当前位置: 仪器信息网 > 行业主题 > >

热电子显微成像

仪器信息网热电子显微成像专题为您整合热电子显微成像相关的最新文章,在热电子显微成像专题,您不仅可以免费浏览热电子显微成像的资讯, 同时您还可以浏览热电子显微成像的相关资料、解决方案,参与社区热电子显微成像话题讨论。

热电子显微成像相关的资讯

  • 室温热电子显微成像研究获进展 成果发表《science》
    p   中科院上海技术物理研究所陆卫团队与复旦大学物理学系安正华课题组等合作,通过采用一种自主研发的可检测热电子散粒噪声的红外近场显微镜技术(SNoiM),直接探测GaAs/AlGaAs单晶材料纳米输运沟道中非平衡态电子电流涨落引起的散粒噪声,从而揭示了热电子输运过程中的能量耗散空间分布信息。相关成果日前在线发表于《科学》杂志。 /p p   半导体中的电子可以吸收一定能量(如光子、外电场等)而被激发,处于激发态的电子被称为热电子。热电子可以向较低的能级跃迁,以光辐射的形式释放出能量,这就是半导体的发光现象。随着微电子器件按摩尔定律不断向纳米尺度减小、功耗密度不断增加,器件工作过程中的电子被驱动至远离平衡态。这些非平衡的热电子输运性质和能量弛豫过程会极大影响器件所能达到的工作性能。因此,全面认识甚至操控非平衡热电子行为,对后摩尔时代的电子学器件发展具有重要的指导作用。然而,非平衡输运热电子的实验检测具有极大的技术挑战。 /p p   研究人员利用SNoiM技术克服了传统热探测手段的低灵敏度、受限于检测晶格温度等缺点,发现散粒噪声引起的红外辐射具有表面倏逝波特性,且能反映对应热电子的温度。随着器件偏压的逐步增加,热电子温度的分布由局域分布向非局域分布过渡,并呈现明显的热电子速度过冲现象。 /p
  • 复旦首次实现室温热电子非局域能量耗散过程显微成像
    p   近日,复旦大学物理学系应用表面物理国家重点实验室研究员安正华课题组与中科院上海技术物理所研究员陆卫团队等合作,通过采用一种自主研发的、可以检测热电子散粒噪声的红外近场显微镜技术(简称:扫描噪声显微镜技术或SNoiM,参见图1),直接探测GaAs/AlGaAs单晶材料纳米输运沟道中非平衡态电子电流涨落引起的散粒噪声(shot noise),揭示了热电子输运过程中的能量耗散空间分布信息。3月29日,相关成果发表于《科学》杂志(Science)预印版(First release, DOI: 10.1126/science.aam9991)。 /p center img style=" width: 450px height: 433px " title=" " alt=" " src=" http://news.fudan.edu.cn/uploadfile/2018/0402/20180402120930464.jpg" height=" 433" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "   图1. 应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz) /p p   散粒噪声的纳尺度成像实验装置示意图。 /p p   随着微电子器件尺度按摩尔定律不断向纳米尺度减小、功耗密度不断增加,器件工作过程中的电子被驱动至远离平衡态,这些非平衡的热电子输运性质和能量弛豫过程会极大影响器件所能达到的工作性能。因此,全面认识甚至操控非平衡热电子行为对后摩尔时代的电子学器件发展具有重要的指导作用。然而,非平衡输运热电子的实验检测具有极大的技术挑战。 /p p   本项实验利用SNoiM技术克服了传统热探测手段的低灵敏度、受限于检测晶格温度等缺点,并发现,散粒噪声引起的红外辐射具有表面倏逝波特性(evanescent wave),且能够反映对应热电子的温度。随着器件偏压的逐步增加,热电子温度的分布由局域分布向非局域分布过渡,并呈现明显的热电子速度过冲现象(图 2)。 /p center img alt=" " src=" http://news.fudan.edu.cn/uploadfile/2018/0402/20180402120955959.jpg" height=" 298" width=" 500" / /center p style=" text-align: center "   图2.噪声强度随偏置电压增大的演变(0.5-8V),结果显示 /p p   大偏压下热电子的温度分布呈现明显的非局域特性。 /p p   据悉,SNoiM技术除可应用于上述电子学器件的热电子显微成像之外,还可以进一步拓展至更多金属/非金属/新型二维材料等广泛的实验体系。 /p p   该工作第一单位为上海技术物理所,第二单位为复旦大学,物理学系研究员安正华和上海技术物理所研究员陆卫是该论文通信作者。该项目得到自然科学基金委重大科学仪器研制项目的资助。 /p
  • 电子显微镜新型电子源在日本问世
    近日,日本物质材料研究机构的研究人员开发出一种新型电子源,有望使电子显微镜的识别和测定能力得到飞跃式提高。   据介绍,开发出这种新型电子源的是日本物质材料机构的两名华人科学家,一次元材料组组长唐捷和研究员张涵(音译)。为了大幅度提高电子显微镜的性能,他们重点进行了新型电子源的开发,同时在电子放射方法方面也进行了创新。   目前,电子显微镜普遍使用金属元素钨作为电子源,而化合物六硼化镧(LaB6)作为电子源虽然在性能上超过钨,但其硬度超过钨一倍以上,如果没有合适的加工方法很难实现应用。此次研究人员使用了一种叫化学气相堆积法的方法,首先制成了单结晶的六硼化镧纳米线,然后使用电界蒸发的方式除去了纳米线表面的不纯物质,从而成功开发出了新型电子源。与以往通过高温加热热源,使之放射出热电子的方式相比,新型电子源采用的是以极高的亮度放射出超细电子束的电界放射方式。   在电子显微镜技术领域,日本过去一直领先世界,透过式电子显微镜和扫描式电子显微镜也一直是日本重要的技术出口产品,但目前在该领域日本已经被美国和德国超越。研究人员称,前段时间日本已经开发出新型高性能镜头,如果配上此次开发成功的六硼化镧单结晶纳米线电界放射型电子源,将有望使日本重新夺回透过式电子显微镜世界领先地位。
  • 2022年全国电子显微学学术年会仪器技术及应用专场集锦(上)
    仪器信息网、中国电子显微镜学会(对外名义)联合报道:2022年11月26日,由电镜学会电子显微学报编辑部主办、南方科技大学承办的“2022年全国电子显微学学术年会”在广东省东莞市顺利召开。大会为期三天,采用线下+线上直播方式进行,吸引来自高校院所、企事业单位等电子显微学领域专家学者三千余人次线上线下参会。本届年会线上+线下邀请报告达约500个,是国内电子显微学领域最具影响力的学术盛会。大会线下会场11月26-27日上午进行大会报告,26-27日下午及28日全天同时进行12个不同电镜主题的分会场报告。26日下午,四大仪器技术及应用相关主题分会场线上、线下同步开启,分别是第一分会场——显微学理论、技术与仪器发展,第二分会场——原位电子显微学表征,第六分会场——扫描探针显微学(STM/AFM等),第七分会场——扫描电子显微学表征(含EBSD)。当日,这四大分会场共进行了约40场报告。以下为部分报告集锦,以飨读者。第一分会场:显微学理论、技术与仪器发展现场直击部分报告:报告人:浙江大学 张益旭 博士研究生报告题目:扫描电镜纳米分辨高温力学原位仪器研制进展张益旭博士在报告中汇报了扫描电镜纳米分辨高温力学原位仪器的研制进展。张益旭所在团队通过优化加热丝结构,提高加热效率,从而减少了热电子释放、增加了使用寿命;设计了高温二次电子探测器,改进了闪烁体性能,提高了高温成像能力;实现在1500℃原位高温成像,高温成像分辨率可达40.78nm。报告人:华中科技大学 张智 副教授报告题目:钠离子电池负极材料的原位透射电镜研究尽管钠离子的较大质量和较大半径使得钠离子电池的质量能量密度和体积能量密度无法完全与锂离子电池相媲美,但其在中低速电动交通、多功能储能设备等领域也具有很多应用场景。对此,张智所在团队通过利用原位TEM对钠离子电池负极材料进行了研究。结果表明,在钠化过程中多壁碳纳米管宽度出现非常规的减小、最后断裂。这可能是由于Na+的插层导致MWCNT晶格的坍塌和焦耳热效应导致的碳损失;原位力学实验表明,原始MWCNT具有良好的力学性能,而钠化导致了MWCNT的脆性;原位结果为研究MWCNT在钠离子电池中的失效机制提供了新的见解,并为其未来的应用提供了指导。第二分会场——原位电子显微学表征现场直击部分线上报告:报告人:清华大学 孟繁琦报告题目:原位电镜助力先进功能材料开发——LaCoOx薄膜新奇物性与结构演变研究近年来,钙钛矿型结构材料基于其独特的性能优势已在光催化、太阳能电池与光学热防护方面取得了显著进展,这些材料的有效应用与其微观结构密切相关。钙钛矿中的氧空位已成为物性调控的新自由度。对此,孟繁琦所在团队发现了近室温铁磁绝缘性的LaCoO2.5新相,并研究了应力/热场对LaCoOx氧空位通道取向的调控。孟繁琦在报告中表示,原位实验助力先进功能材料开发让科学变得简单。报告人:郑州大学 王文 副教授报告题目:气-液-固三相反应的原位透射电子显微学研究王文所在团队实现了Au纳米棒的可控刻蚀,系统地揭示了纳米棒刻蚀机制;在液体池中设计固-液-气三相反应,发现当O2纳米气泡与Au纳米棒之间距离小于临界距离时,反应速率迅速提高一个量级以上,结合实验结果与分子动力学模拟在纳米尺度提出三相反应的具体路径;研究了电解水纳米气泡成核位点、生长动力学、脱附临界尺寸、速度;以Au@Ag纳米棒为基底通过“刻蚀-析出” 生长AgCl纳米片,揭示了纳米片生长动力学与反应条件的关系及纳米片最终形貌的影响因素。第六分会场——扫描探针显微学(STM/AFM等)部分报告:报告人:北京航空航天大学 钱建强 教授报告题目:小波变换在多频静电力显微镜动态测量中的应用静电力显微镜(EFM)具有较高的灵敏度和空间分辨率,在新能源材料静电性质的测量中被广泛应用。时间分辨静电力显微镜技术主要用于材料的动态电学性质测量,该技术中常用的泵浦探测方法存在设备装置复杂、成本昂贵、测量存在不确定性等问题。钱建强所在团队采用直接时域测量方法,减小了测量的实现复杂度,通过应用多频激励或者激励悬臂高阶模态的方法实现了EFM多种参数同时测量和时间分辨率的提高,达到了微秒级的时间分辨率,并应用小波变换对测量得到的探针信号进行分析,实现了对材料动态电学性质的提取。通过应用该技术进行仿真实验,实现了对模拟样品电势衰减过程中的动态电势变化和模拟电池放电过程中的离子运动特征时间等性质的测量。报告人:中国科学技术大学 邵翔 教授报告题目:ZnO表面的分子间相互作用 邵翔所在团队利用低温STM研究了多种碳氢、碳水小分子在ZnO(10-10)表面的吸附。较强的吸附物种H20,CO2等往往在表面形成沿[0001]方向取向的一维链式结构。分子的表面一维结构主要由表面局域电荷的特异性分布,以及表面固有偶极场的方向决定。预吸附分子的一维结构通过在表面构筑围栏,或者通过表面介导作用增强弱吸附分子的吸附。表面预吸附物种同时能显著增强金属原子与ZnO表面的作用,进而诱导金属分散成单原子或者尺寸较小的团簇结构,有助于提升金属催化剂的性能。第七分会场——扫描电子显微学表征(含EBSD)现场直击部分报告:报告人:国仪量子(合肥)技术有限公司 曹峰 副总经理报告题目:基于带电粒子追踪与蒙特卡洛方法的低真空SEM电子探测器仿真分析及其在扫描电镜中的应用低真空信号电子探测器主要利用在外加电场作用下信号电子雪崩倍增实现信号放大和探测。国仪量子研发团队计算了低真空信号探测器工作时的的雪崩倍增放电过程。雪崩倍增效应的强弱取决于电场分布、气压大小和电极距离等诸多因素,在报告中所示的几种工程上可实现的工况下计算得出信号电流可放大到30-40倍。实际测试与计算结果呈现出一致性。根据该计算模型,可以对不同工况下的电流放大作用进行预测,从而对低真空条件下的信号探测器的布局和构型设计提供有意义的指导。报告人: 东北大学 石锋 副教授报告题目: 晶界工程改善高氮奥氏体不锈钢应力腐蚀和腐蚀疲劳性能奥氏体不锈钢具有塑性好、韧性好和无磁性等优点。含镍的奥氏体不锈钢却存在镍资源短缺、身体过敏反应和强度低等缺点,而高氮无镍奥氏体不锈钢在成本、力学性能、腐蚀性能、抗氧化性、抗磨损性等方面优势显著。石锋在报告中汇报了其团队通过晶界工程改善高氮奥氏体不锈钢应力腐蚀和腐蚀疲劳性能方面的成果。结果表明,在高氮无镍奥氏体不锈钢中通过合适的形变热处理工艺获得晶粒尺寸相近,但GBE优化参数差异较大的GBE和non-GBE样品;在实验钢中J2或J3型三叉节点可以有效阻碍应力腐蚀和腐蚀疲劳过程中裂纹的沿晶扩展,从而提高了实验用钢的抗晶间应力腐蚀开裂和腐蚀疲劳性能。微信扫码进入大会官方网站,查看大会详细日程并线上观看会议直播:
  • 赛默飞于2017全国电子显微学学术年会隆重推出全新紧凑型场发射透射电镜
    2017年10月19日,成都 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2017全国电子显微学学术年会举办期间展出全新高效灵活、更适合材料科学研究的Thermo ScientificTM TalosTM F200i场发射透射电子显微镜(S/TEM),并进行现场演示。这一产品于今年9月份最新面世,此次推出也是在中国市场的首次亮相。2017全国电子显微学学术年会是电子显微学及技术发展前沿、交流基础研究和应用研究新进展的高水平学术大会。此会议汇集了来自国内外数百名知名显微学领域的专家和学者。2017全国电子显微学学术年会现场赛默飞材料与结构分析电镜业务总经理及副总裁Trisha Rice、赛默飞材料与结构分析电镜业务亚太区副总裁荆亦任、赛默飞材料与结构分析中国区高级商务总监陈厅行等一同参加了此次盛会。“Thermo ScientificTM TalosTM F200i场发射透射电子显微镜是专门针对中国客户的需求进行设计,”赛默飞材料与结构分析电镜业务亚太区副总裁荆亦仁指出,“兼具高度自动化的高性能系统,配置灵活、体积小巧,是多用户实验室中各类应用的理想之选。”显微学专家张泽院士与赛默飞工作人员亲切会面Thermo ScientificTM TalosTM F200i场发射透射电子显微镜(S/TEM)具备最高高压200kV的高性能,能够以定制的方式满足客户成像和化学分析的需求。该产品拥有先进的自动化功能,可确保较高的分析效率,并且能在不同的用户权限之间快速、轻松地进行切换。其直观的界面使用户可在各种实验室应用中进行高分辨成像和分析,除此之外,该系统较小的体积及简介的外观设计不但为后期的使用维护提供便利,也减少了对安装现场基础设施的需求。Thermo ScientificTM TalosTM F200i场发射透射电子显微镜(S/TEM)会议期间,赛默飞选用了单晶硅样品及钛酸锶样品向客户展示其性能。通常透射电子显微镜的实验室对环境条件的要求都比较高,事实证明,该电镜产品在会场这样的条件下也能获取优异的结果,参会代表纷纷对于其高性能的表现给出了高度的肯定及评价。赛默飞于大会期间现场演示Talos F200i性能“我们希望中国的客户在赛默飞的助力下,获得更加丰富的有挑战性的研究成果,在世界材料科学领域的研究中,做出更加突出的贡献,”赛默飞材料与结构分析电镜业务副总裁Trisha Rice表示, “事实证明,近些年来,赛默飞的产品帮助我们的客户在高影响因子的期刊上发表的文章越来越多,更有一些成果已经应用到了日常生活中。我们相信在双方共同的努力和合作下,材料科学研究领域的明天会更好。”赛默飞材料与结构分析电镜业务副总裁Trisha Rice在大会上发表演讲赛默飞一直以来在全球范围内帮助更多科学家在创新探索的道路上取得突破。近日公布的2017年诺贝尔化学奖表彰了三位科学家在冷冻电镜(cryo-EM)技术领域的杰出贡献,三位科学家都使用了由赛默飞制造的仪器帮助他们完成研究。此次Thermo ScientificTM TalosTM F200i场发射透射电子显微镜(S/TEM)的盛装亮相,再一次显示了赛默飞通过冷冻电镜帮助更多科学家取得世界前瞻性研究成果的不断努力。
  • 预算5050万元!某高校单一采购赛默飞300KV冷冻透射电子显微镜
    近日,天津医科大学300kV冷冻透射电子显微镜采购项目公开招标,计划5050万元采购一台300kV冷冻透射电子显微镜。项目建设背景:天津医科大学正积极致力于增强在细胞生物学与结构生物学等前沿生物医学研究领域的硬件实力。Thermo Fisher Scientific Krios G4冷冻透射电子显微镜将帮助天津医科大学开展深层次的结构生物学研究,并为疾病治疗、药物研发等领域提供新路径。项目建设目的:通过引入国际领先的科研设备,为校内及校外各相关学科科研人员搭建起一个高效、先进的科研平台。同时,营造开放合作氛围,鼓励跨学科交流。项目建设意义:推动天津医科大学生物学与医学相关研究的深入探索与蓬勃发展,提升其在科研领域的竞争力,并促进相关科研成果的转化应用。天津医科大学单一采购Thermo Fisher Scientific Krios G4冷冻透射电子显微镜,理由如下:Thermo Fisher Scientific Krios G4冷冻透射电子显微镜在当前市场上具有独特的技术优势。其加速电压为300kV,可实现高达0.12nm的分辨率。该显微镜采用场发射枪作为电子源,有效降低图像噪声。其冷冻样品处理系统包括快速冷冻和温控功能,能够最大限度地减少样品损伤。此外,Krios G4支持多种成像模式,如高分辨率成像、电子断层扫描(ET)和单颗粒分析等,满足不同的科研需求。其他品牌的供应商无法提供相同水平的技术性能和售后服务支持。拟定供应商信息:名称:广东省中科进出口有限公司地址:广州市越秀区先烈中路100号大院9号楼102房预算金额(万元):5,050
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为或取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
  • 赛默飞完成对桌面扫描电子显微镜公司Phenom-World的收购
    p   2017年12月29日,赛默飞宣布已完成收购桌面扫描电子显微镜(SEM)公司Phenom-World。 赛默飞将把该业务融入旗下分析仪器部门。交易的具体条款没有披露。 /p p   Phenom-World总部位于荷兰艾恩德霍芬,为研究和工业市场提供一流的桌面型扫描电镜以及成像和分析软件包。Phenom World台式SEM平台的加入增强了赛默飞在电子显微镜领域的领先地位,并为在材料科学、工业制造、生命科学和电子行业的客户扩展了入门级和台式SEM产品的选择。 /p p br/ /p
  • 赛默飞世尔科技发布全新电子显微分析产品
    高效、易用 ------ 赛默飞世尔科技一体化EBSD 、WDS、 EDS微区分析系统 2010年6月28日,美国威斯康星州麦迪逊 —— 全球科学服务领域的领导者赛默飞世尔科技今天发布了全新电子显微分析产品QuasOr EBSD(电子背散射衍射),其与NORAN System 7微区分析系统提供了完整的一体化微区分析解决方案。这个系统是业界第一个集成电子背散射衍射(EBSD)和能谱仪(EDS)及波谱仪(WDS)在同一个软件界面的微区分析系统。Thermo Scientific QuasOr 是完全集成到NORAN System 7微区分析平台中,以确保新用户便捷地在同一软件界面下同时完成EBSD、EDS、WDS的数据采集。 EBSD是用于在扫描电子显微镜(SEM)下测定样品的微区晶体结构。当分析例如合金、陶瓷及地质样品时,可以对复合材料和矿物进行晶体学的面分析以表征样品特性。在采集EBSD数据期间,EDS和WDS可以同时测定分析样品的化学成分。Thermo Scientific QuasOr作为NORAN System 7微区分析系统的卓越部分可以使得整个系统提供在高速采集EBSD面分析的同时采集能谱和波谱的全谱图像数据。一体化综合的分析系统避免了对应用程序间的繁琐切换,在同一界面即完成数据采集、分析及完备的报告,从而提升了微区分析采集速率、效率! 赛默飞世尔科技分子光谱和微区分析副总裁兼总经理Mike Jost 先生这样说道:“Thermo Scientific QuasOr EBSD产品的发布,标志着业界首次将EBSD、WDS、EDS分析平台综合集成在一个系统中使用!目的是为客户能同时快速获得成分和结构以更好的揭示样品特性。这个全新的一体化系统将以易用、卓越、完备、高效面向全球实验室。” 更多关于Thermo Scientific QuasOr EBSD的信息,请打电话:800-810-5118, 400-650-5118,发邮件至:sales.china@thermofisher.com, 或访问网站:www.thermoscientific.com\ebsd。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站www.thermo.com.cn;www.fishersci.com.cn。
  • 赛默飞与武汉理工大学联合实验室揭幕,达成战略共识推动先进电子显微学发展
    2018年10月22日,武汉——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与武汉理工大学签署了战略合作协议,并为联合实验室揭幕。此次战略合作将依托赛默飞在电子束敏感材料成像以及原位电镜研究等方面的技术优势,帮助武汉理工大学进一步提高科学实验室生产力,从而推进先进电子显微学在中国的发展。根据协议,双方将以武汉理工大学纳微结构研究中心(NRC)为基础成立联合实验室。其中,赛默飞通过将旗下多个品牌创新产品和技术、便捷采购方案和实验室运营管理的整体解决方案相结合,帮助武汉理工大学加速先进电子显微学领域的研究,解决其在材料科学与纳微结构分析、化学分析、先进制造等研究所遇到的复杂问题与挑战。此外,双方还将通过不定期举行高层互访、新产品新技术资源共享等方式扩大交流,加速联合实验室的高效运转。赛默飞中国区总裁艾礼德Tony Acciarito(左二)、战略客户高级总监许兴国(左一)、武汉理工大学党委书记信思金(右二)、武汉理工大学科学技术发展院副院长谢文峰(右一)参加了签约仪式赛默飞中国区总裁艾礼德(Tony Acciarito)先生表示:“作为科学服务行业领域的世界领导者,赛默飞一直践行着‘扎根中国,服务中国’的承诺。武汉理工大学是特色鲜明的高水平大学,我很高兴地看到赛默飞以国际领先的科学技术,助力武汉理工大学在世界一流大学的建设道路上更进一步。”武汉理工大学党委书记信思金指出:“此次非常高兴与赛默飞达成战略合作,双方在先进电子显微学领域有着共同的愿景和一致的合作愿望。我们将借助于赛默飞的创新解决方案,进一步提高科研技术,共同应对挑战创造价值引领行业前沿发展。”纳微结构研究中心(NRC)是一个武汉理工大学校级的研究与测试平台,中心内现拥有赛默飞两台透射电子显微镜:Thermo Scientific Titan Themis G2 60-300球差矫正透射电镜、Thermo Scientific Talos 200kv透射电镜,和一台赛默飞双束电镜Thermo Scientific Helios G3 UC。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过220亿美元,在全球拥有约70,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为4500名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了6个应用开发中心,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2400名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com媒体垂询:赛默飞世尔科技高赫公共关系经理电子邮件:Sura.gao@thermofisher.com电话:(86-21) 6865 4588-2695公关公司爱德曼国际公关艾云飞电子邮件:Levin.ai@edelman.com电话:(86-21) 6193 7536
  • 纳克微束中标高通量电子显微断层成像系统项目
    近期,多模态跨尺度生物医学成像设施--高通量电子显微断层成像系统项目顺利完成招标工作,纳克微束(北京)有限公司成为高通量电子显微断层成像系统UT3D的提供商。多模态跨尺度生物医学成像设施是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学和中科院生物物理所承接建设任务,未来将成为国家级的生物医学成像科学中心。此次合作的达成,是行业客户对纳克微束卓越技术水平的认可,也意味着微束将承担项目中心建设的重要使命。   多模态跨尺度生物医学成像设施项目,旨在快速提升我国生命科学基础研究和临床医学等领域的研究水平,为实现我国生物医学研究整体水平,特别是原始创新能力的跨越式发展以及为高端生物医学影像装备的“中国创造”提供战略支撑和保障。在连接生物医学介观到微观尺度的这一关键节点,相关的多模态跨尺度串联技术和产品级的解决方案长期处于研发摸索阶段。因此,生物物理所希望通过合作,找到志同道合的订制成像方案服务方。   由于国内扫描电子显微镜行业起步较晚,国外企业几乎主导国内市场,为响应高端生物医学影像装备的“中国创造”的号召,纳克微束做出部署、展开攻关,以本次订制方案服务为契机,迎难而上,踔厉奋发,在国际上先人一步提出解决方案。高效解决生物样品从介观到微观的成像难点和痛点,改善微观尺度高效率切割和最终电子断层成像效率低的问题,对于扫描电子显微镜技术的发展具有里程碑的意义!   纳克微束秉承钢研的技术创新基因,积极探索新方向,守正创新,在钢研集团70周年之际,敢于“亮剑”,力战国内外厂商,成为生物医学成像科学中心的国产厂家,以达成高通量电子显微断层成像系统项目合作这一成绩为集团庆祝,吹响了解决生物医学介观到微观尺度问题的时代号角,在扫描电子显微镜行业崭露头角。   作为一家新创立公司,纳克微束成为高通量电子显微断层成像系统项目服务商,为高端生物医学影像装备“中国创造”吹响了进征的号角,秉持守正创新的精神,攻坚克难,为扫描电子显微镜领域的发展注入新动力,助力微观世界的探索与发现。此次合作只是一个起点,未来将持续投入综合显微成像的研发,开拓创新,推动技术升级,助力国产电镜行业实现崭新发展,致力成为中国电镜技术引领者。
  • 1318万元,赛默飞独家中标2台电子显微镜
    p   近日,中国科学院宁波材料技术与工程研究所透射电子显微镜、高分辨扫描电子显微镜采购项目中标结果公布,飞世尔实验器材(上海)有限公司独家中标,中标总金额为1318.56万元。 br/ /p p   2016年5月份,赛默飞宣布以42亿美元收购FEI公司,并且赛默飞世尔科技总裁表示,“从FEI中所获得的技术将作为我们质谱技术很好的补充,使赛默飞在生命科学领域处于最佳位置。” FEI设计、制造和支持电子显微镜,在微米、纳米和皮米领域提供图像和信息,在电子显微镜行业占有一定的市场份额。 /p p   业内人士曾表示,目前国内电子显微镜市场上低端产品市场逐渐萎缩,高端产品市场由于科研和定制化需求增多而呈现增长趋势。此次中科院宁波材料技术与工程研究所采购的透射电子显微镜和高分辨扫描电子显微镜价格分别为130.8万美元和66万美元,中标型号等详细信息未在中国政府采购网公布,以价格判断,此两款产品属中高端产品行列。 /p p   部分中标信息如下: /p p   一、项目信息 /p p   项目编号:OITC-G17033646 /p p   项目名称:中国科学院宁波材料技术与工程研究所透射电子显微镜、高分辨扫描电子显微镜采购项目 /p p   项目联系人:于峰 /p p   联系方式:68729912(7月31日前) / 68725599-8396(7月31日后) /p p   二、采购单位信息 /p p   采购单位名称:中国科学院宁波材料技术与工程研究所 /p p   采购单位地址:浙江省宁波市镇海区中官西路1219号C301 /p p   采购单位联系方式:0574-87912306 /p p   五、中标信息 /p p   招标公告日期:2017年07月27日 /p p   中标日期:2017年08月21日 /p p   总中标金额:1318.56 万元(人民币) /p p   中标供应商名称、联系地址及中标金额: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 8%" p style=" text-align:center " 包号 /p /td td width=" 23%" p style=" text-align:center " 中标供应商名称 /p /td td width=" 48%" p style=" text-align:center " 中标标的名称 /p /td td width=" 19%" p style=" text-align:center " 中标金额 /p /td /tr tr td width=" 8%" p style=" text-align:center " 1 /p /td td width=" 23%" p style=" text-align:left " 飞世尔实验器材(上海)有限公司 /p /td td width=" 48%" p style=" text-align:left " 透射电子显微镜 /p /td td width=" 19%" p style=" text-align:left " 美元1308000 /p /td /tr tr td width=" 8%" p style=" text-align:center " 2 /p /td td width=" 23%" p style=" text-align:left " 飞世尔实验器材(上海)有限公司 /p /td td width=" 48%" p style=" text-align:left " 高分辨扫描电子显微镜 /p /td td width=" 19%" p style=" text-align:left " 美元660000 /p /td /tr /tbody /table p   评审专家名单: /p p   王波、周益奇、李雪红、陆剑侠、邓赛文、李勇、卢焕明 /p p br/ /p
  • 郭可信先生与中国电子显微镜学会|2023年全国电子显微学学术年会大会报告(下篇)
    中国电子显微镜学会、仪器信息网联合报道 2023年10月27日,2023年全国电子显微学学术年会在东莞市会展国际大酒店龙泉厅盛大开幕。大会由电镜学会电子显微学报编辑部主办,南方科技大学、松山湖材料实验室、大湾区显微科学与技术研究中心共同承办,仪器信息网作为独家合作媒体参会报道。大会为期三天,参会人数再创新高,吸引来自高校院所、企事业单位、仪器技术企业等电子显微学领域专家学者2000余人出席参会。大会现场2023年是中国电子显微学开拓者之一郭可信先生诞辰一百周年,本届年会大会为专题纪念专场,怀念郭可信先生生前对中国电子显微学发展付出的心血与作出的巨大贡献。本届年会的主题是:显微鸿鹄志,世界一片天——怀念郭可信先生。大会开幕式由大会秘书长、北京大学教授高宁主持,大会主席、中国科学院院士 张泽,大会承办单位南方科技大学副校长、中国科学院院士贾金锋,大会组委会主席、电镜学会理事长韩晓东分别致辞。大会分为大会报告和13个分会场报告。开幕式后进入大会报告环节,大会报共分为五个阶段,依次由北京工业大学/南方科技大学教授韩晓东,中国科学院物理研究所研究员马秀良,中国科学院院士张泽,东南大学教授孙立涛,中国科学院院士叶恒强分别主持,十二位著名学者、相关仪器设备厂商专家代表依次为大家分享了精彩报告。以下为大会报告下半场七位大会报告内容摘要,以飨读者。大会报告下半场,由中国科学院院士张泽(左),东南大学教授孙立涛(中),中国科学院院士叶恒强(右)共同主持大会特邀报告:中国科学院院士、季华实验室教授 叶恒强报告题目:郭可信先生与中国电子显微镜学会在郭可信先生诞辰一百周年,叶恒强院士回顾了郭先生与中国电子显微学事业发展的渊源,郭先生生前对中国电子显微学发展付出的心血与作出的巨大贡献,以怀念郭可信先生。从1949年全国解放时中国拥有的第一台电子显微镜——英国Metropolitan-Vickers制造的EM/1M型透射电子显微镜;到1956年,在东京召开的第一届亚太地区会议,中国电子显微学论文第一次登上国际舞台;到中国电子显微学研究的先驱们,郭可信先生、李方华先生、黄兰友先生等。结合珍贵资料,叶恒强院士首先回顾了中国电子显微学事业的开端背景。接着回顾了中国电子显微镜学会成立的曲折历程。上世纪70年代,中国电子显微学界,错失了在衍射衬度电子显微学领域与国际同步进展的机缘。在国际高分辨电子显微学进展的冲击下,中国代表团于1979年参加了纪念日本电镜学会成立30周年的学术会议,在此启发下,1980年11月,中国电子显微镜学会在成都正式成立。随后,一批人才从国际一流电镜实验室学成归来的,中国电子显微学的春天。在郭可信先生等先辈的据理力争下,在国际友人的协助下,1986年9月,在国际显微学大会上,中国电子显微镜学会正式成为国际电子显微学联合会(IFSEM)成员,IFSEM接纳中国两个学会会员,称谓分别是:“Chinese Electron Microscope Society(对大陆),Electron Microscope Society, Taibei, China (对台湾)”。接着,叶恒强院士通过郭可信先生在振兴中国电子显微学事业过程中的点点滴滴事迹,回顾了郭可信先生的操劳。最后表示,有一些科学家,他们既有冲击世界前沿的能力,又能有很好的科研管理的才干,郭可信先生就是这样的科学家,是他代领着中国准晶研究团队走在世界前列。有句俗话叫做“大树底下好乘凉”,如今,更觉得清凉的可贵。同时,也借纪念郭先生这样的机会,祝中国电子显微镜学会走向新的辉煌。大会特邀报告:中国科学院院士、清华大学教授 隋森芳报告题目:冷冻电镜迈入新时代: 原位+近原子分辨隋森芳院士表示,郭可信先生不仅在物理材料领域对我国及国际的电子显微学做出了贡献,在生命科学电镜研究方面,也发挥了诸多非常具有先导性的作用。并分享了一些案例,包括上世纪九十年代,在国内刚开始发展时,郭先生就亲自主持了一项蛋白质电子晶体学的国家项目,这或许是国内最早的相关项目;上世纪九十年代中期,郭先生在北京推动第一台配置冷台的电镜,并吸引一批学者开展相关工作等等。接着,分享了生命科学冷冻电镜技术的最新发展进展。冷冻电镜技术是当今生命科学的前沿热点技术之一,近年来在Cell,Science,Nature的年度十大科学突破评选中,冷冻电镜因把生命科学推进到原子水平而连续当选。冷冻电镜主流技术包括单颗粒冷冻电镜技术(cryo-EM SPA)和冷冻电子断层成像技术 (cryo-ET),冷冻电镜结构生物学面临的挑战包括颗粒尽可能的小、颗粒尽可能大、颗粒的不均一、时间分辨等。最后,围绕近一年cryo-ET高分辨结构统计情况,分析了原位电镜技术的系列进展,一些代表性进展包括藻类光合系统的进化研究、激发态能量如何从藻胆体传递给光反应中心(PSII/PSI)相关研究等。大会特邀报告:中国科学院院士、清华大学教授 朱静报告题目:量子材料序参量和电子显微学作为我国材料电子显微学领域的前辈,六十余年来,朱静院士始终坚守在电子显微学研究第一线,在诸多材料领域,对于如何进一步利用电子显微镜中电子和物质的交互作用产生的各种信号,有着深刻地认识。近十年来,朱静院士主要聚焦在两种电子显微学方法。一是针对功能材料的量子材料序参量和电子显微学,一是针对结构材料,高通量多尺度(豪微米-亚埃尺度)应用于结构材料研究(飞机发动机单晶叶片和涡轮盘)。此次报告中,朱静院士主要分享了开展第一个工作的研究进展。据介绍,上世纪六七十年代对凝聚态物质研究的主要思路是从对称性出发,来寻找体系中可测量的序参量;而到了八十年代,则出现了两大里程碑式的进展:其一是以拓扑绝缘体和分数霍尔效应为代表的一系列跳出了朗道-金茨堡理论的体系和现象,其二是高温超导的出现引出了所谓强关联电子体系。朱静院士团队在2013年完成了定量EMCD 的研究,利用电子显微学方法定量的测定材料中原子磁矩。有可能利用电子显微学方法测量“点阵、电荷、自旋、轨道、拓扑”序参量。同年,启动了题目为“铁性序参量的亚原子尺度协同测量及耦合机制”的973课题。近十年来,围绕测量方法、关联性、科学问题开展研究。代表作品包括徐坤博士的磁光材料研究(博士学位论文- 2021,文章/PNAS)、王泽朝博士的超导材料机制研究(博士学位论文- 2023,文章/Nature,Science) 等得到国际学术界的关注和认可。2023年,由朱静院士著作的《量子材料序参量和电子显微学》也将由科学出版社于2023年12月出版等。最后,结合实例,详细介绍了点阵序参量、轨道序参量、电荷序参量、自旋序参量、拓扑序参量等方面的最新研究进展。公司特邀报告人:赛默飞Dr. Eric van Cappellen报告题目:The latest trends in (scanning) transmission electron microscopy赛默飞首席专家Eric Van Cappellen首先追忆了与郭可信先生的渊源。郭可信先生和Severin Amelinckx教授都是电子显微学届的权威,两位也是多年的好友,而Eric的博士阶段便是在Severin Amelinckx教授课题组度过。随后,Eric介绍了在当前生命科学领域,随着对细胞和组织研究的进一步深入,体电子显微镜再次成为趋势,但传统体扫描电子显微镜并不能满足前沿研究的需求。而具有4种可切换离子源(Xe, Ar, N, O)的Hydra Bio Plasma-FIB,有效解决了传统体扫描电子显微镜Z与X-Y方向分辨率不同以及机械变形的问题,可用于冷冻或树脂包埋生物样品更精确的体积成像及冷冻透射电镜三维重构样品的制备。接着,Eric从电子光学的灵活性,数据收集的灵敏性,信息获得的有效性三个角度介绍了如何解决材料科学领域的应用难题——减少样品的电子束损伤。通过具体的案例,Eric介绍了赛默飞最新的基于AI的图像减噪,高通量高灵敏度低剂量Ultra-X能谱,适用于电子束敏感材料成像的iDPC等有效减少样品的电子束损伤的最新技术。公司特邀报告人:泰思肯Dr. Daniel Němeček报告题目:Improving phase and orientation mapping at the nanometer scale by precession-assisted 4D-STEM microscopyTESCAN集团STEM专家Daniel Němeček博士为大家分享最近热点的4D-STEM技术进展。近期发展起来的4D-STEM技术是一种基于纳米束衍射的强大分析方法,可以在纳米级的分辨率下解析和表征多晶材料中晶体相位分布和单个晶粒的取向。然而,由于实验设置的复杂性以及样品扫描与束闸、旋进和检测器同步读出的挑战,使得4D-STEM技术的广泛使用受到了限制。Daniel Němeček在报告中展示了一种快速获取和处理4D-STEM数据集的新方法,因为所需硬件组件都与高水平的系统自动化和优化算法完全集成,用户可以简单操作,实时处理数据,在新的多模态分析电子衍射显微镜下获取可视化结果。TESCAN与德国Julich的Ernst Ruska中心密切合作,通过一些开发的应用实例,展示4D-STEM测量的强大功能。此外,通过一个多晶铝箔的例子,展示如何结合同时获取的EDS数据进行多模态分析,从而改善4D-STEM相分析的准确性。该多晶铝箔添加了金纳米颗粒,这些纳米颗粒具有非常相似的晶格参数(98%)。大会特邀报告:纽约州立大学奥巴尼分校医学科学系高级研究员 隋海心 报告题目:初级纤毛的立体电子显微学研究回忆往昔,隋海心高级研究员是郭可信先生1996年毕业的博士生,之后从材料物理领域转到结构生物学领域,研究水通道蛋白,从用X射线晶体学方法转回用冷冻电镜进行解析,做出了一系列突破性成果,以“逆分辨潮流”方式,分辨率越做越低,样品尺度越做越大。纤毛在生物学中非常重要,分为可动和不可动两种。在通常的认知中,可动纤毛外面有9个双管,里面有2个单管,即9+2结构;不可动纤毛只有9个双管,即9+0结构。隋海心高级研究员用多层电子层析方法测定的初级纤毛的全长三维结构则推翻了不可动纤毛的9+0结构模型。隋海心高级研究员在报告中讲述了研究初级纤毛的背景、历程和一些心得。认为,文章不能全盘迷信,别人能做的自己不一定能做,另外,正如郭可信先生经常指导的“科研不要先入为主”,这样往往会误导后续的工作开展。大会特邀报告:东京大学教授 Naoya Shibata报告题目:MARS——New atomic resolution electron microscope for magnetic materials日本东京大学教授Yuichi Ikuhara 视频祝福报告开始,Naoya Shibata 首先播放了国际著名球差电镜专家、日本东京大学Yuichi Ikuhara教授带来的视频祝福,视频中,Ikuhara教授回顾了其1988年第一次访问中国时与郭可信先生的会面,从那时起开始与中国开展系列合作,也看到那时的许多学生成为两边国家高校和研究机构的主力,为中日之间的电子显微学交流做出巨大贡献,郭可信先生等科学家的愿望延续至今,期待能保持下去。接着,Naoya Shibata教授对原子级分辨率无磁场球差校正扫描透射电镜MARS的研发设计做了详细介绍。MARS由Naoya Shibata教授团队与日本电子合作开发,采用一种相反极性的前后反对称透镜设计,配合最新的五阶自动调整新型球差矫正器,使得样品可以处在完全无磁场的环境中,电镜仍然保证原子级的分辨率。此外,还可以搭载如电子全息、差分衬度STEM探测器(SAAF)、叠层衍射成像探测器(4D Canvas)、能量损失谱(EELS)以及大固体角EDS。这种多用途设计,使得该设备拥有巨大的应用前景。MARS对于磁性材料和器件来说是一款功能强大的电子显微镜,它的倾斜扫描可以减少DPC成像中的衍射对比度。接下来,MARS后续还将继续突破无磁场条件下的低温观测的挑战。大会合影留念
  • 2022年全国电子显微学学术年会一轮通知
    2022年全国电子显微学学术年会将于11月25 - 29日(25日报到,29日离会)在东莞市会展国际大酒店召开。2022年是中国电子显微镜学会(对外名义)成立四十二周年,《电子显微学报》创刊四十周年。在老一辈科学家引领下,中国电子显微学事业蓬勃发展至今;中青年学者赓续中国电子显微学者的优良传统,瞄准国家重大需求和国际前沿科学问题,不断为我国卡脖子难题的攻克贡献中国电子显微学者不可或缺的重要力量。本届年会的主题是“‘动’析显微新世界”。本届年会按材料科学与生命科学拟设立十个分会场,包含:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)低温电子显微学表征;9)生命科学显微成像技术研究;10)中国电子显微镜运行管理开放共享实验平台。本届年会学术交流内容包括:球差校正透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微学(包括STM、AFM等)、低温电子显微学和激光共聚焦显微学等。会议亦包含这些技术在前沿物理科学、化学、地学、生命科学、结构生物学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果;会议将展示显微学相关仪器理论、技术和实验方法的最新进展;会议将促进电镜及其他显微学仪器的共享、运行、管理、开放共享、实验平台使用、改进与维修的交流等。大会将邀请著名学者参加会议并作大会特邀报告和分会场特邀报告。大会还将邀请相关仪器设备的厂商做电镜和其他仪器的最新发展介绍及产品展示。会议将颁发优秀青年学者奖。会议将评选优秀学生论文奖与优秀Poster奖(请参会代表自带Poster)。会议将为第十三届中国电子显微摄影大赛获奖者颁奖。因疫情散发影响,具体安排见会议第二轮通知。电镜学会电子显微学报编辑部2022年10月8号
  • 世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač
    本文作者为捷克共和国Tescan Brno的Bohumila Lencová,摘译原文发布于2021年。今年,我们在布尔诺庆祝了捷克斯洛伐克首台电子显微镜生产70周年。Armin Delong描述的那些早些年间的事仿如昨日,如20世纪50年代末的一些往事、20世纪60年代年在布拉格举行的欧洲电子显微镜大会(EUREM)的情景,以及20世纪70年代的一系列论文的进展等。图1照片拍摄于1953年左右,照片上正是负责制造 Brno电子显微镜的三个年轻人,当时他们三位仅28岁就被授予当时最高级别荣誉勋章之一的“工作荣誉勋章”。参与电镜制造的还包括另外两名技术人员,但由于相对年长并没有呈现。同时,三位年轻人毕业所在系的系主任Ales Bláha教授也不在其中。正如Ladislav Zobač在回忆录中所描述,“我们并不确定自己是否应该得到这份荣誉,但军事学院为了让这一成果更加受到关注所以推动了这次荣誉授予。”当时,他们在该学院从事教学工作,而Delong和Vladimir Drahoš则刚开始各自的研究生学习阶段。图1从左到右:Armin Delong, Vladimir Drahoš 和 Ladislav Zobač1951年,军事学院接管了布尔诺理工大学的部分工作,迫使Bláha教授离开了布尔诺理工大学,并取消了他的教授头衔。随后,Bláha搬到Bratislava,在那里继续从事其教学和研究。留在军事学院或攻读博士学位是避免服兵役的一种安全方式,至少对Zobač来说是这样。Armin Delong, Vladimir Drahoš 和 Ladislav Zobač主要在Bláha建立的 Scientific Workshop工作,后来这里成为Tesla Elektronik的研发中心,随后成为捷克斯洛伐克科学院(CSAV)的研发中心,1957年又成为捷克斯洛伐克科学院科学仪器研究所(ISI)的一部分。在此要提一下Ferdinand Hercík院士,他从RCA获得了第一个商用显微镜。并向Armin Delong, Vladimir Drahoš 和 Ladislav Zobač三人展示了这台显微镜,因此他们成功地制作了一台质量与RCA显微镜相似的、最早的电子显微镜。除了仿造RCA设备之外,他们还设计了一个小型桌面显微镜。Hercík负责在Královopolská以及新建的Tesla工厂以南仅1公里的地方建造两所毗邻的学院,即生物物理学院和科学仪器研究所。他还积极参与了联合国和教科文组织的工作。在此也简要概述一下捷克斯洛伐克当时的时代背景。捷克斯洛伐克是1918年在一战后由前波希米亚、摩拉维亚、斯洛伐克(哈布斯堡君主制匈牙利部分的一部分)和后来被苏联吞并的喀尔巴阡乌克兰组成的,虽然只持续了20年,但在这期间经济实现飞速增长。1938年秋天,纳粹占领捷克和摩拉维亚之前,吞并了居住着近300万德国人的苏台德地区;战争结束后,他们被迫大量离开该国前往德国。1939年3月,第一个斯洛伐克分裂,建立了自己的法西斯国家,其余的波希米亚和摩拉维亚被占领。大屠杀使8万犹太人减少到只剩10%。这其中,很多教授是犹太裔,许多其他的捷克教授死于监狱和集中营。在整个战争期间,这些大学从1939年11月开始关闭。因为大部分国家是由苏联军队解放的,战争还迫使许多年轻人加入共产党。1947年,罕见的干旱开始蔓延,经济形势低迷,但是战后政府的共产党拒绝了马歇尔计划的帮助,并从苏联换取了极少的粮食;这导致了1948年2月的共产主义政变,使这个国家成为苏联的卫星国。同年晚些时候,由于被迫与社会民主统一,党员的人数有所增加。政府、工厂甚至大学大多由共产党候选人管理,并受到秘密警察和俄罗斯顾问的密切监督。1968年,随着经济的改善,人们期望国家会发生变化,向往“人性化的社会主义”,但最终被俄罗斯坦克所终结,后来就是大规模的移民。之后是“normalization”时期,许多改革派共产党人不仅被开除党籍,而且常被开除工作,这使他们的子女无法接受高等教育。在三位制造捷克斯洛伐克首台显微镜的人当中,Armin Delong教授最为突出。Armin Delong出生于1925年1月,在战后的第一年开始在布尔诺的理工大学(VTU)学习。在此之前,所有的大学都关闭了近六年。1957年,他(和Drahoš)获得了CSc(相当于博士学位);1969年,他获得了博士学位。他也是三人中最爱冒险的,也是唯一的党员。1961年,他成为该研究所的所长(此后该研究所的所有所长均来自该所电子光学系)。在下一次革命——天鹅绒革命之前,他一直担任所长。科学仪器研究所的其他部门包括核磁共振和冷冻核磁共振,以及用于测量的激光部门。1973年,他成为捷克斯洛伐克科学院的准会员,1981年成为捷克斯洛伐克科学院的正式成员。最大的电子光学系吸引了许多有才华的工程师和物理学家,包括一些博士生等,他们大多留在科学仪器研究所。他们继续进一步开发显微镜,并且与Tesla展开合作。唯一糟糕的决定是“tsar microscope”,由于机械和电气不稳定,以失败告终。而这个远大的目标是在距离有轨电车或无轨电车约50米的环境下,实现电镜分辨率尽可能接近1埃。20世纪60年代末,人们的兴趣转向了发射式电子显微镜(EEM),典型成果发表在《Nature》(1971年)和《Journal de Microscopie》上,并在电子显微学学术大会上多次提及。EEM包含超高压(UHV)样品室、两个磁性透镜和一个发射枪等。很多技术包含:离子轰击、样品加热、电子光谱等。超高压环境允许观察LEED模式,其尺寸与初始电子能量无关,相关成果在Nature、Optik中均有报道。Delong感兴趣的另一个方向是在超高压样品室中进行离子束注入和hemispherical LEED(和俄歇谱仪)。1969年,Delong成为自然科学学院固体物理系的外部负责人,任期三年。当Delong开始回归生活时,其对外的活动开始减少。他的大多数同事都是Delong的学生,其学生的大部分毕业论文主要关于EEM和表面物理。20世纪80年代末,Delong制作了一个5keV FEG微型TEM原型。Drahos的职业生涯持续得更顺利,他在电气工程学院以及BUT(现在的布尔诺理工大学)的仪器技术学院任教,用捷克语出版了两本书和几本学生读物。1964年,他被授予博士学位。1968年,他成为BUT的教授。在科学仪器研究所(ISI),Drahos任职电子光学部门的主管和ISI的副主任。他开发了由Tesla生产的X13系列高分辨率TEM,并开发了自己研制的BS500和540常规TEM。Drahos合作密切的同事是Jiří Komrska,其学生包括Michal Lenc和Josef Podbrdsky。Komrska成为“normalization”时期的受害者之一,因此无法指导学生。因此Komrska建议我在Delong的监督下取得毕业文凭。毕业后,我开始加入Drahoš的小组,Drahoš于1972年在曼彻斯特举行的欧洲显微镜大会上做了邀请报告并和Tom Mulvey和Eric Munro进行了对话。之后,他让我试着写一个有限元法程序,我在六个月内完成。我的第一个任务是改进BS500显微镜的性能,它没能和BS540一样运行。我很快发现,下极靴的畸形导致产生了一个附加场。我们也想开始设计一个新的TEM,但没能成功。Drahoš的工作是电子干涉、衍射、全息、反射衍射系统,他很讨人喜欢,关心同事。Drahoš和Delong都精通法语、英语、德语和俄语。1968年,因为研究所人数增长过快,增加到了260人,主楼扩建了一座楼。在苏联占领的头几天,布尔诺广播电台在这栋大楼里播放了几天,30年后才披露这件事,这一事件被称为兄弟会帮助,民主德国军队甚至错误地被纳入了计划,但他们在第一天的24小时内就撤出了。1974年,上级建议Tesla开始制造扫描电子显微镜。Tesla和科学仪器研究所同时在进行研发:Tesla搭建了一个带有热电子发射枪的系统;科学仪器研究所在Crewe的CwickScan的启发下,从冷场发射开始尝试。Delong曾经的学生Kolarik成为了首席设计师,他完成一个非常巧妙的设计,包含两个磁性透镜、浸入上部透镜中的FEG和配有Auger及EDAX光谱仪的超高真空样品室。传统的SE和BSE探测器的塑料材料不能用于超高真空,因此它被一种新型闪烁材料——掺YAG Ce单晶所取代,后来掺YAG Ce单晶也用于TEM屏幕。1978年冬天, Drahoš患了严重的流感,第二年春天,他被诊断出患有癌症,并于6月去世。Delong被逐出了布尔诺大学,之后开始在Olomouc举办讲座。后来在1978年,我们五个没有机会获得博士学位的人都被授予一个有趣的头衔——RNDr。不久之后,上级又提出了另一个要求,即东区需要改善半导体工业并使用电子束光刻技术。德意志民主共和国的耶拿开发了一个系统,该系统过大且超出了标准尺寸。1978年,Delong和Kolarik参加了多伦多举办的国际电子显微镜大会(ICEM),会上他们受到了更稳定的肖特基枪的启发。直到1982年,五人组第一次共同参加了汉堡举办的ICEM,在那里展出了FEG SEM。在此之前,我们与国外联系的唯一途径是通过Tom Mulvey的协助,他经常访问科学仪器研究所并与我们分享他的想法和会议记录。图2 Tesla公司生产的低温FEG SEM BS350,但由科学仪器研究所开发这些人中有两个人是例外。Jiří Komrska在1968年在阿斯顿大学待了几个月,Podbrdsky在20世纪70年代末在坦佩的亚利桑那大学度过了几个月。由于20世纪80年代初英国皇家学会交换计划(Royal Society Exchange scheme)的出现,Podbrdsky在英国待了一个月,甚至我也能在1987年去英国访问。1984年,电子束光刻系统(EBL)完成,其中有几台运到了苏联。它在15ke V电子束时电流为1μA,拥有6×6mm的视场、高达6.4×6.4μm的整形光束和0.1μm的分辨率。Tesla还为之前生产EBL的部分建造了一个技术博物馆,现在变成了精心组织的Brno显微镜展览。图2中的SEM也包括在其中。Zobač也在该研究所工作,他致力于引进特殊技术,如电子束焊接和超高压钛轨道泵等。这些技术是Delong公司超高压设备所需要的。Zobač也对医疗设备和冷冻技术感兴趣。后来,Zobač娶了一位科学仪器研究所出身的女士,并生下了一个儿子。Zobač现在仍在科学仪器研究所工作。2017年,Delong去世,Ladislav Zobač在Delong去世一年后逝世。许多人因为天鹅绒革命对科学仪器研究所提出批评,甚至试图赶走Delong。然而,1990年初,Delong成为捷克斯洛伐克的科学副总理。Delong的职业生涯并没有持续太久,因为这个国家分裂为捷克和斯洛伐克(斯洛伐克只有在二战期间才有自己的法西斯国家,历史上他们是匈牙利的一部分)。此外,由于科研经费大大减少,研究所的人数(260人)几乎少了一半。很多人逐渐认识到他们对应产品技术的市场潜力,甚至试图接管科学仪器研究所,而Tesla失去了大部分市场,之后被私有化并解体。我当时在国外的帝国理工学院待了三个月(1987年)。一年后,我被邀请到帝国理工学院学习半年,但只得到了三个月的支持。在TU Delft,我顺利得度过了三年,直到1991年秋天。1990年,在革命后的动乱中,Jiří Komrska成为科学仪器研究所的所长,但他于秋季辞职并前往BUT。紧随其后的是核磁共振部门的Josef Jelínek,他选Michal Lenc担任副手,但不到六个月就得了重病。1992年,Lenc去了理论物理系。Autrata教授在担任一年中级主管之后,成为科学仪器研究所所长,直到2006年去世。Sklenar、Kasal、Komrska、Lenc等几位教授在离开科学仪器研究所后开始了学术生涯,人数与留在那的教授相同。1994年,我开始在BUT的机械工程学院与Komrska在同一系兼职任教,指导16个研究生。2006年,我晋升教授。在完成最后一个项目后,我离开科学仪器研究所并开始在Tescan工作。接下来的两任研究所负责人是Ludek Frank和Ilona Mullerová。即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,布尔诺的电子显微镜时代也并未就此结束。1990年,市面上出现了三家公司,他们的员工来自Tesla和科学仪器研究所。最初,Tescan接管了Tesla的SEM部分,Tescan从最初的六个人成长到近百倍的规模。另一组约20人也成立了一家公司Delmi,并开始生产名为Morgagni的常规TEM,Delmi随后被飞利浦EO/FEI公司收购。2015年,FEI被赛默飞世尔科技公司收购。1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造了一些工作电压为5k eV透射电子显微镜,2014年后制造工作电压为25k eV(如图3所示)的透射电子显微镜并供给很多公司和机构。图3:LVE5和LVEM25,Delong Instruments生产的两个低压TEM2000年,EUREM在捷克布尔诺举办,2014年ICEM在捷克布拉格举办,曾有人称世界上大约30%的电镜在布尔诺生产,这使得布尔诺获得了“电镜谷”的称号。拓展阅读:世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 直播预告!iCEM 2022之原位电子显微学技术及应用专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“原位电子显微学技术及应用”专场预告(注:最终日程以会议官网发布为准)专场二:原位电子显微学技术及应用(7月26日下午)专场主持人:袁文涛 浙江大学 特聘研究员时间报告题目演讲嘉宾13:30--14:00纳米尺度氧化物相变的原子尺度原位电子显微学研究王建波(武汉大学电镜中心 教授)14:00--14:30基于扫描电镜和双束电镜的原位微反应系统吴伟(赛默飞世尔科技 电镜应用开发专家)14:30--15:00原位电镜中电、热、力、光外场的引入及在材料化学中的应用廖洪钢(厦门大学 教授)15:00--15:30蔡司跨尺度多模态原位实验解决方案高迪(卡尔蔡司(上海)管理有限公司 应用专家)15:30--16:00纳米金属变形机制的原位透射电镜研究钟立(东南大学 教授)16:00--16:30Fischione多尺度可控环境原位电镜样品制备解决方案赵颉(上海微纳国际贸易有限公司 经理)16:30--17:00基于扫描电镜的原位热力耦合测试仪器开发及其在镍基高温合金表征中的应用张跃飞(浙江大学 求是特聘教授)17:00--17:30催化材料表界面动态行为的原位电镜研究袁文涛(浙江大学 特聘研究员)嘉宾简介及报告摘要 武汉大学物理科学与技术学院、电镜中心、科研公共服务条件平台教授 王建波【个人简介】王建波,男,1975年4月出生,武汉大学物理科学与技术学院教授、高等研究院兼职研究员、珞珈学者特聘教授、博士生导师、武汉大学电子显微镜中心主任、中国晶体学会理事、中国电子显微镜学会常务理事、中国物理学会固体缺陷委员会委员以及湖北省电子显微镜学会理事长。主要从事固体材料超微结构表征方向的研究工作,利用先进的球差校正及原位电子显微学,结合第一性原理计算等针对微纳尺度材料结构缺陷的原子尺度表征、演变及调控开展系统深入的研究工作,取得一系列重要研究进展和成果。近年来,在Nature、Nature Communications、Physical Review Letters、Advanced Materials等国际知名学术期刊发表SCI论文185余篇,论文被正面引用4700余次,H因子37。主持与参与包括6项国家自然科学基金、1项973纳米专项、教育部“新世纪优秀人才支持计划”、湖北省青年杰出人才基金等。作为第四完成人获得湖北省自然科学一等奖,获得湖北省第5届和武汉大学首届优秀博士论文奖、湖北省第16届优秀博士学位论文指导老师奖、武汉大学第九届“我心目中的好导师”荣誉称号。担任国内电子显微学权威期刊《电子显微学报》杂志第七届执行主编、第五届、第六届编委;担任国内物理学权威期刊《大学物理》杂志的第十届编委。在国际国内重要学术会议上做邀请报告90余次。报告题目:纳米尺度氧化物相变的原子尺度原位电子显微学研究【摘要】 纳米尺度氧化物会在尺寸效应下发生相变,对于ZnO、CuO等氧化物的功能具有显著影响,通过原位透射电子显微学进行原子尺度的研究,并结合第一性原理计算,有效揭示其相变机理。 厦门大学教授 廖洪钢【个人简介】中美联合培养博士,厦门大学化学系教授、博士生导师,国家高层次青年人才,厦门超新芯科技有限公司创始人。报告题目:原位电镜中电、热、力、光外场的引入及在材料化学中的应用【摘要】 在过去近90年,在高分辨和高衬度成像两方面所取得了巨大进展, 而液体和气体环境中的原位透射电镜研究近十年才得以实现。其中的一个主要原因是电镜的整个光路系统需要在高真空中运行,气液体环境在电镜中不易实现。通过使用微纳加工制备的原位芯片,可以实现高分辨率的实时原位观察多种纳米晶体在溶液中的成核生长及形貌演变过程。目前通过开发制备的原位芯片及配套系统还可同时引入光、电、热、力等外场。通过对液体池芯片中封存的电解质液体施加电位,高分辨率的实时观察溶液多种电化学动态过程,包括电催化、储能过程等。原位液相电镜可从原子分子尺度高分辨实时成像并获取相关材料电化学固液界面结构及价态的高空间分辨率信息,为深入研究化学、材料基础及应用提供了一个新的视角。 东南大学教授 钟立【个人简介】钟立,东南大学青年首席教授,国家高层次青年人才。长期从事纳米材料应力应变下的微观结构演变机理和物性调控机制研究以及先进原位透射电子显微技术研发,在非平衡材料制备、原位力学性能测试等领域实现技术创新,以第一作者或通讯作者在Nature、Nature Materials、Nature Communications、Advanced Materials等学术期刊发表论文,他引4000余次,入选江苏省双创人才。报告题目:纳米金属变形机制的原位透射电镜研究【摘要】 随着微/纳机电系统(M/NEMS)的不断小型化,许多器件的结构单元尺寸已进入纳米尺度。在该尺度下,由于尺寸效应和表面效应,纳米材料通常表现出与其宏观尺度下截然不同的物理化学性质。探究纳米材料的新异力学行为及相关机制既可以完善金属力学相关理论,也可为新型微纳器件的设计和材料选择提供依据。报告将介绍基于原位透射电镜的纳米力学测试技术及其应用于纳米金属蠕变、位错变形、孪生变形等机制研究的相关成果。浙江大学求是特聘教授 张跃飞【个人简介】张跃飞:男,博士,浙江大学材料科学与工程学院求是特聘教授,博士生导师。中国科协求是杰出青年科技成果转化奖获得者,北京市长城学者,美国麻省理工学院核科学与工程系访问学者,香港城市大学高级研究员。长期从事原位电子显微学相关方法与仪器开发,并致力于原位高温微观力学性能表征方法研究,开发的扫描电子显微镜原位高温力学性能测试系列化仪器,为先进材料的研发提供新设备、新技术、新手段。先后主持和参与完成了“973”“863”和国家重大科学仪器专项、国家自然科学基金和北京市自然科学基金10余项。发表论文150余篇,授权发明专利20余项。研究成果曾获国家自然科学二等奖、北京市科学技术奖一等奖、入选中国高等学校十大科技进展等。报告题目:基于扫描电镜的原位热力耦合测试仪器开发及其在镍基高温合金表征中的应用【摘要】 热力及其耦合作用是金属、陶瓷、复合材料等在热处理、烧结、加工过程中调控微观结构特征的主要外场条件,也是影响高性能结构材料服役性能的主要环境因素。 扫描电镜原位高温拉伸、蠕变、疲劳测试仪器的开发,实现了从纳米到宏观尺度深入研究材料在高温受力条件下微观结构、长时间结构演化与力学性能间定量化关系,是优化材料制备工艺、质量检测、服役寿命评估、安全性评价重要的科学手段。 报告将介绍基于扫描电镜原位高温拉伸、蠕变、疲劳测试仪器研发最新进展和原位表征方法发展的最新进展,以及在镍基高温合金研究中应用的最新成果。袁文涛 浙江大学 特聘研究员【个人简介】袁文涛博士,现任浙江大学材料学院“百人计划”研究员,博士生导师。2017年在浙江大学材料学院取得博士学位,之后分别在浙江大学化学系和材料学院进行博士后研究,期间曾赴丹麦技术大学访学。2021年9月加入浙江大学材料学院张泽院士/王勇教授研究团队。主要从事气氛环境下的纳米材料表界面的显微结构与性能研究。致力于通过环境透射电镜、大气压气体样品杆+球差校正透射电镜等先进原位电子显微学手段,在原子尺度下探索纳米材料表界面对外场环境(气氛、温度等)的响应规律,揭示使役环境下催化材料等表界面结构与性能的内在关联,为高性能纳米材料的表界面设计提供实验依据。近年来,先后在Science,Angew. Chem.,ACS Catal.,Nano Lett.等著名期刊发表SCI论文40余篇。报告题目:催化材料表界面动态行为的原位电镜研究【摘要】 随着材料尺寸减小,表界面原子所占比例显著增加,因此纳米催化剂的表界面对其性能起着主导作用。尽管目前通过各种手段可以获得催化材料表界的一些重要信息,但是对于气氛环境下催化材料表界面行为的认知还非常有限。原位电子显微学技术的发展为我们在原子尺度原位研究外场环境作用下材料结构的动态演变提供了前所未有的机遇。本报告主要介绍我们课题组近年来利用原位电子显微学手段对催化材料表界面的原位动态研究工作。赛默飞世尔科技电镜应用开发专家 吴伟【个人简介】赛默飞世尔科技扫描电镜和双束电镜资深产品专家,有超过十八年电镜应用经验,为聚焦离子束双束电镜,超高分辨率扫描电镜和环境真空扫描电镜提供技术支持,擅长低电压扫描电镜技术对介孔分子筛的表征以及运用双束电镜对锂电池正负极及隔膜材料的三维表征,镀膜包覆,界面和传质分析,在加入赛默飞公司之前在中国科学院上海硅酸盐研究所分析测试中心工作了10年,为SEM,FIB,EPMA,EBSD,EDS,WDS,CL提供技术支持,期间发表电镜应用相关专业文章20余篇,撰写《低电压扫描电镜应用技术研究》和《扫描电镜和电子探针的基础》专著2篇,参与3项电镜、电子探针以及能谱仪相关国家标准制定。报告题目:基于扫描电镜和双束电镜的原位微反应系统【摘要】 材料合成中的反应温度以及反应气氛均会影响材料显微结构,从而决定材料最终性能。随着新材料的发展,迫切的需要精准地调节材料合成工艺中的“温度”和“气氛”这两个最重要参数。基于扫描电镜和双束电镜的原位微反应系统具备原位气氛加热功能,其低热漂移设计,实现在1200℃高温下,实现高分辨率SE/BSE成像,也可以实现高分辨率STEM、EDS和t-EBSD分析。卡尔蔡司(上海)管理有限公司应用专家 高迪【个人简介】硕士毕业于北京工业大学,2017年至今在蔡司显微镜部工作,在电子显微学及微纳加工等相关领域有多年工作和学习经验,为国内近百余客户进行了应用培训和成像演示工作,协助用户解决SEM及FIB应用问题。熟悉SEM和FIB在材料科学、化学物理、半导体科学等领域的应用。报告题目:蔡司跨尺度多模态原位实验解决方案【摘要】 原位实验作为材料表征的重要手段,可以将材料性能和微观结构联系起来,而材料的性能与尺寸又密切相关,所以在不同尺度对材料进行原位研究就显得尤为重要。蔡司可以提供从纳米到厘米,从二维到三维,从制样到表征再到分析的全套原位实验解决方案,助力解决材料科学研究中不同尺度下的原位实验难题。上海微纳国际贸易有限公司经理 赵颉【个人简介】理学博士,毕业于北京工业大学固体微结构与性能研究所,主要研究方向是金属材料塑性变形中的电子显微结构及其变形机理。在电子显微学领域具有超过十年的应用经验,了解多种电子显微学分析方法及制样技术。目前任职于上海微纳国际贸易有限公司,负责Fischione品牌电镜制样相关及原位分析设备的推广与销售。报告题目:Fischione多尺度可控环境原位电镜样品制备解决方案【摘要】 随着电子显微学技术的发展,以及对新能源材料的研究越来越深入,电镜样品制备作为电子显微学研究的前提条件,显得尤为重要。由于新能源材料往往对于水氧具有很高的敏感性,因此如何在多尺度下制备水氧敏感的电镜样品就成为当前重要的技术问题。Fischione提供了多尺度下可控环境的原位电镜样品制备解决方案,来满足扫描电镜、透射电镜的可控环境的无损样品制备需求。
  • 活动 | 徕卡将亮相 2019 年全国电子显微学学术年会
    2019 年全国电子显微学学术年会将于 10 月 15 - 19 日在合肥丰大国际大酒店召开。大会主题本届年会的主题是“中国电子显微学快速发展的新时代”,本届年会将设立材料科学与生命科学分会场,材料科学分会场包含:显微学理论、技术与仪器发展原位电子显微学表征能源、环境和信息等功能材料的微结构表征结构材料及缺陷、界面、表面,相变与扩散先进显微分析技术在工业材料中的应用扫描探针显微学分会场(STM / AFM 等)扫描电子显微学(EBSD)表征低温电子显微学表征分会场生命科学研究分会场生物电镜技术分会场会议信息会议时间:2019 年 10 月 15 - 19 日会议地点:合肥丰大国际大酒店主办单位:中国电子显微镜学会徕卡报告用于扫描电镜的低温冷冻制样及传输技术报告人:程路报告人:徕卡高级应用专家时高间:10 月 16 日 14:50 - 15:10地告点:第三会场徕卡连续切片和光电连用的最新进展报告人:张天庆报告人:徕卡产品经理与应用专家时告间:10 月 17 日 15:55 - 16:15地告点:第九会场会议主要内容会议学术交流内容包括球差透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微镜(包括 STM、AFM 等)、低温电子显微学和激光共聚焦显微学等。会议并包含这些技术在前沿物理科学、化学、地学、生命科学、结构生物学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果;会议并将展示最新进展的显微学相关仪器理论、技术和实验方法;最后,会议将促进电镜及其它显微学仪器的使用、改进与维修经验的交流等。徕卡看点此次电子显微学学术年会现场,徕卡将为您带来材料科学与生命科学领域的相关产品。徕卡将参加能源、环境和信息等功能材料的微结构表征分会做分会报告,主要介绍徕卡新颖的高分辨冷冻扫描电镜及真空传输技术;为您的电镜样品提供全套高端制备技术解决方案。随着扫描电镜技术的普及,有越来越多的高端应用需求被提出,如对含水样品,锂电池类易氧化样品,水凝胶样品等化学样品进行扫描电镜观察。在过去,由于技术手段限制,只能用扫描电镜观察不含水耐受真空类样品;而现在,借助徕卡真空(冷冻)传输系统,我们实现高分辨率冷冻扫描电镜技术,从而对上述各类挑战样品都可实现扫描电镜观察,甚至可实现冰冻样品 EBSD 分析。与冷冻样品 EBSD 相关的制样流程:Leica EM VCM 冷冻工作站▼Leica EM TIC3X 离子切割仪▼Leica EM ACE600 冷冻镀膜▼Leica EM VCT500 真空冷冻传输徕卡将参加生命科学显微成像技术研究分会场做分会报告,主要介绍徕卡连续切片和光电连用的最新进展,为您提供生物样品三维重构及冷冻光镜电镜联合的新的整体解决方案。传统的生物透射电镜制样,只能看到整个样品的其中几张切片,而无法窥其全貌。Leica EM ARTOS 3D 连续超薄切片机,可自动创建和收集数百个超薄 ( 20 nm) 连续切片,最后使用 SEM 或光学显微镜(通常荧光成像情况)对结构上具有连续性的切片进行成像,合成图像以进行 3D 重建和分析。可以获得的有效信息包括单位结构的定量、体积分析和细胞 / 蛋白的形态学数据等。光镜电镜关联是指对同一样品进行荧光成像(FLM)和电镜成像(EM)。徕卡 EM Cryo CLEM 冷冻光电联用系统,实现对同一样品位置,在冷冻状态下,集荧光显微图像快速扫描定位与高分辨率电镜图像于一体。后期还会推出高分辨的 EM Cryo THUNDER CLEM 和 EM Cryo Confocal,敬请期待。应用在生命科学领域的电镜产品:SP8 STED 纯光学纳米显微镜▼EM ARTOS 3D 连续超薄切片扫描电镜 3D 成像制样▼EM GP2 载网投入式冷冻电镜制样▼EM Cryo CLEM 冷冻式光电联用
  • 共讨电子显微学技术新进展——2017年度北京市电子显微学年会召开
    p    strong 仪器信息网讯 /strong 2017年12月19日,一年一度的“2017年度北京市电子显微学年会”在北京天文馆4D科普剧场如约召开。200余位电子显微学相关技术及应用专家学者、厂商代表等不畏严寒,参加了本次年终电镜学术交流会。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/57fdadf7-cb1e-4e55-8dcf-9e79e2bb935f.jpg" title=" IMG_3409.jpg" / /p p style=" text-align: center "    strong 大会现场 /strong /p p   年会由北京市电镜学会、北京理化分析测试技术学会主办,旨在推动北京及周边省市广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流。 /p p   按照惯例,年会邀请多位相关专家学者做了电镜技术的最新进展、电镜技术的应用探究等报告,同时也请电镜仪器、能谱仪器供应商,以及电镜样品制备设备供应商介绍了最新的电镜及相关仪器技术的最新进展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/f41b63a1-e249-4e47-8a33-9a5f6e122e65.jpg" title=" IMG_3529.jpg" / /p p style=" text-align: center " strong 北京市电镜学会秘书长张德添主持会议 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/a2ee5532-6aa3-4170-a58b-1929b9189d60.jpg" title=" IMG_3397.jpg" / /p p style=" text-align: center " strong 中国科学院理化技术研究所 副研究员 张申金 /strong br/ /p p   据张申金介绍,长期以来,深紫外波段缺乏实用化、精密化激光源,制约了深紫外科学仪器和前沿研究的发展,而深紫外全固态激光相比其他光源有诸多优势,这些优势则为相应新型科学装备的发展提供了新技术。2007-2012年,财政部国家重大科研装备研制项目中,开始了对我国深紫外波段装备在相应科研应用领域“第一桶金”的挖掘。中科院理化所就承担了其中材料及器材等方面的攻关工作。经过多年的努力,实现原创性、高质量KBBF晶体小批量生产和高抗损伤棱镜耦合器件的研制成功。将光发射电子显微镜的观测精度拓展到纳米尺度空间分辨率,能量分辨率实现了近量级的提高,推动了相应仪器行业科技的进步。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/1cceea45-bd79-4ccc-8d17-f9a838c944e9.jpg" title=" IMG_3444.jpg" / /p p style=" text-align: center " strong Gatan公司 雷运涛 /strong /p p   雷运涛介绍了两款Gatan透射电镜新产品,Rio系列CMOS相机和Elsa冷冻传输样品杆。Rio相机是唯一一款CMOS相机,把通常的“高性能”标配到了常规的TEM成像和原位应用中,特点包括:实时观察,稿时间和空间分辨率的全视场成像,采集高速、原位事件等。Elsa冷冻样品杆用于高分辨冷冻电镜和冷冻断层成像的新一代冷冻传输样品杆,特点包括:长时间、无人值守数据采集,断层成像期间通过调整重心减小回归稳定的时间和漂移等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/1e709f96-6093-49f2-8a3c-01d663f1f058.jpg" title=" IMG_3465.jpg" / /p p style=" text-align: center " strong 中国疾控中心病毒病预防控制所 副研究员& nbsp 宋敬东 /strong /p p   实验室常用的病毒检测技术包括核酸检测,抗原、抗体检测,组织细胞培养、组织病理,形态检测等。其中TEM检测病毒具有快速(条件具备情况下10-15min内可完成检测)、开放性视野、全息捕获、非核酸序列依赖、非蛋白信息依赖等优势。宋敬东介绍到,电镜技术对于鉴定新病原体或未知病原体是必不可少的。TEM检测过程中,病毒样本的采集及样本制备对于检测成败至关重要,而且整个过程始终要有生物安全意识及相应措施,另外,为达到更好地检测结果,电镜技术还需与其他检测方法、技术联合应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bc0dfa1d-fdc5-44fd-b246-efe8257614b6.jpg" title=" IMG_3504.jpg" / /p p style=" text-align: center " strong 蔡司中国 显微镜部 任祺君 /strong /p p   蔡司公司可提供从cm到nm等多尺度、从成像到全面分析等多功能关联显微镜平台。任祺君主要介绍了其中的SEM-Raman关联显微镜系统,该系统可在不同测试手段之间精确定位样品的同一位置,并关联数据,保持样品在同一环境等。可实现对材料的多性能表征,获得材料形貌、物理、化学、结构等全面信息,并且能对材料进行原位改性与测试。具体材料检测应用案例介绍包括聚合物、石墨烯、TMDs、Li电池等。最后表示,未来仍然有更多电镜多功能扩展及应用的开发,如SEM-XNOM等等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/c25b13df-77ab-4e45-ada8-154816e51330.jpg" title=" IMG_3585.jpg" / /p p style=" text-align: center " strong 石油化工科学研究院 郑爱国 /strong /p p   郑爱国等利用多种电子显微方法对比研究了新鲜和卸载的工业TS-1分子筛,研究发现:失活TS-1分子筛上Ti的存在形式上发生了显著变化,存在明显的Ti元素聚集,主要有三种聚集形式:无定型TiO2、晶体形式TiO2以及晶体-无定型和壳结构的TiO2。这些非骨架Ti的存在形式的发现,进一步加深了对TS-1分子筛工业失活过程的理解。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/7581538d-5a2e-4e2e-9523-3b8f171ba6d7.jpg" title=" IMG_3597.jpg" / /p p style=" text-align: center " strong 天美公司& nbsp 高敞 /strong /p p   高敞主要介绍了日立电竞四款新产品,120kV透射电镜HT7800、高性能双束NX5000、台式扫描电镜TM4000、高分辨冷场扫描电镜Regulus系列。TM4000具有分辨率显著提高、导航功能方便操作等特点。Regulus系列则在高分辨的基础上可实现扫描电镜和原子力显微镜联用,两种测试方法样品台坐标共享、同一视野观察分析等。HT7800特点包括:高速CMOS荧光屏相机、第二代双缝吴京、TMP真空系统等。NX5000特点有高亮度冷场发射电子枪与复合电透镜的完美组合、配备多个SEM电子光路内探测器、超大样品仓以及高稳定样品台等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/4916f888-48e1-418d-a5bc-2aae1f33aa0a.jpg" title=" IMG_3643.jpg" / /p p style=" text-align: center " strong & nbsp TESCAN公司 顾群 /strong /p p   当前,电子显微学正朝着高分辨、原位、分析三个方向发展,在此背景下,TESCAN公司提出构建电子显微镜-分析、表征综合平台,即性能最强大的显微综合分析平台——All In One,如FIB-SEM-TOF-SIMS一体化分析系统和电镜-聚焦拉曼一体化分析系统。顾群主要介绍了电镜-聚焦拉曼一体化分析系统,该系统将两种分析手段的优势集成到一起,避免了单独使用中的一些不足。该一体化分析系统的应用实例包括碳材料分析(石墨烯复合材料)、有机材料解析(PMMA与PS共聚物)、无机相分析(岩浆岩)、结构及结晶度分析等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3273cbe5-c211-4ea0-ae1b-b4db20f40c46.jpg" title=" IMG_3686.jpg" / /p p style=" text-align: center " strong 清华大学 教授 雷建林 /strong /p p   雷建林主要介绍了当下热门的冷冻电镜技术的发展现状、我国目前相关研究现状,以及国内取得的相关研究进展。他认为冷冻电镜技术的应用必然会更加普及,对于重要生物大分子的结构解析,各科研团队之间的竞争将更加白热化。但目前仍面临诸多技术挑战:如何获得生物大分子结构在细胞乃至组织原位的更接近生理状态的精细结构信息?如何获得生物大分析动态结构信息?超大规模数据的快速处理?如何将冷冻电镜技术与其他技术,如超分辨荧光显微技术、质谱技术、测序技术等有机结合?如何发展更成熟的MicroED技术等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/1f2ad483-6ca7-48af-8e0c-88ef98f6844d.jpg" title=" IMG_3765.jpg" / /p p style=" text-align: center " strong 捷欧路公司 袁建忠& nbsp /strong /p p   袁建忠主要介绍了日本电子电镜产品及技术的最新发展情况。高端透射电镜方面主要介绍了单色器、球差校正NEO ARM、球差校正GRAND ARM、冷冻透镜CRYO ARM等。常规场发射透射电镜主要介绍了JEM-F200(自动换样、冷场枪、超级能谱等特点)、JEM-1400Flash(一体化CMOS相机、光镜电镜一体化等特点)、JSM-IT500、JSM-7900F等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/99055fd6-b43d-4302-8458-8f255528c09a.jpg" title=" IMG_3777.jpg" / /p p style=" text-align: center " strong & nbsp 天坛医院 张 琪 /strong /p p   张琪主要介绍了儿童颅脑肿瘤的病因、发病机理,及常见颅脑肿瘤分类和超微结构特征。最后分享了儿童颅脑肿瘤的预防,包括远离辐射、小心药物滥用、健康饮食等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/39b53adf-a03e-4013-bf40-360c9dd3cd4a.jpg" title=" IMG_3793.jpg" / /p p style=" text-align: center " strong & nbsp 布鲁克公司 禹宝军 /strong /p p   禹宝军主要介绍了布鲁克在显微学领域的几款重磅产品及新技术。平插式能谱FlatQUAD可实现小于10pA极低束流下表面粗糙生物样品分析。通过芯片环形、置于电镜极靴和样品之间、电子束从中心孔穿过等设计,使SEM、EDS达到最大固体角,高达近1.2sr。可应用于低电压分析纳米结构材料、超大计数率快速大面积mapping。接着介绍了纳米尺度EBSD分析的优秀解决方案——OPTIMUSTMTKD、透射电镜扫描电镜中原位定量纳米力学测试系统、最新AFM技术PeakForce SECM——纳米尺度扫描电化学显微镜和原位溶液下电学性质表征等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/05e85922-a72a-4f41-9b5d-c1806f295e25.jpg" title=" IMG_3812.jpg" / /p p style=" text-align: center " strong 中科院物理所 研究员 李建奇& nbsp /strong /p p   时间分辨透射电子显微镜也称为四维超快电子显微镜(4D-UTEM)或动态电子显微镜,是近期发展起来的一种新型电子显微技术,是超快激光和高分辨电子显微术有机结合的产物,超快电子显微术已经成为国际超快结构动力学和电子显微学的前沿领域。据李建奇介绍,4D-UTEM可以在极高时间(皮秒至飞秒)和空间分辨率(纳米至埃)下观察材料中复杂的瞬态动力学过程,是研究物理、化学、生物以及材料科学中许多基本现象和机理的重要技术手段。其团队以现代电子显微镜为平台,在多功能电子枪研制中取得了突破,并成功将超快激光引入到电子枪阴极和样品室中,实现了超快光电子脉冲的发射与样品的超快激光激发。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bd720686-fcc0-42b1-b75b-344078c55981.jpg" title=" IMG_3842.jpg" / /p p style=" text-align: center " strong 赛默飞世尔公司 潘锡江& nbsp /strong /p p   电镜在生命科学领域的研究对象主要是蛋白质和细胞,其中结构生物学、细胞和组织都是研究的热点。而大容量三维成像技术是这一领域的重要研究工具。近年来随着自动化技术的发展,该技术发展很快,在神经生物学、细胞间相互作用、亚细胞间动态过程、药物筛选等领域发挥了重要作用。报告中潘锡江重点介绍了赛默飞世尔的Cryo-FIB TEM薄片样品条件下,原位冷冻断层成像技术在生命科学中的应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/f0b43852-90a0-4116-84dd-72e601937acf.jpg" title=" 11.jpg" / /p p style=" text-align: center " strong style=" text-align: center " 程路(左),张艾敬(右) Leica公司 /strong /p p   徕卡公司显微系统资深应用专家程路/张艾敬共同介绍了徕卡电镜制样方案在材料与生命科学领域的应用。报告中,程路首先从材料科学领域角度介绍了徕卡全面的电镜制样方案。多种制样方案可应对各种类型的SEM/EBSD/AFM/OM样品的分析,另外,一种样品也可采取不同仪器和方案处理达到制样要求。接着,张艾敬介绍了徕卡电镜制样方案在生命科学领域的应用情况,并重点讲解了高压冷冻应用中的高压冷冻+冷冻替代(常温TEM)、高压冷冻+激光共聚焦(光电联用)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/83496587-4178-4272-ac6c-6218a08b2812.jpg" title=" IMG_3894.jpg" / /p p style=" text-align: center " strong 北京大学分析测试中心 高级工程师& nbsp 鞠晶& nbsp /strong /p p   鞠晶主要介绍了关于Oneview相机在原位实验中的一系列应用。首先进行透射电镜原位液体观察,实时观察在溶液中进行的化学反应,在表面活性剂包覆的金纳米棒手性组装体研究中发现,溶液样品具有光学手性相应,且在TEM中观察到螺旋排列结构。同时,还进行了在不同反应气氛、原位加热、三维电子衍射等相关电镜原位技术研究。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/224f0107-8207-4577-9ee5-15a075274caa.jpg" title=" IMG_3922.jpg" / /p p style=" text-align: center " strong 牛津仪器公司 杨晓鹏& nbsp /strong /p p   杨小鹏主要介绍了近来牛津仪器在能谱仪、EBSD探测器方面推出的革命性产品和技术。能谱仪方面,牛津仪器推出了新的能谱方式——实时能谱AztecLive,相比传统能谱的顺序完成样品移动和采集,AztecLive可实现同时完成样品移动和采集,达到实时采集电子图像、元素分布。如此,样品移动时,可得到动态总谱图,定性元素 样品静止时,得到更详尽的元素面分布图,这样就避免了错过任何感兴趣的区域。同时,AztecLive得到了更快硬件Ultim Max EDS探测器、新一代处理器X4的支持。使得整体能谱仪产品达到更高效、更方便、更准确的效果。接着,EBSD探测器方面,基于CMOS技术的Symmetry探测器达到比基于CCD技术最多快30倍的惊人效果,是一种集高速(与3000点/秒)、高灵敏、高分辨于一身的新一代EBSD探测器。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/208b2dca-7d7b-4a0c-817b-65905bf493d9.jpg" title=" 00.png" / /p p style=" text-align: center " strong 仪器展览一角 /strong /p
  • 1298万!赛默飞世尔中标中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目编号:OITC-G230562381 (招标文件编号:OITC-G230562381 )二、项目名称:中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目三、中标(成交)信息供应商名称:北京华泰长润科技发展有限公司供应商地址:北京市朝阳区北辰西路69号三单元1203号中标(成交)金额:1298.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京华泰长润科技发展有限公司 等离子聚焦离子束扫描电子显微镜 赛默飞世尔科技公司等 Helios 5 Hydra CX 1套 ¥12,980,000.00(总价) 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院生物物理研究所     地址:北京市朝阳区大屯路15号         联系方式: 010-64888443       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550            3.项目联系方式项目联系人:李媛 吴旭 冯宇图 liyuan@oitc.com.cn电 话:  李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550
  • 通知:第七届电子显微学网络会议iCEM 2021全日程公布
    仪器信息网讯 2021年6月22-25日,由仪器信息网(www.instrument.com.cn) 主办,中国电子显微镜学会(www.china-em.cn)协办的“第七届电子显微学网络会议(iCEM 2021)”将继续线上举办。目前50位专家报告内容已全部确认,现将全日程公布,以飨读者。电子显微学网络会议(iConference on Electron Microscopy,iCEM)由仪器信息网于2015年在业内首次发起,旨在促进中国电子显微学领域仪器技术及前沿科学研究的发展,利用互联网技术为国内的广大电子显微学科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到电子显微学专家的精彩报告,节省时间和资金成本。iCEM 2021将围绕当下电子显微学研究及应用热点,邀请知名电子显微学专家组织报告,分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,共邀请50位业界知名电镜研究、应用专家、电镜仪器技术专家为大家线上分享精彩报告。主办单位:仪器信息网协办单位:中国电子显微镜学会会议时间:2020年6月22-25日,共四天会议形式:网络在线报告、答疑官网报名:https://www.instrument.com.cn/webinar/meetings/icem2021/同期活动:100+往届报告视频回放合集上线、参会分享领取仪器信息网电镜资料包(见文末介绍)会议联系:杨编辑 15311451191(同微信)会议全日程如下(详细专家简介、报告摘要见会议官网)分会场Sessions时间 Time报告题目Topic演讲嘉宾The Speakers电子显微学技术及应用进展(06月22日)09:00四维电子能量损失谱高鹏(北京大学 )09:30新型多离子源双束电镜的在三维大尺寸微观表征中的应用韩伟(赛默飞世尔科技)10:00电子背散射衍射标定方法研究曾毅(中国科学院上海硅酸盐研究所)10:30赛默飞扫描电镜技术新进展及应用管玉鑫(北京欧波同光学技术有限公司)11:00透射电镜原位原子尺度力-热-电研究平台及其应用李志鹏(北京工业大学)11:30冷冻电镜观察辐照敏感电池材料与界面王雪锋(中国科学院物理研究所)原位电子显微学技术及应用(06月22日)14:00原位表征在电子信息领域的应用孙立涛(东南大学 )14:30日立环境球差校正电镜HF5000在催化领域的应用曾超斌(日立科学仪器(北京)有限公司)15:00氧化物纳米材料在外场中的结构演变过程研究王建波(武汉大学电镜中心)15:30Fischione多尺度可控环境原位电镜制样解决方案介绍衡潘(上海微纳国际贸易有限公司)16:00Low-energy transmission electron diffraction and imaging of large-area graphene柳鹏(清华大学)16:30扫描电镜原位高温成像研究进展与应用张跃飞(北京工业大学 )先进电子显微学技术及应用(06月23日)09:00基于高速相机4DSTEM大数据的超高分辨(Ptychography)叠层电子衍射成像技术王鹏(南京大学)09:30新型四维超快电子显微镜技术及应用付学文(南开大学)10:00面向超微病理样品的全自动、高通量电镜成像解决方案何伟(聚束科技(北京)有限公司)10:30飞纳台式扫描电镜最近技术进展及飞纳全自动台式扫描电镜 Particle X 的应用刘晓龙(复纳科学仪器(上海)有限公司)11:00离子束对磁性斯格明子密度的调控张军伟(兰州大学)11:30能源材料的原位生长及性能研究林岳(中国科学技术大学)电镜实验操作技术及经验分享(06月23日)14:00透射电镜标准测试分析方法的软件功能拓展初探马晓丽(上海交通大学材料科学与工程学院)14:30生物医学透射电镜样品制作失败案例分析陈明霞(西安交通大学)15:00透射电子显微镜下样品的常用制备技术马秀梅(北京大学物理学院电子显微镜校级公共平台)15:30高时空分辨原位电子显微技术在材料科学中的应用习卫(天津理工大学电镜中心)16:00EBSD技术在材料科学研究中的应用孟利 (钢铁研究总院)电子显微学技术在材料领域应用(06月24日)09:00Cu2Se基热电材料微结构的电镜研究吴劲松(武汉理工大学)09:30FE-SEM在材料领域的应用成华秋(捷欧路(北京)科贸有限公司)10:00科技与高端制造业变革李晓旻(胜科纳米(苏州)有限公司)10:30微纳加工在材料领域的应用李景(泰思肯(中国)有限公司)11:00脱合金纳米多孔金属原子尺度结构特性刘攀(上海交通大学)11:30MFI沸石晶体生长过程研究鞠晶(北京大学 )12:00午歇午休音乐(午休)14:00Nb0.8CoSb中短程有序结构的电子显微学研究葛炳辉(安徽大学)14:30超轻元素的电子探针分析赵同新(岛津企业管理(中国)有限公司)15:00阴极发光成像技术的发展及其在表征半导体材料研究中的作用Sangeetha Hari(荷兰Delmic公司)15:30FIB 3.0技术在显微学领域的应用曹丽洁(卡尔蔡司(上海)管理有限公司)16:00工业催化剂中助剂的结构与分布蒋复国(北京低碳清洁能源研究院)16:30新型二维材料的精细本征缺陷结构表征与材料物性关联的研究林君浩(南方科技大学 )17:00透射电子显微术在炼化材料领域的应用郑爱国(中石化石油化工科学研究院 )电子显微学技术在生命科学领域应用(06月25日)09:00H2A.B和H2A.Z.2.2开放核小体的冷冻电镜结构朱平(中国科学院生物物理研究所)09:30冷冻电镜成像技术最新进展高能越(SingleParticle公司)10:00电镜在系统性淀粉样变早期诊断和分型中的作用王素霞(北京大学第一医院电镜室)10:30负链RNA病毒核衣壳蛋白结构可塑性研究沈庆涛(上海科技大学 )11:00新冠病毒入侵细胞关键结构研究周强(西湖大学)11:30ATM和ATR激酶活化的分子机制王雪娟(中国科学技术大学)12:00午歇午休音乐(午休)14:00透射电镜技术在新冠病毒鉴定及研究中的应用宋敬东(中国疾病预防控制中心病毒病预防控制所 )14:30蔡司最新冷冻关联技术在生命科学的应用吴超昊(卡尔蔡司(上海)管理有限公司)15:00Delmic多束体电子显微镜和用于冷冻电子断层扫描的冷冻关联电镜:加速您在纳米层面上对生物系统的了解Caspar Jonker & Guido Ridolfi(荷兰Delmic公司)15:30透射电镜生物标本制样及常见问题分析和解决方案孙异临(北京市神经外科研究所 )16:00冷冻光电关联成像技术——点亮细胞内部超微结构李硕果(中国科学院生物物理研究所)16:30治疗性抗体扰乱肠道病毒受体识别的结构基础郑清炳(厦门大学国家传染病诊断试剂与疫苗工程技术研究中心)17:00冷冻电镜断层三维成像与神经突触超微结构定量化解析陶长路(中国科学院深圳先进技术研究院)会议同期活动活动1 温故知新,学无止“镜” ——前六届100+报告视频回放合集为便于广大网友更好的学习电子显微学知识,在“第七届电子显微网络会议(iCEM2021)”即将召开之际,仪器信息网基于已经举办的六届会议内容,将100+报告视频进行分类汇总,方便大家进一步学习或收藏。100+专家报告视频回放合集:https://www.instrument.com.cn/webinar/video/collection/10835活动2:报名参加iCEM2021并转发朋友圈,领取电镜资料包参与方式:报名参加“第七届电子显微网络会议(iCEM2021)”并将会议官网转发朋友圈或200人以上微信群,凭转发截图领取仪器信息网电镜资料包。领取方式:加微信号15718850776 领取扫码加微信,领取资料包
  • 下午直播!iCEM 2023之先进电子显微学技术及应用专场篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国物理学会电镜分会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023 或扫描二维码报名“先进电子显微学技术及应用”专场预告(注:最终日程以会议官网为准)专场四:先进电子显微学技术及应用(6月28日下午)专场主持暨召集人:葛炳辉 安徽大学 教授时间报告题目演讲嘉宾14:00-14:30扫描透射电子显微成像技术发展及应用郑长林(复旦大学物理学系及应用表面物理国家重点实验室 研究员)14:30-15:00深度学习算法应用于电镜像分析的研究 林芳(华南农业大学 教授)15:00-15:30日立内透镜扫描电镜的最新应用介绍周海鑫(日立科学仪器(北京)有限公司 电镜市场部 副部长)15:30-16:00Towards liquid helium temperature cryogenic phase contrast electron microscopy鲁鹏翰(德国于利希研究中心 Staff Scientist)16:00-16:30TESCAN 集成和旋进辅助的分析型 4D-STEM在材料中的应用柯盼(TESCAN公司 TEM产品经理)16:30-17:00相对论量子力学视角下的电子显微谱学张泽中(比利时安特卫普大学物理系电镜中心,英国牛津大学材料系 博士后研究员)17:00-17:30热漫散射问题的再思考姚湲 (中科院物理研究所 副研究员)嘉宾简介及报告摘要(按分享顺序)专场主持暨召集人:葛炳辉/安徽大学/教授 【个人简介】安徽大学教授,电镜中心主任,皖江学者特聘教授,入选2018 Nature Index Rising Star, Research杂志(Science合作期刊)副主编。主要从事:1)球差校正电子显微学方法,像衬理论,电子晶体学方法研究;2)原位电子显微学:3)利用球差校正电镜表征催化剂,热电材料和高温合金等材料微观结构,探索材料构效关系。近五年材料表征方面研究工作主要发表在EES,Joule, Nature Communications,Advanced Materials,Angewandte等顶级杂志;电镜研究方面工作发表在Ultramicroscopy, Microscopy and Microanalysis,Microscopy等期刊。应邀编写电镜类相关书籍2章(节)。郑长林 复旦大学物理学系及应用表面物理国家重点实验室 研究员【个人简介】郑长林,复旦大学物理学系及应用表面物理国家重点实验室研究员。本科及硕士毕业于南京大学物理系,博士毕业于德国柏林洪堡大学物理系。2010-2017任澳大利亚莫纳什大学电镜中心(MCEM) Research Fellow,2017年底加入复旦大学物理学系。郑长林研究员长期从事电子显微学实验及理论研究,其研究方向集中于发展新型的透射电镜技术并应用于凝聚态物理学研究,在Phys. Rev. Lett., Ultramicroscopy, Microsc. Microanal.等期刊发表多篇电镜方法学论文,并承担国家自然科学基金等相关电镜技术发展项目。2018年,郑长林研究员获颁John Sanders 奖章,以表彰其在电镜技术发展及物理学等方面的应用所做出的贡献。报告题目:扫描透射电子显微成像技术发展及应用【摘要】透射电子显微镜是物质科学研究最重要的微观结构表征工具之一。球差校正技术的发展,结合新一代更高性能及功能更强大的电子显微成像平台, 为凝聚态物质的结构表征提供了卓越的空间分辨率。而高亮度的电子枪结合新一代电子能量单色器,为探测物质内部晶格振动,到集体电子激发及单电子激发的研究提供了前所未有的能量分辨率。更强大更稳定的新一代球差校正器,更是显著地拓展了焦平面可调控的相位空间范围,结合灵活的电镜光路设计,为发展扫描透射电子成像技术提供了更灵活的操控平台。本报告中,将介绍基于双球差校正的透射电镜系统,结合电子束的波前调控,以及多像素直接扫描电子探测器等技术,所发展的定量STEM及相干相位成像,基于贝塞尔照明的扫描电子共聚焦三维电子成像,以及原子尺度的非弹散射成像等技术,以及这些技术在凝聚态物质科学研究中的应用。林芳 华南农业大学 教授【个人简介】主要从事电子显微学领域的图像分析工作,熟悉掌握电子显微镜的高分辨及扫描电子显微像的成像原理、系列离焦像的波函数重建;了解最新的成像技术,如IDPC-STEM等;了解并掌握低剂量成像的图像处理技术;STEM图像的原子位置分析。以上这些工作都有自编代码可实现模拟与分析。编写有CalAtom软件(用于原子位置的定量分析)以及ToTEM软件(基于CUDA的HRTEM/STEM/IDPC/CBED等图像模拟功能)。报告题目:深度学习算法应用于电镜像分析的研究【摘要】 本课题组将深度学习算法用于电镜图像的分析,本报告拟介绍AP-GANs网络。该网络是用于原子预测的生成对抗网络,使用小规模训练集训练,能够针对性的应用于特定晶格结构,以提高原子预测的精度。另外,也将简单介绍深度学习用于高分辨电子显微像波函数重建的部分研究结果。周海鑫 日立科学仪器(北京)有限公司 电镜市场部 副部长【个人简介】周海鑫博士毕业于北京化工大学,主修高分子材料和化学专业,曾在德国马克思普朗克高分子研究所(Max Plank Institute for Polymer Research)电镜中心工作,主要负责电子显微镜的测试和相关研究工作,对扫描电镜和透射电镜的原理、操作和应用非常熟悉。周博士现任日立科学仪器(北京)有限公司电镜市场部副部长,主要负责日立表面科学相关产品的技术支持和市场开发工作,具有十几年的电镜相关工作经验。报告题目:日立内透镜扫描电镜的最新应用介绍【摘要】 日立超高分辨率扫描电镜SU9000采用独特的内透镜物镜结构,相比普通扫描电镜具有更高的分辨率和更强的分析能力。本报告将介绍SU9000的高分辨成像和EDS分析、低压STEM成像以及EELS等应用实例。鲁鹏翰 德国于利希研究中心 Staff Scientist【个人简介】Penghan Lu is currently a staff scientist at the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons in Research Centre Jülich, Germany. He is a core team member of German National Roadmap Infrastructure Project on next-generation electron microscopy and correlated techniques (ER-C 2.0). His current research activities mostly focus on methodology and instrumentation development in electron microscopy, particularly by applying non-conventional optical setup and custom-designed hardware components to specific applications. This includes, but not limited to, low-dose phase contrast electron microscopy (including holography, ptychography, differential phase contrast, and other typesof 4D STEM) for challenging materials and biological specimens, characterisation and application of direct counting and event-driven detectors in 4D STEM, in situ, and time-resolved electron microscopy, cryogenic electron microscopy especially towards liquid helium temperature, phase plate, structured illumination, and aberration correction in electron microscopy, as well as micro- and nano-fabrication using electron beam lithography and focused ion beam.报告题目:Towards liquid helium temperature cryogenic phase contrast electron microscopy【摘要】 Cryogenic transmission electron microscopy (cryo-TEM) has been significantly advanced in the past decade for imaging macromolecular protein complexes and cellular structures with close-to-atomic spatial resolution in three dimensions. Beyondlife sciences, cryo-TEM has also enabled observation of otherwise inaccessible information in weakly bonded and reactive materials that typically degrade under electron irradiation as well as environmental exposure. Furthermore, many of the exotic properties in quantum materials, such as, superconductivity, charge density waves, quantum hall effect, and topological behaviours, only manifest at extremely low temperatures. Advanced TEM techniques offer unique opportunities to combine critical spatial, temporal and energy resolutions in both static and dynamic conditions to probe these quantum phenomena but still lacks solutions with long-time stability at cryogenic temperatures, especially at temperatures of liquid helium (LHe) range and below. Here, we will report our progress on a new miniaturized continuous-flow liquid helium cryostat design integrated on a side-entry TEM holder. Starting from room temperature, a base temperature of 5.2 K, measured by the Cernox sensor very close to the specimen position, was reached within 2 mins and kept stable with temperature fluctuation in the level of 10-2 K. With continuous flow of liquid helium to the specimen holder, the ultimately low temperature can easily last for days. We will show a few examples of phase contrast electron microscopy measurements of electromagnetic field mapping performed at such a temperature and discuss the further challenges and prospects of this development.柯盼 TESCAN公司 TEM产品经理【个人简介】柯盼,TESCAN透射电镜产品经理。2016年硕士毕业于武汉大学材料物理与化学专业,主要研究方向是透射电子显微学在材料中的应用。2016年加入TESCAN,负责SEM/FIB等产品推广及销售,曾经获得2022年TESCAN全球最佳销售奖、最佳客户关系奖。2022年11月TESCAN发布新品首款4D-STEM扫描透射电子显微镜TENSOR,柯经理担负起TENSOR的推广及销售工作。报告题目:TESCAN 集成和旋进辅助的分析型 4D-STEM在材料中的应用【摘要】新材料的研发以及越来越小的半导体器件的质量评估,在很大程度上依赖于纳米级的相和结构表征。而4D-STEM方法已成为一种强大的技术,能够在纳米级上解析和表征多晶材料中晶相和晶粒取向。TESCAN提出一种新的方法,集成所有必要的硬件与超高的系统自动化,以最便捷的方式获取和处理4D-STEM数据,可实现实时数据处理和结果可视化。张泽中 比利时安特卫普大学物理系电镜中心,英国牛津大学材料系 博士后研究员【个人简介】2013年,毕业于中南大学-莫纳什大学材料系,获学士学位。2018年获莫纳什大学材料系博士学位,留校博士后工作一年。2019-2023年,任比利时安特卫普大学物理系EMAT电镜中心资深博士后,英国牛津大学材料系访问学者。主要研究领域为电子散射物理、高性能计算以及电镜表征金属材料。围绕多元素精准定量的领域瓶颈,发展了包含动力学散射和相对论效应的多元素谱学计算方法,实现三维成分和结构的同时反演。联用电镜表征和理论计算在二元铝合金体系中发现新的析出相和界面结构,2016年荣获第15届国际铝合金会青年科学家奖。2021年,筹办并主持安特卫普-牛津-都柏林-香港城市大学联席电镜会议以及中欧青年电镜会议。目前主持比利时超算Tier-1项目1项,担任Acta Materialia,Script Materialia 等学术期刊审稿人。报告题目:相对论量子力学视角下的电子显微谱学【摘要】EELS蕴藏的丰富信息来自复杂的非弹性散射和原子轨道量子跃迁过程。量化能量损失谱需要将实验值与广义振子强度(GOS)数据库计算的散射截面相匹配。目前商用的GOS数据库基于薛定谔方程的原子轨道解,不包括完整的相对论效应,因此重元素的内层电子谱线会产生误差。同时电子在穿透样品时会发生多次散射,最终导致非线性的信号产出。我们基于狄拉克公式和费米跃迁方程开发了非弹性电子散射计算框架,建立全元素谱线理论数据库,可准确预测自旋上/下导致的谱学精细差别,并建立了动力学衍射下快速预测非线性的谱学信号的方法,最终实现精准的成分定量和结构反演。姚湲 中国科学院物理研究所 副研究员【个人简介】1998年毕业于中国科技大学物理系,1998年进入中科院物理所学习电子显微学,后转到香港城市大学材料与物理系从事纳米线的制备和表征研究,2004年获得博士学位。2004年-2006年在清华大学清华-富士康纳米科技研究中心从事博士后研究;2006年-2009年在富士康科技集团负责纳米复合材料和MEMS器件的研发工作;2010年起在中科院物理所先进材料和结构表征实验室从事科研工作。研究内容涵盖高分辨电子显微学、电子全息、电子能量损失谱、洛伦兹电镜、原位电镜技术及电镜样品杆研发等领域。报告题目:热漫散射问题的再思考【摘要】随着STEM技术的普及以及用EELS研究声子谱的兴起,与声子振动相关的热漫散射(Thermal Diffusion Scattering, TDS)逐渐引起了大家的兴趣。本次报告从TDS的研究历史出发,厘清相关的物理机制以及TDS在电子散射过程中的表现,力求澄清若干错误的概念。
  • 2021年全国电子显微学学术年会二轮通知
    2021年全国电子显微学学术年会将于10月14 - 18日(14日报到,18日离会)在东莞市会展国际大酒店召开。2021年是中国共产党成立百年之际,百年华诞,百年征程,百年风雨,百年辉煌,百年初心,历久弥新。今天的中国,科技飞跃发展,科学让中华民族富强,创新让我们走在了世界的前列。中国的电子显微学有了长足的进展,显微学研究已走在了世界的最前沿领域。为庆祝这难忘的时刻,本届年会的主题是“显微学揭开新视野”。本届年会按材料科学与生命科学设立十个分会场,包含:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)低温电子显微学表征;9)生命科学显微成像技术研究;10)中国电子显微镜运行管理开放共享实验平台。一、会议主要内容会议学术交流内容包括:球差校正透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微学(包括STM、AFM等)、低温电子显微学和激光共聚焦显微学等。会议亦包含这些技术在前沿物理科学、化学、地学、生命科学、结构生物学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果;会议将展示显微学相关仪器理论、技术和实验方法的最新进展;会议将促进电镜及其他显微学仪器的共享、运行、管理、开放共享、实验平台使用、改进与维修的交流等。大会将邀请著名学者参加会议并作大会特邀报告和分会场特邀报告。大会还将邀请相关仪器设备的厂商做电镜和其他仪器的最新发展介绍及产品展示。会议将颁发优秀青年学者奖。会议将评选优秀学生论文奖与优秀Poster奖(请参会代表自带Poster)。会议将为第十二届中国电子显微摄影大赛获奖者颁奖。二、会议组织机构大会名誉主席:叶恒强院士,朱静院士大会主席:张泽院士,薛其坤院士学术委员会主席:张泽院士大会组织委员会主席:韩晓东教授,杨勇骥教授材料科学组织委员会主席:马秀良研究员,孙立涛教授,陈江华教授,贾金锋教授,单智伟教授,王卫国教授,于荣教授,沙刚教授,杜勇教授,韩玉刚研究员生命科学组织委员会主席:林金星教授,王宏伟教授,高宁教授,王培毅教授,孙飞研究员,孙育杰教授,毕国强教授,韩玉刚研究员,洪健研究员大会秘书长:李吉学,高宁 大会副秘书长:谷林,郭俊杰,李宁春,毛圣成,彭勇,魏晓,洪健,郭振玺大会组委会委员(排名不分先后): 田鹤,周武,王鹏,王建波,郑士建,谷林,王勇,彭勇,葛炳辉,禹日成,郭俊杰,李吉学,唐云龙,高鹏,黄荣,郝晓东,李凯,胡蓉,王兵,马旭春,迟立峰,吴凯,郑浩,辛仁龙,陈忠伟,曾毅,何占兵,吴劲松,李凯,尹奎波,贾志宏,毛圣成,魏晓,张跃飞,岳永海,孟令杰,刘攀,丛尧,朱平,孙飞,章新政,王素霞,纪伟,何其华,张仲凯,官阳,张军,张勤奋,沈庆涛,雷建林,李雪明,蔡刚,张兴,孙林峰,王权,张丽娜,雷东升,祝建,郭振玺,何佳清,谷猛,刘立,杨丹会议主办单位:电镜学会电子显微学报编辑部会议承办单位:南方科技大学会议协办单位:深圳华懋会展服务有限公司媒体合作单位:仪器信息网三、会议日期和地点2021年10月14-18日(18日离会)。10月14日下午14:00-22:00 东莞会展国际大酒店报到(在酒店大厅报到)。10月15-17日 全天学术会议。10月18日 离会。本届年会入住东莞会展国际大酒店。位于东莞市会展北路1号,距深圳市宝安机场68公里,约60分钟车程,费用160元;距东莞站27公里,约40分钟车程,费用50元。宾馆电话:0769-2288999;或汪晴老师:13637966635;本届年会提供接机服务,参会代表可于10月10日前在注册程序内“接机安排”栏里填写航班信息,以便会务组安排统筹;10月10日之前未提供航班信息不接机;接机服务仅限于10月14日当天,提前或延后到达不接机。四、会议论文集会议论文集要求见2021年全国电子显微学学术年会征文通知。做Poster展的代表请在9月8日前把展示题目,姓名和单位速发到E-mail : dzxwxb_cps@163.com (郑舒允老师邮箱)汇总,同时务必抄送dzxwxb@126.com(许芬秀,便于备份)便于刊登在会议安排手册上。五、出席2021年全国电子显微学学术年会收费标准9月10日之前交会议注册费:2200元9月10日之后交会议注册费:2300元现场交会议注册费:2400元学生代表:9月10日之前交会议注册费:1700元9月10日之后交会议注册费:1800元现场交会议注册费:1900元会议注册费请务必尽快汇到深圳华懋会展服务有限公司,汇款查询到账后即开具发票。 会议费缴纳方式:【说明: 2021年电镜学会学术年会会议注册费由会议协办单位深圳华懋会展服务有限公司代收,由深圳华懋会展服务有限公司出具会议费财务报销凭证(发票)】*开户行:平安银行股份有限公司深圳梅林支行*户 名:深圳华懋会展服务有限公司 *帐 号:11014781187003*行 号:307584008771如遇汇款及发票问题,请与汪晴老师联系:13637966635 重 要 说 明贵单位汇款后请务必保留汇款凭证,转账时请务必备注参会人姓名,以便查询并及时开具报销凭证。参会注册提交后即可点击申请发票提交开票信息或在个人中心申请发票提交开票信息;提前汇款查询到汇款后两周内提供发票,现场缴费离会前提供发票。六、住宿标准会展国际大酒店:单间:430元/间会展国际大酒店:标间:450元/间说明:凡是来自中高风险地区参会老师需要近5日内核酸检测报告。 2021年电镜学会学术年会注册的方式为网上注册。或通过电镜网微信公众号进行注册;注册需填写个人注册信息及酒店预订等信息,替他人注册请务必填写被注册人信息;注册成功后生成签到二维码,现场凭二维码签到。 网 上 注 册 二 维 码此次会议酒店住房预订通过网上注册二维码链接直接在酒店公众号预订,预订需预付房费,具体取消政策以酒店公众号提示为准;现场报到后直接去酒店前台凭订单办理入住手续。无预订一概不留房。七、特此证明:会议期间无伙食补助,食宿自理。八、联系地址,联系人,联系电话,传真,E-mail如下:(1) 李宁春老师(负责会议安排)电话:010-82671519;手机:18667153673;13910743390E-mail:cems_cn@163.com 地址/邮编:北京中关村北二条13号《电子显微学报》编辑部/100190(2) 许芬秀老师(负责会议报名与会议摘要,摄影大赛作品投稿,会议手册宣传)电话:010-82671519;手机:18901263882E-mail:dzxwxb@126.com地址/邮编:北京中关村北二条13号《电子显微学报》编辑部/100190(3) 郑舒允老师(负责会议财务,Poster题目,信息统计等)电话:18966491310 E-mail : dzxwxb_cps@163.com 地址/邮编:北京中关村北二条13号《电子显微学报》编辑部/100190(4) 汪晴老师 (负责会议财务与会议安排)电话:13637966635 E-mail:1437849457@qq.com (5)公司布展联系人:汪晴,许芬秀 电镜学会电子显微学报编辑部2021年7月20日 【温馨提醒】分会报告也采取邀请方式,但凡是希望做分会报告的老师请发邮件至:cems_cn@163.com并务必抄送dzxwxb@126.com,给出报告题目,所在单位,职称,手机号码和电子邮箱会务组会根据报告内容提交给各分会负责人安排。
  • 更新:2021年全国电子显微学学术年会二轮通知
    重要说明:由于酒店住房紧张,凡现场刷公务卡注册的参会代表请务必于9月20日前与会务组汪晴老师电子邮件联系预定住房信息:参会人数,住房间数(汪晴老师联系方式:E-mail:1437849457@qq.com;电话:13637966635),否则会务组无法保证会议住房。2021年全国电子显微学学术年会将于10月14 - 18日(14日报到,18日离会)在东莞市会展国际大酒店召开。2021年是中国共产党成立百年之际,百年华诞,百年征程,百年风雨,百年辉煌,百年初心,历久弥新。今天的中国,科技飞跃发展,科学让中华民族富强,创新让我们走在了世界的前列。中国的电子显微学有了长足的进展,显微学研究已走在了世界的最前沿领域。为庆祝这难忘的时刻,本届年会的主题是“显微学揭开新视野”。本届年会按材料科学与生命科学设立十个分会场,包含:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)低温电子显微学表征;9)生命科学显微成像技术研究;10)中国电子显微镜运行管理开放共享实验平台。一、会议主要内容会议学术交流内容包括:球差校正透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微学(包括STM、AFM等)、低温电子显微学和激光共聚焦显微学等。会议亦包含这些技术在前沿物理科学、化学、地学、生命科学、结构生物学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果;会议将展示显微学相关仪器理论、技术和实验方法的最新进展;会议将促进电镜及其他显微学仪器的共享、运行、管理、开放共享、实验平台使用、改进与维修的交流等。大会将邀请著名学者参加会议并作大会特邀报告和分会场特邀报告。大会还将邀请相关仪器设备的厂商做电镜和其他仪器的最新发展介绍及产品展示。会议将颁发优秀青年学者奖。会议将评选优秀学生论文奖与优秀Poster奖(请参会代表自带Poster)。会议将为第十二届中国电子显微摄影大赛获奖者颁奖。二、会议组织机构大会名誉主席:叶恒强院士,朱静院士大会主席:张泽院士,薛其坤院士学术委员会主席:张泽院士大会组织委员会主席:韩晓东教授,杨勇骥教授材料科学组织委员会主席:马秀良研究员,孙立涛教授,陈江华教授,贾金锋教授,单智伟教授,王卫国教授,于荣教授,沙刚教授,杜勇教授,韩玉刚研究员生命科学组织委员会主席:林金星教授,王宏伟教授,高宁教授,王培毅教授,孙飞研究员,孙育杰教授,毕国强教授,韩玉刚研究员,洪健研究员大会秘书长:李吉学,高宁 大会副秘书长:谷林,郭俊杰,李宁春,毛圣成,彭勇,魏晓,洪健,郭振玺大会组委会委员(排名不分先后): 田鹤,周武,王鹏,王建波,郑士建,谷林,王勇,彭勇,葛炳辉,禹日成,郭俊杰,李吉学,唐云龙,高鹏,黄荣,郝晓东,李凯,胡蓉,王兵,马旭春,迟立峰,吴凯,郑浩,辛仁龙,陈忠伟,曾毅,何占兵,吴劲松,李凯,尹奎波,贾志宏,毛圣成,魏晓,张跃飞
  • 百实创发布透射电子显微镜原位-原子尺度双倾力热电集成系统新品
    关于INSTEMS系统原位透射电子显微分析方法是实时观测和记录位于电镜内部的样品对于不同外场如力、热、电等激励信号的动态响应过程的方法,是当前物质结构表征科学中最新颖和最具发展空间的研究领域之一。受限于透射电镜样品室狭小的空间及特殊的结构,目前商业化的透射电镜原位力学样品杆多采用探针式力场加载,无法实现双轴倾转,大大限制了研究者从原子尺度下原位研究材料的力学行为及变形机制。针对这一世界性技术难题,百实创公司专项开发的INSTEMS系列透射电镜用原位原子尺度双轴倾转力、热、电一体化综合测试系统拥有独特创新设计的MEMS芯片以及与之相匹配的微驱动系统,保证了样品在透射电镜毫米尺度空间内实现力场与热场或电场耦合加载条件下,同时具备大角度正交双轴倾转功能,进而实现在多场耦合加载下材料原子尺度显微结构及其性能演化的原位观察与记录。该系统可实现1200℃高温下力热耦合加载,最大驱动力大于100mN,驱动行程大于4μm,最小驱动步长低于0.5nm,达到国际领先水平,极大的扩展了透射电子显微镜在材料科学原位研究领域的应用。本系统与各大品牌电镜有优异的机械及电磁兼容性,稳定性高,保证电镜原有的分辨能力。整合了独特创新设计的MEMS芯片与微型驱动器的高集成Mini-lab原位样品搭载平台,保证了不同形状、性质的样品在TEM中有稳定的力、热、电加载实验环境,并能精确控制参数变量;通过更换不同Mini-lab实验台,可以灵活的实现力、热、电单场或任意两场耦合加载,并能做到互不干扰。精密的结构设计保证样品能在场加载条件下实现大角度双倾,结合皮米级超高精度控制系统,确保显示的原子像无抖动、分辨率高。功能强大,操作便捷的控制软件提供了丰富的加载模式,并实时收集与处理数据,满足用户不同条件下的实验与测试设计要求。可实现多场耦合加载:ISTEMS系列产品具有高度集成的可定制化微型实验系统。通过更换不同功能的微型实验台(Mini-lab),该系列可灵活施加力、热、电等多种外场组合。Mini-lab独特的MEMS芯片设计和新颖的集成策略解决了小区域多场耦合加载兼容性难题。可独立控制多场加载,避免相互干扰。 原子尺度分辨率:INSTEMS系列结构紧凑的微型实验台和特殊设计的β轴倾转机构完美融合了多场耦合施加和双轴倾转功能,可轻松实现原子尺度分辨的动态观察。 高精度控制与测量:超灵敏微型驱动器稳定的四电极MEMS芯片 可靠的电学连接无干扰的电路布局 强大的高精度多通道源表确保INSTEMS系列产品可同时实现高精度加热、pm级驱动控制和pA级电信号测量。 适用范围极宽、功能易于扩展:INSTEMS系列适用于多种形态尺寸的材料(适用于块体以及一维、二维纳米材料);可实现多种类型的多场耦合施加(热-力-电耦合);加载灵活,可对样品进行拉伸加载、压缩加载、弯曲加载,也可进行纳米压痕实验;同时可根据用户需求进行功能扩展。适用于大部分固体无磁材料的研究。 关键技术指标与参数:热场指标温度范围室温~1200℃*加热速率>10000℃/s温度精度≥98%测温方式四电极法EDS兼容性√力场指标驱动精度<500pm最大驱动力>100mN最大位移4μm电场指标最大输出电压±50V电流测量范围1pA-1A*电压测量范围100nV-50V双倾指标α角倾转范围±25°β角倾转范围±25°*驱动精度<0.1°分辨率极限稳定性<50pm/s*空间分辨率≤0.1nm* * 列出参数取决于Mini-lab型号与电镜状态。 硬件说明:样品杆部分包含双轴倾转样品杆与配套的Mini-lab实验台,MET型号样品杆可兼容所有类型的Mini-lab实验台。软件控制:力、热、电三场都具有丰富的加载模式可供选择:力场可选择单向拉/压加载或循环加载;电场拥有7种可供选择的波形加载;热场可自由设置温控程序。 应用范围1. 高温环境下的力学行为在力场与热场条件下原位实时观察材料原子像,并能获取成分信息。可应用于加速蠕变、高温相变、元素扩散、高温塑性变形、再结晶、析出相与位错的关系等方面的研究。原位原子尺度研究高温合金相在高温下(1150℃)的形变机理原位观察超级合金在400℃与750℃下塑性变形过程2. 高温环境下的电学行为 在热场与电场条件下原位实时观察材料原子像,并获取电场数据。可应用于热电材料、半导体、相变存储、电场可靠性分析、介电材料等领域的研究。 热电耦合条件下SnSe原位原子尺度失效分析3. 力与电场的交互行为在力场与电场条件下原位实时观察材料原子像,测量和控制样品电信号。可应用于压电材料、铁电材料、锂离子电池、柔性电子器件等领域的研究。 4. 力场、热场、电场单场条件下的材料组织变化可定量的控制单力场、热场、电场施加于样品,并实时原位的观察样品原子像及成分信息。高熵合金900℃条件下观察元素扩散创新点:一、独特设计的MEMS芯片以及与之相匹配的微驱动系统,保证了样品在TEM毫米尺度空间内,在力场与热场或电场耦合加载条件下具备大角度双轴倾转功能,进而实现在多场耦合加载下材料原子尺度显微结构及其性能演化的原位观察与记录。该系统可实现1200℃高温下力热耦合加载,驱动力大于100mN,驱动行程大于4μ m,最小驱动步长低于0.5nm,达到国际领先水平。 二、MEMS芯片采用特殊结构及材料设计,加热响应迅速(>10000℃/s),温度精度高>98%,热稳定好(<50pm/s),使用寿命长(>100h),相较于传统一次性使用的MEMS芯片,很大程度上降低了实验成本。 三、采用高度集成的可定制化微型实验系统,可实现力、热、电以及力热耦合,力电耦合和热电耦合等多种外场的施加。 四、适用范围广,不仅适用于多种类,多维度材料研究,还可实现包括拉伸、压缩、弯曲、纳米压痕等多种力场加载方式。 透射电子显微镜原位-原子尺度双倾力热电集成系统
  • 2022年全国电子显微学学术年会生命科学与实验平台分会场集锦(上)
    仪器信息网、中国电子显微镜学会(对外名义)联合报道:2022年11月26日,由电镜学会电子显微学报编辑部主办、南方科技大学承办的“2022年全国电子显微学学术年会”在广东省东莞市顺利召开。大会为期三天,采用线下+线上直播方式进行,吸引来自高校院所、企事业单位等电子显微学领域专家学者三千余人次线上线下参会。本届年会线上+线下邀请报告达约500个,是国内电子显微学领域最具影响力的学术盛会。11月26-27日上午进行大会报告,26-27日下午及28日全天同时进行12个不同电镜主题的分会场报告。大会线下现场27日下午,第九分会场——低温电子显微学表征,第十分会场——生物显微学研究,第十一分会场——生物医学和生物电镜技术,第十二分会场——全国电子显微镜运行管理开放共享实验平台经验交流四大分会场共进行了约40场报告。以下为部分报告集锦,以飨读者。第九分会场:低温电子显微学表征第九分会场现场直击部分报告现场:中国科学技术大学教授 孙林峰报告题目:植物激素调控与环境响应蛋白的冷冻电镜结构研究在干旱、高渗、高温等不利环境下,植物体内通过植物激素的转运以及作用过程来改变代谢,从而更好地适应环境的变化。孙林峰教授团队一直聚焦于植物的生长发育以及与环境响应过程中膜蛋白的结构与功能。报告中,孙林峰教授分享了实验室利用电镜技术针对植物激素调控与环境响应相关的膜蛋白的粒径结构研究。浙江大学研究员 郭江涛报告题目:冷冻电镜在植物离子跨膜运输分子机制研究中的应用细胞不停地与外界进行物质能量和信息的交换,同时由于细胞膜是疏水的磷脂双分子层组成,所以它需要借助于细胞膜的一系列转移蛋白和离子通道进行物质跨膜运输。郭江涛研究员主要研究离子跨膜运输的分子机制,关注转移蛋白和绿色通道,报告中分享了冷冻电镜在研究植物液泡上离子通道的应用等最新成果。第十分会场:生物显微学研究第十分会场现场直击部分报告现场:赛默飞世尔科技(中国)有限公司业务拓展经理 程路报告题目:等离子体聚焦离子束Hydra在生物样品中的应用冷冻电子断层扫描技术(CryoET)可用于解析结构和功能,对于科研工作者认知生物系统有着重要意义,因而Cryo-FIB/Cryo-PFIB技术在生命科学样品有着广泛应用。赛默飞聚焦离子束电镜具备电子光学系统和独特的等离子体聚焦离子束发射源。程路分享了其在室温和低温场景下的多种应用案例。中国科学院生物物理研究所 纪伟报告题目:干涉与冷冻定位成像技术显微镜自发明以来,一直推动着生物医学的进步,但受限于衍射极限,光学显微镜在发明后的300多年里,始终保持在200纳米左右,无法观察细胞纳米结构。21世纪以来,结构光照明显微镜(SIM)、受激辐射耗竭显微镜(STED)、单分子定位显微镜等多种超分辨成像技术以不同方式突破了衍射的限制。纪伟博士通过干涉与冷冻定位成像,进一步突破了单分子定位成像的分辨率。第十一分会场——生物医学和生物电镜技术第十一分会场现场直击部分报告现场:武汉大学人民医院教授 官阳报告题目:肾小球血栓性微血管病样改变的超微病理学观察血栓性微血管病(thrombotic microangiopathy,TMA)是一种临床病理综合征,病情危重,表现为微血管性溶血性贫血、血小板减少、微循环血栓形成。导致TMA的多种病因共存,不同病因引起的TMA在临床和发病机制上有显著差异,尽管发病机制不同,但其病理改变却非常相似,针对的靶细胞主要是微血管内皮细胞。电镜凭借其较高的分辨率可观察到TMA内皮细胞损伤的特征性超微结构改变,对轻度或不典型TMA的鉴别诊断具有重要作用,可100%发现肾小球毛细血管内皮下间隙的改变。中国环境科学研究院副研究员 翁南燕报告题目:运用NanoSIM和EM联用技术研究生物体内微量金属元素的原位分布二次离子质谱技术(SIMS)是以检测初级离子源轰击样品表面产生的特征二次离子为基础的表面分析技术,一般分为静态SIMS和动态SIMS两种,能够获取样品表面的元素和化学组分信息。纳米二次离子质谱技术(NanoSIMS)具有高空间分辨率、高检测灵敏度、高质量分辨率、元素分析覆盖范围广、可同时分析5-7种元素等优点,非常适用于生物样品的分析。报告以污染牡蛎体内铜和锌的亚细胞原位成像研究以及牡蛎配子发育过程中锰的积累与亚细胞分布研究为例介绍了相关技术的应用。第十二分会场:全国电子显微镜运行管理开放共享实验平台经验交流第十二分会场现场直击部分报告现场:浙江工业大学副教授 李永合报告题目:现代扫描电子显微方法功能化进展报告中通过原位固体电化学扫描电子显微学,揭示了工况循环条件下锂枝晶和裂纹的生长行为、形貌演变过程;利用室温、冷冻FIB实现了弱衬度和束流敏感体系的三维形貌重构;发展了低能扫描电镜透射成像显微方法,系统研究了电子与弱衬度材料的散射作用,发现了衬度反转现象。广东工业大学工程师 吴焱学报告题目:新建校级平台电镜微区室的建设、共享和管理报告中主要介绍了广东工业大学分析测试中心微区分析室的建设和管理情况,广东工业大学分析测试中心微区分析室一期拥有场发射透射电子显微镜、场发射扫描电子显微镜等十余台电镜相关科研仪器,设备总资产约2500万元人民币,实验用房超过240平方米。微区分析室可提供全套的电子显微镜制样和测试服务,覆盖从机械精密切割抛磨到离子束原位加工切片,从宏观尺度观测到纳米范围测量,从表面形貌观察到内部二维晶格像分析等。电镜大会第二日至此结束,11月28日全天,12大主题会场仍将进行约240场报告,欢迎各位通过线上报名观看。微信扫码进入大会官方网站,查看大会详细日程并线上观看会议直播:
  • 原位电子显微技术盘点:测量设备、应用案例及热点市场需求探讨
    p   近年来,透射电子显微镜(TEM)已达到划时代的亚埃级分辨率(& lt 0.1nm),这为科学家们对物质的探索带了新的可能。而传统TEM测试仅仅是“看”,随着科技水平的发展,人们越来越不仅仅满足于在原子级别观察样品,更希望能用“手”去操纵和测量样品,这便引入了原位测量的概念。 /p p   原位技术将电镜的应用扩展到金属合金、催化剂、能源材料、纳米颗粒和材料、低纬度材料、薄膜和涂层、缺陷和故障分析、半导体、细胞生物学、纳米医学和纳米生物技术、生物化学、癌症生物学遗迹神经科学等领域,研究学者可以通过原位透射电子显微技术捕获样品对环境的动态感应,包括尺寸、形态、晶体结构、原子结构、化学健、热能变化等重要信息。因而,原位透射显微镜已经不仅仅是一个成像工具,而进化为原子尺度下的一个实验平台或称之为纳米反应器。随之,原位电子显微学也成为时下的研究热点之一。 /p p   前不久, a style=" color: rgb(112, 48, 160) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/zt/microscope" span style=" color: rgb(112, 48, 160) " strong 2017年全国电子显微学学术年会 /strong /span /a 在成都星宸皇家金煦酒店圆满落幕。作为合作媒体,仪器信息网也真切感受到与会者对‘原位电子显微学’的关注热情。为方便广大网友对原位电子显微学相关设备、技术及应用有更直观的认识,仪器信息网编辑随机选择DENSsolutions、安徽泽攸科技有限公司、厦门芯极科技有限责任公司等3家相关参展设备商,根据其提供的资料,将各自产品技术优势、典型案例、技术发展趋势等情况整理成文,供读者参考。 /p p & nbsp & nbsp span style=" color: rgb(255, 255, 255) " strong span style=" background-color: rgb(112, 48, 160) " 电镜原位检测技术及应用的未来发展趋势 /span /strong /span /p p & nbsp & nbsp 近年来,微纳米材料的液-固、气-固,固-液-气界面反应广泛应用于能源、环保等重要国计民生领域。深入研究这些界面反应机理,开辟创新技术新途径,例如XPS,XAS,XRD, FTIR, Raman等各种原位光谱技术, 能够实现原位表面或者体相结构变化动态研究,不再依赖“主要依靠理论模型给出相应关联”的研究模式,但仍然无法实现“原位、清楚观测”,做到“所测即所见”。为了达到这一目标,微结构可视化、原位多通道、实时观测手段便成为最佳选择之一,最为典型的是原位透射电镜TEM技术。 /p p   随着微纳米加工技术的发展,液体池的出现,电镜内仅仅实现原位观察液体环境微纳米材料的动态生长和电化学过程。与在高分辨和高衬度成像两方面所取得的广泛进展相比,对液体和常压气体环境中的高分辨原位观察还远未能够在电镜中彻底实现。更甚者,外场作用下材料在原子尺度的形态变化越来越成为材料研究和开发的根本。 /p p   因此,外场的引入是未来电镜发展的趋势之一,比如热场、电场、磁场、力场、光场、电化学场等施加到样品上,对其进行原位观察,对于开展材料的结构-性能关系研究具有重要的指导意义。在诸如催光电化反应氧化-还原机制、半导体电输运性质、超结构有序自组装、磁性材料磁畴取向、活性位晶面选择性暴露、纳米材料的力学性能方面展开深入系统有针对的研究。当前的核心技术主要体现在原位样品杆的设计和制作上,针对体系进行优化设计能够在同类型的电镜上通用,体现相当大的实用性和灵活性,针对性。 /p p   对于原位电镜技术而言,最需要解决的,还是观察的稳定性与分辨率之间的平衡,因为很多原位技术还是以损失分辨率为前提的。因此,对于微纳米加工技术的发展,推动液体池的设计创新,显得尤为重要。目前,采用最多的液体池,窗口都是SiNX或者石墨烯。目前的SiNX厚度已经接近极限,分辨率且已达原子级。而石墨烯池,只能限于针对的特定体系,对于光热等外场引入,显得困难较大。寻求合适的材料代替,也是方向之一。此外,针对体系进行特定体系的原位池制作,与原位杆子进行配合使用,也是创新之一。相应地,电镜的内部构造在保证安全可靠的前提下逐渐朝着适应原位研究的功能进行升级与改造,从而实时高分辨高时空分辨率原位检测也是未来的趋势之一。 /p p    strong 材料领域 /strong :通过对电镜样品室抽真空系统的改造或者对电镜样品杆的特殊设计,使得透射电镜中的样品可以处于气体环境或液体环境之中。这种电镜特别适用于与气-液-固体相互作用及反应有关的物理或化学过程并能揭示原子层次的反应机制,在诸如纳米材料生长、催化反应、纳米电学,纳米力学、以及高温相变等现代材料研究领域中具有广泛的应用前景和独特的价值。 /p p    strong 生物医疗等领域 /strong :人类利用电镜技术可以实时观察生物膜的结构和细胞内各种西细胞器的形态学结构。也可以发现和识别肿瘤病毒,如SARS病毒是首先在电镜下观察实现和确认的。目前电镜也可实现肾活检,肿瘤真诊治。对于临床病例诊断也是极大的促进作用,如电镜技术与免疫学技术的结合产生免疫电镜技术,可针对细胞表面及其内部的抗原进行定位。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 1、得视奥达科技有限公司 /span /strong /p p    span style=" background-color: rgb(255, 192, 0) " strong 公司简介 /strong /span ——公司成立于2014年,是荷兰原位显微学公司DENSsolutions在大中国地区总代理,负责DENSsolutions原位样品控制平台(原位样品杆)的销售和服务并支持该公司在中国地区推广品牌。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/3d561611-ce04-40db-b130-e6923a902a4c.jpg" title=" 1.jpg.png" / /p p   DENSsolutions的原位样品控制系统主要包括对样品的温度、电场、电流、液体、以及气氛种类、比例、流速和压力的控制。该公司为荷兰Delft理工大学投资,自2012年成立,核心团队利用欧洲完备的产业链将实验室内的原位控制技术商业化、标准化,推出了热力学Wildfire、电学Lightning、液体环境Ocean、气氛环境Climate四大系统。 /p p    span style=" background-color: rgb(255, 192, 0) " strong DENS产品技术优势 /strong /span ——1) strong 稳定性 /strong :采用金属丝加热的芯片实验室设计保证高温下优异的TEM性能 在1300℃时,样品漂移低至0.5nm/min,优秀的电学稳定性和温度稳定性 纳米反应器支持高达1个大气压的压力和加热到1000℃高温,并实现亚埃级分辨率(0.1nm)。2) strong 准确获取实 /strong strong 时动态 /strong :高温、高压或高电场时观测材料纳米级别的实时演变。纳米池内观测液体中反应过程,获取实时动态,记录化学反应过程、纳米颗粒生长,沉积原理及团聚过程。3) strong 自然还原生态环境 /strong :高精度可控的温度环境,高温下提供高电场,支持高偏压,高电流,保持样品的液体环境,可控的液体类型、流速、静态与动态的液体环境,结合加热和偏压的功能,简化实验过程,可控的研究材料特性。4) strong 全面采集完整信息 /strong :高达200℃/ms加热与淬火的急速响应,高温下实现高质量的EDX和EELS分析,高精度电压电流测量、pA的电流测量精度,关联电学特性和结构变化。5) strong 安全性 /strong :先进的三重保障检漏测仪保障TEM及样品的安全,自对齐以及高等级的实验安全性。 /p p    strong span style=" background-color: rgb(255, 192, 0) " 国内典型用户及案例 /span /strong ——据厂商提供资料,典型用户单位包括清华大学、北京大学、浙江大学、上海交通大学、武汉大学、中科院物理所、大连化物所、沈阳金属所、中石化研究所、中科合成油等。 /p p style=" text-align: center" img style=" width: 450px height: 253px " src=" http://img1.17img.cn/17img/images/201711/insimg/5424d963-0cb3-4eb3-b634-38d3f6a89d3d.jpg" title=" 2.jpg.png" hspace=" 0" height=" 253" width=" 450" vspace=" 0" border=" 0" / /p p    strong 案例1 /strong :热处理可以提高合金硬度,处理的温度对合金的性能影响很大,传统研究只能做处理后的表征。据厂商提供资料,某教授团队按照一定的处理工艺在电子显微镜中做热处理,实时观测沉淀相生长的状况。观察到沉淀相长大的过程与快慢,及针状沉淀相与弯曲的位错圈在生长过程中的相互作用,且这些现象与工艺性能曲线符合的很好。在长达10个小时实验条件下获得良好数据,并将相关结果发表在Nature 子刊。 /p p    strong 案例2 /strong :据厂商提供资料,在催化研究方面,过去为了解加入气体对晶体形态的影响已经有了很多的进展,然而,大部分的工作仅限于低气压下,远远低于现实环境。某教授团队通过原位技术观察纳米反应炉内在一个大气压的氢气环境里面的形态的动态变化过程。基于校正后的表面能的全面Wulff结构和实验完全一致。这样的发现为今后加入气体的处理能用来塑造纳米催化剂形态提供了新的可能。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 2、安徽泽攸科技有限公司 /strong /span /p p    span style=" background-color: rgb(255, 192, 0) " strong 公司简介 /strong /span ——安徽泽攸科技有限公司(Zeptools)是一家具有自主知识产权的先进装备制造公司。公司致力于向客户提供原位透射电镜解决方案、纳米操纵手、MEMS传感器、高精度源表等产品,也是目前为数不多自主研发、生产并提供整套国产原位TEM解决方案的公司。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/a3dc7754-44cc-4ae2-869d-b3524072fbf3.jpg" title=" initpintu_副本.jpg" / /p p style=" text-align: center " strong 从上至下,从左至右:AL-insitu系列、Z-insitu系统、Ap-insitu系统、H-insitu系统 /strong /p p   公司拥有广泛的原位TEM解决方案,涵盖五大系列:基于MEMS技术的原位TEM解决方案、基于纳米操纵探针的原位解决方案、原位光学-电学测试系统、原位力学-电学测试系统。据悉,除以上四大系列产品外,公司的原位气氛解决方案也在抓紧研发中,预计在2018年上半年正式推出。 /p p    span style=" background-color: rgb(255, 192, 0) " strong Zeptools产品技术优势 /strong /span ——基于MEMS技术的AL-insitu系列产品特色是一杆多用,通过一根多功能样品杆搭配不同MEMS芯片和附件,可以实现电学、低温、加热、液体、电化学、双倾等功能,产品性能指标和稳定性均很优秀。基于纳米操纵探针的原位解决方案不仅可以在亚纳米级别精确操纵样品,还有装样相对简单、不消耗耗材等优势,可以进行原位电学、电化学等实验。如Z-insitu系统可以实现原位电学、低温、电化学、双倾等功能。原位光学-电学测试系统,在TEM中实现原位电致发光或光谱测试。如Ap-insitu系统可以实现原位光学、电学等功能。该方案也是目前世面上最优的原位TEM光学解决方案。原位力学-电学测试系统的H-insitu系统可以实现原位电学、力学等功能,该解决方案可以实现载荷分辨率5 nN的精确力学测试。 /p p    strong span style=" background-color: rgb(255, 192, 0) " 国内典型用户 /span /strong ——据厂商提供资料,公司客户如中国科学院物理研究所、北京工业大学、中国科学院过程工程研究所、北京大学、浙江大学、清华大学、中国科学院硅酸盐研究所、厦门大学、电子科技大学、苏州大学、苏州科技大学、郑州大学、中国石油大学、北京交通大学、中国科学院大连化学物理研究所、Queesland University of Technology等数十家研究机构。相关成果发表于Nature及其子刊/PRL/JACS/Adv. Mater./Nano Lett.等杂志。 /p p   span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong  3、厦门芯极科技有限责任公司 /strong /span /p p    strong span style=" background-color: rgb(255, 192, 0) " 公司简介 /span /strong ——厦门芯极科技有限责任公司是一家留学人员回国创业的集研发、生产、销售为一体的高新科技企业。公司建立了完备的微流控芯片研发与生产工艺流程,掌握了国际前沿原位芯片生产技术,与美国Berkeley Nanolab,美国Bipolar-Tech LLC和厦门大学建立了产品研发合作伙伴关系。产品涵盖通用材料化学分析芯片、集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片。 /p p   strong   span style=" background-color: rgb(255, 192, 0) " 产品技术优势 /span /strong ——公司提供的产品和服务按市场可分为科研类芯片、仪器标配芯片、应用类芯片及系统和芯片实验室解决方案。科研类芯片服务于基于微流控芯片的科研工作者,提供包括聚硅基各种不同材质的微流控芯片的设计与制备,用户配置必要的辅助设备即可使用 仪器标配芯片是针对国内市场上微流控芯片仪器开发的标准芯片,为微流控芯片仪器的核心组件,应用类芯片及系统是利用微流控芯片的技术优势开发的分析检测装置,应用于环保、食品安全、药物筛选等领域 芯片实验室解决方案为客户提供一对一微流控芯片科研或应用的解决方案,分为产品和科技咨询两个方面:产品包括微流控芯片加工、检测仪器设备配置及微流控芯片配件配置 科技咨询为客户提供组建芯片实验室的整体方案、解决微流控芯片应用中的技术难题、微流控芯片项目研发服务等。 /p p    strong span style=" background-color: rgb(255, 192, 0) " 厂商提供 /span /strong span style=" background-color: rgb(255, 192, 0) " strong 典型应用案例 /strong /span —— strong 1)高分辨静态池在纳米材料液相合成高分辨研究中的应用 /strong :通过使用高分辨静态原位池芯片,首次实现了高分辨率实时原位观察纳米晶体在溶液中的成核生长及形貌演变过程,研究工作发表在Science 期刊。发现了包括一维铁铂纳米棒的 3 步生长过程,形状诱导附着组装机理,及生长过程中的形貌结构自我修正等机理。并通过原位液体环境 TEM 研究了表面活性剂在胶体纳米晶体生长中形貌控制的实现过程及机理,首次发现了邻位粒子在胶体纳米粒子生长过程中对粒子的形貌的巨大影响。2014年进一步实现了每秒 400-1600 帧原子级高分辨率的图像采集,观察到纳米立方体晶体的生长及各个晶面的演变过程,发现在纳米尺度晶体生长过程中表面能最小化的原则不再适用。这一研究对纳米尺度晶体生长规律提出了全新的认识,发表在2014年八月出版的Science 期刊上。 strong 2)原位电化学系统在电沉积及锂电池研究中的应用 /strong :在发展原位液体环境TEM方法和纳米材料生长机理的研究同时,还开展了储能电池原位透射电镜研究方向,首次实现了锂枝晶生长及SEI膜形成过程的观察。到目前为止,团队实现了许多纳米材料独特的动态过程可视化的研究。此外,发展的原位液体环境TEM方法在其他领域具有重要的应用, 例如 ,蛋白质在液体水中的成像达到纳米级分辨率。原位液体透射电镜在材料科学,物理学,化学和生物学的的基础研究中有广泛的应用前景。 /p
  • 快讯|2021年全国电子显微学学术年会开幕:显微学揭开新视野!
    仪器信息网、中国电子显微镜学会联合报道:2021年10月15日,由中国电子显微镜学会主办、南方科技大学承办的“2021年全国电子显微学学术年会”在东莞市会展国际大酒店龙泉厅盛大开幕。大会为期三天,吸引来自高校院所、企事业单位等电子显微学领域专家学者1300余人出席。大会现场2021年是中国共产党成立百年之际,百年华诞,百年征程,百年风雨,百年辉煌,百年初心,历久弥新。今天的中国,科技飞跃发展,科学让中华民族富强,创新让我们走在了世界的前列。中国的电子显微学有了长足的进展,显微学研究已走在了世界的最前沿领域。为庆祝这难忘的时刻,本届年会的主题是“显微学揭开新视野”。中国电子显微镜学会理事长韩晓东主持大会开幕式韩晓东表示,2021年是特殊的一年,是中国共产党成立一百周年,百年恰风华正茂。今天的中国科技引领带动经济社会高质量发展,科技创新不断为中华民族繁荣富强赋能。基础研究决定一个国家科技创新的深度和广度,卡脖子等问题的根本在于基础薄弱。电子显微学科技工作者们一贯弘扬优良传统,坚定创新自信,着力攻克关键核心技术,促进产学研深度融合,勇于攀登科技高峰。显微学是一个集材料、物理、化学、生命科学等学科深度交叉融合的学科,本次年会将基于此设置10个分会场,会议学术交流内容包括:球差校正透射电子显微学及应用、原位显微学技术及应用、高分辨扫描电子显微学、微束分析、扫描探针显微学、低温电子显微学和激光共聚焦显微学等。会议将展示显微学相关仪器理论、技术和实验方法的最新进展;会议将促进电镜及其他显微学仪器的共享、运行、管理、开放共享、实验平台使用、改进与维修的交流等。韩晓东感谢了本次承办单位南方科技大学的大力支持,也感谢了浙江大学张泽院士、南方科技大学杨学明院士、南方科技大学张明杰院士、松山湖材料实验室汪卫华院士等嘉宾莅临。并对1300余位现场知名显微学家、材料学家、化学家、物理学家、生物学家、厂商代表、教师学生代表等表示欢迎,希望大家能通过本次会议增进交流、拓宽视野。同时,在南方科技大学的大力支持下,在各分会组委会、分会秘书处努力支持和精心组织下,本次年会在短时间内圆满完成了各会场内容组织,10个分会场组织近400个口头报告,能面对面交流十分宝贵。最后感谢了李宁春老师带领下的全体会务组成员,感谢了他们为大会圆满召开作出的所有辛苦付出,并预祝大会圆满成功。大会承办方南方科技大学副校长 杨学明院士 致开幕辞杨学明院士在致辞中首先代表南方科技大学向本次大会的隆重开幕表示祝贺,向来自全国各地的专家学者们表示诚挚欢迎。接着,共同回顾了电子显微学的发展史。首台透射电镜在1932年发明以来,电子显微镜在科学、技术领域有着非常广泛的应用,且许多科学领域的非常重要的突破也是依赖于电子显微镜的发展。过去近几十年中,电镜相关科研获得了多项诺贝尔物理学奖、生物学奖及其他奖项。我国电镜发展也比较早,在1951年就有了第一台电镜,大幅度的发展则是在改革开放以后,此后我国电镜整个领域取得飞速发展。据不完全统计,我国目前高阶的电镜已经有上千台,达到数百亿元的投资。这些助力着我们整个学科的发展,我国电子显微学工作者们也可能已经成为国际上最大的一支队伍。南方科技大学是一所非常年轻的学校,成立只有十年,是深圳在中国高等教育改革发展时代背景下,创立了的高起点高定位的公办新型研究型大学。学校借鉴世界一流理工科大学的学科设置和办学模式,以理工医三科和特色人文社科的学科发展,在本硕博层次办学,在一系列新的学科方向开展科研。学校在过去十年里取得了比较快速的发展,特别是引进了一大批非常优秀的教师。教研系列老师约五六百人,包括院士54位,教育部特聘专家36人,杰青38人等,并且取得系列优秀科研成果。南方科技大学在电镜方面有两方面值得一提,一方面是分析测试中心利用电镜在热电材料方面研究取得了很好的成绩;另一方面是在深圳市的大力支持下,建立的南方科技大学冷冻电镜中心,目前安装6台300kv冷冻电镜,并支撑了校内校外上百个科研团队以及企业的科学研究和基础研究。2021年是中国共产党成立100周年,我们也在开始迈向第二个百年的征途。中国要发展,最重要还是在创新,只有依靠科技进步、走高水平的科技自立自强道路,才能真正发展、将自己的发展主导权掌握在自己的手中。最后希望各位学者能携起手来,共同为世界科技发展和人类文明进步做出新的更大的贡献。中国科学院院士、大会主席张泽 致开幕辞中国科学院院士、2021年全国电子显微学学术年会主席张泽在开幕致辞中表示,全国电子显微学学术年会首次来到东莞,深圳是中国改革开放40年来所有传奇的一个结晶,而东莞则是这个结晶中很重要的一部分。历届全国电子显微学学术年会的规模越来越强、越来越大,张泽院士回顾了老一辈电子显微学科学家们为中国电子显微学作出的贡献,年会规模从几十人到上百人,然后到四五百人后发展越来越快,这也见证了我们国家改革开放科技事业的发展和小微企业的发展。回顾电子显微学的发展历史,张泽院士表示,当前原子之间的间隔、电子结构、成分等都可以看到,相关仪器设备无论在空间分辨率还是能量分辨率都已发展到极致,类似大规模集成电路,我们需要看得见接下来的方向在哪里。最近几年,大家都非常关心环境和原位。以往观察结构需要在一个完全真空环境中,此时物质自身的表现和周围环境的关系被完全隔离,更不用谈力学、光学、电学等环境。在分辨率等已经发展到极致的基础上,怎样把物质观察在一个真实或者接近真实的环境里面,将这些事情再做一遍,就很有意义,也使显微学的发展更充满了活力和生机。在昨晚祺跃科技原位高温扫描电镜新品发布会上,初创的年轻人包括搞控制的、搞电子的、搞软件的,充分显示了我们显微学的光明未来。同时,无论是生命科学还是材料科学,也越来越多的展示了不同学科的交叉以及不同学科交叉所带来的一些挑战。在这种趋势下,不同学科的学者能齐聚一堂交叉交流就显着格外重要。中国人不缺聪明,也不缺勤劳,相对比较缺的大家能够聚在一起发挥集体主义精神。希望大家能够利用这次“聚人气”的机会,更好的交流,更好的支持,也为将来更好的合作、看更精美的世界共同努力!---------------------------------- 本次大会主要由大会报告和10个分会场报告组成,10月15日上午和10月16日上午,大会报告特邀十一位著名电子显微学科学家、相关仪器设备厂商专家代表依次为大家呈现精彩报告。10月15-17日开始,10个分会场精彩内容也将悉数呈现,分会场依次为:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)低温电子显微学表征;9)生命科学显微成像技术研究;10)中国电子显微镜运行管理开放共享实验平台。同时,大会还将颁发优秀青年学者奖、评选优秀学生论文奖与优秀Poster奖优秀Poster奖、为第十二届中国电子显微摄影大赛获奖者颁奖等。大会后续精彩内容,敬请关注后续报道【点击报道专题链接】大会前夕签到掠影仪器信息网赞助POSTER展示区会务组会前留影
  • 千人齐聚线上!第十届电子显微学网络大会成功召开
    2024年6月25-28日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(对外)(www.china-em.cn)联合主办的“第十届电子显微学网络会议(iCEM 2024)”成功召开。会议邀请近50位业界知名电子显微学专家、电子显微学仪器技术专家、电子显微学应用专家等,围绕八大电子显微学主要仪器技术及应用热点主题,展开为期四天的线上精彩报告。本次会议吸引了1700余名行业相关人士线上参会并积极讨论,总观看5000余人次,直播间互动答疑6000余次。参会者的行业背景广泛,涵盖了半导体、钢铁/金属、能源、石油化工、电子电气、医疗卫生、机械设备等多个领域。来自高校院所与工业企业代表占比近七成。50余位专家围绕:1) 原位/环境电子显微学与应用;2)先进电子显微学与应用;3)扫描电镜/聚焦离子束显微镜技术与应用;4)电子能量损失谱/电镜光谱分析技术;5)低温电子显微学与应用;6)生物医学电镜技术与应用;7)电镜实验操作技术及经验分享;8)电镜开放共享平台及自主保障体系建设等八大主题,依次分享精彩报告。涉及的热点技术包括:原位电镜技术、STEM、EELS、低剂量成像、层析、低温电镜、联用技术、双束技术、三维重构、叠层成像技术、iDPC等。涉及热点应用领域包括:微纳器件、能源材料、固态电池、高温合金、化合物半导体、存储材料、铁电、结构生物学等。值得一提的是,iCEM 2024恰逢电子显微学网络会议创立十周年,会议专场将增设“十周年”主题内容,大会特别邀请11位专家分别进行“十周年主题”综述报告,围绕过去十年我国电子显微学重要进展、未来展望等进行精彩分享。十周年主题报告报告时间报告题目对应技术或主题演讲嘉宾专场一:原位/环境电子显微学与应用6月25日上午【十周年主题报告】:小尺寸金属Ag变形机制的原位原子尺度研究透射电镜原位原子尺度材料弹塑性力学行为研究十年探索王立华(北京工业大学 教授)专场二:先进电子显微学与应用6月25日下午【十周年主题报告】:低剂量电子显微成像:技术方法探索与材料科学应用低剂量电子显微成像技术方法十年回顾朱艺涵(浙江工业大学 教授)专场三:扫描电镜/聚焦离子束显微镜技术与应用6月26日上午【十周年主题报告】:纳米分辨可视化方法在变形高温合金热制造中的应用研究扫描电镜原位合金材料结构与力学性能研究十年回顾王晋(浙江大学材料学院高温合金研究所 副研究员)专场四:电子能量损失谱/电镜光谱分析技术6月26日下午【十周年主题报告】:电子背散射衍射技术的进展及其在应对挑战性样品时的表现电子背散射衍射技术(EBSD)十年应用与展望张兵(燕山大学 高级实验师)专场五:低温电子显微学与应用6月27日上午【十周年主题报告】: Euler angle-assigned reconstruction: the strategy to resolve ESCRT-III flat spirals on the membrane冷冻电镜技术十年应用进展与展望沈庆涛(南方科技大学 教授)专场六:生物医学电镜技术与应用6月27日下午【十周年主题报告】: 微观脑联接图谱绘制技术微观脑联接图谱绘制的主要技术路线和国际进展(三维体电镜技术的十年发展)陈曦(中国科学院自动化研究所 研究员)专场七:电镜实验操作技术及经验分享6月28日上午【十周年主题报告】:透射电镜在纳米材料表面研究和设计中的应用十年透射电镜在纳米材料表面研究中的重要进展袁文涛(浙江大学电镜中心 研究员)专场八:电镜开放共享平台及自主保障体系建设6月28日下午【十周年主题报告】:大型仪器开放共享十年回顾大型仪器开放共享政策十年回顾刘瑞(北京航空航天大学 研究员)6月28日下午【十周年主题报告】:北京大学大型仪器设备管理实践---以电子显微镜建设布局60年为例北大电镜平台60年建设布局历程钟灿涛(北京大学实验室与设备管理部 副部长/副研究员)为响应广大参会者的需求,报告回放视频已全部上线,欢迎大家点击回看,温故知新。专场一:原位/环境电子显微学与应用(6月25日上午)专场主持暨召集人:尹奎波 东南大学MEMS教育部重点实验室 副主任/副教授 报告题目演讲嘉宾回放链接【十周年主题报告】:小尺寸金属Ag变形机制的原位原子尺度研究王立华(北京工业大学 教授)点击观看Protochips基于机器学习全流程原位解决方案赵颉(上海微纳国际贸易有限公司 产品经理)点击观看扫描透射电子显微技术(STEM)在低维量子材料的应用与研究进展林君浩(南方科技大学 教授)/日立聚光镜球差电镜HF5000的原位功能介绍郭晓杰(日立科学仪器(北京)有限公司 电镜应用工程师)点击观看原位观测表面-亚表面动态耦合孙宪虎(中国科学院大学 副教授)点击观看液相环境金属纳米晶体结构演变机制研究王文(郑州大学 副教授)/专场二:先进电子显微学与应用(6月25日下午)专场主持暨召集人:郑赫 武汉大学电镜中心副主任/教授报告题目演讲嘉宾回放链接【十周年主题报告】:低剂量电子显微成像:技术方法探索与材料科学应用朱艺涵(浙江工业大学 教授)/JEM-ARM200F的性能特点及透射电镜原位观察陈桐民(捷欧路(北京)科贸有限公司 市场部产品经理)点击观看辐照敏感电池材料与界面结构解析王雪锋(中国科学院物理研究所 特聘研究员)/欧波同智能化显微分析解决方案在材料分析中的应用苏瑞雪(北京欧波同光学技术有限公司 业务发展(BD)工程师)点击观看Al-Cu合金中位错环取向偏转行为的三维晶体学研究冯宗强(重庆大学 教授)/磁性二维材料的制备和磁结构的洛伦兹电镜原位研究张军伟(兰州大学 副教授)点击观看专场三:扫描电镜/聚焦离子束显微镜技术与应用(6月26日上午)专场主持暨召集人:王晋 浙江大学材料学院高温合金研究所 副研究员 报告题目演讲嘉宾回放链接【十周年主题报告】:纳米分辨可视化方法在变形高温合金热制造中的应用研究王晋(浙江大学材料学院高温合金研究所 副研究员)/赛默飞双束电镜在生命科学研究的应用介绍及选型推荐程路(赛默飞世尔科技 电镜业务拓展经理)点击观看钛合金双相组织变形机制的原位SEM/EBSD研究王柯(重庆大学 教授)/TESCAN 电镜在材料领域的最新应用李景(泰思肯(中国)有限公司 应用专家)点击观看新品发布:飞纳台式扫描电镜的技术突破及全新智能型离子研磨制样平台介绍张传杰(复纳科学仪器(上海)有限公司 产品、应用专家)点击观看ECCI结合HR-EBSD研究增材制造金属结构材料变形机理及稳定性研究安大勇(上海交通大学 助理教授)/锂电池材料表界面改性与工况条件下失效机制的原位扫描电镜研究程晓鹏(北京工业大学 助理研究员)/专场四:电子能量损失谱/电镜光谱分析技术(6月26下午)专场主持暨召集人:周博 化学与精细化工广东省实验室 平台主任/副研究员 报告题目演讲嘉宾回放链接界面声子的原子尺度测量高鹏(北京大学 教授)/极性功能微结构中的电磁特性研究张溢(中山大学物理学院 副教授)点击观看使役环境下钙钛矿光伏器件失稳机理研究卢岳(北京工业大学 研究员)点击观看【十周年主题报告】:电子背散射衍射技术的进展及其在应对挑战性样品时的表现张兵(燕山大学 高级实验师)点击观看专场五:低温电子显微学与应用(6月27日上午)专场主持暨召集人:雷东升 兰州大学 教授 报告题目演讲嘉宾回放链接【十周年主题报告】: Euler angle-assigned reconstruction: the strategy to resolve ESCRT-III flat spirals on the membrane沈庆涛(南方科技大学 教授)点击观看免疫球蛋白IgM与 IgA的分子机制肖俊宇(北京大学 教授)/细胞结构生物学与生物大分子原位可视化朱赟(中国科学院生物物理研究所 研究员)点击观看专场六:生物医学电镜技术与应用(6月27日下午)专场主持暨召集人:李英 清华大学蛋白质研究技术中心 工程师报告题目演讲嘉宾回放链接【十周年主题报告】: 微观脑联接图谱绘制技术陈曦(中国科学院自动化研究所 研究员)/徕卡在SEM/FIB SEM的制样方案介绍包沈源(徕卡显微系统(上海)贸易有限公司 中国区应用主管)点击观看特殊亚结构形成性肾小球病的电镜诊断任雅丽(北京大学第一医院 副主任医师)点击观看植物多模态跨尺度技术及其应用张曦(北京林业大学 讲师)点击观看光电关联及冷冻电子断层成像对沙门氏菌引发的宿主异源自噬的原位结构研究李美静(深圳医学科学院 特聘研究员)/专场七:电镜实验操作技术及经验分享(6月28日上午)专场主持暨召集人:张斌 重庆大学分析测试中心 副研究员报告题目演讲嘉宾回放链接【十周年主题报告】:透射电镜在纳米材料表面研究和设计中的应用袁文涛(浙江大学电镜中心 研究员)/固态电池缺陷结构与特性的原位TEM研究邵瑞文(北京理工大学 副教授)/高分辨电子能量损失谱及应用杜进隆(北京大学电子显微镜实验室 高级工程师)/透射电镜样品制备的质量分析与评定马晓丽(上海交通大学 材料科学与工程学院 高级实验师)/专场八:电镜开放共享平台及自主保障体系建设(6月28日下午)专场主持暨召集人:郭振玺 北京大学冷冻电镜平台 副主任/高级工程师报告题目演讲嘉宾回放链接【十周年主题报告】:大型仪器开放共享十年回顾刘瑞(北京航空航天大学 研究员)/北京大学大型仪器设备管理实践---以电子显微镜建设布局60年为例钟灿涛(北京大学实验室与设备管理部 副部长/副研究员)/武汉大学科研公共服务条件平台的建设、运行及共享管理的特色模式和新举措王建波(武汉大学物理科学与技术学院、电镜中心、科研公共服务条件平台 教授)点击观看综合型电镜平台的技术体系构建之路何琳(上海交通大学分析测试中心 副主任/副研究员)/扫描电子显微镜在文物科技分析中的应用研究关明(故宫博物院 文物保护标准化研究所检测技术组副组长/副研究馆员)/
  • 观看超2000人!第八届电子显微学网络会议(iCEM 2022)首日开播!
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场。7月26日,电子显微学技术及应用进展、原位电子显微学技术及应用两大主题专场云集了16位电镜领域的专家并分享了精彩报告,首日参会观众即突破2000人!电子显微学技术及应用主题会场 会场主持人:浙江大学长聘教授 田鹤会议致辞:中国电子显微镜学会副理事长、东南大学教授 孙立涛报告人:中科院上海硅酸盐所研究员 曾毅报告人:日立科学仪器(北京)有限公司经理 张希文报告人:北京大学教授 高鹏报告人:北京欧波同光学技术有限公司产品应用专家 张宁报告人:武汉大学电镜中心教授 郑赫报告人:浙江大学长聘教授 田鹤原位电子显微学技术及应用主题会场会场主持人:浙江大学特聘研究员 袁文涛报告人:武汉大学教授 王建波报告人:上海微纳国际贸易有限公司经理 赵颉报告人:厦门大学教授 廖洪钢报告人:卡尔蔡司(上海)管理有限公司应用专家 高迪报告人:东南大学教授 钟立报告人:赛默飞世尔科技电镜应用开发专家 吴伟报告人:浙江大学求是特聘教授 张跃飞报告人:浙江大学特聘研究员 袁文涛7月27日-29日会议日程预告:参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022 或扫描二维码报名时间报告题目演讲嘉宾专场三:先进电子显微学技术及应用(7月27日上午)专场主持人:王立华 北京工业大学 教授08:30--09:00基于叠层电子衍射的断层扫描三维成像技术(Electron ptychographic computed tomography)王鹏(南京大学 教授)09:00--09:30跨尺度锂电池研究黄建宇(燕山大学 教授)09:30--10:00国仪量子电镜研发最新进展及应用尹相斐(国仪量子(合肥)技术有限公司 应用工程师)10:00--10:30The ESEM as In Situ Platform for the Study of Gas-Solid Interactions王竹君(上海科技大学 教授)10:30--11:00TESCAN双束电镜的最新技术进展余妍(TESCAN CHINA 资深应用工程师)11:00--11:30聚束科技NavigatorSEM-100的技术突破及应用李帅(聚束科技(北京)有限公司 总经理)11:30--12:00晶界塑性变形原子层次机理的原位研究王立华(北京工业大学 教授)12:00--12:303D Electron Diffraction Methods for Crystal Structure Determination徐弘毅(瑞典斯德哥尔摩大学 研究员)专场四:电镜实验操作技术及经验分享(7月27日下午)专场主持人:陈明霞 西安交通大学 高级工程师14:00--14:30球差矫正透射电镜安装指标、操作和数据处理常用技术张宏(兰州大学 讲师)14:30--15:00冷冻电镜数据收集策略常圣海(浙江大学 助理研究员)15:00--15:30透射电子显微镜原位研究中的样品制备方法熊雨薇(东南大学 助理工程师)15:30--16:00北京大学冷冻电镜平台Cryo-ET技术流程秦昌东(北京大学 博士后)16:00--16:30电镜生物样品低温保存的方法分析陈明霞(西安交通大学 高级工程师)16:30--17:00离子抛光电镜制样技术与应用马晓丽(上海交通大学 材料科学与工程学院 高级工程师(实验系列))17:00--17:10电镜选型如何实现降本增效?王利影(仪器信息网导购平台 运营经理)专场五:电子显微学技术在材料领域的应用(7月28日全天)上午专场主持人:葛炳辉 安徽大学 教授09:00--09:30高性能镍基单晶高温合金 “全寿命”的微观结构演化规律赵新宝(浙江大学 研究员)09:30--10:00布鲁克全新一代电制冷能谱仪陈剑峰(布鲁克(北京)科技有限公司 应用工程师)10:00--10:30水氧敏感二维材料的本征缺陷原子尺度研究林君浩(南方科技大学 研究员)10:30--11:00跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用卢毓华(钢铁研究总院/纳克微束(北京)有限公司 应用科学家)11:00--11:30高强韧铝合金纳米析出强化机理研究及高效设计李凯(中南大学 副教授)11:30--12:00显微学成像技术及其应用的研究葛炳辉(安徽大学 教授)下午专场主持人:谷猛 南方科技大学 研究员14:00--14:30具有离子导电性的半导体材料电致相变及阻变的电镜研究吴劲松(武汉理工大学 教授)14:30--15:00徕卡电镜制样在材料科学方面的应用与介绍武素芳(徕卡显微系统(上海)贸易有限公司 高级应用工程师)15:00--15:30镍基单晶高温合金的形变机理丁青青(浙江大学 副研究员)15:30--16:00COXEM台式扫描电镜在材料显微表征领域的应用沈宁(COXEM库赛姆台式电镜 产品应用专家)16:00--16:30结构功能一体化纳米多孔金属材料刘攀(上海交通大学 特别研究员)16:30--17:00用原位电镜研究NaYF4上转换发光材料的结构和发光性质鞠晶(北京大学 高级工程师)17:00--17:30固体电解质界面层的冷冻电镜研究谷猛(南方科技大学 研究员)专场六:电子显微学技术在生命科学领域的应用(7月29日全天)上午专场主持人:孙飞 中国科学院生物物理研究所 研究员09:00--09:30“Coevolution” of cryo-EM method and mechanistic study of ABC transporters廖茂富(Harvard Medical School (哈佛医学院) Associate Professor)09:30--10:00日本电子冷冻电镜在生命科学领域的应用张滢(捷欧路(北京)科贸有限公司 应用工程师)10:00--10:30免疫电镜在生命科学研究中的应用——如何做好免疫电镜胡迎春(北京大学 高级工程师)10:30--11:00徕卡生命科学电镜制样以及光电联用技术介绍肖丽国(徕卡显微系统(上海)贸易有限公司 应用主管)11:00--11:30常规透射电镜技术在遗传发育生物学研究中的应用——从样品制备到观察分析的那些事杨琳(中国科学院遗传与发育生物学研究所 高级工程师)11:30--12:00冷冻电镜样品制备技术孙飞(中国科学院生物物理研究所 研究员)下午专场主持人:韩玉刚 中国科学院生物物理研究所 研究员14:00--14:30Biparatopic antibody BA7208/7125 effectively neutralizes SARS-CoV-2 variants including Omicron BA.1-BA.5刘铮(南方科技大学冷冻电镜中心 教授)14:30--15:00生命科学Cryo-Tomography的整体解决方案刘雨诗(赛默飞世尔科技 业务拓展经理)15:00--15:30病毒形态鉴定中的假象宋敬东(中国疾病预防控制中心病毒病预防控制所 研究员)15:30--16:00从照片到结构: 单颗粒数据处理的基本流程丁玮(中国科学院物理研究所 副主任工程师)16:00--16:30细胞样品的冷冻聚焦离子束减薄技术及应用李硕果(中国科学院生物物理研究所 高级工程师)16:30--17:00AI-enhanced time-resolved cryo-EM for visualizing atomic dynamics of macromolecular machines毛有东(北京大学 教授)17:00--17:30积分相位衬度成像(iDPC_STEM)技术在生物样品中的应用李许静(中国科学院生物物理所 工程师)参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022 或扫描二维码报名
  • 2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(下)
    仪器信息网、中国电子显微镜学会联合报道:2021年10月15-17日,由中国电子显微镜学会主办、南方科技大学承办的“2021年全国电子显微学学术年会”在东莞市举办。大会共设置十个分会场:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)低温电子显微学表征;9)生命科学显微成像技术研究;10)中国电子显微镜运行管理开放共享实验平台。10月17日,第八分会场(低温电子显微学表征)、第九分会场(生命科学显微成像技术研究)、第十分会场(全国电镜运行管理开放共享科研平台)分别围绕电镜在生命科学、生物学与医学、材料与能源等领域的应用,以及电镜平台管理等热点议题邀请领域内知名专家分享经验。以下是各分会场部分专家的精彩报告内容:报告人:西安交通大学教授 张磊报告题目:《基于冷冻电子显微学的水环境微观体系结构与功能机制研究》张磊教授通过三维结构重构,对水环境物质单物体形貌、多物体相互作用进行了表征,实现了结构均一样品(稳态)的原子分辨率和结构动态性样品(瞬态)的纳米分辨率。在生命物质结构与功能机理研究方面,基于冷冻透射电子显微学技术,结合分子动力学模拟方法,探明重要生物大分子及其复合物原子分辨率结构,揭示功能作用物理机理,筛选特异分子药物。报告人:南方科技大学助理教授 张晴报告题目:《超低剂量冷冻电镜实现敏感金属钾与其SEI的原子尺寸成像》传统钾离子电池面临着材料选择照搬锂电、研究方向单一、未能发挥钾电特点及优势等问题,而固态电解质膜(SEI)是反映电极材料与电解液适配性的关键,但缺乏有效手段深入探究机理。张晴通过使用超低剂量冷冻电镜首次成功获得了电子极度敏感的钾金属与钾基SEI高分辨图像,得到了钾基SEI代表性结构模型和化学组分信息,为优化钾电池电解液选择,实现商业化提供了见解和指导。报告人:浙江工业大学教授 朱艺涵报告题目:《低剂量电子显微技术在材料科学中的应用》在电子辐照下,金属有机框架(Metal-Organic Frameworks,MOFs)和共价有机框架(Covalent Organic Frameworks, COFs)的结构是不稳定的,辐照损伤的机理十分复杂。朱艺涵教授通过低剂量电子显微技术得到了的MOFs和COFs的高分辨成像,并探索了MOFs材料在能源等领域的应用。报告人:中国科学院物理研究所研究员 王雪锋报告题目:《冷冻电镜观察金属锂电池》王雪锋研究员通过冷冻电镜研究锂离子电池和金属锂电池等辐照敏感材料,得到了纳米和微米尺度的结构、成分和分布信息,发现金属锂沉积经历了非晶到结晶转变,为制备高性能锂电池提供了策略、指导和依据;同时通过冷冻电镜结合聚焦离子束等先进表征手段系统性研究了全固态电池的界面问题。报告人:浙江大学研究员 张岩报告题目:《Insights into lipid regulation of GPCR signaling》张岩在报告中提出,研究发现胆固醇稳定存在于GPCR-G复合物的冷冻电镜结构中;磷脂PI4P在5-ht1A受体功能中起关键作用;脂质不仅提供膜环境,而且调节受体活性。报告人:中国科学院生物物理研究所研究员 张名姝报告题目:《基因编码的超分辨成像探针》张名姝研究员报告中提到,超分辨荧光成像揭示了生物分子纳米尺度的精确结构和动态定位,而光电关联成像整合目标分子的特异定位和细胞环境的超微结构;发展了新探针技术,从而不断提高活细胞成像的时空分辨率,实现厚组织样品高精度光电关联成像以及双色超分辨成像;最后介绍了关于红色超分辨成像探针和双色光电关联探针的最新进展。报告人:北京大学工程师 刘轶群报告题目:《双束扫描电镜在生命科学应用详解》刘轶群使用双束扫描电镜针对不同课题,选择不同工作距离、拍照电压、束流以及制样条件的组合,完成更大尺度的三维重构;通过多种电镜结合应用,实现了如利用三维光电关联获得样品三维结构及目的蛋白定位、用APEX标记确定目的蛋白定位、使用免疫电镜确定目的蛋白定位等应用。报告人:西安交通大学医学部教授级高级工程师 陈明霞报告题目:《温度对电镜生物样品的影响》陈明霞报告中讲解了生物医学电镜样品制备中的透射电镜超薄切片技术,并研究了温度对细胞结构的影响,对于样品在戊二醛内结冰样品、直接进入液氮样品、未在戊二醛固定液内结冰样品的可用性进行了探讨。报告人:中山大学副教授 卫斌报告题目:《二维材料结构相变与亚稳相的原位研究》卫斌副教授对二维材料相变与亚稳相——二碲化钼从2H到1T’的相变、硒化镓相变与高温亚稳相、硒化铟中亚稳相进行了系统性的研究。报告人:哈尔滨工业大学(深圳)高级工程师 高尚报告题目:《EDS和EBSD的测试技术进展》高尚从扫描电镜的发展方向,谈到了电镜分析的技术限制、SDD探测的普及和几何优化、窗口优化等。随着显微分析技术的进展,SDD探测器及CMOS探测器在拓展技术适用范围的同时,降低了对测试条件的要求,并且在微观和宏观尺度上拓宽了表征范围,使得EDS和EBSD具有更高的分辨率,更快的速度和更高的效率。伴随着EDS和EBSD变得日益强大,扫描电镜可以同时具备成分、结构和成像功能,更全面地反应样品的微观特征,变得更为强大。报告人:西安交通大学工程师 张杨报告题目:《FIB-球差电镜在材料学科中的应用》张杨分享了西安交大分测中心电镜实验室的情况、FIB在材料研究中的应用、球差电镜在材料研究中的应用、电镜管理实践及规划四部分内容。报告中还分享了电镜在压电薄膜——柱状有序结构、功能氧化物薄膜-纳米共存相、弯曲氧化物薄膜、热电半导体点缺陷-置换原子等案例中的应用。报告人:浙江大学副研究员 王晋报告题目:《扫描电镜原位力学表征测试方法》王晋报告中介绍了开发的基于SEM原位一体化表征平台,通过高通量表征与大数据集成,探索从案例式研究向机器学习数据挖掘的材料研究途径;发展了先进的高温力学耦合的表征方法,借助科学手段和定量化数据,促进材料的研发水平。颁发优秀报告奖(部分合影)10月17日,随着第八分会场(低温电子显微学表征)、第九分会场(生命科学显微成像技术研究)、第十分会场(全国电镜运行管理开放共享科研平台)的报告接近尾声,2021年全国电子显微学学术年会也即将圆满结束。【系列报道】:2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(上)【系列报道】:2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(中)【点击报道专题链接】——2021年全国电子显微学学术年会专题
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制