当前位置: 仪器信息网 > 行业主题 > >

固相萃取吸附剂

仪器信息网固相萃取吸附剂专题为您整合固相萃取吸附剂相关的最新文章,在固相萃取吸附剂专题,您不仅可以免费浏览固相萃取吸附剂的资讯, 同时您还可以浏览固相萃取吸附剂的相关资料、解决方案,参与社区固相萃取吸附剂话题讨论。

固相萃取吸附剂相关的资讯

  • 如何选择固相萃取柱
    p style=" text-indent: 2em " 固相萃取柱是从层析柱发展而来的一种用于萃取、分离、浓缩的样品前处理装置,常见的固相萃取柱大都以聚乙烯为材料的注射针筒型装置,该装置内装有两片以聚丙烯或玻璃纤维为材料的塞片,两个塞片中间装填有一定量的色谱吸附剂(填料)。 /p p style=" text-indent: 2em " 选择固相萃取柱的关键除了要求的规格之外,决定分离性能的是它的填料。在选择萃取柱时,必须根据待检测样品的种类及其物化性质选择合适的填料。固相萃取填料通常是色谱吸附剂,大致可以分为三大类,分别是以硅胶、高聚物、无机材料为基质。 /p p style=" text-indent: 2em " 第一类是以硅胶为基质,如:Waters& nbsp Sep-Pak& nbsp C18固相萃取小柱,硅胶极性很强,呈弱酸性,可被用于正相或反相两种分离模式:正相提取时,极性比硅胶弱,反相提取时非极性比C18& nbsp 或& nbsp C8& nbsp 的弱。对于类固醇有着较好的萃取效果通常用于非极性或弱极性化合物的萃取或极性杂质的去除。主要用于血样、尿样中药物及其代谢物、多肽脱盐、环境样品中的痕量有机化合物富集、饮料中的有机酸。 /p p style=" text-indent: 2em " 第二类是以高聚物为基质,如:聚苯乙烯-二乙烯苯等。高纯度、高交联度的苯乙烯-二乙烯基苯聚合物为固定相填装的萃取小柱具有高载样量,可耐受极端& nbsp pH& nbsp 条件和不同的溶剂,对极性化合物具有优异的保留能力。可用作酸性、中性和碱性化合物的通用型吸附剂,通常用于反相条件下保留含有亲水基团的疏水性化合物如:酚类、硝基芳香类、硝胺类、硝酸酯类等。 /p p style=" text-indent: 2em " 第三类是以无机材料为主的,如:弗罗里硅藻土、氧化铝、石墨化碳等。弗罗里硅土是一种氧化镁复合的极性硅胶吸附剂,以此为基质的萃取小柱适合于从非极性基质中吸附极性化合物,如多氯联苯、多环芳烃、有机氯农残等;石墨化碳黑(CARB)萃取小柱,& nbsp 以石墨化碳黑为填料,萃取过程非常迅速。且对化合物的吸附容量比硅胶大一倍有余,由于石墨化碳黑表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如水果、蔬菜中的色素、甾醇、苯酚等物质;以氧化铝为基质的填料有酸、碱、中性三种类型,适用于酸性、碱性、中性溶剂的分离萃取。 /p p style=" text-indent: 2em " 固相萃取柱容量是指固相萃取柱填料的吸附量,在选择固相萃取柱时,必须考虑柱容量。由于我们面对的样品基质通常都较为复杂,在固相萃取中,固相萃取吸附剂对目标化合物吸附的同时,也会吸附同类性质的杂质。因此,在考虑柱容量是应该是目标化合物加上可被吸附的杂质总量不能超过柱容量。否则在载样的过程中就可能有部分目标化合物不能被吸附,造成回收率偏低。 /p
  • 傅若农第二十一讲:碳用于固相萃取的演变
    p 往期讲座内容见: a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/zt/frnqxsp" target=" _blank" span style=" color: rgb(0, 176, 240) " strong 傅若农老师讲气相色谱技术发展 /strong /span /a   /p p   碳是有机世界的“主角”,在地球上按重量计算,占地壳中各元素总重量的0.4%,按原子总数计算不超过0.15%。而元素碳是一种十分神奇的物质,像碳纤维是比钢轻而抗拉强度高于钢7-9倍的材料。尤其是近20年纳米级大小的碳(富勒烯,碳纳米管,石墨烯等)人们给以前所未有的重视。 /p p   在利用各种吸附剂进行混合物分离发展的早期,人们就利用各种形态的碳做吸附剂用于分离各种混合物,现在人们又把目光投向富勒烯,碳纳米管,石墨烯等纳米级材料做新型分离材料用作固相萃取的吸附剂。 /p p    strong 1. 活性炭作固相萃取吸附剂 /strong /p p   活性碳是最早使用的固相萃取吸附剂,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,吸附性能不能令人满意,就把它改性,以适应萃取分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最重要的是原料的选择和预处理。活性碳的基本性质取决于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质——主要是 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S08001-T000-1-1-1.html" span style=" color: rgb(255, 0, 0) " strong 聚合物 /strong /span /a 。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,使之没有过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成化合物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂。制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。活性碳表面具有很高的化学和几何不均一性,特别是工业用活性碳尤为严重。 /p p   固相萃取(SPE)使用活性炭始于上世纪 50 年代初,Braus 等人使用活性碳做吸附剂,在铁管中装1200-1500 g 碳纤维,用以富集水中的污染物,之后用索氏萃取器提取被吸附的有机物,包括水中的有机氯农药。(Anal Chem,1951,23:1160)。萃取管长91.44 cm,直径在10.16 cm,装填1200-1500 g 颗粒状活性碳,通过 5000 gal - 7500 gal 地表水吸附有机氯氯农药。 /p p   由于活性碳的缺点妨碍其使用,即吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。 /p p    strong 2. 碳分子筛作固相萃取吸附剂 /strong /p p   在上世纪 70 到 80 年代,在研究聚合物吸附剂和键合有机物硅胶的同时,再次使用了性能改进的碳吸附剂——碳分子筛。这是由于当时的碳吸附剂结构改进、材质均一、性能稳定,同时它对极性化合物的吸附有好的选择性。碳分子筛的性能与 XAD-4 大孔树脂(以苯乙烯和丙烯酸酯为单体、乙烯苯为交联剂进行聚合)相同。 /p p   1968年 Kaiser 制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。这种吸附剂用于气-固色谱的固定相,我国称之为碳多孔小球(TDX),自然可以用作固相萃取的吸附剂。早年我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(Tan Duokong Xiaoqiu,TDX), 具体的牌号有 TDX-01 TDX-02。它们的堆积密度为 0.6 g/mL,比表面为 800 m2/g。碳多孔小球的特点是:非极性很强,表面活化点少,疏水性强,耐腐蚀、耐辐射,寿命长。表1列出国外厂家的碳分子筛的性能。 /p p style=" text-align: center " 表 1 商品碳分子筛的性能 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 108" p 吸附剂商品名 /p /td td valign=" top" width=" 84" p 厂家 /p /td td valign=" top" width=" 79" p 比表面/(m2/g) /p /td td valign=" top" width=" 65" p 孔径/nm /p /td td valign=" top" width=" 128" p 堆积密度/(g/mL) /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp B /p /td td valign=" top" width=" 84" p a id=" OLE_LINK3" name=" OLE_LINK3" /a Supelco /p /td td valign=" top" width=" 79" p 1000 /p /td td valign=" top" width=" 65" p 1-1.2 /p /td td valign=" top" width=" 128" p 0.226 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp S /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p 560 /p /td td valign=" top" width=" 65" p 1-1.2 /p /td td valign=" top" width=" 128" p 0.5-0.7 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp S-II* /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p 548 /p /td td valign=" top" width=" 65" p 0.5-0.7 /p /td td valign=" top" width=" 128" p 0.55-0.60 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp G* /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p & nbsp 204 /p /td td valign=" top" width=" 65" p 0.5-0.7 /p /td td valign=" top" width=" 128" p 0.25-0.28 /p /td /tr tr td valign=" top" width=" 108" p Spherocarb /p /td td valign=" top" width=" 84" p Foxboro /p /td td valign=" top" width=" 79" p 1200 /p /td td valign=" top" width=" 65" p 1.5 /p /td td valign=" top" width=" 128" p 0.5+0.05 /p /td /tr tr td valign=" top" width=" 108" p Carbosphere /p /td td valign=" top" width=" 84" p Chrompack /p /td td valign=" top" width=" 79" p 1000 /p /td td valign=" top" width=" 65" p 1.3 /p /td td valign=" top" width=" 128" br/ /td /tr /tbody /table p    strong 3 近年用碳纳米材料作固相萃取吸附剂 /strong /p p   自从1991年日本学者饭岛澄男(Sumo Iijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域。在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,它们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图1所示。 /p p style=" text-align: center " img style=" width: 295px height: 298px " title=" 图1.png" src=" http://img1.17img.cn/17img/images/201603/insimg/bcb66e42-ef71-4d27-964f-3618bb6e1ce4.jpg" height=" 345" width=" 314" / /p p style=" text-align: center " 图 1 碳家族的各种形态 /p p style=" text-align: center " (TrAC,2016, 77:23–43) /p p    strong (1) 富勒烯及其衍生物作固相萃取吸附剂 /strong /p p   自从1990年Huffman 和 Kratschmer发表了能大量制备富勒烯(C60)之后,对这类物质进行大量研究,对这类化合物的制备和性能有不少文章和综述发表,日本的 Jinno Kiyokatsu研究组对富勒烯进行了大量研究(Anal. Chem., 1995, 67:2556),把富勒烯键合到硅胶上用作HPLC的固定相,分离多环芳烃。Gallego等揭示了C60作为吸附剂在分离富集金属离子的潜力(Anal Chem,1994, 66:4074),它对金属离子的分离富集能力优于常规萃取剂——键合烷基硅胶和活性炭。例如超痕量镉在C60富勒烯微柱上进行分离, 形成中性配合物,用200mL对甲基异丁基酮洗脱吸附的镉,用原子吸收光谱进行测定。用双螯合试剂,即吡咯烷铵(APDC)和8-羟基喹啉,在一个流路中进行检测。APDC和C60富勒烯对镉进行选择性吸附,与含有的铜、铅、锌、铁中分离出来。与其他方法对比, C60和APDC的方法得到更为准确的结果(J Anal Atom Spectrom, 1997, 12: 453–457)。 /p p   2000年M Valcá rcel等使用一个简单的流动注射系统,在C60富勒烯吸附柱上在线富集金属二硫代氨基甲酸盐(杀菌剂),无需使用常规方法的酸水解,以便释放CS2,也不用衍生化,它可以直接保留在吸附柱上,随后用稀硝酸洗脱。将洗脱的馏分直接送入火焰原子吸收光谱仪进行测定(Analyst,2000, 125:1495–1499)。 /p p   2004年M Gallego等用富勒烯萃取柱选择性吸附汞的二乙基二硫代氨基甲酸配合物,分析水中的无机和有机汞,免除许多金属离子的干扰(J Chromatogr A, 2004, 1055 : 185–190)。 /p p   2009年M Gallegoa 等利用C60富勒烯萃取柱区分非芳香族(脂族和环状)和芳香族亚硝胺,用C60和LiChrolut EN组成一组串联萃取柱,25ml样品通过C60柱只有芳香族亚硝胺保留,然后通过LiChrolut EN柱非芳香亚硝胺馏分被保留。用150& amp #956 L乙酸乙酯–乙腈溶液(9:1)洗脱非芳香亚硝胺,进样1& amp #956 L萃取物到GC-MS中进行测定。通过比较C60和C70富勒烯和碳纳米管的研究,显示C60富勒烯是选择性地保留芳香族馏分最佳。(J Chromatogr A,2009,1216 :1200–1205)。 表 2 是勒烯及其衍生物作固相萃取吸附剂的用例。 /p p style=" text-align: center " 表 2 富勒烯及其衍生物作固相萃取吸附剂的用例 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 35" p 1 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p Cd /p /td td valign=" top" width=" 65" p 水,牡蛎组织,猪肾牛肝 /p /td td valign=" top" width=" 75" p AAS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p J Anal At Spectrom,1997,12 :453–457 /p /td /tr tr td valign=" top" width=" 35" p 2 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 汞(II)、甲基汞(I) br/ & nbsp & nbsp & nbsp 与乙基汞(I) /p /td td valign=" top" width=" 65" p 海水,废水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 80–105 /p /td td valign=" top" width=" 138" p J Chromatogr A,2004,1055:185–190 /p /td /tr tr td valign=" top" width=" 35" p 3 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 有机金属化合物 /p /td td valign=" top" width=" 65" p 水溶液 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p J Chromatogr A,2000, 869:101–110 /p /td /tr tr td valign=" top" width=" 35" p 4 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 金属二硫代氨基甲酸盐 /p /td td valign=" top" width=" 65" p 粮 /p /td td valign=" top" width=" 75" p FAAS /p /td td valign=" top" width=" 70" p 92–98 /p /td td valign=" top" width=" 138" p Analyst,2000,125:1495–1499 /p /td /tr tr td valign=" top" width=" 35" p 5 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p BTEX /p /td td valign=" top" width=" 65" p 海水,废水,地表水,雨水,湖水,饮用水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 94–104 /p /td td valign=" top" width=" 138" p J Sep Sci,2006,29:33–40 /p /td /tr tr td valign=" top" width=" 35" p 6 /p /td td valign=" top" width=" 107" p 富勒烯C60,C70 /p /td td valign=" top" width=" 66" p 芳烃和非芳烃,亚硝化单胞菌 /p /td td valign=" top" width=" 65" p 游泳池水,废水,饮用水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 95–102 /p /td td valign=" top" width=" 138" p a id=" OLE_LINK25" name=" OLE_LINK25" /a a id=" OLE_LINK24" name=" OLE_LINK24" /a J& nbsp Chromatogr A,2009,1216 :1200–1205 /p /td /tr tr td valign=" top" width=" 35" p 7 /p /td td valign=" top" width=" 107" p 富勒烯C60-键合硅胶 /p /td td valign=" top" width=" 66" p 阿马多瑞多肽 /p /td td valign=" top" width=" 65" p 人血清 /p /td td valign=" top" width=" 75" p MALDI-TOF MS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p Anal Biochem,2009,393: br/ & nbsp & nbsp & nbsp 8–22 /p /td /tr /tbody /table p    strong (2)碳纳米管及其衍生物作固相萃取吸附剂 /strong /p p   碳纳米管(CNTs)是由管状碳同素异形体,由一个单一的石墨薄片卷形成的结构,即单壁碳纳米管(SWCNT)或几个同心排列的碳纳米管结构,即多壁碳纳米管。单壁碳纳米管的直径可达3nm,多壁碳纳米管最多至100 nm。由于CNTs具有表面积大、活化点多、& amp #960 -& amp #960 键作用力强等特殊性能,适合于在固相萃取中应用,而且它的纳米级多孔性能有利于减小传质阻力,有利于平衡。碳纳米管具吸附性?,特别是多壁碳纳米管有很强的吸附性,比如它对TCDD(2,3,7,8-四氯代二苯并二恶英)的吸附性比一般活性碳吸附剂高1034倍(J Am Chem Soc,2001,123:2058.)。开始CNTs用于从水中分离双酚,壬基酚和辛基酚(Anal Bioanal Chem,2003,75:2517),回收率可达102.8%。其他多壁碳纳米管的SPE应用于包括极性和离子性化合物的目标物,如磺脲类除草剂,头孢菌素,抗生素、磺胺类和酚类化合物,苯氧羧酸类除草剂。(Anal Sci,2007,23 :189 Anal Chim Acta,2007,594: 81 Microchim Acta,2007,159:293)。 /p p   碳纳米管的一个有趣的特点是它们的表面可以进行化学改性,得到功能化具有独特性能的吸附剂。例如,有人在原单壁碳纳米管进行氧化,以便引入羧酸基团,可以萃取非甾体类抗炎药如布洛芬 从尿液萃取托美汀和吲哚美辛(J Chromatogr A,2007,1159 :203)。碳纳米管进行表面修饰使其具有高选择性,如吉首大学的张华斌等在多壁碳纳米管表面通过酰胺化反应接枝双键,以L-组氨酸为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯交联剂,偶氮二异丁腈为引发剂,利用表面印迹技术,在多壁碳纳米管表面制备印迹聚合物(MWNTs-MIPs)。可选择性吸附红霉素从鸡组织制剂中提取红霉素回收率达95.8%。(Anal Bioanal Chem,2011,401:2855 J Chromatogr B,2011,879:1617)。图 2 是 多壁碳纳米管(a 和c)和多壁碳纳米管的分子印迹聚合物(MWNTs-MIPs)(b和d)的扫描电镜(a 和b)和透射电镜(c和d)图。 /p p style=" text-align: center " img style=" width: 484px height: 338px " title=" 图2.png" src=" http://img1.17img.cn/17img/images/201603/insimg/3da93819-d98a-40eb-9e3f-152c16f09360.jpg" height=" 590" width=" 629" / /p p style=" text-align: center " 图 2 多壁碳纳米管和和多壁碳纳米管的分子印迹聚合物的扫描电镜 /p p   另外他们(J Chromatogr B,2011,879:1617)在Fe3O4磁性纳米粒子的表面涂渍了用羧基改性的多壁碳纳米管,并在表面接枝了牛血清白蛋白(BSA),使其具有印迹吸附功能(MIP)选择性吸附剂。 /p p   碳纳米管通过表面化学修饰,使之成为有选择性的吸附剂,成为近年研究的热点。表面修饰使碳纳米管物理和化学性能改性,这不仅扩大了其应用范围还可以提高其溶解性,这是由于提高了它和溶剂的色散作用力,可与大多数溶剂作用。表面化学修饰功能化过程通常包括酸化、氧化处理,提供了可作用的功能团,也减少了在碳纳米管的合成过程中造成的杂质。可以使用简单的或复杂的方法获得共价键合或非共价方式修饰碳纳米管。直接键合可通过碳纳米管壁形成的羧基可以直接与想要的功能团进行结合。另一方面,可通过范德华力、静电力、堆积作用、氢键和疏水相互作用形成非共价聚集体。两个或多个相互作用的结合,可提高了系统稳定性和选择性。表 3 是使用碳纳米管作样品前处理的应用实例。 /p p style=" text-align: center " 表 3 使用碳纳米管进行样品处理的应用 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 32" br/ /td td valign=" top" width=" 71" p 分析物 /p /td td valign=" top" width=" 79" p 样品基体 /p /td td valign=" top" width=" 64" p 分析方法 /p /td td valign=" top" width=" 129" p 碳纳米管特点 /p /td td valign=" top" width=" 68" p 回收率/% /p /td td valign=" top" width=" 124" p 文献 /p /td /tr tr td valign=" top" width=" 32" p 1 /p /td td valign=" top" width=" 71" p 邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:& lt 8 nm,长:0.5–2& amp #956 m,比表面:& gt 500 m2/g /p /td td valign=" top" width=" 68" p 86.6–100.2 /p /td td valign=" top" width=" 124" p J Chromatogr A, 2014, 1357:53–67 /p /td /tr tr td valign=" top" width=" 32" p 2 /p /td td valign=" top" width=" 71" p a id=" OLE_LINK16" name=" OLE_LINK16" /a a id=" OLE_LINK15" name=" OLE_LINK15" /a a id=" OLE_LINK14" name=" OLE_LINK14" /a 邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 饮料,自来水,香水 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:10–20 nm,长:5–15& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p 64.6–125.6 /p /td td valign=" top" width=" 124" p a id=" OLE_LINK20" name=" OLE_LINK20" /a a id=" OLE_LINK19" name=" OLE_LINK19" /a 同上 /p /td /tr tr td valign=" top" width=" 32" p 3 /p /td td valign=" top" width=" 71" p 邻苯二甲酸单酯 /p /td td valign=" top" width=" 79" p 人尿 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:30–60 nm,长:3–5& amp #956 m, /p /td td valign=" top" width=" 68" p 92.6–98.8 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 4 /p /td td valign=" top" width=" 71" p 直链烷基苯 br/ & nbsp & nbsp & nbsp 磺酸盐 /p /td td valign=" top" width=" 79" p 湖水,河水,污水 br/ & nbsp & nbsp & nbsp 人工湿地 /p /td td valign=" top" width=" 64" p HPLC–UV /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:30–60 nm,长:~20& amp #956 m,比表面:~60 & nbsp & nbsp m2/g /p /td td valign=" top" width=" 68" p 87.3–106.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 5 /p /td td valign=" top" width=" 71" p 对羟基苯甲酸酯 /p /td td valign=" top" width=" 79" p 饮料 /p /td td valign=" top" width=" 64" p HPLC–DAD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 20–40 nm, a id=" OLE_LINK23" name=" OLE_LINK23" /a 长:5–15& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 6 /p /td td valign=" top" width=" 71" p 神经剂及其标记蒸馏水 /p /td td valign=" top" width=" 79" p 自来水,浑浊水 /p /td td valign=" top" width=" 64" p GC–FPD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 7–15 nm,, br/ & nbsp & nbsp & nbsp i.d.: 3–6 nm, 长:0.5–200& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p 55.5–96.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 7 /p /td td valign=" top" width=" 71" p (氟)喹诺酮类 /p /td td valign=" top" width=" 79" p 人血浆 /p /td td valign=" top" width=" 64" p UPLC–UV /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 110–170 nm, 长:5–9 & amp #956 m /p /td td valign=" top" width=" 68" p 70.4–100.2 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 8 /p /td td valign=" top" width=" 71" p 氟喹诺酮类 /p /td td valign=" top" width=" 79" p 矿泉水,蜂蜜 /p /td td valign=" top" width=" 64" p CLC /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & lt 8 nm,长:0.5–2& amp #956 m /p /td td valign=" top" width=" 68" p 84.0–112 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 9 /p /td td valign=" top" width=" 71" p 苯并[a]芘 br/ & nbsp & nbsp & nbsp 解决方案 /p /td td valign=" top" width=" 79" p 有机溶剂、水溶液 /p /td td valign=" top" width=" 64" p MALDI–TOF–MS /p /td td valign=" top" width=" 129" p MWCNTs /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 10 /p /td td valign=" top" width=" 71" p PAHs /p /td td valign=" top" width=" 79" p 食用油 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p WCNTs, o.d.: & nbsp & nbsp 10–20 nm, 长:5–15& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 87.8–122.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 11 /p /td td valign=" top" width=" 71" p PAHs /p /td td valign=" top" width=" 79" p 活性炭/烧烤肉 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 30–60 nm, 长:5–3& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 81.3–96.7 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 12 /p /td td valign=" top" width=" 71" p 雌激素 br/ & nbsp & nbsp & nbsp , /p /td td valign=" top" width=" 79" p 自来水,矿泉水, br/ & nbsp & nbsp & nbsp 珠江水,蜂蜜 /p /td td valign=" top" width=" 64" p EC–UV /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp & lt 8 nm, :0.5–2& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 89.5–99.8 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 13 /p /td td valign=" top" width=" 71" p 雌激素 /p /td td valign=" top" width=" 79" p 牛奶 /p /td td valign=" top" width=" 64" p HPLC–FLD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 10–20 nm, a id=" OLE_LINK18" name=" OLE_LINK18" /a a id=" OLE_LINK17" name=" OLE_LINK17" /a 长:5–15& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 93.7–107.2 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 14 /p /td td valign=" top" width=" 71" p 核酸相关蛋白质 /p /td td valign=" top" width=" 79" p 人细胞裂解物,肝癌BEL-7402细胞 /p /td td valign=" top" width=" 64" p Nano-LC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 20–30 nm /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 15 /p /td td valign=" top" width=" 71" p 核酸相关蛋白质 /p /td td valign=" top" width=" 79" p 人肝癌BEL-7402细胞 /p /td td valign=" top" width=" 64" p Nano-LC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 20–30 nm /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 16 /p /td td valign=" top" width=" 71" p 双酚A,双酚F和缩水甘油 br/ & nbsp & nbsp & nbsp 醚 /p /td td valign=" top" width=" 79" p 自来水,河水, br/ & nbsp & nbsp & nbsp 雪水 /p /td td valign=" top" width=" 64" p GC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, i.d.: 60–100 nm /p /td td valign=" top" width=" 68" p 88.5–115.1 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 17 /p /td td valign=" top" width=" 71" p Se(IV) /p /td td valign=" top" width=" 79" p 自来水,湖水 /p /td td valign=" top" width=" 64" p HG–AFS /p /td td valign=" top" width=" 129" p MWCNTs 平均20 nm /p /td td valign=" top" width=" 68" p 96.3–102.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 18 /p /td td valign=" top" width=" 71" p Pb(II) /p /td td valign=" top" width=" 79" p 废水、河水,大米,红茶,绿茶,洋葱,马铃薯 /p /td td valign=" top" width=" 64" p FAAS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 8–15 nm,比表面:233 m2/g /p /td td valign=" top" width=" 68" p 97–104.5 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 19 /p /td td valign=" top" width=" 71" p 六种邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 茶油 /p /td td valign=" top" width=" 64" p GC-MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 1–2 nm, 长:0.5–2& amp #956 m& nbsp 比表面:380 m2/g /p /td td valign=" top" width=" 68" p 86. 4-111. 7 /p /td td valign=" top" width=" 124" p 色谱,2014,32(7):735-740 /p /td /tr tr td valign=" top" width=" 32" p 20 /p /td td valign=" top" width=" 71" p 114种农药残留 /p /td td valign=" top" width=" 79" p 烟草 /p /td td valign=" top" width=" 64" p LC-MS/MS /p /td td valign=" top" width=" 129" p MWNCTs1-5:外径:<8->50 nm,长度: 10-30& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p 93-114 /p /td td valign=" top" width=" 124" p 烟草科技,2015,48(5):47-55 /p /td /tr tr td valign=" top" width=" 32" p 21 /p /td td valign=" top" width=" 71" p 金刚烷胺 /p /td td valign=" top" width=" 79" p 鸡肉 /p /td td valign=" top" width=" 64" p LC-MS/MS /p /td td valign=" top" width=" 129" p MWNCTs1-5:外径:<8->50nm长度: 10-30& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p 97.8-103.6 /p /td td valign=" top" width=" 124" p 肉类研究,2014,28(4):14-18 /p /td /tr tr td valign=" top" width=" 32" p 22 /p /td td valign=" top" width=" 71" p 16种有机磷农药 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC-FPD /p /td td valign=" top" width=" 129" p MWNCTs1-5:直径:20-40,nm长度:5-15& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p & nbsp & gt 75 /p /td td valign=" top" width=" 124" p 分柝化学,2009,37(10):1479-1483 /p /td /tr tr td valign=" top" width=" 32" p 23 /p /td td valign=" top" width=" 71" p 有机氯和除虫菊农药 /p /td td valign=" top" width=" 79" p 蔬菜 /p /td td valign=" top" width=" 64" p GC-ECD /p /td td valign=" top" width=" 129" p 多壁碳纳米管(L-MWNT-2040),20-40,nm长度:5-15& amp #956 m, /p /td td valign=" top" width=" 68" p & gt 70 /p /td td valign=" top" width=" 124" p 色谱,2011,29(5):443-449 /p /td /tr tr td valign=" top" width=" 32" p 24 /p /td td valign=" top" width=" 71" p 溶菌酶 /p /td td valign=" top" width=" 79" p 蛋清 /p /td td valign=" top" width=" 64" p SDS-PAGE凝胶电泳 /p /td td valign=" top" width=" 129" p MWNCTs :外径:40-60nm, /p /td td valign=" top" width=" 68" p 96.4 /p /td td valign=" top" width=" 124" p 高等学校化学学报,2—8,29(5): 902-905 /p /td /tr tr td valign=" top" width=" 32" p 25 /p /td td valign=" top" width=" 71" p 有机磷农药 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC-PFPD /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 70 /p /td td valign=" top" width=" 124" p 厦门大学学报(自然科学版),2004,43(4):531-535 /p /td /tr tr td valign=" top" width=" 32" p 26 /p /td td valign=" top" width=" 71" p 有机磷农药 /p /td td valign=" top" width=" 79" p 大蒜 /p /td td valign=" top" width=" 64" p 方波伏安法 /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 97.0-104.0 /p /td td valign=" top" width=" 124" p 分析试验室,2007,26(增刊)(10):216-217 /p /td /tr tr td valign=" top" width=" 32" p 27 /p /td td valign=" top" width=" 71" p 酰胺类除草剂 /p /td td valign=" top" width=" 79" p 饮用水 /p /td td valign=" top" width=" 64" p GC-MS/MS /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 82-93.5 /p /td td valign=" top" width=" 124" p 分析试验室,2009,28(增刊)(5):82-84 /p /td /tr tr td valign=" top" width=" 32" p 28 /p /td td valign=" top" width=" 71" p 唑4种磺胺类药物 /p /td td valign=" top" width=" 79" p 环境水 /p /td td valign=" top" width=" 64" p (HPLC—PDA /p /td td valign=" top" width=" 129" p 己基-3.甲基咪唑六氟磷酸([C。MIM][PR])离子液体自聚集于磁性多壁碳纳米管上 /p /td td valign=" top" width=" 68" p 0.6-99.99 /p /td td valign=" top" width=" 124" p 分析化学,2015,43(5):669-674 /p /td /tr tr td valign=" top" width=" 32" p 29 /p /td td valign=" top" width=" 71" p 多环芳烃 /p /td td valign=" top" width=" 79" p 河水 /p /td td valign=" top" width=" 64" p GC-MS /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 60.4-89.3 /p /td td valign=" top" width=" 124" p 分析化学,2009,37,(增刊):D025 /p /td /tr tr td valign=" top" width=" 32" p 30 /p /td td valign=" top" width=" 71" p 甲硝唑 /p /td td valign=" top" width=" 79" p 食品 /p /td td valign=" top" width=" 64" p LC-UV /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 68-112 /p /td td valign=" top" width=" 124" p 分析测试学报。2010,29(8):807-8ll /p /td /tr /tbody /table p    strong (3) 石墨烯作固相萃取吸附剂 /strong /p p   石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大& amp #960 键,& amp #960 电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料。自然,人们不会忘记把它用作吸附剂用于固相萃取。因为它有高比表面积,2630 m2/g,高的吸附能力,良好的化学和热稳定性,高机械强度,价格便宜,网上戏称是白菜价。基于它的离域& amp #960 -电子体系,它可以和带有苯环的化合物形成& amp #960 -& amp #960 堆积相互作用,因而对这类化合物有很强的吸附作用。氧化石墨烯(GO),石墨烯的含氧基团,如羧基和羟基,可以化合物以共价键,静电或氢键结合。 /p p   基于石墨烯的吸附剂已用于含苯环化合物的预富集。2011年江桂斌院士的研究组利用石墨烯作吸附剂制成固相萃取柱,萃取水中的8种氯代酚,比较了几种吸附剂对8种氯代酚的回收率,见图 3(J Chromatogr A,2011,1218:197-204). /p p style=" text-align: center " img title=" 图3.png" src=" http://img1.17img.cn/17img/images/201603/insimg/66d0d73e-ed22-4204-ab95-04acf1533f4e.jpg" / /p p   新加坡国立大学的H K Lee等使用磺化石墨烯片作为吸附剂的固相微萃取,测定水中8种多环芳烃(J Chromatogr A,2012,1233:16-21),萃取效率远高于C8和C18萃取剂,见图4. /p p style=" text-align: center " img style=" width: 470px height: 268px " title=" 图4.png" src=" http://img1.17img.cn/17img/images/201603/insimg/801e4915-231e-42b0-9fb5-370f33f4f323.jpg" height=" 252" width=" 473" / /p p style=" text-align: center " 图 4 磺化石墨烯与C8和C18吸附效率的比较 /p p style=" text-align: center " G1,G2—磺化石墨烯 /p p style=" text-align: center " Nap—萘 Ace—苊 Flu—芴 Phe—菲 Ant—蒽 Flt—荧蒽 Pyr—芘 /p p 表 4 是石墨烯用作固相萃取吸附剂的用例 /p p style=" text-align: center " 表4 石墨烯用作固相萃取吸附剂的用例 /p table width=" 574" border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 35" br/ /td td valign=" top" width=" 107" p 萃取剂 /p /td td valign=" top" width=" 66" p 被分析物 /p /td td valign=" top" width=" 65" p 样品基质 /p /td td valign=" top" width=" 75" p 检测 /p /td td valign=" top" width=" 70" p 回收率/% /p /td td valign=" top" width=" 157" p 文献 /p /td /tr tr td valign=" top" width=" 35" p 1 /p /td td valign=" top" width=" 107" p 石墨烯, /p /td td valign=" top" width=" 66" p Pb /p /td td valign=" top" width=" 65" p 环境水和蔬菜 /p /td td valign=" top" width=" 75" p 火焰原子吸收光谱(FAAS) /p /td td valign=" top" width=" 70" p 95.3–100.4 /p /td td valign=" top" width=" 157" p Anal Chim Acta,2012,716:112–118 /p /td /tr tr td valign=" top" width=" 35" p 2 /p /td td valign=" top" width=" 107" p 石墨烯 /p /td td valign=" top" width=" 66" p 谷胱甘肽 /p /td td valign=" top" width=" 65" p 人血浆 /p /td td valign=" top" width=" 75" p 荧光分光光度计 /p /td td valign=" top" width=" 70" p 92-108 /p /td td valign=" top" width=" 157" p Spectrochim Acta,2011,79:860–186 /p /td /tr tr td valign=" top" width=" 35" p 3 /p /td td valign=" top" width=" 107" p 氧化石墨烯 /p /td td valign=" top" width=" 66" p 氯苯氧酸除草剂 /p /td td valign=" top" width=" 65" p 河水与海水 /p /td td valign=" top" width=" 75" p CE /p /td td valign=" top" width=" 70" p 93.3- 102.4 /p /td td valign=" top" width=" 157" p J Chromatogr A,2013,1300:227–235 /p /td /tr tr td valign=" top" width=" 35" p 4 /p /td td valign=" top" width=" 107" p RGO-silica(氧化石墨烯衍生物-硅胶) /p /td td valign=" top" width=" 66" p 氟喹诺酮 /p /td td valign=" top" width=" 65" p 自来水和河水 /p /td td valign=" top" width=" 75" p LC-FLR /p /td td valign=" top" width=" 70" p 72–118 /p /td td valign=" top" width=" 157" p J Chromatogr& nbsp A,2015,1379:9–15 /p /td /tr tr td valign=" top" width=" 35" p 5 /p /td td valign=" top" width=" 107" p 磺化石墨烯 /p /td td valign=" top" width=" 66" p 多环芳烃 /p /td td valign=" top" width=" 65" p 河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 81.6 -113.5 /p /td td valign=" top" width=" 157" p J Chromatogr& nbsp A,2012,1233:16–21 /p /td /tr /tbody /table p    strong 3.碳用作萃取吸附剂的综述文献 /strong /p p   表5 是碳纳米材料用作吸附剂近几年发表的综述文献,读者可以了解到更多的有关碳纳米材料在固相萃取中的应用情况。 /p p style=" text-align: center "   表5 碳纳米材料用作吸附剂近几年发表的综述文献 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 28" p a id=" _Hlk399763599" name=" _Hlk399763599" /a 1 /p /td td valign=" top" width=" 234" p 碳纳米管在分析化学中的应用(引用273篇文献) /p /td td valign=" top" width=" 151" p style=" text-align: left " SPE,SPME,膜,吸附棒 /p /td td valign=" top" width=" 151" p style=" text-align: left " J.Chromatogr. A,2014,1357:110–146 /p /td /tr tr td valign=" top" width=" 28" p 2 /p /td td valign=" top" width=" 234" p 碳基吸附剂—碳纳米管(引用194篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME,吸附棒 /p /td td valign=" top" width=" 151" p J & nbsp & nbsp ChromatogrA,2014, 1357: 53–67 /p /td /tr tr td valign=" top" width=" 28" p 3 /p /td td valign=" top" width=" 234" p 石墨烯基材料—制备及其在分析化学中的吸附应用(引用203篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME,色谱固定相 /p /td td valign=" top" width=" 151" p J Chromatogr & nbsp & nbsp A,2014, 1362 :1–15 /p /td /tr tr td valign=" top" width=" 28" p 4 /p /td td valign=" top" width=" 234" p 石墨烯作吸附剂在分析化学中的应用 /p /td td valign=" top" width=" 151" p SPE,SPME中的应用 /p /td td valign=" top" width=" 151" p TrAC,2013,51:33-43 /p /td /tr tr td valign=" top" width=" 28" p 5 /p /td td valign=" top" width=" 234" p 碳纳米管在分离科学中的应用-综述(引用241篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME & nbsp & nbsp LC,GC,CE,ECE,中的应用 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2012, 734: 1–30 /p /td /tr tr td valign=" top" width=" 28" p 6 /p /td td valign=" top" width=" 234" p 碳纳米管在分析科学中的应用(引用93篇文献) /p /td td valign=" top" width=" 151" p 在分离、传感器、样品制备中的应用 /p /td td valign=" top" width=" 151" p Microchim Acta,2012,179:1–16 & nbsp /p /td /tr tr td valign=" top" width=" 28" p 7 /p /td td valign=" top" width=" 234" p 碳纳米管在分离科学中的应用研究进展(引用90篇文献) /p /td td valign=" top" width=" 151" p 在SPE,SPME,LC,GC,CE中的应用 /p /td td valign=" top" width=" 151" p 色谱,2011,29(1):6-14 /p /td /tr tr td valign=" top" width=" 28" p 8 /p /td td valign=" top" width=" 234" p 碳纳米材料在分析化学中的应用(引用215篇文献) /p /td td valign=" top" width=" 151" p 在样品制备、分离及检测中的应用 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2011,691:6-17 /p /td /tr tr td valign=" top" width=" 28" p 9 /p /td td valign=" top" width=" 234" p 碳纳米管用于原子吸收光谱分析金属的固相萃取吸附剂(引用140篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2012,749:16-35 /p /td /tr tr td valign=" top" width=" 28" p 10 /p /td td valign=" top" width=" 234" p 碳纳米管用于磁固相萃取吸附剂(引用116篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Anal Chim Acta, 2015,892:10-26 /p /td /tr tr td valign=" top" width=" 28" p 11 /p /td td valign=" top" width=" 234" p 碳纳米管用于杀虫剂分析的吸附剂(引用 53篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Chemosphere,2011, 83:1407–1413 /p /td /tr tr td valign=" top" width=" 28" p 12 /p /td td valign=" top" width=" 234" p 碳基吸着剂-碳纳米管(引用194篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p J Chromatogr A, 2014, 1357:53–67 /p /td /tr tr td valign=" top" width=" 28" p 13 /p /td td valign=" top" width=" 234" p 固相萃取新倾向——新吸附介质(引用153篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2016,77:23–43 /p /td /tr tr td valign=" top" width=" 28" p 14 /p /td td valign=" top" width=" 234" p 色谱分析样品处理中的固相萃取吸附剂进展(引用214篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2014,59:26-41 /p /td /tr tr td valign=" top" width=" 28" p 15 /p /td td valign=" top" width=" 234" p 固相萃取吸附剂中新材料及倾向(引用 68篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2013,43:14-:3 /p /td /tr tr td valign=" top" width=" 28" p 16 /p /td td valign=" top" width=" 234" p 碳纳米管应用研究进展(引用 47 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 化工进展,2006,25(7):750-754 /p /td /tr tr td valign=" top" width=" 28" p 17 /p /td td valign=" top" width=" 234" p 磁纳米材料的功能化修饰及在环境分析中的应用研究(引用 116 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 湖南大学邹瑩硕士论文,2014 /p /td /tr tr td valign=" top" width=" 28" p 18 /p /td td valign=" top" width=" 234" p 多壁碳纳米管固相萃取--高效液相色谱技术联用在有机污染物分析中的应用 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 河南师范大学刘珂珂硕士论文,2012 /p /td /tr tr td valign=" top" width=" 28" p 19 /p /td td valign=" top" width=" 234" p 多壁碳纳米管在痕量元素分离富集中的应用 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 华中师范大学丁琼硕士论文,2006 /p /td /tr tr td valign=" top" width=" 28" p 20 /p /td td valign=" top" width=" 234" p 基于碳纳米管表面分子印迹固相萃取材料研究(引用 131 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 吉首大学张华斌硕士论文,2011 /p /td /tr tr td valign=" top" width=" 28" p 21 /p /td td valign=" top" width=" 234" p 生物功能化碳纳米管的合成、表征及分析应用(引用 147 篇文献) /p /td td valign=" top" width=" 151" p 碳纳米管作为吸附剂的研究 /p /td td valign=" top" width=" 151" p 南开大学刘越博士论文,2009 /p /td /tr tr td valign=" top" width=" 28" p 22 /p /td td valign=" top" width=" 234" p 碳纳米材料在环境分析化学中的应用研究(引用 107 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 河南师范大学汪卫东硕士论文,2006 /p /td /tr tr td valign=" top" width=" 28" p 23 /p /td td valign=" top" width=" 234" p 新型纳米材料与传统吸附材料 br/ & nbsp & nbsp & nbsp 性能比较研究(引用 131 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 东南大学邓思维硕士论文,2014 /p /td /tr tr td valign=" top" width=" 28" p 24 /p /td td valign=" top" width=" 234" p 新型吸附材料在样品前处理技术中的应用研究(引用 170 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取碳纳米管 /p /td td valign=" top" width=" 151" p 西南大学汪卫东博士论文,2009 /p /td /tr tr td valign=" top" width=" 28" p 25 /p /td td valign=" top" width=" 234" p 修饰碳纳米管对砷的吸附及其应用研究 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 西南大学李璐硕士论文,2009 /p /td /tr /tbody /table p & nbsp /p p /p
  • 干货∣掌握固相萃取小知识,轻松应对SPE方法开发
    填料为正相吸附剂和反相吸附剂主要用来分析哪些化合物呢? 首先,我们先简要了解一下反相萃取与正相萃取的吸附机理。 反相作用机理:反相萃取分离主要是利用固相萃取材料官能团上的碳氢键与目标化合物的碳氢键之间的非极性作用力。通常,非极性的反相SPE柱较为适用于从极性基质中萃取分离非极性及中等极性的目标化合物。 对于通过非极性作用力吸附在非极性SPE柱上的目标化合物,可以用具有非极性性质的溶剂洗脱,如氯fang、环己烷、乙酸乙酯等。只要溶剂的洗脱强度足以破坏目标化合物与吸附剂非极性官能团之间的范德华力,就可以顺利地将目标化合物从SPE柱上洗脱下来。即便是极性较强的甲醇,对于许多化合物来说也具有足够的非极性作用力将其洗脱。有时单一溶剂不能把疏水性强的目标化合物完全洗脱下来,则可考虑使用二氯甲烷:乙酸乙酯(1:1,体积比)。 反相固相萃取模式下,溶剂体系的极性应按照样品溶剂、淋洗溶剂、洗脱溶剂的顺序逐渐降低,而它们的洗脱强度逐渐增大。必须保证选择的样品溶剂不能将目标化合物洗脱,选择的淋洗液应在不洗脱目标化合物的前提下最大限度地洗脱干扰物,所选洗脱液应能恰好完全洗脱目标化合物。 正相作用机理:极性作用力发生在许多固相萃取材料极性表面与样品中目标化合物的极性官能团之间。常见的具有极性作用力的吸附剂在色谱中一般都称为正相色谱吸附剂。极性作用力的强度比非极性作用力要大,但比离子作用力的强度小。常见的极性官能团包括羟基、胺基、巯基等。 非极性的基质环境有利于吸附剂和目标化合物之间的极性作用力,因为非极性溶剂没有能够与极性固定相材料形成氢键的官能团。因此,在极性作用力的固相萃取中,样品的基质多为非极性的,如正己烷、二氯甲烷、菜油等,而目标化合物多含有极性较大的官能团。 常见的极性固定相萃取材料包括:硅胶、氧化铝、弗罗里硅土及含有氰基(CN)、氨基(NH2)、二醇基(2OH)的键合硅胶。 正相固相萃取模式下,溶剂体系的极性应按照样品溶剂、淋洗溶剂、洗脱溶剂的顺序逐渐升高,它们的洗脱强度也逐渐增大。必须保证选择的样品溶剂不能将目标化合物洗脱,选择的淋洗液应在不洗脱目标化合物的前提下最大限度地洗脱干扰物,所以洗脱液应能恰好完全洗脱目标化合物。 加上之前为大家介绍的离子交换固相萃取技术,现在又面对反相、正相固相萃取,如此之多的吸附机制,实际应用中我们该选哪一个呢?下面小编就为大家做一个具体的分析。 由于许多化合物同时具有多种官能团,在选择固相萃取机理时,应该根据目标化合物及干扰物的性质来考虑采用哪种萃取机理较为有利。如:2-萘胺是一个弱碱性化合物(pKa=4.16),在一定的pH条件下还可以呈阳离子状态,同时该化合物具有疏水的非极性官能团及亲水的极性官能团。这时,就应该根据样品基质的具体情况来选择有利于将目标化合物与干扰物分离的萃取机理。如果样品基质中同时含有大量的非极性干扰杂质,就应该避免采用非极性的萃取机理,而将样品的pH调节到低于其pKa两个pH单位,即pH=2.16,并采用阳离子交换机理。反之,如果样品中同时含有大量的阳离子干扰杂质,则应该调节样品的pH至6.16(高于pKa两个单位),采用非极性萃取机理较为有利。
  • 固相萃取中常见的问题及解决方法
    固相萃取是一种利用固体吸附剂对样品中不同组分的选择性吸附能力差异来分离、纯化样品的前处理方法。固相萃取技术是食品检测中最常用到的技术手段,下面列举了一些在固相萃取中常见的问题及解决方法。 目标化合物回收率偏低(目标化合物没有或部分被吸附在SPE柱上)原因1:SPE柱没有很好地被预处理解决方法:反向柱:用甲醇,异丙醇或乙醇处理柱子,然后用稀释样品的溶剂处理柱子,注意不能让SPE柱变干。原因2:SPE柱的极性不合适解决方法:选择对目标化合物有明显选择性的SPE柱。原因3:目标化合物对样品溶液的亲和力远远大于对SPE柱的亲和力解决方法:改变极性或样品溶液的pH使目标化合物在样品溶液中的亲和力降低。原因4:当大体积水样品通过SPE柱时,反相柱填料失去柱子预处理留下的甲醇解决方法:在样品溶液中加入1%-2%的甲醇或异丙醇或乙腈。 目标化合物回收率偏低(目标化合物没有被洗脱出SPE柱)原因1:SPE柱的极性不合适解决方法:选择其他低极性或者选择性弱的SPE柱。原因2:洗脱溶剂不够强,无法将目标物化合物从SPE柱上洗脱解决方法:改变洗脱溶剂的pH以增加其对目标化合物的亲和力。原因3:洗脱溶剂体积太小解决方法:增加溶剂体积。原因4:目标化合物被不可逆地吸附在SPE载体上解决方法:反相:选择疏水性弱的载体。如果原来用的C18,则改为C8,C2,CN。阳离子交换:用羧酸取代苯磺酸。阴离子交换:用伯胺、仲胺代替叔胺。 萃取重现性差原因1:在添加样品之前SPE柱已干燥解决方法:重新进行SPE预处理。原因2:SPE柱超容量解决方法:减少样品量或选择大容量柱。原因3:样品过柱流速太快解决方法:降低流速。原因4:洗脱液流速太快解决方法:在使用外力之前让洗脱液渗透过柱。两次5ml洗脱可能比一次10ml,更有效。原因5:目标化合物在样品中的溶解度太大,样品过柱时与样品同时通过柱子而没有被保留解决方法:通过改变样品极性或pH而改变目标化合物的溶解度。原因6:SPE柱用极性溶剂处理而洗脱剂是不兼容的非极性溶剂解决方法:在使用非极性溶剂之前对SPE柱进行干燥。原因7:洗涤杂质用的溶剂太强,部分目标化合物与杂质同时被从SPE柱洗脱。目标化合物在这一步损失的多少取决于洗涤溶剂的流速,SPE的特性以及洗涤溶剂的体积。解决方法:降低洗涤溶剂的强度。原因8:洗脱液体积太小解决方法:增加洗脱液的体积。 在用反相SPE柱萃取时,洗脱馏分中有水原因:目标物化合物洗脱之前SPE柱没有很好地干燥解决方法:用氮气或空气干燥SPE柱:用20~100μL含60%-90%甲醇-水将SPE柱上的残留水分除去。 洗脱馏分中含有干扰物原因1:干扰物与目标化合物被同时洗脱解决方法1:在洗脱目标化合物之前选用中等极性的溶剂将干扰物洗涤出SPE柱。可将两种或更多种的溶剂混合以达到不同的极性。解决方法2:选用对目标物化合物亲和力更大而对干扰物亲和力低的SPE柱。原因2:干扰物来自SPE柱解决方法1:用两根不同极性的SPE柱以除去干扰物。如反相柱和离子交换柱或硅胶柱。解决方法2:在柱子预处理之前用洗脱溶剂洗涤SPE柱。 SPE柱流速降低或者阻塞
  • 掌握这些固相萃取知识,你就能成为实验室zui靓的仔
    近年来分析检测技术有了很大的飞跃,但样品前处理依然是科研工作者必须面对的挑战。 固相萃取(Solid Phase Extraction,简称SPE)是一种从二十世纪七十年代中期开始发展起来,用途广泛而且越来越受欢迎的样品前处理技术。根据吸附剂填料及吸附机理的不同,主要分为正相、反相、离子交换和混合型固相萃取小柱,正相、反相固相萃取小柱主要是用来萃取分离极性和非极性化合物,但对一些带电物质(离子化合物)的萃取回收率并不高,如C18填料固相萃取小柱,当目标化合物呈离子状态时,C18对于该化合物的容量因子就会大大降低。为了解决这一问题,月旭推出了硅胶基质和聚合物基质的离子交换固相萃取小柱。 下面就由小编为大家介绍离子交换固相萃取小柱方法开发中需要注意的问题。 离子交换固相萃取适用于可解离成带电离子的化合物,其机理是利用带电荷的目标化合物离子与带相反电荷的吸附剂之间的静电吸引力。样品基质可以是极性的,如水溶液,也可以是非极性的有机溶液,但在实际应用中以水溶液较多,包括生物体液、江河湖海等自然水、废水等。 方法开发第一步:我们要分析的目标化合物必须具备下列任意一种或以上的官能团才能通过离子作用力将其从样品溶液中分离出来:(1)可生成阳离子的官能团(带正电荷)(2)可生成阴离子的官能团(带负电荷)而且待分析的目标化合物必须在一定的pH环境下才能呈离子化或中性化。 第二步:要有效地利用离子交换机理将目标化合物吸附在SPE柱上,必须满足以下两个条件:(1)目标化合物离子与吸附剂官能团的离子态带相反电荷;(2)萃取环境的pH必须同时使目标化合物和吸附剂上的官能团带电荷;(3)萃取环境不能含有高浓度的带有和目标化合物相同电荷的竞争化合物。在实际操作中,为了满足前两个条件,确保99%以上的目标化合物及固相萃取吸附剂上的官能团能够呈离子态或呈中性状态,应该根据目标化合物及固相萃取吸附剂官能团的pKa来调节样品或SPE柱的pH。 那么小编为大家介绍一下pH与pKa值的关系:对于一个可生成离子的化合物,pKa是该化合物50%呈离子状态,50%呈中性状态时的pH。就弱酸性化合物HA而言,其在水中的解离平衡方程式为:从式三可以看到,当pH与pKa相同时,[A?]/[HA]为1。也就是说,这时50%的弱酸性化合物呈阴离子状态,另外50%呈中性状态。在该pH环境下,即便这些呈阴离子状态的化合物100%地被阴离子交换剂吸附,之后又100%地被洗脱,zui高回收率也只能达到50%。因为只有50%的弱酸性化合物呈离子状态,并被阴离子交换剂吸附。由此可见在离子交换固相萃取中,控制环境的pH十分重要。 [A?]/[HA]越大,代表弱酸性化合物离子化程度越大。理论上,当[A?]/[HA]等于100时,99%的弱酸性化合物呈阴离子状态,可以被阴离子交换剂吸附。根据式三,在进行阴离子固相萃取吸附时,要使弱酸性化合物99%离子化,样品基质的pH应该高于该化合物pKa至少两个pH单位。反之,在对该弱酸性化合物进行洗脱时,应该将环境的pH调节至低于该化合物pKa至少两个pH单位,此时弱酸性化合物99%呈中性状态,用适当的溶剂就可以将其从阴离子交换柱上洗脱下来。 式三同样可以用于可生成阳离子官能团的弱碱性化合物。这时我们将弱碱性化合物看作共轭酸[HA+],并将该公式改写为:与弱酸性化合物相反,在阳离子交换固相萃取中,要使弱碱性化合物99%解离为阳离子,需要将该弱碱性化合物所处的环境体系的pH应该低于该化合物pKa至少两个pH单位。而在洗脱时,环境体系的pH应该高于该化合物的pKa至少两个pH单位,此时99%的该化合物呈中性状态,用适当的溶剂就可以将其从阳离子交换柱上洗脱下来。 第三步:离子交换固相萃取柱种类的选择:为了能够有效地将被吸附的离子化合物洗脱出来,对于含有强离子官能团的目标化合物一般选用弱离子交换柱;而对于含有弱离子官能团的化合物,则可选用强离子交换柱。这样可以避免目标化合物和吸附剂官能团同时处于离子化状态,导致目标化合物始终处于的保留状态无法被洗脱。 下面小编为大家举一个应用案例:例如,用硅胶键合羧基官能团的弱阳离子交换固相萃取小柱对猪肉或猪尿液中的盐酸克伦特luo进行萃取分离,SPE柱填料的羧基官能团的pKa=4.8,盐酸克伦特luo的pKa=9.6。根据上述两个pH单位的原则,为保证吸附剂上羧基官能团和目标化合物盐酸克伦特luo尽可能离子化,环境的pH至少应该调节到7.6。在此pH环境下,99%的盐酸克伦特luo呈阳离子状态,而SPE柱的羧甲基官能团呈阴离子状态。因此,可以将盐酸克伦特luo吸附。而在洗脱的时候,为了使盐酸克伦特luo呈中性状态,可在洗脱剂中加入碱,将洗脱环境的pH调节至高于其pKa两个单位,即pH≧11.6。在此环境下,目标化合物盐酸克伦特luo呈中性状态并且与阳离子交换剂脱离,被洗脱溶剂从SPE柱洗脱出来。 好了,今天关于离子交换固相萃取小柱方法开发中需要注意的问题就先讲到这了。此外,月旭在固相萃取技术产品中,已经推出了硅胶基质和聚合物基质的强阳离子交换、强阴离子交换、弱阳离子交换、弱阴离子交换的SPE小柱,并广泛应用于食品安全检测、环境检测、生物样品、农药残留分析等各个领域,具有回收率高、萃取效果好等优点。
  • 上海BILON仪器固相萃取装置又添新成员啦
    固相萃取/固相萃取装置(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。它在传统的液&mdash 液萃取基础上采用物质间相似作用的相似相溶原理并结合目前广泛应用的液相色谱和气相色谱固定相基本知识发展而来。   近日,上海比朗公司与上海理工大学共同研发的BSPE-12固相萃取装置主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。   配套真空详细资料:http://www.bilon.cc/goods-288.html   固相萃取装置主要特征:   1、每路配有一个进口调节阀,可根据试验要求调节流速。   2、独特的螺旋盘支架设计可自由调节高度和灵活组合不同孔径的支撑盘用来满足大多数采样试管。   3、与DP-01型真空泵配套使用真空度可达0.098Mpa。   4、特有的废液收集瓶将萃取部分与存放废液部分分离开,既防止了交叉污染,处理废液也更加方便   5、萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。   固相萃取装置技术参数:   样品处理数:12   气体控制方式:独立控制每个孔   压力显示:有   真空度:0.098Mpa   流量控制阀:12个   上海比朗BSPE-12固相萃取装置是上海比朗公司和上海理工大学共同打造研发。产品详细信息、实物图片、相关测试结果请电话或邮件索取!   电话TEL:021-52965776   传真FAX:021-52965990   邮箱Email:info@bilon.cn   商城Mall:www.bilon.cc   地址Add:上海市闵行区北松公路588号7号楼5层
  • 中国固相萃取仪市场研究报告(2017版)
    p   固相萃取技术(SOILD PHASE EXTRACTION,简称SPE)于八十年代在国外兴起,它取代了传统的液-液萃取技术。目前,固相萃取技术在样品前处理中所起的作用也显得日益重要,已被广泛应用于医药、血液、检验检疫、环保、水质、食品领域中的样品前处理。同时,人们也开始使用固相萃取技术对复杂的生物样品基质进行纯化。此外,随着技术的成熟,全自动固相萃取仪的使用也越来越广泛。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取技术现状 /strong /span /p p   固相萃取技术基本原理和液相色谱相同,但两者最终需要达到的目的不一样。固相萃取技术纯化的原理为:在萃取过程中,固定相对分析物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床。通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。 /p p   相比较高效液相色谱需要在短时间内将各化合物分离并保持好的峰形,固相萃取则是要从复杂的基液中分离出所需要的化合物并将其浓缩,以便进一步的分析。因此,一般固相萃取柱填料的粒径比高效液相色谱柱填料的粒径要大,而且固相萃取柱填料的形状是不规则的,这样可以增加接触样品的表面积。目前用的最广泛的是键合硅胶柱和聚合树脂柱。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取仪市场及相关应用 /strong /span /p p   固相萃取技术已经越来越广泛地被应用在各种实验室。然而,大部分用户仍在用手动固相萃取。手动固相萃取一般是采用多个固相萃取柱(SPE小柱)一次同时进行多个样品萃取。这就要求操作人员必须全神贯注,否则容易发生添加顺序混乱,导致样品作废。其次,采用手动固相萃取容易造成样品回收率重现性较差。在固相萃取过程中,样品及洗脱液通过固相萃取柱的速度会直接影响最后的回收率及重现性。而在手工操作过程中,控制流速十分困难的。因此其重现性很难保证。此外,采用手动固相萃取所需时间较长。 /p p   自动固相萃取仪可以很好地弥补手动固相萃取仪的缺陷。首先,自动固相萃取仪严格按照系统设定程序进行,不会出现手工操作的错误。其次,自动固相萃取仪能够准确控制液体流速,保证实验结果的重现性。此外,自动固相萃取仪能够运行多个不同的程序,建立的方法便于推广及建立标准方法。因此,自动固相萃取仪不仅能够降低实验人员的劳动强度,提高效率,更重要的是能够保证结果的可靠性及重现性。目前国内许多实验室要求按照GLP标准进行管理,这就要求所有的原始实验数据都必须完整地保存,而自动固相萃取仪可以很好地保存已建立的方法及实验数据,从而方便了按照GLP标准的管理。 /p p   全自动固相萃取仪按处理样品量的不同可分为:小体积全自动固相萃取仪和大体积全自动固相萃取仪。小体积全自动固相萃取仪针对的样品主要为进样量在50ml以下的食品、药品、血液等 大体积全自动固相萃取仪主要为进样量在200ml量以上的水样。全自动固相萃取仪按萃取载体可分为:柱萃取全自动固相萃取仪和膜萃取全自动固相萃取仪,其中,膜萃取全自动固相萃取仪主要为大体积水样而设计的,膜萃取速度快是其优点,而且不容易堵塞,但是单个样品的处理成本较柱萃取高。 /p p   目前国内有10余家在做全自动固相萃取仪。据统计,全自动固相萃取仪国内年销售额在3~4亿元。从市场总体情况来看,整个固相萃取仪年销售量在***台左右(包括手动、半自动和全自动),其中全自动固相萃取仪的年销售量在***台左右。产值排名靠前的部分全自动固相萃取仪生产厂家主要有:北京普立泰科仪器有限公司、天津博纳艾杰尔科技有限公司(已被SCIEX公司收购)、上海屹尧仪器科技发展有限公司、济南海能仪器股份有限公司、美国Horizon Technology公司、吉尔森公司、Biotage AB、德国lctech公司、莱伯泰科有限公司和睿科仪器有限公司等。就国产技术方面来看,相比较进口品牌的全自动固相萃取仪,国产品牌全自动固相萃取仪近年来的发展速度较快,基本掌握了全自动固相萃取仪生产技术,但也存在一些差距。 strong ( span style=" color: rgb(0, 176, 240) " 不同品牌之间的技术和价格比较及市场占有率分布详见: /span /strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a span style=" color: rgb(255, 0, 0) " strong ) /strong /span /p p    span style=" color: rgb(0, 176, 240) " strong 受调研用户单位性质及应用领域分布 /strong /span /p p   《中国固相萃取仪市场研究报告(2017版)》得到了广大用户、企业以及业内专家的大力支持。其中,共有380余位来自食品、环境、制药、第三方检测、科研机构等领域的专家和实验室用户参与了此次固相萃取仪调研。根据统计,参与本次调研的用户当中,检测/质控人员所占比例最高,为67% 接下来为科研人员和单位管理人员,所占比例分别为24%和9%。 /p p   从参与本次抽样调研的固相萃取仪用户的分布领域来看,用户集中在食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生等领域,其中食品/饮料领域中固相萃取仪用户的比例最高,达到30%,其次是环保/水工业领域,所占比例为28%。食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生领域的用户合计占整个用户的比例为85%。 /p p    span style=" color: rgb(0, 176, 240) " strong 受调查用户购买全自动固相萃取仪价格分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/83569614-c7ba-40d7-861f-7b5533f6c0d6.jpg" title=" QQ图片1.png" / /p p style=" text-align: center " strong 图4.2 受调查用户购买全自动固相萃取仪价格统计分布 /strong /p p style=" text-align: right "   (数据来源:仪器信息网抽样调研) /p p   从图中可以看出,受调查用户购买的全自动固相萃取仪价格集中在10万-40万之间,其中全自动固相萃取仪采购价格在20万-30万之间的受调查用户,占到了总调查人数的20%。此外,6%的仪器用户全自动固相萃取仪的购买价格在60万以上。 /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购招标情况分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/d80d51a1-e303-4061-8742-5a397bb3a96e.jpg" title=" QQ图片2.png" / /p p style=" text-align: center " strong 图4.3 2016年全自动固相萃取仪采购招标数量月分布(单位:台) /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   strong  注:1、数据统计从2016年1月1日到2016年12月31日 2、采购数据来源于互联网公开发布的相关招中标信息。 /strong /p p   通过对互联网公开发布的2016年度全自动固相萃取仪的招投标信息进行梳理汇总发现,目前市场对全自动固相萃取仪的需求呈现周期性波动。但从整体趋势来看,产品需求成规律性变化趋势 strong ( span style=" color: rgb(0, 176, 240) " 具体变化规律及相关政策解读详见: /span /strong span style=" text-decoration: none " strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " span style=" text-decoration: none color: rgb(255, 0, 0) " 中国固相萃取仪市场研究报告(2017版) /span /a /strong /span strong ) /strong /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购区域分布 /strong /span /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201710/insimg/e2c9a604-8755-4da3-8cc8-f5b683cfff77.jpg" title=" QQ图片20171025143337.png" / /strong /p p style=" text-align: center " strong 图4.5 2016年全自动固相萃取仪采购区域分布 /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   注:1、数据统计从2016年1月1日至2016年12月31日 2、采购数量来源于互联网公开发布的相关招中标信息,此处仅统计中标结果,废标和谈判中数据未列入 3、区域分布图通过第三方软件“地图慧”绘制所得。 /p p   2016年,通过公开招标采购全固相萃取仪的单位共涉及28个省份/直辖市。其中以西南、华南和华东地区较为密集。 strong ( /strong span style=" color: rgb(0, 176, 240) " strong 各省份全自动固相萃取仪具体需求状况及采购单位详情请见: /strong /span a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a strong ) /strong 。 /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 《中国固相萃取仪市场研究报告(2017版)》 /strong /span /p p    strong 目录 /strong /p p    strong 第1章、 固相萃取仪技术与市场概述. 9 /strong /p p   1.1 固相萃取仪技术与市场简介. 9 /p p   1.2全自动固相萃取仪市场部分主流仪器情况统计. 11 /p p   1.3 全自动固相萃取仪市场部分主流仪器价格区间统计. 12 /p p   1.4全自动固相萃取仪市场部分主流厂商情况分析. 13 /p p   strong  第2章、 固相萃取仪技术现状及发展趋势. 15 /strong /p p   2.1固相萃取仪技术特点与优势. 15 /p p   2.2部分主流全自动固相萃取仪主要性能参数对比. 17 /p p   2.3 当前产品缺陷及用户关注点. 20 /p p    strong 第3章、 固相萃取仪主要应用领域与目标用户分析. 22 /strong /p p   3.1 受调查用户所在单位性质统计. 22 /p p   3.2 受调查用户所在领域统计. 22 /p p   3.3 受调查用户固相萃取仪使用特点分析. 23 /p p   3.4全自动固相萃取仪主要应用领域分析. 24 /p p    strong 第4章、 全自动固相萃取仪市场保有量/市场规模分析. 28 /strong /p p   4.1全自动固相萃取仪主流品牌占有率. 28 /p p   4.2受调查用户购买全自动固相萃取仪价格分析. 28 /p p   4.3全自动固相萃取仪市场容量/年销售量. 29 /p p   4.4 2016年全自动固相萃取仪采购招标情况分析. 31 /p p   4.5固相萃取仪部分主要用户单位分布情况. 33 /p p    strong 第5章、 总结. 35 /strong /p p    strong 附录:全自动固相萃取仪部分潜在用户单位列表. 37 /strong /p p br/ /p p style=" text-align: center " strong 更多报告内容请阅读: /strong /p p class=" f18" style=" margin: 0px padding: 0px font-size: 18px color: rgb(60, 84, 151) font-family: 宋体, & #39 Arial Narrow& #39 text-align: -webkit-center white-space: normal background-color: rgb(255, 255, 255) " a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a /p p style=" text-align: center " strong & nbsp & nbsp 【咨询热线】:010-51654077-8042 /strong /p p 更多相关报告内容: /p p   · 2016食品行业政策解读及相关分析仪器市场动态研究报告 /p p   · 2016年制药行业市场发展及对仪器市场影响分析报告 /p p   · 2016年分析仪器中标信息统计分析报告 /p p   · 2016年中国环境监测市场分析及未来市场预测报告 /p p   · 中国气质联用仪市场调研报告(2016版) /p p   · 中国气相色谱仪市场调研报告(2016版) /p p   · 中国在线挥发性有机物分析仪市场调研报告(2016版) /p p   · 2016年第三季度分析仪器中标信息分析报告 /p p   · 中国傅立叶变换中红外光谱仪市场调研报告(2016版) /p
  • 双十一特惠,Empore膜片式固相萃取柱免费试用了!
    直接点,重点来了!!!借着双十一的机会,Empore盘式固相萃取柱特惠来袭:优惠一EmporeTM盘式固相萃取柱产品免费试用,请与我们联系,免费试用装给您送到家。优惠二双十一活动期间(11月1日-11月30日),Empore固相萃取全线产品买十赠一,是全线产品哦!优惠三双十一活动期间((11月1日-11月30日),购买Empore盘式固相萃取柱产品(仅限萃取柱),除了享受买十赠一优惠外,更享受额外9折优惠!什么?不知道盘式固相萃取是什么?这么好的东西,竟然不知道的。那我必须好好介绍下:固相萃取柱一般来说就是两个筛板夹着中间的填料,这是最经典的结构,但是也存在很多明显的问题如下图所示:问题1:空穴问题2:沟流问题3:松紧不一 那问题来了,如何解决这些问题呢?Empore™ 固相萃取膜是通过将吸附剂颗粒捕获在聚四氟乙烯(PTFE)惰性基质上而制成的,是基于色谱原理的薄膜结构,其外观看起来与过滤膜非常相似,Empore™ 固相萃取膜集提取、分离、净化、富集功能于一体。Empore™ 盘式固相萃取柱通过密封丫环固定在医用聚丙烯树脂材料柱管的底部。同时,在固相萃取盘之上集成了8层过滤系统,此过滤系统由不同孔径的聚丙烯微纤维层组成。此过滤系统采用三种不同孔径的过滤层的组合(1-3),孔径大的一层在顶部,最细的一层在底部。上面的两层过滤层各是单独一层(1、2),而具有最小过滤孔径的最底层过滤层(3)有五层不同孔径的的材质构成的符合过滤层。最下面的一层为多孔聚丙烯膜片(4),起到整体的支撑作用。Empore™ 盘式固相萃取柱的设计完全消除了沟流和孔洞的问题,也不会有吸附剂粉末脱落的问题。 于是,他就具备了以下优点:🍁上样速度可达700mL/min!吸附剂颗粒均匀地填充在Empore膜中,以高流速提供卓越的萃取,使Empore非常适合高通量应用。🍁洗脱体积为传统柱式SPE的1/10!吸附剂颗粒被挤压在0.5mm厚度的盘片内,这意味着萃取所需的溶剂量会大大减少,从而可以减少或消除蒸发步骤并减少总溶剂用量。🍁重现性比传统柱式SPE提高10-15%!Empore固相萃取膜片采用独特加工工艺,保证吸附颗粒之间的距离最小,从要有效提高了吸附效率,减少沟流问题。🍁填料流失量减少到传统SPE柱和96孔板的1/10!紧密加工的Empore膜可以大大减少了游离的吸附填料颗粒,减少填料流失,从而获得用于分析的干净样品。订货信息关于莱伯泰科
  • 全自动固相萃取仪:单人操作可同时进行1~6个样品的处理
    【点击咨询】→全自动固相萃取仪:单人操作可同时进行1~6个样品的处理,全自动固相萃取仪对实验具有显著帮助。这种仪器可以自动化地进行固相萃取,提高了工作效率,同时降低了人为操作错误。它利用固相萃取的原理,通过涂有特定吸附剂的萃取柱对样品进行分离和纯化,能有效地去除样品中的杂质,提高分析的准确性和可靠性。 全自动固相萃取仪还具有更高的精密度和重复性,它可以均一地分配样品,确保每个样品都得到相同的处理。此外,由于其自动化的特性,可以同时处理多个样品,大大提高了实验室的效率。 此外,全自动固相萃取仪还可以降低实验成本,减少溶剂和样品的使用量,同时也降低了实验室废弃物的产生。对于那些需要大量处理样品或要求高度准确的分析工作来说,全自动固相萃取仪无疑是一种强大的工具。 总的来说,全自动固相萃取仪的引入对实验室工作产生了积极的影响,提高了实验的效率、准确性和精密度,降低了实验成本,同时也为实验人员提供了更好的安全保障。
  • 双十一特惠,Empore膜片式固相萃取柱免费试用了!
    直接点,重点来了!!!借着双十一的机会,Empore盘式固相萃取柱特惠来袭:优惠一EmporeTM盘式固相萃取柱产品免费试用,请与我们联系,免费试用装给您送到家。优惠二双十一活动期间(11月1日-11月30日),Empore固相萃取全线产品买十赠一,是全线产品哦!优惠三双十一活动期间((11月1日-11月30日),购买Empore盘式固相萃取柱产品(仅限萃取柱),除了享受买十赠一优惠外,更享受额外9折优惠!什么?不知道盘式固相萃取是什么?这么好的东西,竟然不知道的。那我必须好好介绍下:固相萃取柱一般来说就是两个筛板夹着中间的填料,这是最经典的结构,但是也存在很多明显的问题如下图所示:问题1:空穴问题2:沟流问题3:松紧不一 那问题来了,如何解决这些问题呢?Empore™ 固相萃取膜是通过将吸附剂颗粒捕获在聚四氟乙烯(PTFE)惰性基质上而制成的,是基于色谱原理的薄膜结构,其外观看起来与过滤膜非常相似,Empore™ 固相萃取膜集提取、分离、净化、富集功能于一体。Empore™ 盘式固相萃取柱通过密封丫环固定在医用聚丙烯树脂材料柱管的底部。同时,在固相萃取盘之上集成了8层过滤系统,此过滤系统由不同孔径的聚丙烯微纤维层组成。此过滤系统采用三种不同孔径的过滤层的组合(1-3),孔径最大的一层在顶部,最细的一层在底部。上面的两层过滤层各是单独一层(1、2),而具有最小过滤孔径的最底层过滤层(3)有五层不同孔径的的材质构成的符合过滤层。最下面的一层为多孔聚丙烯膜片(4),起到整体的支撑作用。Empore™ 盘式固相萃取柱的设计完全消除了沟流和孔洞的问题,也不会有吸附剂粉末脱落的问题。 于是,他就具备了以下优点:🍁上样速度可达700mL/min!吸附剂颗粒均匀地填充在Empore膜中,以高流速提供卓越的萃取,使Empore非常适合高通量应用。🍁洗脱体积为传统柱式SPE的1/10!吸附剂颗粒被挤压在0.5mm厚度的盘片内,这意味着萃取所需的溶剂量会大大减少,从而可以减少或消除蒸发步骤并减少总溶剂用量。🍁重现性比传统柱式SPE提高10-15%!Empore固相萃取膜片采用独特加工工艺,保证吸附颗粒之间的距离最小,从要有效提高了吸附效率,减少沟流问题。🍁填料流失量减少到传统SPE柱和96孔板的1/10!紧密加工的Empore膜可以大大减少了游离的吸附填料颗粒,减少填料流失,从而获得用于分析的干净样品。订货信息关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,是一家专业从事实验分析仪器的研发、生产和销售的科技型公司。公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”,是全球范围内能将多种类和多功能的样品前处理技术与全自动实验分析检测平台组合成全自动实验分析仪器系统的主要实验分析仪器供应商之一。公司拥有LabTech、CDS、Empore等行业知名品牌,在中国和美国设有研发和生产基地,并在中国内地主要城市、中国香港、美国马萨诸塞州和宾夕法尼亚州等地设有产品营销和服务中心。公司产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等,可为全球多种类型用户提供从实验室建设到样品分析的一站式解决方案。目前,公司产品已销往全球90多个国家,累计服务客户近3万家。如需了解莱伯泰科的详细信息,请访问莱伯泰科官方网站
  • 索氏提取器|固相萃取装置厂家促销
    上海乔枫品牌的索氏提取器和固相萃取装置厂家年底促销活动正式开始,详情请咨询:021-54385660 1801521092索氏提取器产品说明:主要由加热抽提,溶剂回收和冷却三大部分组成。操作时可以根据试剂沸点和环境温度不同而调节加热温度,试样在抽提过程反复浸泡及抽提,从而达到快速提取目的。索氏提取器技术指标:1、应用范围:可用于提取粮食、饲料、油料、土壤等各种样品;2、每批提取样品数:2个;3、提取瓶容积:500ml/个;4、提取样品量:0.5-20g/个;5、抽提时间可调,到时报警;6、提取溶剂可自动回收;7、控温范围:室温+5oC ~ 100oC 8、电源电压:220V+10V 频率50Hz;9、 电加热功率:300W;10、外型尺寸(mm):750×360×550;11、重量:16kg。固相萃取装置产品说明:固相萃取/固相萃取装置(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰 化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。它在传统的液—液萃取基础上采用物质间相似作用的相似相溶原理并结合目前 广泛应用的液相色谱和气相色谱固定相基本知识发展而来。 固相萃取装置主要特征:●圆柱形设计,整体密封性能优越。●整机采用有机玻璃制作,耐腐蚀性好。●与DP-01真空泵配套使用真空度可达0.098Mpa。●真空槽采用特硬玻璃模具成形,其壁厚均匀故可承受-0.085Mpa以上的高负压。●萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。●内部试管架由聚四氟制成故有很高的耐腐蚀。 固相萃取装置技术参数:型 号孔数气体控制方式工作区尺寸(mm)压力显示真空度流量控制阀价格(元)QSE -12B12统一控制 ∮132X138 有压力表 0.098Mpa 无4200QSE -12D独立控制每个孔12个6300QSE -24A24统一控制 ∮202X138 无6000QSE -24B独立控制每个孔24个8200可定做不同孔径和孔数的试管托盘或支架与RS-1真空泵配套使用真空度可达0.098Mpa
  • 迪马科技成功举办《固相萃取技术在食品中的应用》技术报告会
    由于分析食品基质的复杂性和多样性,SPE固相萃取技术作为一种样品前处理方式得到了越来越广泛的应用。哪些或哪几种前处理技术可有效的去除食品基质的干扰?固相萃取技术在食品分析的应用有哪些?食品分析前处理技术的未来发展趋势如何? 在&ldquo 2012上海国际食品安全研讨会&rdquo 上,迪马科技的《固相萃取技术在食品中的应用》技术报告为您一一揭晓了答案。此次技术报告会由迪马科技副总裁,全球研发总监李广庆博士主讲,李博士毕业于剑桥大学曼彻斯特理工学院化学系,曾在美国Varian,Sigma-Aldrich、Voltaix公司等担任首席科学家等要职,在国内外核心期刊发表论文近百篇,获得多项美国专利。 此次技术报告会主要介绍了四部分内容: 李广庆博士结合目前食品分析前处理的热点技术及自身的行业经验,深入浅出的介绍了固相萃取技术的原理,常用吸附剂的特性,适合分析化合物的类型;新型吸附剂的性能,应用领域;固相萃取新技术的发展;固相萃取技术在食品安全分析中的应用实例, 主要包括液态食品中多种农药残留的测定, 动物组织中喹诺酮类药物的分析, 瘦肉精残留药物分析, 多种基质中抗生素类药物测定,动物源性食品中氟苯尼考、氟苯尼考胺和甲砜霉素的测定等. 技术报告会之后,参会技术人员对李博士精彩的技术报告做出了极高的评价,觉得从中收获很多,对于自己的实际分析工作有很大的帮助,希望有机会继续聆听李博士其他分析方面的技术讲座。 如果您对李广庆博士《固相萃取技术在食品中的应用》的技术报告感兴趣,欢迎来电索取技术报告相关内容(021-60904761)。
  • 艾杰尔科技:固相萃取在饮用水检测中的应用
    2007年1月26日,卫生部和国家标准化管理委员会联合发布新的GB 5749 -2006《生活饮用水卫生标准》,在社会各界都引起了不小的震动,尤其在环境保护和分析检测领域。业内人士喜忧参半:喜的是,不再适用的旧标准终于退出历史舞台,新标准应势而出;忧的是,新标准从侧面反映了当前水质污染的严重程度,水质较20年前大大下降,松花江、北江、太湖等水域已被严重污染,环境污染使得水中有机污染物和农药含量急增。对比新旧标准,不难发现:新标准中增加了71项水质指标,其中,有机化合物由5项增至53项,占了一半以上。 但是新标准的具体实施难度是很大的,饮用水污染源的根本遏制、水处理技术的提高和供水设施的改造、检测手段和设备的跟进,都不是短期能够解决的,究其原因,主要是成本问题。各个环节都势必会提高供水企业的生产成本,但人民生活饮用水的净化是大趋势,企业要想降低成本,只能从检测手段的改进和检测试剂、耗材的选择方面入手。 GB/T 5750.8-2006《生活饮用水标准检验方法有机物指标》中,有许多化合物检测用的是传统的液-液萃取,在附录B中,将固相萃取/气相色谱-质谱法作为可选方法来测定半挥发性有机化合物。固相萃取技术(SPE)是一种类似于液相色谱的样品前处理技术,相比传统的液-液萃取有许多优点:固相萃取不需要大量互不相溶的溶剂,处理过程中不会产生乳化现象,它采用高效﹑高选择性的吸附剂(固定相),能显著减少溶剂的用量,简化样品于处理过程,同时所需费用也有所减少。一般说来固相萃取所需时间为液-液萃取的1/2,费用为液-液萃取的1/5。液-液萃取会消耗大量有机溶剂,溶剂会对环境产生污染,再处理又会提高成本,所以,用固相萃取代替液-液萃取可以节约试剂消耗,减少污染,节约时间成本。固相萃取还有其他优点如:快速、方便、易于自动化、检测限较低且有样品富集作用,与液-液萃取比较,重现性好,不易受操作误差影响,选择性强。综合来看,固相萃取的广泛应用是必然趋势。 固相萃取技术的核心是填料,目前国内生产固相萃取小柱的厂家很多,但是能够自主研发、生产填料的厂家并不多,尤其是高端产品,进口产品仍然占有很大市场份额。北京艾杰尔科技有限公司是一家专业生产分离材料的高新技术企业,近来来开发了近30种固相萃取填料,100多种产品,在饮用水前处理方法上也投入了许多人力财力,目前已有用于饮用水半挥发性有机物检测的SPE柱,产品质量已达到国际水平,且价格低于进口品牌,对于供水企业来说,使用高性价比的国产SPE柱是节约时间和金钱成本的最好选择,这也有利于新标准的实施,欢迎业内专家或企业与我们交流技术,期望更多的用户关注我们的产品,我们共同期待饮用水水质的全面改善!
  • 喜迎政策催化!固相萃取仪市场风云再起
    近日,国务院印发《关于开展第三次全国土壤普查的通知》(以下简称《通知》),决定自2022年起开展第三次全国土壤普查,利用四年时间全面查清农用地土壤质量家底。《通知》明确了普查总体要求、对象与内容、时间安排、组织实施、经费保障和工作要求。该政策一出,环保行业企业一片欢呼雀跃,相关仪器市场更是风起云涌,固相萃取仪作为环境检测领域的重要前处理仪器,市场发展潜力巨大。固相萃取(Solid Phase Extraction,简称SPE)是从20世纪80年代中期发展起来的一项样品前处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离,净化和浓缩。与传统的液液萃取法相比较,固相萃取具有选择性强、分离时间短、回收率高、不易乳化、有机溶剂用量少及易于自动化等优点,被广泛地应用在水质检测、制药、环境分析、食品分析及烟草分析等领域。国内固相萃取仪行业产品发展历史较短,是近十几年才发展起来的,特别是2005年以后,国内食品安全、疾病传染、环境污染等问题频发,从而推动国内安全检测工作的展开,固相萃取仪作为安全检测重要配套产品得到了快速发展。市场品牌云集,国产仪器后来居上目前国内固相萃取仪市场品牌云集,其中市场排名相对靠前的品牌主要有睿科、莱伯泰科、安捷伦、赛默飞、Supelco、Gilson、Biotage、GL Science、LC Tech等。在手动固相萃取装置及半自动固相萃取仪方面,进口品牌占据绝对优势,市场份额主要集中在赛默飞、安捷伦、沃特世、Supelco、艾杰尔-飞诺美等进口品牌上。在全自动固相萃取仪方面,国产品牌近年来发展迅速,如莱伯泰科、睿科等国产先进品牌已经逐步取代Gilson、J2、LC Tech等进口品牌,成为市场主流,一些国产新兴品牌如屹尧、谱育科技、宝德仪器等也开始逐步崛起。固相萃取仪主要品牌市场份额 全自动固相萃取仪主要品牌市场份额 主要发展方向:更高效、高选择性值得注意的是,尽管目前固相萃取技术越来越成熟,但其仍然面临样品局限、结构局限、填料问题等问题。发展高选择、高效率的吸附剂,拓宽样品的应用范围,以及继续完善柱构型等是未来固相萃取仪的重要发展方向。而从处理效率和自动化程度来看,大部分现有的自动固相萃取仪还有很多地方需要改进。因此,进一步提高自动化程度,提升样品处理效率,以及发挥多种仪器联用功能等是未来全自动固相萃取仪的主要发展方向。未来,市场机会何在?各品牌市场份额如何?竞争对手在不同细分市场表现如何 ?各地区采购情况如何?哪些省市、机构采购需求旺盛?用户反馈如何?未来的市场机会主要在哪里?… … … … 仪器信息网为了解近年来固相萃取仪的技术发展趋势、市场发展行情、各主要品牌市场占有率、重点应用领域以及未来采购需求等内容,以为相关从业者进行市场分析和业务决策提供参考,特组织了“固相萃取仪市场调研”活动,并在调研结果的基础上撰写了《中国固相萃取仪市场研究报告(2022版)》。本报告包含国内固相萃取仪市场综合分析、全自动固相萃取仪市场综合分析、竞争情况、采购机构画像、采购行为分析、使用情况反馈等内容。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=262欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部报告目录第一章 概述 1.1 固相萃取技术原理 1.2 固相萃取装置构成 1.3 手动固相萃取 1.4 自动固相萃取仪 1.4.1 自动固相萃取仪的特点及优势 1.4.2 自动固相萃取仪的分类 1.5 固相萃取应用进展 第二章 固相萃取仪市场综合分析 2.1 固相萃取仪市场概况 2.2 固相萃取仪市场部分主流厂商 2.3 固相萃取仪市场成交价分析 2.4 固相萃取仪市场规模预测 第三章 全自动固相萃取仪市场综合分析3.1 全自动固相萃取仪市场概况 3.2 全自动固相萃取仪主要品牌市场占比分析 3.2.1 2021年全自动固相萃取仪主要品牌销售额市场占比 3.2.2 2021年全自动固相萃取仪主要品牌销售台数市场占比 3.2.3 2021年全自动固相萃取仪主要品牌细分市场竞争情况 3.3 全自动固相萃取仪市场部分主流仪器情况统计 第四章 固相萃取仪参调用户来源分析 4.1 固相萃取仪主要使用单位 4.2 固相萃取仪用户单位类型分布 4.3 固相萃取仪用户所在行业分布 4.4 固相萃取仪用户所在地区分布 第五章 固相萃取仪专场仪器访问数据分析 5.1 2019、2020、2021年固相萃取仪专场PV、UV 5.2 2021年固相萃取仪专场PV、UV品牌排行 5.3 2021年固相萃取仪专场PV、UV前十仪器 第六章 2021年公开发布固相萃取仪招标采购情况分析 6.1 2021年固相萃取仪公开招标采购数量分析 6.2 2021年固相萃取仪公开招标采购金额分析 6.3 2021年固相萃取仪公开招标采购用户分布6.4 2020年固相萃取仪公开招标采购品牌分布第七章 固相萃取仪用户使用及采购现状分析 7.1 不同类型固相萃取仪分布 7.2 不同通道固相萃取仪分布 7.3 使用频率现状 7.4 使用问题反馈 7.5 用户采购关注点 7.6 用户采购需求 第八章 总结评述
  • 卓越的重现性,可靠的检测结果 | 珀金埃尔默固相萃取解决方案
    固相萃取(Solid Phase Extraction,简称SPE)是从八十年代中期开始发展起来的一项样品前处理技术。由液固萃取和液相色谱技术相结合发展而来。主要用于样品的分离,纯化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。SPE技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、净化,是一种包括液相和固相的物理萃取过程;也可以将其近似地看作一种简单的色谱过程。SPE是利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品溶液通过吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量溶剂迅速洗脱被测物质,从而达到快速分离净化与浓缩的目的。也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。固相萃取法的萃取剂是固体,其工作原理基于:水样中欲测组分与共存干扰组分在固相萃取剂上作用力强弱不同,使它们彼此分离。固相萃取剂是含C18 或C8、腈基、氨基等基团的特殊填料。为了提高方法开发的简易度并增加样品处理量,珀金埃尔默提供各种预先制备的柱备选套件和应用包以供您选择:使您可以同时处理多达24 份样品可对柱子进行无缝整合,以提高仪器系统的性能和重现性以聚丙烯或不锈钢针阀门和针尖为特点,可尽可能减小死体积坚固耐用的旋塞阀可重复使用并能独立控制流速珀金埃尔默的 Supra - d QuEChERS 基质分散 SPE 将您的样品制备过程转变为简单的两个步骤。QuEChERS(快速,方便,廉价,有效,耐用,安全分散 SPE),基质分散 SPE 是第一个使用的农药残留分析中的样品制备方法。基质分散 SPE 消除了复杂的液体提取方法,并扩大了检测范围。QueEChERS 带来了快速和便捷,改善了实验室的效率并降低失误的发生。QUECHERS 简单的两步流程步骤 1:提取样品匀浆,取10g 样品到50mL 的管子加入10 mL乙腈 并混合均匀加入内标 (s)将制备好的样品 加入到提取管中摇匀离心步骤 2:净化吸取上层澄清液 到净化管中摇匀离心直 接 用 GC,GC/ MS,LC 和 LC/MS 测试上清液珀金埃尔默的更小、更均匀的球形介质可得出更尖锐、更窄的色谱峰,从而可以更快速、更准确地进行样品分析。扫描下方二维码,下载珀金埃尔默固相萃取(SPE)应用资料,了解更多参数及应用场景。
  • 沃特世推出全新Otto SPEcialist正压萃取装置 提升固相萃取重现性和可靠性
    亮点:1.全新Otto SPEcialist正压萃取装置最大程度减少了使用者之间的误差,并提高了分析物回收率的可重复性2.半自动化系统通过自动化样品处理过程中关键步骤改善了SPE工作流程并实现成功的方法转移3.Otto SPEcialist简化了各种应用领域的方法开发近日,沃特世公司宣布推出Otto SPEcialist正压萃取装置,旨在提高固相萃取(SPE)工作流程的可靠性和重现性。Otto SPEcialist系统配备了简单易用且符合21 CFR Part 11要求的软件,和可编辑的压力曲线,通过消除常见工作流程错误,减少不同使用者之间的误差,记录每个方法步骤,从而消除处理过程中的不确定性,防止重复工作,提升用户对SPE结果的信心。通过自动化控制SPE应用的多种压力需求,Otto帮助实验室实现更高的整体效率,在制药、生物制药、食品及环境领域等各种应用场景中都能发挥作用。沃特世公司化学品业务副总裁Erin Chambers表示:“可重现的样品制备是成功分析方法的重要组成部分。然而,由于技术本身存在一定的变化,即使是固相萃取这样简单的操作流程也可能遭受重现性差的问题困扰。Otto SPEcialist可以帮助实验室以可控、可靠的方式完成SPE操作,无论用户的经验水平如何,都可以通过减少流速变化来确保方法的准确性,帮助实验室实现无缝的方法转移以及资源扩展。”对于液相和液质分析来说,样品制备步骤(如SPE)是必不可少的第一步,而以自动化技术确保其可靠性和重现性是非常必要的,特别是对于注重一致性的大规模样品筛查或分析来说。Otto软件集成在平板电脑中,简单直观同时符合21 CFR Part 11标准的要求。Otto SPEcialist系统无需任何培训,就可创建、编辑、运行和共享压力曲线及方法。通过向装置顶部施加正压来控制流量,而不是向装置底部施加真空的方式,Otto SPEcialist系统可提供更精准的控制效果,并让样品处理过程更简单、可靠。该系统还提供了一个更宽的压力控制范围,可适用于不同尺寸及吸附剂量的多种SPE产品。同时,Otto SPEcialist系统可单独接触每根小柱或板孔,这与通常真空处理的系统不同,后者全部小柱或板孔都处在同一个源的真空系统中。与通常安装、设置和运行过程都较为复杂,成本也更高的全自动SPE系统相比,半自动Otto SPEcialist系统配备了易于使用的软件和简洁方便的界面,无需高额投入即可进行快速配置。用户只需按下按钮,就可以为SPE工作流程中包括上样、清洗和洗脱的每个步骤创建压力曲线。系统会跟踪并记录新的及现有的配置文件、方法和处理参数,并允许在不同日期、用户、实验室、分析批次和Otto设备之间不受限制共享信息。这样能消除与手动萃取程序相关的误差,从而在不同的操作人员间和操作环境下,也能确保工作流程的一致性。Otto SPEcialist系统可兼容多种固相萃取产品,包括沃特世96孔板以及尺寸较大的1 cc、3 cc和6 cc小柱,用户可根据需求轻松缩放方法。
  • 莱伯泰科利用全自动固相萃取系统实现海水中石油的检测
    日前海洋污染越来越受到社会的关注,频频出现漏油事件。只要存在污染,对于环境测试实验室就面临巨大的商业压力---增加样品处理量、缩短处理周期、获得可重复实验结果、数据更准确显示其测试水平。另外,实验室操作人员使用有机溶剂量和暴露在有机溶剂环境里越来越受限制。能够加快样品分析、降低对环境和人体危害的实验技术充分显示其优越性。 分析海水样品中的痕量石油类污染物,固相萃取技术越来越受到人们的关注。相比于液液萃取,它的优点主要包括减少了溶剂使用量和溶剂暴露,节约时间并且提高了工作效率。SPE-DEX® 4790 萃取系统 (Horizon Technology)是可编程的多用途的全自动固相萃取系统,能够直接从原始的样品瓶中处理样品。若开始运行,每个4790的萃取单元会自动传输所需的溶剂预活化SPE萃取盘中的吸附剂,上海水样品过萃取盘,然后按设定的空气干燥时间进行干燥,**用所需的溶剂洗脱萃取盘使样品中的目标分析物收集到收集瓶中。 本文采用SPE-DEX® 4790 萃取系统萃取海水中的石油类污染物,并采用不同的测定方法来测定比较。 相关实验报告请下载:http://www.instrument.com.cn/netshow/SH100523/down_173433.htm
  • 安捷伦公司最新推出的固相萃取小柱,可申请免费样品包
    安捷伦公司最新推出的固相萃取小柱(Agilent SampliQ SPE) &mdash &mdash 食品安全准确分析的第一步! 样品制备的好坏将导致测量结果的准确与否。新的Agilent SampliQ (sam-&rsquo plēk) SPE 产品能够从一开始就确保具有可重现性的测量 安捷伦公司的 SampliQ SPE 产品按照严格的质量控制进行生产,它将帮助您从复杂基体中可靠地萃取和浓缩试样,使您所有的 GC 和 LC 分析将更加准确、可靠。 提高稳定性,对于全球范围内食品安全分析是个迫切的问题。无论是测试肉中的四环素、海鲜中的硝基呋喃或牛奶中的磺胺,从使用安捷伦固相萃取小柱(Agilent SampliQ SPE)开始,我们将给您提供一套完整的解决方案。 使用安捷伦高质量和高纯度的固相萃取小柱(Agilent SampliQ SPE)是提高分析质量、确保分析精准性和重复性的第一步。 安捷伦固相萃取小柱(Agilent SampliQ SPE):  提供聚合物、硅胶和其他吸附剂以适应各种SPE的要求  帮助您获得重复性好的结果  帮助您获得干净而浓缩的样品 新的Agilent SampliQ聚合物固定相表现出混合型性能和超强的保留机理,可以保留很宽pKa范围的目标化合物。与硅胶基质固定相所不同的是,即使在活化步骤中柱床干枯也能保持其性能。 为保证产品的完整性,所有安捷伦固相萃取小柱(Agilent SampliQ SPE)都采用三层叠加包装并附有性能认证书。 安捷伦固相萃取小柱(Agilent SampliQ SPE)&mdash &mdash 食品安全分析的首选产品! 获取最新的有关食品安全的应用、产品信息和促销信息等内容,请访问方案中心 WWW.agilent.com/chem/ssfood 联系安捷伦 ,请拨打用户服务热线:800 820 3278
  • 沃特世推出全新Otto SPEcialist正压萃取装置,助力提升固相萃取重现性与可靠性
    可在LC和LC-MS/MS样品制备过程中自动完成需重复执行的关键操作步骤,有效提高实验室效率沃特世公司(纽约证券交易所代码:WAT)近日隆重推出Otto SPEcialist正压萃取装置,助力提升固相萃取(SPE)工作流程的可靠性和重现性。Otto SPEcialist系统配备了简单易用且符合21 CFR 第11部分要求的软件,其压力曲线可进行设置,能有效避免常见工作流程错误,减少不同使用者之间的误差,并记录方法中的每个步骤,从而消除处理过程中的不确定性,防止重复工作,提升用户对SPE结果的信心。通过自动化控制SPE应用的多种压力需求,Otto 有助于提升实验室整体效率,在制药、生物制药、食品及环境领域的各种应用中都能尽展所长。图. Waters Otto SPEcialist正压萃取装置沃特世公司化学品业务副总裁Erin Chambers博士表示:“可重现的样品制备是成功分析方法的重要组成部分。然而,由于技术本身存在一定的变化,即使是固相萃取这样简单的操作流程也可能存在重现性不理想的问题。对此,Otto SPEcialist以可控、可靠的方式协助实验室完成SPE操作,且无论用户的经验水平如何,它都能通过减少流速变化从而确保方法的准确性,实验室可以实现无缝的方法转移及资源扩展。”样品制备步骤(如SPE)是进行LC和LC-MS/MS分析时必不可少的第一步,而以自动化技术确保其可靠性和重现性则是优选之策,对于注重一致性的大规模样品筛查或分析而言更是如此。在Otto软件的控制下,Otto SPEcialist系统可创建、编辑、运行和共享压力曲线及方法。此外,通过将软件集成至平板电脑,既简单直观,又符合21 CFR第11部分的要求,即使没有接受过完整、系统培训的操作人员也可快速上手。由于Otto SPEcialist系统通过向装置顶部施加正压来控制流量,而不是向装置底部施加真空,因此可获取更精准的控制效果,并让样品处理过程更简单、可靠。该系统提供了一个较宽的可控制压力范围,可适用于不同尺寸及吸附剂量的多种SPE产品。此外,不同于全部小柱或板孔都处在同一个源的真空系统,Otto SPEcialist系统可单独接触每根小柱或每个板孔。相较于设置过程和运行方法通常较复杂、成本较高的全自动SPE系统,半自动Otto SPEcialist系统配备拥有易于使用的软件和简单的接口,无需高额投入即可进行迅速部署。用户只需按下按钮即可为SPE工作流程中包括上样、清洗和洗脱的各步骤创建压力曲线。软件会跟踪并记录新的及现有的压力曲线、方法和处理参数,并允许在不同日期、用户、实验室、分析批次和Otto设备之间自由共享这些信息。这样能消除与手动萃取程序相关的变异性,确保在不同的操作人员间和操作环境下工作流程始终如一。Otto SPEcialist系统兼容多种固相萃取产品,包括沃特世96孔板以及尺寸较大的1 cc、3 cc和6 cc小柱,用户可根据需求轻松缩放方法。如需获取更多Otto SPEcialist正压萃取装置信息,欢迎访问沃特世网站。该产品现已面向全球供货。其他参考资料:• 下载白皮书:用于半自动SPE样品处理的Otto SPEcialist正压萃取装置• 下载信息图表:Otto SPEcialist信息图表• 观看视频:Otto SPEcialist正压萃取装置工作原理• 如需获取所有沃特世实验室自动化产品的信息:请访问沃特世网站。• 索取演示样品或询价 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 应用文章 | 磁固相萃取技术助您告别“瘦肉精”隐患!
    应用文章 | 磁固相萃取技术助您告别“瘦肉精”隐患!在1989年至1990年,西班牙首次发生多人食用含β-受体激动剂的畜产品中毒事件,由动物性食品中β-受体激动剂残留引起的中毒事件已经几乎遍布全球。在这种背景下,我国采取了全面禁止动物养殖过程中使用β-受体激动剂的措施,并实施了广泛而严格的监管措施。因此,检测动物源食品中β-受体激动剂对于保障食品安全和养殖环节违法行为溯源十分必要。只有通过严格的检测和监管,才能有效地防止这些有害物质对人体健康造成危害,保障食品安全,维护公众的身体健康。动物源食品中β-受体激动剂的确证检测包括样品前处理和仪器分析两部分。样品前处理中, MSPE材料合成技术现已发展迅速,广泛应用于食品中农药、兽药和重金属等危害物分析的样品前处理中。由于MSPE属于分散萃取,能够克服传统SPE柱加压操作导致批量处理一致性差的问题,并且操作简单,通过外加磁场即可实现固-液相分离,无需离心过滤等繁琐步骤,易于实现自动化。自动磁性固相萃取(MSPE)原理示意图实验案例由中国农业科学院农业质量标准与检测技术研究所联合普敦科技、中国农业科学院农产品加工研究所和河南兽药监察所的协助下,结合LC-MS/MS法,搭配M-MCX吸附剂和普敦科技磁性固相萃取仪,建立了动物肝脏中3种不同β-受体激动剂的快速检测方法。实验结果结果表示,此方法对3种不同β-受体激动剂检测回收率为 88.2%~110.5%,相对标准偏差(RSD)为 2.9%~10.3%,满足 GB/T22286-2008的要求和日常分析需求。与SPE方法相比,本方法的灵敏度高3倍以上,准确度和精密度基本一致。与传统柱填充式 SPE 相比,本方法具有操作简单、快速、高效等优点,适用于动物组织样品中 β-受体激动剂的日常监测。实验设备普敦科技磁性固相萃取仪,结构简单、运行高效,结合方法学优化。适用于临床小分子疾病标志物、食品安全和法医毒物检测。全自动磁性萃取平台普敦科技一直深耕磁性技术,现已研发出MagicFlux全自动磁性萃取平台。专为磁性萃取前处理过程推出的一款快速、灵活的全自动化设备。系统搭载全新的磁性萃取材料,专用于小分子物质的提取。结合超声波辅助萃取、变距移液等多种全自动智能化设计。成为食品、农产品、养殖饲料、法医和环境等理化分析领域专业人员的理想前处理帮手。全自动磁性萃取平台现拥有MagicFlux 1000/1250两款设备,均已获得相关专利,获取更多参数及资料可联系普敦科技。补充资料《基于磁固相萃取-自动前处理分离和富集动物肝脏中的β-受体激动剂》的应用文章已被《分析化学》收录并刊登,详细实验步骤和更多数据可在后台私信“磁性固相萃取”获得。
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(二)——在线固相萃取技术
    样品前处理是HPLC分析中必不可少的一部分,常需手工且需多步操作才能完成,要比HPLC分离和数据处理等花费更多的时间。其作用是去除试样中的干扰物质,使痕量组分得到富集,便于检测和分离,且不损害色谱柱。因此,在分析方法的建立和常规分析中,方法的精密度和准确性很大程度上取决于样品的前处理操作。 近年来,随着液相色谱仪技术的迅速发展,HPLC自动化程度越来越高,加之色谱柱颗粒技术的发展,使得色谱分离的时间大大缩短。无疑,样品的前处理技术实现自动化,将会为实验室人员带来极大的益处。尤其是当面临大量样品且前处理过程繁琐时,自动化无疑是理想的选择,这也与HPLC技术发展相匹配。固相萃取是当前常用的样品前处理技术,分为在线和离线两种方式,用于样品的净化、除杂和富集。离线固相萃取具有试剂用量少、节省时间、易于SOP等优点。其缺点为SPE固相萃取柱仅能使用一次,成本较高。而在线固相萃取技术(online SPE)能把活化、平衡、除杂和洗脱等过程在封闭系统内自动化完成,减少人工操作带来的误差,提高方法的准确性和精密度,不仅能加快样品的前处理过程,而且SPE柱可重复使用,总的分析成本将大大降低;更为关键的是在线SPE柱(dp5~10&mu m)比离线SPE萃取管柱效更高,分离度更好,样品更干净,更易于最终的HPLC分离。 传统实现online SPE的过程如图1所示,常需另外添加一个输液泵,系统连接复杂,灵活性和自动化程度较差。赛默飞UltiMate 3000双三元液相色谱,采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,一套系统即可以轻松实现online SPE以及HPLC分离过程。见图2. 图1 online SPE过程 图2 赛默飞UltiMate 3000双三元液相色谱online SPE 技术 在线固相萃取技术的痕量组分富集应用 饮用水中9种有机物(微囊藻毒素-LR、呋喃丹、甲萘威、百菌清、莠去津、溴氰菊酯、2,4,6-三氯酚、五氯酚和苯并芘)的分析比较复杂,对很多实验室的工作人员来说具有很大的挑战性。国标方法GB/T 5750需要复杂的样品前处理流程,如水体的富集,但使用赛默飞的双三元(DGLC)液相色谱,一套系统轻松搞定水体的富集、净化、分离与检测,不仅精简了饮用水的前处理操作,大大简化了国标方法的复杂性,而且很容易实现饮用水标准检验方法的检出限要求,使得在饮用水水质控制方面更加简单易行。同时在普及性极高的HPLC-UV-FLD仪器上实现了高灵敏度检测,可作为监测饮用水体检测上述有机物的常用方法。 图3 在线固相萃取-双三元液相色谱分析原理图 (A:上样,清洗,萃取;B:洗脱,分离,分析) 图4 9种有机物混合标准品紫外谱图 图5 9种有机物混合标准品荧光谱图 在线固相萃取技术的复杂样品净化应用 在线固相萃取技术的色谱柱切换法是分离和清除复杂多组分样品杂质的有效技术,可被用于去除强保留的、对色谱柱造成损坏的杂质,又可除去干扰色谱分离的物质。黄芪是常见的中药,也是中药方剂配伍及其制剂中使用频率较高的中药。其中黄芪甲苷是主要活性成分,药品标准中常将其作为质量评价指标成分。但黄芪甲苷含量较低,且黄芪基质复杂。2010版一部药典中,黄芪药材的前处理采用正丁醇萃取,经过D101大孔吸附树脂离线纯化后,再进样分析,步骤较多,回收率不高。利用赛默飞双三元液相色谱系统,采用在线固相萃取技术的柱切换净化方法结合电雾式检测器检测,对样品进行净化后再自动切换到分析柱上进行分析,取得了很好的结果。已成功应用于黄芪药材、归脾丸(浓缩丸),补肾固齿丸,益气养血口服液和颈复康颗粒等中药复方样品的分析中。系统连接方式见图5. 图6 仪器系统连接图 图7-1 黄芪甲苷对照品 图7-2黄芪药材 图7-3 归脾丸 图 7-4 益气养血口服液 图7-5 颈复康颗粒 图7-6补肾固齿丸 图7 黄芪及其复方分离谱图 结合限制性介质材料(RAM)柱和Turboflow技术,提高生物样品分析效率 限制性介质材料(RAM)柱同时具有对大分子的体积排阻作用和对小分子的吸附作用,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的生物兼容性修饰,使得生物样品中的大分子基质成分不能进入吸附剂的内孔中去,且生物兼容性的外表面保证了生物大分子不会发生不可逆的变性和吸附,这样大分子物质在死体积或近于死体积的情况下被洗脱除去。而Turboflow技术是利用大粒径填料使流动相在高流速下产生涡流状态,在涡流状态下,溶质分子传质加快,传质阻力减小,虽然其流速很高,但分离效率并没有随之降低很多。在这种情况下,大分子的基质成分如蛋白质等,还未能扩散进入填料颗粒内部就已被洗出柱外,而小分子的待测物则可以保留下来,与基质分离。 在用大鼠进行抗高血压联合用药氢氯噻嗪和尼群地平的药代动力学实验中,每次取血量有限,且血药浓度较低,要求最好可同时测定氢氯噻嗪和尼群地平。此两种药物同时检测的分析方法报道很少,多数是对两药分别建立分析方法。原因有两个:一、尼群地平口服吸收存在首过效应,体内血药浓度值低,大约1-50 ng/mL,在这个检测浓度条件下,多采用液质联用技术进行分析,而此两种药物在质谱工作条件下一个是正离子模式,一个是负离子模式,同时检测不方便;二、尼群地平和氢氯噻嗪极性相差较大,同时提取和分析困难较大。 利用赛默飞双三元液相色谱系统(DGLC)的online SPE技术结合紫外检测器,采用限制性介质材料(RAM)柱CAPCELL MF C8作为在线固相萃取柱。血浆样品于4℃下,10000 r/min高速离心后,取上清液,用0.22 &mu m尼龙滤膜过滤,直接进样分析,可在线去除血浆中的蛋白,又可同时对尼群地平和氢氯噻嗪进行测定,避免了样品前处理手动操作带来的误差,且样品基质干扰少,适合对血浆样品定量分析。此分析方法不仅提高了生物样品的分析效率,而且可以为进一步的药代动力学-药效学联合模型的建立提供有力支持。 图8-1 氢氯噻嗪(3.3 ppm) 图8-2 尼群地平(3.3 ppm) 图9-1 大鼠血浆中氢氯噻嗪 图9-2大鼠血浆中尼群地平 上面这些应用实例展现了赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术的多样化应用以及简便、实用、高效的特点。此外,基于灵活的阀切换技术,可以通过并联多柱模式实现高通量的online SPE过程,同时可以针对基质成分和目标物的理化性质,灵活选择多种不同的化学键合相的SPE柱,在Chromeleon变色龙软件支持下,解决实际工作中的分析难题。目前赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术已广泛应用于环境化学、食品饮料、药物临床研究等领域。 参考文献 1、在线固相萃取技术- 高效液相色谱同时分析饮用水中的9种有机物及农残 2、在线固相萃取-高效液相色谱法测定橙汁中多菌灵残留量 3、在线固相萃取-高效液相色谱-荧光检测法测定食用油中多环芳烃 4、加速溶剂萃取-在线固相萃取-高效液相色谱-荧光检测法快速测定谷物或食品中的黄曲霉毒素 5、在线固相净化方法结合电雾式检测器测定黄芪及复方中黄芪甲苷的含量 6、在线固相萃取-高效液相色谱-紫外检测法测定鼠血浆中氢氯噻嗪和尼群地平 7、在线柱浓缩- 超快速液相色谱法测定水体中痕量甲萘威和呋喃丹 8、双三元液相色谱应用文集 赛默飞创新技术应用系列之双三元液相色谱DGLC集锦 (一)二维及全二维液相色谱分离技术应用 (二)在线固相萃取技术 (三)流动相在线除盐技术 (四)在线柱后衍生和反梯度补偿技术 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 欢迎来电索取迪马科技第二版《ProElut固相萃取技术与应用手册》
    亲爱的广大用户朋友,迪马科技《 ProElut固相萃取技术与应用手册》第二版现已正式发布,与第一版相比,技术资料和应用资料均得到极大的丰富。本手册详尽地阐述了固相萃取原理、固相萃取作用力、固相萃取吸附剂特性、方法建立和故障排除,相信一定能为您建立固相萃取方法和解决问题带来方便。 欢迎您来电来函索取本手册! 以下为北京总部及各地办事处联络方式,更多信息请登录迪马科技官方网站www.dikma.com.cn 北京总部: 地址:北京市北四环中路6号深蓝华亭D座3B, 100029 电话:(010) 6231.7719 传真:(010) 6231.7723 上海分公司: 地址:上海市徐汇区漕宝路221号怡宝商务园2号楼4层, 200233 电话:(021) 6126.3966 传真:(021) 6126.3965 沈阳办事处 : 地址:沈阳市和平区中山路111号,亚洲商务贸易中心1130室, 110002 电话:(024) 2294.3513 传真: (024) 2294.3515 石家庄办事处 : 地址:石家庄市休门街1号汇翠家园2-2-804, 050011 电话:(0311)6668.6220 传真:(0311)6668.6220 青岛办事处 : 地址:山东省青岛市四方区温州路7号万和家园2011室,266032 电话:(0532)83725230 传真:(0532)83725233 广州办事处 : 地址:广州市天河路104号华普大厦东座7019室, 510620 电话:(020) 8559.3520 传真:(020) 8753.6715 成都办事处: 地址:成都市玉沙路8号经典坐标B座804室, 610017 电话:(028) 8661.2625 传真:(028) 8661.2649 天津联络处 : 地址:天津市南开区玉泉路玉泉里2-9-402, 300072 电话:(022) 2766.7016 传真:(022) 2766.7016 南京联络处 : 地址:南京市鼓楼区芦席营70号3栋3单元106室,210037 电话:(025) 8347.9007 传真:(025) 8347.9007 重庆联络处 : 地址:重庆市沙坪坝区石小路70号4-8-6, 400030 电话:(023) 6541.4656 传真:(023) 6541.4656 郑州联络处 : 地址:河南省郑州市金水区红专路92号院1号楼1单元14号, 450052 电话:(0371) 6367.2790 传真:(0371) 6367.2790 关于迪马
  • 离子印迹固相萃取:目标离子的“锁和钥匙”
    2023年11月21日,宁夏化学分析测试协会批准发布了高盐食品中镉、镍、铅的测定,均采用离子印迹固相萃取前处理,之后用石墨炉原子吸收光谱进行含量测定。 何为离子印迹固相萃取?标准中采用离子印迹固相萃取柱进行前处理。离子印迹固相萃取柱利用离子印迹技术对目标离子进行分离纯化,类似于针对目标离子的“锁和钥匙”,其主要的填充材料为离子印迹聚合物(IIPs)。离子印迹技术来源于分子印迹技术,采用金属离子作为模板,利用模板与功能单体之间的静电或配位作用,然后加入引发剂及交联剂,通过进一步聚合反应,得到所需金属离子的印迹材料。洗脱模板金属离子后,在聚合物内部留下与目标离子相同的三维孔洞结构,对模板金属离子具有较强的专一识别特性。因为IIPs优异的选择性、较高吸附容量和强大的环境稳定性,在分离纯化、污染物去除等方面应用广泛。目前,离子印迹技术相关的研究越来越多,以后会更广泛的应用在标准化检验过程中。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • Supelco 固相萃取全线产品特价促销
    时间:2012年 4月20 日至 2012 年 7 月 31 日 活动介绍一:活动期间,购买Supelco固相萃取小柱任意一盒,可享受8折优惠,同一产品满10盒以上,可以享受75折优惠。 Supelclean和Supelclean Envi系列SPE小柱Sigma-Aldrich/Supelco提供的Supelclean和Supelclean Envi系列SPE小柱已广泛使用于食品/农业、环境领域中,拥有LC-18、Envi-18、LC-Florisil、LC-Alumina、LC-NH2、LC-Si、LC-SCX、LC-WCX、LC-SAX、PSA等多款广受欢迎的SPE小柱,特别是Envi-Carb/LC-NH2、Envi-Carb/PSA等双层柱已成为食品/农产品中农药多残留检测的指定产品。 Discovery系列SPE小柱和96孔板Discovery SPE产品是专门为制药和临床应用而开发,产品经严格的测试及质量控制。在快速,有效地提取、分离和浓缩来自生物体液和复杂基质的药物时,能提供更高的回收率和更好的重复性。Discovery DPA-6S SPE小柱为聚酰胺树脂填料,用于提取植物中的叶绿酸、腐植酸等萜类和黄酮类化合物、没食子酸、儿茶酚-A-原儿茶酚酸等,也可用于提取芳香类羧酸、硝基芳香化合物和不可逆保留的醌。Discovery混合模式SPE产品Discovery DSC-MCAX在提取来自生物基质如血浆和尿中的碱性药物化合物时,可更好地去除杂质干扰和提高选择性。Discovery SPE 96孔板满足了高通量药物筛选和分析的要求,该孔板技术具有的一致的流速动力学使其在具有极好的重现性和流通量的同时,还能拥有较高的的回收率和灵敏度。 Supel-Select系列SPE小柱(聚合物基质)Supel-Select SPE产品,是以亲水基团改性的苯乙烯聚合物为基质的固相萃取产品,专为水性样品中提取范围广泛的化合物而开发。Supel-Select系列有HLB(亲水亲脂平衡)、SCX(阳离子交换)、SAX(阴离子交换)等产品,可对应于大多数应用中建议使用的HLB、MCX和MAX小柱,使用Supel-Select 聚合物基质SPE产品可取得高回收率,高选择性和重现性。 SupelMIP分子印记SPE小柱SupelMIP SPE系列是由高度交联的聚合物组成,特定的固定相对提取单个目标分析物或一类结构相似的分析物具有极高的选择性。SupelMIP分子印记小柱的固定相和分析物之间有较强的相互作用力, 因此不仅可以使用于较为苛刻的SPE冲洗条件下,而且可以获得较高的选择性和较低的背景值。SupelMIP分子印记小柱可以用于提取食品、生物样品和环境样品中的克仑特罗、氯霉素、β-受体、β-激动剂、β-阻断剂、多环芳烃、亚硝胺等。 Hybrid SPE产品Hybrid SPE-蛋白沉淀技术,结合了蛋白沉淀的操作简单性和SPE的特异选择性,有效地去除生物样本中如血清、血浆中的蛋白和磷脂。该技术采用了专利的氧化锆涂层颗粒,只对磷脂有亲和吸附,对小分子化合物(如酸性、中性和碱性离子)均没有吸附。 Supel-Tips SPE产品Supel-Tips SPE产品系列用于微量样品中的小分子和生物大分子的萃取和浓缩。这些10µ l的吸头在吸头的最尖端填有固定相填料,它是用一种专利保护的高纯粘合剂粘合上去的。该种吸头型SPE能从微量样品中吸附目标化合物,经过浓缩和脱盐的目标化合物即可进行下一步分析。 活动介绍二:活动期间,购买Supelco Dispersive(分散)系列SPE产品任意一包,可享受7折优惠,同一产品满10盒以上,可享受6折优惠。 Supelco Dispersive(分散)系列SPE产品(dSPE)Supelco提供产品齐全的适用于“QuEChERS”方法的分散SPE提取管和净化管,应用于食品/农产品中的农药多残留分析,同时还可以为您度身订制适合您特定方法需要的分散SPE提取管和净化管。Supelco最新推出的产品Supel Que Z-Sep+/C18分散SPE是专门开发用于去除复杂样品如亚麻仁油、牛奶、肾脏等中的脂质成分,特别适合用于MS分析。在用GC-MS分析鳄梨中农残和用LC-MS-MS分析肾脏和牛奶中兽药残留物时,样品通过 Z-Sep+ 处理后比通过C18处理更干净且具有更低的背景值。 活动介绍三:活动期间,购买Supelco固相萃取装置及配件任意一套,可享受85折优惠。 Supelco SPE 固相萃取装置及配件Sigma-Aldrich/Supelco提供的Visiprep DL 12及24位防交叉污染固相萃取装置,具有独特的防交叉污染设计,有效地避免了样品处理时的交叉污染。独有的旋钮式流量控制阀使得流速控制简单准确,另外整个装置外型美观实用,选配件齐全,是固相萃取的理想选择。 Visiprep大体积上样器Visiprep大体积上样器是由内径1/8英寸的聚四氟乙烯管线,其中一端带有不锈钢沉子悬重物,另一端是一个分级式的SPE小柱连接头组成,将有沉子的一端放在样品贮存器中,连接头一端插入活化后的SPE小柱中,无需用手即可将大体积低粘度的液体样品转移到SPE小柱中。 Plateprep 96孔真空萃取装置Plateprep 96孔真空萃取装置的上部是一种清晰可见的丙烯酸树脂材料,很容易观察流速,其底座是聚丙烯材质,具有极好的抗化学腐蚀能力,同时还有一个可拆卸的真空表/减压阀能控制所有孔的流速。这个组合紧密的装置连接一个SPE96孔提取板后,就可以同时处理96个样品,单阀控制,平行处理和一致的动态流速更便于方法开发,获得较大的重复性。 Supelco Envi-Disk圆盘式固相萃取装置Envi-Disk 圆盘式固相萃取系统包含Envi-Disk圆盘式SPE六位上样装置,圆盘式固相萃取装置,47mm Envi-Disk SPE膜片(圆盘),可以同时处理6个1L的样品。每个萃取装置都有独立的流速控制阀来控制流速,分析速度快,有机溶剂使用量少,适合用于大量水样中有机污染物的处理。 如需了解促销详情,请点击这里。或者拨打以下联系方式.上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 对付兽药残留的”好家伙”——HLB固相萃取柱
    4月18日,有记者了解到,江西省市场监管局组织食品安全监督抽检,抽取粮食加工品、食用农产品两大类食品共303批次食品,检出10批次食用农产品不合格,涉及农兽药残留和重金属污染问题。 图1:江西省食品安全抽检不合格 兽药残留问题看似离我们很遥远,实际长时间积累对人体危害极大!一旦产品翻车,企业难辞其咎。 无独有偶,在其他城市的抽检也查出了同样的问题,例如,青海、西藏、重庆等。但另一方面,这些消息也表明我国对于食品中农兽药残留的安全问题越来越重视。 小编曾经讨论过关于农药残留问题,我们可以通过高效液相-柱后衍生法去检测。 那么如何检测兽药残留? 兽药残留检测法食品中的兽药残留检测——可以先将样品被提取后经过固相萃取柱的净化,再通过液相色谱-质谱质谱法进行检测。除此之外,相关检测方法还有气相色谱—质谱法等。 检测方法相关标准具体如下:gb/t 21315-2007 动物源性食品中青霉素族抗生素残留量检测方法 液相色谱-质谱质谱法;gb/t 21313-2007 动物源性食品中β-受体激动剂残留检测方法 液相色谱-质谱-质谱法;gb 29685-2013 食品安全国家标准 动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱—质谱法;gb 29682-2013 食品安全国家标准 水产品中青霉素类药物多残留的测定 高效液相色谱法;sn/t 2222-2008 进出口动物源性食品中糖皮质激素类兽药残留量检测方法 液相色谱-质谱/质谱法;gb 31658.17-2021 动物性食品中四环素类、磺胺类和喹诺酮类药物多残留量的测定液相色谱-串联质谱法;… … hlb固相萃取柱在兽药检测中的应用在进行液相色谱-质谱质谱检测前,我们将提取好的样品加入到已经活化的hlb固相萃取柱中,进行净化、经过一系列淋洗、洗脱等过程,得到我们的被测物质。以动物肌肉组织中喹诺酮的检测及动物源食品青霉素的检测为例—— ⚪动物肌肉组织中喹诺酮的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将提取后的上清液全部过柱子;淋洗:然后用2ml 5%(体积比)的甲醇水溶液淋洗柱子,弃去淋洗液;洗脱:用6ml甲醇洗脱并收集洗脱液。 ⚪ 动物源食品青霉素的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将上清液通过柱子净化;淋洗:用2ml 0.05mol/l的磷酸盐缓冲液淋洗2次,再用1ml纯水淋洗2次;洗脱:用3ml乙腈洗脱并收集洗脱液。 在这个过程中,用到的hlb固相萃取柱,它其中填料具备了良好的水润湿性、重现性等特点。 hlb是什么?hlb是hydrophile lipophilic balance的英文缩写,翻译成中文就是亲水亲油平衡。hlb亲水亲脂平衡填料可作为固相萃取柱填料的一种。 关于hlb亲水亲脂平衡填料 图2:水相调节亲水-亲脂平衡 hlb亲水亲脂平衡填料由特殊的共聚合技术制备而成,含有特定比例的亲水基和疏水基:疏水性的二乙烯基苯结构保留非极性化合物,亲水性的n-乙烯基吡咯烷酮结构保留极性化合物。该填料具有良好的水润湿性,可通过水相调节亲水-亲脂平衡,从而获得理想的选择性。 hlb对非极性至中等极性的酸性、中性、碱性化合物均有较好的回收率,特别适合血液、尿液和食物等复杂基质的处理。 hlb亲水亲脂平衡填料的特点hlb亲水亲脂平衡填料参数:比表面积:600 m2/g平均粒径:40 μm平均孔径:300 å hlb亲水亲脂平衡填料还具备了以下特点:● 作为一种通用型填料,应用范围广;● 高水可浸润性,不怕溶剂抽干,不易穿透;● 回收率高,重现性好;● 吸附容量和载样量远高于c18键合硅胶(3-10倍); ● 可耐受ph 1-14,兼容大多数溶剂 hlb固相萃取柱型号及规格填料量(mg)体积(ml)包装(支/盒)型号60350223-13002200630223-13003500630223-13004150630223-13009 当然,我们要根据样品性质,选择最适宜的spe小柱。除了hlb基质以外,市面上也还有硅胶(正反相)、复合萃取、以及专用型的固相萃取产品,英诺德甚至提供多种quechers和色谱散装填料,以满足各种各样的分离需求。 在后续的文章中我们将陆续和大家分享介绍,请关注我们,敬请期待。 *更多资讯,请关注innoteg英诺德公众号
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 双核:在无锡,感受固相萃取和微波萃取
    4月8-9日,EMIF生态环境检测技术创新论坛在无锡成功举办。出席会议的有来自全省分析测试机构、高校科研单位和企业的代表,以及安捷伦、赛默飞、PE、沃特世、岛津、屹尧科技等仪器厂商。来自无锡、南京、常州、镇江等市环境检测中心的专家对环境监测的热点和方向、江苏省环境监测条例和现场监测的新标准做了分析解读,并分享了水质中藻毒素和酞酸酯的测定,以及环境空气中VOCs的测定技巧。江苏省环境检测中心的陈老师则介绍了检测行业飞行检查需要注意的要点以及检测机构内部质量管理的要点。前处理仪器作为环境监测中重要的一环,屹尧科技产品部齐经理在会上做了《水质和土壤中污染物分析自动化前处理方法》的报告。无论固相萃取还是微波萃取,屹尧科技都可以针对不同应用需求,为您提供更合适的解决方案。好的固相萃取仪什么样?它不应该只能测水样,还可以同时测土壤、食品和生物样!真正的全自动固相萃取仪,不会因为体积大小不同,或者用到不同的SPE柱子,就不得不手动更换配件。是的,EXTRA固相萃取仪作为真正全自动的“时间管理大师”,能同时轻松搞定各种类型的样品,并实现多种SPE柱的自动切换。除了便捷高效之外,再好看的数据,也首先要真实才有意义。用户一直苦恼的固相萃取过程中的交叉污染,对EXTRA早已不再是问题。它采用极其巧妙的流路设计,移液针配套高精度注射泵实现样品通过缓冲环进样方式,样品不经过泵阀,从源头上避免了交叉污染。随着样品量的不断增加,检测需求的不断提高,微波萃取在土壤和沉积物、固体废物等样品分析前处理中的应用也越来越多。密闭微波溶剂萃取利用微波加热的优势,大大提高了目标分析物在提取溶剂中的溶解度,增加其从样品基质中脱吸的速率,且更大程度的保留了易挥发组份。屹尧科技精确的温度控制保证了提取的重复性,110mL萃取管满足了标准中大样品量需求,45分钟即可完成27个样品的提取。屹尧科技,为您提供更高效可靠的微波萃取与更便捷精准的全自动固相萃取双核驱动的样品前处理。
  • 应对新国标|固相萃取技术助力生活饮用水检测
    样品前处理是样品分析检测过程中必不可少的一个环节,也是占用时间最长和极易引 入误差的步骤,因此需要建立准确灵敏的分析方法和更加简单的前处理过程。固相萃取技术具有富集能力强,选择性高等特点,被广泛应用于食品、饮用水等前处理领域。仪器信息网特别建立“《生活饮用水标准检验方法》——前处理篇”话题,聚焦前处理技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的前处理产品、技术解决方案。本文邀请到纳鸥科技分享生活饮用水检测中丙烯酰胺和消毒副产物测定的相关的技术及解决方案。纳鸥科技针对GB/T 5750-2023关于固相萃取技术密切关注,并推出相应特色产品和应用案例供各位检测工作者进行参考。一、GB/T 5750.8-2023丙烯酰胺的测定此次新标准中新增了高效液相色谱串联质谱法,相比气相色谱法具有明显优势:高效液相色谱串联质谱法与气相色谱法相比,采用活性炭固相萃取柱进行样品富集、净化,代替传统的液液萃取方式。其次,无需样品的溴化反应过程,减少了硫酸等复杂溶剂的使用。纳鸥科技采用Anavo AC SPE小柱作为萃取填料(500 mg/6 mL ,PN: AN60C059)净化和富集水样,对水中的高极性化合物丙烯酰胺具有极强的吸附能力。对丙烯酰胺具有优异分离效果。1、前处理过程:2、典型谱图:水样净化后质谱图(加标浓度0.5 μg/L)3、实验数据:末梢水样品加标回收率及精密度实验结果(n=7)结果表明, 丙烯酰胺加标浓度0.05 μg/L,回收率96.6% ~106.0%,相对标准偏差RSD=3.7%;丙烯酰胺加标浓度0.1 μg/L,回收率94.7% ~102.9%,相对标准偏差RSD=3.0%;丙烯酰胺加标浓度0.5 μg/L,回收率96.5% ~103.8%,相对标准偏差RSD=2.3%。满足GB/T5750.8-2023方法要求。二、GB 5750-2023中五种消毒副产物的离子色谱-电导检测法离子色谱-电导检测法相比于其他方法操作简单、方法灵敏度高,成为检测五种消毒副产物的首选方法。因为消毒副产物在水中浓度较低,不同于氟、氯、硝酸根、硫酸根离子的检测,开展消毒副产物检测时,需要大体积进样(500µL)。此外,样品经过简单的Ba/Ag/H 预处理柱后,就可上机分析。使用Anavo Ba/Ag/H预处理柱处理水样,可有效降低生活饮用水中的氯离子、硫酸根离子对消毒副产物的检测影响。1、前处理流程:水样的预处理:为去除水中氯离子和硫酸根离子对 DCAA 等离子的干扰,将水样依次通过 Anavo Ba/Ag/H柱(货号:AN60F058)和 0.22 μm 再生纤维素过滤膜(货号:AN40A027)进行过滤。具体步骤:先注入 15 mL 纯水活化 Ba/Ag/H柱,放置 0.5 h后使用。将水样以2mL/min 的速度依次通过 Ba/Ag/H柱 和0.22 μm 微孔滤膜过滤,前6 mL滤液弃掉后,取2 mL~5 mL 的滤液进行色谱分析。此法可去除水中 95%以上的氯离子和 85%以上的硫酸根离子。注:标准中去除率为氯离子90%和硫酸根离子80%,Anavo Ba/Ag/H柱去除率优于标准。2、相关谱图:氯离子加标浓度为1000 mg/L时,经过滤柱过滤后上机检测谱图硫酸根加标浓度为1000 mg/L时,经过滤柱过滤后上机检测谱图氯离子、硫酸根离子加标浓度为500 mg/L时,经过滤柱过滤后上机检测谱图3、结论:经过Anavo Ba/Ag/H 预处理柱处理后,氯离子的过滤效率高于95%,硫酸根离子的过滤效率高于85%。实验结果表明,经过处理的水样,完全符合GB 5750-2023中消毒副产物检测实验要求。并且,针对用户反应针对离子小柱前处理过程耗时时间长操作麻烦,需要控制流速,一次只能处理一个样品,效率太低等问题,纳鸥科技创新性研制了离子小柱专用架,可一次处理5个样品,效率提升5倍。同时,采用机械手臂操作,更省心省力,流速控制也更稳定。点击专题,获取更多饮用水解决方案》》》》》
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制