of Polymers. New York: John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。 /p p style=" text-indent: 0em "   Tanford C. 1961. Physical Chemistry of Macromolecules. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本在高分子溶液方面写得较好的教材。 /p p style=" text-indent: 0em "   卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡 /p p style=" text-indent: 0em "   是前苏联学者的一本著作,对我国高分子物理起步有较大影响。 /p p style=" text-indent: 0em "   Bueche F. 1962. Physical Properties of Polymers. New York: Interscience Publishers /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。 /p p style=" text-indent: 0em "   Nielsen L.E. 1962. Mechanical Properties of Polymers. New York: Reinhold Publishing Corporation /p p style=" text-indent: 0em "   也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。 /p p style=" text-indent: 0em "   Volkenstein M V. 1963. Configutational Statistics of Polymeric Chains. New York :Interscience /p p style=" text-indent: 0em "   是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值, /p p style=" text-indent: 0em "   卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社 /p p style=" text-indent: 0em "   是一本较全面介绍原苏联学者成果的书。 /p p style=" text-indent: 0em "   高分子学会,1965,レオロジーハンドブック (流变学手册),东京:丸善株式会社 /p p style=" text-indent: 0em "   有很多早期的实验教据图。 /p p style=" text-indent: 0em "   MandelkernL. 1965. Crystallization of Polymers. New York:McGraw-Hill Book Company /p p style=" text-indent: 0em "   Andrews E. H. 1968. Fracture in Polymers. Edinburgh: Oliver & amp Boyd /p p style=" text-indent: 0em "   是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。 /p p style=" text-indent: 0em "   Alexander L E.1970. X-ray Diffraction Methods in Polymer Science. New York: John Wiley & amp .Sons Inc /p p style=" text-indent: 0em "   和田八三久.1971.高分子的固体物性,东京:培风馆 /p p style=" text-indent: 0em "   日本学者撰写的内容比较深的高分子物理著作。国内没有流行。 /p p style=" text-indent: 0em "   Billmeyer F W. 1971. Textbook of Polymer Science. New York,:Wiley Inierscience Inc /p p style=" text-indent: 0em "   这是一本在西方影响很大的教材,但一直没有再版, /p p style=" text-indent: 0em "   Peebols J J H. 1971. Molecular Weight Distributions in Polymers. New York,:John Wiley & amp SonsInc /p p style=" text-indent: 0em "   有不少关于聚合反应动力学统计理论的内容, /p p style=" text-indent: 0em "   Tobolsky A V, Mark H F. 1971. Polymer Science and Materials. New York,:Wiley Interscience /p p style=" text-indent: 0em "   有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。 /p p style=" text-indent: 0em "   Kakudo M. Kasai N. 1972. X-ray Diffraction Methods in Polymer Science. New York: Wiley Interscience /p p style=" text-indent: 0em "   Jenkins A D. 1972. Polymer Science,A materials science handbook, 1 and 2. Amsterdam: North-Holland Publishing Company /p p style=" text-indent: 0em "   这是一本上下两册大部头著作,内容极为丰富。 /p p style=" text-indent: 0em "   TreloarL R G. 1958. The Physics of Rubber Elasticity. 3rd Ed. Oxford: University Press /p p style=" text-indent: 0em "   一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。 /p p style=" text-indent: 0em "   高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆 /p p style=" text-indent: 0em "   论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。 /p p style=" text-indent: 0em "   小野木重治,1973,高分子材料科学,东京:诚文堂新光社 /p p style=" text-indent: 0em "   是来自日本的一本教材,也有一定影响, /p p style=" text-indent: 0em "   Kausch H H, Hassell J A, Jaffee R I. 1973. Deformation and Fracture of High Polymers,NewYork: Plenum Press /p p style=" text-indent: 0em "   内容较专一。 /p p style=" text-indent: 0em "   Haward R N. 1973. The Physics of Glassy Polymers.London: Applied Science Publishers Ltd /p p style=" text-indent: 0em "   对玻璃态高聚物的力学性能有详细介绍, /p p style=" text-indent: 0em "   晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社 /p p style=" text-indent: 0em "   这是一本有管高聚物性能测试早期的著作,当时有相当的影响。 /p p style=" text-indent: 0em "   Wunderlich B. 1973. Macromolecular Physics. Vol. Ⅰ, Ⅱ,Ⅲ. New York:Academic Press /p p style=" text-indent: 0em "   三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。 /p p style=" text-indent: 0em "   Samuels R J. 1974. Structured Polymer Properties. New York: Wiley Interscience /p p style=" text-indent: 0em "   莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译, /p p style=" text-indent: 0em "   北京:科学出版社 /p p style=" text-indent: 0em "   该书有关“高聚物材料的本质& quot 和& #39 & #39 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。 /p p style=" text-indent: 0em "   Arridge R G C. 1975. Mechanics of Polymers. Oxford:Clarendon Press /p p style=" text-indent: 0em "   是一本从力学观点讲述的高聚物力学性能的专著。 /p p style=" text-indent: 0em "   Tager A. 1978. Physical Chemistry of Polymers. Moscow: MIP Publisher /p p style=" text-indent: 0em "   是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。 /p p style=" text-indent: 0em "   Andrews E H. 1979. Developments in polymer Fracture-1. London: Applied Science Publishers /p p style=" text-indent: 0em "   是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。 /p p style=" text-indent: 0em "   Tadokoro H. 1979. Structure of Crystlline Polymers. New York:John Wiley & amp . Sons Inc /p p style=" text-indent: 0em "   Blythe A R 1979. Electrical Properties of Polymers. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学& quot Cambridge Solid State Science Series& quot 系列中的一本书。 /p p style=" text-indent: 0em "   中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社 /p p style=" text-indent: 0em "   Cherry B W. 1980. Polymer Surface Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。 /p p style=" text-indent: 0em "   Williams J G. 1980. Stress Analysis of Polymers. 2nd Ed. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本从力学观点讲述的专著,书中数学内容较深。 /p p style=" text-indent: 0em "   Ferry J D. 1980. Viscoelastic Properties of Polymers. New York:John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本高聚物黏弹性的专著,有很好的参考价值。 /p p style=" text-indent: 0em "   林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社 /p p style=" text-indent: 0em "   由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。 /p p style=" text-indent: 0em "   施良和,1980,凝胶色谱法,北京:科学出版社 /p p style=" text-indent: 0em "   对普及凝胶色谱法有很好作用。 /p p style=" text-indent: 0em "   Bailey R T, North A M, Pethrick R A. 1981. Molecular Motion in High polymers. Oxford: Clar- /p p style=" text-indent: 0em "   endon Press /p p style=" text-indent: 0em "   Young R J. 1981. Introduction to Polymers. London: Chapman and Hall /p p style=" text-indent: 0em "   这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。 /p p style=" text-indent: 0em "   Bassett D C. ] 981. Principles of Polymer Morphology, Cambridge: Cambridge University press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。有中文译本,即1987 /p p style=" text-indent: 0em "   年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。 /p p style=" text-indent: 0em "   潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社 /p p style=" text-indent: 0em "   该书介绍的有关形变-温度曲线的论述仍有参考价值。 /p p style=" text-indent: 0em "   彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社 /p p style=" text-indent: 0em "   范克雷维伦D W.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社 /p p style=" text-indent: 0em "   至今仍有参考价值。 /p p style=" text-indent: 0em "   尼尔生L E.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜 /p p style=" text-indent: 0em "   赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社 /p p style=" text-indent: 0em "   是为化学纤维专业写的教材。 /p p style=" text-indent: 0em "   沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社 /p p style=" text-indent: 0em "   是我国学者写的较早的有关高分子物理的专著。 /p p style=" text-indent: 0em "   Seanor D A. 1982. Electrical Properties of Polymers. New York: Academic Press /p p style=" text-indent: 0em "   Ward I M. 1982. Developments in Oriented Polymers. London: Applied Science Publishers /p p style=" text-indent: 0em "   Bohdanecky M, Ková rJ. 1982. Viscosity of Polymer Solutions. New York: Elsevier Scientific /p p style=" text-indent: 0em "   Burchard W, Patterson G D. 1983. Light cattering from Polymers. New York: Springer-Verlag /p p style=" text-indent: 0em "   尼尔生L E.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。 /p p style=" text-indent: 0em "   WilliamsDJ.1983.Nonlinear Optical Properties of Organic and Polymeric Materials.WashingtonD. C. :American Chemical Society /p p style=" text-indent: 0em "   是一本以编著形式撰写的书。 /p p style=" text-indent: 0em "   Ward IM 1983. Mechanical Properties of Solid Polymers. 2nd Ed. New York: Wiley-Interscience /p p style=" text-indent: 0em "   这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。 /p p style=" text-indent: 0em "   斯坦R S.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社 /p p style=" text-indent: 0em "   Kinloch A J, Young R J. 1983. Fracture Behavior of Polymers. London:Applied Science Publishers /p p style=" text-indent: 0em "   内容比较全面的有关高聚物断裂的专著。 /p p style=" text-indent: 0em "   北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社 /p p style=" text-indent: 0em "   Williams J G. 1984. Fracture Mechanics of Polymers. New York:John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   塞缪尔斯R J.1984.结晶高聚物的性质,徐振森译。北京:科学出版社 /p p style=" text-indent: 0em "   Elias H G. 1984. Macromolecules I, structure and Properties. 2nd Ed. New York: Plenum Press /p p style=" text-indent: 0em "   韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社 /p p style=" text-indent: 0em "   Aklonis J. MacKnight W J. 1972. Minchel Shen, Introduction to Polymer Viscoelasticity. NewYork:Wiley-Interscience /p p style=" text-indent: 0em "   这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。 /p p style=" text-indent: 0em "   冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社 /p p style=" text-indent: 0em "   其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯R M.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社 /p p style=" text-indent: 0em "   是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。 /p p style=" text-indent: 0em "   吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社 /p p style=" text-indent: 0em "   可供有关专业研究生阅读。 /p p style=" text-indent: 0em "   唐敖庆等,1985,高分子反应统计理论,北京:科学出版社 /p p style=" text-indent: 0em "   卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社 /p p style=" text-indent: 0em "   是一本专门讲述高聚物中自由体积的小册子。 /p p style=" text-indent: 0em "   钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社 /p p style=" text-indent: 0em "   是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。 /p p style=" text-indent: 0em "   考夫曼H S,法尔西塔J J.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社 /p p style=" text-indent: 0em "   郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社 /p p style=" text-indent: 0em "   Doi M, Edwards S F. 1986. The Theory of Polymer Dynamics. Clarendon: Oxford University /p p style=" text-indent: 0em "   Press /p p style=" text-indent: 0em "   有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社 /p p style=" text-indent: 0em "   夏炎.1987.高分子科学简明教程,北京:科学出版社 /p p style=" text-indent: 0em "   是为师范生写的教材。 /p p style=" text-indent: 0em "   拉贝克JF. 1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社 /p p style=" text-indent: 0em "   提供大量的高分子实验,是一本高分子实验方面的权威性著作。 /p p style=" text-indent: 0em "   何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社 /p p style=" text-indent: 0em "   斯珀林L H.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社 /p p style=" text-indent: 0em "   吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社 /p p style=" text-indent: 0em "   共十本书,其中与高分子物理有关的是: /p p style=" text-indent: 0em "   (1)孙鑫,《高聚物中的孤子和极化子》,1987。 /p p style=" text-indent: 0em "   (2)吕锡慈,《高分子材料的强度与破坏》,1988。 /p p style=" text-indent: 0em "   (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。 /p p style=" text-indent: 0em "   (4)许元泽,(高分子结构流变学》,1988。 /p p style=" text-indent: 0em "   (5)古大治。《高分子流体动力学》,1988。 /p p style=" text-indent: 0em "   (6)江明,《高分子合金的物理化学》,1988。 /p p style=" text-indent: 0em "   (7)赵得禄,吴大诚,《高分子科学中的Monte Carlo方法》,1988。 /p p style=" text-indent: 0em "   (8)吴大诚,Hsu S L,《高分子的标度和蛇行理论》,1989。 /p p style=" text-indent: 0em "   日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社 /p p style=" text-indent: 0em "   朱永群,1988,高分子物理基本概念与问题,北京:科学出版社 /p p style=" text-indent: 0em "   是第一本有关高分子物理习题的书。 /p p style=" text-indent: 0em "   鲁丁J A.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社 /p p style=" text-indent: 0em "   潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   朱善农等,1988,高分子材料的剖析,北京:科学出版社 /p p style=" text-indent: 0em "   穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社 /p p style=" text-indent: 0em "   李斌才,1989,高聚物的结构与物理性质,北京:科学出版社 /p p style=" text-indent: 0em "   周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   Campbell D, WhiteJ R 1989. Polymer Characterization: Physical Techniques. London: Chapman& amp Hall /p p style=" text-indent: 0em "   国内少有人拥有此书。 /p p style=" text-indent: 0em "   王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社 /p p style=" text-indent: 0em "   林师沛,1989,塑料加工流变学,成都:成都科技大学出版社 /p p style=" text-indent: 0em "   雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社 /p p style=" text-indent: 0em "   克里斯坦森R M.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社 /p p style=" text-indent: 0em "   杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社 /p p style=" text-indent: 0em "   胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司 /p p style=" text-indent: 0em "   是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。 /p p style=" text-indent: 0em "   Fujita H. 1990. Polymer Solutions. Amsterdam:Elsevier /p p style=" text-indent: 0em "   Schmitz K S.1990. An Introduction to Dynamic Light Scattering by Macromolecules. San Diego,Academic Press /p p style=" text-indent: 0em "   弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社 /p p style=" text-indent: 0em "   是弗洛里又一本大著,是高分予理论最重要的经典著作之一。 /p p style=" text-indent: 0em "   朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社 /p p style=" text-indent: 0em "   JoachimD E.1992,Relaxation and Thermodynamics in Polymers Glass Transition. Berlin: Akademie Verlag /p p style=" text-indent: 0em "   郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社 /p p style=" text-indent: 0em "   周其凤,王新久,1994,液晶高分子,北京:科学出版社 /p p style=" text-indent: 0em "   有不少作者自己的研究成果。 /p p style=" text-indent: 0em "   Grosberg A Y, Khokhlov A R. 1994. Statistical Physics of Macromolecules. Woodbury: AIP Press /p p style=" text-indent: 0em "   黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   是当年的一本进展性质的汇编。 /p p style=" text-indent: 0em "   左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社 /p p style=" text-indent: 0em "   谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社 /p p style=" text-indent: 0em "   薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社 /p p style=" text-indent: 0em "   Gedde U W. 1995. Polymer Physics. London: Chapman & amp Hall /p p style=" text-indent: 0em "   叶成,习斯 J.1996,分子非线性光学的理论与实践,北京:化学工业出版社 /p p style=" text-indent: 0em "   大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社 /p p style=" text-indent: 0em "   周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   这是一本由力学专家写的书,对数学的推导有独特之处。 /p p style=" text-indent: 0em "   吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   朱善农等,1996,高分子链结构,北京:科学出版社 /p p style=" text-indent: 0em "   Doi M. 1996.Introduction to Polymer Physics. Clarendon: Oxford University Press /p p style=" text-indent: 0em "   复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社 /p p style=" text-indent: 0em "   已出第二版。 /p p style=" text-indent: 0em "   Hans-Georg E. 1997, An Introduction toPolymer Science. New York: VCH Press /p p style=" text-indent: 0em "   刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社 /p p style=" text-indent: 0em "   2004年出了第二版。 /p p style=" text-indent: 0em "   何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p style=" text-indent: 0em "   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。 /p p style=" text-indent: 0em "   Shi L H, Zhu D B. 1997. Polymers and Organic Solids, Beijing: Science Press /p p style=" text-indent: 0em "   这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社 /p p style=" text-indent: 0em "   是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。 /p p style=" text-indent: 0em "   蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社 /p p style=" text-indent: 0em "   该书中有关聚乙烯热学性能的介绍很有参考价值。 /p p style=" text-indent: 0em "   邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社 /p p style=" text-indent: 0em "   江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。 /p p style=" text-indent: 0em "   吴人洁等,1998,高聚物的表面与界面,北京:科学出版社 /p p style=" text-indent: 0em "   吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社 /p p style=" text-indent: 0em "   托马斯EL. 1999,聚合物的结构与性能,北京:科学出版社 /p p style=" text-indent: 0em "   是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。 /p p style=" text-indent: 0em "   朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   介绍导电高聚物的专著,有许多我国科学家的研究成果。 /p p style=" text-indent: 0em "   王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社 /p p style=" text-indent: 0em "   是为合成纤维专门化的学生写的教材。 /p p style=" text-indent: 0em "   顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社 /p p style=" text-indent: 0em "   金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社 /p p style=" text-indent: 0em "   工科院校所用教材,2007年已出第三版。 /p p style=" text-indent: 0em "   闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社 /p p style=" text-indent: 0em "   是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。 /p p style=" text-indent: 0em "   杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社 /p p style=" text-indent: 0em "   何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社 /p p style=" text-indent: 0em "   平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是一本有关高分子科学的高级通俗读本。 /p p style=" text-indent: 0em "   Sperling L H. 2001. Introduction of Physical Polymer Science. 3rd Ed. New York: Wiley /p p style=" text-indent: 0em "   布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社 /p p style=" text-indent: 0em "   殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社 /p p style=" text-indent: 0em "   名为研究生教材,实际上是一本很好的进展性专著。 /p p style=" text-indent: 0em "   韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社 /p p style=" text-indent: 0em "   既有高分子化学内容也有高分子物理内容。 /p p style=" text-indent: 0em "   Bower D I. 2002. An Introduction to Polymer Physics. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   化学工业出版社2004年以”国外名校名著”系列影印出版了该书。 /p p style=" text-indent: 0em "   刘振海,2002,聚合物量热测定,北京:化学工业出版社 /p p style=" text-indent: 0em "   杨小震,2002,分子模拟与高分子材料,北京:科学出版社 /p p style=" text-indent: 0em "   附有软件光盘,很实用,其软件可利用来开设高分子物理实验。 /p p style=" text-indent: 0em "   过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社 /p p style=" text-indent: 0em "   是一本很好的有关高聚物动态力学测试的著作。 /p p style=" text-indent: 0em "   吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社 /p p style=" text-indent: 0em "   是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。 /p p style=" text-indent: 0em "   Qian R Y (钱人元),2002. Perspectives on the Macromolecular Condensed State. Singapore: World Scientific /p p style=" text-indent: 0em "   这是钱人元院士把自己在& #39 & #39 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。 /p p style=" text-indent: 0em "   Colby R B. 2002. Polymer Physics. Oxford: Oxford University Press /p p style=" text-indent: 0em "   TeraokaI. 2002. Polymer Solutions: An Introduction to Physical Properties. New York: John /p p style=" text-indent: 0em "   Wiley & amp Sons Inc /p p style=" text-indent: 0em "   非常好的有关高分子溶液的专著,内容较深。 /p p style=" text-indent: 0em "   张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。 /p p style=" text-indent: 0em "   de Gennes. 1979. Scaling Concepts in Polymer Physics. Ithaca:Cornell University PressGennes /p p style=" text-indent: 0em "   Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让 /p p style=" text-indent: 0em "   摘自« 新编高聚物的结构与性能» 何平笙编著 科学出版社 /p
  • 多个世界首创,我国在荧光相关光谱单分子技术领域取得领先——访中国科学院生物物理研究所研究员黄韶辉
    荧光相关光谱(Fluorescence correlation spectroscopy,FCS)是一种对荧光强度随时间的规律性涨落进行自相关和交相关分析,从而对导致信号涨落的物理(自由扩散等)、化学(分子互作等)和光物理(单线态-三线态循环等)进行定量分析的荧光光谱技术。近年来,随着理论和仪器的不断发展,荧光相关光谱在生物学、医学、化学、材料学、光物理学、微纳科学等领域得到越来越广泛的应用。那么,如今我国荧光相关光谱技术发展到什么阶段了?与国外技术相比,我国的技术处在什么水平?带着这些问题,仪器信息网专门视频采访到了中国科学院生物物理研究所(以下简称中科院生物物理所)研究员黄韶辉。黄韶辉:1998年获堪萨斯大学生物化学、细胞和分子生物学博士学位,1998-2001年在康乃尔大学应用和工程物理学院从事博士后研究,2002-2009年任麻省大学医学院研究助理教授,2009-2013年任宾夕法尼亚大学环境医学研究所研究员兼肺成像和形态学中心主任。 2014年以中科院“引进杰出技术人才”(技术百人)回国,任中科院生物物理研究所研究员、中国科学院大学岗位教授、博士生导师。历任美国国立卫生研究院、中国国家自然科学基金委、广东省公益研究和能力建设基金、粤港澳科技创新合作等科研项目负责人。因缘际会,确定技术转化方向黄韶辉博士在国外的科研工作一直开发荧光显微镜和荧光光谱学新方法和新技术以解决生物学研究的科学问题,期间对科研仪器产生了浓厚的兴趣。2014年借“中科院技术百人”的人才计划,黄韶辉回到了中科院生物物理所开始从事科研仪器的产业化工作。在谈到选择单分子荧光技术的原因时,他表示:“这是我在康奈尔做博士后时导师发明的一种技术——荧光相关光谱,通过研究荧光信号在时间上的相互关系来揭示荧光信号规律性变化背后的物理、化学和光物理过程。当时我觉得这个技术的应用非常广泛,因此借着回国的机会将它进行技术转化,使其应用于基础研究和药物研发领域。”从技术走向产品,从产品走向市场回国后为了真正将荧光相关光谱单分子技术从技术变成产品,从产品走向市场。黄韶辉用了三年的时间进行基础性工作,终于在2017年的广东中山成立了产业化公司——中科奥辉,随后实现了从技术到产品的蜕变。在这个过程中需要克服两个困难:一个是产品工程化,另一个是技术推广。“一个实验室技术并不是天然就可以成为一个产品,它需要进行工程优化,不断提高产品稳定性和可靠性;第二个是要让产品能够被客户所接受,这就需要做技术推广、示范应用等等一系列工作才能将产品推向市场。” 黄韶辉表示。通过六年不断地努力,黄韶辉团队成功研发出全球首台小型化桌面式荧光相关光谱仪,相较于国外竞争对手蔡司、PicoQuant和ISS开发的基于荧光显微镜的FCS产品,它更适合在实验室桌面环境中使用,这也是该产品最主要的优势。CorTector SX100 荧光相关光谱仪(点击查看)应用领域既要广度又要深度单分子荧光相关光谱仪的应用领域十分广泛,主要有两个方面:一个是基础科研领域,另一个是药物研发领域。“目前已发表相关学术论文超过13000篇,主要应用在基础科研领域,包括生物学、医学、化学、材料学和光物理学,因为它的特点就是研究荧光信号与时间的相互关系。荧光信号与时间能够发生相互关系的过程包括:物理过程,比如分子或纳米颗粒的自由扩散;化学过程,比如分子间相互作用;光物理过程,比如单线态-三线态循环。所以它的应用在基础领域的研究范围是非常广的。” 黄韶辉这样说,“接下来我们的应用领域是药物研发,因为所有的药物研发仪器,包括医疗器械最早的前身都是科研设备,是科学家为了解决一个特定的科学问题而研制出来的。”在谈到未来发展路径时,黄韶辉表示,公司发展的下一个目标是与大型药企合作,将荧光相关光谱单分子技术用于药物筛选。未来将单分子荧光技术转化为一个超灵敏的医疗检测设备,比如说阿尔兹海默症疾病标记物的超灵敏检测。拓展领先客户群体,展现国产高端科研仪器价值黄韶辉认为,从2017年产业化到如今,最重要的是思维的转变。“在做产业化工作之前,我一直是科学家,从事了20多年的基础研究,最近这6年多给我一个主要体验就是真正把我从一个科学家的思维转变到一个经营产品、经营公司的思维。”与此同时,经过六年多的发展,黄韶辉团队的产品价格呈现稳步上升的趋势,“我们做的是一个高端光学仪器,我们第一代产品的终端客户价是120万,第二代产品的终端客户价发展到了150万,去年我们第三代产品的终端客户价已经达到了180万。”黄韶辉介绍说。不仅如此,优质的客户群体也是这些年黄韶辉团队实现技术产业化的重要指标,是国产高端仪器价值的最好展现。黄韶辉说:“不管是国内还是国外,我们都发展了排在全世界研究领域前十的用户群体,比如说我们的首批客户,前四个客户都是国外知名用户:美国国立卫生研究院、阿斯利康制药公司、加州大学旧金山分校、麻省大学医学院。疫情发生后,我们把焦点聚焦到国内,目前的客户包括清华大学、北京大学、中国科学技术大学、复旦大学、浙江大学医学院、澳门大学和中科院的很多院所,这些也是可以排到国内大学或者研究所前十位的学术机构。”为了改变大家对国产仪器价格低、技术落后的刻板印象,黄韶辉团队以持有“世界上最先进单分子荧光技术”的姿态进入市场,与世界领先企业展开竞争。用户群体从国外企业到国外领先科研机构,再到国内领先科研机构,展现出了国产高端科研仪器的价值。国产替代要有,持续创新也要有目前,荧光相关光谱单分子技术属于世界先进技术,黄韶辉团队通过这项技术研制了世界首款桌面式荧光相关光谱单分子分析仪。黄韶辉表示:“我们确实做了全世界第一个基于溶液样品的桌面式单分子荧光商业科研仪器,经过了科技部下属机构的查新认证。所以我觉得科研仪器除了要实现国产替代,也要在创新性领域做出贡献。”发展国产科学仪器,“观念”和“政策”两手都要抓如何更好的发展国产科学仪器,黄韶辉表示最重要的是“给机会”:“对于一个产品来说需要有广泛的用户来不断的使用并提出各种改进意见,只有在使用过程中才能真正做出好仪器。”第二点则是要有一些政策上的支持,要将政策支持落到实处。随着人们对国产化科学仪器关注度的增加,未来将有越来越多的国产企业出现在大家的视野中。国产科学仪器企业的发展,需要企业家的情怀、技术的创新、用户的支持、政策的落实,缺一不可。国产科学仪器行业未来的发展让我们拭目以待!完整访谈视频如下关于中科奥辉:中科奥辉响应国家规划发展智能制造和健康医药战略新兴产业的政策引导,成立于粤港澳大湾区几何中心---中山翠亨新区,依托中科院生物物理研究所黄韶辉博士(中科院“引进杰出技术人才”)团队的核心技术和唐山启奥科技股份有限公司的资金、技术、管理和销售资源,致力于成为掌握核心硬科技的国际一流高端精密仪器智能制造公司。公司自主研发的全球首创桌面式荧光相关光谱单分子分析仪CorTectorTM SX100,2018、2020年连续获广东省高新技术产品认定,并在2019年入选中科院首批国产仪器推荐目录。公司以现有研究技术和公共服务平台为基础,为高校研究院及其他创新企业提供服务业务,包括显微成像与光谱整合系统搭建、分析测试服务、医疗器械产品委托生产与注册及医疗器械及科研设备研发制造公共服务四大服务板块。
  • 发展前沿技术,从原子尺度认知世界——访中国科学院物理研究所李建奇研究员
    p style=" text-indent: 2em " span style=" text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 1986年4月,瑞士科学家穆勒和柏诺兹发现Ba-La-Cu-O材料在35K时开始出现超导现象。1986年底,中国科学院物理研究所赵忠贤院士团队和国际上少数几个小组几乎同时在镧钡铜氧体系中突破了“麦克米兰极限”,获得了40K以上的高温超导体。一时间,世界物理学界为之震动,“北京的赵”多次出现在国际著名科学刊物上。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 同年,李建奇在中国科学院物理研究所开始其凝聚态物理专业研究生阶段学习,正是师从赵忠贤院士,从事超导材料研究。后来,鉴于电镜对功能材料的结构解析能力比较强,便于研究,李建奇到李方华院士实验室进行相关电镜技术研究工作,至此,开始与电子显微学结缘。此后的科研工作也基本围绕电子显微学技术,从物理所围绕低温超导材料研究从事的低温电镜技术,到日本无机材料研究所围绕巨磁电阻材料研究的超高压电镜技术,到2002年归国回到物理所担任中国科学院北京电镜实验室主任,再到至今一直从事的超快电子显微学研究及设备搭建。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 近日,仪器信息网编辑有幸走进李建奇老师实验室,听李建奇老师分享了从原子尺度认知世界的前沿超快电子显微学技术,以及其与超快电子显微术的故事。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202009/uepic/06359024-a4b4-4a78-9c11-3f7f371f93da.jpg" title=" 李老师-.jpg" alt=" 李老师-.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) text-indent: 2em text-align: center " 李建奇: 中国科学院物理研究所研究员,博士研究生导师。曾获中科院百人计划(1998年),国家杰出青年(2002年),国家杰出青年团队成员(2002年),北京科学技术二等奖(2003)。主要从事强关联物理系统结构问题的研究,侧重于发展超快电子显微术,原位结构分析和Lorentz电子显微术。近期李建奇研究组采用独立研制技术路线成功研制了国内首台超快电镜,可实现超快电子衍射、超快实空间成像和激光原位诱导的结构变化观测,对结构动力学、新奇量子现象的探索和动态物理过程研究具有重要意义。 /span /p p style=" text-indent: 2em margin-top: 10px " & nbsp span style=" text-indent: 2em " 随着国家一系列重大专项的实施,“纳米科技”、“量子调控”和“蛋白质工程”等具有前瞻性和战略性的前沿科学逐渐为人们所熟知。前沿科学的发展,诚然离不开本领域专家和学者的努力,但同样也离不开交叉领域,特别是实验技术领域的进步。超快透射电子显微镜(超快电镜),因能够在埃(1埃=10-10 米)-亚皮秒(1皮秒=10-12 秒)的空间-时间尺度拍摄结构的动力学过程,为解决多个重大学术问题提供关键线索,而备受全球物理学、化学、材料学和生命科学等多个领域的关注。例如,为了在原子尺度下研究药物的工作机理,2018年初英国罗莎琳德· 富兰克林研究所已决定投入1000万英镑与日本电子公司(JEOL)来共同开发超快电子显微镜技术。国内,中国科学院物理研究所(物理所)的李建奇研究员在大力发展超快电子显微镜技术。他们已完成了国内第一台超快电镜样机搭建工作,正在开发第二代超快电子显微技术,并积极同其它领域的专家合作推动超快电镜在前沿科学领域的应用。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202009/uepic/2eb740db-ce71-4c78-aaab-95a9242a271c.jpg" title=" 办公室.jpg" alt=" 办公室.jpg" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px text-indent: 0em text-align: center " span style=" text-align: center text-indent: 0em color: rgb(0, 112, 192) " 李建奇办公室一角:专业内容之外,不乏书法、天文、地理等奇趣 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 0, 0) font-size: 18px " strong span label=" 明显强调" style=" color: rgb(0, 0, 0) font-style: italic font-weight: bold line-height: 18px " 一、超快透射电子显微镜——原子尺度的录像机 /span /strong /span /h1 p style=" text-indent: 2em " 结构决定功能,高精度结构研究是解析物质性并实现其宏观调控的关键。那么如何来研究物质的结构呢?所谓“眼见为实”,看到“结构”是其中关键的一步。然而,对于前沿科技所关注的纳米材料和蛋白质分子来说,“看得到”并不是一件容易的事情。两者的空间尺寸大约在0.1-100纳米(1纳米=10-9米)这个量级,远远小于人眼空间分辨率的极限,约100微米(1微米=10-6米)。近几年光学成像技术虽然取得了开创性的进展,超分辨光学显微镜的分辨率能够达到几十个纳米左右,但仍然观测不到纳米材料和生物大分子的结构细节。 /p p style=" text-indent: 2em " 高分辨电子显微镜是人们认识微观世界的重要工具。先进的球差校正透射电子显微镜具有0.05纳米的空间分辨率,能够拍摄单个原子的图像,是揭示材料微观结构的有效手段。利用透射电子显微镜配套的电子能量损失谱和电子全息,可以获取纳米材料的谱学信息,以及其周围纳米尺度电、磁场的分布等多重物理信息,为把握物质的宏观属性及实现性能调控提供重要线索。特别指出的是,随着冷冻电镜技术的发展,电子显微技术已经可以用于在原子尺度上构建生物大分子的三维结构。2017年,Jacques Dubochet、 Joachim Frank 和Richard Henderson三位科学家因在冷冻电镜在生命科学领域的贡献而获得了诺贝尔化学奖。 /p p style=" text-indent: 2em " 电子显微镜能够“看得到”原子尺度微结构的强大功能,使它在微观结构解析中有着不可替代的作用。然而,随着研究工作的不断深入,人们发现仅仅看到静态的微观结构(平衡态)是不够的,要想深入分析结构对物性的影响并实现宏观调控还需要厘清微观结构的动态过程(非平衡态)。也就是说,我们不仅需要有一台很好的“照相机”能拍摄到原子尺度结构的照片,还需要有一台很好的“录像机”能够拍摄原子尺度的动态过程。这是一件非常困难的事情。物理学中的电子态演化、原子分子振动,化学反转中化学键的断裂、分子解离以及生物光合作用中的能量传递过程大多发生飞秒(1飞秒=10-15秒)至皮秒量级的时间尺度;生物大分子振动、转动,蛋白质分子折叠过程通常发生纳秒量级的时间尺度。因此,为了研究这些超快的动态过程,“录像机”必须有极高的时间分辨率,每秒能够拍摄一万亿张以上照片。这显然远超CCD相机等常规录像设备的极限。 /p p style=" text-indent: 2em " 电子显微技术在时间分辨率上的突破得益于超快激光技术的发展,利用飞秒激光泵浦-探测技术,目前超快电镜的时间分辨率可达100飞秒以下。图1简要的说明了超快透射电子显微镜的工作原理。该方法的巧妙之处主要有两点。一是利用脉冲电子成像,解决快速曝光问题。飞秒激光辐照电子显微镜阴极能够产生与激光脉宽相近的光发射脉冲电子。考虑到脉冲电子本身带有的时间宽度信息,利用飞秒脉冲电子成像,能够将相对曝光时间控制在飞秒量级。二是将时间问题转化为空间问题,解决超快计时问题。光的速度约为3× 10 sup 8 /sup 米/秒,也就是说,光每走1微米的光程需要3.33飞秒,控制激发(泵浦)激光脉冲和成像电子脉冲之间的在微米量级的光程差就可以实现飞秒量级的计时。通过多次改变光程差,我们就可以得到相对于泵浦激光不同时间间隔的结构信息,可以像老式的胶片电影放映一样,将微观结构的在原子尺度的动态过程播放出来。超快电镜除能够在实空间、倒易空间、能量空间提供信息外,还能提供原子尺度时间域的结构信息,因此也被命名为四维电子显微镜。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 425px " src=" https://img1.17img.cn/17img/images/202009/uepic/bc040bb2-6017-47fa-944d-aa2a53f1464f.jpg" title=" 图1.jpg" alt=" 图1.jpg" width=" 400" height=" 425" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 32, 96) " & nbsp span style=" text-indent: 2em color: rgb(0, 112, 192) " 图1 超快透射电子显微镜原理示意图 /span /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 10px 0px 20px " span style=" font-style: italic font-weight: bold line-height: 18px font-size: 18px color: rgb(0, 0, 0) " 二、物理所超快透射电子显微镜的发展 /span /h1 p style=" text-indent: 2em " strong span style=" text-indent: 2em " 1. 第一代超快透射电子显微镜 /span /strong /p p style=" text-indent: 2em " 脉冲电子成像的概念在上世纪80年代由柏林工业大学的Bostanjoglo教授提出,然而,直到最近的十几年,人们才将超快电镜的时间-空间分辨率提升至埃-飞秒量级。其中,诺贝尔化学奖的得主,“飞秒化学”的创始人,加州理工大学的Zewail教授为四维电子显微技术的发展作出了巨大的贡献。目前,来自美国、加拿大、德国、法国、瑞士、日本以及韩国的多个课题组都在大力发展这项超快成像技术。2012年,中国科学院物理研究所的李建奇研究员团队在中科院科研装备研制项目的支持下,率先在国内发展超快透射电子显微技术。该团队先后攻破了光发射电子枪改造技术、样品室改造技术、激光-电镜联机技术、以及弱电子计量成像技术等技术壁垒,成功搭建了国内第一台超快透射电子显微镜。物理所第一代超快电镜基于JEOL2000EX热发射电子枪,具有图像功能和电子衍射功能,其图像分辨率可达3.4埃,时间分辨率可达百飞秒,已经用于纳米材料晶格动力学、光诱导磁动力学和光诱导隐含量子态的研究工作。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/202009/uepic/649f462c-c1d5-4b71-ad9e-b22657410ad1.jpg" title=" 图2.jpg" alt=" 图2.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-align: center text-indent: 0em color: rgb(0, 112, 192) " 图2 第一代超快电镜显微镜(UTEM-JEOL2000EX)主要研发人员合影 /span /p script src=" https://p.bokecc.com/player?vid=3E777A4B92FD492E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script script src=" https://p.bokecc.com/player?vid=7E78391C1A0141FD9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong 超快电镜应用案例: /strong 视频S1显示马氏体(MT)过渡期间其域壁以皮秒的时间尺度溶解。显然,MT过渡从薄区域的边缘开始,然后传播到内部较厚的区域。激光能量密度为5 mJ cm-2。 /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 视频S2显示了皮秒域内MT域壁的振动与MT过渡耦合。结果表明,MT畴壁的对比度在最初的几个周期内急剧变化,然后振荡逐渐衰减并持续数百皮秒。激光能量密度为10 mJ cm-2。 /span /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 0, 0) " 2. 第二代超快透射电子显微镜 /span /strong /p p style=" text-indent: 2em " 在发展第一代超快电子显微镜时,由于缺乏技术积累,物理所和国际上其它课题组一样基于热发射透射电子显微镜来开发超快电子显微技术。然而,受限于热发射电子枪的性能,第一代超快电镜系统光发射电子的相干性较差,图像分辨率仍有待提高。因此,物理所正在致力于发展第二代超快电子显微镜技术,重点解决光发射下透射电子显微镜的空间分辨率问题。第二代超快透射电子显微镜主要基于场发射电子枪,其电子相干性明显优于热发射电子枪,并且能够兼容球差矫正技术。可以预期,第二代超快透射电子显微镜的顺利研发必将使超快透射电子显微镜的空间分辨率再上一个台阶。图3是改造完成的超快场发射透射电子显微镜,基于JEOL2100F场发射透射电镜。作为“综合极端条件实验装置”的一部分,配有先进球差矫正器及电子能量损失谱仪的第二代超快透射电子显微镜预计将怀柔科学城搭建完成,并向国内用户开放,为我国前沿科学研究工作的开展提供设备支撑。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 468px " src=" https://img1.17img.cn/17img/images/202009/uepic/0b2b7e19-6928-4255-aa67-4524964d5222.jpg" title=" 图3.jpg" alt=" 图3.jpg" width=" 400" height=" 468" border=" 0" vspace=" 0" / /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " 图3 超快场发射透射电子显微镜(UTEM-JEOL2100F)(a)超快激光与场发射电子枪联机,电镜改造和光发射性能测量结果。 初步数据显示相干性好,脉冲电子聚焦点可以小于2nm,达到国际领先水平,为高时空分辨超快电镜研制提供了保障。(b)脉冲电子和激光相互耦合的能谱结构。(c)在飞秒激光作用下,银纳米线的近场成像。 /span /p p style=" text-indent: 2em " strong 3.& nbsp 冷冻超快电子显微镜的发展 /strong /p p style=" text-indent: 2em " 冷冻电镜在生命科学领域有着重要的应用价值。为了解决生物样品的电子辐照损伤问题,探究生命物质中的动态过程,在国家重点研发计划(蛋白质机器的时间分辨率冷冻电镜成像技术2017YFA0504703)和中国科学院(生物超快冷冻电子显微镜研制2DKYYQ20170002)的支持下,李建奇团队同中国科学院生物物理研究所、北京大学积极合作,于2017年开始研发生物冷冻超快电镜(先于罗莎琳德· 富兰克林研究所)。该项目的顺利实施将有望实现冷冻电镜技术的全新突破,为生物大分子的超快动态过程研究提供全新利器,引领蛋白质机器冷冻电镜技术的国际前沿。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 534px " src=" https://img1.17img.cn/17img/images/202009/uepic/175bf4d8-86fb-40cc-9725-4caa2dbf0985.jpg" title=" 图4.jpg" alt=" 图4.jpg" width=" 400" height=" 534" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 112, 192) " 图4 超快生物冷冻透射电子显微镜(UTEM-JEOL2100Plus) /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 379px " src=" https://img1.17img.cn/17img/images/202009/uepic/cdbd09f9-4860-4eeb-8f58-fa8ab639b51f.jpg" title=" 图5.png" alt=" 图5.png" width=" 600" height=" 379" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 0em color: rgb(0, 112, 192) " 图5 李建奇研究员团队合影 /span /p p style=" text-indent: 2em " span style=" font-size: 18px " strong 后记 /strong /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 电镜技术作为高端电子光学仪器技术,实现将之与飞秒激光技术的耦合,其技术及工艺难度可见一斑。李建奇回顾团队发展超快电子显微技术的历程中,从最初经费不足5000元买来废旧电镜拆解摸索与超快激光的关联,到日本电子协助下筛选适合的电镜机型,到获得部分经费整体研究项目步入正轨,到设备实现雏形、获得部分成果并受邀在国际会议上分享,再到生物物理所、武汉大学、北京大学等单位的定制合作与需求等,超快电镜技术从理论到设备的成功搭建,每一步都写满不易。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 对于超快电镜技术十余年的坚持,李建奇坦言,首先,期望大家能够认识到,“国产化”是值得去做的,我们这一代做不好,下一代还要面临同样的需求。其次,涉及多项关键技术的电镜技术,还需要国内多方合作,齐心帮助国产电镜向前迈一步。目前,李建奇在国产化方面推进了两项工作。一项是基于扫描电镜的超快电镜,项目已启动,若搭建国产扫描电镜,整体设备国产率达95%以上,且样机已完成搭建;另一项是基于透射电镜的超快电镜,受限透射电镜技术,整体国产率还相对较低。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 李建奇表示,根据刚结束的美国电镜年会M& amp M 2020相关信息,预期接下来几年,国际上将有300余个实验室对超快电镜有需求。且目前日本电子(今年初,日本电子收购美国超快时间分辨电镜商IDES)、赛默飞也在积极关注这项技术的商业化。当前,国际上对超快电镜技术的描述主要划分为两代,李建奇团队已着手开展球差电镜结合的第三代超快电镜技术,超快电子显微学技术,李建奇团队已经走在世界前列。 /span /p p style=" text-indent: 2em " span style=" font-size: 18px " strong 附:李建奇简介 /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 简介 /span /p p style=" text-indent: 2em " 李建奇,现任中科院物理所研究员,A06研究组组长。 /p p style=" text-indent: 2em " 1986年至1990年: 中国科学院物理研究所,凝聚态物理专业研究生,1990年获得博士学位。 /p p style=" text-indent: 2em " 1991年至1993年: 北京大学物理系博士后。 /p p style=" text-indent: 2em " 1994年至1995年: 中国科学院物理研究所, 国家超导实验室副研究员。 /p p style=" text-indent: 2em " 1995年至1996年: 德国Max-Plank 固体物理研究所,电子显微镜实验室博士后。 /p p style=" text-indent: 2em " 1996年至1998年: 日本无机材料研究所,客座研究员。 /p p style=" text-indent: 2em " 1999年至2001年: 美国Brookhaven国家实验室,电子显微镜研究室访问学者。 /p p style=" text-indent: 2em " 2002年5月至今: 中国科学院物理研究所, 研究员,课题组长。 /p p style=" text-indent: 2em " (期间:2002年-2009年,担任先进材料和结构分析研究部主任)。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 主要研究方向 /span /p p style=" text-indent: 2em " 1.电子显微技术发展。包括: 四维超快电子显微镜研发,原位电子显微镜技术,球差校正显微镜技术和电子全息研究。 /p p style=" text-indent: 2em " 2.功能材料的微结构及结构动力学分析。 /p p style=" text-indent: 2em " 3.新型超导体的结构及结构相变研究。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 过去的主要工作及获得的成果 /span /p p style=" text-indent: 2em " 1、功能材料微结构研究: /p p style=" text-indent: 2em " 在Fe-基超导体和巨磁阻Mn-氧化物和电子铁电体系统的研究中,解决了一些重要结构问题,取得了多项研究成果。主要研究成果包括,KyFe1.7As2 超导系列中的Fe空位有序态和相分离结构;铁的变价态问题及五价 Fe 的存在形式;巨磁阻Mn-氧化物系统的电子轨道有序排列;钙钛矿结构中的小极化子高Tc超导体的条纹相及电子相分离;电子铁电体LuFe2O4中的低温结构相变和电荷序;Fe2OBO3中的反相条带状畴结构和磁相变点强的磁电耦合效应;新型Fe基超导体的结构,空位序和相分离特性。 /p p style=" text-indent: 2em " 2、四维超快透射电子显微镜研制: /p p style=" text-indent: 2em " 电子显微镜在材料科学和纳米器件研究中发挥着重要作用,近期,我们在传统高分辨电子显微镜的基础上,成功研制了国内首台4D超快时间分辨透射电子显微镜. 2015年10月通过科学院专家组验收。2019年成功研发了新一代场发射阴极的时间分辨电镜。利用这种超快电子显微镜技术,可以得到物质的瞬间显微结构和原子图像(空间分辨率0.27nm),其时间分辨率达到飞秒时域(10-15秒),可以给出丰富的原子结构演变信息,超快电镜技术已经成为电子显微学的发展方向和学科前沿. 另外,我们研制的超快电镜也具传统的透射电镜的各项先进功能,可以直接进行原子结构观测和谱分析。国际专利(中国专利号:201410007910.2,国际专利号:2014/CN2014/076846). /p p style=" text-indent: 2em " 在国际主要学术期刊上已发表论文380多篇,他人引用累计超过6800次,H-因子45。国际邀请报告80多次。近年承办了多次电子显微术和功能材料国际学术研讨会。 /p
  • 探访“粒子物理王国”欧洲核子研究中心(图)
    来宾在瑞士日内瓦参观欧洲核子研究中心多媒体中心。欧洲核子研究中心位于瑞士日内瓦附近,跨瑞士和法国边境,是全球重要的粒子研究机构,重点模拟研究宇宙大爆炸之后的最初状态。   新华网日内瓦2月21日电(记者刘洋 杨京德)从瑞士日内瓦驱车进入法国,沿途宁静的田园风光令人沉醉。这是一片位于阿尔卑斯山与汝拉山雪峰间的平原,镶嵌着一座座牧场、葡萄园、古朴村镇,而就在平原地表之下100多米深处,无数粒子或许正围绕着一个周长27公里的巨大环形设备,以接近光速运行,并剧烈碰撞。   这不是科幻小说的虚构,而是欧洲核子研究中心最重要的设备——大型强子对撞机运转的情景。经过近两个月的技术维护后,按计划,对撞机21日再次开始运行。记者有幸在此之前,由研究中心的中方研究员、粒子物理学家任忠良博士带领,进入研究中心并探访这神秘的地下“粒子物理王国”。   科研“地球村”   欧洲核子研究中心建于1954年,是二战后欧洲合作的产物,但今天的研究中心早已不再局限于欧洲,而更像一个“地球村”,会聚了来自世界上80多个国家和地区、580余所大学与科研机构的近8000名科研人员,其中包括来自中国科学院高能物理研究所和山东大学等中国科研院所的近百名师生。   漫步在研究中心园区里,可以看到宽阔的草坪上和露天咖啡座上,不同肤色、不同装束的学者三五成群地坐在一起,操各种口音的英语或法语讨论问题。   除进行前沿物理试验外,研究中心还承担了为世界各国大学培养物理学人才的任务,许多物理学家的硕士或博士论文都在这里完成。   研究中心洋溢着尊重科学的气氛,就连园区的各条道路都以在科学领域有重大贡献的人士名字命名。从第一个设想物质是由原子组成的古希腊哲学家德谟克利特,到发现镭和钋等放射性元素的居里夫人,他们对人类认知的贡献,以这样的方式被铭记。   地下“粒子物理王国”   大型强子对撞机位于日内瓦附近、瑞士和法国交界地区地下的环形隧道内。为探测质子撞击试验产生的结果,研究中心在大型强子对撞机上安装了4个探测器同时进行试验,其中最大的就是位于瑞士一侧的超环面仪器。   经过两道严格安检后,记者跟随任忠良博士深入地下100多米的超环面仪器试验现场。站在坑道内高耸的钢结构探测器旁,如同站在希腊神话里的擎天巨神脚下,深感一己之渺小。   这个圆柱形庞然大物高25米,长45米,重7000吨,相当于埃菲尔铁塔或100架波音747客机的重量。任忠良博士说,超环面仪器就像一架高精度巨型数字照相机。对撞机发射的粒子束经过这个探测器时发生碰撞,产生的粒子沿着碰撞半径方向向外发散,这些肉眼难以察觉的物理现象都会在这一高性能探测器上留下影像。超环面仪器抓取碰撞影像的速度可达每秒4000万次,从而在粒子级别上记录任何细微的变化。   为处理由此产生的海量数据,3000台计算机会同时运转,从大量无效碰撞数据中选取符合研究需要的少数粒子高能对头碰撞记录并加以分析。即便如此,筛选出的有用数据量仍大得惊人。这一探测器运行一年产生的数据如用DVD光盘刻录,所有光盘铺排起来将长达7公里。   人造宇宙大爆炸   为从微观世界揭开宇宙起源的奥秘,研究宇宙产生初期的环境,物理学家设计了通过粒子对撞,模拟宇宙大爆炸的试验,大型强子对撞机就是进行这一模拟过程的“利器”。   可想而知,实现高能粒子对撞并非易事。据任忠良博士介绍,大型强子对撞机使用了超低温、超导等超越人类现有工业水平的尖端技术。   为产生偏转粒子所需要的强磁场,对撞机采用液态氦将管道温度降至零下271摄氏度的超低温,用低温超导技术产生零电阻以保障磁场强度。此外,为维持低温,减少管道内外热量交换,还使用了真空技术,对撞机周长27公里的环形管道内的真空空间相当于巴黎圣母院的大小。   低温还带来金属等材料热胀冷缩的问题,这就要求在管道连接处使用可滑动的接点,但可滑动连接点同时也带来另一个问题:上万个连接点中,任何一个点如因接触不良出现微小电阻,强大的电流通过时就会瞬时释放大量热能,毁掉超导状态。热量还会气化冷却管道用的液态氦,导致大爆炸。   2008年,对撞机调试过程中就发生了一次类似事故,使整个试验的进度延后一年。研究中心花了整整一年,投入超过5000万瑞士法郎(约合5300万美元)才将设备修复。   寻找“上帝粒子”   大型强子对撞机目前的主要工作就是寻找希格斯玻色子。它是由英国人彼得希格斯等物理学家在上世纪60年代提出的一种基本粒子,被认为是物质的质量之源,因此被称为“上帝粒子”。   这种粒子就像神话中的独角兽一样难觅影踪。在粒子物理学的标准模型中,总共预言了62种基本粒子,其中的61种都已被验证,唯独希格斯玻色子始终游离在物理学家的视野之外。找到这种粒子,就找到建筑粒子物理学经典理论大厦的最后一块基石,如证明它不存在,整座大厦就要被推倒重建。   此前,许多顶级物理研究机构曾试图通过对撞试验寻找希格斯玻色子,但都没有成功。如今,有了世界上能量级别最高的大型强子对撞机,欧洲核子研究中心的科学家对捕获这头“独角兽”充满信心。   研究中心主任、德国粒子物理学家罗尔夫霍伊尔说,对撞机在过去一年表现非常出色,因此大家普遍对试验充满信心。霍伊尔风趣地化用莎士比亚的名言说,希格斯玻色子存在还是不存在,这是一个问题,而这个问题的答案很可能在未来两年内揭晓。
  • 物理所公开1-9月仪器采购意向:预算1亿,电镜/原子力显微镜等
    仪器信息网讯 1月29日,中国科学院物理研究所公开2021年1至9月政府采购意向,本次意向共涉及采购意向37项,涉及低温透射电子显微镜、原子力显微镜、光谱仪、X-射线衍射仪、稀释制冷机、冷冻超薄切片机、原子层沉积系统、无液氦扫描隧道显微镜系统、低温恒温器、空间分辨光电子显微镜等品类仪器设备,总采购预算1亿元,预计采购日期分布在2021年1至9月。(详见文末表2)拓展:2021年1月份以来,多个高校院所陆续公开2021年仪器采购意向,目前公开信息如下表1:表1 近期高校院所公开2021年仪器采购意向动向表公布时间单位名称项目数量预算总金额(亿元)预计采购日期清单链接1月16日西北工业大学270.8853至4月链接1月20日中国科学院微电子研究所482.073至12月链接1月21日中国科学院金属研究所240.85162至12月链接1月22日中国科学院大学753.283至12月链接1月27日上海应用物理所511.352至10月链接1月28日中国科学院上海高等研究院392.41至9月链接1月29日中国科学院物理研究所371.021至9月链接物理所采购意向信息表如下表2:表2 中国科学院物理研究所2021年1至9月政府采购意向信息表序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1高精度多轴X-射线衍射仪A02062002-电气物理设备详见项目详情1602021年4月2低温强磁场输运测量系统A02062002-电气物理设备详见项目详情1802021年4月3原子力显微镜A02062002-电气物理设备详见项目详情1102021年4月4稀释制冷机A0206180199-其他制冷电器详见项目详情3402021年4月5矢量网络分析仪A02100404-光学式分析仪器详见项目详情1102021年4月6大阵面X射线成像探测器A02100303-物理光学仪器详见项目详情2602021年4月7高动态范围条纹相机A0202050104-专用照相机详见项目详情2732021年4月8X射线时间分辨成像探测器A02100303-物理光学仪器详见项目详情3802021年4月9冷冻超薄切片机A02062002-电气物理设备详见项目详情1152021年4月10低温透射电子显微镜A02100301-显微镜详见项目详情20002021年4月11高速成像相机A0202050105-特殊照相机详见项目详情1602021年4月12原子层沉积系统A02100699-其他试验仪器及装置详见项目详情3002021年4月13无液氦扫描隧道显微镜系统A02100301-显微镜详见项目详情4502021年4月14Attocube 2100干式低温恒温器A0206180199-其他制冷电器详见项目详情4002021年8月15Oxford TeslatronPT干式低温恒温器A0206180199-其他制冷电器详见项目详情2502021年4月16超高真空分子束外延系统A02062002-电气物理设备详见项目详情3302021年4月17稀释制冷机A0206180199-其他制冷电器详见项目详情3802021年4月18超导量子计算室温操控系统A02100699-其他试验仪器及装置详见项目详情2602021年4月19精密慢走丝线切割机A02062002-电气物理设备详见项目详情1902021年1月20双主轴车削中心A02100699-其他试验仪器及装置详见项目详情1602021年1月21飞秒脉冲激光系统A02100303-物理光学仪器详见项目详情230.52021年1月22全波段飞秒瞬态吸收光谱仪A02100303-物理光学仪器详见项目详情1602021年3月23条纹相机超快时间分辨荧光光谱仪A02100304-光学测试仪器详见项目详情1672021年4月24透射电镜原位高温力学测量系统A02100699-其他试验仪器及装置详见项目详情1402021年3月25空间分辨光电子显微镜A02100301-显微镜详见项目详情5002021年2月26超导磁体低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月27显微共焦高分辨超低波数光谱系统A02100404-光学式分析仪器详见项目详情1582021年4月28超导磁体低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月29低液氦损耗超导强磁体及氦三制冷系统A0206180199-其他制冷电器详见项目详情2852021年4月30低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月31真空室A02052401-真空获得设备详见项目详情1002021年5月32超快电子枪及真空腔体A02052404-真空系统附件详见项目详情1002021年4月33超高真空多腔室电子束镀膜系统A021099-其他仪器仪表详见项目详情5362021年3月34真空泵组A02051907-真空泵详见项目详情2502021年5月35光谱仪A02100304-光学测试仪器详见项目详情1602021年9月36数字万用表 、数字源表等A021099-其他仪器仪表详见项目详情1002021年5月37气液分离器A02052299-其他气体分离及液化设备详见项目详情1502021年6月
  • 260万!中国科学院兰州化学物理研究所原子力显微镜采购项目
    项目编号:OITC-G220221048项目名称:中国科学院兰州化学物理研究所原子力显微镜采购项目预算金额:260.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1原子力显微镜1是260投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:合同生效后六个月本项目( 不接受 )联合体投标。
  • 大型强子对撞机团队确定“穿越万里”反原子核
    轻反原子核由反质子和反中子组成。根据《自然物理》杂志发表的一篇论文,大型强子对撞机(LHC)团队研究认为,轻反原子核或能在银河系中穿越很长的距离。这项研究结果表明,这些反原子核或能用于寻找暗物质。反原子以及反原子构成的反分子等,统称为反物质,反物质与我们周围世界中的常规“正”物质相遇,则发生湮灭,释放大量能量。也正因如此,地球上没有反原子核的天然来源,但它们会在银河系的其他地方产生。有观点提出,反原子核可能是源于太阳系外的高能宇宙辐射与星际介质(星系中恒星之间空间)中的原子相互作用的结果。另一种观点认为,反原子核是尚未发现的暗物质粒子湮灭所形成的。为探索反原子核与物质的相互作用,欧洲核子研究中心的LHC所属ALICE合作组,日前分析了氦-3(氦的一种稳定同位素)原子核的反粒子。研究人员利用LHC的粒子对撞产生反氦-3原子核,再让这些反原子核与ALICE探测器中的物质相互作用,让它们消失。通过研究,团队科学家们确定了反氦-3原子核的消失概率,以及这种概率在这些反原子核穿越银河系过程中所产生的影响。
  • 常州大学150.00万元采购物理气相沉积,原子层沉积
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 常州大学ALD原子层沉积平台采购项目竞争性磋商公告 江苏省-常州市-武进区 状态:公告 更新时间: 2023-01-09 招标文件: 附件1 项目概况 (常州大学ALD原子层沉积平台)采购项目的潜在供应商应在(常州中宇建设工程管理有限公司)获取采购文件,并于2023年1月31日上午9点00分(北京时间)前提交响应文件。 一、项目基本情况 1.项目编号:ZYJS-ZC2023192 2.项目名称:ALD原子层沉积平台采购项目 3.采购方式:竞争性磋商 4.项目预算金额:人民币150万元 项目最高限价:人民币150万元;供应商最终报价时总价不得高于最高限价,否则作为无效响应处理。 5.采购需求:本项目为常州大学ALD原子层沉积平台采购项目。原子层沉积技术简称ALD,是一种精度极高的气相沉积包覆技术。该技术通过交替式的通入前驱体,从而实现厚度可控(纳米尺寸级别)的薄膜沉积。本采购项目包括相应产品供货前的准备(包括现场踏勘、技术核对等)、产品(包括备品备件、专用工具)、设计、制造、加工、检验、包装、发货、保险、技术资料、生产(采购)、进口、运输、外贸代理费、清关、运输、安装调试、技术服务、验收、装卸至现场设备技术上、设备自身调试、培训、售后服务、质保期及维保服务等全部工作。 6.项目履约期限:自合同签订之日起28周以内供货完毕,并安装调试通过采购单位验收。 7.本项目是否接受联合体:□是 ◆否。 8.本项目是否接受进口产品响应:◆是 □否。 二、申请人的资格要求(须同时满足) 1.满足《中华人民共和国政府采购法》第二十二条规定以及下列情形: 1.1未被“信用中国”网站(WWW.creditchina.gov.cn)或“中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单; 1.2单位负责人为同一人或者存在直接控股、管理关系的不同供应商(包含法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司),不得参加同一合同项下的政府采购活动。 2.落实政府采购政策需满足的资格要求: 2.1中小企业政策 ◆本项目不专门面向中小企业预留采购份额。 □本项目专门面向 □中小 □小微企业采购。 □本项目预留部分采购项目预算专门面向中小企业采购。对于预留份额,提供的货物由符合政策要求的中小企业制造、服务由符合政策要求的中小企业承接。预留份额通过以下措施进行:______/_____。 2.2其它落实政府采购政策的资格要求(如有):____/_______。 3.本项目的特定资格要求: 3.1本项目接受进口产品投标,供应商所投设备为进口产品的,应提供以下之一的证明材料: 1)如供应商为所投设备的授权经销(代理)商,必须提供生产(制造)商或上级经销(代理)商授权供应商的授权书,并提供逐级经销(代理)商的证书复印件; 2)如供应商为本项目的授权供应商,必须提供生产(制造)商或授权经销(代理)商对本次招标的项目或所投产品的授权书,并提供逐级经销(代理)商的证书复印件。 3.2本项目是否接受分支机构参与响应:□是 ◆否; 3.3 其他特定资格要求:无 4.本项目是否属于政府购买服务: ◆否 □是,公益一类事业单位、使用事业编制且由财政拨款保障的群团组织,不得作为承接主体; 5.其他特定资格要求:无。 三、获取采购文件 时间:2023年1月9日至2023年1月16日(采购文件的发售期限自开始之日起不得少于5个工作日),每天上午8:30至11:30,下午13:30至17:00(北京时间,法定节假日除外) 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇财务室 方式:(供应商可采取以下任一种方式获取采购文件) (1)线上获取(推荐使用):供应商在规定的获取时间内登录常州中宇建设工程管理有限公司网站右上角“供应商注册”进行注册登记,注册成功后可进入相应项目公告填写相关信息,并按要求交纳采购文件费用,上述步骤完成后,供应商可自行下载采购文件。 (2)线下获取:将相关材料扫描发至本公司邮箱“zhongyuzhaobiao111@163.com”并按要求交纳采购文件费用后,采购文件以邮件形式发送至供应商邮箱。 户 名:常州中宇建设工程管理有限公司 开户银行:中国工商银行股份有限公司常州勤德支行 账 号:1105052609000510202 财务室电话(查询标书款情况):0519-85782855 (3)现场获取地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇财务室。 售价:人民币壹佰元/份(从企业账户缴入代理机构银行账户或现场报名缴纳,缴款时请备注所投项目编号),采购文件售后一概不退。未获取采购文件的磋商供应商不得参与投标。磋商供应商获取采购文件时应提供如下材料: ①供应商信息表(格式见公告附件1) 四、响应文件提交 截止时间:2023年1月31日上午9点00分(北京时间)。 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇招标中心。 五、开启 时间:2023年1月31日上午9点00分(北京时间)。 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇招标中心。 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策:_/__。 2.现场勘察及澄清: 2.1 ◆采购人不组织现场勘察。 2.2对采购文件需要进行澄清或有疑问的供应商,均应在2023年1月17日上午11:30前按采购公告中的通讯地址,一次性将需要澄清或疑问内容以书面形式并加盖公章送达采购代理机构,否则视为无有效澄清或疑问。 2.3有关本次采购的事项若存在变动或修改,采购代理机构将通过更正公告形式通知所有获取采购文件的潜在供应商,因未能及时了解相关最新信息所引起的投标失误责任由供应商自负。 2.4响应文件制作份数要求: 正本份数:1份,副本份数:3份;响应文件应按顺序胶装成册,并编制响应文件目录索引。不论供应商成交与否,响应文件均不退回。 中标(成交)公告发布前,成交供应商须将响应文件电子档(PDF格式,含加盖鲜红章和签字的全套扫描文件,与正本响应文件完全一致的电子档)发至邮箱:zhongyuzhaobiao111@163.com 2.5关于疫情期间开评标相关事项 ①参与采购、评标活动的当事人应严格按照疫情期间上级部门的管理要求,进场后请保持安全距离,分散等候,不得扎堆聚集,事完即走。自觉服从安保及代理机构工作人员的管理。 ②科学安排座位间距,尽量缩短工作时间,会议室要每隔一段时间通风。 3.关于常州市中小企业政府采购信用融资: 根据《常州市财政局中国人民银行常州市中心支行关于进一步推进政府采购信用融资工作的通知》(常财购〔2021〕13号)等有关文件精神,我市实行政府采购信用融资,将信用作为政策工具引入政府采购领域,金融机构根据政府采购项目中标(成交)通知书或中标(成交)合同,为中标(成交)中小企业供应商提供相应额度贷款的融资模式。申请条件及操作流程等事项详见该文件相关内容或者常州市政府采购网--政采融资平台栏目。 八、对本项目提出询问,请按以下方式联系。 1.采购人信息 名 称:常州大学 地 址:常州市武进区湖塘镇滆湖中路21号 联系方式:诸葛祥群 联系电话:15161156879 2.采购代理机构信息 名 称:常州中宇建设工程管理有限公司 地 址:常州钟楼区大仓路65号8号楼二楼 联系方式:0519-85785155 3.项目联系方式 项目联系人:左学文、包婷 电 话:0519-85785155 注:上述个人信息由于工作需要经机构或本人同意对外公布。 附件:供应商信息表.docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:物理气相沉积,原子层沉积 开标时间:null 预算金额:150.00万元 采购单位:常州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:常州中宇建设工程管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 常州大学ALD原子层沉积平台采购项目竞争性磋商公告 江苏省-常州市-武进区 状态:公告 更新时间: 2023-01-09 招标文件: 附件1 项目概况 (常州大学ALD原子层沉积平台)采购项目的潜在供应商应在(常州中宇建设工程管理有限公司)获取采购文件,并于2023年1月31日上午9点00分(北京时间)前提交响应文件。 一、项目基本情况 1.项目编号:ZYJS-ZC2023192 2.项目名称:ALD原子层沉积平台采购项目 3.采购方式:竞争性磋商 4.项目预算金额:人民币150万元 项目最高限价:人民币150万元;供应商最终报价时总价不得高于最高限价,否则作为无效响应处理。 5.采购需求:本项目为常州大学ALD原子层沉积平台采购项目。原子层沉积技术简称ALD,是一种精度极高的气相沉积包覆技术。该技术通过交替式的通入前驱体,从而实现厚度可控(纳米尺寸级别)的薄膜沉积。本采购项目包括相应产品供货前的准备(包括现场踏勘、技术核对等)、产品(包括备品备件、专用工具)、设计、制造、加工、检验、包装、发货、保险、技术资料、生产(采购)、进口、运输、外贸代理费、清关、运输、安装调试、技术服务、验收、装卸至现场设备技术上、设备自身调试、培训、售后服务、质保期及维保服务等全部工作。 6.项目履约期限:自合同签订之日起28周以内供货完毕,并安装调试通过采购单位验收。 7.本项目是否接受联合体:□是 ◆否。 8.本项目是否接受进口产品响应:◆是 □否。 二、申请人的资格要求(须同时满足) 1.满足《中华人民共和国政府采购法》第二十二条规定以及下列情形: 1.1未被“信用中国”网站(WWW.creditchina.gov.cn)或“中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单; 1.2单位负责人为同一人或者存在直接控股、管理关系的不同供应商(包含法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司),不得参加同一合同项下的政府采购活动。 2.落实政府采购政策需满足的资格要求: 2.1中小企业政策 ◆本项目不专门面向中小企业预留采购份额。 □本项目专门面向 □中小 □小微企业采购。 □本项目预留部分采购项目预算专门面向中小企业采购。对于预留份额,提供的货物由符合政策要求的中小企业制造、服务由符合政策要求的中小企业承接。预留份额通过以下措施进行:______/_____。 2.2其它落实政府采购政策的资格要求(如有):____/_______。 3.本项目的特定资格要求: 3.1本项目接受进口产品投标,供应商所投设备为进口产品的,应提供以下之一的证明材料: 1)如供应商为所投设备的授权经销(代理)商,必须提供生产(制造)商或上级经销(代理)商授权供应商的授权书,并提供逐级经销(代理)商的证书复印件; 2)如供应商为本项目的授权供应商,必须提供生产(制造)商或授权经销(代理)商对本次招标的项目或所投产品的授权书,并提供逐级经销(代理)商的证书复印件。 3.2本项目是否接受分支机构参与响应:□是 ◆否; 3.3 其他特定资格要求:无 4.本项目是否属于政府购买服务: ◆否 □是,公益一类事业单位、使用事业编制且由财政拨款保障的群团组织,不得作为承接主体; 5.其他特定资格要求:无。 三、获取采购文件 时间:2023年1月9日至2023年1月16日(采购文件的发售期限自开始之日起不得少于5个工作日),每天上午8:30至11:30,下午13:30至17:00(北京时间,法定节假日除外) 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇财务室 方式:(供应商可采取以下任一种方式获取采购文件) (1)线上获取(推荐使用):供应商在规定的获取时间内登录常州中宇建设工程管理有限公司网站右上角“供应商注册”进行注册登记,注册成功后可进入相应项目公告填写相关信息,并按要求交纳采购文件费用,上述步骤完成后,供应商可自行下载采购文件。 (2)线下获取:将相关材料扫描发至本公司邮箱“zhongyuzhaobiao111@163.com”并按要求交纳采购文件费用后,采购文件以邮件形式发送至供应商邮箱。 户 名:常州中宇建设工程管理有限公司 开户银行:中国工商银行股份有限公司常州勤德支行 账 号:1105052609000510202 财务室电话(查询标书款情况):0519-85782855 (3)现场获取地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇财务室。 售价:人民币壹佰元/份(从企业账户缴入代理机构银行账户或现场报名缴纳,缴款时请备注所投项目编号),采购文件售后一概不退。未获取采购文件的磋商供应商不得参与投标。磋商供应商获取采购文件时应提供如下材料: ①供应商信息表(格式见公告附件1) 四、响应文件提交 截止时间:2023年1月31日上午9点00分(北京时间)。 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇招标中心。 五、开启 时间:2023年1月31日上午9点00分(北京时间)。 地点:常州钟楼区大仓路65号(博济五星智造园)8号楼2楼常州中宇招标中心。 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策:_/__。 2.现场勘察及澄清: 2.1 ◆采购人不组织现场勘察。 2.2对采购文件需要进行澄清或有疑问的供应商,均应在2023年1月17日上午11:30前按采购公告中的通讯地址,一次性将需要澄清或疑问内容以书面形式并加盖公章送达采购代理机构,否则视为无有效澄清或疑问。 2.3有关本次采购的事项若存在变动或修改,采购代理机构将通过更正公告形式通知所有获取采购文件的潜在供应商,因未能及时了解相关最新信息所引起的投标失误责任由供应商自负。 2.4响应文件制作份数要求: 正本份数:1份,副本份数:3份;响应文件应按顺序胶装成册,并编制响应文件目录索引。不论供应商成交与否,响应文件均不退回。 中标(成交)公告发布前,成交供应商须将响应文件电子档(PDF格式,含加盖鲜红章和签字的全套扫描文件,与正本响应文件完全一致的电子档)发至邮箱:zhongyuzhaobiao111@163.com 2.5关于疫情期间开评标相关事项 ①参与采购、评标活动的当事人应严格按照疫情期间上级部门的管理要求,进场后请保持安全距离,分散等候,不得扎堆聚集,事完即走。自觉服从安保及代理机构工作人员的管理。 ②科学安排座位间距,尽量缩短工作时间,会议室要每隔一段时间通风。 3.关于常州市中小企业政府采购信用融资: 根据《常州市财政局中国人民银行常州市中心支行关于进一步推进政府采购信用融资工作的通知》(常财购〔2021〕13号)等有关文件精神,我市实行政府采购信用融资,将信用作为政策工具引入政府采购领域,金融机构根据政府采购项目中标(成交)通知书或中标(成交)合同,为中标(成交)中小企业供应商提供相应额度贷款的融资模式。申请条件及操作流程等事项详见该文件相关内容或者常州市政府采购网--政采融资平台栏目。 八、对本项目提出询问,请按以下方式联系。 1.采购人信息 名 称:常州大学 地 址:常州市武进区湖塘镇滆湖中路21号 联系方式:诸葛祥群 联系电话:15161156879 2.采购代理机构信息 名 称:常州中宇建设工程管理有限公司 地 址:常州钟楼区大仓路65号8号楼二楼 联系方式:0519-85785155 3.项目联系方式 项目联系人:左学文、包婷 电 话:0519-85785155 注:上述个人信息由于工作需要经机构或本人同意对外公布。 附件:供应商信息表.docx
  • 首张原子内部结构图亮相 颠覆物理学家传统观念
    荷兰研究人员拍摄到的世界首张原子结构图,图中颜色不同是因为原子内部微粒密度不同。   荷兰物质基础研究基金会的研究人员日前拍摄到了世界首张原子内部结构照片。 在这项开创性实验中,研究人员用激光、显微镜和能够把拍摄对象放大2万倍的特殊镜头对氢原子内部进行观察研究,并对其进行拍摄。该研究小组的负责人阿尼塔斯托多纳说:“我们对这一成果非常满意。”这项实验颠覆了量子物理学家们的观念。之前,由于原子内部微粒非常微小、脆弱,拍摄原子内部结构照片曾被认为是不可能完成的任务。   研究人员介绍称,选择氢元素作为研究对象,是因为它结构简单,拍摄氢的原子照片要比获取其他元素原子照片更为容易。目前,该小组将研究目标转向结构更为复杂的氦元素,研究是否成功还有待确认。   对于这项实验,加拿大渥太华大学物理学家杰夫伦德恩表示:“这个实验很有趣,这主要是因为它的研究对象是氢元素。”氢元素广泛存在于宇宙万物中。 伦德恩指出,该研究小组基本上开创了一项新技术,它将成为科学家们“一个非常有用的工具”。
  • 中科院粒子加速物理与技术重点实验室成立
    2月27日至28日,中国科学院粒子加速物理与技术重点实验室成立大会暨2015学术年会在中科院高能物理研究所成功召开。来自北京大学、清华大学、中国工程物理研究院、美国劳伦兹伯克利实验室,中科院近代物理研究所、上海应用物理研究所、高能物理研究所的9位实验室学术委员会专家,及中科院前沿科学与教育局重点实验室处处长侯宏飞,高能所所长王贻芳,党委书记潘卫民,副所长陈刚等及实验室成员140余人参加了年会。潘卫民主持成立大会。   侯宏飞首先宣读了成立院级重点实验室的文件,陈刚宣布实验室室务委员会主任及学术委员会聘任名单,王贻芳为学术委员会委员颁发聘书,并邀请侯宏飞共同为实验室揭牌。侯宏飞代表中科院对实验室成立表示祝贺,高度肯定了近几年实验室建设与申请工作的成效,对实验室的建设与发展提出了期望与建议。王贻芳指出实验室成立的重要性,做好重点实验室工作将对加速器物理与技术的发展起到很好的推动作用,强调实验室发展要瞄准本领域国际前沿、依托学科建设,多出学术成果,更好地服务于未来基于加速器的大科学装置及先进技术转化。   重点实验室主任秦庆对实验室近几年的建设和发展历程进行了简要回顾,提出了实验室的管理方针与规划目标。重点实验室学术委员会委员、上海应用物理研究所研究员冷用斌作年会特邀学术报告,介绍了逐束团诊断技术研究方面的前沿进展,引发与会人员热烈讨论。实验室粒子加速物理、超导高频、低温技术、束流测控技术、功率源与电源技术、微波技术等重点学科方向的报告人也分别介绍了各自领域2014年度的研究进展以及2015年的科研计划。   2月28日,重点实验室学术委员会主任陈森玉主持召开了实验室第一届学术委员会第一次会议。大家首先对各重点学科的报告进行了总结和讨论,认为各个学科目前都有不错的发展,特别是有些学科跻身于国际前沿,取得了不俗成绩。但各个重点学科未来的发展要有清晰的规划,或跻身国际前沿,或进行成熟产品的产业化,要有所侧重。针对重点实验室未来的发展规划,委员们进行了热烈的讨论。委员们一致认为,实验室未来的发展方向需要排出优先级,突出重点,争取培养出能够在本领域内引领世界前沿发展的重点学科。
  • 我国首次利用冷冻电镜技术获得生物大分子复合体全原子模型
    美国《国家科学院院刊》(Proceedings of the National Academy of Science, USA)1月10日在线发表了中国科学院生物物理研究所朱平研究组程凌鹏副研究员等人的研究论文——Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping。该发现对研究dsRNA病毒的mRNA加帽(Capping)机制有重要意义。这是我国首次利用冷冻电镜技术解析的生物大分子原子结构模型,也是目前已报道的国内最高分辨率的冷冻电镜三维重构结果。同时,这是世界上首次利用冷冻电镜的CCD图像(电荷耦合器件图像传感器,可将图像资料由光信号转换成电信号)获得的生物大分子复合体的全原子模型。   本工作是完全基于生物物理所生物成像技术实验室2010年4月建成并试运行的Titan Krios电镜及其附属设备完成的,用单颗粒图像处理技术获得了呼肠孤病毒科的质型多角体病毒近原子分辨率的三维结构(3.9埃),并独立构建了全原子模型。呼肠孤病毒科病毒是一类重要的双链RNA病毒,其感染宿主包括植物、无脊椎动物、脊椎动物和人类,其中的质型多角体病毒是其两个亚科之一。该研究解析了呼肠孤病毒科质型多角体病毒的近原子分辨率三维结构并构建了完整原子模型,确认了该病毒新生mRNA的流出通道,对研究双链RNA病毒的RNA加帽机制,新生mRNA的释放过程,以及呼肠孤病毒的蛋白衣壳的稳定性和进化具有重要意义。   中国科学院生物物理研究所在中国科学院蛋白质科学研究平台二期建设当中重点发展了生物大分子冷冻电镜三维重构研究平台,已经建成了具有世界先进水平的生物成像技术实验室,拥有目前最先进的300千伏Titan Krios场发射冷冻透射电子显微镜。该成果表明:我国独立开展的生物大分子冷冻电镜高分辨率研究工作达到了该领域的先进水平 和2010年10月孙飞研究组以封面形式发表于Structure的分子伴侣素结构等系列成果表明:中国科学院蛋白质科学研究平台生物成像技术实验室的成功建立,为进一步开展冷冻电子显微前沿研究奠定了坚实的基础,生物物理所生物成像技术实验室已跻身于达到近原子分辨率三维重构水平的极少数实验室行列。   本工作得到基金委国家自然科学基金、科技部国家重点基础研究973计划、以及中国科学院百人计划等项目资助,该文章链接为http://www.pnas.org/content/early/2011/01/05/1014995108。   该研究由中国科学院生物物理研究所生物大分子国家重点实验室朱平研究组和孙飞研究组、华南农业大学孙京臣副教授和中山大学张景强教授等合作完成。其中,生物物理研究所朱平研究组程凌鹏副研究员完成了冷冻电镜成像和结构解析等工作,黄晓星助理研究员协助完成了病毒纯化工作,孙飞研究组研究生张凯协助完成了原子模型构建工作,生物成像中心电子显微镜平台高级工程师季刚博士提供了电镜成像技术支持。      图片说明:质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。
  • 小分子大科学|第三届中国生物物理学会代谢组学分会年会在鹭岛成功召开!
    仪器信息网讯 2023年10月27-29日,第三届中国生物物理学会代谢组学分会暨2023代谢组学国际研讨会在厦门召开,会议共为期2.5天,特别设置了半天非靶向代谢组学数据分析培训班。会议由中国生物物理学会代谢组学分会主办,厦门大学医学与生命科学学部承办。为促进我国代谢组学发展,会议就代谢组学领域最新研究成果及发展动态进行了探讨,吸引了5个国家、800余位代谢组学领域的专家用户及厂商代表参会。会上,近80位专家学者进行了代谢组学技术及应用方面的研究进展报告分享,报告内容涉及疾病代谢组学、药物代谢组学、环境代谢组学、脂质组学技术、代谢组学数据分析等方面,覆盖了代谢组学的各应用领域。 大会现场中国科学院上海有机化学研究所 朱正江研究员 主持大会厦门大学医学与生命科学学部委员 黄烯教授 致辞代谢组学分会会长/复旦大学唐惠儒教授致开幕辞唐教授首先代表代谢组学分会全体会务人员对不辞辛劳前来参加会议的各位专家学者表示最热烈的欢迎和最诚挚的谢意。之后,唐教授在致辞中介绍了代谢组学分会的目标,表示分会将致力于推动中国代谢组学领域研发、教育、科普、项目立项、合作及国内外交流。最后,唐教授也呼吁,代谢组学作为一个“年轻的”学科,领域中还存在很多“难啃的骨头”,希望所有从事代谢组学的学者能够瞄准“难点”问题,勇担学科发展重任,共同促进代谢组学蓬勃发展。大会报告环节由复旦大学唐惠儒教授、帝国理工学院 Jia Li教授、丹麦奥尔堡大学/芬兰图尔库大学Matej Oresic教授以及中国科学院大连化学物理研究所许国旺研究员四位专家带来精彩的报告分享。唐惠儒教授就代谢组学所面临的“种类繁多”“性质各异”“形式多样”“浓度差别大”“功能所知少”等挑战进行了介绍,同时也向与会者介绍了代谢组学定量分析的新技术与策略。Jia Li教授报告了通过代谢表型探索营养和肠道健康相关的研究进展。Matej Oresic教授报告了胆汁酸与肠道微生物组学研究的相关进展。许国旺研究员详细介绍了小分子分析化学的新方法以及代谢组学和暴露组学相关的研究进展,对疾病风险因子和疾病标志物的发现提供了有利工具。复旦大学 唐惠儒教授帝国理工学院 Jia Li教授丹麦奥尔堡大学/芬兰图尔库大学 Matej Oresic教授中国科学院大连化学物理研究所 许国旺研究员大会同期还举办了多个主题研讨会,共邀请了80位专家学者及行业专家针对代谢组学技术与应用、疾病代谢组学、药物代谢组学、脂质代谢组学技术、环境代谢组学、代谢组学数据分析进行学术探讨与交流。为促进优秀青年科技工作者的成长,拓宽视野,增长知识和才干,提高学术水平,大会还特别举办了青年科学家论坛,邀请了20位青年学者进行了学术交流。从多位青年科学家的报告可以看出,中国代谢组学研究的团队近些年在不断扩大,关于单细胞代谢组学、基于质谱成像技术的空间分辨代谢组学以及人工智能分析等新技术新应用的研究进展日新月异。在大会闭幕式环节,海南大学罗杰教授、中央民族大学再帕尔阿不力孜教授、黑龙江中医药大学王喜军教授以及上海交通大学/武汉大学邓子新院士带来了精彩的报告分享。罗杰教授报告了植物次生代谢调控和代谢组学研究的最新进展。再帕尔阿不力孜教授报告了质谱成像技术与空间分辨代谢组学研究的最新进展。王喜军教授向与会者详细介绍了中医方证代谢组学(Chinmedomics)以及其团队基于该内容的研究进展,包括方证代谢组学驱动的中药有效性等内容。邓子新院士以模拟和重塑代谢秘诀的合成生物学创新之路为题作报告,并从自然筛选驱动、途经工程驱动、学科交融驱动以及源头发现驱动等角度全方位阐释了代谢与合成生物学研究的现状以及未来趋势。海南大学 罗杰教授中央民族大学 再帕尔阿不力孜教授黑龙江中医药大学 王喜军教授(线上报告)上海交通大学/武汉大学 邓子新院士闭幕式上,本次大会的联合主席厦门大学林树海教授作闭幕式致辞,他表示,代谢组学的宗旨要围绕“测得全”“测得准”“测得透”“测得快”“测出活力”全面发展,同时时空成像技术和人工智能技术为代谢组学注入新的发展动能。最后,林树海教授再次感谢参与组织大会的学术委员、莅临现场的报告专家以及众多志愿者。厦门大学 林树海教授中国生物物理学会代谢组学分会委员合影会议期间还进行了墙报展示交流及优秀墙报评选活动,闭幕式上举行了优秀墙报的颁奖环节,邓子新院士与唐惠儒教授为获奖者颁奖。墙报展示区优秀墙报获奖者合影本次大会还得到了多家展商的大力支持,可以看到代谢组学在产业界的快速发展。展商包括质谱仪器设备企业如SCIEX、赛默飞、布鲁克、Waters、安捷伦等,还有众多提供代谢组学科研服务的企业如迈理奥代谢、英盛生物、迈维代谢、百趣生物、凯莱谱、拜谱生物、中科新生命、华大基因、诺米代谢、诺禾致源、百迈客、鹿明生物等,还有代谢组学研究相关的产品耗材及分离设备供应商如睿科、青岛腾龙、大连达硕等公司。展商掠影大会志愿者合影扫描二维码查看大会照片墙
  • 大型强子对撞机首次对原子进行加速
    p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心日前宣布,该机构人员用大型强子对撞机(LHC)加速了电离的铅原子,这是该设备首次用于加速原子。 /p p style=" text-align: justify " & nbsp & nbsp 大型强子对撞机是世界最大的粒子加速器,日常工作是加速质子即氢原子核,有时用于加速不带电子的其他原子核,此前从未处理过带有电子的原子核。 /p p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心发布的新闻公报说,这项试验是为了检验“伽马射线工厂”设想的可行性,将来有可能用大型强子对撞机产生高强度伽马射线,用于物理学前沿研究。 /p p style=" text-align: justify " & nbsp & nbsp 铅原子正常情况下有82个电子,研究人员将电子剥离到只剩一个,使铅原子变成带正电荷的离子。在7月下旬开展的试验中,大型强子对撞机使6束这样的铅离子稳定运行了两个小时,随后研究人员有意弃置了离子束。 /p p style=" text-align: justify " & nbsp & nbsp 伽马射线是一种波长极短的高能电磁波。根据设想,用大型强子对撞机把原子加速到接近光速,再用激光将其中的电子激发到较高能态,电子回落到低能态时就会释放出伽马射线。 /p p style=" text-align: justify " & nbsp & nbsp 当前已经有用电子束产生伽马射线的手段,不过大型强子对撞机产生的伽马射线强度会更高,可用于新型粒子物理学实验,有可能帮助探索暗物质。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制