当前位置: 仪器信息网 > 行业主题 > >

雪莱遗传学通讯

仪器信息网雪莱遗传学通讯专题为您整合雪莱遗传学通讯相关的最新文章,在雪莱遗传学通讯专题,您不仅可以免费浏览雪莱遗传学通讯的资讯, 同时您还可以浏览雪莱遗传学通讯的相关资料、解决方案,参与社区雪莱遗传学通讯话题讨论。

雪莱遗传学通讯相关的资讯

  • 世界最大表观遗传学研究项目正式启动
    表观遗传学:主要探索细胞内随时发生的化学变化如何影响基因的活动。这些化学变化有些可能是随机的,有些可能与生活方式或者饮食有关,而这种影响可能持续多代。   记者从华大基因研究院获悉,作为人类基因组学研究中最具潜力的项目之一,全球最大的表观遗传学研究项目将于9月6日正式启动。   该项目将对5000对双胞胎进行深入研究,来捕捉能够标记双胞胎间差异的细微表观遗传信号,寻找为什么同卵双胞胎不得同样疾病的答案,从而为开发疾病治疗药物提供核心靶点。   该项目的负责人表示,这种类型的研究过去仅在少数双胞胎中尝试过,此次的研究将把过去的研究放大1000倍。   将深入研究5000对双胞胎   该项目是世界最大的表观遗传学研究项目,由华大基因与伦敦国王学院的知名双胞胎研究团队TwinsUK共同发起,将对5000对双胞胎进行深入研究。根据预计,该项目将花费2000万英镑(约3000万美元)。   据华大基因研究院相关负责人介绍,表观遗传学是遗传学研究中最为前沿的领域之一,主要探索细胞内随时发生的化学变化如何影响基因的活动。这些化学变化有些可能是随机的,有些可能与生活方式或者饮食有关,而这种影响可能持续多代。   “表观遗传学研究是未来五年中我们发展的主要方向之一,此次我们的先进技术与独特的双胞胎样本资源的结合将会为全球学者提供一个前所未有的数据集。我们希望这个项目能够解开人类遗传学中一些仍旧未解的秘密,并且加速其在人类健康领域的研究和应用。”该项目联合负责人、华大基因执行总裁王俊教授表示。   由双胞胎表观差异找病因   这个项目计划在双胞胎中对2000万个位点的甲基化模式进行研究,并且在同卵双胞胎间进行比较。与以往研究不同的是,此次研究不是寻找相似之处,而是寻找那些能够解释为什么同卵双胞胎不得同样疾病的差异。   这个项目首先将以肥胖、糖尿病、过敏反应、心脏病、骨质疏松症和长寿等为主要研究对象,但研究方法可应用于各种常见性状和疾病。   “寻找双胞胎间那些至关重要的表观差异,将引导我们发现那些可以打开和关闭的关键性基因,从而进一步寻找致病原因,这些基因本身也非常可能成为药物治疗的关键靶点。”该项目联合负责人Tim Spector说。   “双胞胎本身就是极好的医学研究对象,加上我们用17年多的时间收集了双胞胎上百种疾病的详细资料和表型特征,使得这项研究非常独特。迄今为止这种类型的研究仅在少数双胞胎中尝试过,此次我们的研究将把过去的研究放大1000倍。”Tim Spector说。
  • 拉曼光谱助力 新型纳米孔器件有望用于表观遗传学快速测序
    p   比利时校际微电子中心(IMEC)9日发表公报说,该中心成功开发出一种能直接读取单分子DNA(脱氧核糖核酸)碱基的新型光学纳米孔器件,有望用于遗传学研究快捷测序。 /p p   据介绍,新型器件结合了表面增强拉曼光谱和纳米孔流体技术,能以超高分辨率,实现无标记检测DNA中的遗传编码以及表观遗传变异。研究近期发表在英国《自然· 通讯》杂志上。 /p p   具体来说,这项技术通过纳米流体技术驱动DNA分子穿过一种拉长的纳米孔结构--表面等离子体纳米缝。而拉曼光谱是一种可反映分子特征结构的分子振动光谱。当DNA分子穿过纳米缝时,就会同时激发表面增强拉曼光谱,提供碱基分子的“指纹图”,以达到化学键水平的精准识别。 /p p   据介绍,这种新型纳米孔器件不仅可以“读取”DNA编码,还可以“读取”碱基的各种化学修饰产物。这些修饰产物通常携带了与表观遗传变异相关的大量信息,同时它们也影响细胞中的基因表达,对进化研究和分析癌症等疾病的发展具有重要意义。 /p p   表观遗传学是遗传学研究中最为前沿的领域之一,研究基因的DNA序列不发生改变的情况下,基因表达发生了可遗传的改变等现象。目前使用的表观遗传测序方法大都繁琐费时且价格昂贵。新型器件“是向开发可用于表观遗传学研究的快捷测序方案迈出的重要一步”,IMEC资深研究员陈昌博士说。 /p p   比利时校际微电子中心成立于1984年,是一家在纳米电子、能源和数字技术研究和创新领域领先的独立研究中心,总部位于比利时鲁汶,并在荷兰、美国和中国等地拥有研发小组。 /p
  • 2021年诺奖热门:光遗传学背后的科学家们
    光可被细菌、藻类等低等生命和人类等高等动物通过视紫红质系统而感知。20世纪70年代后,几种细菌和藻类通道视紫红质的发现为光控系统的诞生奠定了基础。光遗传学最初由米森伯克于2002年首次实现并于2005年由迪塞罗斯(也译作代塞尔罗斯)和博伊登进一步完善,其应用极大地增强了对大脑功能的理解。 光遗传学可使科学家借助光来精确开闭特异神经元从而达到操纵神经元活性和动物行为的目的。光遗传学技术已被证明是在细胞和系统层面研究健康和病理大脑活性的一个非常强大且有用的工具。文章系统介绍了光遗传学诞生的历史背景、重大事件、发展过程、应用领域及重要价值等。 光对生命具有举足轻重的地位,“万物生长靠太阳”。对大部分植物而言,它们借助光合作用合成营养物质并释放出氧气,而动物则依靠这些营养物质和氧来维持生存。此外,光还可以指导细菌和植物的向光性,控制植物生长和开花时间。 对于人类和其他动物而言,借助光来观察和感知这个 “光明” 世界。该过程由 “眼睛” 完成,称为视觉。大部分视觉健康的人都可通过眼睛清晰地观察到这个世界,看到周围的花花草草和五光十色的世界。那么,我们是如何观察到这些事物的呢?文艺复兴后,人们对光的本质进行探索,从而对光的成像机制有了新认识,自然对视觉形成机制也产生浓厚兴趣。 视紫红质 视觉研究可追溯到18世纪。荷兰科学家列文虎克(Antonie Philips van Leeuwenhoek)借助显微镜观察眼视网膜结构,鉴定出视网膜色素上皮细胞(retinal pigment epithelium,RPE)、视杆细胞和视锥细胞等,并推测这些细胞与视觉形成相关。1851年,德国解剖学和生理学家缪勒(Heinrich Müller,1820—1864)首次报道视网膜视杆细胞显红色这一现象 [1]。遗憾的是,缪勒错误地认为红色由血液造成。尽管如此,缪勒仍被看作视觉生理研究的先驱。缪勒在视觉生物学领域作出诸多贡献,如首次描述视网膜神经胶质细胞,这类细胞也因此获名“缪勒细胞”。 博尔(Franz Boll,1849—1879)是一位德国生理学家,对视觉形成具有浓厚兴趣。1876年11月,博尔也观察到红色视杆细胞,并认定红色源于其含有一类特殊物质,纠正了缪勒早期的错误。博尔还发现视杆细胞的红色受光影响,光照可导致红色褪去,而在暗处又重新恢复,进一步说明红色物质与视觉形成相关。遗憾的是,博尔的早逝(年仅30岁)使研究没有进一步开展。 1877年1月,博尔的同胞、另一位德国著名生理学家屈内(Wilhelm Friedrich Kühne,1837—1900)进一步纠正博尔的不足,认定视网膜感光物质应为紫红色,并创造 “视紫红质(rhodopsin)” 一词。屈内还取得另一项重大发现,即胆酸可使视杆细胞内的视紫红质释放到溶液里,并基于这一原理首次从牛视网膜完成视紫红质的纯化 [2],屈内也因此成为视觉生理领域的奠基人之一(图1)。虽然已确定视紫红质参与视觉形成,但具体分子机制仍不清晰,直到20世纪30年代才有突破。图1 视紫红质的发现 视黄醛循环 1931 年, 美国眼科专家尤德金(Arthur Yudkin,1892—1957)开始对视网膜成分进行分析,发现其含有一种维生素A样物质。其实,人们很早就知道维生素A缺乏可影响视觉形成,最常见的一种疾病叫夜盲症,但对维生素A如何参与视觉却知之甚少。 1932 年, 美国生理学家瓦尔德(George Wald, 1906—1997)来到德国瓦伯格(Otto Heinrich Warburg,1931年诺贝尔生理学或医学奖获得者)实验室开始全面研究视紫红质。瓦尔德首先借助光谱分析法证明青蛙、绵羊、牛等完整视网膜中存在维生素A,接着使用氯仿提纯视紫红质,化学显色反应表明所含物质与维生素A非常相似。 为进一步证实结论,瓦尔德加入瑞士著名科学家卡雷尔(Paul Karrer,1937年诺贝尔化学奖获得者)的实验室,而卡雷尔分离并确定了维生素A的结构。经过3个月研究,瓦尔德最终确定视紫红质中确实含有维生素A,从而表明视紫红质包含两部分:视蛋白(opsin)和维生素A [3]。随后,瓦尔德又加入德国海德堡迈耶霍夫(Otto Fritz Meyerhof,1922年诺贝尔生理学或医学奖获得者)实验室继续开展视觉形成研究。 一次偶然事件为研究带来重大契机!当时正逢假期,许多实验室人员都去度假,恰在此时运抵300只青蛙。实验室助理原本想丢弃,而瓦尔德则主动要求留下来用作实验材料。瓦尔德从青蛙视网膜提取到足够量的视紫红质,进一步分析后惊奇地发现所含的维生素A与卡雷尔所得维生素A尽管大部分性质相似,但仍有些许差异,因此将这种物质重新命名为视网膜色素(retinene)。瓦尔德还发现视网膜色素与维生素A之间可发生转变,并通过后来详细的结构分析确定了两者间的差异,因此视网膜色素更名为视黄醛,而维生素A则称为视黄醇 [4]。 20世纪50年代,瓦尔德和同事经过近20年探索,最终解析出视觉形成的 “视黄醛循环” 机制:静息状态下,视杆细胞内视蛋白与11-顺视黄醛结合形成视紫红质;光线照射可使11-顺视黄醛发生异构化转变为全反式视黄醛,从而与视蛋白分离,这个过程激活视蛋白,启动下游信号转导最终到达大脑视觉中心;全反式视黄醛可被运输到视网膜色素上皮细胞内经过几步化学反应重新生成11-顺视黄醛;11-顺视黄醛回到视杆细胞再次与视蛋白结合形成视紫红质,从而完成一次视觉感知过程(图2)。瓦尔德的发现很好地诠释了视黄醛参与视觉形成的机制,因此他分享了1967年诺贝尔生理学或医学奖。图2 瓦尔德与视黄醛循环 后续研究还揭示了视蛋白作用机制。视蛋白是一种G-蛋白偶联受体(G protein coupled receptor,GPCR)。光通过改变视黄醛结构而激活视蛋白后,可进一步使异三聚体G蛋白激活,从而使磷酸二脂酶活化,催化cGMP水解为5’-GMP而减少cGMP含量;细胞内受cGMP调控的离子通道关闭,导致细胞膜电位出现变化,最终传导至视觉中心而实现光的感知。 从这个过程可以看出,哺乳动物视紫红质的作用机制较为复杂,作为机体视觉感知过程尚可接受,如果将它们应用到其他系统则困难重重,因此有必要寻找更简单的感光系统 [5]。 细菌感光 最初认为只有高等动物才存在视觉系统,但这一观念在20世纪60年代发生改变。1967年,德裔美国生理学家斯托克尼乌斯(Walther Stoeckenius,1921—2013)成为加州大学旧金山分校的教授,重点研究生物膜(如红细胞膜和线粒体膜)结构 [5]。由于生物膜材料获取比较困难,具有电子显微镜背景的斯托克尼乌斯决定用生物化学方法研究盐生盐杆菌(Halobacterium halobium)细胞膜组成。随后两位新同事的到来壮大了实验室的力量。 厄斯特黑尔特(Dieter Oesterhelt,也译作奥斯特黑尔特)是一位训练有素的德国化学家,跟随吕南(Feodor Lynen,1964年诺贝尔生理学或医学奖获得者)获得博士学位,由于学术休假的缘故来到美国;布劳罗克(Allen Blaurock)是一位刚毕业的英国生物物理学家,原来在国王学院威尔金斯(Maurice Wilkin,1962年诺贝尔生理学或医学奖获得者)实验室从事X射线衍射研究 [6]。 厄斯特黑尔特和布劳罗克借助X射线衍射技术观测细菌细胞膜紫色组分时,意外观察到一种清晰的衍射图像,说明其含有一种高度有序的生物分子。厄斯特黑尔特还观察到紫色物质在添加有机溶剂后颜色变黄。此时,布劳罗克回忆起在国王学院研究青蛙视网膜过程中也观察到类似的颜色变化,这一提示促使厄斯特黑尔特大胆假设该物质可能也是视紫红质。为证实这一假说,首先需解答的问题是其含不含视黄醛。 从细菌中寻找视黄醛这一近乎疯狂的想法促使厄斯特黑尔特立即启动验证工作。借鉴青蛙视紫红质的研究方法,厄斯特黑尔特发现细菌的紫色物质具有类似的物理和化学性质,并且还含有视黄醛。基于这些特性,厄斯特黑尔特和斯托克尼乌斯于1971年确定这是一种新型视紫红质,根据来源将其命名为细菌视紫红质(bacteriorhodopsin,BR)(图3)[7]。图3 细菌视紫红质 斯托克尼乌斯经过进一步研究后发现,细菌视紫红质是一种光依赖的离子通道。更大的突破在1975年,英国剑桥大学分子生物学实验室的亨德森(Richard Henderson,2017年诺贝尔化学奖获得者)解析了细菌视紫红质的三维结构,从而对视紫红质的作用有了更深入的认识。 1972年,重组DNA技术的发明为生命科学带来一场革命,同时也积极推动了细菌视紫红质研究的发展。研究人员将细菌视紫红质转入宿主细胞,结果发现光照可引起氢离子外流,从而证明其为一种光控的氢离子通道。1977年,研究人员在细菌中又发现另一种视紫红质——卤视紫红质(halorhodopsin),后续证明其介导氯离子细胞内流 [8]。 一系列的研究表明,即使简单如细菌这样的单细胞生物也存在 “视觉系统”,标志着一个新领域——低等生物视紫红质的诞生,从而促使科学家去寻找其他视紫红质。 藻类趋光 班贝格(Ernst Bamberg)是一位德国生物物理学家,从20世纪70年代开始研究细菌视紫红质的生物学功能,并利用体外实验证实BR是一种光激活氢离子通道。随着基因工程技术的发展和完善,生命科学的研究模式发生根本性改变,膜蛋白研究不再需要繁琐困难的提取过程,只需将外源基因在特定宿主细胞表达即可。 90年代,已加入德国法兰克福马普研究所的班贝格与从美国回来不久的德国电生理学家纳格尔(Georg Nagel)决定合作,共同研究细菌视紫红质在完整细胞中的生物功能。1995年,他们合作将细菌视紫红质基因成功转入非洲爪蟾卵母细胞,进一步精确证实光激活质子泵的电压依赖性 [9]。2001年,他们进一步在非洲爪蟾卵母细胞中证实卤视紫红质是一种氯离子通道(图4)。班贝格与纳格尔的合作一方面建立了视紫红质功能研究平台,另一方面也初显光遗传学雏形,即将外源视紫红质在靶细胞表达。图4 藻类视紫红质 19世纪,绿藻(Chlamydomonas)等藻类就被发现具有向光性和受光调控的特性,但对这些现象背后的原因知之甚少。直到20世纪80年代,大量事实表明藻类也长 “眼睛”,即细胞膜存在感光物质,称为 “光受体”。 80年代初,德国生物物理学家赫格曼(Peter Hegemann)在博士就读期间就决定研究光受体。赫格曼和学生以莱茵衣藻(Chlamydomonas reinhardtii)为材料,借助电生理实验表明光的确可诱导藻类细胞产生电流 [10]。赫格曼决定采用生物化学方法将光受体蛋白纯化后研究其性质。遗憾的是,十余年辛苦努力最终以失败告终。根本原因在于光受体是一种膜蛋白,含量低、稳定性差且异质性高,这些都是蛋白质纯化的大忌。赫格曼不得不转换研究思路来解决这个难题。 2001年,绿藻基因组测序的完成为问题的解决带来转机。赫格曼通过全面搜索和比对绿藻基因组数据库,从中发现两个候选基因与细菌视紫红质具有较高同源性。 为加快研究进程,赫格曼决定寻求合作。他在获悉纳格尔的研究工作后,积极沟通并与其达成合作协议。赫格曼小组负责克隆两种绿藻视紫红质候选基因,并将其送给纳格尔开展功能研究;纳格尔则将基因转入人肾胚细胞HEK293并实现正确表达。功能研究表明,它们的活性均受光调控,并且介导阳离子如钠离子、钙离子等的摄入(图4),因此将其分别命名为通道视紫红质(channelrhodpsin,ChR)1和2 [11-12]。与ChR1相比,ChR2光激活时间更短,且离子通透性更强,因此更适合于研究。更为重要的是,赫格曼还推测这些通道视紫红质不仅可在普通细胞表达,而且也可在神经元中表达并影响电生理活性。这一论断直接催生了光遗传学。 至此,研究人员已经鉴定出三类光控视紫红质,分别是细菌视紫红质(介导氢离子输出)、通道视紫红质(介导阳离子输入)和卤视紫红质(介导氯离子输入)。它们在神经功能研究方面具有何种应用价值呢?这要从神经兴奋说起。 神经兴奋 大脑是神经系统的中枢,是机体最复杂和最神秘的器官。知觉、运动、兴奋、情感、语言、学习和记忆等过程基本都在大脑特异区域完成。大脑由上百亿神经元(亦称神经细胞)构成,这些神经元之间通过特定方式实现彼此间交流,以达到协调控制机体各种行为的目的。神经元活性受电信号影响。 正常情况下,神经元细胞膜内外两侧阴阳离子分布不均匀(这种现象称为极性):膜内钾离子浓度远高于膜外,膜外钠离子浓度又远高于膜内,最终形成一个外正内负的状态。未受刺激时(静息状态),规定膜外电位为0,则哺乳动物神经元膜内电位为负值,约-70mV,称为静息电位;外界刺激可导致离子通道打开,由于离子移动而引起膜两侧离子浓度发生变化,电位差也随之改变。如果-70mV向0方向改变,则称去极化(电位为0意味着内外无离子浓度差距,极化消失);相反,-70mV向更大负值变化则称超极化(意味着离子分布不均匀加剧)。 一般而言,去极化伴随神经元激活,而超极化则意味着神经元抑制,因此通过改变神经元细胞膜内外离子分布可实现精准控制神经元活性的目的。 1979年,美国索尔克研究所著名科学家、DNA双螺旋提出者之一克里克(Francis Crick,1962年诺贝尔生理学或医学奖获得者)在《科学美国人》发表一篇文章 [13],对脑科学未来的发展进行展望。古典神经生物学家通常采用电极刺激大脑特定区域神经元的方式来影响行为,克里克认为这种方法破坏性大且精确性不高,比如无法准确区分不同的神经元,这些因素导致所得结果准确性差。 为此,克里克提出应开发一种精确控制神经元活性的方法,允许研究根据需要只对特定神经元打开或关闭,同时不影响非相关神经元。具有分子生物学背景的克里克进一步指出可以对神经元细胞进行遗传改造,从而使它们可对外界信号(如光刺激)产生精准性应答。这一理念建立了光遗传学的思想雏形。 尽管光控细胞行为的理念已经提出,但真正实现则需要有可行的工具。2002年,这一想法终于首次变为现实。 神经光控 米森伯克(Gero Andreas Miesenböck)是一位奥地利神经科学家,跟随鲁斯曼(James Edward Rothman,2013年诺贝尔生理学或医学奖获得者)开展博士后研究。他主要借助荧光系统来检测神经元内囊泡运输,因而对光产生浓厚兴趣。 1999年,米森伯克建立自己的实验室,开始独立的科研生涯,目光锁定神经生物学。米森伯克对整个神经生物学领域一知半解,可以说有点 “门外汉” 的味道,但是恰恰这个因素反而使他在光遗传学方面首先完成突破,因为他不会受主流观点所羁绊。生命科学研究的基本策略在于首先控制某种因素(干预),然后依据结果确定因果关系,如敲除特定基因后动物出现某种表型异常(如个子变矮),据此可认为该基因参与了某个过程(如肢体发育)。 然而,由于神经系统自身的复杂性,长期以来神经生物学家主要依赖形态观察,而缺乏更多有效的干预手段。米森伯克想改变这一现状,他完全从一个生物学家的视点来看待这个问题,因此想为神经元安装一套感光系统(遗传学操作),然后借助光照(光学)来达到控制神经元的目的 [14]。为尽快实现这一目标,米森伯克邀请鲁斯曼的另一位学生、自己的师弟泽梅尔曼(Boris Valery Zemelman)加入团队,启动光控神经元活性的研究计划(图5)。
  • 安捷伦科技发布最新细胞遗传学软件
    安捷伦科技发布最新细胞遗传学软件,为研究人员带来完整解决方案 2011 年7 月1 日,安捷伦科技公司(纽约证交所:A)发布了Agilent CytoGenomics 1.5 软件。研究人员可以通过该分析工具查询内置的CytoGenomic 数据库和外部数据库,从而简化分析流程。该软件的设计旨在简化数据解析和报告生成。 安捷伦提供的细胞遗传学芯片技术平台获得了全球市场的广泛认可,而该款新的软件更是表明了安捷伦致力于为细胞遗传学研究提供完整解决方案的决心。这些解决方案包括CGH+SNP 芯片-能够在一张芯片上同时测定基因拷贝数改变和拷贝数不改变的染色体变异、DNA 标记试剂盒、芯片扫描仪以及自动化样品处理平台。Agilent CytoGenomics 1.5 有助于客户充分利用芯片的性能,最大限度提高通量,完善CGH 和CGH + SNP 工作流程。 安捷伦基因组学副总裁Robert Schueren 说:&ldquo 细胞遗传学家需要快速可靠地获取样品中深层次的生物学信息。我们开发这款新软件,正是为了使这一过程更加快速、简便,为细胞遗传学研究人员提供完整的解决方案。&rdquo 了解更多信息,请访问www.agilent.com/genomics/cyto_software。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 华大基因研究成果再上《自然—遗传学》
    南方日报讯 笔者从深圳华大基因研究院获悉,昨日,笔者从深圳华大基因研究院获悉,昨日,由中国农业大学玉米中心、华大基因研究院、美国爱荷华大学、明尼苏达大学等单位合作的研究成果&ldquo 基因丢失与获得的多态变化揭示玉米中的杂交优势的机制&rdquo 在国际权威科学杂志《自然&mdash 遗传学》上发表。文章指出,目前的玉米育种对遗传资源的组合利用很有限,还存在着巨大潜力。   据了解,该研究报道了中国重要玉米骨干亲本的全基因组的单核苷酸多态性、插入/缺失多态性以及基因获得和缺失变异图谱,对玉米的遗传学研究和分子育种提供了非常有价值的资源。研究人员选择了中国历史上和目前广泛流行的高产杂交组合骨干亲本,并且根据多态性追踪了这些骨干亲本育成过程中基因组的变化方式。该研究还发现这些骨干亲本组合基因组的组合可以弥补另一方功能元件的缺失,这种基因丢失与获得的多态变化和其他无义突变的互补作用可能与杂种优势有关。   该项研究对6个中国重要玉米杂交组合骨干亲本进行全基因组重测序,利用SOAP软件v2.18比对获得的12.6亿75bp的双末端片段与玉米的参考基因组序列,发现了100多万个单核苷酸多态性位点(SNPs)和3万多个插入缺失多态性位点(IDPs),建立了高密度的分子标记的基因图谱。同时研究还发现了101个低序列多态性区段,在这些区段中含有大量在选择过程中与玉米性状改良有关的候选基因。   此外,通过将玉米自交系Mo17及其他自交系的基因序列与玉米自交系B73的基因序列比对,研究人员对玉米自交系中基因丢失与获得的多态性进行了研究,发现在不同的自交系中存在不用数量的基因丢失与获得性变异 利用SAOPdenovo软件对在其它自交系中存在而在B73中缺失的序列进行组装,研究人员发现了很多目前公布的B73参考基因组序列中丢失的基因。这些发现不仅为高产杂交玉米育种骨干亲本的培育提高了重要的多态性标记,同时也补充了玉米基因数据集,为进一步挖掘玉米基因组和遗传资源提供了大量数据。
  • 农大植物生理实验室办表观遗传学研讨会
    5月23日,由中国农业大学植物生理和生物化学国家重点实验室主办的TheMini-SymposiumonEpigenetics(表观遗传学小型研讨会)在中国农业大学西区新教报告厅举行。此次研讨会为表观遗传学科学领域的研究者提供了交流讨论的重要平台,也为国内学者与该领域的专家创造了交流探讨合作的良好机会。副校长孙其信出席了研讨会。生物学院院长巩志忠主持研讨会。      孙其信首先对中国农业大学长江学者讲座教授、加州大学河滨分校植物细胞生物学教授朱健康新当选为美国科学院院士表示祝贺。他表示,中国农业大学已经有一百多年的历史,今天大家聚在一起,把话题聚焦于生命科学,是一场科学的盛宴。他希望农大人能够继续努力去发现生命的奥秘,促进未来科技的发展。      此次研讨会上邀请了洛克菲勒大学BobRoeder、麻省理工学院怀特研究机构YiZhang、纽约医学大学研究所DannyReinberg、北卡罗莱纳大学医学研究所的YiZhang、国家卫生研究院ShivGrewal、加州大学河滨分校JinHailing、Jian-KangZhu以及Nature和Science出版社AlexEccleston和GuyRiddihough博士,他们发表了演讲。中国农业大学师生以及北京生命科学研究所,中科院遗传发育所、植物所、动物所、微生物所、研究生所、生物物理所,清华大学,北京大学,北京农林科学院蔬菜研究中心,北京蛋白质组研究中心,药用植物研究所及军事医学科学院从事或对相关领域感兴趣的专家、学者等相关人员参加了此次此次研讨。      表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。      研讨主要针对与表观遗传学相关的基因表达调控、遗传特性等方面,具体从RNA指导的DNA在拟南芥中的甲基化,小核糖核酸和核糖核酸机械在植物免疫中的内源性角色,确保植物繁殖调节基因转录的POLYCOMB和THRITHORAXMADS-family因子等展开进行交流与探讨,这些调节因子的发现对认识人类疾病的发生和寻找药物也提供了有效途径。   Nature和Science出版社AlexEccleston和GuyRiddihough博士也为大家介绍了在这两大出版社的运行过程、影响力以及在这里发表文章的要求及条件。   现场的参与者对于自己的不解或疑惑的问题纷纷提出,演讲者们都给予了详细的解答。上午结束前,中国农业大学民乐团还为大家带来了《茉莉花》、《孤独的牧羊人》等音乐表演,用二胡、古筝、琵琶、笛子合奏,也让国际有人欣赏到了极具中国元素的经典音乐,在校研究生等也为大家献上了一些精彩的歌曲表演。
  • 中国著名遗传学专家张思仲因病逝世 享年82岁
    p   11月27日,从四川大学华西医院获悉,我国著名医学遗传学家、川大华西医院医学遗传中心博士生导师张思仲教授因病医治无效,不幸于2017年11月26日17时在成都逝世,享年82岁。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/e9cd529d-7d30-4212-964b-c7c8f418996f.jpg" title=" untitled2.png" width=" 267" height=" 243" style=" width: 267px height: 243px " / /p p   张思仲教授1935年4月30日生于四川江津,1952年以优异成绩考入北京大学医学院,1954年公派到前苏联列宁格勒第一医学院留学。1960年学成归国,在原子能研究所从事医学辐射防护研究工作。1974年调入原华西医科大学肿瘤研究所工作。1978至1980年,由国家教育部派遣到瑞典卡罗琳医学院诺贝尔医学所访问学习。回国后,在国内率先成立由卫生部首次批准的医学遗传研究室,组织创办《遗传与疾病》杂志(现名《中华医学遗传学杂志》),担任该杂志主编20余年。1988年,牵头成立四川省医学会医学遗传学专委会,连任5届主任委员,为四川省医学遗传学发展和产前诊断工作作出了巨大贡献。 /p p   张思仲教授长期致力于我国医学遗传学教育事业,桃李芬芳。直到75岁高龄,仍兢兢业业地在一线为临床医学专业的本科生和研究生传道授业。30多年来,他培养了博士、硕士研究生100余人,其中不乏国内外医学遗传领域的栋梁之才。张思仲教授一生简朴,遵从先生遗愿,丧事一切从简。张思仲教授遗体告别会定于2017年11月28日7时30分在华西医院太平间举行。 /p p strong   A 求学篇 /strong /p p strong    span style=" color: rgb(0, 176, 240) " 少年聪慧考试总是拿第一 /span /strong /p p   张思仲1935年出生于江津市一个书香门第之家,父亲张采芹是著名的国画家,与张大千、张善孖并称“蜀中三张”。张家兄弟四人,张思仲排行老二,四兄弟皆品学兼优。父亲非常重视孩子的教育,每到假期都要请来国文、英文等老师给孩子们补课。 /p p   1946年,张思仲以当地第一名的成绩考入成都石室中学,张思仲少年聪慧,学习刻苦,他的各科成绩一直名列前茅。中学毕业前一年,正值抗美援朝时期,因羡慕同学们报考了“军干校”出来可以当解放军,而自己因年龄不够,还戴了眼镜未被录取,于是中学毕业后他选择了医科,幻想着有朝一日上朝鲜战场救死扶伤。 /p p   1952年,张思仲以优异成绩考入北京大学医学院。这一届高考,整个西南只有他一人被该校录取。一年后,他又以优异成绩通过公派留学考试,在经过一年的俄语学习,他于1954年到苏联列宁格勒第一医学院,开始了自己6年的海外求学生涯。 /p p   当时新中国成立不久,医疗技术水平远远落后于西方国家,能够到社会主义阵营中最高的医学殿堂之一学习,张思仲自然珍惜这个机会。上课前他先预习,上课时认真听讲,课后常与同学们讨论,做实验也非常认真,还参加过生物化学学生科研小组,跟着老师一起学做科研,并写过论文作过报告。二年级时他还选修了第二外语德语。他的学期考试各科成绩册上都是优。 /p p   功夫不负有心人,六年后,张思仲毕业时获得了苏联全优文凭医师证书,向祖国和人民交了一份优秀答卷。 /p p    strong span style=" color: rgb(0, 176, 240) " 远离喧哗研究医学遗传学 /span /strong /p p   1960年,似乎并不是留苏生回国的好时机,此时中苏关系破裂,苏联专家已拆走,留苏学生回国后一律先上“反修学习班”,然后参加集体劳动。几个月学习之后,张思仲被分配到位于西安的一所中专学校当校医,几经周折,张思仲又被重新分配到了核工业部在北京的原子能研究所从事医学辐射防护研究工作。 /p p   1964年,从北京原子能所专门分出了一个华北工业卫生研究所从事医学辐射防护研究,并迁到太原。张思仲调到太原后,在该所一工作就是十年。开始他们还做一些科研,不久业务人员即下放搞“四清”,继而十年动乱,文革开始。张思仲因一贯热爱学习,埋头科研,也被贴了两张大字报,成了研究所里的“修正主义黑苗子”。其后,全所研究人员又集体下放到核工业部大湖北钟祥县的万人干校,劳动加搞运动。 /p p   对于一个知识分子,业务工作就是生活的主要内容和支撑。晚上,张思仲透过牛棚仰望星空,思考着生命的意义和未来,以及怎样利用时间。他没有做逍遥派,动乱时期医生经常不上班都无人管,既然不能在研究所做科研,于是他就利用业余时间到医院里代替长期回外地探亲的病理科医生做病理活检和诊断。 /p p   1974年,张思仲终于调回成都与家人团聚,并在华西医大工作。他在肿瘤研究所开始了此后四十年始终如一的研究——医学遗传学研究。当时我国遗传学教学研究,主要还是集中在生物学领域、人类和医学应用遗传研究在国内还算是新兴学科,尤其科研与临床相结合的工作还开展不久,他可算是这方面研究的先行者。 /p p    span style=" color: rgb(0, 176, 240) " strong 决意回国带回最先进知识技术 /strong /span /p p   1978年,教育部选派5名访问学者,向国外科研院校学习世界最新的医药技术,华西医大有一个名额,在候选人中,张思仲以出色成绩入选。 /p p   1979年,张思仲来到瑞典卡罗林医学院的诺贝尔医学细胞遗传研究所,开始了为期两年的访问学者生涯。这里是瑞典细胞化学家卡斯珀松工作的地方,正是这位科学家在上世纪60年代末,发现了细胞遗传学一个里程碑式的染色体显带技术。张思仲到瑞典学习就是想把世界上各种最先进的细胞遗传学理论和技术学到手。 /p p   诺贝尔医学研究所在世界上久负盛名,当时研究室的电脑终端就与美国国会图书馆的资料库相联结,获得最新的医学资料很容易。在瑞典两年科研与学习期间,频繁的学术交流和实验合作中,张思仲让自己的医学遗传学知识和科研跟上了日新月异的更新步伐。其间他共完成了5篇论文,并多次到瑞典、丹麦、英国等的其他科研机构参观学习,并多次出席各种国际学术会议,与欧美一流的学者广泛交流。在隆德大学他见到了世界上首先证实人类染色体为46条的列万教授,在列万教授的实验室他们像是多年不见的老朋友,整整谈了两个上午,临别时,列万教授还把自己的所有新著作赠送给张思仲。 /p p   两年过去了,当张思仲要从瑞典回国时,瑞典方面再三挽留,希望他能留下来继续工作,但张思仲早已决意回国。 /p p strong   B 研究篇 /strong /p p strong    span style=" color: rgb(0, 176, 240) " “破冰”之举建立医学遗传学研究室 /span /strong /p p   上世纪80年代初,医学遗传学知识和技术日新月异。而在我国,医学遗传学教学科研大多附属于医学院校一年级生物学教研室,课程不多,开展研究和临床服务的更少。回国后的张思仲决心以自己的努力,缩短该学科医、教、研与欧美先进国家的差距。这在我国西南地区,都算是“破冰”之举。 /p p   在校领导的大力支持下,新的医学遗传研究室在华西医大建立了。研究室草创之初条件非常简陋,缺乏资金和像样的仪器设备,只有三间粉刷过的空屋子,也不像现在可以去申请课题经费。整个国家都处在百废待兴的阶段,可用于基础科学研究的经费很少,于是只好因陋就简,或化缘,或借用。好在校院领导大力支持,华西医大又与国外教会颇有渊源,张思仲也是广结良缘,最后,加拿大国际交流援助局赠与了大量仪器和试剂,包括一批二手仪器设备以及一箱科研文献,实验室工作才得以开展。 /p p   在这种艰苦条件下,实验室成立不久就在国内外相关杂志发表多篇论文。张思仲关于鼻咽癌染色体的细胞遗传研究论文,更引起了不少外国同行的关注。世界肿瘤细胞遗传权威美国的塞文教授写信来盛赞张的工作,并要求与之密切合作。 /p p   上世纪80年代,张思仲的论文收到苏联、美国、德国、阿根廷、秘鲁等同行学者共数以百计的论文索取函件,并有多家杂志来信邀稿。他们的论文集《人类染色体高分辨显带及其在医学中的运用》是中国科学院基金早期资助课题,并获得了国家级科技进步二等奖。 /p p   难能可贵的是,张思仲的研究始终与应用相结合,他们的研究室是当时国内唯一归属于临床医学院的遗传学研究室。因研究与临床紧密结合,他的研究能更为直接地为遗传病患者服务。 /p p    span style=" color: rgb(0, 176, 240) " strong 见证奇迹参与人类基因组计划 /strong /span /p p   上世纪九十年代初,以破译人类遗传信息为最终目的人类基因组计划开始实施,这是由美国为首的西方大国共同发起的一项规模宏大,跨国跨学科的科学探索工程。 /p p   在这项影响全人类的宏大计划前,中国的科学家当然也不能落后,中国自己的人类基因组计划在国家自然科学基金委员会的支持下于1994正式启动。 /p p   2004年4月,中国完成了人第3号染色体上3000万个碱基对的工作草图。中国加入人类基因组计划成为生命科学领域里国际间大规模研究合作的起始点,也标志着中国的生物科学研究开始跻身国际前沿行列。 /p p   1992年美国启动了人类基因组计划,当时张思仲正在美国短期访问。在美国的中国留学生和学者,尤其是相关专业者得知后,意识到它的重要意义,曾集体讨论后,张思仲写了一封书信向国内专门报告此事,并由与华西关系密切同时也是华西客座教授的刘先生将该信交给了张,要他转交给我国最知名的遗传学家谈家桢先生,回国后张立即完成了这一任务。其后,张又参加了我国自然科学基金会召开的香山会议,专门讨论启动我国的人类基因组计划问题。 /p p   此前,他们已对成人多囊肾病、冠心病伴动脉粥样硬化、高血压和糖尿病、以及肿瘤特别是鼻咽癌等的相关基因进行过卓有成效的研究。 /p p    span style=" color: rgb(0, 176, 240) " strong 攻“遗传病”破解男性不育之谜 /strong /span /p p   医学遗传学的目的应当是为病人服务,为临床服务。从上世纪九十年代起,张思仲曾把研究方向聚焦到男性不育方面。 /p p   世界上约有10%-15%的夫妇是不育的,其中约有一半为男方原因所致。原发生精障碍是男性不育的一个重要原因,因而对无精症和寡精症相关基因研究,包括基因的克隆、突变分析和功能鉴定应是疾病基因组学和发育遗传学研究的重要课题。 /p p   因此,张思仲他们采用了多种分子遗传学、蛋白组学技术,通过小鼠等动物实验,并结合临床对大量生精障碍患者进行了研究,先后分离和克隆了11个有自主知识产权的与人类精子发生相关的新基因,并阐明了部分基因的致病机理。 /p p   三十余年,医学遗传理论和技术突飞猛进,发现许多疾病均与遗传有关,张思仲所在研究室在每个发展阶段都紧跟时代。考虑到国家全局的需要,他与三弟张思凝共同主持完成了我国规模宏大的四川省遗传病流行病学综合调查研究,为弄清人群的患病情况提供了大量资料。 /p p   张思仲领导的实验室,还开展了对多种常见遗传病如成人多囊肾病、进行性肌营养不良和强直性肌营养不良等的研究,发现了许多有临床诊断价值的致病基因异常及其群体多态性,并开展了相应的临床诊断与咨询服务。他和所在实验室的研究人员先后承担参与了包括国家自然科学基金、“863”计划项目、国家科技攻关计划在内的课题20余项。他们发表了论文二百余篇,其中在国外专业刊发表50余篇,并多次获得国家科技进步奖及部省级奖。 /p
  • 开创胚胎植入前遗传学的革命
    p   所有科学家的梦想都是对自己所在的领域产生影响,研发新的技术,或做出新的发现,推动研究向前发展。Leeanda Wilton博士甚至已经远远超出了30年前她进入胚胎植入前遗传学领域时设定的目标。她合作开发了不是一种,而是两种基本技术,如今这些技术正促成全球试管婴儿的成功。 /p p   在职业生涯的早期,她与Darren Griffin博士合作,研发出单细胞荧光原位杂交(FISH),这是第一项能让研究人员鉴定出人类胚胎中多个染色体异常的技术。十年后,她又合作开发出比较基因组杂交(CGH),这是array CGH技术(如24sure sup ® /sup Array)的前身。而今,FISH技术成为了染色体易位或倒位携带者诊断胚胎的金标准,这些携带者本人与常人无异,但由于自身染色体结构的异常难以形成正常胚胎而将遭受反复流产失去胎儿的痛苦,或是生育染色体异常患儿为个人家庭及社会带来更沉重的负担,FISH技术在胚胎上进行的有针对性的染色体诊断,选择正常胚胎植入,阻止了悲剧的发生。 /p p   相对于FISH技术有针对性地检测目的染色体,array CGH技术的应用更加令人激动,它实现了在胚胎单细胞水平对全套染色体的筛查,帮助胚胎学家淘汰了那些随机发生的染色体异常胚胎,试管婴儿的成功率因此得到提升,更多有可能经历异常妊娠的高风险人群因此受益。 /p p   正如她所说,“开发出一项新技术,看着它应用于临床,后来又见证了它在全世界的采用,这是很罕见的。”Wilton博士好样的! /p
  • 卫生部副部长刘谦考察医学遗传学国家重点实验室
    11月3日下午,卫生部副部长刘谦一行考察了位于长沙的中南大学湘雅医学院中国医学遗传学国家重点实验室,听取了实验室建设和研究成果汇报,并寄语在实验室辛勤工作的科研人员。   他说,作为国家重点实验室的科研人员要有雄心,要为民族兴盛、国家建设发展和推动医学进步作出应有的贡献 要有无私奉献的精神 要注重知识的实际转化和应用,提高疾病防控能力 要学会在协同工作中提高效率,处理好在竞争中学习、在学习中竞争的关系。   据了解,由人类与医学遗传学家夏家辉院士创建的医学遗传学国家重点实验室,1991年正式向国内外开放,研究方向为开展医学遗传学的应用研究及其基础研究。实验室采用现代细胞遗传学、分子细胞遗传学、分子遗传学、细胞生物学和生物信息学技术相结合的手段,研究某些致畸、致愚、致癌疾病的遗传基础及发病机制,达到诊断、预防和治疗某些发病率高的遗传病及某些肿瘤的目的。   2006年以来,该实验室在人类遗传病的家系收集、人类重要遗传病的致病/易感基因定位与克隆、自主克隆的重要遗传致病基因或相关基因的功能研究、基因治疗新载体及临床应用研究方面取得了一系列研究成果和突出进展,成果先后获国家自然科学奖二等奖、国家科学技术进步二等奖、卫生部科技进步一等奖等。
  • 遗传学大牛Nature Methods发表新成果 用CRISPR打造DNA条码
    细菌一直在与病毒或入侵核酸进行斗争,为此它们演化出了多种防御机制,CRISPR–Cas9适应性免疫系统就是其中之一。规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在引导RNA的指引下,靶标并切割入侵者的遗传物质。2012年研究者们利用这一特点,将CRISPR系统制成了强大的基因组编辑工具。哈佛医学院和加州大学的研究人员最近在CRISPR–Cas9的基础上,开发了在活细胞中快速演化的DNA条码。这项研究发表在Nature Methods杂志上,文章通讯作者是哈佛医学院的著名遗传学家George M Church和加州大学圣地亚哥分校的Prashant Mali。George M Church是哈佛医学院的遗传学教授、Wyss研究所的核心成员。他开发了首个直接基因组测序和DNA多重化方法,为1994年破译首个细菌基因组合2003年的二代测序技术奠定基础。他领导个人基因组项目,让公众参与进来分享基因组和健康数据。他想办法用DNA编码数据,暂时记录了活细胞中的事件。他将基因组读写技术结合起来,对细菌基因组进行迄今最大规模的重写。他还率先将CRISPR用于器官移植、逆转衰老和gene drive。研究人员构建了一种归巢引导RNA(hgRNA)。这种hgRNA会指导Cas9–hgRNA复合体到hgRNA自己的DNA位点。研究显示,归巢CRISPR–Cas9系统可以作为细胞内表达的基因编码,以可控的速度在体外培养的细胞中发生序列多样化。随后,研究人员在细胞群体中进一步评估这些条码。他们的研究表明,归巢CRISPR条码可以用来记录谱系历史,而且条码RNA能够原位扩增,符合原位测序的先决条件。研究人员指出,这个方法有广泛的应用前景,比如深度谱系示踪、细胞条码、分子条码,可用来分析癌症生物学机制和连接组(connectome)图谱。
  • 光遗传学开创者Nature发表突破性成果
    牛津大学的研究人员揭示出了是什么将我们大脑中的开关翻转,唤醒了我们。发表在《自然》(Nature)杂志上的研究发现,让我们更进一步了解了睡眠的秘密。 睡眠受到两个系统——生物钟和睡眠同态调节器(homeostat)的支配。尽管人们已充分认识地生物钟,对于睡眠同态调节器却知之甚少。 Gero Miesenb?ck教授解释说:“生物钟使得我们能够预期由于地球自传引起的我们环境中可预测的变化。同样地,确保了当它最小程度伤害我们时我们在睡觉,但却没有说出我们为什么首先需要睡觉这一秘密。” “这种解释可能来自对于第二控制器——睡眠同态调节器的认识。当我们醒着时这一同态调节器测量到了发生在我们大脑中的某一事物——我们并不知道这一事物是什么,当它到达上限时,我们就会睡着。这一系统在睡眠中被重新设定,当我们醒来时周期重新开始。” 研究小组在果蝇的大脑中研究了这一睡眠同态调节器——在大约45年前,这种动物还提供了有关生物钟计时的第一个突破性认识。每个果蝇有大约二十几个睡眠控制神经元,人们也在其他动物中发现了这些脑细胞并相信它们也存在于人体中。这些神经元传送了睡眠同态调节器的输出信息:如果这些神经元电活化,果蝇会睡着;当它们沉默时,果蝇醒着。 为了开关这些神经元,研究人员采用了Miesenb?ck发现的一项技术:光遗传学。2002年,在纽约的斯隆?凯特琳纪念癌症中心,Miesenb?ck成为了首个使用视蛋白来赋予脑细胞光敏感性的研究者,采用的是从果蝇视网膜上提取的视蛋白。Miesenb?ck被视为光遗传学的开创者之一。在当前的研究中,Miesenb?ck实验室利用光遗传学刺激生成了化学信使多巴胺。 在人体中,发挥神经兴奋剂作用的药物(诸如可卡因)可以提高大脑中的多巴胺水平,在果蝇中也可以看到这一效应。当多巴胺能系统被激活时,控制睡眠的神经元陷入沉默,果蝇醒来。如果研究小组阻止多巴胺传送,等待一会儿,控制睡眠的神经元会回到电活化状态,果蝇又睡去。 这一睡眠开关是一个“硬”开关,这意味着它要么被开启要么被关闭。Miesenb?ck说:“这是有道理的。要么睡着要么醒来,你不会想漂浮在朦胧状态。” 该研究的第一作者之一Diogo Pimentel博士说:“能够随意操纵睡眠,为我们提供了一个机会阐明它的运作机制。” 当睡眠控制神经元电活化时,研究人员发现和命名为Sandman的一个离子通道留在细胞内。离子通道控制了电脉冲,脑细胞则通过电脉冲来进行交流。当存在多巴胺时,它会使得Sandman移动到细胞外。Sandman随后有效地让这些神经元发生短路,关闭了它们,导致了觉醒。 第一作者Jeff Donlea博士说:“原理上,这是一个与你客厅墙上的恒温器相似的装置。但它测量的并非是温度,并在气温过冷时打开暖气,这一装置是在你的睡眠需要超过某个设定点时开启睡眠。” Miesenb?ck解释说:“一个价值数十亿美元的研究课题是,在这一系统中什么是温度的等同物?换句话说,这一睡眠同态调节器测量的是什么?如果我们知道答案,我们将朝着揭示睡眠的秘密迈出很大的一步。” 头一天晚上睡得越晚,起床的时候就越发艰难。那么,为什么熬夜会让人昏昏欲睡呢?Johns Hopkins大学的研究人员最近解决了这个问题,相关论文发表在2016年5月的Cell杂志上。如果我们硬要生物钟对着干,大脑就会产生一种难以遏制的睡眠冲动(sleep drive)。研究人员在果蝇中找到了负责调节睡眠冲动的神经元。果蝇越长时间不睡,这些神经元就越活跃。他们认为,这项研究可以帮助人们更好的理解和治疗睡眠障碍。 发表在2016年4月29日Science杂志上的一项新研究,揭示出了控制睡眠-觉醒周期的生物学机制。具体而言,它证实简单地改变脑脊液中的化学物质平衡就可以改变动物的意识状态。这项研究将焦点放在了脑脊液中的一些离子上,其发现这些改变不仅在刺激或抑制神经细胞活性中起关键作用,似乎在我们睡觉的时候也改变了细胞体积导致脑细胞缩小,这一过程帮助了清除废物。 果蝇的睡眠习惯与人类非常相似。它们大部分的睡眠是在夜间,某些药物和兴奋剂(如咖啡因)可能会影响它们的睡眠,而且,如果它们的睡眠比较糟糕,甚至可能会影响它们的记忆力。但是,果蝇能告诉我们关于“睡眠不足与代谢疾病(如糖尿病、肥胖)、血糖水平之间的联系”的什么信息吗?根据一项新的研究表明,果蝇的确可以告诉我们很多这方面的信息,这项研究首次发现,一个保守基因——translin,作为睡眠的一个调节因子,可响应代谢变化。这项研究的结果发表在2016年4月4日的《Current Biology》杂志。
  • The Scientist:2015四大技术突破(成像、光遗传学、单细胞分析、CRISIPR)
    p   12月24日,The Scientist评选出了“Top Technical Advances 2015”,成像、光遗传学、单细胞分析以及基因编辑技术CRISIPR入选。那么,我们就一起看看这四大技术在过去的一年中都取得了哪些进展吧。 /p p    strong 成像 /strong /p p   今年, a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 生命科学 /span /a 的成像领域打破了过去的壁垒,科学家们通过显微镜学方法越来越深入的观察到了生命组织。 /p p   Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Science Advances. /p p style=" text-align: center " img width=" 500" height=" 281" title=" 1.jpg" style=" width: 500px height: 281px " src=" http://img1.17img.cn/17img/images/201512/noimg/550d29a2-5d13-4f9b-80da-ed1514392728.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp /p p   在过去的十年里,一种称作为体内振动光谱成像(vibrational spectroscopicimaging)的技术一直被用来捕捉一些活体组织中蛋白质、脂类、核酸和其他分子的活动。尽管这一技术可在无需荧光标记的条件下显影组织,但它仍然太慢而无法适用于大多数的研究和 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 临床应用 /span /a 。 /p p   10月30日,Purdue大学的科学家们报告称,他们利用体内振动光谱成像技术大大提高了收集图片的速度(从分到秒)。新技术最关键的改进是不再需要收集分子振动信号的光谱仪。取而代之的是,这一改进的技术在光子进入组织前会对其进行颜色编码。 /p p   该研究的通讯作者 Ji-Xin Cheng 说:“我们的想法是在将光子发送到组织前,用不同的兆赫频率进行颜色编码。通过这样的方式,我们能够在几十微妙内收集漫射光子,并通过编码频率和光颜色之间的一一对应检索光谱。” /p p   Whole-animal functional and developmental imaging with isotropic spatial resolution. Nature Methods. /p p style=" text-align: center " img width=" 500" height=" 281" title=" 2.jpg" style=" width: 500px height: 281px " src=" http://img1.17img.cn/17img/images/201512/noimg/b0bb94ab-9898-4818-9de9-d2b62801551e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   同一个月,发表在《Nature Methods》上的一项研究中,霍华德休斯医学研究所Philipp Keller领导的研究小组发明的一款新型显微镜让科学家们能够更加清晰、全面的观察活体动物的生物过程。 /p p   这款显微镜能够产生完整的、不透明生物体的图像,包括斑马鱼或果蝇的胚胎,在三个维度都有足够的分辨率,每个细胞都能展现出明显的结构。更重要的是,它能够观察到胚胎发育过程中细胞的移动,还能够监测大脑活动。研究人员用它记录了果蝇神经系统发育的过程,最终共有10,000个细胞。 /p p    strong 光遗传学 /strong /p p   All-Optical Interrogation of Neural Circuits. Journal of Neuroscience . /p p style=" text-align: center " img width=" 500" height=" 281" title=" 3.jpg" style=" width: 500px height: 281px " src=" http://img1.17img.cn/17img/images/201512/noimg/f53a88eb-91d0-4b20-b9af-9dabdc4fbcc1.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   今年11月,MIT的Edward Boyden和斯坦福大学的Karl Deisseroth因他们在光遗传学领域的工作获得了表彰。光遗传学技术是指通过光线来操控神经元,科学家们一直在不断的改进这一技术。 /p p   本月前,在芝加哥举行的神经科学学会会议上,Deisseroth等人提出了全光电生理学(all-optical electrophysiology)的升级版。哈佛大学Adam Cohen和他的团队开发出了一种reporter,当引入到细胞中去时,在电压发生改变的情况下会发出红外线。Cohen与Boyden一起,将电压指示器与一种响应蓝光的膜通道一起导入到了细胞中,这使得研究人员能够用蓝光开启细胞,用红外线记录它们的活动。 /p p   Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science. /p p   今年6月,发表在《科学》杂志上的一项研究中,研究人员在海藻中发现了一种紫红质通道蛋白(channelrhodopsin),与先前开发的工程通道相比,它能够更快地抑制神经元活动。科学家们还开发出了一种对在光遗传学控制下神经元作出即时反馈的方法,维持它们的活性在一个理想的状态。这一“神经恒温器”(neuro thermostat)可在24小时内控制细胞的firing rate常数。 /p p    strong 单细胞分析 /strong /p p   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell /p p   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell /p p style=" text-align: center " img width=" 400" height=" 400" title=" 4.jpg" style=" width: 400px height: 400px " src=" http://img1.17img.cn/17img/images/201512/noimg/21d86143-27bf-4226-8414-b90e7a49c325.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   近年来,单细胞分析蓬勃发展,研究成果不断涌出,技术也越来越精准。今年,通过单细胞分析,科学家们鉴定出了一个新的细菌们,检测了小鼠肠道内最珍贵的细胞类型。5月,发表在《细胞》杂志上的两项研究使单细胞转录组学有了一个相当大的飞跃,并行检测的细胞数量从约100增加到了几千。 /p p   哈佛大学的Marc Kirschner和Steve McCarrol实验室开发出了一些高通量技术,能够在样本进入到搅拌器中去之前,快速、轻松、廉价地赋予每个细胞独特的遗传条形码。研究小组希望他们的技术将能够帮助生物学家们更深入地发现和分类机体中的细胞类型,绘制出大脑一类复杂组织中的细胞多样性图谱,更好地了解干细胞分化,以及获得更多有关疾病遗传学的认识。 /p p   两个研究小组各自开发了一些方法利用微珠将大量不同的DNA条形码同时传送到几十万纳米大小的液滴中。两种方法都利用了微流体装置来将细胞和微珠一起装入这些液滴中。这些液滴是在一个小型装配线上生成,沿着一根头发宽的槽道流动。微珠条形码附着到每个细胞的一些基因上,因此科学家们可以一批次测序所有的基因,追踪每个基因的来源细胞。 /p p    strong CRISPR /strong /p p   我们熟知的基因编辑工具CRISPR不断带来新的研究成果,在许多研究人员利用CRISPR的同时,其他一些人则专注于改进这一技术。 /p p   Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology. /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/153730c1-5f84-484b-a957-9d99a4d6fd77.jpg" / /p p   6月15日,发表在《Nature Biotechnology》上的一项研究中,科学家们结合CRISPR与光遗传学构建出了一种系统:一种光激活的新型Cas9核酸酶使得研究人员能够在空间和时间上更好地控制RNA引导的核酸酶的活性。 /p p   研究人员通过首先将Cas9蛋白分成两个失活的片段构建出了paCas9。随后他们让每个片段连接一个光控开关蛋白Magnet。当受到蓝光照射时,两个Magnet蛋白结合到一起,分开的Cas9片段随之结合重建出了RNA引导的Cas9核酸酶活性。重要的是,这一过程是可逆的:当切断光线时,paCas9核酸酶会再度分裂,核酸酶活性终止。 /p p   Rationally engineered Cas9 nucleases with improved specificity. Science. /p p   Cas9酶是基因编辑系统中一个非常关键的组成部分,而脱靶效应一直是CRISPR技术需要克服的重大技术问题。11月30日,发表在《科学》杂志上的一项研究中,麻省理工学院-哈佛医学院Broad研究所CRISPR大神张锋的研究小组又取得了一项突破性的成果。研究人员通过创建了3个新版本的Cas9酶大大降低了CRISPR/Cas9系统的脱靶效应 有效改善了这一技术的最大局限性之一。 /p p   In vivo genome editing using Staphylococcus aureus Cas9.Nature. /p p style=" text-align: center " img width=" 450" height=" 281" title=" 6.jpg" style=" width: 450px height: 281px " src=" http://img1.17img.cn/17img/images/201512/noimg/48e6fc4c-b79f-4a44-bdb7-88bcca74d8dc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   4月1日,发表在《自然》杂志上的一项研究中,张锋研究小组还鉴别出了一种更小的Cas9核酸酶版本。最常使用的Cas9酶源自化脓性链球菌(SpCas9),因太大而无法装入到腺病毒载体中。这项研究中介绍了一种来自金黄色葡萄球菌的Cas9核酸酶(saCas9),它比SpCas9小25%,从而为腺病毒的包装问题提供了一个解决方案。并未参与这项研究的杜克大学的 Charles Gersbach 说:“真正让人兴奋的是saCas9在体内真的能发挥作用。” /p p   Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology. /p p   同月6日,Gersbach和同事们也在《Nature Biotechnology》发表了他们的研究成果。研究人员结合一种组蛋白乙酰转移酶与Cas9构建出了一种表观遗传编辑器。他们破坏了Cas9切割DNA的能力,转而利用它作为一种自动引导装置到达基因组中的正确位点,并通过组蛋白乙酰化来启动基因。 /p p    span style=" font-size: 14px " 备注:本文部分内容参考自生物通网站。 /span /p
  • Amgen收购全球领先的人类遗传学公司deCODE Genetics
    Amgen和deCODE Genetics本周一宣布,两家公司已签订了最终协议。生物制药公司Amgen将以4.15亿美元收购全球领先的人类遗传学研究与分析公司deCODE Genetics,deCODE Genetics总部位于冰岛首都雷克雅未克。此项交易已获得Amgen董事会的批准,预计将在年底前完成。   Amgen公司总裁兼首席执行官Robert A. Bradway表示,“deCODE Genetics在人类疾病的遗传学研究方面具有世界一流的水平,可以帮助我们提高鉴定和验证疾病靶点的能力。我们追求能够准确定位疾病靶点的相关分子的快速开发过程,而不在那些未充分验证的靶点上投资,而这正符合我们的目的。”   DeCODE Genetics成立于1996年,是分析和研究基因组和疾病易感性之间关联性的全球领先公司。截至目前,deCODE Genetics已经在基因组中发现了几十个癌症或心血管疾病的危险遗传因素。   DeCODE Genetics创始人和首席执行官Kari Stefansson, M.D. 博士说,“全部实现人类遗传学价值的途径之一便是将我们的研究与药物开发协同进行,这样探测靶点,确认和优化的工作便可以加速进行,我们相信,Amgen能够将我们的遗传学研究融入他们的研究与开发工作中,可以将我们的发现转化成有意义的治疗方案。   关于Amgen   Amgen研制、开发与提供创新的人类疗法。Amgen自从1980年以来一直是一家生物工程先驱企业,也是首家实现新科学承诺的企业,从实验室、工厂为患者带来安全有效的药品。Amgen的疗法改变了用药实践,帮助全球几百万人对抗癌症、肾病、类风湿性关节炎以及其他严重疾病。Amgen拥有广阔的新药来源,继续致力于推动科学发展,从而大幅度提高人类的生活水平。了解关于Amgen的领先科技与重要药品的更多信息,请访问网站http://www.amgen.com。
  • 东北师范大学分子表观遗传学实验室项目通过验收
    2011年1月12日,由教育部科技司组织、国家自然科学基金委员会生命科学部主任武维华院士为组长的专家组,对东北师范大学分子表观遗传学教育部重点实验室建设项目进行了验收。最终,专家组成员一致同意通过验收。东北师范大学党委书记盛连喜验收会后看望了专家组成员。东北师范大学副校长薛康、校长助理兼科学技术处处长冯江等参加了验收会。   验收会上,分子表观遗传学教育部重点实验室建设项目负责人刘宝教授汇报了实验室建设工作。专家组在听取汇报并实地考察后,对实验室建设工作给予了充分肯定。专家组认为,实验室定位准确,研究方向具有明显特色 科学研究、人才培养、科研条件建设等工作得到了依托单位的大力支持,超额完成了建设任务,达到了预期目标。同时,专家组建议要加强团队建设,特别是进一步加大对优秀年轻人才的培养和引进力度 继续坚持对一些正在探索的基础科学问题进行长期不懈的研究,争取产出更好的标志性成果 进一步加强学术交流,不断扩大实验室在相关领域的影响。   分子表观遗传学教育部重点实验室是教育部于2007年批准立项建设的。经过三年建设,已取得了丰硕成果,科研竞争力得到了大幅度提升。建设期间,实验室共发表SCI论文110余篇,获得省部级科技奖励5项(其中一等奖2项),申请专利19项,出版著作6部,独立或合作培育作物和花卉新品种9个。目前,实验室已成为国内该领域具有较高研究水平和一定影响力的科技创新平台。同时,实验室也将成为东北师范大学组织重大科学研究项目、聚集和培养优秀科学家、开展学术交流的重要基地之一,为促进东北师范大学生命科学及其相关学科进一步发展发挥重要作用。
  • 易科泰应邀参加第四届“模式生物与人类健康” 发育遗传学全国学术研讨会
    2016年4月7-9日,恰逢上海交通大学120周年校庆,由中国遗传学会、中国遗传学会发育遗传专业委员会主办,上海交通大学生命科学学院承办的第四届“模式生物与人类健康”发育遗传学全国学术研讨会在上海市举行。孟安明院士等三百余位科学家齐聚一堂,围绕动物及植物模式生物研究的前沿课题进行了深入热烈的探讨。北京易科泰生态技术有限公司作为国内知名的生态研究仪器及技术公司,应邀参加了本次盛会。易科泰在会议上展示了一系列国际上最前沿的动物及植物模式生物实验仪器,得到了与会人员一致关注。 本次会议分两个方向——动物模式生物和植物模式生物。针对动物模式生物,易科泰主要展示的仪器技术有Ptomethion动物行为与能量代谢监测系统。Promethion用于小型动物如小鼠、大鼠等或人类的生理生态和行为监测、能量代谢研究等,可同步化监测动物的能量代谢、动物采食与饮水活动及摄取量、动物活动与行为谱、动物位移时空分布格局,及动物体重、体温、心率等多项生理学参数,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系等,广泛应用于动物生理生态学、动物Phenotyping、实验动物学、药理学、生态毒理学、生物医学等研究领域。 针对植物模式生物,易科泰主要展示的仪器技术有FluorCam叶绿素/GFP荧光成像技术。这项技术不仅可用于叶绿素荧光成像,还可用于植物、动物、藻类乃至菌落等样品的GFP绿色荧光蛋白(GFP)分布异质性成像分析研究。叶绿素荧光成像可以反映不同基因对植物光合系统表型的影响,而GFP成像则给研究者提供了对模式生物转基因样品进行快速便捷筛选的最有效手段,因此受到与会科学家的广泛关注。GFP成像图,图中发出明亮颜色的植株即为表达了GFP的植株,其颜色越偏向红色,则表明其表达的GFP更多,暗蓝色的植株即为没有表达GFP的植 除了展示设备,我们的PlantScreen植物表型成像分析系统也受到了许多参会人员的关注。植物表型组学研究技术已成为当今遗传育种、植物生理生态、生物技术等领域的热点,PlantScreen植物表型成像分析系统是由研发世界上第一台FluorCam叶绿素荧光成像技术的PSI公司,与著名科学家合作研制生产的新型植物表型组学研究平台,是植物表型分析与功能成像分析的最为先进的技术平台。基因组学和表型组学研究是互为表里的关系,基因组学的研究结果必须通过表型组学的进一步验证才能完整解释生物的深层规律和发育机理。作为PSI植物表型研究中心的合作伙伴,我们的eco-lab实验室拥有叶绿素荧光成像系统、土壤呼吸系统等设备,一直致力于应用我们的实验室平台和技术方案,来帮助科研工作者们进行科学研究,欢迎感兴趣的科研人员来与我们实验合作、实验检测、技术咨询包括到欧洲PSI植物表型中心参观交流。我们会不断努力,用我们的解决方案和技术案例来服务于科研工作者的科研工作。 最后,易科泰生态技术公司感谢上海交大师生的支持与帮助,热烈庆祝上海交通大学120周年校庆,并祝贺第四届“模式生物与人类健康”发育遗传学全国学术研讨会圆满成功!
  • 安捷伦科技公司隆重推出OneSeq产品以简化细胞遗传学研究
    安捷伦科技公司隆重推出OneSeq产品以简化细胞遗传学研究该分析方法使科学家能够在一次反应中确定突变和拷贝数变化 2015 年 2 月 25 日,北京 — 安捷伦科技公司(纽约证交所:A)今日推出了业内首款用于新一代测序的一体化靶向序列捕获产品OneSeq。OneSeq具有独特设计,适用于体质性疾病研究,可在一次反应中检测和分析拷贝数变化、杂合性缺失和突变。 安捷伦在本周于佛罗里达州马科岛召开的基因组生物学技术进展年会(AGBT)上展示了这款新产品。 在安捷伦行业领先的SureSelect靶向序列捕获平台的支持下,新的OneSeq体质性研究试剂盒将帮助细胞遗传学研究实验室节省在收集和分析复杂多遗传因子数据过程中所花费的时间。 安捷伦高级市场总监 Alessandro Borsatti说道,“OneSeq让研究人员能够同时研究疾病相关的靶标和拷贝数变化,这款一体化 NGS 分析方法是靶向序列捕获先驱者的又一行业力作,与单分子技术相比,它能提供更多的信息,帮助科学家简化工作流程。” Borsatti指出,研究人员可将OneSeq和安捷伦免费SureCall软件轻松组合,以整合拷贝数变化、单核苷酸多态性、插入和缺失以及杂合性缺失的数据分析。 “这种组合为遗传疾病相关的多个 DNA 变化研究提供了最为经济有效和精简的方法,”Borsatti说道。“与此相比,全基因组测序及其相关的数据分析更加繁琐和昂贵。” 此外,安捷伦在线设计应用SureDesign使得研究人员能通过将任意目标基因试剂盒添加到 CNV 骨架来自定义OneSeq,从而满足自身需求。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。如需了解安捷伦科技公司的详细信息,请访问www.agilent.com。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • Life Tech免费下载《RNAi与表观遗传学研究工具书》
    新版《RNAi与表观遗传学研究工具书》着重讲述了RNAi与microRNA领域的研究思路与实验流程,以及实验过程中的注意事项。同时,也描述了我们能提供的产品与服务,是非常受研究者欢迎的参考资料。您可以了解到更多关于如下方面的信息: 化学修饰的siRNA双链复合物 聚合酶Pol II miR 与聚合酶Pol III shRNA 载体 转染试剂 体内RNAi RNAi 对照 microRNA 表达谱 DNA甲基化 想了解更多详细内容,请填写一下申请表格,您将可以免费下载到我们最新版《RNAi与表观遗传学研究工具书》,赶快行动吧! Life Technologies中国区办事处销售服务信箱:sales-cn@lifetech.com技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982400-820-8982www.lifetechnologies.com FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.View the Life Technologies privacy policy.Follow Life Technologies
  • 安捷伦科技公司推出为细胞遗传学和病理学研究实验室定制的寡核苷酸 FISH 解决方案
    安捷伦科技公司推出为细胞遗传学和病理学研究实验室定制的寡核苷酸 FISH 解决方案寡核苷酸库结合在线设计应用,可提供超高的灵活性和高品质探针 2014 年 7 月 15 日,北京 — 安捷伦科技公司(纽约证交所:A)今日推出了一款分子解决方案,该方案结合针对 FISH(荧光原位杂交)的寡核苷酸库合成功能和 SureDesign 在线应用,可提供定制的 FISH 探针。将这些强大的工具配合使用,可使实验室全面控制探针覆盖率,并使人类和动物模型都能获得最大的目标序列特异性。 “许多细胞遗传学实验室必须进行正交试验以验证其研究结果,”安捷伦诊断学和基因组学业务部全球市场高级总监 Victor Fung 说道,“现在有了扩展的定制 FISH 解决方案,他们可在较短的时间内轻松设计高质量的分析方法。” 与使用 BAC(细菌人工染色体)克隆技术的传统探针不同,Agilent FISH 探针采用计算机设计,可精确靶向 100 kb 的区域,以及诸如非人类靶向的非标准序列。 “这些是我用过的最洁净的探针,”北卡罗莱纳州立大学遗传学教授 Matthew Breen 博士说道。他在犬类模型中采用了新型定制 FISH 解决方案。“这些探针非常可靠。” 研究者可使用 Agilent SureDesign 来设计独特的 FISH 探针、微阵列芯片、靶向序列捕获库,并能在最后下单前尝试各种设计。提交了定制 FISH 探针订单后,该设计就会直接送达安捷伦寡核苷酸合成流水线和下游的 FISH 探针生产线。 SureDesign 可供安捷伦客户免费检索。要了解更多信息,请访问: 定制的 FISH 探针:www.agilent.com/genomics/custom-fish SureDesign:www.agilent.com/genomics/suredesign 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 【Seminar】naica® 六色微滴芯片数字PCR系统进行表观遗传学和基因编辑检测
    对于珍贵的生物样本来说,使用有限的生物样本获取更多的数据结果,能够帮助科研学者和诊断人员获得更全面的信息,同时降低运行成本,提高工作效率。11月18日,法国Stilla Technologies公司将举办naica® 六色微滴芯片数字PCR系统线上Seminar,本次Seminar邀请了Eugène Marquis癌症中心学者分享数字PCR在肿瘤基因PIK3CA突变检测方面的研究进展,免疫表型中心学者进行数字PCR在表观遗传学和基因编辑领域的应用研究报告;同时,还将举办线上naica® 数字PCR实验培训,届时欢迎大家前来学习。【关于Stilla Technologies】法国Stilla Technologies是总部位于巴黎的欧洲生物创新技术公司,具有跨学科专业知识的全球团队,利用先进的微流体化学,分子生物学和计算机科学等技术,拥有80多项全球专利,致力于提供突破性且灵活的naica® 系统来加速下一代基因检测的开发。为全球的研究人员和临床医生提供高精度的遗传分析解决方案来改善健康状况。【关于深蓝云】北京深蓝云生物科技有限公司作为法国Stilla Technologies公司在中国的数字PCR技术示范与服务中心,在北京和苏州建有标准PCR实验室,致力于为用户提供新型生命科学研究仪器和分析产品以及优化的整体应用解决方案。深蓝云生物配备着专业的技术支持和应用支持,依托生命科学产品和解决方案,专注为用户提供分析产品和完善的售前咨询和售后服务。naica® 六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica® 六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 2700万!浙江大学医学院附属儿童医院分子遗传学检测技术服务采购项目
    一、项目基本情况 项目编号:ZJ-2333651 项目名称:浙江大学医学院附属儿童医院分子遗传学检测技术服务 预算金额(元):27000000 最高限价(元):27000000 采购需求: 标项名称: 浙江大学医学院附属儿童医院分子遗传学检测技术服务 数量: 3 预算金额(元): 27000000 简要规格描述或项目基本概况介绍、用途:分子遗传学检测技术服务,服务期3年,详见采购文件 备注: 合同履约期限:标项 1,按采购文件要求 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2024年01月19日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台线上获取 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:浙江大学医学院附属儿童医院 地 址:杭州市滨江区滨盛路3333号 传 真: 项目联系人(询问):程老师 项目联系方式(询问):0571-86670195 质疑联系人:施老师 质疑联系方式:0571-86670195 2.采购代理机构信息 名 称:浙江国际招投标有限公司 地 址:浙江省杭州市西湖区文三路90号东部软件园1号楼3楼 传 真:0571-81061817 项目联系人(询问):陆悦灵 项目联系方式(询问):0571-81061812 质疑联系人:苑洪春 质疑联系方式:0571-81061814        3.同级政府采购监督管理部门 名 称:浙江省财政厅政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室(快递仅限ems或顺丰) 传 真: 联 系 人:朱女士、王女士 监督投诉电话:0571-85252453 政策咨询:何一平、冯华,0571-87058424、87055741 预算金额未达100万元的采购项目,由采购人处理采购争议。
  • 186万!滨州市妇幼保健院医学遗传学相关检测服务项目采购
    滨州市妇幼保健院医学遗传学相关检测服务项目采购竞争性磋商公告项目概况: 滨州市妇幼保健院医学遗传学相关检测服务项目采购采购项目的潜在供应商应在本项目实行网上下载采购文件获取采购文件,并于2022-03-01 09:00:00(北京时间)前提交响应文件。一、项目基本情况: 项目编号:SDGP000030 项目名称:滨州市妇幼保健院医学遗传学相关检测服务项目采购 采购方式:竞争性磋商 预算金额:186.0万元 最高限价:186.0万元 采购需求:标的 标的名称 数量 简要技术需求或服务要求 本包预算金额(单位:万元)A 详见磋商文件 1 1.满足《中华人民共和国政府采购法》第二十二条规定;2.供应商具有医疗机构执业许可证资质证书;3.供应商具有医学检验实验室资质证书;4.本项目不接受联合体投标;5.本项目实行资格后审。 186.000000 合同履行期限:详见磋商文件 本项目不接受联合体投标。二、申请人的资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求:详见磋商公告 3、本项目的特定资格要求:详见磋商公告三、获取采购文件: 1.时间:2022年2月17日8时30分至2022年2月25日17时0分,每天上午08:30至12:00,下午13:30至17:00(北京时间,法定节假日除外 ) 2.地点:本项目实行网上下载采购文件 3.方式:登录滨州市公共资源交易平台免费下载本项目的电子采购文件(文件格式为.BZZF) 4.售价:0四、响应文件提交: 1.截止时间:2022年3月1日9时0分(北京时间) 2.地 点:1、加密的电子投标文件通过滨州市公共资源交易平台(http://jypt.bzggzyjy.cn/bzweb/)“上传投标文件”栏目上传。2、本项目采用“不见面开标”,投标人在规定时间内进行远程解密。五、开启: 1.开启时间:2022年3月1日9时0分(北京时间) 2.开启地点:加密的电子投标文件通过滨州市公共资源交易平台(http://www.bzggzyjy.cn/bzweb/)“上传投标文件”栏目上传。2、本项目采用“不见面开标”,投标人在规定时间内进行远程解密。六、公告期限: 自本公告发布之日起5个工作日。七、其他补充事宜: 其他补充事宜:八、对本次招标提出询问,请按以下方式联系: 1、采购人信息 名 称:滨州市妇幼保健院 地 址:滨州市滨城区渤海六路696号(滨州市妇幼保健院) 联系方式:05243-3222553(滨州市妇幼保健院) 2、采购代理机构 名 称:山东东岳项目管理有限公司滨州第一分公司 地 址:山东省滨州市滨城区县(区)杨柳雪镇北外环与新立河西路交叉口西200米路北新宇大厦4楼号 联系方式:15865448208 3、项目联系方式 项目联系人:王苹苹 联系方式:15865448208
  • 500万!北京大学生命科学联合中心双光子扫描光遗传学显微镜采购项目
    项目编号:0873-2201HW3L0528项目名称:北京大学生命科学联合中心双光子扫描光遗传学显微镜采购项目预算金额:500.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1双光子扫描光遗传学显微镜1套500是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.招标内容及用途:用于教学科研以上货物及服务的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 第二届Illumina生殖与遗传系列(上海站) 暨“高通量时代的产前及儿童遗传学检测及咨询”圆满落幕
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/48b312a7-ca0e-4a6f-8e23-01dfa60db6ed.jpg" title=" 1.jpg" / /p p   天朗气清,金风送爽的八月,第二届Illumina生殖与遗传系列高峰论坛终点站于13日在上海拉开帷幕,与郑州站和西安站不同的是,本站主题将高通量芯片及测序技术的应用从产前检测延伸到了儿童遗传学检测及咨询领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/ac293152-ba14-4335-b3dd-c90fc79b813b.jpg" title=" 2.jpg" / /p p style=" text-align: center " ▲& nbsp 上海场会议现场 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/a2589c8d-c3ec-4008-9981-527ee23d4f81.jpg" title=" 3.jpg" / /p p style=" text-align: center " ▲& nbsp 欢迎辞& nbsp & nbsp Tom Berkovits 先生 Illumina亚太区市场发展部副主管 br/ /p p strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " 01 /span /span /strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " /span strong 高通量测序技术在儿童遗传病应用—— 瓶颈、挑战和突破 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/296b5673-b3cf-4af9-b3e5-5aa61a0345e3.jpg" title=" 4.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:余永国& nbsp 博士 /p p   余博士风趣详实地通过病例分享肯定了新一代测序技术的优势 —— 辅助临床明确遗传学病因、精准医疗,推动着临床诊断进入新模式。但高通量分子诊断技术在临床应用中也面临一些瓶颈和挑战,如:针对复杂的临床患者如何选择不同的分子诊断方案,如何规范实验室报告、缺乏大数据分享、基因芯片和下一代测序技术的选择等,针对以上困难,余博士认为,首先作为临床医务工作者,需要加强临床遗传基本功,规范遗传咨询流程,普及遗传学科普知识;医疗机构需要壮大遗传咨询师及遗传咨询医师的队伍;联合多学会建立规范的学组共识;最后余博士倡导医院、检测机构共同努力搭建可视化共享的出生缺陷及重大遗传性疾病的遗传数据库,进行新技术的大样本探索。 /p p span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " 02 /span 医学外显子组测序在遗传病患儿诊断中的应用介绍& nbsp /strong /span br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1bcb91ab-2ebc-4549-9d05-768e5ddf784e.jpg" title=" 5.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:赵薇薇& nbsp 教授 /p p   遗传因素是疾病发生的重要原因之一,据OMIM数据库统计,符合孟德尔遗传方式的疾病有8477种,其中表型有描述,基因明确的有5051种,如何针对发病率低,病种繁多,累计发病率高的遗传病进行检测,赵教授认为外显子测序能提供更精准的诊断。(医学外显子组技术是针对每个怀疑有遗传病的个体同时检测约5000个致病基因)从2009年至今金域分子遗传共收集患者及家系样本6万例,采用Illumina公司的TruSight One临床外显子 — Panel检测,突变检出率为37%。最后赵教授通过病例解析强调了高通量测序过程中质量控制、生物信息学分析中的过滤参数以及ACMG五分类法在变异注释时的重要性。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 03 /strong /span span style=" color: rgb(31, 73, 125) " strong Genetic counseling: Tool to Convey Complex Information /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/77eb1cdb-b1d8-4e8d-b5cd-d55ff7e54375.jpg" title=" 6.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:Sucheta Bhatt& nbsp 博士 /p p   Sucheta博士在这一站分享了更多有关儿童遗传疾病咨询的经验,她首先强调进行遗传咨询时首先获得病史及家族史的重要性,指导根据疾病的临床特征分析病因,如何提供遗传风险评估的专业意见,如何与临床医师紧密合作,以及如何在充分知情同意后帮助患者选择下一步诊断技术。随后Sucheta博士引入一个疑似Noonan综合征儿科病例,从问诊,搜集病史,到评估各项检测,再到与患者家人的咨询建议,把遗传咨询的流程及要点清晰地呈现给听众们。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 04 /strong /span span style=" color: rgb(31, 73, 125) " strong 高通量分子检测技术在出生缺陷三级防控中的应用 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/9a168f3a-2870-47b9-aea8-e80396b2fff4.jpg" title=" 7.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:熊丽& nbsp 博士 Illumina大中华区临床应用专家 /p p   出生缺陷是一个严重的公共卫生和社会问题备受关注,传统技术精度及通量受限,Illumina基因芯片和新一代测序为代表的高通量检测技术展现出实力。熊丽博士由出生缺陷三级防控入手,分别介绍各类分子诊断技术的应用范围: br/ /p p   一级预防:携带者筛查通过靶向测序技术得以实施;胚胎植入前遗传学筛查(PGS)采用低覆盖度全基因组测序优选二倍体胚胎。 /p p   二级预防:核型定位技术(Karyomapping)能够成为通用单基因病胚胎植入前遗传学检测解决方案;NIPT是新一代测序技术在临床广泛应用的典范,阳性预测值可高于90%;基因芯片技术作为核型分析的补充在染色体病的产前检测中广泛应用。 /p p   三级预防:目前国际多个研究项目正采用新一代测序技术进行新生儿筛查研究,而临床全外显子检测,全外显子或全基因组测序大大提高了检测力,也在逐步改变目前的遗传疾病低效诊疗模式。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 05 /strong /span span style=" color: rgb(31, 73, 125) " strong 案例讨论 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/54d054ce-945a-40b8-a8b2-bf866014a8d4.jpg" title=" 8.jpg" / /p p style=" text-align: center " ▲& nbsp Sucheta Bhatt 等 /p p   上海站的压轴环节,是由Sucheta博士带来的遗传咨询典型案例讨论,30分钟时间内,两个曲折精彩的病例,现场新华医院余博士、上海国妇婴徐晨明博士等均参与分享了见解及咨询经验。两个案例一个先天性多发畸形,通过全基因组测序找到了致病基因,指导后续的检测及再发风险;另一个为重度发育迟缓,经家系外显子测序后仅找到临床意义不明(VOUS)的变异,在场同仁们探讨这类变异的咨询重点,随访需求以及数据库积累更新的重要性。余博士在点评时特别强调了中西方文化差异以及在中国临床遗传咨询需重视的沟通技巧,面对类似案例的咨询思路,操作流程建议,收获全场掌声不断。 br/ /p p strong 后记: /strong 郑州,西安,上海,三场足迹让我们深深体会到了临床用户们对新一代测序的认可与需求: /p p strong 8月9日& nbsp & nbsp 郑州 /strong br/ /p p   Illumina与安诺优达公司、郑大一附院联合举办的郑州站论坛,以“碰撞& nbsp · & nbsp 融合& nbsp · 发展”为主题引入了高通量测序技术的遗传学热点应用。 br/ strong 8月12日& nbsp & nbsp 西安 /strong br/ /p p   Illumina与贝瑞和康公司联合举办的西安站引起了各个产前诊断中心同仁门的热切交流,将高通量测序技术带入了深入应用及临床转化的话题。 br/ strong 8月13日& nbsp & nbsp 上海 /strong br/ /p p   Illumina生殖与遗传高峰论坛的上海站主场,把学术与交流的主题从产前筛查、产前诊断、延伸到儿童遗传学检测,在众多专家们的学识碰撞及实战经验交流之间,赋予了高通量测序在遗传学领域应用更加明媚的前景。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p   不论是最为成熟的无创产前检测(NIPT),还是新兴引起广泛关注的植入前遗传学筛查(PGS),或是在遗传病检测实践中初步展露头角的产前CNV测序及遗传疾病外显子测序,医疗同行们对Illumina技术的愈加关注,通过各中心经验的分享,增添了对新技术的应用信心和期望。为此,Illumina从未停止过创新脚步,致力于通过科技的革新帮助更多用户改善检测流程,寻找遗传学答案,解开基因组学奥秘。 /p p span style=" color: rgb(255, 192, 0) " strong 关于Illumina /strong /span br/ Illumina公司通过解码基因组而改善人类健康。我们注重创新,这使我们成为DNA测序和芯片技术的全球领导者,并为科研、临床和应用市场的客户提供服务。我们的产品应用分布在生命科学、肿瘤学、生殖与遗传、农业及其他新兴市场领域。如欲了解更多信息,请访问Illumina中国官网。 /p
  • Nat Biotechnol | 杨弋团队报道RNA光遗传学工具,可时空精确操纵活细胞RNA代谢与功能
    生物遗传中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。然而在过去的几十年里,生命科学的舞台一直被 DNA 和蛋白质霸占。DNA 负责遗传信息存储,蛋白质负责基因指令执行,而 RNA只是承担中间环节遗传信息传递者的配角。随着人类基因组信息的解析,人们发现只有2%的人类基因组编码蛋白质,更有约98%的基因组意义不明,甚至被认为是“垃圾”DNA。随着生命科学的不断发展,这些看似“垃圾”的DNA却能产生大量的非编码RNA,而这些RNA发挥着至关重要的生物学功能,几乎参与所有重要的细胞生命过程,与多种重大疾病的发生和发展密切相关。细胞内的RNA像蛋白质一样具有复杂的高级结构与相互作用,具有特定的时间、空间分布及不同的转录后修饰状态,复杂而精确地执行丰富多彩的生物学功能。与蛋白质研究相比,人们对细胞内RNA时间空间分布及其功能的研究目前仍然有一定滞后,其中一个重要的原因是目前仍缺乏可以在活细胞内对RNA分子进行高时空分辨精密控制的技术,这是深入研究RNA功能机制面临的关键问题和重要技术挑战,也是国际上RNA研究领域的前沿热点。针对这一亟需解决的技术挑战,2022年1月3日,华东理工大学生物反应器工程国家重点实验室、光遗传学与合成生物学交叉学科研究中心杨弋教授团队在Nature Biotechnology杂志上在线发表了题为Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins 的研究长文。该研究基于合成生物学及光遗传学原理并结合全新的高通量筛选策略成功构建了系列光控RNA效应因子,实现了动物细胞内RNA生成、剪接、运输、翻译、降解等代谢活动的时空精密控制。RNA结合蛋白在RNA生物学功能发挥过程中承担着至关重要的作用,它们负责RNA的剪接、运输、定位、降解等各类代谢活动。除了自然界存在RNA结合蛋白以外,人们基于合成生物学原理将具有不同功能的结构域与RNA结合蛋白结合起来,合成了具有全新功能的RNA结合蛋白。然而,无论是自然界存在或者是人工合成的RNA结合蛋白,它们的活性很难被调控。因此,发展活性可控的RNA结合蛋白将有望实现对活细胞RNA的控制。利用光来调控细胞的各种生命活动是生命科学研究的前沿领域,各种光遗传学技术允许人们以前所未有的时间和空间精度调控生物体的多种生命活动。其中,利用合成生物学方法来进行光可控功能蛋白质分子的设计与筛选,并获得简单易用的光遗传学技术,是光遗传学前沿领域最重要的热点之一。图:RNA光遗传学控制概念图为了实现RNA结合蛋白的光遗传学控制,研究团队首先基于合成生物学理性设计并结合全新的高通量筛选策略,构建了国际上首个人工合成的光控RNA结合蛋白LicV。LicV由RNA结合结构域与LOV光敏结构域融合构成,分子量仅为23 kD。在黑暗条件,LicV是以单体形式存在,不能结合特定的RNA序列(RAT);在蓝光照射下,LicV形成同源二聚体并特异性识别结合RAT序列。研究团队随后将LicV与不同的RNA效应结构域融合,分别获得光控RNA剪接因子、光控RNA定位因子、光控RNA翻译因子以及光控RNA降解因子。他们利用这些光控RNA效应因子实现了活细胞RNA剪接、运输、翻译、降解等代谢行为的时间和空间精密控制。此外,研究团队还将LicV与CRISPR-Cas系统结合起来,发展了全新的LA-CRISPR系统。在该系统中,含RAT序列的嵌合sgRNA可以招募光照诱导产生的LicV-VPR光控转录因子二聚体,从而启动目的基因转录与表达。通过在sgRNA中引入多个拷贝的RAT序列,在光照条件下可以同时招募多个光控转录因子到启动子附近,这使得LA-CRISPR系统对目的基因的激活效率是前人发展系统的一到三个数量级。利用LA-CRISPR系统,研究团队还实现基因位点的高亮度与可逆标记,为基因组结构与功能研究提供和好的工具。此外,LA-CRISPR系统具有很好的普适性,可应用于多个物种来源的CRISPR-Cas系统。本研究通过对CRISPR系统的定时、定量精确控制,将来有望进一步降低CRISPR系统的脱靶效应,加速其临床应用。针对活细胞RNA的实时追踪与精密控制的创新方法需求与技术挑战。杨弋与合作者前期报道了Pepper高性能荧光RNA,它在亲和力、稳定性、信噪比、活细胞荧光亮度等方面提升了一到三个数量级,首次在动物细胞上实现了各类RNA的标记与无背景成像(详见BioArt报道:NBT | 杨弋/朱麟勇团队开发Pepper拟荧光蛋白RNA ;Nat Chem Biol | 新型RNA荧光适配体Pepper的结构以及配体识别机制)。此次该团队报道的LicV系列光控RNA效应因子,又进一步实现了活细胞RNA生成、剪接、运输、翻译、降解等代谢活动的高时空分辨精密控制。结合Pepper与LicV技术,可在活细胞上对RNA进行时间和空间尺度的闭环监测与控制,为深入探究单细胞内RNA的功能和复杂调控机制提供极具价值的创新研究工具。论文第一作者为华东理工大学刘韧玫博士与杨菁博士,通讯作者为陈显军博士和杨弋博士。原文链接:https://doi.org/10.1038/s41587-021-01112-1
  • 从木乃伊到古遗传学,PCR技术弄潮儿万特帕博获2022年诺贝尔生理学或医学奖|盘点近10年得主
    仪器信息网讯 10月3日电 据诺贝尔奖官网消息,北京时间10月3日下午,2022年诺贝尔生理学或医学奖率先揭晓,科学家Svante Pääbo获奖,以表彰他“在已灭绝的古人类基因组和人类进化方面的发现”。图源:诺贝尔奖官网关于遗传学家斯万特帕博(Svante Pääbo)斯万特帕博1955年出生于瑞典的斯德哥尔摩,他的母亲是从爱沙尼亚流亡到瑞典的化学家凯琳帕博(Karin Pääbo),父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。从木乃伊到古遗传学(paleogenetics),PCR技术弄潮儿在科学家试图还原人类演化历史的过程中,进化遗传学家斯万特帕博(Svante Pääbo)不仅绘制出人类的近亲尼安德特人的基因组图谱,还为古人类的研究贡献了宝贵的方法和技术,比如古DNA超净实验室。利用分子生物学的方法研究古人类和其他古生物,这使得古人类学研究增加了一个全新而重要的视角,甚至在一定程度上开创了一个新的领域——古遗传学(paleogenetics)。在很小的时候,帕博就表现出对考古研究的兴趣,他的房间堆满了史前瑞典人制作的陶器碎片。十三年岁那年,帕博和母亲一起到埃及度假,第一次接触到木乃伊,萌生了研究木乃伊的想法。1985年4月18日,帕博的论文“对古代埃及木乃伊DNA的分子克隆”(Molecular cloning of Ancient Egyptian mummy DNA)登上《自然》封面,引发学界轰动,很多主流科学媒体都给予了报道。1987年,帕博开始跟随威尔森在加州大学伯克利分校做博士后做研究。当时,扩增特定DNA片段的聚合酶连锁反应(Polymerase chain reaction,PCR)技术刚刚兴起。在PCR技术的帮助下,帕博从威尔森实验室剩余的斑驴样品中提取出DNA并进行分析,测序的结果显示与1985年发表的结果相似。这意味着,古DNA的测序不仅可以更高效地进行,而且实验的结果能够被重复验证。点击查看PCR仪器仪器优选,与诺贝尔获奖者一起做PCR技术弄潮儿诺贝尔生理学或医学奖于1901年首次颁发。截至2021年,累计颁发了112次。以下为近10年诺贝尔生理学或医学奖得主及其成就:盘点回顾近年获奖者2021年美国科学家戴维• 朱利叶斯和阿德姆• 帕塔普蒂安因在发现温度与触碰“感受器”方面所做出的贡献,获诺贝尔生理或医学奖。2020年美国科学家哈维• 阿尔特、查尔斯• 赖斯以及英国科学家迈克尔• 霍顿,因在发现丙型肝炎病毒方面所做出的贡献,分享诺贝尔生理或医学奖。2019年美国科学家威廉• 凯林、格雷格• 塞门扎以及英国科学家彼得• 拉特克利夫,因在“发现细胞如何感知和适应氧气供应”方面所做出的贡献获奖。2018年美国科学家詹姆斯• 艾利森和日本科学家本庶佑因“发现负性免疫调节治疗癌症的疗法”方面的贡献,荣获诺贝尔生理或医学奖。2017年美国科学家杰弗里• 霍尔、迈克尔• 罗斯巴什和迈克尔• 扬因解释了许多动植物和人类是如何让生物节律适应随地球自转而来的昼夜变换的,获得诺贝尔生理或医学奖。2016年日本分子细胞生物学家大隅良典因发现细胞自噬的机制,荣获2016年诺贝尔生理学或医学奖。2015年中国科学家屠呦呦因为“中药和中西药结合研究提出了青蒿素和双氢青蒿素的疗法”获得诺贝尔生理或医学奖;同时,爱尔兰科学家威廉• 坎贝尔和日本科学家大村智因“发现对一种由蛔虫寄生病引发的感染采取了新的疗法”同获该奖。2014年英国科学家约翰• 奥基夫和挪威两位科学家爱德华• 莫索尔和梅• 布莱特• 莫索尔因“发现构成大脑定位系统的细胞”获得诺贝尔生理或医学奖。2013年美国科学家詹姆斯• E• 罗斯曼和兰迪-W。谢克曼,以及德国科学家托马斯-C。苏德霍夫因“在细胞内运输系统领域的新发现,三人发现了细胞囊泡交通的运行与调节机制”获得诺贝尔生理或医学奖。2012年英国科学家约翰• 格登爵士和日本科学家山中伸弥因“发现成熟细胞可被重写成多功能细胞”获得诺贝尔生理或医学奖。
  • “诺奖风向标”拉斯克奖揭晓,光遗传学会不会获诺奖?
    北京时间9月25日零点,2021年拉斯克奖(The Lasker Awards)公布了三大奖项获奖名单。其中,基础医学研究奖由Dieter Oesterhelt、Peter Hegemann 和Karl Deisseroth获得,以表彰他们对光遗传学的贡献;来自BioNTech的Katalin Karikó和宾夕法尼亚大学的Drew Weissman获得临床医学研究奖,以表彰他们发现基于mRNA修饰的新治疗技术;医学科学特别成就奖则颁给了诺贝尔奖得主David Baltimore。 光遗传学被认为是一项注定要得诺奖的技术(相关文章: 光遗传学:一项注定要得诺贝尔奖的技术)。 实际上,对于光遗传学技术作出贡献的科学家不止这三人,还有他们的合作者和其他科学家。 科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位探索在知识边缘的科学家都值得我们深深的敬意。 撰文|王承志 梁希同 林岑 责编|夏志坚 陈晓雪 北京时间2021年9月25日零点,有 “诺奖风向标” 之称的拉斯克奖(the Lasker Awards)公布,三位在光遗传学领域作出重要贡献的科学家获得阿尔伯特拉斯克基础医学研究奖。 获奖理由: 发现了可以激活或沉默单个脑细胞的光敏微生物蛋白,并将其用于开发光遗传学——神经科学领域的一项革命性技术。 根据拉斯克奖官网介绍,三位获奖人的具体贡献分别是: 迪特尔奥斯特黑尔特(Dieter Oesterhelt),发现了一种古细菌蛋白质,它可以在光照条件下将质子泵出细胞; 彼得黑格曼(Peter Hegemann),在单细胞藻类中发现了相关的通道蛋白; 卡尔代塞尔罗思(Karl Deisseroth),利用这些分子创建了光触发系统,这些系统可以在活的、自由移动的动物身上使用,以理解在迷宫一般的脑回路中特定类别乃至一类神经元的作用。 大脑是人最复杂的器官,人的感觉、记忆、思考、运动等诸多生理活动,以及各种神经系统疾病都与神经元的功能息息相关。多年以来,理解各种神经元的具体功能一直是神经生物学的中心研究领域。 特异性地控制神经元活动对神经生物学家具有无法抵挡的吸引力。如果能特异性地激活一类神经元,那么就可以通过观察激活后的生理现象来推测其功能。同理,如果能特异性地抑制一类神经元,则可以推测这类神经元对哪些生理活动是必须的。 神经生物学家们尝试过各种方法来达到这个目标。比如,用微电极来刺激神经元,或者使用化学物质来模拟或者拮抗神经递质。但这些方法都有难以克服的缺陷:微电极控制的精度不够,比如不能特异性地控制一类神经元;化学物质控制神经元的速度难以控制,很难在毫秒级别进行操作。 紫色的膜与光传感器 1969 年,29岁的青年化学家迪特尔奥斯特黑尔特(Dieter Oesterhelt,1940年-)从德国慕尼黑大学学术休假,来到了美国加州大学旧金山分校电子显微镜专家沃尔瑟斯托克尼乌斯(Walther Stoeckenius,1921年7月3日-2013年8月12日)的实验室。 当时,斯托克尼乌斯正在研究一种可以在高盐环境中生存的古细菌的细胞膜,这种微生物现在被称作盐生盐杆菌(Halobacterium salinurum)。在这次合作中,奥斯特黑尔特证实盐生盐杆菌的细胞膜中紫色的组分含有视黄醛。随后,他和斯托克尼乌斯确定了古细菌中的一种蛋白质,并将其命名为细菌视紫红质(bacteriorhodopsin)。1971 年,他们提出细菌视紫红质起到了光传感器或光感受器的作用。迪特尔奥斯特黑尔特 | 图源:biochem.mpg 回到德国后,奥斯特黑尔特和斯托克尼乌斯继续合作这一研究。奥斯特黑尔特发现,细菌视紫红质可以将质子泵出细胞。这个神奇蛋白质,像是一个微型光能发电机,能吸收光子的能量,用这些能量把质子泵到细胞的外面,从而进一步转化为细菌所需的能量。 后来,科学家们发现了另外一种含视黄醛的光激活泵——卤化视紫红质(halorhodpsin),可以将氯离子输送到细胞中。这两种物质的发现和对其生物物理、结构和遗传学的研究,为光遗传学的发展提供了基础性的见解。 来自微生物的光敏蛋白 20世纪80年代,彼得黑格曼在位于慕尼黑的马克思普朗克生物化学研究所攻读博士学位。他的导师正是发现细菌视紫红质的迪特尔奥斯特黑尔特。 黑格曼的博士论文,研究的是来自另一种细菌的视紫红质——卤化视紫红质(halorhodopsin)。 卤化视紫红质存在于一种耐盐古细菌中,其利用光能将其生活的高盐度环境中的氯离子排出体外。黑格曼首先通过生物化学技术分离提纯了这一蛋白。彼得黑格曼 | 图源:project-stardust.eu 此时,刚刚在法兰克福的马克思普朗克生物物理研究所建立自己实验室的恩斯特班贝格(Ernst Bamberg)参与了进来,他通过构建体外系统来研究黑格曼所提纯出的halorhodopsin的电化学特性。 1984年获得博士学位后,黑格曼来到美国雪城大学的肯福斯特(Kenneth Foster)的实验室从事博士后研究。 福斯特研究的是另一种对光敏感的微生物:单细胞绿藻。这些单细胞的藻类具有趋光性,能够挥舞鞭毛向着有光的方向游去(它们需要光进行光合作用)。福斯特认为,单细胞绿藻也可能使用某种视紫红质作为它们的眼睛,从而得知光亮的方向,并且能驱动鞭毛游往有光的地方。莱茵衣藻 Chlamydomonas reinhardtii 1986年,黑格曼回到普朗克生物化学研究所建立起自己的实验室,开始潜心研究莱茵衣藻(Chlamydomonas reinhardtii,一种微小的绿藻)趋光性行为。 1991年,黑格曼发现,莱茵衣藻的光受体也是一种视紫红质,但它的工作方式与之前发现的各种视紫红质都不一样。衣藻视紫红质的光照之后会引起钙离子流入细胞中,从而引起的电流能够激发鞭毛的运动,他称之为光电流(photocurrent)。恩斯特班贝格(Ernst Bamberg) 人眼中的视紫红质感光之后也会产生光电流,通过神经传递到大脑之后就形成了视觉。人眼中视紫红质引起光电流需要经过细胞内一系列蛋白的信号传导,而黑格曼发现衣藻视紫红质产生光电流的速度比人眼中的视紫红质快得多。据此他大胆地推测:衣藻视紫红质本身可能就是一个可以作为电流开关的离子通道。 然而,此后的十年里,黑格曼使尽各种办法,也无法像当初分离提纯一样分离卤化视紫红质提纯出衣藻视紫红质,来验证他的猜想。 随着分子生物的发展,2001年,黑格曼和其他科学家通过测序衣藻的基因组发现了两个新的光受体基因。 为了证明它们究竟是不是苦苦追寻十余年的衣藻视紫红质,黑格曼找到了当初和合作研究卤化视紫红质电化学特性的班贝格。 此时的班贝格已经是普朗克生物物理研究所的所长。此前的1995年,班贝格就和普朗克生物物理研究所的科学家格奥尔格纳格尔(Georg Nagel)将细菌视紫红质表达在动物细胞中,使得动物细胞在受到光照时产生光电流。奥尔格纳格尔(Georg Nagel) 2003年,从黑格曼那里得到光受体基因后,班贝格和纳格尔用同样的方法成功地在动物细胞中表达了衣藻视紫红质蛋白,从而发现只要有这个蛋白单独存在,就能产生光电流,使阳离子流入细胞中,造成细胞去去极化。他们的结果终于证明黑格曼的假说:衣藻视紫红质是一个能被光所打开的阳离子通道。 从前人们知道,特定的化学分子,或者电压的变化,或者机械力的变化可以开关特定的离子通道,而能被光直接控制的离子通道还是第一次被发现,于是他们把衣藻视紫红质命名为视紫红质通道蛋白(Channelrhodopsins,ChR1)。这个词由离子通道(Channel)和视紫红质(Rhodopsin)组合而成。 他们还在爪蟾的卵细胞中表达了这种蛋白,发现光照可以引起细胞的静息电位发生变化。这项开创性的工作发表在了2002年6月的 Science 上。 2003年,纳格尔和黑格曼又发现了一个新的通道蛋白——ChR2。这一次,他们不但做了更深入的机制研究,而且把ChR2首次在人的细胞(HEK)中表达。作者在文章结论中写道:“ChR2能够成为控制细胞内钙离子浓度或者细胞膜极化水平的有用工具,特别是在哺乳动物细胞中”。 ChR1和ChR2的发现,让一些神经生物学家眼前一亮——这或许就是使用光来控制神经元的理想介质。而光遗传学的大门从这里也正式开启了。 光遗传学的诞生 视紫红质通道蛋白的发现,不仅仅解释的衣藻的趋光性行为,纳格尔和班贝格的实验还证明了这个来自衣藻的光敏感通道能独自驱使动物细胞产生光电流。因此,借助这个光敏感通道,就可以通过光来遥控动物细胞,特别是神经细胞的电活动。 用光来改变神经细胞的电活动是神经科学家长久以来的梦想,光刺激有着比传统药物刺激和电刺激更高的时间和空间的精确性,并且对组织的伤害更小。 20世纪90年代,科学家开始使用光控释放神经递质来激活细胞,但这种方法的时间和空间的精确性仍然不够。 2002年,奥地利神经科学家格罗米森伯克 (Gero Miesenböck)开始在光控中引入遗传学,尝试将果蝇眼中的视紫红质表达在哺乳动物细胞中,或者将哺乳动物的离子通道表达的果蝇的神经细胞中。使用遗传学的优势在于,可以专门针对研究者想到测试的神经细胞进行遥控,但米森伯克缺乏一种强有力的工具可以让光精确地改变神经活动。格罗米森伯克 (Gero Miesenböck) | 图源:cncb.ox.ac.uk 2003年在衣藻中发现的视紫红质通道蛋白正好提供了这样一个强有力的工具。 2000年,爱德华博伊登(Edward S. Boyden,1979-)来到斯坦福大学,在钱永佑(Richard Tsien,钱永健的哥哥)和詹妮弗雷蒙德(Jennifer Raymond)教授的指导下,研究小脑神经回路。 在钱永佑的实验室,博伊登遇到了钱永佑之前的博士生卡尔代塞尔罗思(Karl Deisseroth,1971-)。代塞尔罗思之前在斯坦福大学学习神经生物学,并在斯坦福医院当过精神科住院医师。 有着工程背景的博伊登和医学背景的代塞尔罗思经常在一起讨论当时神经生理学的研究技术。多次的思想碰撞让两位年轻人意识到,当时的技术还有很大局限,神经生物学家需要更好的工具来控制大脑中特异的神经元,他们决定开发这样的工具。Edward S. Boyden | 图源:mcgovern.mit.edu 他们最初设想可以使用磁场来控制神经元,在神经元中表达机械拉力敏感的离子通道,然后把微小的磁珠特异性连接到这种通道蛋白上,这样就可能通过外部磁场来控制神经元的电活动。但是,无论是找到合适的机械敏感离子通道基因还是把磁珠连接到通道蛋白上,技术难度都非常大。 后来,博伊登在阅读一篇1999年发表的论文中得到了灵感。这篇论文报道了在嗜盐碱单胞菌中发现的卤化视紫红质(halorhodopsin),能够在大脑的氯离子浓度下工作。这种视紫红质可以在受光照时激活离子通道。 博伊登意识到使用光来控制离子通道比磁场更容易实现。他写邮件给这篇论文的作者,索要了这个蛋白的基因。但后来由于博伊登忙于博士学位论文,这件事情被晾在了一边。 2003年秋天,代塞尔罗思即将独立成为PI,组建自己的实验室。他写邮件给博伊登,希望博伊登博士毕业后可以去他的实验室做博后,一起开展之前讨论的使用磁场控制神经元的项目。卡尔代塞尔罗思 | 图源:www.hhmi.org 从2003年10月到2004年2月,代塞尔罗思和博伊登为即将开始的磁控神经元项目阅读了大量的文献。恰在此时,纳格尔、黑格曼和班贝格及同事们在 PNAS 期刊上发表了前文提到的ChR2的论文。 博伊登阅读这篇论文时立刻意识到,ChR2拥有他们设想过的一切特性:在一个蛋白中把输入信号(光)和输出(去极化神经细胞)偶联起来。事实上,同时意识到这一ChR2这一特性可以用于光控神经细胞的,远不止博伊登一人。 博伊登写信给代塞尔罗思,希望能联系纳格尔索要ChR2的克隆。代塞尔罗思于2004年3月联系了纳格尔。那时,纳格尔已对ChR2做了一些改良,他把这些改良后的克隆寄送给了代塞尔罗思和博伊登。 博伊登当时还在钱永佑的实验室做博士课题。但从2004年7月开始,博伊登几乎把博士课题放在了一边,专心做起了ChR2在神经元中表达的项目。 2004年8月4日的凌晨1点,博伊登在钱永佑的实验室里用蓝光照射表达了ChR2的神经元,成功观察到了去极化和动作电位。早上,他发邮件给代塞尔罗思告诉了他的发现。代塞尔罗思回信:“太棒了!!!!!” 五个感叹号显示了他当时的兴奋心情。 2005年初,张锋(就是后来最早在哺乳动物细胞中使用CRISPR做基因编辑的那位,现麻省理工学院教授)来到代塞尔罗思实验室开始了研究生生涯。他改进了博伊登的表达体系,使用慢病毒在神经元中表达ChR2,大大增加了该系统的稳定性。 2005年4月19日,博伊登和代塞尔罗思把他们的发现投稿给 Science 杂志,遭拒稿,理由是没有具体的科学发现。5月5日,他们投稿到 Nature 杂志,Nature 建议把稿件转投给 Nature Neuroscience 杂志。经过一轮修改,Nature Neuroscience 接受了这篇文章。 光遗传学的其他研究者 自从黑格曼等在2003年发表了光敏通道蛋白ChR1和ChR2,很多科学家都意识到这类光控通道蛋白有极大的应用潜力。一场无形的竞争也在悄然展开。
  • 安捷伦科技公司拓展在生殖遗传学领域的合作 与比利时大学签署新的两年期协议,专注于检测游离 DNA 和胚胎活检切片中的基因畸变
    安捷伦科技公司拓展在生殖遗传学领域的合作与比利时大学签署新的两年期协议,专注于检测游离 DNA 和胚胎活检切片中的基因畸变 2017 年 1 月 18 日,北京 安捷伦科技公司(纽约证交所: A)今日宣布其正在拓展与比利时鲁汶大学人类遗传学中心和鲁汶大学医院的合作。 人类遗传学中心主席以及人类遗传学领域顶级专家 Joris Vermeesch 将对此次合作进行协调安排。 早期的合作是在安捷伦的 OneSight 软件平台推向市场之前,此平台帮助研究人员观察和探究游离 DNA 测序数据中染色体和亚染色体非整倍性。 近年来,游离 DNA 分析受到了越来越多的关注,不仅是因为其可以用于进行无创产前检测,并且 cfDNA 存在于癌症患者的液体活检切片中。 此外,最近有证据表明 cfDNA 存在于胚胎囊胚液和培养基中,并且可将其用于胚胎植入前的基因筛查。 两个团队还对胚胎植入前基因检测的综合解决方案进行了调查研究,这使实验室能够使用单一测序工作流程在同一胚胎活检中对单基因遗传病和易位携带者以及染色体异常进行胚胎植入前基因筛查 (PGS)。 胚胎植入前基因检测 (PGT) 的开发工作还得到了弗兰德政府的资助。 合作伙伴预计 PGT 分析的商业化解决方案最早将于明年完成,随后将对该 PGT 解决方案对于辨别有丝分裂和减数分裂非整倍体的临床效果进行更加全面的评估,并检测胚胎活检中的单倍体和单亲同二倍体。 这些染色体畸变无法通过现有 PGS 商业化解决方案进行准确检测。 最终目标是使 IVF 群体能够缩短 IVF 治疗周期和达到让婴儿健康安全出生的条件所需的时间。 这些想法一旦得到证实,成本和时间的减少可能将成为获取相关部门报销的主要驱动因素。 “安捷伦非常高兴能够与 Vermeesch 教授拓展合作,在过去的两年中我们与他们建立了密切的合作伙伴关系。 这是一个独特且出色的政府-产业-学术合作伙伴关系案例,旨在将创新研究转化为商业化解决方案,以解决人类生殖遗传领域尚未满足的需求。”安捷伦基因组学部门副总裁兼总经理 Herman Verrelst 讲道。 人类遗传学中心主席 Joris Vermeesch 补充说:“在过去十年中,实验室一直致力于开发用于分析单细胞、胚胎和游离 DNA 的创新方法。与安捷伦的合作使我们能够让产品更具人性化、加快产品的临床应用,并且将产品推广到世界各地。”关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。 安捷伦与全球 100 多个国家和地区的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。 在 2016 财年,安捷伦的净收入为 42 亿美元,全球员工数约为 12500 人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。
  • 我国科学家成功研发新一代光遗传学工具
    近日,华东师范大学生命科学学院研究员叶海峰团队研发了一种模块小、灵敏度高、可逆性良好的新一代光遗传学工具,为基础医学和转化医学研究,尤其是精准可控的基因治疗和细胞治疗提供了强有力的新型控制系统。相关研究成果近日在线发表于《自然—生物技术》。  利用一束光治疗疾病不再是神话故事和科幻小说中才会出现的情节,光遗传学的出现,让这个不可思议的治疗手段成为可能。近年来,科学家通过对光敏蛋白的挖掘和设计,构建了一系列光遗传学工具,并将其应用于肿瘤及代谢疾病等治疗领域。虽然光遗传学工具蓬勃发展,但是要真正实现利用一束光治疗疾病仍然需要克服许多困难。  叶海峰课题组将目光放在了拟南芥的光敏蛋白PhyA上,在红光照射下,该蛋白能和其伴侣蛋白FHY1形成二聚体,并在远红光照射下解离。根据这一特点,研究人员构建了基于PhyA-FHY1的转录激活系统。研究人员将PhyA与GAL4的DNA结合域融合表达,将FHY1和转录激活因子VP64融合表达。红光刺激下,PhyA-GAL4和FHY1-VP64结合形成复合体并招募RNA聚合酶,从而启动下游基因的表达。  起初,使用完整的PhyA并不能激活下游基因的表达。为此,研究人员对其进行了工程改造,构建了截短版本的ΔPhyA,并通过激活子和伴侣蛋白的优化,最终得到了一个模块小且高度灵敏响应红光的光遗传学工具,并将其命名为REDMAP。  研究人员将ΔPhyA定位到细胞膜上,将FHY1和SOS蛋白的激活域SOScat进行融合表达,通过红光照射来控制SOScat的细胞定位,从而实现了Ras/MAPK信号通路的激活和去激活,成功构建了REDMAPSOS-Ras工具。此外,研究人员还构建了REDMAPCas工具,将REDMAP系统与基因编辑工具CRISPR-dCas9结合在一起,实现了对哺乳动物细胞、小鼠肝脏及肌肉内源基因转录的高效调控。  同时,研究人员探究了REDMAP系统在基因治疗领域的能力。由于截短的ΔPhyA蛋白具有较小的尺寸,可以利用腺相关病毒包装。因此,研究人员将REDMAP包装至腺相关病毒中并将其注射至小鼠体内,实现了长达3个月以上的光控基因表达。  治疗蛋白的精准控制对疾病的治疗具有重要意义。研究人员将装载REDMAP系统的工程化细胞移植至小鼠、大鼠和兔的皮下,探究其光响应能力。结果显示,短时间的光照(1~5分钟)即可诱导报告基因的高效表达。同时,研究人员还通过光来精准控制小鼠和大鼠体内胰岛素的表达,成功实现了对糖尿病小鼠和大鼠血糖稳态的控制。无需每天定时服用药物或注射胰岛素,只需要每天光照几分钟即可达到显著降血糖的效果,这充分表明REDMAP系统在精准可控的细胞治疗领域具有极高的应用潜能。  相关论文信息:https://doi.org/10.1038/s41587-021-01036-w
  • 国际遗传和医学基因组学大会近日召开
    日前,安捷伦科技有限公司作为主要赞助商参与了于6月9日至11日在香港大学举行的国际遗传和医学基因组学大会。该次国际会议由美洲华人遗传学会和香港医学遗传学会在历年分别举办的国际学术会议的基础上首次联合举办。会议吸引了国内外从事遗传学和医学基因组学研究的知名学者参与。诺贝尔奖获得者Oliver Smithies, 中国知名基因组学专家贺林教授,杨焕明教授,美国人类遗传学协会主席Aravinda Chakravarti等作了精彩的报告。 作为大会的主要赞助商,安捷伦科技有限公司在会议期间展出了基于基因芯片技术的最新基因组研究产品。并邀请比利时知名医学遗传学家J. Vermeesch 教授作了专场讲座。Vermeesch教授详细介绍了利用安捷伦比较基因组芯片(aCGH) 进行新生儿和胚胎植入前遗传病诊断的最新研究结果,引起与会科学家的热烈讨论。在会议期间,来自美国Baylor Colleague of Medicine, Harvard University, University of Miami Miller School of Medicine等学术机构的学者也报告了运用安捷伦aCGH 芯片技术进行遗传病基础和临床研究的最新成果。充分显示安捷伦的基因芯片技术被广泛地应用于遗传病和医学基因组学研究的各个领域,其精密灵敏而又不失灵活开放的技术平台引起了与会学者的强烈反响。很多来自内地的科学家和临床研究学者也对未来引入该项技术进行研究工作表示出极大的兴趣。 安捷伦公司是基因芯片完整技术平台的供应商,其基因芯片技术覆盖表达谱,比较基因组杂交,启动子及甲基化, MicroRNA等多个应用领域。详情请访问www.opengenomics.com
  • 会议邀请 I 中国遗传学会第十一次全国会员代表大会暨学术交流会
    为促进我国遗传学领域研究人员的交流与合作,推动中国遗传学学科的发展,中国遗传学会第十一次全国会员代表大会暨学术交流会将于2023年11月27日-30日在湖北武汉举办。本次会议大会主题为"遗传学:解码生命、赋能经济、引领未来"。大会内容涉及人类与医学遗传学、植物遗传学、动物遗传学、微生物遗传学等多个领域,参会者可在学术、产业、教育、科普等多方面进行交流。会议规模2000人,为参展企业提供一个新产品发布、新技术展示、品牌推广和深耕市场的理想平台。欢迎全国各研究机构、高等院校和企业的科技工作者踊跃参加!瀚辰光翼参加此次大会并设立展位,诚邀各位专家学者莅临交流指导!大会主题:遗传学:解码生命、赋能经济、引领未来大会时间:2023年11月27日报道 11月28日-30日会议主办单位:中国遗传学会、湖北省遗传学会承办单位:广东省畜牧兽医学会畜禽遗传育种分会、《广东畜牧兽医科技》编辑部协办单位:武汉大学、华中农业大学、杂交水稻全国重点实验室、作物遗传改良全国重点实验室大会主席:杨维才、薛勇彪大会地点:湖北武汉欧亚会展国际酒店 (湖北省武汉市东西湖区金银湖路20号)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制