当前位置: 仪器信息网 > 行业主题 > >

扫描式监测技术

仪器信息网扫描式监测技术专题为您整合扫描式监测技术相关的最新文章,在扫描式监测技术专题,您不仅可以免费浏览扫描式监测技术的资讯, 同时您还可以浏览扫描式监测技术的相关资料、解决方案,参与社区扫描式监测技术话题讨论。

扫描式监测技术相关的论坛

  • 紫外扫描式水质COD测量技术与仪器设计

    【作者】:【题名】:紫外扫描式水质COD测量技术与仪器设计【期刊】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?filename=2006041652.nh&dbcode=CMFD&dbname=CMFD2006&v=Sltd-5TnWeRwZOTpVGKCyH8yweXA06z4sp62coiwLLDdCPCA14wyAI6qUe4cURhi

  • 基于线阵扫描的自动光学检测系统关键技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[b][b][b][font=&][size=24px][color=#333333]陈镇龙[/color][/size][/font][/b][/b][/b][/b][font=&]【题名】:[b]基于线阵扫描的自动光学检测系统关键技术研究[/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2016&filename=1015712320.nh&uniplatform=NZKPT&v=g8fPyqfSNBIZFLi6JV5IjwK9gKCSBCEvUuN3dTxvKpYlXKEQlXfSHL3OoehSZY07]基于线阵扫描的自动光学检测系统关键技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 全天空扫描仪持续自动监测

    全天空扫描仪持续自动监测

    全天空扫描仪持续自动监测全天空扫描仪,分别由可见光成像子系统(ASI)和红外成像子系统(SIR)组成,拥有独特的技术优势,可以在无太阳遮挡而完全暴露在太阳光照之下清晰的自动记录全天空云状分布数据。可对气象\气候业务观测中的云量自动化实时观测。太阳能产能预报和光伏发电性能评估。气象科学、遥测、太阳能资源研究, 航空/舰船气象等高要求的精密气象观测。全天空扫描仪结合了光学、遥感、机械工程、电气工程、信号处理、软件等方面的技术,适合替代人工进行云量测量,使观测结果客观化、观测资料连续化,减少台站观测人员的工作量,进一步提高观测质量和观测效率全天空扫描仪应用领域1.气象\气候业务云量自动化实时观测2.太阳能产能预报和光伏发电性能评估3.气象科学、遥测、太阳能资源研究4.航空/舰船精密气象观测[img=全天空扫描仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210210917004710_3494_4136176_3.jpg!w690x690.jpg[/img]全天空扫描仪功能特点1.双通道可见光成像单元和双通道红外成像单元,实现昼夜云观测,可以选择单通道可见光成像单元。2.观测指标:可见光云量、红外云量、综合云量、可见光高动态曝光云图像、红外高动态曝光云图像(根据选择可见光成像子系统(ASI)和红外成像子系统(SIR)以达到观测指标)。3.无太阳遮挡装置,有效记录全天空云况信息;4.在不同曝光强度,用于获取高动态曝光云图;5.可见光图像视场角不低于 180 度,红外图像视场角不低于 160 度。6.可连接网络,通过终端远程操作和监控;7.功耗低,体积小,重量轻,便于野外安装,单通道可见光成像观测仪非加热状态时整机功耗≤7 W;8.具有防水功能,可用于全天候观测。[img=全天空扫描仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210210917138102_4160_4136176_3.jpg!w640x640.jpg[/img]

  • 散射扫描法光学元件表面疵病检测技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b]张彬[/b][/size][/b][font=&]【题名】:[b][b][b]散射扫描法光学元件表面疵病检测技术研究[/b][/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201601&filename=1016025795.nh&uniplatform=NZKPT&v=1F6G829sgZAFA4MYvRETNbgdZd9BzVfLcxERQ6aplrCK1Co8JxayeBFNIXRM1blG]散射扫描法光学元件表面疵病检测技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 该用“全扫描”还是“选择离子监测”?

    新手遇到新仪器,求助各位老师:7890-5975用吹扫捕集进样,HP-5MS分离近30种有机物,出现难分离物质4对,2对部分分离,2对完全重合(其中1对为同分异构体),目前没有更好的柱子,色谱条件也没法再优化了,现在我要做曲线,在“采集模式”中该选择“全扫描”还是“选择离子监测”?“绘图类型”选“总离子流图”还是“提取离子”?进样和数据处理有何注意事项?一个水样能否只进一次就得到全部数据? 盼望各位老师给予指点,谢谢!

  • 双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    [align=center][b]双光子激光扫描显微镜的检测模式及其在生物医学领域的应用[/b][/align][align=center][font=宋体]刘皎[/font][sup]1[/sup],吴晶[sup]1[/sup][/align][align=center]1. [font=宋体]北京大学医药卫生分析中心,北京,[/font]100191[/align][b][font=黑体][[/font]摘要] [/b]双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])具有低光毒性、高时空分辨率、高信噪比等优点,结合了激光扫描共聚焦显微镜和双光子激发技术,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究领域。本文结合作者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了[/font]TPLSM适用的样本、检测模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[b][font=&][Abstract][/font] [/b]Two-photon laser scan microscopy (TPLSM) has the advantages of low phototoxicity, high spatial and temporal resolution, and high signal-to-noise ratio.TPLSM combines laser scanning confocal microscopy with two-photon excitationtechnology and it is widely used in brain science, immunology, tumor, embryodevelopment and other biomedical related research fields. Based on the author'swork experience in the confocal center of Peking University Medical and HealthAnalysis Center, this paper summarizes the applicable samples, detection modesand applications of TPLSM in the biomedical field, in order to provide referencefor related scientific researchers and technicians.[b][font=黑体][[/font]关键词] [/b]显微镜双光子,检测模式,应用[b]1 引言[/b]双光子激发技术的基本原理是在高光子密度情况下,荧光分子可同时吸收2个长波长光子,产生一个一半波长光子去激发荧光分子的相同效果。双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])在激光扫描共聚焦显微镜的基础上,以红外飞秒激光作为光源,长波长的近红外激光受散射影响小,易穿透标本,可深入组织内部非线性激发荧光,对细胞毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[/font][1]。使用高能量锁模脉冲激光器,物镜焦点处的光子密度最高,在焦点平面上才有光漂白及光毒性,焦点外不损伤细胞。双光子效应只发生在焦点处,所以双光子显微镜无需共聚焦针孔,也能做到点激发点探测,提高了荧光检测效率[2]。[b][/b]双光子激光扫描显微镜显微镜可以通过XYZ,XYT,XYλ,XYZT,XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如二次谐波成像(Second Harmonic Generation Imaging,SHG[font=宋体])、双光子荧光寿命成像([/font]Two-photon Fluorescence Lifetime Imaging Microscopy, TP-FLIM[font=宋体])、荧光寿命[/font]-[font=宋体]荧光共振能量转移成像([/font]FluorescenceLifetime - Fluorescence Resonance Energy Transfer Imaging, FLIM-FRET[font=宋体])等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font]TPLSM已成为生命科学各领域重要的研究工具,可在细胞及亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究[3-5]。本文拟通过按TPLSM常见的检测模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[b]2. TPLSM适用的样本[/b]TPLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、细胞、细胞团、类器官、组织切片、到各种模式动物(如线虫、果蝇、斑马鱼、小鼠、大鼠、兔、猴等)及其[font=宋体]脑、脊髓、肝脏、肺、皮肤等器官[/font],都可以通过搭载不同载物台进行测试。相对于传统激光扫描共聚焦显微镜200μm的成像深度极限,双光子显微镜成像深度可达800μm,如果是透明化样品可更厚。TPLSM尤其适合活体动物成像,且比小动物荧光成像有更高的分辨率和信噪比,一般TPLSM的XY轴分辨率为200 nm左右,Z轴分辨率为300 nm左右。[b]3. TPLSM的检测模式[/b]3.1 二维成像模式TPLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。激光扫描显微镜的zoom功能,可以用来调节扫描区域的放大倍数。但受物镜分辨率的限制,一味的增大zoom值,不能得到相应的高清图像,需根据实际情况参考piexl size进行设定。TPLSM可以实现XY、XZ或XT的二维成像模式,XT线扫会在后文与XYT时间序列成像一起进行举例说明(图2b)。3.2 三维成像模式3.2.1 Z轴序列三维成像(XYZ)[align=left]TPLSM可沿Z轴方向通过电动载物台的连续扫描对样品进行无损伤的光学切片(XYZ),获得三维立体图像。同理,通过沿Y轴方向连续扫描,可获得连续的XZY图像。如图1所示TPLSM[font=宋体]可以顺利观察到可以观察到血管清晰形态结构:单个胚胎的胎盘微血管(图[/font]1a)、肝脏血窦微血管(图1b)和后肢微血管(图1c)[6]。[/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151626576232_4807_3237657_3.png!w690x230.jpg[/img][/align][align=center]图1(a)胚胎胎盘微(b)肝脏血窦和(c)后肢的微血管三维成像[/align]3.2.2 时间序列扫描模式(XYT)[align=left]按照一定的时间间隔重复采集,则可实现对该样品的实时监测(XYT)。此类实验可观察组织区域内特异荧光探针标记的单个细胞或细胞内不同部位接受刺激后的整个变化过程。[font=宋体]如图[/font]2[font=宋体]([/font]a[font=宋体]),可以根据微血管[/font]XYT[font=宋体]序列扫描的成像结果中某一血细胞在前后两张图的位置移动和这两帧图的扫描时间间隔计算血流速度。若血流速度很快,[/font]XYT扫描不足以捕捉实际流速,可以使用XT线扫计算。如图2(b),微血管XT扫描图像中绿色荧光背景里的黑色线条代表单个血细胞的流动轨迹,每条线条的横坐标代表血细胞移动的距离(distance / μm[font=宋体]),纵坐标代表此段时间([/font]time/ ms[font=宋体]),根据这两个数据可以计算出单位时间内血细胞的流动速度([/font]μm / ms)[6]。[/align][align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151627102569_8367_3237657_3.png!w690x262.jpg[/img] [/align][align=center]图2 微血管(a)XYT扫描结果和(b)XT一维扫描结果图像计算血流说明示意图[/align]3.2.3 光谱扫描模式(XYλ/XYΛ)通常配置有可调节接受范围的检测器的TPLSM,可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的双光子激光器,还可以实现750nm-1300nm激发波谱扫描。这对于开发研制特殊染料探针的课题来说是很方便、全面的检测功能。3.3四维成像模式(XYZT/XYλT/XYΛT)基于上述三维成像模式,结合时间序列扫描,可以实现TPLSM的四维成像。3.4二次谐波成像(SHG)SHG是一个二阶非线性过程,且一般为非共振过程,适合富含胶原纤维的样本成像,如角膜、鼠尾肌腱、皮肤等。生物组织产生的二次谐波最主要的转换源自胶原,不同生物组织中的二次谐波信号强弱与组织中的胶原含量密切相关,含胶原丰富的组织包括结缔组织和肌肉组织等二次谐波信号也比较强,另外还有一些能产生强二次谐波的生物结构是微管,如细胞分裂中纺锤体。对于具有中心对称性的生物结构,如果局部中心对称性的破坏也会产生二次谐波:在两中心对称介质的界面,不同物态分子的相互作用使局部微观场特性在交界面(如细胞膜)发生突变,从而产生界面二次谐波[7]。除了动物组织外,一些含有特殊分子结构的植物组织也能产生二次谐波。二次谐波显微成像具有高空间分辨率、深成像深度、低损伤、以及对结构对称性的高度敏感性的特点,如果能与其他成像技术结合,将成为生物样品研究的有力工具[8]。3.5双光子荧光寿命成像(TP-FLIM)[9]FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。FLIM检测需要脉冲激光,TPLSM带有的高能量锁模脉冲激光器可以满足激发要求。3.6荧光寿命-荧光共振能量转移成像(FLIM-FRET)[10]传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[b]4 结论和展望[/b]综上,TPLSM应用灵活,具备多种检测模式,适用于多种样本,亦可实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等。一些特殊的实验模式,将TPLSM在生物医学领域的应用进一步扩大。通过结合其他技术(多手段联合拓展,如膜片钳、原子力显微镜、光电联用等),TPLSM必将成为助力生物医学领域研究的有力工具。双光子荧光成像由于具有天生的三维层析能力以及深穿透能力,在活体生物组织成像上广受欢迎。双光子显微镜镜下空间增大后,可广泛应用于猴、大小鼠、兔等较大的模式动物的活体成像。且可结合电生理技术、光遗传技术,广泛应用于麻醉、清醒或运行行为等生理状态下的动物脑科学神经相关研究,在单细胞、单树突精度上对神经元群体活动进行监控。如结合膜片钳技术,对活体脑组组急性切片神经元进行双光子深层成像[11];结合光遗传技术,实现视觉皮层同一神经元和神经元群体的稳定操控和长期多次重复记录[12];对在健身球上移动的头部固定小鼠小脑进行成像,探讨觉醒状态和运动行为对胶质网络中钙离子的激发的影响[13];结合多种疾病模型,探讨大脑皮层神经元及胶质细胞活性的改变及作用等[14]。随着多种双光子显微镜系统的出现,双光子显微镜成像技术将以其实时、无损地探测、诊断及检测能力,在生物医药及临床医学应用中发挥更大作用。[b]参考文献[/b][1] [font=宋体]李娟[/font],[font=宋体]张岚岚[/font],[font=宋体]吴珏珩[/font].[font=宋体]双光子显微镜的应用优势与维护要素[/font][J].[font=宋体]中国医学装备[/font],2021,18(12):158-163.[2] HendelT,Mank M, Schnell B,et al.Fluorescence changes of genetic calcium indicatorsand OGB1correlated with neural ac tivity and calcium in vivo and in vitro[J].JNeurosci, 2008,28(29):7399-7411.[3] DolginE.What leva lamps and vinaigrette can teach us about cellbiology[J].Nature,2018,555(7696):300-302.[4] Noguchi J,Nagaoka A, Watanabe S,et al.in vivo two-photon uncaging of glutamate revealingthe structure-function relatio nships of dendritic spines in the neocortex ofadult mice[J]. J Physiol,2011,589(Pt 10):2447-2457.[5] BishopD,Nikiél, Brinkoetter M,et al.Nearinfrared branding efficiently correlateslight and electron microscopy[J]. Nat Methods,2011,8(7):568-570.[6] [font=宋体]刘皎[/font],[font=宋体]丛馨[/font],[font=宋体]何其华[/font].[font=宋体]活体小鼠微血管血流倒置双光子激光扫描显微镜检测方法的建立[/font][J].解剖学报,2022,53(02):261-265.[7] [font=宋体]屈军乐[/font],[font=宋体]陈丹妮[/font],[font=宋体]杨建军[/font],[font=宋体]许改霞[/font],[font=宋体]林子扬[/font],[font=宋体]刘立新[/font],[font=宋体]牛憨笨[/font].[font=宋体]二次谐波成像及其在生物医学中的应用[/font][J].[font=宋体]深圳大学学报[/font],2006,(01):1-9.[8] [font=宋体]孙娅楠[/font],[font=宋体]赵静[/font],[font=宋体]李超华[/font],[font=宋体]等[/font].[font=宋体]二次谐波结合双光子荧光成像方法观察人源胶原蛋白透皮吸收情况[/font][J].激光生物学报,2017,26(1):24-29.[9] [font=宋体]刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,[/font]2018,67(17):178701-1-178701-14[10] [font=宋体]罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移[/font]-荧光寿命显微成像(FRET-FLIM[font=宋体])技术在生命科学研究中的应用进展。光谱学与光谱分析,[/font]2021,41(4):1023-1031[11] Isom-BatzG,Zimmem PE.Collagen injection for female urinary incontinence after urethralor periurethral surgery[J].J Unol,2009,181(2):701-704.[12] JuN,Jiang R,Mrcknik SL,et al.Long-term all-optical interrogation of corticalneurons in awake-behaving nonhuman prim ates[J].LOSBiology,2018,16(8):e2005839.[13]Nimmerjahn A,Mukamel EA, Schnitzer MJ.Motor behavior activates Bergmann glialnetworks[J].Neuron,2009,62(3):400-412.[23] Huang L, Lafaille JJ, YangG.LearningDependent dendritic spine plasticity is impaired in spontaneousautoimmune encep halomyelitis[J].Dev Neurobiol,2021,81(5):736-745.[14] Huang L,Lafaille JJ,Yang G.LearningDependent dendritic spine plasticity is impaired inspontaneous autoimmune encep halomyelitis[J].Dev Neurobiol, 2021,81(5):736-745.

  • 深圳市美信检测技术股份有限公司今日正在招聘,扫描电镜操作员,坐标深圳市,高薪寻找不一样的你!

    [b]职位名称:[/b]扫描电镜操作员[b]职位描述/要求:[/b]岗位职责:1.负责扫描电镜的日常操作,维护保养和使用管理。2.在检测周期内及时,准确的完成测试。3.针对测试前和测试中的技术问题进行分析和解答。4. 协助失效分析工程师进行显微成分分析。任职条件:1.材料学专业专科及以上学历。2.熟悉材料的基本性能,了解一般材料微观分析方法,能对SEM和EDS的测试结果进行分析。3. 有良好的团队合作意识、能承受一定的工作强度。3.很好的客户服务意识,良好的沟通能力。4. 有扫描电镜操作、第三方检测实验室工作经验优先。[b]公司介绍:[/b] 深圳市美信检测技术股份有限公司是一家拥有CNAS与CMA认可资质的商业实验室,专注于为客户提供材料及零部件检测、分析与技术咨询等专业技术服务,服务对象涉及电子电气、汽车、航空航天、新能源、新材料、教育及科研等行业。公司于2015年12月成功挂牌新三板,股票代码:835052。 美信检测成立于2012年,分别在深圳和苏州设立了显微分析、表面分析、化学分析、热分析、电性能分析、无损结...[url=https://www.instrument.com.cn/job/user/job/position/64512]查看全部[/url]

  • 扫描电镜技术总结

    扫描电镜技术原理及方法:   原理:从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。显像管中的电子束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表面的电子束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电子像,这种图象反映了样品表面的形貌特征。第二节扫描电镜生物样品制备技术大多数生物样品都含有水分,而且比较柔软,因此,在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。一.样品的初步处理(一) 取材取材的基本要求和透射电镜样品制备相同。但是,对扫描电镜来说,样品可以稍大些,面积可达8mm×8mm,厚度可达5mm。对于易卷曲的样品如血管、胃肠道粘膜等,可固定在滤纸或卡片纸上,以充分暴露待观察的组织表面。(二) 样品的清洗用扫描电镜观察的部位常常是样品的表面,即组织的游离面。由于样品取自活体组织,其表面常有血液、组织液或粘液附着,这会遮盖样品的表面结构,影响观察。因此,在样品固定之前,要将这些附着物清洗干净。(三) 固定固定所用的试剂和透射电镜样品制备相同,常用戊二醛及锇酸双固定。由于样品体积较大,固定时间应适当延长。也可用快速冷冻固定。(四) 脱水样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。二.样品的干燥扫描电镜观察样品要求在高真空中进行。无论是水或脱水溶液,在高真空中都会产生剧烈地汽化,不仅影响真空度、污染样品,还会破坏样品的微细结构。三.样品的导电处理生物样品经过脱水、干燥处理后,其表面不带电,导电性能也差。用扫描电镜观察时,当入射电子束打到样品上,会在样品表面产生电荷的积累,形成充电和放电效应,影响对图象的观察和拍照记录。

  • 【资料】冰冻扫描电镜技术

    摘要:扫描电镜工作者都面临着一个不能回避的事实,就是所有生命科学、以及许多材料科学的样品都含有液体成分。很多动植物组织含水量达到98%,这是扫描电镜工作者最难对付的样品问题。冰冻扫描电镜技术是克服样品含水问题的一个快速、可靠和有效的方法。这种技术还广泛地被用于观察一些“困难”样品,如那些对电子束敏感的具有不稳定性的样品。冰冻扫描电镜技术还有一个常被忽略的应用领域,即通过不同的时间间隔的样品溶解来研究动态过程(工业上或其他方面应用)。各种“高压”模式如VP、LV和ESEM的出现,已允许扫描电镜观察未经冷冻和干燥的样品。但是,冰冻扫描电镜仍然是防止样品丢失水分的最有效方法,它能应用于任何真空状态,包括装置于SEM的Peltier台上以及向样品室内冲以水气。冰冻扫描电镜还有一些其他优点,如具有冷冻断裂的能力以及可以通过控制样品升华刻蚀来选择性地去除表面水分(冰)等。常规扫描电镜样品制备的缺点: 皱缩和变形 可溶性物质被提取 可弥散性物质的移位 机械损伤,脆弱样品在常规操作时易损伤 制备过程慢(常在24小时以上) 有毒试剂冰冻扫描电镜技术的优点: 能保持可溶性物质 可弥漫物质很少移位 机械损伤小 基本上不用有毒试剂 是对样品进行动态实验的唯一方法(不同时间间隔冷冻-在实验室内或外面) 过程快,从新鲜材料到观察冷冻、断裂和喷涂样品可在5分钟内进行 高分辨能力(与低真空技术相比) 通过低温断裂获取额外信息(与常规和低真空SEM方法比较) 很适合液体、半液体、和电子束敏感样品 具有选择性刻蚀能力(通过升华显露内在信息) 具有重复使用样品能力(例如:对样品重复断裂和涂覆)冰冻扫描电镜的方法首先将样品固定在适当的样品支架上,具有各种不同类型的支架可选择以适合不同的样品。样品支架本身安放在巧妙设计的冷冻/真空转移杆上。将样品插入冷冻剂,通常是液氮,然后在真空下转移至冰冻扫描电镜Polaron PP2000或PP2000T样品制备室的冷台上,这一样品制备室直接安装在扫描电镜腔室的一个扩展口上。样品制备室可由机械泵和涡轮分子泵抽真空。样品制备室内有进行样品操作、断裂、刻蚀(升华)和涂覆的设备。最后,将位于样品制备室与扫描电镜室之间的阀门打开,将样品转移到扫描电镜的冷台上。冰冻扫描电镜技术的应用冰冻扫描电镜最常用与生命科学,包括植物学、动物学、真菌学、生物技术、生物医学和农业科学。最近,冰冻扫描电镜技术已成为药物学、化妆品和保健品工业的重要工具,主要用于应用基础研究以及对许多产品如乳制品、化妆品和药物递送系统的QA。冰冻扫描电镜技术一直是食品工业的标准检测方法,特别是多项产品如冰淇淋、果糖蜜饯和乳制品。详见附件,英文原作者:Mike wombwell 迈克.沃姆维尔[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=49265]冰冻扫描电镜技术[/url]

  • 【转帖】【雅俗共赏,甚推荐】扫描电子显微镜介绍

    原作在:http://140.120.61.154/fesem/ref-fe/fe-sem-intro-nchu.asp1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10. 场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及萧基发射式(Schottky emission ,SE)11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ionpump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 扫描电镜检测

    大家好! 请问谁家可以做扫描电镜的检测,或者有推荐的吗?我有几个样品想委托检测一下。出报告不出报告都可。谢谢了!

  • [分享]扫描电子显微镜入门1

    1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 发射电子 束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径 选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同 时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电 子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开 阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密 度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。 12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴 极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压,以控制针尖场发射的电流强度,而第二 (下)阳极主要是决定加速电压,以将电子加速至所需要的能量。 13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子 或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发 射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格 极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。 14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能 量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除 所吸附的气体原子。它的另一缺点是发射的总电流最小。 15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较 差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷 式大3~5倍,影像分辨率较差,通常较不常使用。 16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函 数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr 。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。 17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。 18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。 19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空( step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。 20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 扫描电镜扫盲

    以下资料搜索自网络,经过确认,正确。1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100µ m,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10. 场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及萧基发射式(Schottky emission ,SE)11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。21. 在电子显微镜中须考虑到的像差(aberration)包括:衍射像差(diffraction aberration)、球面像差(spherical aberration)、散光像差(astigmatism)及波长散布像差(即色散像差,chromatic aberration)。22. 面像差为物镜中主要缺陷,不易校正,因偏离透镜光轴之电子束偏折较大,其成像点较沿轴电子束成像之高斯成像平面(Gauss image plane)距透镜为近。23. 散光像差由透镜磁场不对称而来,使电子束在二互相垂直平面之聚焦落在不同点上。散光像差一般用散光像差补偿器(stigmator)产生与散光像差大小相同、方向相反的像差校正,目前电子显微镜其聚光镜及物镜各有一组散光像差补偿器。

  • 激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px]激光扫描共聚焦显微镜的[/size][/font][font='times new roman'][size=16px]检测[/size][/font][font='times new roman'][size=16px]模式及其在生物医学领域的应用[/size][/font][/align][align=center][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][sup][size=14px], *[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,100191[/font][/align][font='times new roman'][/font][align=center][font='times new roman'][size=13px]* [/size][/font][font='times new roman']通讯作者[/font][/align][font='times new roman']摘要[/font][font='times new roman']由于激光扫描共聚焦显微镜(Confocal Laser Scanning Microscopy, CLSM)特有的分辨率和技术优势,使得其成为了生物学、医学及药学等领域重要的科研工具。本文结合[/font][font='times new roman']作[/font][font='times new roman']者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了CLSM适用的样本、[/font][font='times new roman']检测[/font][font='times new roman']模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[/font][font='times new roman']A[/font][font='times new roman']bstract[/font][font='times new roman']Confocal Laser Scanning Microscopy (CLSM) has become an important scientific research tool in the fields of biology, medicine and pharmacy due to its unique resolution and technical advantages. Based on the author's work experience in the confocal [/font][font='times new roman']center[/font][font='times new roman'] of Peking University Medical and Health Analysis Center, this paper summarizes the applicable samples, detection modes and applications of CLSM in the biomedical field, in order to provide reference for related scientific researchers and technicians.[/font][font='times new roman']关键词[/font][font='times new roman']激光扫描共聚焦显微镜,[/font][font='times new roman']检测[/font][font='times new roman']模式,应用[/font][font='times new roman']1 引言[/font][font='times new roman']从17世纪世界上第一台原始的光学显微镜问世以来,光学显微镜在20世纪经历了快速发展时期[1]。但由于普通的光学显微镜受光波衍射效应的限制,分辨率已接近理论极限值。因此,为改善成像质量,提高图像清晰度,从而提高显微镜的成像分辨率,人们采用增加物象与背景的反差来实现此目的[2]。激光扫描共聚焦显微镜(Confocal Laser Scanning Microscopy, CLSM)的诞生,在一定程度上实现了这一目的。1984年,Bio-Rad公司首次推出世界第一台商品化的CLSM,从此CLSM迅速发展成为现代生物医学等领域科研的有力工具,广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域。[/font][font='times new roman']伴随着光学、计算机等技术的迅速发展,CLSM的分辨率甚至可以突破光学极限(0.2μm),达到0.05μm甚至0.02μm。与分辨率可以达到0.2nm的电子显微镜相比,CLSM的优势是既可以用于固定样品的拍摄,还可以用于活细胞实验,比如观察在特定刺激下细胞某个结构或者荧光强度的变化等。同时还可以通过XYZ[/font][font='times new roman'],[/font][font='times new roman']XYT[/font][font='times new roman'],[/font][font='times new roman']XYλ[/font][font='times new roman'],[/font][font='times new roman']XYZT[/font][font='times new roman'],[/font][font='times new roman']XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如荧光共振能量转移([/font][font='times new roman']Fluorescence Resonance Energy Transfer, [/font][font='times new roman']FRET),荧光漂白恢复([/font][font='times new roman']Fluorecence Recovery After Photobleaching, [/font][font='times new roman']FRAP),荧光寿命成像([/font][font='times new roman']Fluorescence Lifetime Imaging Microscopy, [/font][font='times new roman']FLIM)[/font][font='times new roman'],荧光相关光谱/荧光互相关光谱(Fluorescence Correlation/Co-Correlation Spectroscopy, [/font][font='times new roman']FCS[/font][font='times new roman']/FCCS)[/font][font='times new roman']等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font][font='times new roman']本文拟通过按CLSM常见的[/font][font='times new roman']检测[/font][font='times new roman']模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[/font]2. [font='times new roman']CLSM适用的样本[/font][font='times new roman']CLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、培养的粘附细胞、悬浮细胞、细胞团、类器官、各种染色、非染色荧光标记的组织或组织切片、到各种动物(如模式动物线虫、果蝇、斑马鱼、小鼠、大鼠等),都可以通过搭载不同载物台进行测试。所有的样品都可以通过匹配不同的器皿(包括共聚焦专用小皿、玻片、transwell小室、孔板等等)和固定器(比如不同热台、孔板支架等)放置到载物台上进行测试。[/font]3. [font='times new roman']CLSM的[/font][font='times new roman']检测[/font][font='times new roman']模式[/font]3.1 [font='times new roman']单一光切片模式(XY或XZ)[/font][font='times new roman']CLSM的最基本优势在于利用激光代替传统场光源,借助于激光扫描共聚焦显微镜的软件系统,CLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。[/font][font='times new roman']CLSM特有的zoom功能,可以用来调节扫描区域的放大倍数。增加选定区域的zoom值,其图像会被放大。但zoom值会受吴晶分辨率的限制,一味的增大zoom值,不能得到相应的高清图像。因此,需根据实际情况参考piexl size进行设定。[/font]3.2 [font='times new roman']三维成像模式[/font]3.2.1 [font='times new roman']Z轴系列及三维成像模式,三维定位/图像重构[/font][font='times new roman']CLSM可对活的或固定的细胞及组织进行无损伤的系列光学切片,获得标本真正意义上的三维数据,这一功能被称为“细胞CT”:通过扫描振镜在X、Y方向的连续扫描,控制软件将扫描的像素点组成共聚焦图像,通过电动载物台沿Z轴方向的连续扫描,可获得样品不同层面连续的光切图像(xyz)。同理,通过沿Y轴方向连续扫描,可获得连续的xzy图像。再经计算机图像处理及三维重建软件,可产生生动逼真的动态效果。[/font]3.2.2 [font='times new roman']时间序列扫描模式(XYT)[/font][font='times new roman']共聚焦显微镜若按照一定的时间间隔、重复地采集样品内固定区域的荧光图像,并对其进行定位、定性及定量分析,则可实现对该样品的实时监测(XYT),此类实验可观察特异荧光探针标记的单个细胞不同部位或不同组织区域接受刺激后的整个变化过程,常用于对单个细胞内各种离子、膜电位、活性氧的比例及动态变化做实时定量分析,例如动态测定活细胞或组织内游离Ca[/font][font='times new roman'][sup][size=13px]2+[/size][/sup][/font][font='times new roman']、Mg[/font][font='times new roman'][sup][size=13px]2+[/size][/sup][/font][font='times new roman']、K[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']、Na[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']等离子的分布和浓度的变化、活细胞内H[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']浓度的变化、细胞/线粒体膜电位,自由基等。当Y方向上的扫描行数设为1时,便可进入特殊的XT模式,在这种扫描模式下得到的图像,可以用来计算血流速度等。[/font]3.2.3 [font='times new roman']光谱扫描模式(XYλ/XYΛ/XZλ)[/font][font='times new roman']通常配置有可调节接受范围的检测器[/font][font='times new roman']的CLSM[/font][font='times new roman'],可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的白激光,CLSM还可以实现激发波谱扫描。[/font][font='times new roman']3.3四维成像模式(XYZT/XYλT/XYΛT)[/font][font='times new roman']基于[/font][font='times new roman']上述[/font][font='times new roman']三维成像[/font][font='times new roman']模式[/font][font='times new roman'],结合时间序列扫描,可以实现CLSM的四维成像。[/font][font='times new roman']3.4反射光/透射光/微分干涉(DIC)成像模式[3-4][/font][font='times new roman']反射光成像主要是指光源发出的光到达样品后发生反射,检测器将此反射光信号转化为电信号进而生成样品表面的图像。利用反射光成像,能够更好的获得样品的表面纹理等信息,是对荧光图像信息的进一步补充。[/font][font='times new roman']透射光成像技术是通过光源发出的光到达样品后,透过样品的光进入检测器生成光信号,再由检测器转变为电信号所形成的图像信息。透射光成像通常能够更好的呈现目标的外轮廓信息,亦是对荧光图像信息的进一步补充。[/font][font='times new roman']很多CLSM配置有DIC模式。与其他成像技术相比,DIC成像技术通过对光路中梯度变化的呈现,实现“伪立体”效果,如在梯度比较小的区域中,相对比较扁平的上皮细胞亦可以较好的实现“立体”结构,同时,由于DIC成像技术不存在相差成像等技术中出现的光晕,还可以利用这个特点检测到细胞表面分布着的细菌,这是很多成像技术所观察不到的。因此DIC成像技术的主要优势在于不需要对相差环和聚光镜遮挡等因素进行考虑,可以直接实现高数值孔径的物镜观察,即可以提高轴向分辨率,这在对分辨率要求十分高的实验中具有重要的应用价值。[/font][font='times new roman']3.6 特殊[/font][font='times new roman']检测[/font][font='times new roman']模式[/font][font='times new roman']3.6.1 荧光漂白恢复(FRAP)[/font][font='times new roman'][5][/font][font='times new roman']FRAP技术由Axelrod等于20世纪70年代研发,指对细胞内的某一区域荧光漂白后,通过测定荧光分子的恢复速率,来研究活细胞中生物分子的动力学特征。[/font][font='times new roman']通过FRAP实验可以研究生物膜脂质分子的侧向扩散、细胞间的通讯、胞浆及细胞器内小分子物质转移性的观测、以及细胞骨架、核膜结构或大分子组装等。[/font][font='times new roman']3.6.2荧光能量共振转移(FRET)[/font][font='times new roman'][6][/font][font='times new roman']FRET是指两个荧光基团间能量通过偶极-偶极耦合作用以非辐射方式从供体传递给受体的现象。目前FRET技术可广泛用于单个固定细胞、亚细胞或活细胞原位生理环境下检测生物大分子的构象变化和分子间的直接相互作用,如检测配体-受体、蛋白分子共定位、转录机制、蛋白折叠以及蛋白质二聚化等,亦可用于检测酶活性变化、细胞凋亡以及膜蛋白的研究等。[/font][font='times new roman']在FRET体系中,常用的荧光能量供体、受体对主要有:CFP/YFP、BFP/RFP、CY3/CY5等。[/font][font='times new roman']进行FRET实验时,需要满足以下几个条件:① 所检测样品包含两个荧光分子,能量的提供者叫做供体,能量的接受者叫做受体;② 供体与受体的距离在[/font][font='times new roman']10[/font][font='times new roman']nm之间;③ 供体的发射波长与受体的激发波长一致。当供体的激发波长照射样品时,若没有FRET效应产生,只会检测到供体的发射光;反之,如果有FRET效应发生,则CLSM可检出供体发射的荧光减弱,而受体的发射光增强。[/font][font='times new roman']3.6.4 荧光寿命成像([/font][font='times new roman']FLIM[/font][font='times new roman'])[7][/font][font='times new roman']FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。[/font][font='times new roman']3.6.5 荧光共振能量转移-荧光寿命成像(FRET- [/font][font='times new roman']FLIM[/font][font='times new roman'])[8][/font][font='times new roman']FRET本身不是一种成像技术,而是一个物理过程。传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[/font][font='times new roman']3.6.3 荧光相关光谱/荧光互相关光谱([/font][font='times new roman']FCS[/font][font='times new roman']/FCCS)[9-12][/font][font='times new roman']FCS[/font][font='times new roman']和FCCS都是在涨落光谱技术的基础上衍生而来的,通过检测某一微小区域内荧光信号的瞬时涨落变化,分析分子的密度、扩散以及分子之间的相互作用,是一种新兴的单分子检测技术。由于FCS/FCCS的高灵敏性可以用来检测生物系统中发生的小概率时间,因此此技术主要用于分子之间相互作用、活细胞分析、核酸分析、蛋白质的寡聚化、蛋白质的动力学研究以及纳米制剂粒径测量等研究,在检测物质浓度、扩散速度、分子结合速率等方面体现出巨大的优越性,亦可用于肿瘤的早期诊断以及高通量药物筛选等。[/font][font='times new roman']FCS技术,即在CLSM焦点的微小测量区域内,通过对荧光强度随时间变化的自发性波动分析和其时间函数自相关的分析,并通过计算机统计与拟合运算,在活细胞内单分子水平给出分子的扩散系数、分子数目、分子浓度及分子之间结合与分离状态等动力学参数的检测方法。其实质是监测带有荧光基团的物质在激光作用体积内的扩散情况,可揭示异质群体中的每个个体,并对各自的亚群进行鉴定、分类、定量比较,亦可对复杂的生化反应提供详细、确定的动力学参数。[/font][font='times new roman']发明FCS的最初目的是在生物系统中研究非常稀的样本浓度的化学动力学特征。随着探测手段、自相关电子学等方面的技术进步,FCS在生物化学中的研究和应用越来越广泛,如经典的细胞膜中脂质扩散研究就是通过CLSM整合了FCS技术后所取得的巨大进展。[/font][font='times new roman']FCCS技术,确切来说是FCS技术的一种延伸应用。其既保持了FCS技术的灵敏性,又可以解决FCS对两种粒子的扩散速度要有明显不同的要求(至少相差2倍,即二者质量差相差8倍)。该技术在实验中通常将两种粒子用不同的荧光进行标记,荧光分子被激发后,产生两种互不干扰的荧光信号,分别被两个独立的检测器探测,然后将探测到的信息进行交叉函数分析。如果分子间存在相互作用,那么两种不同的荧光信号将同时经过检测通道,这时两个检测器就会产生同步的信号波动,从而产生互相关信号;而当单色荧光分子独立在微区域内运动时,则不会产生互相关信号。这样,相互作用的荧光分子和独立运动的荧光分子就被区分开来。由于FCCS技术直接反映分子间的相互作用,而不像FRET技术那样受分子扩散或聚集的影响,因此在生物分子互作、蛋白寡聚化、酶活性研究领域中有重要的应用前景。[/font][font='times new roman']4 结论和展望[/font][font='times new roman']综上,CLSM应用灵活,具备多种检测[/font][font='times new roman']模式,适用于多种样本,[/font][font='times new roman']亦可[/font][font='times new roman']实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等[/font][font='times new roman']。一些特殊的实验模式,将CLSM在生物医学领域的应用进一步扩大。通过[/font][font='times new roman']结合其他[/font][font='times new roman']技术[/font][font='times new roman'](多手段联合拓展[/font][font='times new roman'],如膜片钳、原子力显微镜、光电联用等[/font][font='times new roman'])[/font][font='times new roman'],CLSM必将成为[/font][font='times new roman']助力生物医学领域研究[/font][font='times new roman']的有力工具[/font][font='times new roman']。[/font][font='times new roman']参考文献[/font]1. [font='times new roman']黄德娟,浅谈显微镜的发展史及其在生物学中的用途。赤峰教育学院学报,2000,2:51-52[/font]2. [font='times new roman']肖艳梅,付道林,李安生,激光扫描共聚焦显微镜(LSCM)及其生物学应用。激光生物学报,1999,8(4):305-311[/font]3. [font='times new roman']弓宇, 郭英玲, 张枫, 刘红旗, 基于反射光和透射光成像的图像识别方法比较。机电产品开发与创新,2013,26(3):7-9[/font]4. [font='times new roman']虞兆芳, DIC成像技术的优势。求知导刊,2016,2:53[/font]5. [font='times new roman']隋鑫,满奕,张越,林金星,荆艳萍,荧光漂白恢复技术及其在生物膜系统研究中的应用。电子显微学报,2017,36(6):601-609[/font]6. [font='times new roman']肖忠新,张进禄,荧光共振能量转移技术在激光共聚焦显微镜中的应用。中国医学装备,2014,8(11):73-75[/font]7. [font='times new roman']刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,2018,67(17):178701-1-178701-14[/font]8. [font='times new roman']罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移-荧光寿命显微成像(FRET-FLIM)技术在生命科学研究中的应用进展。光谱学与光谱分析,2021,41(4):1023-1031[/font]9. [font='times new roman']曲绍峰,林金星,李晓娟,FCS/FCCS技术及其在植物细胞生物学中的应用。电子显微学报,2014,33(5):461-468[/font]10. [font='times new roman']张普敦,任吉存,荧光相关光谱及其在单分子检测中的应用进展。分析化学,2005,33(6):875-880[/font]11. [font='times new roman']黄茹,周小明,荧光相关光谱在生物化学领域中的应用。激光生物学报,2013,22(4):289-293[/font]12. [font='times new roman']游俊,荧光相关光谱(FCS)在生物活细胞中的应用。湖北大学学报(自然科学版),2005,27(1):53-56[/font]

  • 【分享】超声波扫描电镜各型号技术参数汇总贴

    超声波扫描显微镜发展到今天,随着技术进步及不同的使用环境,已形成了一些列的型号产品,其扫描频率最高可以达到2G.扫描分辨率0.1微米.最小扫描范围为0.25mm*0.25mm. 是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气性能和保持结构完整性的前提下对物料进行检测。被广泛的用在物料检验(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D))等领域。其可以检查到:1.材料内部的晶体结构、杂志颗粒、夹杂物、沉淀物、2.内部裂纹3.分层缺陷、4.空洞、气泡、孔隙等; 在一个较小尺寸的范围内,超声波会由于材料的物理特性发生相互作用。一旦材料的特性发生变化,样品内部的超声波就会被吸收、散射和反射。因为超声波无法很好通过空气进行传播,所以样品内的微小缝隙会被很容易的检测到。利用超声波的这种特性,可以把半导体材料内部的诸如分层,裂缝等的缺陷和不透光材料中的空隙等缺陷,成像在高分辨率的图像上,给材料的可靠性分析带来方便。 为了便于网友根据各自用途选择合适的型号产品,现将各型号的技术参数汇总如下: 见附件。

  • 【原创大赛】利用紫外和荧光光谱扫描技术开发高效液相色谱-荧光检测方法全过程

    【原创大赛】利用紫外和荧光光谱扫描技术开发高效液相色谱-荧光检测方法全过程

    利用紫外和荧光光谱扫描技术开发高效液相色谱-荧光检测方法全过程荧光是光致发光中的一种,荧光过程是物质吸收入射光进入激发态,从激发态回到基态并发出波长更长得光的过程,在此过程中,物质吸收的光为激发光,发出的光为发射光(这个定义并不准确,有兴趣的版友可以参照相关教科书)。荧光检测在高效液相色谱中是比紫外检测更灵敏的检测方法,但是能够发出荧光的物质并不多,如何判断分析物有没有荧光特性并优化荧光检测器参数是荧光检测方法开发过程的重要内容。荧光检测方法优化的最重要两个参数是确定激发波长和发射波长。二极管阵列检测器(DAD)可以提供分析物在流动相的紫外吸收光谱,基于提取的紫外吸收光谱在日常高效液相色谱分分析中主要有两大作用:1.发现并确定紫外检测器的最佳检测波长;2进行进一步的运算做峰纯度检查,判断有没有共流出物。在这里通过实例向大家介绍二极管阵列检测器的另一用处:二极管阵列检测器辅助荧光检测器开发分析物的高效液相色谱-荧光检测方法。1实验设备和基本实验条件:Waters 2695分离单元Waters 2996 二极管阵列检测器Waters 2475 荧光检测器二极管阵列检测器和荧光检测器串列,荧光检测器在后(检测池耐压较差)二者之间死体积为1ml/min×0.1min。分析物为两种原料药色谱柱:C18,4.6×150mm,5μm柱温:30℃流动相:乙腈:醋酸盐缓冲溶液=65:352实验A:二极管阵列检测器获取紫外吸收光谱,荧光检测器扫描发射光谱实验仪器设置 :2996 3D采集模式,获取210-400nm紫外吸收谱图2475 3D采集模式,固定激发波长220nm(一般有紫外吸收的物质在210-230nm都有吸收),获取250-650nm发射光谱。利用二极管阵列检测器来判断化合物的出峰时间,图1是在254nm下提取的分析物1和分析物2的色谱图,信号很弱。依照二极管整列检测器提取的色谱图,根据连接二极管阵列检测器和荧光检测器的管路体积,推算二者之间死时间约为0.1min。在荧光检测器中调出发射波长3D图,在250-650nm每间隔50nm提取一次色谱图(即250nm,300nm,350nm…),根据紫外色谱图的分析物保留时间,确定荧光色谱图中分析物的出峰时间。http://ng1.17img.cn/bbsfiles/images/2011/12/201112130845_337609_2265735_3.jpg图1 二极管阵列检测器色谱图和提取的分析物紫外吸收色谱图在提取的荧光色谱图中,分析物1有荧光(300nm,图2),而分析物2没有。在荧光检测中,会有很多杂质峰出现(图3,在发射400nm提取的色谱图),而紫外检测器中不一定会发现,利用二极管阵列检测器获得的谱图有利于准确定位分析物在荧光色谱图出现的位置,排除杂质干扰(图3)。http://ng1.17img.cn/bbsfiles/images/2011/12/201112130846_337610_2265735_3.jpg图2 从激发波谱300nm发射光提取的色谱图http://ng1.17img.cn/bbsfiles/images/2011/12/201112130848_337612

  • 【已应助】扫描电镜技术及其应用>

    扫描电镜技术及其应用出版社:厦门大学 作 者:郭素枝 开 本:16开 ISBN:7561525192 页 数:169 出版日期:2006-02-01 第1版 第1次印刷 导 语 本书是作者根据多年来从事扫描电镜技术工作及制样技术的实践经验,并结合扫描电镜技术的最新进展和一些典型的应用实例,以及为研究生讲授《生物电子显微技术》和《仪器分析》课程中“扫描电镜技术及其应用”所用讲义的基础上编写而成的。作者认为,本书的出版可为应用扫描电镜技术研究的科研人员提供具有实用价值的参考资料,也可为各个学科的教学、科研人员参考使用。此外,本书还可作为研究生、本科生的教材。 目 录 第一章 扫描电镜概述第一节 发展背景一、光学显微镜的极限分辨率二、扫描电镜的研制历程第二节 扫描电镜的类型及其展望一、扫描电镜类型介绍二、展望第二章 扫描电镜的用途第一节 在生命学科中的应用一、植物学二、动物学三、医学四、占生物学五、考古学第二节 在其他基础学科中的应用一、材料学二、物理学三、化学第三节 在工业中的应用一、半导体工业二、陶瓷工业三、化学工业四、石油工业五、食品科学第三章 扫描电镜的工作原理和结构第一节 工作原理和主要结构一、工作原理二、主要结构第二节 扫描电镜成像原理和成像过程一、成像原理三、扫描电镜的特点第三节 影响扫描电镜图像形成和图像质量的因素一、影响图像形成的因素二、影响图像细节清晰的因素三、影响图像反差的因素第四章 扫描电镜的使用第一节 扫描电镜的操作一、电镜启动二、样品的安装三、观察条件的选择四、观察图像的操作方法第二节 扫描电镜图像常出现的质量问题一、产生的原因二、损伤三、污染四、放电第五章 扫描电镜微区成分分析技术第一节 概述第二节 X射线波谱分析一、波谱仪的基本原理和分析特点二、波谱仪的结构和工作原理三、检测中常见的问题四、X射线波谱的注释五、分析方法第三节 X射线能谱分析一、能谱仪的基本原理和分析特点二、能谱仪的结构和工作原理三、能谱仪的操作要点四、能谱仪伪峰的识别五、能谱MCS分析模式六、能谱仪和波谱仪的比较第四节 X射线荧光谱分析一、分析原理和分析特点二、在样品室中X射线源的结构三、分析条件的选择第五节 X射线成分分析技术的应用一、在生物学领域中的应用二、在材料科学中的应用三、特殊试样的应用第六节 扫描电镜成分分析技术的发展前景第六章 样品的常规制备方法第一节 对样品处理的要求一、研究样品表面要处理干净二、研究样品必须彻底干燥三、非导体样品的导电处理四、保护样品研究面五、要求标记物要有形态第二节 取样、清洗、固定一、取样二、粗样清洗三、样品固定第三节 脱水一、脱水剂二、脱水的原理与要求三、脱水方法第四节 干燥一、干燥要求二、干燥方法第五节 粘样一、粘样的目的二、粘贴样品的材料三、注意事项第六节 样品的导电处理一、金属镀膜法二、导电染色法第七章 扫描电镜的暗室技术第一节 暗室概况一、暗室设计与设备要求二、暗室的工作内容三、暗室技能四、暗室常用的药品及其性能、作用五、安全灯的选用和控制第二节 底片的冲洗工艺一、D-76和D-72显影液配方二、定影液配方三、显影与定影的原理四、胶卷的冲洗程序五、胶卷冲洗中常出现的问题六、冲洗胶卷时应注意的事项七、底片的保存及注意事项第三节 照片的冲洗工艺一、照片的冲洗程序二、正确曝光是保证照片质量的关键三、影响印放的正确曝光的因素四、影响显影效果的主要因素第四节 底片和照片缺陷的处理技术一、提高底片和照片的反差二、底片减薄三、底片加厚第五节 实验废液处理一、废液的收集二、废液的处理三、废液处理的注意事项第八章 扫描电镜图像计算机处理和储存技术第一节 计算机处理图像一、二次电子图像的计算机处理过程二、二维图像的计算机处理三、计算机进行图像的三维重构四、图像识别技术五、计算机的图像处理语言第二节 计算机储存图像一、计算机储存图像的特点二、全自动图像处理技术第九章 不同试样的制备方法介绍第一节 生物样品制备技术一、孢子的固定二、酵母的固定三、原生动物的固定四、植物组织的特殊固定方法五、单固定快速脱水法六、鱼类细胞单固定半程序微波辐射法七、贴壁培养细胞的单固定氯化金染色法八、血细胞制样方法九、血细胞E花环样品制备十、明胶膜收集游离细胞的制样方法十一、单细胞藻类的制样方法十二、菌落制样方法十三、细菌液体培养物制样方法十四、真菌熏蒸制样方法十五、酵母菌苯乙烯割断扫描电镜观察十六、原生质体的制样方法十七、染色体的制样方法十八、植物花粉粒的制备技术十九、叶表皮制样方法二十、木材立方体扫描样品制备技术二十一、植物材料的冷冻割断制备技术二十二、动物器官的制样技术二十三、线虫扫描电镜样品的制备二十四、池塘底泥中轮虫冬卵的扫描电镜观察二十五、鱼类耳石日轮超微结构的扫描电镜观察二十六、肾结石的扫描电镜观察二十七、扫描电镜连续观察长毛发的方法二十八、针插或乙醇浸泡标本的样品制作二十九、扫描电镜样品的导电法三十、包埋与非包埋切片的样品处理方法三十一、免疫扫描电镜方法第二节 非生物样品制备技术一、块状导电样品制备二、粉末样品制备三、土壤试样的制备四、显示三维物理结构的制样技术五、斜剖金相面技术六、蚀坑技术主要参考文献

  • 如何描述检测室的技术能力和工作范围

    各位大大,小弟求助。 我们检测室要 做墙壁上的描述模板。要描述我们检测室的,技术能力。我们是做焊锡材料的。求助 有经验的 大大 如何描述比较好。http://simg.instrument.com.cn/bbs/images/brow/em09509.gif

  • 场发射扫描电镜,对外检测,收费标准?

    场发射扫描电镜,对外检测,收费标准?

    大家对外检测的场发射扫描电镜的收费标准是多少?貌似版里大部分都是按照样品个数收费的?为什么不按时间收费呢?是不是按照时间收费,对客户和对检测实验室都相对更加公平?欢迎大家讨论。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/03/201803271543504219_8385_1604229_3.jpg!w690x517.jpg[/img]

  • 你实验室的扫描电镜主要用于哪方面的检测??

    你实验室的扫描电镜主要用于哪方面的检测??材料科学(金属材料、非金属材料、钠米材料)冶金生物学医学半导体材料与器件地质勘探灾害(火灾、失效分析)鉴定刑事侦察宝石鉴定工业生产中的产品质量鉴定及生产工艺控制http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制