当前位置: 仪器信息网 > 行业主题 > >

地球观测与导航

仪器信息网地球观测与导航专题为您整合地球观测与导航相关的最新文章,在地球观测与导航专题,您不仅可以免费浏览地球观测与导航的资讯, 同时您还可以浏览地球观测与导航的相关资料、解决方案,参与社区地球观测与导航话题讨论。

地球观测与导航相关的资讯

  • “地球观测与导航”重点专项拟立项的2018年度项目公示
    p   根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于印发& lt 国家重点研发计划管理暂行办法& gt 的通知》(国科发资[2017]152号)等文件要求,现将“高性能计算”等8个重点专项的2018年度拟立项项目信息进行公示(详见附件1-8)。 /p p   公示时间为2018年5月7日至2018年5月11日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下: /p p   “地球观测与导航”重点专项 /p p   联系人:徐泓 /p p   联系电话:010-68104417 /p p   传真:010-68338012 /p p   电子邮件:xuhong@htrdc.com /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 国家重点研发计划“地球观测与导航”重点专项拟立项的2018年度项目公示清单 /strong /span /p p style=" text-align: center " img title=" 2018-05-13_182840.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/0a609fd7-be4e-4e6c-94b6-8e5e1a6924c3.jpg" / /p p   附件: a style=" color: rgb(0, 176, 240) text-decoration: underline " href=" http://img1.17img.cn/17img/files/201805/ueattachment/1da40778-5f3b-4ec4-9dd5-b5154017aeff.pdf" span style=" color: rgb(0, 176, 240) " 国家重点研发计划“地球观测与导航”重点专项拟立项的2018年度项目公示清单.pdf /span /a /p p /p
  • “地球观测与导航”重点专项拟立项的2017年度项目公示
    p   根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现对“先进轨道交通”等9个重点专项2017年度拟立项的项目信息进行公示(详见附件)。 /p p   公示时间为2017年6月5日至2017年6月9日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下: /p p    strong “地球观测与导航”重点专项 /strong /p p   联系人:徐泓 /p p   联系电话:010-68104417 /p p   传真:010-68338012 /p p   电子邮件:xuhong@htrdc.com /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 国家重点研发计划“地球观测与导航”重点专项拟立项的2017年度项目公示清单 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/a42fbf54-a8aa-46d5-b13c-8fb36d794380.jpg" style=" " title=" 1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/ba4ac629-7f6e-4ec9-b699-36fc68b7d6ad.jpg" style=" " title=" 2.jpg" / /p p   附件: span style=" line-height: 16px color: rgb(0, 176, 240) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201706/ueattachment/2d446fb9-dda1-47ac-8e65-8b13bb17c58b.pdf" style=" line-height: 16px color: rgb(0, 176, 240) text-decoration: underline " 国家重点研发计划“地球观测与导航”重点专项拟立项的2017年度项目公示清单.pdf /a /span /p
  • 高光谱成像等技术纳入“地球观测与导航”重大专项申报指南
    2月19日,科技部发布“地球观测与导航”等10项重点专项2016年度项目申报指南通知。“地球观测与导航”重点专项围绕新机理新体制先进遥感探测技术、空间辐射测量基准与传递定标技术、高性能空天一体化组网监测系统技术、地球系统科学与区域监测遥感应用技术、导航定位新机理与新方法、导航与位置服务核心技术、全球位置框架与位置服务网技术体系、城市群经济区域与城镇化建设空间信息应用服务示范、重点区域与应急响应空间信息应用服务示范等9个方向,共部署45个重点任务。按照分步实施、重点突出原则,2016年启动7个方向15个重点任务的部署,专项实施周期为5年。 本项目涉及技术包含“关键技术攻关类”、“关键技术攻关类与应用示范类”、“基础前沿类”、“重大共性关键技术类”等几大类,列入关键技术攻关类的有:静止轨道高分辨率轻型成像相机系统技术、静止轨道全谱段高光谱探测技术、大气辐射超光谱探测技术、超敏捷动中成像集成验证技术、基于分布式可重构航天遥感技术、面向遥感应用的微纳卫星平台载荷一体化技术。全文如下: “地球观测与导航”重点专项2016年度项目申报指南 依据《国家中长期科学和技术发展规划纲要(2006—2020年)》,按照《国务院关于改进加强中央财政科研项目和资金管理的若干意见》及《国务院印发关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》精神,科技部会同有关部门,组织编制了国家重点研发计划“地球观测与导航”重点专项的实施方案,在此基础上启动该专项2016年度项目部署,并发布本指南。本专项围绕新机理新体制先进遥感探测技术、空间辐射测量基准与传递定标技术、高性能空天一体化组网监测系统技术、地球系统科学与区域监测遥感应用技术、导航定位新机理与新方法、导航与位置服务核心技术、全球位置框架与位置服务网技术体系、城市群经济区域与城镇化建设空间信息应用服务示范、重点区域与应急响应空间信息应用服务示范等9个方向,共部署45个重点任务。按照分步实施、重点突出原则,2016年启动7个方向15个重点任务的部署,专项实施周期为5年。针对重点任务中的研究内容,以项目为单位进行申报。项目下设课题数原则上不超过5个,每个课题承担单位原则上不超过5个。本专项2016年部署项目的申报指南如下:1.“新机理新体制先进遥感探测技术”方向1.1静止轨道高分辨率轻型成像相机系统技术(关键技术攻关类)研究内容:面向同时兼顾高空间分辨率、高时效观测能力的各类区域性监测任务要求,开展不低于2.5m分辨率的静止轨道光学相机系统技术研究,包括基于天地一体化的静止轨道空间轻型相机系统总体技术、相机自适应光学检测与控制技术、静止轨道高分辨率相机稳像技术等研究;完成全尺寸地面原理样机的研制,对关键技术进行地面试验验证,为发展静止轨道高分辨率光学卫星提供技术支撑,服务于我国高分辨率海陆安全监测、突发灾害探测等重大应用需求。考核指标:实现静止轨道不低于2.5m空间分辨率的全色对地成像和不低于5m分辨率的多光谱对地成像,实现单帧幅宽不小于100km×100km,成像质量MTF×SNR优于5(太阳高度角20° 、地面反射率0.05)。实施年限:5年拟支持项目数:2项1.2 静止轨道全谱段高光谱探测技术(关键技术攻关类)研究内容:针对防灾减灾、环境、农业、林业、海洋、气象和资源等领域高光谱遥感的应用需求,开展静止轨道高光谱成像技术研究,突破全谱段高光谱高灵敏探测、大口径低温光学集成装调、超大规模高灵敏度面阵红外探测器组件、高精度定标与反演等关键技术,形成波段范围覆盖紫外至长波红外的全谱段高光谱成像原理样机系统,为静止轨道高光谱探测技术及应用的跨越式发展奠定基础。考核指标:研制空间分辨率不低于25m(紫外至近红外波段)、50m(短波红外至中波红外波段)、100m(长波红外波段),波段范围0.3μ m~12.5μ m,光谱分辨率不低于0.01λ 、波段可编程,单帧幅宽不小于400km的高光谱成像原理样机系统。实施年限:5年拟支持项目数:3项1.3 大气辐射超光谱探测技术(关键技术攻关类)研究内容:针对大气痕量气体的临边和天底超光谱探测需求,开展大气辐射超光谱探测仪总体技术研究,进行指标体系和总体方案设计;开展高效率干涉成像技术研究,实现高性能干涉仪的设计和装调,突破高精度高稳定性机构控制技术、激光计量技术;开展低温光学和系统制冷技术研究;开展红外傅里叶变换光谱仪高精度定标技术研究;研制大气辐射超光谱探测仪工程样机;突破数据预处理和气体反演技术,开发数据处理软件系统。考核指标:谱段:3.2μ m~15.4μ m;光谱分辨率不低于1.25px-1(天底)、0.375px-1(临边);空间分辨率(@705km)不低于0.5km×5km(天底)、2.3km×23km(临边);幅宽不低于5.3km×8.5km(天底)、37km×23km(临边);辐射测量精度:0.3K;光谱定标精度:0.2px-1;信噪比不低于30:1。实施年限:5年拟支持项目数:2项1.4 超敏捷动中成像集成验证技术(关键技术攻关类)研究内容:面向高分辨率、高效率、高价值对地观测卫星发展需求,开展超敏捷、动中成像技术攻关。完成动中成像模式的总体设计;完成高分辨率相机成像质量保证技术攻关,确保实现图像的高辐射质量和高几何质量;完成姿态快速机动并稳定控制技术攻关、动中成像高平稳姿态控制技术攻关,开发相关的核心控制部件并完成系统闭环验证;构建动中成像集成验证系统,模拟在轨动中成像过程,进行姿态机动与相机成像集成试验验证。考核指标:相机角分辨率:优于0.5μ rad;姿态机动速度:绕任意轴机动25° 并稳定时间不超过10s;最大角速度不低于6° /s;最大角加速度:不低于1.5° /s2;动中成像过程姿态稳定度优于5×10—4 ° /s(三轴,3σ );系统在轨传函:≥ 0.1(Nyquist频率);图像目标定位精度:常规推扫优于5m,动中成像优于30m(星下点,无控制点)。实施年限:3年拟支持项目数:1—2项2.“高性能空天一体化组网监测系统技术”方向2.1 基于分布式可重构航天遥感技术(关键技术攻关类)研究内容:面向应急遥感等迫切任务需求,开展基于分布式可重构航天器的智能遥感技术与方法研究;开展航天器空间分布方式、可重构方法与遥感技术的关联性研究。开展凝视、推扫、视频与多星组网的多种成像模式相结合研究;研究空间多航天器空间遥感探测系统的分布式测量方法、通信组网与数据共享机制;研究快速自动合成与高精度定位以及分布式航天器组网系统技术。开展具有实时姿态、位置、时间和自标定等综合信息能力的智能化载荷系统标准研究;形成标准化的分布式姿态测量与控制模块,网络化通信与数据共享模块,高精度遥感模块三大核心能力。考核指标:完成6~8颗分布式可重构卫星试验样机,实现分布式可重构卫星集群姿态测量、通信、测控和成像功能验证,完成分布式可重构遥感卫星网络演示系统;姿态测量与控制模块,总重量小于1kg,实现三轴姿态测量精度优于10″ ,角速度测量精度优于0.001° /s,角度控制精度优于0.02° 。数据通信与共享模块重量小于1kg,功耗小于1W,其包括星间通信数率大于30Kbps,距离大于20km,星地数据通信包括测控与数传,其中测控数据率上下行均大于30Kpbs,数传大于10Mpbs。高精度载荷模块重量小于5kg,对地分辨率优于4m,幅宽大于8km;系统具有自主成像的能力,无控制点图像定位精度优于100m,通过半物理仿真演示验证在全球任意地点达到在2小时内实现快速重访。实施年限:5年拟支持项目数:3项2.2 面向遥感应用的微纳卫星平台载荷一体化技术(关键技术攻关类)研究内容:面向多尺度实时敏捷全球覆盖的需求,开展20kg量级卫星的平台载荷一体化总体技术研究;构建标准化的微纳型遥感载荷单元与微纳型姿态测量控制单元,能源流单元和信息流单元。开展面向微纳型遥感卫星在轨遥感参数自标定和互标定技术研究,并通过地面演示验证;研究部署地球空间环境探测传感器微型化与集成设计技术,如空间大气、粒子辐射、电磁场、微重力等探测。突破探测微传感器关键技术,及其与微纳星微平台一体化设计和集成技术。建立低成本货架式微纳型遥感卫星技术体制;开展基于商业器件的批量化微纳卫星遥感系统的建造技术、标准化模块、载荷的集成、测试方法研究;完善微纳型遥感卫星的建造规范,为未来实现百颗量级微纳卫星遥感编队奠定技术基础。考核指标:完成20kg量级一体化微纳型遥感卫星系统以及相应的演示验证。完成微纳型遥感卫星的姿态标准化单元,完成微纳型遥感卫星的能源系统标准化单元,实现整星功耗大于20W的能源有效分配和电源系统的可靠性;对信息流标准化单元,基于商业器件实现遥感信息、测控信息、数据传输等的信息流统一处理。通过地面演示验证微纳型遥感卫星在轨载荷单元与姿态参数的互标定精度优于2,载荷系统的内部自标定精度优于0.2。实施年限:5年拟支持项目数:2项3.“地球系统科学与区域监测遥感应用技术”方向3.1 基于国产遥感卫星的典型要素提取技术(重大共性关键技术与应用示范类)研究内容:研究并建立全球多尺度典型要素标准体系和全球典型要素信息提取技术规范;研究国产低—中—高分辨率卫星遥感影像无场几何定标与验证技术、大规模境外多源遥感数据高精度协同处理技术;研究全球典型要素自动识别、快速提取与定量遥感技术,研究全球典型要素的增量更新技术;研究毫米级全球历元地球参考框架(ETRF)构建关键技术;形成典型要素协同生产技术体系,开展地表特征、资源、环境、矿产、生态、减灾典型要素信息提取示范应用。考核指标:标准体系覆盖全球多尺度数字正射影像(DOM)、数字高程模型(DEM)、数字地表模型(DSM)、地形核心要素、水体、湿地、人造地表、耕地、冰川和永久积雪、森林、草地、灌木地、裸地、矿产开发地、碳酸盐岩区、盐碱地、石漠及荒漠化地等典型要素,满足10m~20m地表覆盖分类要求;信息提取技术能够支持我国主要自主卫星数据产品的快速处理,典型要素提取自动化程度达到80%以上,精度达到像元和亚像元级;全球尺度DOM数据产品分辨率优于2.5m、DEM数据产品分辨率优于10m、无控平面和高程精度优于5m、地形核心要素矢量数据产品精度不低于1:5万;境外重点区域DOM数据产品分辨率优于1m、DEM数据产品分辨率优于5m、无控平面精度优于3m、无控高程精度优于2m、地形核心要素矢量数据产品精度不低于1:1万;水体、湿地、人造地表、耕地、冰川和永久积雪、森林、草地、灌木地、裸地、矿产开发地、碳酸盐岩区、盐碱地、石漠及荒漠化地等要素数据产品分辨率达到10m~20m、要素信息提取准确率不低于85%;建立毫米级全球历元地球参考框架技术体系。生产全球3~5个典型区域的要素信息产品。实施年限:5年拟支持项目数:1—2项有关说明:鼓励产学研结合3.2 地球资源环境动态监测技术(重大共性关键技术类)研究内容:研究全球典型区域资源、能源、生态环境、自然灾害的监测指标体系,研究任务驱动的多源国产卫星协同立体监测、预警、应急调查技术,研究面向环境要素应急与监测耦合遥感观测技术,研究天地联合多时空尺度监测数据在线融合处理及协同分析技术,研究基于多源多时相卫星影像的全球尺度及典型区域地表覆盖、自然灾害、资源能源开采环境、生态环境等标志性特征的高可信变化检测、分析评价、模拟预测技术;研究天地联合多时空尺度近地空间环境监测关键技术;形成地球资源环境动态监测技术体系,开展相关领域的应用示范。考核指标:监测指标体系覆盖全球典型区域资源、能源、生态与健康环境、自然灾害动态变化要素与特征,满足资源环境动态监测要求;高价值时敏目标监测精度优于90%、虚警率小于5%;实现至少15类遥感载荷的多源数据融合与协同处理;对重大基础设施的形变监测精度优于3mm/年,形变时间序列监测精度优于4mm;具备资源与环境要素的年度监测能力,全球尺度产品空间分辨率不低于30m、重点区域产品空间分辨率不低于10m;全球典型区域自然灾害、资源能源开采地、湿地和森林等生态环境敏感因子的变化检测准确度大于85%;动态观测数据驱动的典型自然灾害实时模拟精度达到85%、时效性高于亚小时;天地联合监测区域尺度200km~1000km,获取空间环境信息要素不少于4类,数据处理周期不超过2小时。选择3~5个领域开展应用示范。实施年限:5年拟支持项目数:1—2项有关说明 :鼓励产学研结合4.“导航定位新机理与新方法”方向4.1 高精度原子自旋陀螺仪技术(基础前沿类)研究内容:针对海洋资源勘探对水下探测器长航时高精度导航技术需求,开展高精度原子自旋陀螺的理论与方法研究及关键技术攻关,研制原理样机;同时,探索面向便携式自主导航的金刚石色心原子陀螺的理论与方法,研制原理验证样机。考核指标:探索导航定位新机理与新方法,并研制两类高性能原子自旋陀螺样机:(1)高精度原子自旋陀螺原理样机,实现漂移优于0.0001° /h;(2)金刚石色心原子陀螺原理验证样机,实现漂移优于10° /h。实施年限:5年拟支持项目数:1—2项4.2 海洋大地测量基准与海洋导航新技术(基础前沿类)研究内容:面向海洋资源环境探测、水下导航定位的应用需求,研究海底大地测量基准建立和陆海基准的无缝连接技术,构建陆海(含海底)一致的、连续动态的海洋区域高精度大地测量基准和位置服务系统,包括高程基准(大地水准面);研究水下参考框架点建设与维护和陆海大地水准面无缝连接等技术方法;完成水下方舱设计、标校和测试方案论证与试验;研究海洋(水面、水下)融合导航技术和重力匹配导航技术,研制海底信标、重力和惯性定位相融合的水下综合导航设备。考核指标:海底大地控制点坐标精度优于± 0.5m;1×1海洋重力异常图精度优于± 3~5mGal;大地水准面精度优于125px。最大工作水深不小于3000m。水下定位精度优于± 10m;实时重力测量处理精度优于± 3mGal。实施年限:5年拟支持项目数:1—2项5.“导航与位置服务核心技术”方向5.1 协同精密定位技术(基础前沿与关键技术攻关类)研究内容:面向大众用户对室内外无缝定位服务的需求,研究高可靠性、高可扩展性的协同精密定位服务平台架构;联合通信与卫星导航技术,建立协同定位平台和A—GNSS服务技术体系;以云计算、云存储技术为基础,突破海量基准站实时观测数据安全管理及精密定位增强信息分布式处理技术;开展基于通信、卫星导航等多源协同定位关键技术研究;突破面向大众应用的高性能、低成本协同精密终端关键技术;开展云平台精密定位信息安全及基于性能分级服务关键技术研究;联合多卫星系统、全球覆盖地面基准站网及地面通信网络,研制面向大众用户的协同精密定位关键器件和自主可控的协同精密定位服务平台,开展应用示范。考核指标:能够实时处理联合全球和我国的GNSS基准站数据,处理能力不少于2000个站;实现秒级更新的卫星轨道、钟差及相关参数联合处理,满足亚纳秒至毫秒级精度的授时服务,以及毫米级至亚米级的定位服务;大众用户室外定位精度优于0.5m,授时精度优于1ns;形成相关技术标准规范建议,平台服务用户能力不少于1千万,每日定位处理能力不少于100亿次。实施年限:5年拟支持项目数:1—2项5.2 室内混合智能定位与室内GIS技术(关键技术攻关类)研究内容:围绕室内复杂环境智能定位与多体系位置自适应和应用服务等关键科学问题,面向大型复杂公共场所的安全监控与预警和应急救援与管理等重大应用需求,研究开发基于地面基站的无线定位或室内特征匹配等混合智能室内定位技术,通过导航电文的精确坐标定位数据、室内多种无线通讯信号、室内特征的位置信息等,构建大范围高精度室内混合定位示范系统,开发新型的核心芯片,研制室内GIS软件。重点研究以下关键技术:无线定位信号载波频率及导航电文播发协议,室内特征获取与计算;地面基站及无线广播发射机关键技术;接收机核心芯片(射频前端及接收机基带信号SoC芯片)关键技术;接收机基带信号处理及定位、室内特征匹配与定位算法;室内定位接收机开发,室内GIS研制,室内位置服务应用系统构建。考核指标:室内定位精度优于1m;室内图像匹配精度达到亚像素;建立室内定位示范系统,定位区域可以覆盖大型城市,复杂建筑群广场面积达到50万平米以上,超大型机场日客流量超过20万;完成室内定位系统基准站研发和室内定位接收机核心芯片及算法的开发、室内特征匹配与室内GIS研制;形成室内无线定位技术国家标准建议,核心理论方法论文不少于3篇,自主核心专利不少于10项。实施年限:5年拟支持项目数:3项有关说明:鼓励产学研结合,鼓励配套支持经费 5.3 全空间信息系统与智能设施管理(基础前沿类)研究内容:围绕人机物混合的三元世界的全测度空间信息获取、处理、分析的关键科学与技术问题,探索多元空间协同表达与时空基准、全尺度空间数据模型、设施信息标准化模型等理论方法,攻克多尺度多模态大数据归一化、多元空间数据分析模型与态模型耦合、全空间信息符号化表达与可视化等前沿核心技术,研制具有原始创新、世界领先的全空间信息系统原型,构建城市基础设施管理示范应用系统,促进我国地理信息系统创新发展。考核指标:理论上原始创新,核心理论方法的标志性论文不少于50篇,自主核心专利不少于20项;新型空间数据处理与分析算法不少于100种,实时动态可视化三角面片超过100万量级,GB级空间数据可视化速度优于秒级;研制适用国内大城市公用设施管理的示范系统,示范验证系统可管理物件超过百万件。实施年限:5年拟支持项目数:1—2项有关说明:鼓励产学研结合6. 全球位置框架与位置服务网技术体系6.1 广域航空安全监控技术及应用(关键技术攻关类)研究内容:面向应对运输航空突发安全事件和管控通用航空安全风险的需求,研究基于自主PNT资源和通信资源的广域航空安全监测网技术架构、航空器飞行动态信息一致性/完好性/安全性保障与风险评估技术;研究星基自动相关监视和多照射源低空监视等全空域航空器高精度定位技术;研究高风险航迹追踪识别与风险预警技术;研究北斗机载设备检测与适航评估技术;研制构建功能性验证系统,针对运输航空和通用航空开展验证性应用示范工作;为建立广域航空安全监控网、提升国家空域安全监控能力进行技术探索与储备。考核指标:建立具备全球覆盖能力的全空域航空安全监视及风险预警实验平台、具备模拟北斗最低性能及高精度增强模拟等能力的实验平台,搭建广域航空安全监控网功能验证系统,形成广域航空安全监视网技术架构和技术规范。航空器运行风险识别符合ICAO DOC4444要求,告警位置信息不低于1次/min;北斗机载设备安全评估符合SAE ARP4761和CAR25.1309要求;监视航空器数量大于1000架,监视数据更新时间小于10s,三维位置精度优于2m、三维速度精度优于0.1m/s、时间精度优于20ns(95%置信度);3000m及以下非合作目标监视范围不小于120 km×120 km,水平定位精度优于50m,矢量速度精度优于1m/s,数据更新率不低于1次/s。实施年限:4年拟支持项目数:1—2项7. 重点区域与应急响应空间信息应用服务示范7.1 区域协同遥感监测与应急服务技术体系(关键技术攻关与应用示范类)研究内容:研究区域应急响应空天地组网遥感监测应急服务体制机制,研究应用机理并确立应用需求和技术指标体系;研究基于卫星普查观测、浮空器定点观测、长航时无人机巡航观测、轻小型无人机重点观测、地面移动终端信息实时采集的空天地一体化协同观测和应用系统总体技术;突破区域空间应急信息链构建、突发事件空间信息聚合分析、应急决策支持等共性关键技术,研建区域应急响应空间信息服务规范标准,构建“一带一路”、边境口岸等重点敏感区域的突发事件应急服务系统,以重点区域和典型突发事件为案例,开展规范、技术体系与系统集成方案的应用示范。考核指标:形成完整的空天地组网遥感监测应急服务运行标准体系和技术规范,支撑重点区域观测信息获取实现优于小时量级的覆盖频度、突发事件响应时间优于2小时能力,协同观测至少包括亚米级高分卫星遥感、低空遥感与地面移动终端等3类监测手段,实现分米级移动信息采集;完成应急服务演示系统研制,系统应具备满足应用部门功能与性能需求的应急响应指挥、信息获取、资源规划部署、调度、应急信息获取与管理、综合分析与信息产品生成、应急决策等能力;应用示范应包括“一带一路”沿线相关边境口岸、敏感地区城镇以及境外重点区域,构建至少1个区域空间信息服务与应急指挥示范平台。实施年限:3年拟支持项目数:2项有关说明:鼓励产学研结合
  • “地球观测与导航”重点专项“基于光丝激光雷达的大气污染多组分监测技术研究”项目实施方案检查会在天津召开
    p style=" text-align: justify " & nbsp & nbsp 近日,国家重点研发计划“地球观测与导航”重点专项“基于光丝激光雷达的大气污染多组分监测技术研究”项目实施方案检查会在天津召开。该项目由南开大学牵头组织实施,参加单位包括北京空间机电研究所、华东师范大学、上海理工大学等科研单位。南开大学副校长许京军、重点专项管理办公室、项目承担单位、专项总体专家组相关领导和专家合计20余人参加了会议。 br/ & nbsp & nbsp & nbsp 项目负责人汇报了项目任务目标与实施方案,专家组针对该项目实施方案进行了研讨交流,并对今后项目的实施提出了宝贵建议。会上,项目组成立了咨询专家组,并由许京军副校长为咨询专家组专家颁发聘书。 br/ & nbsp & nbsp & nbsp 该项目瞄准大气污染多组分监测国家重大应用需求,面向在轨应用时所面临的探测距离远、大气环境复杂及载荷环境适应性要求高等诸多挑战,开展光丝激光雷达技术的前瞻性研究工作,目标是解决强飞秒激光与物质相互作用机制的关键科学问题,具体包括飞秒激光在复杂大气中远程传输机制、诱导荧光谱分子动力学及在光纤放大器中的非线性效应等,力争在飞秒激光多维相干合成、光丝远程调控、高灵敏度组分荧光谱识别系统等关键技术方面取得突破。 br/ & nbsp & nbsp & nbsp 本次检查会上,与会专家从系统性、针对性、计划进度、成果形式、关键节点和风险控制等诸多方面对项目实施方案提出了改进意见和建议,为项目顺利开局和后续实施奠定了很好的基础。 /p
  • 量子导航领域又一突破:原子自旋陀螺仪原理样机研制成功
    全空域、全时域的无缝定位导航是未来定位导航产业的技术制高点。随着量子精密测量技术的快速发展,基于量子精密测量的陀螺及惯性导航系统具有高精度、小体积、低成本等优势,将对无缝定位导航领域提供颠覆性新技术。  “十二五”863计划地球观测与导航技术领域主题项目“基于磁共振的微小型原子自旋陀螺仪关键技术”由北京自动化控制设备研究所承担,项目研究开展一年半取得突破性进展。项目组攻克了核自旋-电子自旋耦合极化与检测等精密量子操控技术,完成了小型化磁共振气室、高效磁屏蔽等元件的精密设计与制造,并研制成功我国首个基于磁共振的原子自旋陀螺仪原理样机。样机零偏稳定性优于2° /h,成为世界上第二个掌握该技术的国家,与美国技术差距从10年缩小到7年。  项目所取得的研究成果为进一步提高基于磁共振的微小型原子自旋陀螺仪的精度与集成度,为支撑我国量子导航领域的发展打下了坚实的技术基础。原子陀螺仪的技术突破使现有应用于高端装备的无缝定位导航系统的体积、质量、功耗、成本等下降约两个数量级,将应用于大众定位导航市场,可在微小体积、低成本条件下实现米级定位精度,提供不依赖卫星的全空域、全时域无缝定位导航新能力。
  • 国内首家通信导航设备质检中心揭牌
    12月16日上午,国家通信导航设备质量监督检验中心及中电科第54所认证中心在石家庄高新区创业园区正式揭牌。   这是国内首家开展卫星导航产品的认证机构,将对保障国家地理信息安全,提高卫星导航领域产品、服务质量和管理水平产生积极影响,并进一步提升高新区及全市电子信息产业的整体实力。   国家通信导航设备质量监督检验中心于1990年在中电科技集团第54研究所成立,主要从事通信、导航、广播电视等产品的检验与试验,所出具的检验报告被四十多个国家和地区所认可。去年,54所被国家认监委授权,成为唯一开展卫星导航产品认证业务的机构。今后,中心的认证将向家电、通信、广播电视等产品领域拓展。   中心的导航认证,简称为“N”认证。认证标志是由指北三角形图标、象征地球卫星轨道的外圈蓝带、象征卫星的两个圆点、英文字母C、H、N以及证书编号组成,这将成为今后消费者选购优质导航产品的认证标识。近期内,54所将在官方网站发布第一批获得认证产品的目录。   石家庄副市长、高新区工委书记刘晓军出席揭牌仪式。
  • 近红外荧光成像导航手术研究领域取得新进展
    p style=" text-align: justify " & nbsp & nbsp 近日,复旦大学化学系张凡教授课题组与复旦大学附属妇产科医院徐丛剑教授团队合作,利用近红外探针实现近红外二区荧光成像导航卵巢癌实体瘤和转移灶的精准切除,此方法有望在临床上用于腹腔恶性转移肿瘤的精准手术导航。7月24日,相关研究论文以《活体内自组装的近红外二区纳米探针用作增强卵巢癌转移灶的手术导航》(“NIR-II Nanoprobes in-vivo Assembly to Improve Image-guided Surgery for Metastatic Ovarian Cancer”)为题在线发表于《自然· 通讯》(Nature Communications, 2018, 9, 2898)。复旦大学化学系博士生王培园为论文第一作者。 /p p style=" text-align: justify " & nbsp & nbsp 手术切除通常是恶性肿瘤最常见和最有效的治疗方法之一。然而外科医生触诊和目视检查并不足以确保区分恶性和正常的组织类型,因此可能导致不完全切除或健康组织不必要切除。相比于术前影像学检查及手术中视觉检查及触诊,活体荧光成像技术由于其即时性、高分辨率、高特异性等检测优势,为精准手术导航技术领域提供了较好的应用前景。传统的可见光区(400 - 750 nm)和近红外一区(NIR-I, 750 - 900 nm)荧光,由于其组织穿透深度较浅和严重的自体荧光干扰,极大地限制了荧光成像技术在腹腔以及淋巴结转移病灶在手术导航中的应用。此外,手术切除过程中需要荧光探针具有长效的肿瘤内滞留时间和光稳定性。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8e54b7f-2dec-4f1c-a053-3576dfab39d8.jpg" title=" 20180725复旦.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: left " 图1. 表面分别修饰配对DNA(L1/L2)和修饰靶向蛋白的近红外探针。对于这两种配对DNA修饰的探针采用两针注入法,通过肝脏、肾脏的快速代谢,体内正常组织的荧光信号可以降到最低;肿瘤内的探针自组装可以对肿瘤实现长达6小时的稳定标记,确保精准的手术导航。 /p p style=" text-align: justify " & nbsp & nbsp 针对上述两个问题,张凡课题组与徐丛剑团队合作,利用近红外二区荧光探针(NIR-II, 1000 - 1700 nm)的深组织穿透和低自体荧光优势,结合化学自组装设计实现了探针在肿瘤内的长期稳定标记,极大地提高了光学成像的信噪比。初步实现了卵巢癌腹膜转移以及淋巴结转移肿瘤在荧光成像指导下精准切除(图1),为该技术的临床转化应用提供了可能。 /p p & nbsp & nbsp 该工作得到了复旦大学化学系、聚合物工程国家重点实验室、复旦大学先进材料实验室、复旦大学附属妇产科医院、复旦大学上海医学院妇产科学系、国家重点研发项目、国家杰出青年学者科学基金、上海市科委重点基础研究项目、上海科学技术规划委员会的大力支持。 /p p br/ /p
  • 大气激光雷达观测与研究:追风掣电识大气
    地球大气为人类生存和发展提供了非常重要的保障,研究该区域中的大气环境与物理和化学过程,对于航天、国防、人类生活以及地球生物圈的安全至关重要。   武汉大学研制的拉曼激光和钠荧光激光雷达的发射单元     中国科学技术大学研制的车载多普勒测风激光雷达系统   识风须追风   中高层大气研究关注的主要参数包括中性大气的密度、温度和风场、电离成分、微流星体、辐射场等。   “研究中高层大气的结构和变化特征对于理解发生在这个区域中的基本物理过程,保障航天器和航天活动的安全具有重要意义。”武汉大学教授易帆对《科学时报》记者说,“这些航天器在高层大气环境中能否正常工作,将直接影响通信中继、电视转播、导航定位等。近年来,平流层飞艇由于多用途和低能耗被称为‘多功能绿色航空器’,要保证其在节能条件下稳定运行,该高度上大气风场信息极为关键。因此,这一研究与人类生活密切相关。”   中高层大气的主要热源来自太阳的极紫外辐射和X射线对氧分子的加热以及高能粒子在大气层中的沉降。太阳活动剧烈时,高能粒子在大气层中沉降事件增加,这会加热高层大气并使之密度上升,从而增加低轨道飞行器的阻力并降低其轨道。此时如果飞行器不能及时变轨,将大大影响飞行器的使用寿命。对于低轨道飞行器来说,中高层大气的密度、成分温度和压力会影响到飞行器的轨道定位、轨道衰减速率和在轨寿命。   另外中高层大气也会影响到飞行器表面的温度和姿态控制,其化学组分——例如原子氧等——也有可能对飞行器造成化学损伤,另外,飞行器表面的辉光现象也与大气成分有关。所以,设计飞行器时,必须根据其飞行高度和飞行时间研究中高层大气对飞行器的影响,确定携带轨道修正推助器的质量,以及合适选用的表面材料和必要的防护措施。   仪器是利器   因为中高层大气离人类住居的地表较远,通常需采用无线电和光学遥感探测技术才能实现对其参数的测量。由于起步较晚,我国中高层大气激光雷达探测技术曾经十分薄弱。   “探测是中高层大气研究的基础和出发点,而我国缺乏大型探测设备和自主观测资料等因素,极大地限制了该学科的发展。”易帆说,“80km至100km高度范围的金属成分是流星消融的产物,其行为(结构和变化)反映了大气和太空的过渡区域中的物理特征。当前人们对金属成分的认识还很肤浅,许多问题都无法解释。”   由于中高层大气研究对大型仪器的依赖,我国中高层大气观测相对其他领域显得薄弱一些。   “对中高层大气重要参数,其中包括动力学参数(风速、温度、密度)、化学成分分布和大气辐射的研究都依赖观测仪器。国际上也存在同样的问题。这一领域很多一手资料都是近些年才积累起来的。” 中科院空间科学与应用研究中心研究员徐寄遥对《科学时报》记者说,“观测技术本身就是一个很大的研究课题。因此仪器研制也成为中高层大气研究的重要部分。”   近年来,在基金委、教育部和科技部的支持下,我国科技工作者自主研发出多种不同功能的大型激光雷达,将我国的中高层大气遥感探测和研究推向国际前沿。   以武汉大学为主的研究团队经过十多年的艰苦努力,研制出7台大型激光雷达系统,形成了当今亚洲功能最强大的中高层大气激光雷达综合探测平台。他们研制的世界第二台铁波尔兹曼中层顶测温激光雷达系统,在我国首次实现了80km~100 km中层顶大气温度的激光雷达测量。   该团队完全采用激光雷达技术,实现了对3km~100km高度范围大气温度的同步遥感探测。这是国际上第二次完全采用激光雷达技术,实现从近地面到100km大气温度剖面的测量。这种激光雷达综合探测技术可广泛应用于大气科学研究,对环境变化研究具有重要意义。他们研制出的偏振激光雷达与国际上的星载激光雷达进行了细致的比对,获得了定量的一致,表明他们完全掌握了偏振激光雷达技术。最近,我国继韩国之后,研制出世界上第二台全水谱拉曼激光雷达,能测量云中水的相态(液态或气态),在天气预报中具有重要意义。   中国科学技术大学研究团队先后建立了米/瑞利/钠荧光双波长激光雷达系统和车载多普勒测风激光雷达系统。该雷达所达到的技术指标与国际上唯一报道的一台车载平流层多普勒测风雷达技术指标相当。   2010年2月, 中国科学技术大学车载多普勒测风激光雷达系统通过专家鉴定,专家组一致认为:该仪器首次在国内实现了多普勒测风激光雷达对40km高度平流层大气风场的探测,且具有可重复部署性。   由这些激光雷达构成的探测平台使我国的中高层大气探测能力进入国际前沿。激光雷达观测导致了一些新现象的发现,也给我国的国防、航天和大气空间环境研究提供了数据基础。   有术更有效   我国学者在过去十年里自主研制出多台不同功能的大型激光雷达系统,这些雷达系统能观测该区域多种大气参数和金属原子层,建立了在国际上有影响的中高层大气观测站。   “近十年我国在中高层大气研究方面进步很快,发现了一些新现象,在中高层大气观测和模拟研究上也取得了有国际影响力的研究成果,总体上正逐渐逼近国际先进水平。”徐寄遥说,“这得益于我国仪器研制的成果和子午工程等的带动。目前我国在主动光学探测仪器,例如测风测温激光雷达,以及光学干涉仪和全天空气辉成像仪等被动光学仪器的研制方面初步形成规模。”   在观测研究方面,我国学者利用地球卫星、激光雷达和车载多普勒测风激光雷达等加深了对中高层大气动力学过程的理解。在中层顶金属层激光雷达观测研究,在0km~100 km 高度范围大气温度的激光雷达测量,在车载多普勒测风激光雷达研究,在激光雷达和其他仪器的联合观测方面都取得了较有影响力的成果。   在模式研究方面,我国学者揭示了大气波动非线性传播行为的有效方法,建立了高精度的全非线性动力学模式,对重力波的非线性传播研究取得一系列成果,已走在国际前列。我国自主建立了完全基于大气探测数据的第一代临近空间大气动力学模式。该模式与国际上公开发表的大气温度和密度经验模式(NRLMSISE-00)以及大气水平风场经验模式(HWM)相比,某些区域的精度有明显提高。
  • 支持观测装备国产化,中国气象科技发展规划出炉
    2月28日,中国气象局、科学技术部和中国科学院三部门联合发布了《中国气象科技发展规划(2021—2035年)》(以下简称《规划》)。《规划》在形势和需求中指出,高精度观测仪器自主研发能力不强,气象观测智能化水平落后,空基、海基气象观测能力薄弱,非传统观测起步晚、发展慢,多源综合数据的获取和完备度亟待加强,资料同化技术落后。《规划》提出了九个重点领域和优先方向,分别为气象观测技术和方法、数据分析技术、天气气候机理研究和科学试验、地球系统模式、数字化预报技术和方法、气象服务技术和方法、人工影响天气理论和技术、应对气候变化和生态气象保障以及人工智能气象应用技术。《规划》部署了四个重大气象科技创新工程,包括气象大数据科学工程、国产超算技术应用能力提升工程、地球系统模式工程和观测装备国产化工程。针对气象科技创新体系建设,《规划》提出了七项具体措施,分别为建设高水平科技创新人才队伍、优化气象科技创新主体布局、构建协同高效的科技创新平台、加强科技基础支撑平台建设、加强科技成果转化应用、积极参与全球气象科学治理和加强气象科学普及和创新文化建设。值得注意的是,《规划》在气象观测技术和方法中指出,着眼多源观测数据的获取,开展新型探测设备和观测方法研究。研究面向地球系统的协同观测关键技术,实现对大气和其他圈层要素的高时空分辨率观测。提高对典型灾害性天气系统的实时、立体、精密观测的技术能力。提升协同观测技术水平。开展非传统观测应用技术研究。完善气象观测技术和方法标准体系。在观测装备国产化工程中,《规划》提出,研发地面、高空和大气成分高精度国产化传感器;研制基于国产芯片,具备超低功耗、声光电物理信号一体化测量处理能力的气象专用系统级模组;研究双偏振相控阵天气雷达及相关扫描 28 技术、观测模式和定标技术;研制基于拉曼散射、差分吸收、多普勒效应等原理的激光雷达,突破激光器等核心部件国产化难题;研究基于毫米波、地波、太赫兹和量子技术的新制式气象雷达; 研制基于北斗导航的探空、水汽及反演应用的观测系统;研制基于北斗导航的短基线闪电通道精细化定位系统和超长基线的全球闪电定位系统;研制基于机载平台的空基气象载荷;研制大气成分、生态环境高精度观测装备、在线监测技术和标定技术;研究高海拔、酷热、台风、强辐射、重污染等极端恶劣环境的装备适应性技术和工艺;研制适应特殊自然环境和特殊用途的特种气象观测装备。通过工程实施,到2025年,综合探测能力达到或接近国际先进水平,全球监测能力进一步提升;非传统观测数据的收集应用能力大幅提升;气象装备国产化程度进一步提高。到 2035 年,气象综合观测整体技术自主可控,我国成为气象装备强国。在加强科技基础支撑平台建设中,《规划》提出要推进科技基础支撑平台开放共享,提高大型科研仪器设备利用率;加强野外科学试验基地建设,在关键区域建设一批野外科学试验基地。原文链接:中国气象局 科学技术部中国科学院 关于印发《中国气象科技发展规划 (2021 - 2035年)》的通知
  • 绝对重力仪:给地球精准“做CT”
    从比萨斜塔上抛下两个不同大小的铁球,它们以相同的速度同时落地——400多年前,意大利科学家伽利略完成这个著名的自由落体实验后的感受,今天的中国计量科学研究院重力仪研究团队也能体会到。不过,与伽利略不同,他们观察的落体不是铁球,而是原子团。重力仪研究团队是中国计量院九个计量基础前沿研究团队之一,团队的工作是精准地测量重力加速度,建立国家重力加速度计量基标准体系,并为此研制自主可控的精密测量仪器——绝对重力仪。重力加速度的测量分为绝对重力测量和相对重力测量。中国计量院对绝对重力仪的研究已有半个多世纪。2013年以来,他们开展了新一代激光干涉型绝对重力仪和第一代原子干涉型绝对重力仪的集中攻关,突破十余项“卡脖子”技术,大幅提升了重力加速度的测量水平。这两种绝对重力仪测量结果的合成标准不确定度,分别达到3.0和4.6微伽。伽,即重力加速度的单位,其命名正是为了纪念伽利略。与伽利略那时候相比,3.0和4.6微伽的测量不确定度,相当于将重力加速度的测量精度提高了将近7个数量级,也就是10的7次方、上千万倍。这是时代的发展,是科技的进步。伽利略可能不会想到,几百年后的人们可以通过原子干涉绝对重力仪,将自由下落物体从宏观物体换成微观原子团,在超高真空环境下采用激光冷却和操控技术来测量重力加速度。不止于此。中国计量院还利用自主研制的激光干涉型和原子干涉型绝对重力仪,通过主办国际比对和超导重力观测技术,建立了不同技术体制相互旁证的国家重力加速度计量基准,其测量不确定度优于1微伽。2017年,14个国家的32台重力测量仪器齐聚中国计量院开展“大比武”——计量比对。中国计量院的绝对重力仪表现优异,使得全球重力计量基准原点落户中国。所谓原点,即全球重力加速度测量精度最高的点位,也是全球重力加速度量值的源头。此前,全球重力计量基准原点一直在欧洲。“这意味着中国成为全球重力加速度量值溯源地,为全世界开展重力加速度的量值溯源和传递,彰显了我国科技实力和在全球计量界的国际影响力。”中国计量院时间频率所副所长、重力仪研究团队带头人吴书清很自豪。科研人员总是追求极致,对更高精度的追求既是一种自我突破,也是一种现实需要。如此高精度的重力仪,在现实生活中大也有用处。受地球引力影响,物体下落时具有近乎相同的重力加速度,但在不同纬度、地层中矿藏变化等因素的影响下,重力加速度会有细微变化。这种变化是进行辅助导航、资源勘探、地震预报、海洋监测等的重要依据。比如,利用不同位置的重力信号与标准重力地图匹配,可以获取定位和导航手段。根据重力场的异常或突变,可以勘探资源并确定是何种资源。科研人员曾通过重力测量,探明北京明十三陵地下陵墓的形状、位置和埋深。我们生活中用的电子秤,其准确性也建立在精准的重力测量基础上… … 作为国家的基础数据、战略数据,重力加速度的精准测量从未停止。近年来,在“中国大陆科学钻探工程”“中国大陆构造环境监测网”“极地科学研究”“精密重力测量国家重大科技基础设施建设”等国家重大工程项目中,都可以看到绝对重力仪的身影。“它们正在给地球更加精准地‘做CT’,让我们愈发了解人类的家园。”中国计量院重力仪研究团队如此形容。
  • 导航产品亦需警惕辐射超标
    汽车导航仪也要小心辐射问题。(图文无关)   国家质检总局发布汽车GPS导航产品检测结果 12企业产品不合格   汽车导航仪常会出现地图错误、死机、搜不到卫星信号等问题,但人们可能不知道还有辐射问题。日前,国家质检总局发布了对国内81批次汽车GPS导航产品的检测结果,12家企业被检出的不合格导航产品中,有11家企业的产品出现辐射超标情况,而不合格产品全部出自广东厂家。记者走访市场发现,被检出的不合格导航产品中,有的在佛山市场销量还不错。   重磅:导航产品不合格,主要因辐射超标   国家质检总局日前抽查了北京、上海、浙江、福建、湖南、广东等6个省、直辖市81家企业生产的81批次汽车GPS导航产品,根据相关要求对汽车GPS导航产品的系统定位精度、位置更新率、捕获、效率、车辆定位及地图匹配功能、地图显示功能、目标检索功能、路线计算功能、路线引导功能、地图数据库、数据通信接口、高温工作、高温贮存、低温工作、低温贮存、振动、安全性、电源端子骚扰电压/电源端子干扰电压、辐射骚扰/辐射干扰场强等19个项目进行了检验。抽查的合格率约为85%,抽查发现有12批次产品不符合标准规定,涉及到辐射骚扰/辐射干扰场强、电源端子骚扰电压/电源端子干扰电压项目(具体抽查结果见附表)。记者看到,12批次被检不合格产品全部出自广东。并且,12批次产品中,11家企业的产品为辐射超标。   车主:导航仪辐射超标,闻所未闻   有专业人士说,“辐射骚扰不合格的导航产品会影响车载电子产品的正常使用,也会干扰其它电子设备,尤其影响一些病人的生命维持电子设备,像心脏病人安装的起搏器等。GPS导航的辐射与手机类似,其辐射强度相当于一部通话中的手机。” 不过,很多车主在受访时表示,对导航辐射超标的问题闻所未闻。南海一位此前经历过某美系车型“辐射门”事件的车主告诉记者,如果不是原车导航,他选导航仪的话首先看导航效果,然后看价格合不合适,“具体有没有辐射看不到,也说不清。”   还有车主提到,其汽车导航开启时,经常短时间会出现手机信号不稳的情况,但不知道是否与导航仪的辐射有关,“从没往那方面想,以后还是要注意,特别是家里有孕妇的时候。”   提醒:导航仪还存在不少问题   据了解,导航仪突出问题集中表现在三大方面。其中,GPS的质量问题主要表现在定位精度低,灵敏度差,信号经常丢失,无法导航。同时,各品牌导航仪所装载的运行软件不同,也经常出现各种问题。   相关认证机构的调查还显示,有的导航软件编制不合理,经常令司机绕道行驶 另外,有的导航软件缺少路径重算功能,致使一旦偏离预定路线,导航仪就只会不停重复“请调头”,而不会进行路径重算,并最终导致死机。   市场:部分品牌佛山常见,有的还销售不错   记者随机走访了禅城、南海部分汽车用品店和专门销售车载导航的网点。在12家被检出不合格产品的导航品牌中,不少在佛山市场有售,有的品牌还被作为主打导航品牌。有商家告知,好像不合格的主要都是一些中小品牌的导航产品,比较出名的像欧华,据其所知卖得还不错。   据其介绍,导航仪生产技术并不高端,生产厂家中小规模的居多,质量参差不齐,价格相差巨大。而且现在外置导航设备很多人已开始在网上购买了。   另外,有的不合格产品型号看起来像专为部分车型配置。记者为此询问了相关车型品牌的部分4S店。有4S店认为,即使是某些车型专用导航仪出现问题,也不一定和汽车生产厂家有关。一是不少导航品牌都设计有专车专用导航设备,但非汽车厂家原装导航 二是有的车型导航设备非出厂时所带,不少为4S店自行联系提供,消费者选配。
  • 国内首个矿用导航技术实验室正式建成
    10月3日,国内首个矿用导航技术实验室在中国煤科太原研究院正式建成。作为煤矿采掘机械装备国家工程实验室的子实验室,该实验室加快了行业高端导航技术与装备的研发与应用。煤矿采掘工艺复杂,工作面环境多变,少人化、无人化采掘工作面的建立一直是矿山智能化转型的重要方向,其中自动导航定位技术是制约采掘装备智能化发展的主要“卡脖子”环节。十多年来,中国煤科太原研究院潜心研究矿用导航定位方法,积极参与国际高水平大学、科研机构间的学术交流,与澳大利亚研究机构同时在两个同类工作面同步完成掘进工作面基于惯性导航系统的采掘装备全工况对比定位试验,试验结果取得预期效果。同时,加速开展自主研发工作,持续不断进行科研攻关和工业性试验,成功突破了导航定位关键技术的工程化应用难题,实现掘锚机规划截割,助力快掘系统实现月进尺3088米的世界纪录。基于导航定位技术,操作人员可以远离巷道迎头,在高效掘进的同时确保作业安全和职业健康。目前,经多轮迭代形成的系列矿用导航产品,达到了国际同类产品技术水平。矿用导航技术实验室的建成,拓宽了国家工程实验室的科研创新领域,增强了矿用导航技术在系统级和核心部件级动静态特性测试能力,提高了矿用导航产品在工程应用中的可靠性。
  • 段振豪任国际重大科学计划“地球深部碳观测”共同主席
    日前,中国科学院地质与地球物理研究所段振豪研究员接到国际重大科学计划——地球深部碳观测(Deep Carbon Observatory)秘书长Constance Bertka来函,聘请他担任该重大研究计划的共同主席,主管该计划的四个方向之一:碳的物理化学。   今年九月,该计划的创始人委员会推选段振豪研究员担任这一职务。作为共同主席,他近期的工作包括组织一个由世界各国知名学者组成的科学指导委员会,领导该委员会开展未来两年的研究工作,招收美国与其它国家合作培养的博士后,起草未来十年的研究规划。担任这一职务后,段振豪研究员将领导国际上的科学家(包括知名科学家)一起开展前沿性研究工作。   作为“碳的物理化学”这一方向的第一负责人,段振豪研究员亦被选为该重大计划的执委会委员,该委员会成员包括美国、英国、法国、俄罗斯等国的院士和美国、日本、加拿大的知名教授。该执委会的前身为创始人委员会,其任务是为该重大计划的发起、组织、规划献计献策,其成员是由主要国家的十分有影响的科学家领导组成,中科院地质地球所朱日祥院士为该委员会委员。今后该计划运行将由执委会执行。   地球深部碳观测重大研究计划是由美国前矿物协会主席Robert Hazen博士和卡耐基地球物理研究所所长Russell Hemley院士发起、并由Sloan基金委资助的重大国际研究计划。该计划希望带动全世界10亿美元的投入和1000名科学家参与,其研究方向包括深部生命、深部碳库和通量、能源与环境,碳的物理化学。该计划对深部的定义是:从CO2的临界压力所对应的深度(约73大气压、地表以下500米)到地核(约6370公里)。为鼓励有志的年轻人参加这一研究,未来两年碳的物理化学这一方向将利用25万美元招收3-4名博士后。
  • 近红外荧光成像技术为肿瘤手术“导航”
    2013年,美国哈佛医学院教授John V Frangioni提出,近红外荧光成像技术可以为临床医生提供有效帮助,未来十年将在肿瘤术中极具应用前景。在中国,MI从实验室走进手术室,已然让这一设想成为现实。   近一百年来,人类获取癌症信息的方法不断创新:从上个世纪初的X射线到70年代的CT,再到本世纪初的核磁共振(MRI),借助这些设备,人们对癌细胞不仅看得到还看得清,更能看得准。   创新无止境。中科院自动化研究所(以下简称自动化所)研发的光学分子影像手术导航系统(MI),让我们不仅对癌细胞&ldquo 看得早&rdquo ,而且与以上三种手段不同的是,MI能在手术中从分子层面精准定位癌细胞,为医生&ldquo 导航&rdquo 。   &ldquo 其貌不扬&rdquo 的MI   &ldquo 这是第一代光学分子影像手术导航系统,那是现在最新的产品化样机。&rdquo 在中国科学院自动化研究所,助理研究员王坤向《中国科学报》记者介绍了新老几代MI设备。MI看上去&ldquo 其貌不扬&rdquo :普通的液晶显示屏、支架、镜头、可以移动的箱体,外观&ldquo 温和谦逊&rdquo ,不如核磁共振等医疗设备看着威风。   其实,MI极具内涵和实力。&ldquo 最新的MI设备已在中国人民解放军总医院(301医院)等国内多家医院开展临床应用。&rdquo 王坤说。无论是术中肝癌微小肿瘤灶的检测,还是乳腺癌、胃癌、前哨淋巴结精确定位手术,MI都大显身手。   目前手术仍是治疗癌症的最有效方法之一。对于肿瘤边界的精确定位却一直困扰着临床医生及科研人员。通常,医生凭借经验对肿瘤组织进行切除,如果少切可能会造成复发,而多切又会对患者造成伤害。&ldquo 所以,一种术中提供客观肿瘤边界的方法具有重要的临床应用价值。&rdquo 王坤说。   MI是国内成功研制的首台肿瘤术中早期精准定位的临床检测设备。问世不到3年时间,它已成功诊治百余例肿瘤患者,并实现了光学分子影像技术在临床应用的重大突破。   手术室来了&ldquo 新伙伴&rdquo   2008年诺贝尔化学奖获得者钱永健教授在2009年世界分子影像大会上的报告中提到:术中客观的肿瘤边界信息获取为手术治疗提供了重要的价值。这也是对分子影像导航技术广泛应用的进一步肯定。   分子影像导航技术是如何在人体内实现的?自动化所助理研究员迟崇巍解释说,当人体病灶发生病变之后,肿瘤细胞外部会产生某些蛋白靶或酶分子的靶标。人们通过注射一种带有荧光或者核素标记的分子探针,通过配体、受体的特异性结合实现探针在体内的自动寻靶,这样便可通过影像学设备实现在体成像,从而反映出体内肿瘤变化情况。   2012年,迟崇巍跟随该所研究员田捷开始研究分子影像。那时,他们带着第一台光学分子影像手术导航系统走出中科院分子影像重点实验室,来到汕头大学肿瘤医院。第一台不怎么&ldquo 漂亮&rdquo 的MI设备成了手术室里的新家伙。   根据《新英格兰》杂志的报道,对于乳腺癌I期和II期的病人来说,如果早期发现并实施治疗,其5年期生存率可以达到80%以上。临床操作规范指南明确指出,乳腺癌早期(I期或者II期)腋窝淋巴结阴性的病人必须实施前哨淋巴结活检手术。&ldquo 我们研发的MI设备,能够在术中客观显示肿瘤及其他病灶的边界信息,这为临床医生手术治疗提供了有效帮助。&rdquo 迟崇巍说,他们对22例乳腺癌早期患者前哨淋巴结进行精确手术导航切除实验。这组实验数据与组织病理金标准进行验证,检出率为100%,同时病人也未出现任何不良反应。   随着技术进一步发展,通过光学分子影像手术导航方法一方面可以在术中对乳腺癌肿瘤及微小转移灶进行应用,同时可以实现对乳腺癌不同亚型进行术中分子分型,达到术中实时病理的目的 另一方面该方法不仅可以应用在乳腺癌上,同时还可以在肝癌、肺癌、胃癌等多种癌症上进行应用,实现不同肿瘤的分子影像技术应用突破。   走出实验室练就&ldquo 铁骨&rdquo   创新不是拍脑袋想出来的,需要一个团队长时间积累与探索,MI正是如此。它不仅集光学、物理学、计算机等学科知识于一体,走出实验室后,还要有一副经得起临床测试的&ldquo 铮铮铁骨&rdquo 。   最初到汕大医院手术室,MI开始有点&ldquo 水土不服&rdquo 。&ldquo 能否将无影灯关闭一会?能否给手术室配上遮光窗帘?&rdquo 迟崇巍的要求让手术室里的医护人员感到有些为难。   这是因为MI需要采集荧光,而荧光的光强只有自然光的千分之一。在伸手不见五指的铅房实验室里,科研人员可以非常方便地采集荧光,但在手术室中受各种光源影响,采集起来却不容易。   之后,田捷团队与医生、护士不断沟通,终于得到了他们的理解与支持。更重要的是,科研人员精进技术手段,克服了这一难题。   另一个研发难题是算法。通过对光学分子影像手术导航系统理论及方法的基础研究,自动化所科研人员研发出基于生物组织特异性的高阶近似数学模型和快速动态成像算法,并建立较为完整的、系统的光学分子影像手术导航数据融合方法。前期研发的系统样机已获得国家药监局中国食品药品检定研究院的合格检测报告,验证了系统的安全性及有效性。   此外,MI还选用了更先进的荧光染料。他们结合新的分子荧光染料&mdash &mdash 吲哚菁绿(ICG)的特性,在手术过程中提供实时的荧光图像和彩色图像。在实际临床试验过程中,注射ICG3分钟左右,医生便可以看到前哨淋巴结的位置。这样,医生根据MI的引导进行精确定位,准确切除前哨淋巴结组织。切除后,医生还可以根据荧光反馈判断是否有荧光残余、是否达到准确切除的目的。   不断精进的MI现在是多家医院手术室里的利器:301医院的大夫可以利用MI进行分子影像术中肝门部胆管癌的精确检测 在东方肝胆外科医院,医生可以利用该设备进行肝癌门静脉癌栓方面的检测 珠江医院的医生借助MI开展术中肝硬化微小肿瘤灶检测 西京医院的医生使用这种设备进行胃癌术中前哨淋巴结活检精确定位手术。
  • “十四五”基金委地球科学部重大项目指南(全文)
    2021年地球科学部共发布12个重大项目指南,拟资助7个重大项目。项目申请的直接费用预算不得超过1500万元/项。“陆域水文生态过程多尺度变化机理与效应”重大项目指南  陆域水文生态耦合过程深刻地影响着地球表层物理、化学和生物作用,与地表水分和能量分配、水资源形成与转化密切相关。由于陆域下垫面的多样性和水文生态过程的复杂性,使得相关科学认知还存在很大的不确定性,成为认识水文、生态、资源和环境科学问题的瓶颈。当前,面临全球气候变化和人类活动所引起的一系列生存环境问题,比以往任何时候都更需要深化对陆域水文生态耦合过程的研究。针对当前地球系统科学的发展态势,亟需集中优势力量,从多元素耦合循环、能量循环和生物过程等角度,深入研究不同陆域水文生态过程多尺度耦合机理,系统剖析陆域水文生态过程多尺度变化机制,定量阐释其气候与资源环境效应,提升整体研究水平和国际影响力,引领该领域的研究,为全球变化应对和社会经济可持续发展等国家重大需求提供重要科学支撑。  一、科学目标  从多元素耦合循环、能量循环和生物过程等角度,揭示不同陆域水文生态过程多尺度耦合机理,研发蒸散发等水文生态关键参量监测方法,发展陆域水文生态过程耦合模拟技术,阐明全球变化背景下陆域水文生态过程变化的资源环境效应及其社会经济风险,为水资源合理利用、生态环境保护和全球变化应对提供科学基础。  二、研究内容  (一)陆域水文生态过程多尺度耦合机理与测算理论:揭示不同下垫面条件下陆域水文生态耦合过程机理,解析从多元素耦合、样地、坡面、流域、区域到全球尺度的水文生态过程尺度转换规律 发展多源观测数据融合方法,研发基于国产卫星资料的蒸散发等水文生态关键参量监测方法 建立陆域水文-土壤-植被-人类活动全过程多要素耦合数值模型。  (二)陆域水文生态过程多尺度变化机制:揭示不同时空尺度水文和生物地球化学循环过程的分异特征及变化规律 阐释不同区域水热条件和下垫面水文生态过程对全球变化的响应 定量解析人类活动与自然变化对陆域水文生态过程多尺度变化的贡献及影响机制。  (三)陆域水文生态过程变化的效应:研究陆域水文生态过程变化对典型生态系统功能和服务的影响 揭示陆域水文生态过程变化对区域气候及水资源的影响机理 评估陆域水文生态过程变化给社会经济系统带来的风险。  三、申请要求  (一)申请书的附注说明选择“陆域水文生态过程多尺度变化机理与效应”,申请代码1选择D01的下属代码。  (二)项目申请书研究内容应涵盖主要研究内容。  (三)咨询电话:010-62327166。“人地系统协同观测与乡村地域系统转型”重大项目指南  人地系统是地理学研究的核心对象。人地系统所具有的动态性、开放性和复杂性,决定了对其观测和演化机理的解析必须通过人文地理学、自然地理学和信息地理学的交叉融通,攻克其中存在的共性难题。面向我国目前城乡发展不平衡、乡村发展不充分的现状,亟待通过人地关系地域系统理论与人地系统科学的重大理论创新和路径创新,发展大数据、人工智能支撑下,以多元数据融合为核心的人地系统协同观测技术与方法,将现有以城市为重点人地系统研究转向更大地域范围的乡村为重点的领域拓展,深入探讨从单向的增长型区域向衰退区域到增长型转化的拐点、机理和路径,为乡村地域系统转型发展提供系统平台支撑,提升人地系统耦合与城乡融合研究的整体水平,为落实新时代乡村振兴与城乡融合国家战略提供重要科学支撑。  一、科学目标  围绕乡村地域系统转型前沿科学问题和服务乡村振兴与城乡融合国家战略,发展乡村人地系统协同观测的技术手段,建立多源数据融合的方法体系,精细刻画乡村地域系统的时空演变过程 创新乡村地域系统理论体系,揭示乡村地域系统转型机理与转型过程 模拟乡村地域系统未来情景,研制乡村振兴与城乡融合管理的标准规范体系,为服务支撑乡村振兴与城乡融合战略决策提供科学依据。  二、研究内容  (一)人地系统协同观测与融合计算:研究建立遥感、物联网、无人机等协同观测技术体系,发展乡村人地系统复杂要素观测和多源数据融合方法,建立定性-定量相结合、多模型组合的多源地理空间信息计算模型,创新多层次、多维度、多时相的乡村地域系统场景化建模技术方法。  (二)乡村地域系统转型机理与过程:揭示乡村衰退向乡村振兴的转型机理,探明其结构优化、功能提升与价值实现的动力机制,揭示乡村地域自然-社会-技术多要素交互作用过程,研制乡村地域系统转型发展测度模型,研究创建乡村地域系统理论体系和乡村振兴基础科学体系。  (三)乡村振兴情景动态模拟与分析:开发不同尺度城乡融合状态评估模拟系统,选择京津冀、长三角、珠三角、黄河流域、东北地区等典型区域,对未来30-50年我国城乡耦合与乡村振兴的情景进行动态情景分析,研制乡村振兴与城乡融合管理的标准规范体系。  三、申请要求  (一)申请书的附注说明选择“人地系统协同观测与乡村地域系统转型”,申请代码1选择D01的下属代码。  (二)项目申请书研究内容应涵盖主要研究内容。  (三)咨询电话:010-62327166。“大地幔楔的物质属性与深部过程”重大项目指南  地球深部是驱动地球系统运行的发动机,深刻塑造了地球表层系统的演变。地球深部物质在高温高压条件下可以具有超常规的物理化学属性,这不仅引发了一系列地球物理现象,而且控制着地球深部的动力学过程,进而影响了整个地球系统的演化。  大地幔楔作为板片-地幔相互作用的一种重要形式,不仅控制了表层与深部圈层的物质循环和能量传输,而且导致了复杂多样的地质与地球物理效应,对地球演化具有重要影响。以高温高压实验模拟为主,结合地质、地球化学与地球物理观测和数值模拟,研究大地幔楔物质属性与深部过程,是阐明地球内部物质状态和地球内部与表层的耦合机制,回答“地球内部如何运行”这一重大前沿问题的关键。  一、科学目标  查明大地幔楔的物质属性,建立大地幔楔的结构 揭示大地幔楔的物质循环、元素迁移和富集,理解板片-地幔相互作用及其效应 构建大地幔楔深部动力学过程,理解地球内部运行机制。  二、研究内容  (一)大地幔楔物质的物理属性及其地球物理效应:大地幔楔条件下板片和地幔矿物的弹性、电导率、热物理、扩散等物理性质 滞留板片在地幔过渡带的波速 上地幔的波速结构、电导结构和波速各向异性。  (二)大地幔楔的流变结构及其动力学效应:大地幔楔深部矿物在不同水含量条件下的流变学性质 板片在地幔过渡带滞留的机制和时间 俯冲带中深源地震的成因。  (三)大地幔楔重要挥发分的赋存及其效应:重要挥发分(如氢和碳)在典型地幔矿物中的赋存、储量及共存相间的分布 氢在典型深俯冲板片矿物中的赋存和储量以及特殊含碳相的稳定性及其在流体中的溶解行为 大地幔楔不同层圈重要挥发分的平衡与交换。  (四)大地幔楔壳幔岩浆-热液体系金属元素的分配及其成矿效应:地幔楔条件下关键成矿元素(如Mo、Au)在不同介质间的分配系数及其地球化学行为 壳内岩浆分异和流体出溶过程中关键成矿元素的地球化学行为 关键成矿元素稳定的T-P-x范围及其成矿的主控因素。  (五)大地幔楔深部结构与动力学过程:以典型大地幔楔为例,研究大地幔楔中熔/流体的三维空间分布 俯冲/滞留板片与地幔相互作用过程与机制 俯冲/滞留板片空间变异与新生代板内火山作用之间的成因联系 构建大地幔楔深部地球动力学模型。  三、申请要求  (一)申请书的附注说明选择“大地幔楔的物质属性与深部过程”,申请代码1选择D02的下属代码。  (二)项目申请书研究内容应覆盖所有研究内容。  (三)咨询电话:010-62327165。“地球系统演变中的矿物-微生物共演化”重大项目指南  自从地球上出现生命以来,矿物与微生物一直发生着交互作用,深刻影响了地球物质循环、生命起源与进化、环境演变。矿物在生命的起源与进化过程中发挥了决定性作用,微生物也促进了矿物的形成与演化 众多矿物、岩石、地层和矿床的成因均与生命活动有关。在我国面临资源短缺和全球变化的今天,揭示地球系统演变中矿物-微生物共演化机制及其资源环境效应,具有重要的理论和现实意义。  一、科学目标  以物质与能量基础为切入点,揭示矿物-微生物共演化的机制,阐明矿物-微生物共演化驱动地球系统演变的规律以及资源环境效应。  二、研究内容  (一)关键地质历史时期矿物-微生物共演化的地质记录:采用矿物学、地质微生物学、地层学、地球化学等手段,围绕关键地质历史时期(古太古代微生物岩的出现、大氧化事件、新元古代氧化事件等),探寻反映矿物-微生物共演化能量与物质条件的地质记录。  (二)矿物与微生物共演化的能量基础:探讨微生物利用铁锰矿物价电子的分子机制,发现微生物利用半导体矿物光电子能量的新途径,构建矿物-微生物交互作用的能量转化模型。  (三)矿物结构与微生物功能共演化的物质基础:解析微生物代谢关键酶的金属活性中心/辅基与矿物配位结构的成因联系,探究微生物获取矿物金属离子的分子机制,揭示微生物金属酶与矿物晶体化学的共演化过程。  (四)矿物-微生物共演化的资源环境效应:探讨关键地质历史时期微生物促进铁、锰、磷等矿化作用的资源效应,揭示微生物调控碳酸盐和硅酸盐矿物固碳作用的环境效应。  三、申请要求  (一)申请书的附注说明选择“地球系统演变中的矿物-微生物共演化”,申请代码1选择D02的下属代码。  (二)项目申请书研究内容应覆盖所有研究内容。  (三)咨询电话:010-62327165。“黑碳物质的地球化学行为与效应”重大项目指南  黑碳物质是现代环境总有机碳的重要组成部分,影响全球碳循环,并可能造成严重的环境与健康危害。目前,黑碳的地球化学行为和效应研究仍很薄弱,缺乏精确刻画黑碳形成机制和跨介质传输的方法体系,黑碳的转化过程和相应的气候效应作用机制认识不清,无法构建黑碳生物地球化学循环模型和准确评估黑碳-污染物复合体的生态环境效应。开展黑碳的环境地球化学过程与效应机制研究,为服务气候变化和环境健康等领域的国家重大需求提供基础理论支撑。  一、科学目标  阐明黑碳物质的生成机制,建立统一的跨圈层介质中黑碳的量化表征方法,揭示不同圈层介质中黑碳的地球化学行为、演化机制及其气候和环境效应。  二、研究内容  (一)黑碳物质的生成机制:通过模拟实验和理论计算等手段,构建不同燃烧母质和燃烧条件下黑碳生成机制的理论框架,确定其中的关键制约因素。  (二)跨圈层介质中黑碳的量化表征方法:建立地表系统不同圈层介质中黑碳的一致性定量表征和示踪方法,实现不同圈层和介质中地球化学通量的估算。  (三)黑碳的跨圈层地球化学行为和演化机制:结合典型区域,揭示黑碳在大气、水体、土壤等介质中的驻留时间、降解速率和转化机制,阐明黑碳与环境其他组分的交互作用和演化规律。  (四)黑碳的气候与环境效应:建立黑碳的源解析技术方法,全面评估黑碳的辐射强迫效应。研究黑碳-污染物复合体在地表不同圈层中的迁移、转化与降解过程,揭示黑碳同成因/原生携带污染物演化与环境归趋。  三、申请要求  (一)申请书的附注说明选择“黑碳物质的地球化学行为与效应”,申请代码1选择D03的下属代码。  (二)项目申请书研究内容应覆盖所有研究内容。  (三)咨询电话:010-62327675。“地球重大氧化事件及其资源效应”重大项目指南  地球宜居环境的形成过程是地球科学的核心问题之一,其中表生系统氧浓度的升高是宜居地球形成的关键。古元古代和新元古代两次重大氧化事件与生物演化、巨量成矿和火山活动等有明显的时间对应关系,形成了全球资源储量最大的铁、锰等沉积型矿床。阐明重大氧化事件的形成机制、演化规律及其与铁、锰等成矿的内在联系,对理解地球层圈相互作用和战略性矿产资源的形成机制具有重要意义。  一、科学目标  阐明地球两次重大氧化事件的基本特征和演化规律,揭示大气增氧事件的形成机制,构建地球系统多圈层相互作用的理论框架,探明大氧化事件与铁、锰等元素巨量富集成矿的内在联系。  二、研究内容  (一)重大氧化事件的表征:阐明太古宙-古元古代大氧化事件(GOE)与新元古代氧化事件(NOE)的基本特征与演化规律,重建地球氧化-还原状态演化历史。  (二)地球大气增氧事件的机制:研究表层作用、生物活动以及深部过程在大气增氧过程中的作用,揭示多圈层作用对大气增氧事件的制约关系。  (三)大氧化事件的资源效应:研究大氧化事件过程中铁、锰等元素的地球化学行为,揭示生物-环境协同演化对元素富集巨量成矿的控制作用,阐明大氧化事件的成矿规律。  三、申请要求  (一)申请书的附注说明选择“地球重大氧化事件及其资源效应”,申请代码1选择D03的下属代码。  (二)项目申请书研究内容应覆盖至少2个主要研究内容。  (三)咨询电话:010-62327675。“全球精细海洋重力场与海底地形建模理论及其应用”重大项目指南  海洋是人类可持续发展的重要空间,是经济社会高质量发展的战略要地。海洋重力场和海底地形等信息不仅是发展海洋经济和维护海洋权益的基础性数据,而且也是建设海洋强国的重要保障。卫星测高、卫星重力、卫星导航定位等卫星大地测量技术是获取全球海洋观测数据的主要手段。联合多源卫星大地测量和海洋观测数据获取全球海洋重力场和海底地形等信息及其变化需要突破精细建模、变化特征及其机制研究的诸多关键理论与技术难题,探索它们的相互联系、空间分布和变化规律,以提升建模的精度和分辨率,为大地测量学、海洋学、全球气候变化、海底板块构造等研究提供重要基础保障。  一、科学目标  联合多源卫星大地测量和海洋观测数据,研究全球海面高、海洋重力场、海底地形信息及其变化的精细建模理论与方法,突破新体制、多系统卫星任务和航空、船测数据融合处理的理论、方法及关键技术,解释海洋重力场、重力梯度场和海底地形的变化特征,分析陆海质量迁移过程和洋壳均衡机制及地球圈层物质交换。  二、研究内容  (一)全球精细海面高确定理论与方法:研究新体制卫星高度计波形处理理论以及新型测高观测数据精细处理与融合方法,突破复杂区域海面高精细获取关键技术难题,创新全球精细海面高及其变化模型构建方法,为海洋重力场、重力梯度场精细反演提供基础数据。  (二)全球海洋重力场精细建模理论与方法:研究多源卫星重力确定高精度中长波重力场信号和海面高数据恢复高精度甚短波重力场信号的理论与方法 开展测高数据反演海洋重力梯度场的理论及其地球物理导航与探测应用研究 突破卫星、航空、船测等多源、多边界重力数据精密处理及融合关键技术,发展测高卫星轨道和海洋重力场整体估计新方法。  (三)全球精细海底地形建模理论与方法:研究不同地形复杂度下海洋重力场和海底地形的匹配理论与方法,突破实测水深与海洋重力联合反演精细海底地形的关键技术,融合多源水深数据对反演得到的重力异常、海底地形进行精度评估与质量检核。  (四)全球海洋重力场与海底地形的应用研究:利用海洋重力、海底地形等研究海洋和陆地水质量迁移、极地冰盖、海盆变迁等对海洋重力场变化的影响及过程,分析不同海底构造单元的均衡机制及对地球圈层物质交换的影响 探索海底板块构造分布特征与各向异性成因关系。  三、申请要求  (一)申请书的附注说明选择“全球精细海洋重力场与海底地形建模理论及其应用”,申请代码1选择D04的下属代码。  (二)项目申请书研究内容应覆盖所有研究内容。  (三)咨询电话:010-62327619。“行星电离层-磁层物质能量交换过程与机理”重大项目指南  行星电离层-磁层是行星空间环境的重要组成部分,是人类航天活动和空间开发利用的主要区域,是行星物质逃逸的关键通道,也是认识行星演化的一个重要窗口。我国“十四五”规划中将空间探测和深空探测作为重要战略方向,并且已经成功实施了“子午工程”及“嫦娥工程”“天问一号”等探测工程,这为深入研究行星电离层-磁层间物质能量交换的过程与机理、理解物质逃逸的主要过程和控制因素提供了契机。充分利用最新观测数据,通过对比研究地球与其它行星电离层-磁层间物质交换过程,深入理解不同行星空间环境中物质循环及辐射环境的差异及其产生机理,将提升应对航天器安全与通讯保障领域的挑战的能力,拓展对行星宜居性的认识。  一、科学目标  从比较行星学的角度,研究地球及其它行星电离层-磁层间的物质能量交换过程,深入理解其中多尺度的动力学过程及驱动机理 探究行星空间粒子逃逸的路径、控制因素及影响,深刻认识磁场在行星空间粒子损失中的作用。  二、研究内容  (一)地球磁层向电离层的物质与能量传输动力学过程:研究磁层粒子的加速和传输机理 探讨高纬电离层对磁层不同尺度动力学过程的响应 探讨电离层渗透电场的产生及其驱动全球电离层的动力学过程。  (二)电离层向磁层的物质输运及效应:认识行星系统内部离子源对其动力学过程的影响 研究离子上行与外流的加速机制及对磁层物理过程的影响 评估地球磁场长期变化对电离层-磁层系统以及其中的对物质能量交换过程的影响。  (三)地球与其它行星的空间环境演化规律:对比研究不同行星空间中粒子的来源、分布、输运、逃逸等基本特征,厘定这些特征的主要控制因素 探究内禀磁场、感应磁层和局部地壳场等不同类型的行星磁场如何控制不同纬度磁层-电离层物质的交换过程 探查粒子逃逸的新机制和新通道,比较逃逸率的异同,并评估其对行星大气长期演化的影响。  三、申请要求  (一)申请书的附注说明选择“行星电离层-磁层物质能量交换过程与机理”,申请代码1选择D04的下属代码。  (二)项目申请书研究内容应覆盖所有研究内容。  (三)咨询电话:010-62327619。“大气致灾涡旋生成演变和影响的机理与预测”重大项目指南  大气致灾涡旋是地球大气中经常发生的一类强烈的旋转运动现象,不仅直接导致多种气象灾害,还时常诱发海洋、水文、地质等衍生灾害,备受科学界和社会的关注。开展大气致灾涡旋生成演变和影响的基础研究,既能推动天气气候及其相关领域学科发展,也能促进大气观测和模拟技术的进步 加强致灾涡旋及其灾害链的预测研究,不仅有利于提高人类应对自然灾害的韧性,还关乎国家总体安全和社会经济的发展。  目前国内外针对大气致灾涡旋的科学认知水平不高,探测与预测的技术支撑有限,不能很好地满足国家和社会发展的重大需求。本项目着力于从单一时空尺度向多重时空尺度拓展,从对流层向全大气层延伸,从天气学向地球系统科学融通,既要深入研究大气涡旋的数理本质,又要发展观测与模拟的高科技手段,还要基于地球系统科学的视角在灾害链中探究多圈层互馈的作用。通过交叉研究和综合研究突破理论认知和致灾预报的瓶颈,提升我国科学家在该领域的整体研究水平和国际影响力。  一、科学目标  从多尺度相互作用视角揭示大气致灾涡旋生成演变和影响的机理,发展相关领域的基础理论、探测监测和预报预警技术,促进天气气候学与其他相关学科的交叉融通,推动学科研究新范式的建立,进一步提升中国在气象防灾减灾和可持续发展领域的核心竞争力。  二、研究内容  (一)大气致灾涡旋的多尺度机理研究:围绕大气致灾涡旋的生消机理,针对大气致灾涡旋的频发区/敏感区,发展大气探测与监测新技术和新方法 开展大气致灾涡旋的生成、路径、强度、频次等时空分布特征及其机理研究,聚焦非线性和多尺度等关键数学与物理难题,从多尺度相互作用视角深入揭示大气致灾涡旋的生成、发展、传播、消亡及其影响的机理,发展多尺度可预报性理论。  (二)大气致灾涡旋及其衍生灾害的数值预报方法与技术:发展针对致灾涡旋的先兆识别与监测技术,开展目标观测 基于先进的数据分析及同化方法,建立高质量数据集 发展天气、次季节-季节尺度致灾涡旋数值模拟方法和预报技术,研发具有我国自主知识产权的致灾涡旋及其衍生灾害预报预警核心技术和系统,提高我国应对自然灾害风险的能力。  三、申请要求  (一)申请书的附注说明选择“大气致灾涡旋生成演变和影响的机理与预测”,申请代码1选择D05的下属代码。  (二)项目申请书研究内容应聚焦一种大气致灾涡旋、至少应完整覆盖1个主要研究内容,鼓励开展探测、机理和模拟预报预测综合性研究。  (三)咨询电话:010-62328511。“海洋系统洋际/层际协同作用”重大项目指南  跨大洋是海洋系统的基本属性,洋际协同过程是多圈层相互作用的关键环节。本领域面向地球系统科学前沿,聚焦跨洋盆、跨圈层关键物质能量交换过程,发展海洋系统洋际/层际协同作用理论,加快形成我国跨大洋、跨圈层海洋系统研究特色和优势,增强国际学术话语权。  一、科学目标  跨洋盆、跨圈层相互作用研究是发展海洋系统科学理论的重要前沿和支撑。本资助领域的目标是,聚焦洋际/层际协同作用中的关键物质能量交换过程,揭示洋际相互作用及其对区域海洋灾害与可预报性的影响机理,阐明海平面上升的跨圈层协同作用过程并量化其贡献,发展海洋系统洋际/层际协同作用理论,为气候安全与防灾减灾提供科技支撑。  二、研究内容  (一)洋际相互作用及其对海洋灾害的影响机理:揭示洋际相互作用的物理过程和机制,阐释洋际相互作用对区域海洋灾害的影响机理,探索区域海洋灾害的可预报性,建立海洋灾害的预报模式,评估我国邻近海域海洋灾害的未来变化。  (二)海平面上升的跨圈层物质能量归因及其预估:聚焦全球与区域海平面的跨圈层物质能量传输与变化过程,揭示海平面上升的新贡献源,分析海平面上升的不确定性,预估区域海平面变化并评估对我国沿海地区的影响。  三、申请要求  (一)申请书的附注说明选择“海洋系统洋际/层际协同作用”,申请代码1选择D06的下属代码。  (二)项目申请书研究内容应只针对某1个主要研究内容。  (三)咨询电话:010-62326909。“水环境中人工纳米污染物生物地球化学过程与风险评估”重大项目指南  人工合成纳米材料因其具有独特的物理、化学和生物学性质,越来越多地应用在军事、化工、医药、环境、日用品等各个方面。这些纳米材料在生产、使用、废弃过程中不可避免地会进入环境形成新污染物,对生态系统功能和人体健康带来潜在风险。然而,环境系统的复杂性决定了人工纳米污染物的诸多环境过程和作用机制仍不清楚,亟需通过多学科交叉,系统而持续性地展开深入研究。水环境作为纳米污染物地球化学行为最活跃的区域,也是其最重要的“汇”之一,一直是本领域研究的焦点。但是,由于水环境基质复杂,对人工纳米污染物在水环境中的真实环境行为与生物生态效应和人体健康风险的认识仍存在很大偏差与空白。关于人工纳米污染物在水环境中生物地球化学过程与生态风险、健康效应中的基础科学问题已成为理解其环境归趋和客观评估其生态风险的重要瓶颈,亟需解决。  一、科学目标  发展和建立水环境介质中人工纳米污染物的分析检测方法,明确人工纳米污染物在典型水环境中的赋存水平,揭示水环境条件下人工纳米污染物的关键生物地球化学过程,探明人工纳米污染物与共存污染物的联合生态和健康效应,提出水环境中人工纳米污染物的风险评估及管控对策。  二、研究内容  (一)水环境介质中人工纳米污染物的识别、赋存及溯
  • 国家级北斗卫星导航产品检测机构成立
    国家通信导航与北斗卫星应用产品质量监督检验中心6日在石家庄市挂牌,该中心由中国国家认证认可监督管理委员会批准中国电子科技集团公司第五十四研究所成立。与此同时,中国人民解放军总参测绘导航局和中国卫星导航定位应用管理中心批准该研究所成立&ldquo 北斗卫星导航产品质量检测中心&rdquo 。这标志着我国首个国家级北斗卫星导航产品检测机构成立。   据了解,两个中心的主要任务是:在国家认监委和总参测绘导航局指导下,制定北斗卫星导航及卫星应用标准 研究北斗卫星导航设备检测方法和测试技术 开展北斗卫星导航产品检测认证 提升北斗卫星导航产品质量,推动北斗卫星导航产业发展 向行业主管部门、政府有关部门及广大消费者提供产品质量信息。   两个中心的成立将有利于北斗导航应用普及,尽早发挥国家重要基础设施的使用效能 帮助提升北斗导航产品质量,增强北斗导航核心竞争力 有利于加强行业管理、规范市场秩序,推动北斗导航的应用与国际接轨。
  • 中国2015年前建起北斗导航检测认证体系
    新华网北京8月3日电 解放军总参谋部与国家认证认可监督管理委员会3日在北京举行战略合作协议签约仪式。中国将用3年时间建立起一个“法规配套、标准统一、布局合理、军民结合”的“北斗”导航检测认证体系,以期全面提升“北斗”导航定位产品的核心竞争力,确保“北斗”导航系统运行安全。   “北斗”导航定位系统是中国完全自主知识产权的卫星导航定位系统,始建于上世纪80年代,并计划在2012年年底正式开通服务。截至目前,“北斗”导航定位系统已经有11颗卫星在轨运行,拥有12万军民用户。到2020年前,“北斗”导航定位系统卫星数量将达到30颗以上,导航定位范围也将由区域拓展到全球,其设计性能将与美国第三代GPS导航定位系统相当。   据总参测绘导航局介绍,随着“北斗”导航定位系统的建设发展,“北斗”导航应用即将迎来“规模化、社会化、产业化、国际化”的重大历史机遇,也对“北斗”产品的检测认证提出了新的要求。按照军地双方签署的协议,中国将在2015年前完成“北斗”导航产品标准、民用服务资质等法规体系建设,形成权威、统一的标准体系。同时在北京建设1个国家级检测中心,在全国按区域建设7个区域级授权检测中心,加快推动“北斗”导航检测认证进入国家认证认可体系,相关检测标准进入国家标准系列。   相关负责人称,尽快建立起“北斗”导航检测认证体系,既是“北斗”系统坚持军民融合式发展的具体举措,也对创建“北斗”品牌,加速推进“北斗”产品的产业化、标准化起到重要作用。
  • 北斗导航检测中心启动建设
    9月11日,上海北斗导航及位置服务产品检测中心(筹)正式启动建设。国家质检总局副局长、国家认监委主任孙大伟,上海市常务副市长杨雄为中心揭牌。同时北斗(上海)位置综合服务平台和上海北斗卫星导航平台有限公司也正式揭牌成立。
  • 中国将在天津建北斗天津导航系统国际海事监测中心
    p   天津11月24日,在交通运输部北海航海保障中心召开的新闻发布会上获悉,中国将在该中心建设北斗卫星导航系统国际海事监测中心,具体负责开展北斗系统海事监测工作。 /p p   自2012年底中国北斗卫星导航系统(BDS)正式提供公开服务以来,经过多年的努力,北斗海事应用国际化工作取得了突破性进展。 /p p   2014年,国际海事组织(IMO)正式认可BDS并将其纳入全球无线电导航系统,北斗卫星导航系统也成为继美国GPS和俄罗斯GLONASS之后向国际海事界提供导航服务的第三个卫星导航系统。 /p p   北海航海保障中心海事测绘处副处长黄永军介绍说,按照国际海事组织的要求,中国海事局作为代表全球北斗海事用户的政府主管机关,需要履行政府承诺,开展北斗系统海事监测工作。 /p p   根据中国海事局的总体部署,北海航海保障中心开展了北斗卫星导航系统的海事监测中心建设筹备工作。 /p p   “现已完成技术论证、建设方案编制和运行机制制定等工作,为下一步正式开展建设奠定了坚实的基础。”黄永军说。 /p p   北海航海保障中心副主任柴进柱告诉记者,监测中心建成后,将履行中国政府对IMO作出的承诺,开展北斗卫星导航系统海事监测工作,对系统的精度、运行状态、空间信号质量、服务性能等进行监测评估,及时向海事用户公告系统运行状况信息,确保全球海上用户能获得高可靠的北斗卫星导航服务。 /p p   2012年12月20日,交通运输部北海航海保障中心在天津挂牌运转,负责中国北海海区的航海保障服务,辖区范围覆盖山东、河北、辽宁、黑龙江、天津四省一市。 /p
  • 泉州市传感智能制造和化合物半导体产业专利导航成果发布
    为贯彻落实《知识产权强国建设纲要(2021—2035年)》和《“十四五”国家知识产权保护和运用规划》,更好地推广专利导航服务,宣传知识产权科普知识,推动创新主体有效利用知识产权信息培育竞争优势,6月21日,泉州市知识产权保护中心组织开展传感智能制造和化合物半导体产业专利导航成果发布推介系列活动,成果发布会设立泉州主会场和晋江、南安、安溪分会场,来自泉州市各县市区的企业、高校、科研院所和有关行业协会代表共800余人参会。  活动介绍了泉州市重点产业专利导航数据库及可视化监测系统,邀请了2位资深中级知识产权师,进行泉州市传感智能制造产业和泉州市化合物半导体产业专利导航成果发布,对传感智能制造和化合物半导体产业专利导航报告、《专利导航指南》系列国家标准进行解读,并进行问卷调查及现场交流,积极对接企业需求,为参会人员进行专业辅导和耐心答疑,帮助强化提升专利质量意识和能力,进一步掌握了重点产业发展现状,明晰了产业专利导航研究目标,梳理了产业创新发展面临的问题,论证了重点企业专利导航技术分解需求和专利导航成果应用需求,为推动专利导航项目顺利实施,发挥项目示范带动作用打下良好基础。  下一步,保护中心将继续完善专利导航项目,提供更加精准和实用的专利信息,进一步支持创新创业者,提供全方位的知识产权保护和支持,推动创新成果的转化和价值的最大化,促进科技进步和经济繁荣。
  • 中科院遥感与数字地球研究所正式揭牌
    日前,中国科学院遥感与数字地球研究所(遥感地球所,RADI)在京举行组建工作报告会,正式揭牌。全国政协副主席、国际欧亚科学院院士王钦敏,中国科学院院长白春礼,科技部原部长徐冠华出席报告会并发表重要讲话。孙鸿烈、曾庆存、欧阳自远、李德仁、童庆禧、薛永祺、姚檀栋等院士,国家发展改革委、科技部、国土资源部、国防科工局、国家自然科学基金委、国家文物局等部委领导,高校及国际组织代表、国际知名科学家等近600人出席报告会。   中科院遥感与数字地球研究所(遥感地球所,RADI)在中科院原遥感应用研究所和对地观测与数字地球科学中心的基础上整合成立,为中科院直属的综合性科研机构,是目前国内该领域规模最大的研究机构。研究所旨在研究遥感信息机理、对地观测与空间地球信息前沿理论,建设运行国家航天航空对地观测重大科技基础设施与天空地一体化技术体系,构建形成数字地球科学平台和全球环境与资源空间信息保障能力,为满足国家战略需求和促进学科发展做出创新性贡献。遥感地球所的组建,使中科院进一步加强了在该领域的骨干引领作用,形成了更强的国际竞争力,为做出世界一流水平的成果奠定了坚实基础。   王钦敏指出,经济社会发展、生态环境保护等领域,亟需以对地观测为主导的空间技术提供近实时、高质量的空间数据产品。希望中科院遥感地球所更好地服务于国家战略目标和经济社会发展,构建数字地球科学平台,增强我国对全球环境和资源空间信息的保障能力,为建设国家级天空地一体化对地观测基础设施与技术体系提供支撑。   白春礼充分肯定了中科院遥感地球所的整合组建工作,特别强调了该所在芦山地震灾情监测与分析工作中发挥的重要作用,指出这是科技服务民生重大问题的具体体现。他指出,遥感地球所各项整合、建设工作是中科院长期探索的结果,是实施“创新2020”和“一三五”规划的重要举措,是一项重要的体制机制创新。他对遥感地球所发展提出三点希望:要立足前沿,瞄准国计民生,凝神聚力求重大突破 要坚持开放兴所,进一步面向全国、面向全球,积极推进协同创新 要坚持人才强所,进一步加强人才队伍建设,凝聚更多优秀人才、领军人才。   徐冠华作为中科院遥感地球所学术委员会和国际专家委员会主任指出,空间信息科技在国家科技发展布局中居于十分重要的地位,遥感科学技术及其兴起的数字地球科学技术,将对我国未来的科技发展和综合国力产生深远影响。他指出,遥感地球所要解放思想,勇于实践,在新的基础和起点上大力推动科技改革,走出一条成功的科技发展之路 要把发现、培养、造就青年科学家作为最优先的任务之一,培养一批最优秀的科学家 要进一步加强开放和合作,成为中国面向世界的排头兵。   会上,地球观测组织(GEO)秘书长Barbara Ryan、国家自然科学基金委员会地学部副主任宋长青,分别代表国际组织和国家有关部委发表了讲话。   中科院遥感数字地球所所长郭华东作了组建工作报告,全面介绍了遥感地球所组建背景、五项建设成果,重点分析了天空地一体化遥感数据获取与处理能力、遥感科学与空间地球信息基础研究能力、数字地球科学平台与全球环境资源信息分析能力、学科齐全的队伍机构和国际科技合作能力等研究所四大核心竞争力,详细汇报了研究所“一三五”规划和实施情况,并简要介绍了研究所开展的四川芦山地震遥感监测与灾情评估工作。   随后,举行了遥感与数字地球研究所揭牌和研究所学术委员会、学位评定委员会、国际专家委员会、工程技术委员会、用户委员会聘书颁发仪式。
  • 中国首颗碳卫星成功发射 大面积光栅让“地球体检师”想测就测
    我国首颗全球二氧化碳监测科学实验卫星在酒泉卫星发射中心成功发射。中科院声像中心 任晖摄  我国二氧化碳监测水平跻身世界前列  根据联合国政府间气候变化专门委员会(IPCC)第四次评估报告,受人类活动的影响,主要温室气体二氧化碳和甲烷的浓度已上升到2500万年以来的最高值,且依然呈上升趋势,地表温度也在逐年升高。温室效应正直接威胁着全人类的生存和发展。精确监视全球二氧化碳的排放状况已成为有效开展气候变化研究和应对的迫切要求。阿拉斯加冰川过去30年消融的景象,图片来自网络  本次发射的碳卫星作为我国首颗用于监测全球大气二氧化碳含量的科学实验卫星,围绕全球气候变化这一当今国际社会普遍关心的全球性重大问题,以大气二氧化碳遥感监测为切入点,利用高光谱与高空间分辨率二氧化碳探测仪、多谱段云与气溶胶探测仪等探测设备,通过地面数据接收、处理与验证系统,定期获取全球二氧化碳分布图,大气二氧化碳反演精度将优于4ppm,使我国在大气二氧化碳监测方面跻身国际前列。  碳卫星是国家科技部为应对全球气候变化、提升我国全球二氧化碳监测能力部署的一项重大任务。通过863计划地球观测与导航技术领域“全球二氧化碳监测科学实验卫星与应用示范”重大项目立项实施。由中科院国家空间科学中心负责工程总体 中科院微小卫星创新研究院负责卫星系统,中科院长春光学精密机械与物理研究所研制有效载荷 中国气象局国家卫星气象中心负责地面数据接收处理与二氧化碳反演验证系统的研制、建设和运行。  负责本次发射任务的为长征二号丁运载火箭。本次发射还搭载发射中国科学院微小卫星创新研究院自主安排研制的1颗高分辨率微纳卫星和2颗高光谱微纳卫星。  小卫星肩负大使命工作人员在低温实验室进行仪器调试,图片来自网络  22日凌晨3时22分,我国首颗全球二氧化碳监测科学实验卫星发射升空。它成为巡游在地球上空700公里的第三位全球二氧化碳“体检师”。碳卫星将在宇宙中跳起“华尔兹舞步”,不断变换观测模式,完成对全球二氧化碳的监测,并借助模式同化和反演技术,最终形成全球碳排放情况的“体检报告”。  “小卫星肩负大使命。”国家遥感中心总工程师李加洪说。监测全球二氧化碳分布情况,这是中国应对全球气候变化采取的积极行动,也体现了我国的“大国担当”。而且,“知己知彼”,才能在全球气候谈判中掌握主动权,发出“中国声音”。  二氧化碳浓度监测,不是想测就能测  二氧化碳浓度监测,不是你想测,想测就能测。目前为止,只有美国和日本发射了自己的碳卫星。美国OCO-2卫星,图片来自网络  二氧化碳在大气中的浓度本就非常低。碳卫星总设计师尹增山介绍,从2011年到2016年年底,经过近六年研制,我国碳卫星探测精度达到了优于4ppm(百万分比浓度)。也就是说,当大气中二氧化碳含量变化超过百万分之四时,碳载荷就会发现。  如何发现?实际上,碳卫星对二氧化碳浓度采用的是“间接测量”法。大气在太阳光照射下,二氧化碳分子会呈现光谱吸收特性,碳卫星通过精细测量其光谱吸收线,可以反演出大气二氧化碳浓度。  但这根线非常窄。要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪。二氧化碳探测仪核心的技术指标和难点就是要同时实现高光谱分辨率和高辐射分辨率,这就如同检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大一百倍,精细测量每条指纹的宽度和深度。  “要达到这么精细的分辨率,必须要有大面积光栅。”中科院长春光机所研究员郑玉权告诉记者,为突破这项关键技术,科研人员从最基础的制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难关,最终在碳化硅基底上制造出高精度衍射光栅,并在航空校飞试验中进行了验证。  碳卫星探测仪上的大面积衍射光栅,能够探测2.06µm、1.6µm、0.76µm三个大气吸收光谱通道,最高分辨率达到0.04nm,这样的分辨率,在国内光谱仪器的研制上也尚属首次。  说起研制过程,郑玉权感慨颇多。六年的载荷研制,是预研攻关和工程实施的结合。他们从“无”到“有”,实现技术突破 又迎头赶上,比肩国际先进水平。“反正,遇到问题的彷徨、解决问题的艰辛和最终找到答案的欢乐,我们全尝遍了。”  碳卫星上的“配角”  将为研究雾霾提供重要数据支撑  碳卫星上的“配角”——云与气溶胶探测仪也不可小觑。气溶胶,通俗点说,就是大气中的尘埃。探测仪可以帮忙排除探测时云和气溶胶的影响,提升二氧化碳探测数据的可靠性。碳卫星地面应用系统总设计师杨忠东表示,从设计能力上来讲,这款探测仪可以为研究雾霾提供重要数据支撑。碳卫星载荷系统,图片来自网络  “碳卫星本身,就肩负着‘创新’使命。”李加洪说。作为一颗科学实验卫星,碳卫星身上,至少有四项大胆的技术创新——大面积光栅、多模式定标、敏捷姿态调控以及复杂的反演验证系统。“我们碳卫星的整体水平,比日本的还要高。虽是‘后发’,但我们已经实现了‘并跑’。”  技术上的卓越,并非这颗碳卫星的唯一追求。在大约半年的在轨测试之后,碳卫星将正式开始两年半的工作——让二氧化碳浓度数据到碗里来。“我们将按照应用需求,对后期数据进行加工、处理、共享和服务。”李加洪透露,科技部联合中国科学院和中国气象局已经制定了碳卫星数据管理办法。碳卫星数据将加载到国家综合地球观测数据共享平台,向国内各类用户提供数据共享服务。在国际合作方面,这些数据也会向地球观测组织(GEO)共享,这也是中国对GEO的实质贡献。  “一颗卫星远远不够。”不过,让杨忠东欣慰的是,六年来,他们不仅收获了这颗卫星,还了解和掌握了二氧化碳高精度遥感监测仪器的制备过程。“要满足中国社会经济的发展需求,我们还要更多碳卫星。”第一颗有了,后续的,也就不再遥远。
  • 一文了解我国科学家主导发起的人体蛋白质组导航国际大科学计划
    近日,由我国科学家主导、发起,并得到国内外科学界广泛响应和支持的国际大科学计划(Proteomic navigator of the human body,又称π-HuB)的执行总部在广东智慧医学国际研究院正式揭牌。这是继2001年人类基因组草图完成发表后,破解人体构造“天书”的另一个国际科学计划,中国科学院院士贺福初为该计划首席科学家。该计划旨在绘制人类全生命周期、全球性重大疾病及代表性膳食模式、生存环境的蛋白质组图谱,解析人类蛋白质组构成原理和演变的规律,探索生物医学大数据从信息知识到智慧的路径,实现人体蛋白质组定位系统的精确空间定位、准确状态定性和人体从非健康状态到健康状态的精准导航。  什么是人体蛋白质组导航国际大科学计划?  提起蛋白质,大家并不陌生。不过“蛋白质组”一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后“操盘者”并非基因组,而是蛋白质组。  过去人们认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是却发现基因组并不如预期那样能够揭示人类生、老、病、死的全部秘密,如何解读这本“天书”成为一大难题。  “生,源于基因组 命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。”中国科学院院士贺福初认为。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面,因此想要解密基因组,必须先系统认识蛋白质组。π-HuB计划就是这样一个旨在绘制人类全生命周期、全球性重大疾病及代表性膳食模式、生存环境的蛋白质组图谱的计划。  那么,何谓“导航”?π-HuB计划将致力于解析人类蛋白质组构成原理和演变的规律,探索生物医学大数据从信息知识到智慧的路径,实现人体蛋白质组定位系统的精确空间定位、准确状态定性和人体从非健康状态到健康状态的精准导航。这项大科学研究将为人类健康管理、科学养生以及疾病精准防控诊治提供全新理论、技术和方法。该计划将为人类带来什么?贺福初院士主要从事蛋白质组学、精准医学和系统生物学研究。早在2002年,他的团队在国际上率先提出了蛋白质组学研究“两谱”“两图”“三库”的科学目标和行动策略,领衔完成了国际首个人类器官(肝脏)蛋白质组计划,建成了该领域领先国际水平的国家重大科学基础设施,并联合国内数十家基础研究和临床团队协作完成了中国人体蛋白质组研究等大型科学项目。2020年经国家科技部遴选评审立项,π-HuB计划成为首个生物医药领域国家大科学计划培育项目。  根据广州会议上公开的人体蛋白质组导航计划白皮书2.0,在未来30年,π-HuB计划将投入数十亿元人民币,以实现三大目标:  1、绘制人体蛋白质组结构空间参比图谱,按照人体构成层次,绘制从单分子到蛋白质复合体,细胞到组织到器官的各层级蛋白质组构成图谱   2、阐明人体蛋白质组状态空间参比图谱,追踪人体从受精卵发育成胎儿,直到衰老的生命全周期过程中,不同膳食模式、不同环境因素、体内不同微生物类型和不同疾病状态下的蛋白质组图谱的动态变化。  3、建立人体蛋白质组导航系统,整合蛋白质组学数据和其他人类组学数据构建元人体数字模型,利用人体蛋白质组在状态空间中定位,对健康状态进行判定,进而实现对疾病风险的预判和早期疾病诊断,和制定最佳治疗干预措施。早在2002年,中国科学院院士贺福初团队在国际上率先提出了蛋白质组学研究“两谱”“两图”“三库”的科学目标和行动策略,领衔完成了国际首个人类器官(肝脏)蛋白质组计划。在国家“863”、“973”和重点研发专项的共同支持下,贺福初团队联合国内数十家基础研究和临床团队协作完成了中国人体蛋白质组研究等大型科学项目,并提出蛋白质组学驱动的精准医学理念。贺福初院士在接受媒体采访时,围绕中国学者发起的国际大科学计划——“人体蛋白质组导航计划”,对其未来的发展目标,以及对我们解读生命密码的帮助等进行解读。至于为何要发起这样一个国际大科学计划,贺福初表示,大科学计划是强国的重要引擎,“当一个国家成为全球科学中心时,它将迅速成长为世界顶级强国”。问:贺院士,我国学者发起的“人体蛋白质组导航计划”是一项大科学计划,为什么您要积极推进我国的大科学计划呢?贺福初:在2016年的全国科技创新大会上,我国明确提出了在2050年要建成全球科学中心,这是作为全球科技强国非常重要的标志。对科学发展史的研判可以得出如下结论:当一个国家成为全球科学中心时,它将迅速成长为世界顶级强国。比如,17世纪的英国、18世纪的法国、19世纪初期到20世纪初期的德国。判断现代大国的强盛与否,首先要看它能否成为全球科学中心,能否发动技术革命。20世纪初,在欧洲大陆爆发世界大战时,美国吸引了全球大量的顶级科学家赴美研究,迅速成长为全球科学中心,发展出一系列突破性技术。而在崛起的过程中,美国相继发动了多个大科学计划,包括大家耳熟能详的曼哈顿计划、阿波罗计划,以及人类基因组计划。这些大科学计划是美国发展为世界第一强国的重要引擎,也在科学史上开启了真正的大科学计划时代,开创了人类文明的新篇章。问:我们知道蛋白质组学比基因组更为复杂,您和很多中国学者很早就在这一领域布局研究,如今也取得了很好的成绩,具体的情况请您介绍一下。贺福初:大科学计划需要调动全国甚至全球的科技力量,通过协作式的联合科学攻关,达成计划的既定科学目标,这种模式可以带来国家科技力量的迅速腾飞。医务工作者最熟悉的大科学计划或许就是人类基因组计划了,它全面推动了遗传学研究、疾病机制研究和药物靶标发现,为精准医学计划奠定了雄厚基础,带来了巨大的社会效益和经济效益。人类基因组计划绘制了一部人类生命密码的“天书”,但如何解读这本“天书”,成为当时科学家更加关注的问题。最终在人类基因组图谱完成之际,一批基因组学学者不约而同地向蛋白质组学发出呼唤:“用蛋白质组学解读基因组这部‘天书’。”于是,“人类蛋白质组计划(HPP)”应运而生。的确,与人类基因组计划相比,蛋白质组计划会更为复杂。因为同一个体不同器官、同一器官不同细胞的基因组是相同的,蛋白质组却可以千差万别。因此,尽管大家都知道要向蛋白质组寻找答案,但对于人类蛋白质组计划如何推进,各国学者莫衷一是。在2002年,由我国领衔、全球11个国家参与的“人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”正式启动。该计划是国际“人类蛋白质组计划”启动的第一个人体组织器官的蛋白质组计划,也是中国科学家倡导和领衔的第一个国际大型合作计划。最终,我们鉴定了超过1万种人类肝脏蛋白质,并利用这些数据对肝脏生理功能进行了系统解读,为人类蛋白质组计划的全面展开发挥了示范作用。2014年,在“人类肝脏蛋白质组计划”取得成功经验的基础上,科技部启动了“中国人蛋白质组计划(CNHPP)”重点专项。如今,在人体蛋白质组学研究领域,我国的科研水平已领先世界。问:贺院士,您提出的“π-HuB”计划是下一个新的目标吗?您对它有什么期许吗?贺福初:随着这种数据驱动而非假设驱动研究的积累,多维动态而非一维静态数据的丰富,人体细胞与内外环境间信息的集成,将在更高层次获得对人类个体、人与自然环境、人与社会的全新认知,推动智慧医学的到来。基于这些,我们提出了“人体蛋白质组导航计划”。该计划的愿景是在全球统一的技术标准与数据共享模式下,全人类共同探索人类未知前沿,揭示宇宙中最复杂物质系统——“人体”的蛋白质组谱系及其构成原理与演变规律,系统阐释人类发育、衰老及重大疾病发生发展机制,并依此制订覆盖人类生命全周期的精准防控、诊治、康养策略,开创智慧医学新范式,为推动构建人类卫生健康共同体提供中国方案。
  • 量子导航新突破!全新3D量子传感器将精度提升50倍
    在最近发布在arXiv上的一篇预印本论文中[1],法国国家科学研究中心的一个团队描述了一个量子加速度计,它使用激光和超冷铷原子;相较经典器件,可以以50倍的精度优越性测量三维运动。这项工作将量子加速计扩展到了第三维度,可以在没有GPS的情况下带来精确的导航。013D模式的原子干涉仪,测量物质的波状属性我们已经每天都在依赖加速度计。拿起一部手机,显示屏就会亮起来;把它转过来,正在阅读的页面就会转换方向。一个微小(基本上是一个连接在类似弹簧的机制上的质量)的机械加速度计与其他传感器,如陀螺仪一起使这些动作成为可能。每当手机在空间中移动时,它的加速计就会跟踪这一运动:甚至包括GPS掉线时的短暂时间,如在隧道或手机信号死角。尽管它们很有用,但机械加速度计往往会漂移失调。意思是,放置足够长的时间,它们就会积累成千米级的误差。这对与GPS短暂失联的手机来说并不重要,但当设备长期在GPS范围之外旅行时,这就成为了一个问题。对于工业和军事应用来说,精确的位置跟踪在潜艇上是非常有用的,因为潜艇在水下无法使用GPS;或者,在船舶失去GPS时作为备用导航。研究人员长期以来一直在开发量子加速度计,以提高位置跟踪的准确性:量子加速度计不是测量压缩弹簧的质量,而是测量物质的波状属性。这些设备使用激光来减缓和冷却原子云;在这种状态下,原子的行为就像光波一样,在它们移动时产生干扰模式。更多的激光器诱导并测量这些模式如何变化,以跟踪设备在空间中的位置。早期,这些被称为原子干涉仪的设备,是由遍布实验室长椅的电线和仪器组成的一团“乱麻”,只能测量一个维度。但随着激光和专业技术的进步,它们变得更小、更坚固:现在它们已经变成了3D模式。02首个3D量子加速度计:精度提升50倍由法国团队开发的新的三维量子加速度计,看起来像一个金属盒子,长度与一台笔记本电脑差不多。它使用激光沿着所有三个空间轴来操纵和测量被困在一个小玻璃盒中的铷原子云,并将其冷却到绝对零度。像早期的量子加速度计一样,这些激光器在原子云中引起涟漪,并通过解释由此产生的干扰模式来测量运动。这是首个量子加速度计三元组(Quantum Accelerometer Triad, QuAT),它沿三个互为正交的方向测量加速度。(a)量子加速度计三元组(QuAT)的设计概念和几何形状。加速度分量是沿垂直于波段kx、ky和kz的波段测量的。(b)安装在旋转平台上的传感器头的三维模型。为了提高稳定性和带宽,以适应在实验室外使用的要求,新设备在一个利用两种技术优势的反馈回路中结合了经典和量子加速度计的读数。由于该团队可以极其精确地控制原子,他们可以进行类似的精确测量。为了测试加速度计,他们将其连接到一个摇晃和旋转的桌子上,并发现该系统比经典的导航级传感器要精确50倍。在几个小时的时间里,由经典加速度计测量的设备的位置偏离了一公里;而量子加速度计将误差“钉”在了20米以内。量子和经典加速度计之间的混合方案。左边的开环方案描述了过滤后的经典加速度计如何用于修正量子加速度计的振动。静态时,量子加速度计提供了由于重力引起的投影g的离散测量。右边的闭环方案显示了经典加速度计是如何通过比较其输出和量子加速度计的输出而定期进行偏置校正的。这里,混合加速度计的输出是连续的,在静态和动态情况下都能发挥作用:提供重力和运动引起的加速度a的投影之和。033D传感器是工程化的进步尽管取得了重大成果,加速计仍然比较大、重,不会很快步入实用。但如果做得更小、更坚固,该团队说它可以被安装在船舶或潜艇上,用于精确导航;或者,它可以通过测量重力的细微变化,进入寻找矿藏的野外地质学家的手中。更多的量子传感器,如陀螺仪,可能会加入这个行列。尽管它们在离开实验室之前还需要进行几轮的收缩和加固。就目前而言,3D化是一个进步。澳大利亚国立大学的John Close对这一成果这样评价[2]:“三维测量是一件大事,是实现量子加速度计任何实际用途的一个必要和出色的工程步骤。”参考链接:[1] Tracking the Vector Acceleration with a Hybrid Quantum Accelerometer Triad[2] New 3D Quantum Accelerometer Is50 Times More Accurate Than Classical Sensors
  • NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测
    NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测江苏海兰达尔 2023-06-09 12:24 发表于江苏原文链接:https://doi.org/10.1101/2022.09.27.50975301蓝碳和红树林蓝碳是气候缓解战略的关键组成部分,该战略旨在通过沿海和开放海洋碳封存以降低大气二氧化碳浓度。在全球范围内,蓝碳有助于《巴黎协定》目标的达成,将全球平均气温上升幅度控制在远低于2℃以内,并实现温室气体净零排放。从蓝碳的角度来看,红树林生态系统非常有意义,因为它们是地球上最具生产力的生态系统之一,净初级生产力(NPP)在1000~2000gCm-2yr-1。虽然它们只占地球陆地面积的一小部分,但为全球NPP贡献了约210TgCyr-1。这些碳中的大部分储存在生物中或封存在土壤沉积物中,根据最近的激光雷达和雷达测量估计,红树林的总碳储量约为5.03PgC。这些碳储量只集中在几个关键的生物地理区域,例如,有10个国家占总碳储量的70%以上,这就意味着在国家范围内,红树林碳管理可以在国家层面制定的缓解气候变化策略上发挥重要作用。02BlueFlux行动2020年,美国航空航天局碳监测系统(NASA CMS)为建立BlueFlux行动提供了支持,目的是开发原型CO2和CH4产品以了解红树林的修复和保护情况。BlueFlux野外观测行动旨在提供横跨佛罗里达南部和加勒比地区的CO2和CH4通量的综合测量,重点是红树林系统,它们的季节性动态,以及邻近的生态系统,比如广阔的锯草沼泽以及其中的树木“岛屿”。这些通量测量覆盖了从“健康”的红树林到近期受到干扰和濒死的红树林“鬼森林”,来帮助了解在损失和恢复过程中碳通量的任何方向性变化。BlueFlux将有助于量化蓝碳如何减缓气候变化,并帮助减少红树林碳循环时空成分的不确定性。BlueFlux行动的目标示意图现场地面和飞机测量的目标区域在美国境内,在佛罗里达南部的核心地区,对碳储量和通量进行测量,以了解物种、干扰、水文和气候梯度如何解释通量变化。该行动计划在2022~2024年间进行6次现场观测,测量手段包括:1)对生态系统结构、物种以及腔室通量的地面测量,2)高塔通量测量,3)飞机测量,4)卫星遥感。墨西哥湾研究区域03地面测量:土壤和植被通量的腔室测量2022年3月,BlueFlux的第一次现场行动在大沼泽地国家公园进行,分别对两个高度退化和两个完整/再生的森林场地的树木,根系和土壤CO2和CH4通量进行了测量。根据植物的形态以及土壤沉积物成分的不同使用了不同的气室,CO2和CH4浓度的测量使用Picarro G4301 GasScouter 移动气体分析仪,测量频率为1Hz。静态气室法测量生态系统成分通量的示意图以及相应气室设计的照片04地面测量:水化学为了捕捉佛罗里达大沼泽地红树林水域的水-空气温室气体交换及其变化,于2022年3月进行了一项为期3天的空间调查,方法为驾驶一艘游艇从库特湾出发,沿乔河到鲨鱼河再到塔彭湾,然后返回,同时测量pH值,水温,盐度,CO2、CH4和N2O浓度以及CO2和CH4稳定同位素。地表水样从约0.5米深处连续泵送到由“淋浴头”平衡器组成的船载装置,该平衡器通过闭合空气回路连接到两台气体分析仪,Picarro G2201-i和Picarro G2308。使用校准的多参数探测器每分钟测量一次地表水电导率(EC)、溶解氧(DO)、温度、pH和有色可溶性有机物(CDOM)。同时定期收集过滤的无菌离散样品,并在耶鲁大学实验室内用于分光光度计pH、溶解无机碳(DIC)和总碱度(Talk)的测量。05机载涡流协方差通量测量:CARAFE机载涡流协方差(AEC)是一种公认的用于量化痕量气体和能量的地表-大气交换的技术。当与小波变换相结合时,AEC可以表征模型相关尺度(1-100km)下通量的空间梯度,是对地面观测数据很好的一种补充。Blueflux AEC观测采用了动态航空公司驾驶的配备气象和微量气体传感器的Beechcraft King Air A90飞机,并进行了CArbon大气通量实验(CARAFE)。由Aventech公司的AIMMS-20测量系统提供10 Hz的3D风速、空气温度、飞机位置和飞机方位(俯仰/翻转/偏航)观测。该系统包括一个用于气象测量的探测器(安装在左翼下方),该探测器与高分辨率差分GPS和惯性导航系统相结合。环境空气通过安装在右翼下方的进气口进行采样,并通过(机翼中的)聚四氟乙烯管传输到机舱中的两台气体分析仪。其中Picarro G2401-m机载专用气体浓度分析仪提供0.5Hz的CO2、CH4、H2O和CO测量值,而Picarro G2311-f双模式高精度气体分析仪提供10Hz的CO2和CH4测量值。G2401-m包含用于机载操作的专用压力控制系统,因此可对气体摩尔分数进行精准测量,而G2311-f可提供AEC所需的快速时间响应。CO2和CH4的干空气摩尔分数在实验室中使用NOAA WMO的压缩标准气体进行两点校准。下图为2022年4月进行的航测飞行轨迹,这些飞行测量重点关注佛罗里达南部和东部的沿海红树林植被,同时也包括一些内陆森林和湿地。每次飞行时间在2.5~4.5小时,典型的海拔高度为地平面以上100m,偶尔会进入到混合层(200-800m),以确定垂直通量散度和修正。在100米的高度,预计通量足迹大约为5000米宽,对于5~10m s-1的典型表面风速,50%的通量在1000米内,90%在5000米内。CO2的通量范围在0~-40μmol m-2 s-1,CH4的通量范围在0~200μmol m-2 s-1。总的来说,在4月的野外航测中,锯草的甲烷通量似乎更高,红树林的二氧化碳吸收量更大,接下来的飞行测量将继续探索季节和年际变化。BlueFlux AEC航测的飞行路线06预期结果目前“蓝碳”评估的不足之一是,人们考虑了碳存储量,但往往忽略了非二氧化碳温室气体的排放,这可能会极大地影响(积极或消极)这些生态系统的总体净辐射强迫效应。红树林是潮间带生态系统,虽然这些生态系统是净自养的,但小海湾和沉积物通常是大气中CO2和CH4的来源,也可以作为N2O的源或汇。沿着潮汐高度梯度(从小海湾到森林盆地),红树林覆盖率、物种多样性和沉积物结构会发生显著变化,导致温室气体通量的空间变异性很大。红树林温室气体通量的站点间变化会进一步受到各种其他因素的驱动,包括区域气候、水文、地貌、物理化学、生物,生物地球化学和人为因素等。BlueFlux行动旨在收集红树林结构和温室气体通量多尺度测量的详细信息,利用激光雷达或雷达等手段,掌握森林结构和地形信息,捕捉土壤、水文和扰动梯度。网格化碳通量产品将为评估过去二十年温室气体通量的趋势及其空间模式提供基础,以应对不断变化的气候以及极端气候的出现。编辑人:陆文涛审核人:史恒霖
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • 首届量子精密测量与传感技术大会在苏州召开
    p   11月19日,在国家遥感中心、“地球观测与导航”重点专项管理办公室、苏州高新区管委会的支持下,第一届全国量子精密测量与传感技术大会在苏州召开。科技部高新司副巡视员梅建平、苏州市副市长徐美健、国家遥感中心总工程师张松梅、北京航空航天大学副校长房建成、地球观测与导航重点专项总体组专家和专项办代表,以及来自全国各大高校、科研院所的近百位专家学者参加了此次会议。 /p p   量子精密测量作为量子信息领域的一个重要组成部分,通过量子操控实现对磁场、惯性、重力、时间等物理量的超高精度测量,突破传统测量方法的理论极限,已成为精密测量技术的一个重要发展方向,成为世界各强国高度关注的又一热点高技术领域。国家重点研发计划“地球观测与导航”重点专项部署了“原子陀螺仪”“原子磁强计”和“芯片原子钟”等项目对量子精密测量的发展提供支持。 /p p   会议围绕我国量子精密测量与传感技术领域的前沿和热点问题进行了深入研讨,对于落实国家重点研发计划“地球观测与导航”重点专项和后续国家量子相关技术重要部署,推动整个量子信息技术领域引领全球,开启中国量子测量、量子导航的新征程、建设量子信息技术强国具有很强的指导和促进作用。 /p p /p
  • “人体蛋白质组导航国际大科学计划”白皮书1.0全球发布会召开
    2023年5月8日-10日,第11届亚太人类蛋白质组组织(AOHUPO)大会暨第七届亚太农业蛋白质组学组织(AOAPO)会议将在新加坡举行。此次AOHUPO-AOAPO联合大会为期3天。会上,受邀演讲者将在5场全体会议和27场分会上进行演讲,分享内容涵盖蛋白质组学和质谱技术,以及它们在健康/生物医学研究、农业/水产养殖、食品和环境科学中的应用。此外,大会还将举办青年科学家论坛(Young Scientist Forum,YSF)作为会前活动。  本次大会上,中国代表团队还举行了 “人体蛋白质组导航国际大科学计划(Proteomic NavIgater of the Human Body,π-HuB)” 白皮书1.0全球发布会,并同与会者介绍和分享π-HuB计划的最新动态。人体蛋白质组导航计划(Proteomic NavIgator of the Human Body,简称π-HuB计划)白皮书摘要:  在人类基因组计划之后的时代,人类蛋白质组的研究成为了生命科学和医学中最激动人心、最具挑战性的前沿之一。高端质谱和其他转化性蛋白质组学技术现在提供了一个机会,以前所未有的分辨率和规模来审查人体和人类生命。在这里,我们介绍一个国际大科学项目,名为 π-HuB(人体蛋白质组导航国际大科学计划)。π-HuB项目将是一个30年的任务,投资数十亿,建立在四个关键支柱上,包括人类样本、技术创新、大科学基础设施和开放资源。该项目有三个中心目标:1)将人体分解成一个数字化的蛋白质组参考空间的层次结构,从器官/组织到单个细胞 2)拍摄个体一生中的蛋白质组快照,研究人群对主要暴露健康结果的蛋白质组适应性 3)构建一个智能计算模型,称为π-HuB导航器,将蛋白质组和其他分子/表型数据集成起来,促进我们对人类生物学的理解,促进疾病诊断和治疗。在启动和发展阶段(2023-2032),π-HuB项目将组建一个国际联合体,实现以下里程碑,包括细胞类型解析蛋白质组图谱、以生命为导向的干扰蛋白质组图谱和“蛋白质组导航计划”模型的初始版本。我们期望这些努力将为整个π-HuB项目提供巨大的推动力,引领一个以蛋白质组学为驱动的精准医学时代。展望未来,π-HuB项目将进一步涉及全球合作和讨论,整合来自多学科科学家的全球性输出。总的来说,我们预计π-HuB项目可能在未来数十年对生物医学研究做出重大贡献。  与此前国际上发起的蛋白组计划相比,π-HuB计划有何不同?  01 人体蛋白质组导航(π-HuB)计划是什么?  π-HuB项目是中国科学家主导发起的一项重大科学计划,旨在解码人类蛋白质组,寻找新的蛋白质型,探索全新的理论,从而利用蛋白质组学技术、大数据分析、互联网云计算、数据挖掘、机器学习和人工智能,建立“人类生命健康共同体”。  众所周知,蛋白质是生命的物质基础,与各种各样的疾病息息相关,系统全面地了解人体蛋白质,不仅能帮助我们人类理解生命,还可以攻克许多疾病。  自人类基因组计划2001年完成后,2003年就启动了蛋白组计划,足可见当时科学家就已经意识到蛋白质研究的重要性。如今,以我国科学家为主导、众多国际学者参与的人体蛋白质组计划也即将启动。  02 π-HuB计划正逢其时,得到国内外学者的广泛支持  2022年12月30日,科技部副部长张广军,广东省委常委、副省长王曦,以及钟南山、贺福初、王辰、徐涛、张玉奎、陈香美、鄂维南、高福、乔杰、樊嘉、宋尔卫、李明等15位院士及相关专家出席了此次会议。  此次会议的召开意味着π-HuB计划将在不久的将来将正式启动。目前,π-HuB计划得到了国内外科学界积极响应和支持,该计划已获得了100多位顶尖专家的支持,其中包括来自20个不同国家的多位诺贝尔奖获得者,数十个机构、大学签署了谅解备忘录,有意愿参与这一大科学计划。  π-HuB计划将是我国科学家积极牵头组织的国际大科学计划之一。2018年,国务院印发了《积极牵头组织国际大科学计划和大科学工程方案》,该方案指出,要聚焦国际科技界普遍关注、对人类社会发展和科技进步影响深远的研究领域,集聚国内外优势力量,积极牵头组织国际大科学计划和大科学工程,着力提升战略前沿领域创新能力和国际影响力。  因此,π-HuB计划的出现可谓是正逢其时。张广军部长在启动会上表示,要把人体蛋白质组导航国际大科学计划建成开拓生命科学知识前沿、揭示生命本质、探索未知生命世界和解决全球性重大健康问题的有力工具。  那么,π-HuB大科学计划具体将怎样实施?2022年12月4日,贺福初院士在第21届国际蛋白质组学大会上以“人体蛋白质组导航计划”为题,系统地介绍和推介。  贺福初院士在第21届国际蛋白质组学大会上发言  贺福初院士表示,π-HuB计划期为30年(2023年-2052年),项目将分三个阶段,每10年为一个阶段:  1.平台建设与数据积累(2023-2032)  2.知识发现与理论整合(2033-2042)  3.范式建立与应用推广(2043-2052)  根据贺福初院士介绍,π-HuB计划设定了四大目标:  1.将人体解剖成蛋白质组数字参考空间的层次结构(从组织/器官到单个细胞)   2.追踪以蛋白质为中心的谱系轨迹,包括发育、健康老龄化、复杂疾病进展、共生体适应、营养和环境   3.建立一个计算模拟元智人的框架,这是一个虚拟的状态空间,由虚拟增强的生理表型和细胞、体液、组织和器官上的数字现实融合而成   4.研究癌症、神经退行性疾病等重大疾病在进展和发展过程中的蛋白质组学变化,作为“参考空间”导航,引导人体远离疾病/亚健康,保持健康状态。  由此可见,π-HuB将是一个宏伟的大科学计划,为了有效地推进和落实π-HuB的各项工作,目前已成立了战略指导委员会、管理委员会、科学委员会、执行委员会、国际计划实施总部。  在很多专家看来,π-HuB计划如同人体蛋白质组“宇宙”的“北斗”导航系统,创造人体全生命周期的精准防控诊治策略,为推动构建人类卫生健康共同体提供中国方案。  03 为什么要实施人体蛋白质组计划,它到底有多重要?  对蛋白质组学的系统研究缘起于上世纪90年代初期,当时研究人员已经意识到,虽然人类基因组计划即将完成,但基因组相对来说比较稳定,而蛋白质组在与基因组相互作用过程中会不断发生改变,生命体在其机体的不同部分以及生命周期的不同阶段,蛋白表达可能存在巨大的差异,因而能更好地反应一个人的健康或疾病状态。  由此,那时候科学家就意识到,对蛋白质结构和功能的大规模研究能够帮助我们更进一步了解生命。2003年,在人类基因组计划正式完成之际,国际人类蛋白质组计划(HPP)也随之启动,该计划旨在对蛋白质组进行系统深入的研究,和基因组计划研究成果协同合作,真正实现疾病的精准诊断和治疗。
  • 中国科学院遥感与数字地球研究所大气环境遥感综合观测平台采购项目进行公开招标
    p   近日,中国政府采购网发布公告称,东方国际招标有限责任公司受中国科学院遥感与数字地球研究所委托,根据《中华人民共和国政府采购法》等有关规定,对中国科学院遥感与数字地球研究所大气环境遥感综合观测平台采购项目进行公开招标,预算达530万元。 /p p   一、项目名称:中国科学院遥感与数字地球研究所大气环境遥感综合观测平台采购项目 /p p   项目编号:OITC-G190360585 /p p   项目联系方式: /p p   项目联系人:耿佳 任伟松 孙姗姗 /p p   项目联系电话:010-68290526/0515/0509 /p p   二、采购单位联系方式: /p p   采购单位:中国科学院遥感与数字地球研究所 /p p   地址:北京市朝阳区大屯路甲20号北 /p p   联系方式:010-68290526/0515/0509 /p p   三、代理机构联系方式: /p p   代理机构:东方国际招标有限责任公司 /p p   代理机构联系人:耿佳 任伟松 孙姗姗010-68290526/0515/0509 /p p   代理机构地址: 北京市海淀区西三环北路甲2号院科技园6号楼13层01室 /p p   四、招标文件的发售时间及地点等: /p p   预算金额:530.0 万元(人民币) /p p   时间:2019年05月13日 09:00 至 2019年05月20日 17:00(双休日及法定节假日除外) /p p   地点:www.o-science.com /p p   招标文件售价:¥600.0 元,本公告包含的招标文件售价总和 /p p   招标文件获取方式:登录东方在线www.o-science.com注册并购买 /p p   五、采购项目的名称、数量、简要规格描述或项目基本概况介绍: /p table align=" center" border=" 1" cellpadding=" 0" cellspacing=" 0" style=" border: none font-family: " microsoft=" " line-height:=" " vertical-align:=" " margin:=" " 0px=" " padding:=" " border-spacing:=" " color:=" " white-space:=" " background-color:=" " tbody style=" border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px padding: 0px " tr style=" border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px padding: 0px height: 30px " class=" firstRow" td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px word-break: break-all " width=" 30" height=" 30" align=" center" valign=" middle" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 包号 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 123" height=" 30" align=" center" valign=" bottom" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 货物名称 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px word-break: break-all " width=" 79" height=" 30" align=" center" valign=" bottom" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 数量 span style=" font-family: inherit font-size: inherit font-style: inherit font-variant-ligatures: inherit font-variant-caps: inherit font-weight: inherit " (套) /span /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 98" height=" 30" align=" center" valign=" bottom" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 简要技术规格 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: top margin: 0px border: 1px solid windowtext padding: 5px " width=" 100" height=" 30" align=" center" valign=" bottom" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 是否允许采购进口产品 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 84" height=" 30" align=" center" valign=" bottom" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 采购预算 /span /p /td /tr tr style=" border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px padding: 0px height: 30px " td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 40" height=" 30" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 1 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 123" height=" 30" p style=" border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 大气环境遥感综合观测平台 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin: 0px border: 1px solid windowtext padding: 5px " width=" 79" height=" 30" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 1 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: top margin: 0px border: 1px solid windowtext padding: 5px " width=" 98" height=" 30" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 详见具体技术参数部分 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: top margin: 0px border: 1px solid windowtext padding: 5px " width=" 100" height=" 30" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 是 /span /p /td td style=" font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: top margin: 0px border: 1px solid windowtext padding: 5px word-break: break-all " width=" 93" height=" 30" p style=" text-align:center border: 0px font-family: inherit font-size: inherit font-style: inherit font-variant: inherit font-weight: inherit line-height: inherit vertical-align: baseline margin-top: 5px margin-bottom: 22px " span style=" font-family: 宋体, SimSun font-size: 18px " 530万元 /span /p /td /tr /tbody /table p   六、投标截止时间:2019年06月03日 14:00 /p p   七、开标时间:2019年06月03日 14:00 /p p   八、开标地点: /p p   北京市海淀区西三环北路甲2号院科技园6号楼13层第2会议室 /p p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/37726bba-2b7d-44ad-af0c-131947f75e96.doc" title=" 遥感所大气设备招标文件第二册 发售版.doc" style=" text-decoration: underline font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " 遥感所大气设备招标文件第二册 发售版.doc /span /a span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " ; /span /p p style=" line-height: 16px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " & nbsp & nbsp & nbsp /span img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" text-decoration: underline font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/201905/attachment/cf324af9-ac2e-4348-ad8e-236e9496d025.doc" title=" 中科院政府采购招标文件范本第一册.doc" span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " 中科院政府采购招标文件范本第一册.doc /span /a span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 112, 192) " ; /span /p
  • 美红外望远镜完成宇宙全面观测
    据新华社洛杉矶7月17日电 美国航天局喷气推进实验室17日宣布,去年12月升空的红外太空望远镜“广角红外测量探测器”当天完成了为期7个月的首次宇宙全面观测。   该实验室称,在这次观测中,“广角红外测量探测器”发现了2.5万颗此前未知的小行星,其中95%的小行星为近地小行星。幸运的是,在可预见的未来,没有一颗小行星会对地球形成威胁。   此外,该探测器还发现了15颗彗星,以及一个距地球100多亿光年、由其他星系碰撞后形成的超亮星系,同时还观察了数百个恒星体,并对其中20个的存在状态进行了确认。   负责该项目的喷气推进实验室科学家艾森哈特说,“广角红外测量探测器”对宇宙进行了全方位的观测,不管是近地物体还是正在形成的星系,探测器都不会放过。   按计划,在未来3个月内,该探测器将再次对宇宙进行观测,以发现更多隐藏的小行星、恒星和星系,从而补充更多的数据,帮助科学家进一步探究宇宙的奥秘。   哈佛大学小行星中心天文学家斯帕尔说,“广角红外测量探测器”发现的近地小行星的平均体积要大于其他天文望远镜发现的小行星,科学家将根据新的发现来判断这些小行星是否会给地球带来潜在威胁。   “广角红外测量探测器”于2009年12月14日发射升空,其主要任务是扫描探测宇宙,“挖掘”此前未知的小行星和彗星等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制