当前位置: 仪器信息网 > 行业主题 > >

污染物监测新技术

仪器信息网污染物监测新技术专题为您整合污染物监测新技术相关的最新文章,在污染物监测新技术专题,您不仅可以免费浏览污染物监测新技术的资讯, 同时您还可以浏览污染物监测新技术的相关资料、解决方案,参与社区污染物监测新技术话题讨论。

污染物监测新技术相关的资讯

  • 日程更新|新污染物检测与监测新技术发展论坛通知(第二轮)
    一、活动背景介绍十四五期间,国家将高质量发展作为主旋律,并将技术创新作为建设科技强国的关键举措。《中共中央国务院关于深入打好污染防治攻坚战的意见》提出要以更高标准打好蓝天、碧水、净土保卫战,并设立了2025年和2035年两个阶段污染防治目标,强化应对气候变化、生物多样性、新污染物等更广泛领域的治理工作。近年来,新污染物引发的环境和健康风险正逐步受到社会各界的广泛关注。“十四五”规划和2035年远景目标纲要明确要求,“重视新污染物治理”“健全有毒有害化学物质环境风险管理体制”。从环境管理角度来看,新污染物一般是指新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的污染物。随着现代检测分析技术的不断提升,微塑料、细颗粒物等新污染物不断从环境中被检出,与此同时,科学界在其危害特性、致毒机理、检测分析等方面均有重大技术突破。基于此,“新污染物检测与监测新技术发展论坛”将于2023年5月19日(ACCSI 2023同期)在北京怀柔雁栖湖国际会展中心召开.主办方诚邀国内外行业领域专家、头部科学仪器企业代表参与本论坛,共同就新污染物检测与监测新技术发展现状与趋势进行多维度、深层次、全方位的探讨与交流,以助力我国污染防治攻坚战目标的实现。欢迎从事环境监测及周边技术业界人士报名参会。点击报名,参加线上会本次论坛设有主题报告、圆桌讨论等环节,敬请参加!1、论坛主办单位: 珀金埃尔默 仪器信息网2、论坛主题:产业互动 创新发展3、论坛形式:报告分享+圆桌论坛4、会议时间:5月19日09:00-12:00 5、预期规模:100-150人二、 目标参会人群政府及协会、学会领导;环境领域国内外专家/学者、实验室主任、技术/研发负责人、采购负责人、QC/QA负责人;质谱、色谱、光谱相关仪器国际与国内企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监;投融资机构等。 三、 参会对象主要收获新污染物分析检测技术进展;微塑料、PFAS、纳米颗粒分析研究进展;新污染物的转化与毒理机制 “十四五”期间,新污染物治理行动的发展建议等。四、 论坛日程(最终以年会官网显示信息为准)时间会议内容嘉宾主持人:珀金埃尔默企业管理(上海)有限公司 环境及高校细分市场经理魏攀9:00-9:05嘉宾致辞待定09:05--09:30新污染物的转化与毒理曲广波中国科学院生态环境研究中心 研究员09:32--09:57“eXXpedition环球航行”:全球海洋中的塑料污染状况研究Winnie Courtene-Jones普利茅斯大学生物与海洋科学学院 博士09:59--10:24海洋环境中微塑料检测技术孙承君自然资源部第一海洋研究所 研究员/博士生导师10:40--11:05人体生物组织中PFAS的检测与研究Sabra Botch-Jones波士顿大学医学院 法医毒理学家/助理教授11:07--11:32纳米材料检测和职业风险防护标准示例及应用研究郭玉婷国家纳米科学中心 高级工程师11:32--12:08圆桌讨论报告嘉宾、现场听众五、 联系方式 欢迎从事新污染检测技术开发、应用专家、企业、用户等报名参会。 参会报名:https://accsi.instrument.com.cn 论坛联系:刘编辑,13717560883,liuh@instrument.com.cn
  • 863计划:“优控污染物监测新技术与质控产品研制”课题申请指南
    关于发布863计划资源环境技术领域优控污染物监测技术研究重点项目 “优控污染物监测新技术与质控产品研制”课题申请指南的通知 各有关单位: 环境污染控制将从传统污染物总量控制向同时重视微量优控污染物控制方向发展。针对我国优控污染监测技术基础薄弱,大量样品制备和快速分析产品主要依赖进口的问题,本领域启动了“优控污染物监测技术研究”重点项目。该项目下设3个课题,其中“优控污染物的采样和样品制备新设备”和“优控污染物的监测技术系统”2个课题已经公开发布课题申请指南方式确定了课题承担单位。 现发布“优控污染物监测新技术与质控产品研制”课题申请指南,课题国拨经费控制额为700万元,要求配套经费不低于300万元。本课题的承担单位在完成本课题研究目标的同时,有义务与其他2个课题一起完成该重点项目的总体目标。 一、申请资格与要求 课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn,有关申请的程序要求和注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。项目申请受理的截止日期为2008年9月6日24时。 课题指南具体要求见附件。 二、咨询方式 联系人: 王 磊 张书军 梁鹏 联系电话:010-58884866,58884867,58884869 Email: wanglei@acca21.org.cn zhshujun@acca21.org.cn; liangpeng@acca21.org.cn.   863计划资源环境技术领域办公室 二00八年七月十六日
  • 圆满落幕!环境新污染物分析检测创新技术论坛!
    3月2日,天津分析测试协会与仪器信息网联合主办的环境新污染物分析检测创新技术论坛,圆满结束,现场讨论氛围热烈。来自中海油天津化工研究设计院有限公司的王琪主任作为特邀嘉宾,主持出席了本次大会,与此同时,6所天津知名高校的权威专家进行了报告分享。报告嘉宾:汪磊 (南开大学环境科学与工程学院 教授/博士生导师)9:00-9:30,汪磊教授就微纳塑料的检测方法进行了分享,系统介绍了环境微塑料的检测方法开发与应用,并分享了课题组最新的科研进展。 报告亮点:微、纳塑料的定量检测方法缺乏是长期制约其环境行为与风险研究的瓶颈问题。被广泛采纳的“消解-分离-显微计数”检测方法仅能提供微塑料的数量丰度,并且难于对微塑料污染水平和传输通量进行量化。相比之下,质谱检测方法可提供更为准确的质量浓度信息。“原位化学解聚-单体小分子质谱检测-聚合物总量回溯”就是这样一种可准确定量环境中痕量微塑料聚合物的质谱检测新方法。报告结束后,汪磊教授与各位线上听众进行了热烈的现场互动,部分问答如下:Q:汪老师好,食品中微塑料和环境中微塑料检测的差异点有哪些呢,谢谢。A:食品中微塑料如果来源于包装材料,可考虑直接检测包装材料的释放,要简单很多。Q:汪教授好,微塑料的溯源您有研究吗? A:溯源目前没有太成熟的方法,我们做了一个微塑料成分指纹谱用于灰尘中微塑料溯源的工作,正在投稿,但也仅能针对行业溯源,也就是说来自纺织业的和非纺织业的。Q:汪教授您好,可以检测植物的根系和叶片中的微塑料吗?A:可以,但限定聚合物种类。实际环境样品很难测到,通常浓度不高,这部分我们是用的实验室培养的拟南芥,是不同剂量的胁迫,现在用的是荧光微塑料,但是还是想再进一步的进行定量检测。Q:汪老师好,做PLA微纳米塑料的定量时,怎么去考虑纳米塑料与环境微生物或者微生物的作用?以及这种作用对检出值的影响。A:最主要困难是乳酸背景值高,其他的影响不太大;因为加热碱消解加SPE。报告嘉宾:张晓丹 (安捷伦 分子光谱应用工程师)9:30-10:00 , 安捷伦张晓丹老师分享了安捷伦8700 LDIR 激光红外成像——生物体中微塑料全自动快速定性及定量分析,主要介绍了安捷伦公司利用8700LDIR激光红外成像技术。据介绍,该技术开发了专门的微塑料测试全自动解决方案,用户仅需将处理好的样品滴至标准的反射窗片后,软件即可自动完成颗粒的识别、定性测试统计以及粒径统计等。报告嘉宾:刘青 (天津科技大学 博士后/助理研究员)10:00-10:30,刘青老师为我们介绍了植物对有机磷酸酯的转化途径及机理研究,利用高分辨UHPLC-orbitrap-HRMS-MS进行非靶标分析识别了OPEs在植物体内的转化产物。3种OPEs共检测出25种产物,包括羟基化产物、水解产物、还原产物,以及多种结合态产物。Q:刘青博士,有机磷酸酯测定的质量控制如何把控,背景干扰的去除?A:有机磷酸酯的前处理过程尽量避免接触塑料制品,如果是环境样品 我们是有个专门的实验室只做环境样品的分析 前处理的质控我们会用氘代物质做一个回收率的监控。Q:刘青博士,对于低于检出限的有机磷酸酯测定结果,如何定值?A:如果是环境样品监测低于LOD 一般我们就认为是未检出;如果出于统计的目的当 检测值低于MDL时 用 MDL的值 除以 2代替。报告嘉宾:刘宪华 (天津大学 教授)10:30-11:00,刘宪华教授为我们分享了微塑料的分析测试及其环境影响研究。报告亮点:在实际环境中,微塑料和其他污染物的复合污染是普遍存在的环境污染现象,因而研究环境中微塑料介导的复合污染物质与生物体之间的相互作用具有重要现实意义,本报告以微塑料、抗生素和重金属在土壤、水体和沉积物等典型介质中的复合污染为研究背景,介绍了其中涉及的分析测试方法和环境影响表征手段。报告嘉宾:穆莉 (农业农村部环境保护科研监测所 副研究员)11:00-11:30 ,穆莉老师分享了典型纳米材料的环境识别技术及植物风险效应研究报告亮点:针对纳米材料分类、用途及存在的环境问题,介绍典型纳米材料的环境识别技术,包括分离提取技术以及相关的多种检测表征手段,进一步,介绍典型纳米材料属性对植物毒性影响的组学分析技术,为纳米材料科学合理应用提供科学技术支持。报告嘉宾:王捷 (天津工业大学 副院长/教授)11:30-12:00,天津工业大学的王捷副院长,为我们带来了关于膜基微流控耦合系统应用于痕量污染物检测研究的报告内容。报告亮点: 用于监测水中痕量污染物的传统技术存在例如检测成本高、周期长,技术门槛高等问题。因此迫切需要开发简单、廉价和灵敏度高的方法实现环境中有毒环境污染物的高效检测。基于微流控芯片的传感检测平台是近年新兴的检测技术。本报告围绕膜基微流控耦合系统展开研究,通过将不同的功能膜与微流控芯片合理的设计耦合实现不同的检测功能,具有所需样品少、测试时间短、灵敏度高的特点。本会议回放视频将在会议结束后1-3天内上线,可添加助教微信进入交流群。微信:13260310733
  • 与环境大咖圆桌讨论的珍贵机会!新污染物检测与监测新技术发展论坛周四召开
    持久性有机污染物(POPs)、内分泌干扰物(EDCs)、抗生素、微塑料,这些新污染物在近两年一跃成为环境领域前沿热点。我国在《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》、生态环境部编制的《新污染物治理行动方案(征求意见稿)》以及2022年政府工作报告中均强调提出:“要重视和加强新污染物治理”。新污染物的监测治理及其带来的环境风险不仅是我国“十四五”生态环境保护工作的重点,也是世界各国共同高度关注的环境问题。基于此,仪器信息网将与珀金埃尔默共同主办新污染物检测与监测新技术发展论坛(ACCSI2023同期会),报名点击:https://accsi.instrument.com.cn。本次论坛由珀金埃尔默企业管理(上海)有限公司环境及高校细分市场经理魏攀主持。论坛嘉宾包括:中国科学院生态环境研究中心研究员曲广波、普利茅斯大学生物与海洋科学学院博士Winnie Courtene-Jones、自然资源部第一海洋研究所研究员孙承君、普利茅斯大学生物与海洋科学学院博士Sabra Botch-Jones、国家纳米科学中心高级工程师郭玉婷、清华大学副教授周群等。国内外环境领域、头部科学仪器企业大咖齐聚,将共同就新污染物检测与监测新技术发展现状与趋势进行多维度、深层次、全方位的探讨与交流,以助力我国污染防治攻坚战目标的实现。• 论坛主办单位:珀金埃尔默 仪器信息网• 论坛主题:产业互动 创新发展• 会议时间:5月19日09:00-12:00• 会议地点:北京雁栖湖国际会展中心• 预期规模:100-150人• 报名点击:https://accsi.instrument.com.cn目标参会人群:政府及协会、学会领导;环境领域国内外专家/学者、实验室主任、技术/研发负责人、采购负责人、QC/QA负责人;质谱、色谱、光谱相关仪器国际与国内企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监;投融资机构等。 参会对象主要收获:新污染物分析检测技术进展;微塑料、PFAS、纳米颗粒分析研究进展;新污染物的转化与毒理机制 “十四五”期间,新污染物治理行动的发展建议等。会议日程:09:00-09:05活动介绍经理 魏攀09:05-09:30新污染物的转化与毒理研究员 曲广波09:32-09:57“eXXpedition环球航行”:全球海洋中的塑料污染状况研究Dr. Winnie Courtene-Jones09:59-10:24海洋环境中微塑料检测技术研究员 孙承君 10:24-10:40茶歇休息10:40-11:05人体生物组织中PFAS的检测与研究Dr. Sabra Botch-Jones11:07-11:32纳米材料检测和职业风险防护标准示例及应用研究高级工程师 郭玉婷11:32-12:08圆桌讨论环节12:08-12:20活动抽奖特别提示,本次论坛特设抽奖环节!不论是线上还是线下,参会即可参与抽奖,奖品如下——
  • 对微塑料、纳米颗粒、PFAS的深度解析!新污染物检测与监测新技术发展论坛成功举办
    仪器信息网讯 2023年5月17-19日,中国科学仪器发展年会(ACCSI 2023)在北京怀柔雁栖湖国际会展中心召开。作为大会重要的分论坛之一,由珀金埃尔默和仪器信息网主办的“新污染物检测与监测新技术发展论坛”于5月19日上午成功举办。本次论坛由珀金埃尔默企业管理(上海)有限公司环境及高校细分市场经理魏攀主持,中国科学院生态环境研究中心研究员曲广波、普利茅斯大学生物与海洋科学学院博士Winnie Courtene-Jones、自然资源部第一海洋研究所研究员孙承君、普利茅斯大学生物与海洋科学学院博士Sabra Botch-Jones、国家纳米科学中心高级工程师郭玉婷、清华大学副教授周群等嘉宾出席。国内外环境领域科研专家与科学仪器企业专家齐聚,共同就新污染物这一主题进行了一场多维度、深层次、全方位的学术交流。论坛现场新污染物指的是对生态环境和人体健康存在风险,但尚未纳入管理或当前管理措施不足的一类污染物。2022年国务院印发《新污染物治理行动方案》,提出“筛、评、控”“禁、减、治”的总体工作思想,要求对新污染物实施源头管控、过程控制及末端综合治理。而2023年,《重点管控新污染物清单(2023年版)》的印发也预示着新污染物的治理已从基础科学研究层面提升至了国家监管的战略层面。珀金埃尔默企业管理(上海)有限公司环境及高校细分市场经理魏攀主持论坛在论坛的报告环节,曲广波研究员首先进行了题为《新污染物的转化与毒理》的报告。在新污染物领域,由于实际样品中污染物总浓度未知、化学品信息亦未知,单独的毒性评价与化学分析很难满足需求。基于高分辨质谱的靶标和非靶标分析可解析污染物浓度与结构,并进行毒性评价。据报告介绍,成组毒理学分析(ITA的应用)可应用于新污染物转化中的毒理学研究,并进行污染物高通量毒性评估与区域环境风险诊断。报告提到,TBBPA BAE为主要效应污染物,总毒性贡献为86%,其代谢产物的风险极大,值得重视。中国科学院生态环境研究中心研究员曲广波报告随后,Winnie Courtene-Jones博士进行了题为《“eXXpedition环球航行”:全球海洋中的塑料污染状况研究》的报告。目前海洋微塑料的采样工作仍然是不足的,全球塑料污染的数量亦未知。报告详细介绍了研究团队在一次海洋航行中有关塑料污染的调查结果,比如南加勒比地区塑料的来源、流动和数量等。珀金埃尔默的傅里叶变换红外光谱仪被研究团队带至船上,并在航行过程中帮助研究团队实时评估了聚合物成分。普利茅斯大学生物与海洋科学学院博士Winnie Courtene-Jones报告孙承君研究员报告题为《海洋环境中微塑料检测技术》。目前微塑料的研究领域仍然存在诸多难题,比如缺少快速、高通量的微塑料监测/检测技术;大洋微塑料的监测工作不足,监测评估与治理支撑有待加强;微塑料的毒性和生态环境效应机制研究还比较欠缺;我国在海洋微塑料的监测、预防和治理方面的国际影响力亟待加强;有关微塑料的宣传力度有待提高……据报告介绍,目前海水微塑料的采样方法主要为拖网采样等;前处理方法主要为氧化消解、密度分离等,检测方法主要为显微拉曼、红外光谱、高分辨扫描电镜、热裂解质谱等。自然资源部第一海洋研究所研究员孙承君报告全氟和多氟烷基化合物(PFAS)也是重要的新污染物之一,PFAS在被人体接触后可能引发一系列潜在风险。Sabra Botch-Jones博士聚焦了这一类污染物,进行了题为《人体生物组织中PFAS的检测与研究》的报告。该研究旨在检测PFAS化合物在各种人类生物样本(包括胎盘)中的生物累积,研究团队特别选择了珀金埃尔默的QSight®220 UHPLC-MS/MS来应对人体中各种复杂的基质组织,如尿液、骨骼等。据其介绍,研究团队选择的分析方法适用于高通量分析,并确保了PFAS化合物的高回收率,最大程度地杜绝了检测中的干扰物质。普利茅斯大学生物与海洋科学学院博士Sabra Botch-Jones报告郭玉婷高级工程师的报告题为《纳米材料检测和职业风险防护标准示例及应用研究》。纳米尺度上,材料有许多未知的现象和规律。人们在受益于纳米技术产品优点的同时,开始关注纳米材料可能的潜在风险。报告指出,针对纳米材料的检测,splCP-MS法检出限低于ng/mL含量,检测过程中制样简单,单次检测可同时获得纳米颗粒成分、颗粒数量浓度、尺寸分布、颗粒团聚、溶解离子浓度等信息。《纳米技术水相中无机纳米颗粒的尺寸分布和浓度测量单颗粒电感耦合等离子体质谱法》国家标准为环境和纳米产品等中纳米颗粒检测提供了技术依据;此外,目前纳米材料行业缺少职业危害检测标准和纳米材料职业接触限值,职业风险管理方法缺少依据,《GB/T 38091.2-2019纳米技术工程纳米材料的职业风险管理第2部分:控制分级方法应用》等国家标准有望为国家监管、企业人员职业风险防控等提供技术支撑。国家纳米科学中心高级工程师郭玉婷报告在本次论坛特设的圆桌讨论环节,曲广波、周群、郭玉婷参与现场答疑,与听众就新污染物的研究方法、未来发展等问题进行了一场热烈的学术讨论。现场问题包括:1、“新型阻燃剂作为新污染物的一类,随着电子电器材料、建筑材料及其在交通运输中的广泛使用,引发其在环境中迁移的风险。围绕溴代阻燃剂在环境中的分布、转化与生态毒理,您认为哪些研究方向有望提供更深入的认识与解决方案?2、针对环境中未被管控的新型阻燃剂,如四溴双酚A及其衍生物,其在环境中的分析和风险评价面临哪些挑战?3、目前都有哪些科学证据,可以来表明微塑料所具有生态和健康危害?您认为分析环境及生物体中微塑料的关键点有哪些?4、与天然源颗粒物相比,释放到环境中的工程纳米材料的浓度非常之低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要,目前的研究工作中,纳米颗粒超痕量测量与溯源方法都有哪些进展?嘉宾与参会听众讨论氛围空前热烈,不断分享着最新学术灵感、未来研究计划、仪器应用经验。圆桌论坛环节有关新污染物的研究与治理,目前国家已提出具体的行动路线,即“2023年年底前,完成首轮化学物质基本信息调查和首批环境风险优先评估化学物质详细信息调查;2025年年底前,初步建立新污染物环境调查监测体系。”可以预见的是,在环境领域,新污染物依然会是未来备受关注的前沿方向。关于ACCSI 20232023第十六届中国科学仪器发展年会(ACCSI2023)于2023年5月17-19日在北京雁栖湖国际会展中心盛大召开。ACCSI定位为科学仪器行业高级别产业峰会,经过16年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2023以“创新发展 产业互联—助力北京怀柔打造科学仪器技术创新策源地 ”为主题,促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设。届时将邀请到政府及协会学会领导,检验检测机构负责人,实验室主管人员,仪器采购负责人,科学仪器及配件厂商董事长及总经理、总工、研发主管、市场总监、投融资机构负责人、合作媒体负责人等参会。会议期间还将举办“3i奖:仪器及检测风云榜颁奖盛典”,颁发多项行业大奖,引领科学仪器产业方向。
  • 技术干货!四类新污染物检测!
    5月24日,国务院办公厅正式印发《新污染物治理行动方案》,环境部有关负责人就《行动方案》答记者问。在谈及2025年新污染物治理能力明显增强的工作目标时,有关负责人对工作部署进行了详细介绍。对于科学研究、分析检测、仪器研发人员而言,《方案》所涉及的在科技支撑和基础能力建设方面的两项工作内容尤其值得关注:在加大科技支撑力度方面,开展有毒有害化学物质环境风险评估与管控关键技术研究,加强抗生素、微塑料等生态环境危害机理研究,在国家科技计划中加强新污染物治理科技攻关。在加强基础能力建设方面,加强国家和区域(流域、海域)化学物质环境风险评估和新污染物环境监测技术支撑保障能力。建设国家化学物质环境风险管理信息系统,构建化学物质计算毒理与暴露预测平台,培育一批符合良好实验室规范的化学物质危害测试实验室。近几年,随着微塑料、细颗粒物等新污染物不断从环境中被检出,科学界对此类污染物的研究已深入到危害特性、致毒机理等方面,并有了重大技术突破。生态环境中心环境化学与生态毒理学国家重点实验室,近几年在微塑料、细颗粒物、化学品的毒害与机理研究方面硕果累累,先后有多项检测分析新技术获得了国内、国际认可。为了更好地响应国家新污染物治理的号召,作为科学仪器行业的领头羊,仪器信息网网络讲堂邀请了生态环境中心环境化学与生态毒理学国家重点实验室的曲广波研究员进行新污物毒理研究方面的新技术分享;并有来自国家纳米科学中心的郭玉婷高级工程师分享质谱法测量水相中无机纳米颗粒及其危害评估。了解本次会议专家履历,请点击链接:https://www.instrument.com.cn/news/20220307/608370.shtml微塑料检测方面,将有微塑料研究方面的权威专家——自然资源部第一海洋研究所的孙成君研究员,进行新技术分享;并有国际学者带来全球视野下的新污染物(PFAS、微塑料)检测技术新进展!免费线上参会通道已开启,报名链接:https://www.instrument.com.cn/webinar/meetings/accsi2022newpollution/参与闭门圆桌会议,与专家面对面交流,可联系助教:13260310733(微信同号)附会议日程:报告时间报告主题报告嘉宾09:00--09:05嘉宾致辞敬请期待09:05--09:30新污染物的转化与毒理曲广波中国科学院生态环境研究中心 研究员09:32--09:57“eXXpedition环球航行”:全球海洋中的塑料污染状况研究Dr Winnie Courtene-Jones普利茅斯大学生物与海洋科学学院 博士09:59--10:24海洋环境中微塑料检测技术孙承君自然资源部第一海洋研究所 研究员/博士生导师10:40--11:05人体生物组织中PFAS的检测与研究Dr. Sabra Botch-Jones波士顿大学医学院 法医毒理学家/助理教授11:07--11:32纳米材料检测和职业风险防护标准示例及应用研究郭玉婷国家纳米科学中心 高级工程师报名失败,可联系助教:13260310733(微信同号)
  • 大气特征污染物自动监测技术推介会通知
    关于召开大气特征污染物自动监测技术和设备推介会的预通知   各仪器设备供应商和系统集成商:   根据“上海市第五轮环境保护综合整治三年行动计划”要求,上海市拟在部分重点工业区开展大气特征污染物自动监测系统建设工作。为了确保该项工作顺利进行,拟于4月中旬前后在沪召开相关仪器设备供应厂商和系统集成商大气特征污染物自动监测技术和设备推介会,重点为石化与化工行业大气特征污染物自动监测技术以及系统集成,标准化监测站房(车)以及特征污染物系统分析软件在国内外工业区大气自动监测中的应用情况介绍,届时将邀请用户代表参加。特此邀请有兴趣的厂商自愿报名参加,并在会上做相关仪器设备性能、系统集成和应用案例及优缺点介绍。   报名者请于3月20日前将回执发送到上海市环境科学学会,可采取电子邮件或邮寄方式。联系人方玲珍(FF1122345@163.com) 顾月萍(guyp@sepb.gov.cn),地址:上海市钦州路508号,邮编200233。参会期间食宿费用自理,具体时间和地点以书面通知为准。   上海市环境科学学会   上海市环境监测中心   2012年3月5日 回 执 公司名称 与会人员姓名 联系方式 (手机、邮箱地址) 是否需要住宿
  • “优控污染物的监测技术系统”通过科技部验收
    2012年7月20日,863重点项目课题“优控污染物的监测技术系统”通过了由科技部组织的验收评审,验收专家对课题研究给予了高度肯定,认为课题达到了合同规定的考核指标,成果丰富,具有很好的科学实用价值。   2007年12月,中国环境监测总站联合江苏省环境监测中心、重庆市环境监测中心、辽宁省环境监测实验中心、河南省环境监测中心和中科院生态环境研究中心共同申报、承担了国家高技术研究发展计划(863)重点项目课题“优控污染物的监测技术系统”的研究任务。经过四年的努力,课题组建立了履行斯德哥尔摩公约的成效评估空气监测方法,提出成效评估技术导则,为履约提供全新、及时、科学的技术支撑 同时,在国内首次针对环境管理关注的优控污染物,建立完善的多介质监测技术体系,填补了我国环境监测工作中的技术空白点。研究成果转化成行业标准13项,出版专著2部。   课题组将继续开展环境监测的相关研究,努力解决环境监测的关键技术问题,为我国的环境管理提供有力支持。
  • 新污染物最新标准体系建设进展如何?有哪些最新监测技术?
    新污染物危害生态环境和人体健康,是全球关注的重大环境问题之一。我国新污染物监测工作薄弱,监测技术体系不健全,环境监测方法不完善。急需开展新污染物监测靶向与非靶向、高通量筛查方法,建立重点管控新污染物环境监测标准,因此加强新污染物监测技术研究至关重要。我国在十四规划和中长期规划中首次将“新污染物的治理”列为环境保护的重要内容,与大气污染、水污染、土壤污染和固废处置等并列为我国当前和今后一段时间内环境保护的重大战略目标。2022年5月,国务院办公厅印发《新污染物治理行动方案》,明确了“筛、评、控”和“禁、减、治”的总体工作思路,提出在2025年年底前,初步建立新污染物环境调查监测体系。截至2023年底,31个省份已制定新污染物治理行动方案。2023年,生态环境部印发《2023年新污染物环境监测试点工作方案》,由中国环境监测总站牵头,会同生态环境部南京环境科学研究所、生态环境部华南环境科学研究所、国家海洋环境监测中心、生态环境部环境发展中心国家环境分析测试中心等多家技术支持单位,对口帮扶天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测,并同步开展了监测技术方法研究,启动300种化学物质的环境风险筛查和20种优先评估化学物质的环境风险评估。同年2月,生态环境部会同有关部门印发《重点管控新污染物清单(2023年版)》,对14种具有突出环境风险的新污染物,实施禁止、限制、限排等管控措施。2024年3月,生态环境部发布《新污染物生态 环境监测标准体系表(征求意见稿)》,公布了182项分析方法标准,其中,已发布48项,在研13项,拟制订121项,涉及的监测介质主要为水和废水、环境空气和废气、土壤和沉积物、固体废物等,仪器品类主要有气相色谱-质谱法、气相色谱-高分辨质谱、气相色谱-三重四极杆质谱法、高效液相色谱、气相色谱等,监测指标以列入管控清单、履约、 优控名录和优评计划中的新污染物为主。《体系表》与土壤和沉积物相关的分析方法标准52项,已发布16项、在研3项、拟制订33项;与空气废气相关的分析方法标准38项,已发布15项、在研2项、拟制订21项;与水质相关的分析方法标准56项,已发布15项、在研7项、拟制订34项。其中,《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(HJ1290-2023)》、《环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023) 》、《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333-2023)》三项为土壤、大气、水质最新发布标准。除此之外,对于新污染物的筛查与识别,最新发表了《新污染物筛查准确度评定技术指南 气相色谱-质谱法(试行)》标准。为了深入了解新污染物最新监测技术的进展,与最新发布的水、土、气标准涉及的技术方法,仪器信息网于2024年7月29日-8月1日召开的“第五届环境新污染物分析检测”网络会议中,设置了“新污染物的监测现状与标准解读”专场,邀请了4位来自相关标准牵头单位的起草人,为大家全面解读发布的标准体系及最新技术标准,包括技术要点,仪器设备、方法误区等,欢迎大家踊跃参与!相关报告信息如下:7月30日上午专场:新污染物的监测现状与标准解读(点击报名) 09:30--10:00新污染物环境监测技术与标准现状邢冠华 中国环境监测总站 正高级工程师10:00--10:30土壤和沉积物中全氟辛基磺酸和全氟辛酸及其盐类测定标准解读杨文龙 国家环境分析测试中心 高级工程师10:30--11:00环境空气中挥发性新污染物监测标准解析王荟 江苏省环境监测中心 室主任/正高11:00--11:30水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法标准解读刘金林 国家环境分析测试中心 副研究员会议报名链接:https://www.instrument.com.cn/webinar/meetings/newpollutant2024/报告嘉宾简介:邢冠华 正高级工程师中国环境监测总站邢冠华,博士,中国环境监测总站正高级工程师,“全国青年岗位能手”、生态环境监测“三五”人才“一流专家”,目前主要从事新污染物环境监测技术方法及标准化研究,负责国家新污染物环境监测试点工作。杨文龙 高级工程师国家环境分析测试中心杨文龙,高级工程师。主要从事多环境介质中传统和新污染物的分析测试技术、污染状况调查及质量保证与质量控制体系研究。全国土壤及地下水污染状况调查专项质控专家。中国履行《蒙特利尔议定书》消耗臭氧层物质监测专委会委员。先后参与完成国家重大科学仪器设备开发专项、国家重点基础研究发展计划(973计划)及新污染物试点监测等科研项目。参与制订十余项环境保护行业标准。王荟 室主任/正高江苏省环境监测中心现任江苏省环境监测中心分析部部长,是“国家环境保护地表水环境有机污染物监测分析重点实验室”技术带头人和研究骨干,承担及参与省部级项目3项、市厅级4项,参加或承担国家方法标准制定10项、地方标准2项,发表论文20余篇,参与编写专业技术专著5部,作为主要技术人员获得国家环境保护科学技术奖二等奖、江苏省环境保护科学技术奖一等奖、三等奖和江苏省分析测试二等奖。曾获生态环境部全国环境监测三五人才的“一流专家”和江苏省生态环境厅“污染防治攻坚巾帼标兵”等称号。刘金林 副研究员国家环境分析测试中心刘金林,国家环境分析测试中心,博士,副研究员,长期从事持久性有机污染物方面的研究工作,主持国家自然科学基金、生态环境分析方法标准制修订项目等多个项目,发表论文十余篇。近年来研究工作主要集中于全/多氟化合物的分析方法、环境行为与毒性机理等方面,负责制定全氟化合物标准分析方法一项,关注全氟化合物及替代物在污染源及环境中的行为及其机理,依托多个国际合作项目推动有关全氟化合物管控与替代,为我国国际公约履约行动提供支撑。
  • 王静:构建化学污染物残留检测技术体系 保障舌尖安全
    p   对于煮夫、主妇们而言,“农药残留”是买菜做饭时最在意的事。实际上,通过近十几年的发展,我国已经建立了较完善的农产品质量安全保障体系。实行最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责。其中,检测技术就是保障我们餐桌安全重要的科技支撑。 /p p   有这么一群人,他们默默在背后为我们构建了一道安全的食品防护墙。十几年来,由中国农业科学院农业质量标准与检测技术研究所研究员王静带领的研究团队,不断攻克农产品质量安全检测技术瓶颈,取得一系列重要突破。 /p p   项目团队经过十几年的系统研究和技术创新,通过研究纳米增敏仿生识别技术、信号放大化学发光免疫技术、低碳环保高通量样品前处理技术等关键技术,研发了25种快速检测方法及产品,创建了20多套覆盖400多种化学污染物的确证检测方法,形成了15项国家/行业/团体标准,实现了农产品中系列典型化学污染物的高灵敏、高通量的精准识别与确证检测,并在全国范围内进行示范和推广应用,取得了显著成效。在2016年北京市科学技术奖评选中,该项目荣获一等奖。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c9ba25de-3e84-4281-9db4-ea18f984dcf5.jpg" title=" 1.jpg" / /p p style=" text-align: center " 三唑磷化学发光免疫分析试剂盒 /p p    strong 化学污染物检测为何这么难? /strong /p p   食品安全事关国计民生与社会稳定,备受政府和消费者关注。我国每年由食品质量安全事件导致的经济损失巨大。 /p p   “化学污染物仍是影响我国食品质量安全的重要因素。”王静说,农产品作为食品的源头,不仅有在农产品生产过程中防虫治病用药后形成的农兽药残留,在生产环境中被动吸附的多环芳烃等环境污染物,还有生长中与微生物生物体作用而形成的各种代谢衍生物,再加上农产品具有鲜活的特点,完全依赖实验室大型仪器检测将严重制约农产品质量安全的监管。 /p p   “研发适合农产品生产、消费习惯的农产品质量安全检测技术,才能真正实现产地准出、市场准入,才能给老百姓提供安全食品。”王静说。 /p p   看似简单的农药残留检测,其实不简单。王静告诉记者,不同种类的农产品均有较大差异,“因此即使检测一种农药残留,其方法也未必适用于所有的农产品基质”。 /p p   此外,由于农产品种养殖环节复杂,农药、兽药等农业投入品的使用以及环境污染等均可能引起化学污染物残留,因此,农产品安全检测往往需要在同一个农产品中检测多达几十种甚至几百种的化学污染物残留。 /p p   “由于农产品的价格相对较低,每增加一个检测环节,就会在一定程度上增加农产品的价格,因此农产品中化学污染物残留检测相对于其他产品中的化学污染物残留检测除了考虑方法的可靠性外,更要考虑检测方法的成本,无疑也增加了农产品中的化学污染物残留检测难度。” /p p   那么用一种方法是否可以一劳永逸的解决残留检测问题? /p p   “这是非常理想的想法!”王静说,“不同化学污染物残留往往需要采用不同的检测方法,到目前为止,尚不能实现一种方法可以一劳永逸的解决农产品的所有残留检测问题。但随着新材料新技术的研发和应用,便携、快速、精准的多类污染物同时检测的方法将会更好地解决农产品的残留检测问题。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/0e3f4830-0bd7-4f8b-a41c-099d66337c08.jpg" title=" 2.jpg" / /p p style=" text-align: center " 快速检测试剂盒 /p p    strong 构建了20多套化学污染物残留检测技术体系 /strong /p p   据了解,传统的检测方法包括两个方面,即传统的前处理方法和传统的分析方法。王静表示,传统的前处理技术包括液液萃取技术、层析净化技术等等,在复杂体系的化学污染物检测中仍然发挥着重要的作用,但这些前处理技术步骤相对繁琐,溶剂消耗量大,污染环境。 /p p   “如何提高传统前处理技术的特异性、操作简便性,以及减少溶剂消耗,一直是科研人员致力的研究方向。”王静说。 /p p   目前,我国在农药及助剂、兽药、违禁添加物及环境污染物等典型化学污染物的快速检测与确证技术方面依然存在着一些难以突破的技术瓶颈,如精准稳定的商品化农药快速检测产品的匮乏与兽药、违禁添加物快速检测产品种类不足,导致不能实现典型化学污染物的快速高效识别 高选择性样品前处理技术的缺失导致复杂基质干扰严重 化学污染物确证技术及其方法和限量标准覆盖面不全导致难以实现农产品质量安全的全程风险监测。 /p p   在研发中,项目团队遇到的最大技术挑战是如何提高快速检测试剂盒、试纸条的稳定性和灵敏度,如抗原抗体反应、标记酶显色及鲁米诺化学发光反应很容易受到果蔬或肉蛋奶样品中色素、蛋白、脂肪等因素的影响。 /p p   “针对这个问题,我们在筛选抗体过程中,就加入了不同的样品基质,使得能够很好抗基质干扰的细胞株从一开始被筛选出来,这样制备得到的抗体与化学污染物反应时,就能很好抵抗样品基质的干扰。”王静说。 /p p   项目组在基质的干扰及影响竞争敏感性的关键因子方面开展系统研究,取得了很好的突破,研制了化学发光核心增敏配方,并开发出可以快速检测农兽药、违禁添加物的酶联免疫试剂盒、金标试纸条、化学发光试剂盒。 /p p   项目组基于酶抑制原理研发了农药多残留速测技术,在核心配方上进行系统优化,构建了能快速筛查有机磷和氨基甲酸酯类农药的速测技术 研制了系列分子印迹识别材料,这些材料有着和抗体类似的功能,可量身定做,有很好的专一性和稳定性,能快速准确识别出农产品中的化学污染物。 /p p   此外,在现有实验室高灵敏检测技术基础上,针对农产品中含量低、提取分离难度大的化学污染物,研发了模块化样品提取净化单元,使得不同性质的化学污染物能从复杂果蔬农产品基质中很好的提取出来,构建了20多套农兽药残留、违禁添加物、环境污染物的确证检测技术体系,并将部分技术转化为国家标准或农业行业标准。 /p p    strong 在家也可以检测农药残留 /strong /p p   如今,医学上的一些试剂盒或检测设备如早早孕试纸条、血糖仪等产品已经可以让老百姓在家里就使用和判断结果。同样,项目组研制了酶抑制法及其产品,这些产品操作简单,可用于家庭、农贸市场等现场使用,可判定蔬菜和水果中是否含有机磷和氨基甲酸酯类农药残留。 /p p   截至目前,团队研发了多种农兽药类试剂盒和试纸条,不仅在我国种养殖基地、农贸市场、流通环节、大型超市、企事业单位等多个部门推广应用,而且也有家庭装,可以现场实现典型农药、兽药、违禁添加物等残留的快速检测。 /p p   据介绍,本项目研发的系列快速检测产品与确证检测方法已在全国31个省市的龙头企业、质检风评机构、科研院所及种养殖基地等1000余家单位推广应用,在我国农产品产地准出、市场准入、风险排查与管控、快速应急处置等方面发挥了重要作用。大大提高了我国典型化学性污染物检测技术研究水平,推动了国产快检产品的市场占有率大幅提升,打破国外垄断,降低了成本。 /p p   此外,形成的方法标准和限量标准有效弥补了我国农产品质量安全标准体系的不足,加快了我国农产品质量安全标准化建设的步伐,提升了农产品质量安全生产的水平,促进了我国果蔬、肉禽蛋奶等产业的健康发展,为实现从农田到餐桌的农产品质量安全全程控制提供了重要技术支撑。 /p
  • 开展新污染物监测方法标准体系构建研究 完善生态环境监测
    生态环境部华南环境科学研究所 韩静磊研究员“生态环境监测是生态环境保护的基础,是生态文明建设的重要支撑。生态环境监测标准是生态环境监测的‘度量衡’,为监测数据真实、准确、可比提供了技术依据和保障。目前,我国新污染物监测工作仍处于起步阶段,监测方法尚不成熟、监测标准体系不完善。因此,需开展新污染物监测标准体系构建研究,制定适合我国新污染物监测标准体系的技术框架,为推动和支撑国家新污染物监管监测及治理工作提供技术支撑。”在11月22日举办的中国环境科学学会环境标准与基准专业委员会2023年学术年会暨生态环境标准发展五十年回顾与未来展望研讨会分论坛上,生态环境部华南环境科学研究所研究员韩静磊这样表示。新污染物监测标准体系的构建是实施新污染物调查监测、评估新污染物治理成效的技术基础和保障。构建新污染物监测标准是推动落实习近平总书记系列重要指示、党和国家重大部署的需求。早在2020年10月,第十九届中央委员会第五次全体会议明确提出“重视新污染物治理”的要求。今年7月,生态环境部部长黄润秋在国新办举行的新闻发布会上提出“加强新污染物治理体系和治理能力现代化建设”。新污染物是指新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的污染物。有毒有害化学物质的生产和使用是新污染物的主要来源,主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素、微塑料等。要有效推进我国新污染物监测调查工作的需求,掌握环境中新污染物浓度水平和赋存状态,以精准识别环境生态风险较大的新污染物,进而为制定全过程环境生态风险管控措施提供数据支撑。据介绍,目前,生态环境部不断完善生态环境监测标准体系,已发布1500余项生态环境监测标准,为规范生态环境监测行为、保障数据质量提供了有力支撑。但是,新污染物复杂多样且分布广泛等特点,为我国新污染物监测标准体系构建工作带来挑战。客观来看,截至目前,围绕新污染物监测工作的开展仍存在监测方法体系尚未完善、技术支撑薄弱、体系构建研究投入不足等等问题。针对这些难点,韩静磊认为需从“强化标准体系构建顶层设计、推动新污染物定量监测方法制修订、加快筛查/快速监测方法研究”着手,推动我国新污染监测方法标准体系构建工作更好更快开展。会上,韩静磊认为,在新污染物监测方法标准体系表的制订上,要紧紧围绕实用性、科学性、系统性、协调性与时效性五大原则。为保证污染物监测方法标准体系构建工作的顺利进行,她认为要加强组织领导,共同发力加快完善新污染物监测方法体系;成立专家委员会,协同开展新污染物监测方法攻关;加强顶层设计,明确新污染物监测标准体系框架;创新管理模式,加快推动和优化新污染物监测标准制修订;坚持前瞻思维,探索开展新污染物监测新技术研究;完善机制体制,提升新污染物监测标准研究活力。
  • 863课题优控污染物的监测技术系统通过验收
    2012年7月20日,863重点项目课题“优控污染物的监测技术系统”通过了由科技部组织的验收评审,验收专家对课题研究给予了高度肯定,认为课题达到了合同规定的考核指标,成果丰富,具有很好的科学实用价值。   2007年12月,中国环境监测总站联合江苏省环境监测中心、重庆市环境监测中心、辽宁省环境监测实验中心、河南省环境监测中心和中科院生态环境研究中心共同申报、承担了国家高技术研究发展计划(863)重点项目课题“优控污染物的监测技术系统”的研究任务。经过四年的努力,课题组建立了履行斯德哥尔摩公约的成效评估空气监测方法,提出成效评估技术导则,为履约提供全新、及时、科学的技术支撑 同时,在国内首次针对环境管理关注的优控污染物,建立完善的多介质监测技术体系,填补了我国环境监测工作中的技术空白点。研究成果转化成行业标准13项,出版专著2部。   课题组将继续开展环境监测的相关研究,努力解决环境监测的关键技术问题,为我国的环境管理提供有力支持。
  • 新污染物治理热浪来袭,相关检测技术及应用现状如何?
    目前,新污染物通常分为环境内分泌干扰素(EDCs)、全氟化合物、抗生素、新型持久性有机污染物POPs等多种类型,主要包括微塑料、溴代阻燃剂、氯化正构烷烃、新多氯联苯、壬基酚、全氟辛酸其盐类及其相关化合物(PFOA类)、全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS类)等多种化合物。随着我国环境质量持续改善,新污染物引发的环境和健康风险受到社会各界的广泛关注。新污染物不同于常规污染物,主要来源于有毒有害化学物质的生产和使用,其治理难度超过常规污染物。我国的新污染物治理正处于起步阶段,国内新污染物监测主要以局部区域的研究性检测为主。去年5月,国务院办公厅印发了《新污染物治理行动方案》,提出在2025年年底前,初步建立新污染物环境调查监测体系。因此,开展环境监测、掌握新污染物的环境暴露水平,完善化学物质测试与检测方法,构建化学物质风险评估与管控技术标准体系,是新污染物风险管控和治理的首要步骤。为了促进新污染物检测技术交流,加大宣传力度,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议。在27日上午,以“新污染物监测现状总览”为主题的会议专场,将邀请相关领域专家将与大家分享当前新污染物监测技术及应用进展等。点击图片报名7月27日上午日程安排:07月27日新污染物监测现状总览09:30--10:00有机磷酸酯色谱质谱分析方法及人体内外暴露研究蔡亚岐中国科学院生态环境研究中心 研究员10:00--10:30全/多氟化合物PFAS检测新应用进展黄峥沃特世科技(上海)有限公司 高级市场经理10:30--11:00SCIEX 液质技术在新污染物高通量筛查的策略与典型应用案例分享李广宁SCIEX(中国) 应用支持专家11:00--11:30典型工业过程中的新污染物的筛查方法一览刘国瑞中国科学院生态环境研究中心 研究员11:30--12:00新污染物监测技术发展总览孙毓鑫华南师范大学 教授嘉宾简介:蔡亚岐 研究员中国科学院生态环境研究中心主要从事新污染物的色谱-质谱分析方法、环境行为、生物累积、人体暴露及健康效应等研究,近年来重点关注的新污染物主要有全氟/多氟化合物、甲基硅氧烷、有机磷酸酯、抗生素等;研究新型纳米和微孔材料制备及在新污染物分析和治理中的应用等。先后主持完成多项国家863课题、国家自然科学基金、国家重点研发计划课题、中国科学院大型仪器研制项目、中国科学院环境与健康先导性项目课题、国家环保公益性行业科研专项等项目。在Nat. Commun., Environ. Sci. Technol., Anal. Chem., ACS Catalysis, Chem. Com., J. Mater. Chem. A, Appl. Catal. B: Environ.等SCI收录期刊发表论文160余篇,论文SCI他引12000余次;主编或参编专著6部。作为主要成员先后于2018(排名第二)和2011(排名第四)年两次获得国家自然科学二等奖;作为主要完成人获得中国科学院杰出科技成就奖。黄峥 高级市场经理沃特世科技(上海)有限公司毕业于北京化工大学化学工程专业。曾就职于中国计量科学研究院从事标准物质研制和量值溯源传递等工作。2014年进入分析仪器行业后一直从事色质谱产品在食品环境等相关领域的应用和标准的开发与推广。加入Waters公司后负责食品和环境的市场推广工作。李广宁 应用支持专家SCIEX(中国)熟悉各类色谱质谱仪器,在食品、环境及药物小分子领域有超过十年以上的应用经验。刘国瑞 研究员中国科学院生态环境研究中心中科院生态环境研究中心,博士, 研究员,博导中科院创新交叉团队负责人,研究方向为持久性有机污染物和持久性自由基的生成机理和污染特征,在Prog. Energy Combust. Sci., ES&T和TrAC等发表论文156篇,撰写中英文专著5部。担任Ecotox. Environ. Saf.、Sustainable Horizons, Emerging Contaminants的副主编、Trends Anal. Chem.客座编辑、《环境化学》青年编委。随团队获2019国家科技进步二等奖、2019年生态环境部环保科技一等奖、第13届国际PTS大会青年科学家奖。孙毓鑫 教授华南师范大学华南师范大学环境学院教授,博士生导师。主要从事持久性有机污染物(POPs)的海洋环境地球化学及微生物降解方面的研究。围绕“人类活动驱动下海洋环境中POPs的关键环境过程及生态效应”这一科学问题,开展了POPs在近岸红树林、南海珊瑚礁和北极等典型海洋生态系统的污染特征、来源、生物富集和食物链传递等方面的研究工作。揭示了红树林湿地中POPs的污染特征及生物富集规律,发现红树植物对POPs的选择性富集行为;阐明了南海珊瑚礁生物中POPs的富集特征及放大规律,发现滴滴涕仍有新的输入来源;证实了冰川融化对北极生态系统中POPs环境行为的影响,发现冰川融化速度是影响北极哈森湖流域中POPs含量的一个关键因素。先后主持国家自然科学基金、广东省自然科学基金杰出青年项目和中国科学院A类战略性先导科技专项子课题等项目10余项。已在Environmental Science & Technology等SCI期刊上发表论文56篇,SCI论文他引2000余次,H指数25。获授权发明专利3项,参与撰写专著2本。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 聚焦新污染物、环境监测——中国环境质谱大会分论坛精彩集锦
    仪器信息网讯 2023年3月25日,由中国物理学会质谱分会主办、山东科技大学承办、国家自然科学基金委环境化学学科支持的“中国环境质谱大会”于山东省青岛市盛大开幕。本次会议以“质谱技术使环境更美好”为主题,邀请国内质谱领域的著名专家学者做大会报告和邀请报告,旨在促进发展,提高交流水平,推动质谱技术在各大科技领域的广泛应用。3月25、27日上午进行大会报告,25日下午及26日全天同时进行9个不同主题的分会场报告。25日下午,四大质谱相关主题分会场同步开启,分别是新型污染物质谱分析新方法与新技术、未知污染物的非靶标分析、质谱在环境监测中的应用、环境污染物降解机制研究及质谱分析。当日,这四大分会场共进行了约50场报告。以下为部分报告集锦,以飨读者。分会场1:新型污染物质谱分析新方法与新技术分会场现场直击论坛涵盖了多种质谱技术助力环境前沿科学问题的研究进展,报告现场如下:《质谱助力环境前沿研究》南开大学 周启星 教授《大气颗粒物中的极性硝基芳香组分》北京大学 邱兴华 研究员《食品安全色谱/质谱分析方法研究进展》中山大学 李攻科 教授《成千上万种PFAS-没有标准品,无法检测,如何保证安全?》布鲁克(北京)科技有限公司 赵严 经理《复杂基质中微纳塑料精准分析质谱新方法研究》哈尔滨工业大学 姜杰教授分论坛主持人(左:中山大学李攻科教授,右:福州大学林子俺研究员)分论坛报告嘉宾合影分会场2:质谱在环境监测中的应用分会场现场直击论坛报告涵盖利用ICP-MS、LC-MS、离子阱质谱、离子迁移谱联用质谱、顺次电离质谱等各类技术在环境颗粒物、环境VOCs、微液滴化学等领域的应用进展。报告现场:《基于IMS/ITMS联用的快速检测与精准识别技术进展和应用》中科院大连化学物理研究所 花磊 研究员《气液界面质谱分析技术及其大气化学应用》南开大学 张新星 研究员《实时直接分析质谱对室内表面膜中半挥发性有机物的快速定量》北京大学 周江 教授《环境污染物质谱分析新方法》浙江大学 冯鸿儒 副研究员《岛津质谱技术在新污染物领域的应用》岛津企业管理(中国)有限公司 汪勇 高级专家《大气污染与肺部过氧化机制的质谱研究》哈尔滨工业大学(威海) 张洪 副教授《环境颗粒物中不同组分顺次电离质谱分析》东华理工大学 徐加泉 副教授26日,还将有五大质谱相关主题分会场同步开启,分别是环境分析中的质谱装置、环境质谱分析中样品前处理技术、食品安全中的质谱技术与应用、质谱成像与环境毒理、生命健康与环境、新型污染物质谱分析新方法与新技术。敬请关注仪器信息网从现场发回的报道。
  • 两会代表发言:将新污染物防控列入环境标准,加强长期连续监测!
    2022年全国两会正式开幕!在减污降碳的总基调下,两会代表们纷纷为环保事业建言献策。3月5日,国务院总理李克强在政府工作报告中提出,要“持续改善生态环境,推动绿色低碳发展”。在谈及加强生态环境综合治理时,“加强固体废物和新污染物治理”的字眼,让新污染物再次走进大众视野。新污染物的治理并非首次提出2021年1月,生态环境部部长黄润秋在全国生态环境保护工作会议上作报告时表示,要更加重视新污染物治理,重视新污染物评估治理体系建设;国家“十四五”规划和2035年远景目标也明确提出要“重视新污染物治理”;10月9日,生态环境部发布《新污染物治理行动方案(征求意见稿)》;2022年3月5日,李克强总理在两会作政府工作报告中,再次提出加强新污染物治理。两会代表关于新污染物的建议2022全国两会上,全国政协委员、民盟无锡市委主委、无锡市政府副市长高亚光,提出了关于开展新污染物防治的提案。高亚光建议,要从国家层面构建新型污染物防控机制,建立由上至下的多级防控系统,建立和完善新型污染物管控的各类标准体系,同时,要加强对新型污染物的长期连续监测、系统监测、科学研究,探索切实可行的净化处理技术与工艺。新污染种类多样化 新污染物主要包括微塑料、人造纳米材料、药品与个人护理品、抗生素抗性基因、全氟化合物等。近年来,新污染物之所以成为关注焦点,一方面,源于其对生态环境和人体健康不可忽视的威胁;另一方面,源于现代检测分析技术水平的不断提升,微塑料、细颗粒物等新污染物不断从环境中检出。值得庆幸的是,随着科学研究的不断深入,科学界在其危害特性、致毒机理、检测分析等方面均有重大技术突破。在新污染物生态毒理研究方面,中科院生态环境中心环境化学与生态毒理学国家重点实验室的研究员们硕果累累;而在海洋微塑料研究领域,自然资源部海洋研究所海洋生物资源与环境研究中心的研究员们则有着丰富的经验。曲广波:中国分析测试协会CAIA特等奖获得者2021年12月9日,中国分析测试协会公布了2021年中国分析测试协会科学技术奖获奖名单。由环境化学与生态毒理学国家重点实验室曲广波、国科大杭州高等研究院张海燕、中国科学院深圳先进技术研究院周文华等研究人员共同完成的“生物样品中二维纳米材料及持久性有机污染物的分析表征技术”项目荣获了2021年中国分析测试协会科学技术奖CAIA特等奖。该项目中的新方法具有首创性和实用性,在分子、细胞和生物水平上评估混合新污染物中纳米材料的安全性及研究有机物环境过程方面均得到验证,受到国内外同行和学术界的高度评价与广泛认可,并引领了相关领域一系列后续研究,对行业、领域具有深远的指导意义。孙承君:关注“海洋中的PM2.5”近10年来,海洋微塑料污染引起了国际社会的广泛关注。微塑料对海洋生物的影响与危害等研究直接推动了"禁止向化妆品中添加塑料微珠"等法规的出台。2018年1月,在执行中国大洋46航次科考任务时,自然资源部第一海洋研究所的孙承君研究员等人,在南极周边海水中发现了微塑料的存在,这也是中国科学家首次在南极海域发现微塑料。十几年来,孙承君研究员项目组的研究成果颇丰,在微塑料的生态和健康危害论证方面的工作,提供了充分的科学证据。为了更好地对新污染物研究现状与技术趋势进行探讨与交流,助力我国污染防治攻坚战目标的实现,仪器信息网将于4月20日-22日ACCSI2022期间,同期举办“新污染物检测与监测新技术发展”分论坛。届时,将邀请环境化学与生态毒理学国家重点实验室曲广波研究员、自然资源部海洋研究所孙承君研究员在ACCSI2022现场,进行精彩报告,同时将有两位外籍专家,带来全球视野下的微塑料、PFAS等污染物的新技术应用!同时,分论坛将设有圆桌论坛环节,现场嘉宾和观众可共同就新污染物话题进行深入讨论。在线网络会议报名,点击蓝字:报名入口敬请现场出席参加:参会注册会议注册费:2500元/人(含会议资料、会议用餐;交通住宿费用需自理)2022年2月28日前或3人以上组团报名可享受2000元/人优惠。付款信息请注明 “ACCSI2022、单位简称、注册人姓名”。自行预订会务组推荐酒店享受协议价格。联系方式报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)咨询报名。(点击图片,直达官网)
  • 聚焦工业区大气特征污染物监测技术与仪器
    ——上海重点工业区大气特征污染物自动监测技术与仪器设备说明会成功举办   仪器信息网讯 2012年5月8-10日,上海重点工业区大气特征污染物自动监测技术与仪器交流会在沪成功举办。此次会议由上海市环境科学学会、上海市环境监测中心共同举办,旨在搭建一个技术交流平台,让仪器设备供应厂商/系统集成商与重点工业区充分沟通,互通信息,为上海即将开展的重点工业区大气特征污染物自动监测系统的建设工作奠定基础。 会议现场   本次会议由上海市环境科学学会副理事长陆书玉教授、上海市环境监测中心副总工魏海萍教授共同主持,吸引了来自环境监测仪器厂商/系统集成商、上海市各工业园区环境监测站工作人员以及来自江浙两省环境监测站代表,约百余人参加。仪器信息网作为支持媒体亦参加了此次会议。   上海市环境科学学会副理事长 陆书玉教授   魏海萍表示,根据“上海市第五轮环境保护综合整治三年行动计划”要求,上海市拟在部分重点工业区开展大气特征污染物自动监测系统建设工作。为了确保该项工作顺利进行,上海市环境科学学会与上海市环境监测中心联合举办了这次会议。   围绕石化、化工、煤化工、钢铁和垃圾填埋等行业的VOCs、SVOC、重金属和恶臭等大气特征污染物自动监测技术以及系统集成,标准化监测站房(车)以及特征污染物系统分析软件在国内外工业区大气自动监测中的应用情况等主题,参会的19家仪器厂商/系统集成商一一介绍了自己的“拿手绝活”,并解答了现场提问。   以下是参会厂商名单:   北京盈盛恒泰科技有限责任公司   赛默飞世尔科技(中国)有限公司   上海境安环境检测技术有限公司   美国安普科技中心有限公司   上海祥得环保科技科技有限公司   瑞士万通中国有限公司   绚贸(上海)工业设备贸易有限公司   杭州富铭环境科技有限公司   上海科德环保测试技术咨询服务有限公司   珀金埃尔默仪器(上海)有限公司   上海华川自动化科技有限公司   Environnement环境技术(北京)有限公司(ESA)   北京创联智软科技有限公司   广州嵘烨生环保产品有限公司   安捷伦科技(中国)有限公司   北京怡孚和融科技有限公司  安徽蓝盾光电子股份有限公司   聚光科技(杭州)股份有限公司   上海市环境监测技术装备有限公司
  • 国家环境污染物监测方法标准制修订技术导则征求意见
    关于征求国家环境保护标准《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,规范环境监测方法标准的制订工作,我部决定制定国家环境保护标准《国家环境污染物监测方法标准制修订技术导则》。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将征求意见稿和有关材料印送给你们,请于2009年8月15日前提出书面修改意见。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1.征求意见单位名单    2.《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)    3.《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)编制说明
  • “十二五”主要污染物总量监测办法发布
    日前,经国务院同意,环保部印发了“十二五”主要污染物总量减排统计、监测办法的通知。据悉,“十二五”主要污染物总量监测办法适用于对排放主要污染物的工业企业、城镇污水处理厂等排污单位和规模化畜禽养殖场(小区)、机动车的监测(检测)管理。其中,纳入国家重点监控企业名单的排污单位,应当安装或完善主要污染物自动监测设备,尤其要尽快安装氨氮和氮氧化物自动监测设备;尚未安装自动监测设备的,或已安装自动监测设备但未配置氨氮、氮氧化物自动监测仪器的, 应当在2013 年底前完成自动监测设备的安装和验证。纳入国家重点监控规模化畜禽养殖场名单的, 应当安装化学需氧量和氨氮自动监测设备。详情如下: 关于印发“十二五”主要污染物总量减排统计、监测办法的通知   各省、自治区、直辖市人民政府,新疆生产建设兵团:   《“十二五”主要污染物总量减排统计办法》、《“十二五”主要污染物总量减排监测办法》已经国务院同意,现印发给你们,请认真贯彻执行。   附件:1.“十二五”主要污染物总量减排统计办法   2.“十二五”主要污染物总量减排监测办法   2013年1月24日
  • 聚焦新污染物监测与管控——POPs论坛2021分会报告集锦
    仪器信息网讯 2021年5月17日 ,第十六届持久性有机污染物论坛暨化学品环境安全大会 (简称“POPs论坛2021”)在夏都西宁开幕。本次会议主题为“聚焦新污染物环境风险与控制”,除大会报告之外,会议共设立9个分分论坛,其中包含“新污染物监测与管控”分论坛,该分论坛部分精彩报告整理如下。“新污染物监测与管控”分论坛现场分论坛主持人:同济大学教授/中国环境科学学会POPs专委会委员 尹大强报告人:南京大学副教授 韦斯报告题目:非靶向分析技术在新污染物监测与管理中的研究与应用十四五规划中明确提出要“重视新污染物治理“,而新污染物的有效识别是新污染物环境监测与管理的前提与基础。由于环境和人体暴露的污染物种类繁多,其中大量新型污染物结构未知,且由于环境基质复杂,使得环境新型污染物分析面临巨大挑战。传统分析方法耗时耗力,难以实现对众多污染物的准确识别。本研究以质谱分析为主要的研究手段,优化前处理方法,构建了高覆盖度的新污染物非靶向质谱分析新技术,可以有效识别环境与人群暴露的新污染物,在真实场景下,为新污染物监测提供技术支撑,为新污染物管理提供数据来源。报告人:同济大学副教授 黄清辉报告题目:我国河口近岸环境有机锡新兴污染问题挑战与思考 有机锡污染问题由来已久,TBT作为防污底中的杀虫剂给海洋环境带来了严重危害。2000年UNEP将有机锡列入持久性有毒污染物(PTS)清单,2001年国际海事组织IMO签订《控制船舶有害防污底系统国际公约》(简称AFS公约),2011年AFS公约在我国生效。经检测,我国长江口及邻近海域沉积物中存在一定的有机锡污染,其中TBT多为历史输入,TPhT以新近输入为主。我国河口有机锡污染物形势已经发生变化,原有TBT主导的污染模式可能逐步有所缓解,但TBT污染还将在一段时间内长期存在;而广泛用于农药的TPhT及其衍生物主导的污染链模式已经形成,尤其是在海洋动物中,可能经食物链传递威胁高等哺乳动物及人体健康等。应对有机锡新兴污染问题可以采用的采样技术包括笼养贻贝和被动采样器、TECAM膜采样技术等,检测方法则包括基于GC或基于LC的质谱检测技术以及三重同位素稀释加气质联用仪等。报告人:华东师范大学研究员 邬言报告题目:发掘潜在新兴环境污染物报告介绍了利用质谱技术及数理统计手段,探寻环境中的新型有机污染物,并分析其环境行为并评估其潜在的生态环境影响及公共健康风险的研究。该研究进一步证实针对高产量人造消费品进行主成分解析是发掘潜在新兴环境污染物的一种有效手段,同时发现了环状磷酸酯阻燃剂、大分子抗氧剂和侧链氟调聚合物在婴幼儿车载座椅中被大量添加,尽管它们都没有在产品成分清单中被明确列出。这三类物质在环境中已有赋存,且存在潜在生态健康风险,但是其环境数据仍比较有限,相关管理措施十分缺乏。报告人:中科院城市环境研究院研究员 孙倩报告题目:流域水环境中新兴有机污染物的空间分布特征——垂直剖面变异与水平自相关研究 本报告对闽江流域水口水库表层及深层水样进行多点采样,采用固相萃取法浓缩净化,应用液相色谱串联质谱分析PPCPs等新兴污染物,并应用主成分分析和莫兰指数分析探索新兴污染物的时空变异特征,结果发现闽江流域水口水库段新兴污染物呈现显著垂直变异特征,多数抗生素浓度随深度增加而升高,流水表层水体中新兴污染物呈现空间自相关性,污染来源包括局域排放与邻域输入。报告人:中国农业大学副教授 李思报告题目:内陆湖中抗生素的累积及环境风险 抗生素在畜牧业中的应用可能导致其在青海湖中的累积,但目前有关青海湖中抗生素的赋存特征和潜在生态风险还未见报道。本研究系统分析了7类83种抗生素在青海湖的分布特征,首次揭示其入湖河流对湖中抗生素累积的影响,为内陆湖中抗生素的累积和生态风险。报告人:上海海洋大学讲师 杜心宇报告题目:长三角地区爬行和两栖动物体内氯化石蜡的赋存特征 SCCPs由于其较强的生物毒性、生物富集能力以及长距离迁移能力受到较多的关注,并于2017年4月被正式列入斯德哥尔摩公约。在SCCPs全面禁用的背景下作为其替代品MCCPs和LCCPs的生产与使用将呈现增长趋势。然而,目前有关MCCPs和LCCPs在生物体内的研究极为有限。本研究对长三角地区爬行和两栖动物体内多器官SCCPs、MCCPs和LCCPs进行了定量分析,探讨了CPs的赋存情况、同系物组成分布于食物链放大特征。报告人:清华大学助理研究员 李菲菲报告题目:近海环境中优先控制抗生素的筛选方法构建 本研究以杭州湾及湾内2个纳污区为例,将抗生素和生态风险结合考虑,提出了一种简单、科学的优先控制抗生素筛选方法,提出了一种简化抗生素监控的有效策略。经初步验证该筛选框架具有稳定性、敏感性和易操作性,可为我国水环境中抗生素污染的监测及管理提供重要参考。分论坛主持人:同济大学教授/中国环境科学学会POPs专委会委员 仇雁翎报告人:中科院生态环境中心研究员 郑明辉报告题目:新污染物筛查与监测 本报告从新污染物的定义出发,提出研究新污染物的方法学,包括源头控制、编制优先监测名单、以及相关的科学研究等,并介绍了在化学品中高风险物质筛选与在环境中优先监测污染物筛查等两种新污染物筛查策略与方法,最后提出了效应导向的成组毒理学分析系统可有效用于新污染物环境暴露组学研究。报告人:北京大学教授 邱兴华报告题目:大气细颗粒物中新型危害组分筛选识别污染物筛选识别 本研究对2016-2018年3月北京大学校园内观测平台的一百多个采样样品进行分析,采用独特的电子捕获负电离方法,完整“全组分”表征,共获取超过2000Gb数据,并根据独特电离规律,从1300种大气细颗粒组分中筛选出78种未知有机硝酸酯,自定合成标样确证12种。报告人:University of Melbourne Professor Brad Clarke报告题目:Occurrence and fate of legacy and novel PFAS in freshwater after an industrial fire of unknown chemical stockpiles(远程在线报告)报告人:安捷伦科技(中国)有限公司资深应用开发专家 王雯雯报告题目:土壤中新污染物非靶标检测研究进展 报告中介绍了QTOF/MS技术用于非靶标筛查的优势,包括测定化合物数量不受限制、采集方法简单、数据可回溯、提供同位素信息,以及降低对标准物的依赖等,同时还介绍了该技术在大气、土壤及水体等多环境介质非靶标筛查中的应用案例。报告人:华南师范大学教授 赵建亮报告题目:环境效应导向分析技术研究进展 效应导向分析技术(effect-directed analysis, EDA)是分析复杂基质中效应污染物的实用工具,该方法结合了生物效应测试、有机污染物分离、污染物浓度测定和结构鉴定等分析评价方法,可有效用于各种环境基质样品的有机污染物分析。报告主要介绍了EDA在环境应用中的研究进展,包括焦化废水的环境雌激素效应导向分析,利用高分辨效应定向分析鉴定地表水和污水处理厂废水中的致突变物质和内分泌干扰物,以及用于城市河涌沉积物致毒物质鉴定等。
  • 生态环境部9月新发布!新污染物监测热度飙升!
    新污染物主题定制会合作邀请函一、市场机会1、政策标准及监测进展我国目前的新污染物监测主要在科学研究层面开展。2022年5月24日,国务院发布《关于新污染物治理行动方案的通知》,指出依托现有生态环境监测网络,在重点地区、重点行业、典型工业园区开展新污染物环境调查监测试点。2023年,生态环境部印发《2023年新污染物环境监测试点工作方案》,由中国环境监测总站牵头,会同生态环境部南京环境科学研究所、生态环境部华南环境科学研究所、国家海洋环境监测中心、生态环境部环境发展中心国家环境分析测试中心等多家技术支持单位,对口帮扶天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测。2024年9月,生态环境部组织编制了《新污染物生态环境监测标准体系表(2024年版)》,由新污染物生态环境监测标准体系框架图和体系项目表构成,盘点了170项新污染物生态环境监测标准当前状态,并指明技术规范类标准项目为新污染物物环境监测技术指南、高分辨质谱筛查技术指南等。分析方法标准项目涉及的监测介质主要为水废水、环境空气和废气、土壤和沉积物、固体废污。试点工作进展:江苏省作为新污染物治理先试先行地区之一,截至今年8月已顺利完成全省新污染物环境本底调查监测、第一期工业园区新污染物试点监测和筛查监测的采样工作,进一步拓宽监测范围,针对长江流域、淮河流域、太湖、京杭大运河及沿海区域,在国、省控断面、饮用水水源地及省界断面设置143个点位,针对重点行业企业及其周边环境水体,在苏州市、常州市、泰州市、无锡市和南通市5个典型园区共布设地表水、地下水、废水和环境空气等近150个点位,对18大类约180种新污染物,开展环境本底监测及工业区试点调查监测。可以预见,未来一段时间内,我国对新污染物的研究分析将持续深入。为此,仪器信息网3i讲堂诚邀仪器生产厂商组织网络会议,助力我国新污染物的治理工作。2、涉及检测项及检测技术国内外关注新污染物多聚焦微塑料、抗生素、内分泌干扰物、全氟多氟化合物。实验室分析技术:气相色谱-质谱联用法、高效液相色谱法、LC-MS法、HPLC-MS/MS法、UPLC-MS/MS法等。二、拟合作会议主题(部分)三、往届会议主题(部分)* *主题一:微塑料微塑料检测与分析网络研讨会(2023年)https://www.instrument.com.cn/webinar/meetings/microplastic230427/微塑料检测与分析 主题网络研讨会(2022年)https://www.instrument.com.cn/webinar/meetings/microplastic20220609/* *主题二:持久性有机污染物持久性有机污染物(POPs)检测与分析研究进展主题网络研讨会(2021年)https://www.instrument.com.cn/webinar/meetings/pops2021/持久性有机物(POPs)检测与分析研究进展主题网络研讨会(2020年)https://www.instrument.com.cn/webinar/meetings/pops2020/氯化石蜡检测分析技术网络研讨会(2022年)https://www.instrument.com.cn/webinar/meetings/cps20220824/* *主题三:PFAS类分析检测典型新污染物检测与分析技术进展 网络研讨会(2023年)https://www.instrument.com.cn/webinar/meetings/lgc230620/第二期环境与健康论坛--新污染物筛选、识别与健康效应(2023年)https://www.instrument.com.cn/webinar/meetings/environmentandhealth230420/PFAS分析检测技术及新国标解读”网络研讨会(2022年)https://www.instrument.com.cn/webinar/meetings/pfas20221110/* *主题四:不同环境介质中各类新污染物检测技术第五届环境新污染物分析检测网络会议https://www.instrument.com.cn/webinar/meetings/newpollutant2024/第四届环境新污染物检测网络会议https://www.instrument.com.cn/webinar/meetings/newpollutant2023/第三届环境新污染物检测主题网络研讨会https://www.instrument.com.cn/webinar/meetings/newpollutant2022/四、主要参会人群从事新污染物、持久性有机污染物分析检测的技术人员或管理人员,主要参会单位包括不限于各省市监测站、生态环境中心等,以及国内从事新污染物相关研究工作的科研院所、高校实验室;各类生产制造企业、工业企业等。五、招商合作对象分析仪器及前处理设备的研发、生产厂商及经销商、第三方检测机构六、合作形式3i讲堂定制会。有意者可联系13717560883或填表登记(24小时内专人联系您) (长按识别二维码,填写合作意向登记表)关于3i讲堂:2010年,仪器信息网3i讲堂(webinar.instrument.com.cn)正式创立,开启科学仪器及分析测试行业的网络会议新时代。作为科学仪器行业的“百家讲坛”,3i讲堂联合业内专家学者、相关学会、协会及仪器厂商共同组织网络研讨会,以在线直播方式分享科学仪器新技术、新应用;展现行业热点;深度解读行业法规、政策与标准,为国内外从事科学仪器研发及应用的专业技术人员搭建实时、在线的技术交流平台。 迄今,3i讲堂已成功组织数千场网络研讨会,涵盖食品、制药、环境、生命科学、能源石化、仪器技术等领域,每年为数十万科学仪器从业人士提供技术交流机会,有效促进各领域用户仪器应用能力的提升和科学仪器技术的推广。
  • 海南大学新检测技术将有效预警海洋核污染物
    海南大学南海海洋资源利用国家重点实验室王宁和袁益辉研究团队提出利用DNA结构实现超灵敏和高选择性锶离子检测的方法,可快速有效实现海洋放射性污染物监测,助力核电产业绿色可持续高质量发展。相关成果近日发表在国际学术期刊《自然可持续发展》上。  随着核能的广泛应用,防治放射性核污染成为人们关注的话题。作为235U的裂变产物,90Sr是最常见的放射性核污染元素之一。其化学性质与钙相似,易在环境与生物体内富集,对人体的辐射可引起骨癌、白血病等疾病,此外,因其半衰期长达29年,具有长期危害性,是人类不可忽视的一大隐患。然而,由于锶离子缺乏特征能量射线,使用现有技术无法快速、全面且精准地进行锶元素检测,如何精准检测一直是个行业难题。  鉴于此,王宁和袁益辉研究团队提出了一种以鸟嘌呤-四联体DNA(脱氧核糖核酸)结构实现超灵敏和高选择性检测Sr2+离子的方法。该团队通过利用荧光染料硫黄素T触发DNA折叠,形成鸟嘌呤-四联体DNA结构,并利用Sr2+与该DNA结构的高结合亲和力,取代结构中的荧光染料硫黄素T,从而导致荧光强度衰减。  此项研究提供了一种快速高选择性核污染检测技术的方法,首次实现低至2.11纳摩的检测限,具有超高灵敏度、高选择性、广泛适用性和高可靠性。
  • 天津启动新污染物治理,985高校齐助阵微塑料检测!
    随着《重点管控新污染物清单(2023年版)》的发布,各省关于新污染治理的行动方案也相继公布。近日,天津市发布了《天津市新污染物治理工作方案》,启动新污染物治理,并制定了16项重点任务。据悉,天津将建立新污染物环境调查监测制度,开展天津市新污染物环境调查监测,2025年底前,初步建立新污染物环境调查监测体系。同时,启动全市新污染物筛选及“一品一策”管控行动;启动天津近岸海域微塑料监测行动,开展以渤海近岸海域典型区域为试点的微塑料监测。此外,方案指出,天津鼓励科研院所、高新技术企业申报国家和市级相关重点科研项目,推动技术创新中心、产业创新联盟、企业重点实验室等平台开展新污染物相关新理论基础研究和有毒有害化学物质管控关键核心技术攻关,加强涉新污染物科学研究,提升创新能力。为促进分析测试技术在环境新污染物领域的应用与发展,助力高校、科研院所科研能力提升,天津分析测试协会联合仪器信息网,将于2023年3月2日组织召开“天津分析测试新技术与前沿应用高端论坛——环境新污染物分析与检测创新技术论坛”。届时将邀请环境领域知名专家学者围绕分析测试最新技术与前沿应用,以线上报告、圆桌讨论等形式展开深度交流。985高校专家亲临,合力助阵微塑料检测南开大学汪磊教授、天津大学的刘宪华教授,将共同出席本次会议,聚焦微塑料检测的最新成果、技术进展。与此同时,来自天津科技大学、天津工业大学、农业农村部环境保护科研监测所的专家将出席,分享关于新污染物识别、痕量检测、纳米材料识别、微流控检测技术等方面内容。诚邀参会。点此报名:https://www.instrument.com.cn/webinar/meetings/tjaia230111/ 报告主题报告嘉宾嘉宾单位环境微塑料的检测方法开发与应用汪磊南开大学环境学院 教授/博士生导师植物对有机磷酸酯的转化途径及机理研究刘青天津科技大学海洋与环境学院 博士后微塑料的分析测试及其环境影响研究刘宪华天津大学环境学院 副教授/博士生导师典型纳米材料环境识别技术及植物风险效应研究穆莉农业农村部环境保护科研监测所 副研究员膜基微流控耦合系统应用于痕量污染物检测研究王捷天津工业大学环境科学与工程学院 教授/博士生导师
  • 揭秘大气污染物监测
    提起当下中国的大气污染,人们首先想到的可能就是&ldquo PM2.5&rdquo ,这个环境术语现在几乎是老幼妇孺皆知。它是指那些当量直径在2.5微米以下的大气中的细颗粒物。与较粗的大气颗粒物相比,它们在大气中的停留时间长、输送距离远,而且可深入到人体的细支气管和肺泡,不溶部分沉积在肺部,诱发或加重多种呼吸系统疾病,可溶部分则通过血液循环进入全身,影响心血管系统、生殖系统等全身多个系统的健康。 但是如果进一步深究,PM2.5究竟由哪些组分组成?它们的前体是什么?有哪些技术可以用来对它们实施监测?它们的源头如何确定?等等。这些专业性的问题恐怕就得找专业人士解答了。为了寻找答案,笔者参加了近日在京举办的&ldquo 2014大气颗粒污染物监测与防治技术研讨会&rdquo ,以一探究竟。 会议现场 源解析 重中之重 从政府部门防治的角度而言,大气污染物来源解析肯定是最受关注的。只有先找到污染物的源头,才能谈得上下一步的防治。据会上的消息人士透露,到今年年底,国家要完成所有省会及直辖市的大气污染物源解析,而到明年年底,要完成300余个地级市的污染物源解析。要保证这些工作的顺利进行,坚实的技术支撑是不可或缺的。 目前,我国采用得比较多的源解析技术方法是属于受体模型技术方法范畴的化学质量平衡模型。首先,通过颗粒物源类调查、识别,确定主要排放源类(种类、点位和数量)。其次,采用科学规范的采样和分析方法,进行颗粒物源类和受体样品的采集及化学分析,从而构建颗粒物源类和受体化学成分谱,选用合适的CMB模型软件进行解析。这种方法不依赖详细的排放源清单信息和气象资料,能够定量解析源清单技术方法难以确定的源类。 监测技术 五花八门 至于说到用于获取PM2.5原始数据的监测技术,可以称得上是五花八门。一方面是因为,对于PM2.5而言,需要监测的参数较多,诸如:颗粒物质量浓度、颗粒物化学组分(包括:元素成分、水溶性离子、含碳组分等)、二次颗粒物前体物(包括:SO2、NOx、VOCs)等。另一方面也是由于各公司采用不同的技术路线而造成的。 以颗粒物质量浓度为例,目前常用的三种测量方法,分别是&beta 射线法、振荡天平法以及光散射法,相应仪器的代表厂家,譬如赛默飞。 美国TSI和德国GRIMM(上海奕枫代理)则在本次研讨会上分别展出了各自的光学气溶胶粒径谱仪和扫描电迁移粒径谱仪。这两型仪器不仅可以给出颗粒物的总质量浓度,而且还可以给出粒径分布的结果。而扫描电迁移粒径谱仪通过差分粒子电迁移器和凝聚核粒子计数器相结合,将可测的粒径下限推进到5nm以下。这两个&ldquo 老对手&rdquo 的展位位置也很有意思,分居于会场两侧,遥遥相对。从这一点上可以看出组委会也确实是煞费了苦心。 除了上面这一对外,笔者在会场还碰到了另外两对四家堪称是对手的厂家,分别是研制气溶胶飞行质谱的格林德科技(德国)和广州禾信;以及开发激光雷达的中科光电与怡孚和融。前者是一种单颗粒分析技术,可同时对颗粒进行物理和化学特性分析。而后者可对高空的大气颗粒物进行遥感探测。很有趣,真应了那句&ldquo 不是冤家不聚头&rdquo 。 豪华的&ldquo 配角&rdquo 阵容 说完了PM2.5,让我们再来看看另一种主要大气污染物,&ldquo 可挥发性有机物&rdquo ,也就是通常所说的VOCs。VOCs主要包括烷烃、烯烃和芳香烃以及各种含氧烃、卤代烃、氮烃、硫烃、低沸点多环芳烃等,是空气中普遍存在且组成复杂的一类有机污染物。大气中的VOCs虽然浓度不高,但对环境和人体却有重要影响。同时,作为PM2.5的前体物之一,VOCs也是造成酸雾、烟雾的重要原因。 目前,对于VOCs的检测依然是以色谱或色质联用技术为主(某些便携式仪器也有采用光离子化技术的),这也就不奇怪为什么在本次研讨会上可以看到像安捷伦、PerkinElmer这些主业为实验室仪器的跨国公司的展位。在这个领域正好可以发挥它们在色谱及质谱技术方面的优势。岛津公司虽然未设展位,但该公司的陈志凌先生在他的大会报告中,介绍了该公司的全二维色谱技术在分析PM2.5中所含有机物的应用。 新&ldquo 面孔&rdquo 在本次研讨会上,两款刚刚进入中国不久的环境监测产品也给笔者留下了深刻的印象。 瑞士DIGITEL大流量气溶胶采样装置 夏普公司手提式环境微生物监测仪 一款是来自瑞士DIGITEL(陕西桑美代理)的大流量气溶胶采样装置,这款采样装置的最大特点是能够对采样过程中的体积流量进行恒定的、精确的控制,从而保证后续测量结果有一个出色的可重现性。据桑美公司总经理凌萌先生介绍,DIGITEL公司的采样器目前已被很多欧盟国家采纳为标准气溶胶采样器。当然这款产品的价格也是不菲,市场报价为40余万人民币。 另一款产品则非常小巧,是来自SHARP(夏普)公司的手提式环境微生物监测仪。没错,您没看错,就是那家著名的日本电器及电子公司。该产品采用了夏普公司独创的加热处理技术,以增强微生物固有的荧光强度。通过荧光测定,大约10分钟即可确定环境空气中浮游的霉菌和细菌总量。稍显遗憾的是,目前这款仪器只能测定微生物总量,而无法对霉菌或细菌进行进一步的细分。此外,夏普公司的代表没有透露这款仪器的市场价格。(主编当班)
  • 首届 “环境新型污染物检测技术”网络大会来袭
    p span & nbsp & nbsp & nbsp & nbsp /span 新型环境污染物指的是目前确已存在,但尚无环保法律法规予以规定或规定不完善的、危害生活和生态环境的所有在生产建设或者其他活动中产生的污染物。近年来, 随着新型污染物分析检测技术进步和人们认识深入,发现许多新型污染物已经在世界范围内对生态系统造成了污染,虽然其在环境中的含量很低,但由于其稳定性、生物富集性和高毒性,给生态环境和人类健康造成巨大威胁。 /p p span & nbsp & nbsp & nbsp & nbsp /span 《国家环境保护“十三五”科技发展规划纲要》明确,构建我国环境污染物健康风险评估与控制理论体系;揭示氮、磷、持久性有机污染物等污染物的产生、迁移、转化等机制及环境生态效应;研究我国主要高风险污染物和新型污染物快速筛选理论方法;研发新型污染物监测仪器。11月3日,生态环境部常务会议审议并原则通过《“十四五”国家地表水监测及评价方案(试行)》时曾要求,“进一步优化地表水监测指标和评价方式,逐步在有条件的流域和地区探索开展新型污染物监测评估”。持久性有机污染物(POPs)、内分泌干扰物(EDCs)、抗生素、纳米材料、饮用水消毒副产物等环境新型污染物的检测、去除与控制技术已经引起社会各界的广泛关注并逐渐成为环境学科领域的研究热点。 /p p span & nbsp & nbsp & nbsp & nbsp /span 为搭建环境新型污染物检测技术交流平台,仪器信息网将于2020年11月17-18日举办“环境新型污染物检测”主题网络研讨会,邀请大气、水、土壤环境监测及检测领域的专家,针对饮用土壤抗生素检测、水中叶绿素检测、环境二噁英手动监测、环境超细颗粒物的识别及溯源等当下的热点及相关检测技术进行在线交流和探讨。 /p p a href=" https://www.instrument.com.cn/webinar/meetings/XXWRW2020/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/e8c7404c-f12a-4f6b-8bbc-28fb21b26a79.jpg" title=" 环境新型污染物监测(2).jpg" alt=" 环境新型污染物监测(2).jpg" / /a /p p style=" text-align: center " strong 会议日程 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 553" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 text-align: center" strong span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 11 /span /strong strong span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 月 span 17 /span 日 span & nbsp /span 环境新型污染物检测 span ( /span 上) /span /strong strong /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 09 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-10 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 土壤中抗生素残留检测技术 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 贺泽英 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 农业农村部环境保护科研监测所 副研究员 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 10 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-10 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 标准物质的质量分级及在环境检测应用 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 马蕊华 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 默克化工技术(上海)有限公司 产品技术 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 10 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-11 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 水中叶绿素 span a /span 的检测方法 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 尹宝国 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 北京市自然水集团水质监测中心 高级工程师 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 11 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-11 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 海洋塑料垃圾污染防治法律框架和管理措施 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 鞠茂伟 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 国家海洋环境监测中心 工程师 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 14 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-15 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 环境超细颗粒物的识别与溯源 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 刘倩 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 中科院生态环境研究中心 研究员 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 15 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-15 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 一键获得微塑料样品全部统计结果—— span 8700LDIR /span 激光红外成像快速同步定性定量解决方案 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 张晓丹 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 安捷伦科技 span ( /span 中国 span ) /span 有限公司 分子光谱产品线应用工程师 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 15 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-16 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 饮用水中抗生素检测及消毒处理中的迁移转化 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 张晶 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 北京市疾病预防控制中心 副研究员 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 16 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-16 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 待定 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 待定 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 岛津 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 16 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-17 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 微塑料纳米尺度检测分析 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 潘响亮 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 浙江工业大学 教授 /span /p /td /tr tr td width=" 553" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 text-align: center line-height: 28px" strong span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 11 /span /strong strong span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 月 span 18 /span 日 span & nbsp /span 环境新型污染物检测 span ( /span 下) /span /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 09 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-10 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 典型行业中二噁英废气采样情况概述和注意事项 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 朱明吉 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 重庆市生态环境监测中心 高级工程师 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 10 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-10 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 赛默飞液质联用技术在环境分析研究中的应用 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 高鹏 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 赛默飞色谱与质谱 质谱应用工程师 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 10 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 30-11 /span : span 00 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 环境空气中新型有机污染监测的解决方案 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 蒋家奎 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 思聚仪器仪表(上海)有限公司 产品技术专家 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 11 /span span style=" font-size: 14px font-family: 微软雅黑, sans-serif" : span 00-11 /span : span 30 /span /span /p /td td width=" 180" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 环境二恶英手动监测及其难点 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 谢南南 /span /p /td td width=" 194" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" font-size: 16px font-family: 宋体 line-height: 28px" span style=" font-size: 14px font-family: 微软雅黑, sans-serif" 中国检验检疫科学研究院 工程师 /span /p /td /tr /tbody /table p span style=" font-size: 10.5pt font-family: 微软雅黑, sans-serif " span & nbsp & nbsp & nbsp & nbsp /span /span 扫描下方二维码或点击链接报名参会: span style=" font-size: medium " /span /p p style=" text-align: center " span style=" font-size: 10.5pt font-family: 微软雅黑, sans-serif " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7b7f12ea-1114-48e2-9ea4-246222cf4bb2.jpg" title=" 图片 1.png" alt=" 图片 1.png" / /span /p p span style=" font-size: 10.5pt font-family: 微软雅黑, sans-serif " span & nbsp & nbsp & nbsp /span /span & nbsp 报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/XXWRW2020/" target=" _blank" https://www.instrument.com.cn/webinar/meetings/XXWRW2020/ /a /p
  • 污染物监测升级 无人机助力大气环境立体监测
    p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p strong   填补大气环境监测和研究盲区 /strong /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入 研究提供基础数据。 /p p strong   精准化大气研究工具 /strong /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p strong   从无到有的科研“创业” /strong /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p p /p
  • VOCs气态污染物监测:罐采样-GC/MS结合技术概述与进展
    p   气态挥发性有机物(VOCs)的污染严重威胁人们的健康,因而对它的监测技术的研究也越来越多。其中罐采样与气相色谱/质谱联用的检测技术在VOCs气态污染物测定中的应用逐步受到关注。对罐采样技术进行了综述,重点介绍了罐采样与气相色谱/质谱联用技术在环境空气、室内空气、废气中VOCs检测的应用。 /p p   “挥发性有机化合物是大气环境中的重点污染物之一,其主要成分为烃类、含氧烃类、含卤烃类、氮烃及硫烃类、低沸点的多环芳烃类等,种类繁多且成分复杂。 /p p   环境空气中挥发性有机化合物主要来源于工业废气、汽车尾气、光化学污染物等。此类化合物大多有毒性及一定的刺激性气味,易被皮肤、黏膜等吸收,具有致突变、致畸、致癌性,对人体的健康产生有不可估量的损害,已日益受到人们的关注,成为国内外研究的焦点。 /p p   一般的VOCs采样分析方法如吸附解析法、热脱附法等,由于灵敏度较差、采样时间长、通用性较差等缺陷使其使用有一定的局限性。而Summa罐采样法可以克服上述不足,是目前空气采样中比较好的方法。本文详细介绍了罐采样方法及其与气相色谱/质谱联用技术在VOCs检测中的应用。 /p p    span style=" color: rgb(0, 112, 192) font-size: 20px " strong 1 罐采样技术 /strong /span /p p   “罐采样主要是通过罐内负压自动采集现场空气,能够完全还原现场空气状态。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201611/noimg/a65a4f85-f954-4d4f-9ac8-bd2a7d2b8fdc.jpg" title=" 2.jpg" / /p p   气体样品采集后,在Summa罐中保存稳定,尤其是样品放在经过硅烷化处理过的Summa罐中可以保存几个月。李振国发现在某些情况下,气罐中的气体混合物组分将发生改变以至于不能代表被采集的样品。气罐表面面积有限,所有的气体都争可提供的活性点,因此不能确定绝对存储稳定期限,幸运的是在正常采集环境空气的使用条件下,即使储存30天罐中的大多数VOCs都接近它们原始的浓度。另外罐采样还可用泵加压技术增大采样体积使得样品压力达到10~20倍大气压,用于分析的样品量大大增加 。Bottenheim 等 使用加不锈钢泵的2.6L电抛光罐采集样品,使罐压最终达到 2.58 atm。 Grosjean 等使用电抛光罐采样GC-FID和GC-MS联用法对巴西某市空气进行分析,采样时利用泵将罐加压到30磅,研究检测出空气中所含的150种VOCs。因此,加压增大采样体积能减少采样过程中污染和吸附损失造成的影响。 /p p   “Summa罐的罐体主要有抛光处理和硅烷化两种。其中经典抛光处理的Summa不锈钢罐取样技术,是美国EPA采用的标准方法(TO-14、TO-15)。 /p p   采样时用泵将罐中空气采集成正压,多用于非极性物质的分析。其优点是可避免吸附剂采样时的穿透分解和解析,但采样设备价格昂贵、标样的制备和罐的清洗费时费力,且不能对样品进行预浓缩。不锈钢的采样罐技术在国内外的挥发性有机物的测定中应用较多。Batterman等使用抛光处理的Summa罐在分析储存挥发性有机物时发现,醛类和萜类在湿空气填充罐中的半衰期是18天,湿氮气中24天,干空气中最短为6天,研究表明Summa罐在储存有机物时需要一定的湿度。采样时可以根据样品的种类和需要连接流量阀控制气体的流速。Kwangsam等利用安装了流量控制阀的6L苏码罐采集空气2小时。王伯光等采用内壁经抛光电钝化的不锈钢采样罐采样分析了室内空气中挥发性有毒有机物,此外他还将限流阀、不锈钢过滤头和采样管连接到采样罐进口对交通道路的空气进行样品采集,采样流量为30ml/min,每次采样时间为3h。 /p p   内壁硅烷化的Summa罐在气体污染物的测定中使用较多。甲醛等极性组分和轻羰基化合物C2~C3组分一直被排斥在罐采样法之外,原因在于要么它们在采样罐中不稳定,要么在预浓缩或者色谱分离当中存在困难,而采用Summa罐的内壁硅烷化技术可以解决这一难题。尹彦欣利用硅烷化Summa罐对不同场所如居室、汽车、超市的室内空气进行采样,利用预浓缩器将气体样品冷聚焦,并去除水和二氧化碳,然后自动将样品导入气相色谱质谱,分析其中的主要有机污染物。结果表明该方法采样快速简单,分析操作中不需使用任何有机试剂,实验背景干扰少,定性分析准确。 /p p   “虽然罐采样法可以同时采集多种所需样品,使用快速方便。但是该方法成本高,对低浓度往往因缺少相应的稳定标准物质而无法准确定值,同时仪器的检测限也限制该方法的推广应用。 /p p   strong span style=" color: rgb(0, 112, 192) "   span style=" color: rgb(0, 112, 192) font-size: 20px " 2 罐采样-气相色谱/质谱联用技术 /span /span /strong /p p   由于罐采样只是一种空气样品的采样手段,在气态VOCs测定过程中样品采集后,通常会与气相色谱或气相色谱/质谱联用的检测技术对气态VOCs中的组分进行定性或定量的分析。 /p p   气相色谱法是近二十年来迅速发展起来的一种新的分离分析方法,它具有高效能、高选择性、高灵敏度、分析速度快、应用范围广和样品用量小等特点,尤其对异构体和多组分混合物的定性、定量分析更能发挥其作用,因而在VOCs检测方面得到了广泛应用。 /p p   “一般用于罐采样气相色谱分析的检测器有:火焰离子化检测器(FID)、电子捕获检测器(ECD)、质谱检测器(MS)、火焰电离检测器(FPD)等,其中FID与MS常用于气态VOCs的分析测定。 /p p    span style=" color: rgb(0, 112, 192) " strong 2.1 罐采样-GC/MS /strong /span /p p   1957年Holmes等首先实现了气相色谱与质谱联用,主要是利用气相色谱法对混合物的高效分离能力和质谱法对纯化合物的准确鉴定能力而开发的分析方法。采用罐采样对真实的气态物质进行采集,再与气相色谱/质谱联用可对环境样品中所含的挥发性和半挥发性有机化合物进行准确地定性、定量分析和检测,且与其他技术相比有无可比拟的优越性。孙焱婧等将Summa罐采样气相色谱/质谱法与VOCs在线监测法进行定性对比,结果表明,实验的VOCs的Summa罐采样气相GC-MS法的偏差在可接受范围内,具有一定的环境适用性。Goldthorp等研究比较了罐采样-GC/MS和便携式IR两种方法对空气中轻碳氢组分排放的监测,结果表明,便携式IR不能满足研究的需要,而罐采样-GC/MS可以获得较为完整的排放模型。 /p p   鉴于罐采样-GC/MS联合技术较高的定性定量分析能力,因此在气态VOCs的检测中发挥了重要的作用。Chiang等使用不锈钢罐每天采集台湾南部臭氧不合格地区VOCs样品,并用GC-MS对C3~C11的碳氢化合物进行分析研究,取得了理想的结果。肖珊美等和李振国都采用苏码罐采样技术,预浓缩系统与GC-MS联用,建立了测定环境空气中41种挥发性物的检测方法,研究表明该方法采样方便,灵敏度高,准确度高,且样品保存时间长,而且绝大部分有机物该法检出限达0.2ppbv,回收率在86%~105%的范围。 /p p   机动车尾气等污染也是城市大气VOCs的主要来源,并成为影响城市环境空气质量的重要因素。Mei-Yin等使用罐采样GC-MS联用法分析检测了台北某隧道中的56种VOCs,检出限为0.1~0.7ppbv。鲁君和吴迓名等分别利用罐采样-气相色谱/质谱法测定上海市主要交通干道和某越江隧道空气中的挥发性有机物,结果共检测出78中VOCs,分析了上海市和隧道废气样品中挥发性有机物的污染水平并查明了隧道空气中挥发性有机物的种类和组成。 /p p   在室内污染的测定中,罐采样-GC/MS联用技术也是常用的检测技术之一。谭和平等采用罐采样GC/MS分析方法测定室内空气中的甲醛,考察了凝结水对样品分析浓度的影响、样品在罐中稳定储存的时间,结果表明在样品采集及储存过程中应避免出现冷凝水,正常情况下样品能在罐中稳定存储1个月以上 研究了该分析方法的特性如检出下限、回收率、线性响应范围、精密度、稳定性及方法扩展不确定度,证实该方法比现行国家标准方法稳定、准确、检出限低。李月娥采用预冷浓缩系统和气相色谱—质谱联用,建立了测定室内空气中39种挥发性有机物的分析方法,该方法采用苏码罐采样,经液氮预冷冻浓缩后,用GC-MSD检测。研究表明苏码罐采样预冷浓缩和气—质联用技术测定室内空气中痕量挥发性有机物的分析方法,重现性好,可以多次进样分析,有满意的准确度和灵敏度。 /p p   此外在生产燃烧的有组织排放中,罐采样与气相色谱/质谱系统分析联用在VOCs的测定中多组分的定性和定量也发挥了作用。 /p p    strong span style=" color: rgb(0, 112, 192) " 2.2 罐采样-GC/FID /span /strong /p p   罐采样与气相色谱联用,以FID作为检测器也是测定VOCs的常用的技术。FID是一种利用氢气/空气火焰的热能和化学能作电离源,使有机物电离,产生微电流而响应的检测器。它是破坏性的质量型检测器,其响应值取决于单位时间进入检测器的组分量,峰高随着载气流速的增加而增大,峰面积基本不变。FID对气体流速、压力和温度变化不敏感。它对H2O、O2、N2、CO和CO2等无响应,但对几乎所有的有机化合物均有响应,特别是对烃类灵敏度高,且响应与碳原子数成正比,检测限达10~12g/s。Yoshiko等使用不锈钢罐采集草原植被中的空气,用GC/FID法测出约40种非甲烷挥发性有机物。 /p p   谭和平等采用Summa罐采集样品,自动进样器进样,三级冷阱预浓缩样品,气相色谱(GC)柱分离,氢火焰离子化检测器(FID)检测,并采用自主研制的混合标准气体定性定量分析,从而得到各室内挥发性有害有机物及总挥发性有机物(TVOC)浓度。研究表明全采样GC/FID检测室内挥发性有害有机物方法样品储存时间长,加标回收率、线性范围、准确度、精密度等方法特性较国家标准方法有明显改善。FID检测器替代MS检测器不仅满足方法学对方法特性的要求,更明显降低了分析成本。Olso等利用Summa罐瞬时采样法采集85个样品,并用GC/FID对样品中53种VOCs进行检测。 /p p   氢火焰离子化检测器(FID)对有机污染物进行定性和定量测定是比较成熟的方法之一,常用于非甲烷总烃的测定。Seila等对空气中的VOC进行检测,使用罐采样GC/FID对空气中C2~C10+的碳氢有机物进行研究。Mugica等研究食物烹制时候释放的非甲烷有机物时用6L的Summa在不同餐饮行业采集样品并由FID分析。 /p p   strong span style=" color: rgb(0, 112, 192) "  2.3 其他联用方法 /span /strong /p p   除了上述联用方法,罐采样还可以与GC/ECD、GC/FPD等联用。戴秋萍等研究讨论了空气罐采样、三级冷阱预浓缩对气体样品进行前处理,气相色谱-火焰光度检测器等对空气中七种恶臭污染物进行分析,结果表明该分析方法准确可靠,可用于空气中恶臭污染物的检测。 /p p    strong span style=" color: rgb(0, 112, 192) " 3 小 结 /span /strong /p p   利用罐采样能采集并再现真实气体这一特点,加上与气相色谱或气相色谱/质谱联用的检测技术,罐采样法在气态VOCs污染监测中的应用越来越广泛。但由于容器特点致其获得的样品浓度低,这就要求分析和监测仪器的精密度相应增高,检出限降低,成本也相应提高。为此,减少罐中样品的残留量,增加可测样品的体积,提高预浓缩系统的有效性至关重要。 /p p   作者:李丹 戴玄吏等,单位常州大学和常州市环境监测中心 /p p   文章刊登于环境工程2013年第四期。 /p
  • 新污染物监测成为生态环境工作新热点(环境经济杂志)
    持久性有机污染物(POPs)、内分泌干扰物(EDCs)、抗生素(Antibiotics)和微塑料(Microplastics)……这一串串英文符号从名称上看,它们可能有些陌生,但生活中却十分常见,如药品、个人洗护用品、汽油添加剂、防污涂料及添加剂等的使用都有可能是环境中新污染物的来源。随着对化学物质环境和健康危害认识的不断深入,可能更多的新污染物还会不断被识别出来。中国环境监测总站分析室主要负责人袁懋告诉《环境经济》,与二氧化硫、氨氮等常规污染物相比,很多新污染物在环境中的存在水平不高,但具有毒害性、难降解、持久性等特点。在新污染治理工作上,鉴别和测试它们依赖于高精度的专业监测仪器。可以说,目前新污染物治理所依赖的各种技术手段中,监测技术及手段的发展正成为生态环境工作的新热点。工作人员正在讨论新污染物实验数据中国环境监测总站供图。赵淑莉/摄新污染物监测有三项重点工作近年来,国家层面正积极将新污染物纳入环境风险防范体系,新污染物治理工作已是箭在弦上。我国在新污染物法规制度、调查监测、源头管控、过程控制、末端治理及能力建设等方面开展了一系列工作,正在研究建立化学物质环境风险评估与管控技术标准体系,有效支撑了新污染治理工作。袁懋告诉记者,根据《新污染物治理行动方案》(以下简称《行动方案》)相关要求,在生态环境部生态环境监测司的统筹下,他们针对新污染物监测重点做了以下几项工作。一是研究建立健全新污染物环境监测技术体系。开展新污染物相关监测方法和监测规范研究,加快构建新污染物监测技术体系。二是做好新污染物环境监测试点。生态环境部已印发《2023年新污染物环境监测试点工作方案》(环办监测函〔2023〕219号),由中国环境监测总站牵头,会同生态环境部南京环境科学研究所、生态环境部华南环境科学研究所、国家海洋环境监测中心、生态环境部环境发展中心国家环境分析测试中心、生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心、生态环境部黄河流域生态环境监督管理局生态环境监测与科学研究中心、生态环境部海河流域北海海域环境监督管理局生态环境监测与科学研究中心等技术支持单位,对口帮扶天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测。三是提升监测水平。突出试点辐射带动作用,指导地方进行新污染物监测能力建设,提升监测水平,有效支撑新污染物治理。目前相关监测方法研究、技术体系构建工作在稳步推进中。第一阶段试点监测工作也在如火如荼开展。袁懋表示,根据调研的各地监测能力以及前期工作基础,结合区域分布,选取的10个试点地区,覆盖了我国东、中、西部地区,涵盖了长江、黄河流域的若干省份,也包括了沿海省和内陆省;围绕《行动方案》中列明的重点行业,各试点地区结合对本地区的涉新污染物行业调查结果,确定本年度试点监测的行业企业或典型工业园区(石化、印染、橡胶、医药、畜禽养殖等)此外,根据管理需求将人口密集区的城镇污水处理厂纳入监测范围,开展污水及其周边地表水、一般水质等监测,因此试点监测可一定程度上反映我国不同区域、重点行业等的新污染物排放以及对周边地表水等的影响情况。袁懋说:“10个试点省份已编制本省份的新污染物环境监测试点工作方案和监测方案,目前正在按计划开展本年度第一阶段新污染物试点监测。”例如,江苏省试点8月份上报的监测方案是在2个典型区域共布设地表水及饮用水源地点位28个、污水点位31个、环境空气点位13个,涉及的新污染物项目主要是根据试点地区实际生产及排污情况,并结合《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》等管理需求进行筛选确定,包括抗生素、全氟化合物、邻苯二甲酸酯类、内分泌干扰物等7大类。江苏省试点监测在国家的基本要求上,增加了连云港大浦工业区环境空气中异味监测,旨在更好地、有针对性地解决工业区的实际环境问题和监管需求。截至8月,2个试点地区均已完成了第1期实际样品采样,各实验室的分析测试工作正在开展中。江苏省通过参加试点监测调查、能力验证考核,在实践中提高新污染物监测水平。一方面将初步掌握省内典型区域新污染物环境赋存情况,为新污染物管控提供科学依据;另一方面通过对驻市中心技术人员的实训,加快构建全省新污染物监测能力网络,进一步提升全省新污染物监测技术能力。由此逐步理清工作关系,发挥示范效应,为形成省内新污染物监测业务化运行模式、积累工作经验奠定基础,为落实国家和江苏省新污染物治理工作提供技术支撑。对于新污染物而言,只有摸透“敌情”,方能有的放矢、精准治理,为下一步更为具体的监管要求筑牢基石。哪些新污染物需要优先监测?新污染物治理工作起步晚、基础较为薄弱、治理难度大,对地方尤其是环境监测部门而言,要想补齐不足与短板,还面临诸多挑战。袁懋说:“通过新污染物的监测调研工作,我们也发现了当前新污染物面临的挑战。”具体而言,一是新污染物种类多、新增多,来源广,应该在污染源或化学品信息调查、风险筛查的基础上开展监测,以了解环境风险较大的新污染物的污染现状;但目前监测部门对当地的污染源或化学品信息调查情况掌握不够,各地应加强建立相关部门协作机制、促进信息共享。二是监测技术体系有待完善,现有的技术规范、监测方法及质控要求,可初步支撑新污染物环境调查监测试点工作,但仍有较大缺口,亟待加快开展生态环境管理迫切需求的重点管控新污染物监测分析和质量管理等技术研究,进一步规范和完善新污染物监测方法。三是有些新污染物浓度较低,有的甚至达到痕量/超痕量水平,监测技术难度大,对仪器设备、技术能力和人才队伍要求非常高,且很多新污染物尚无成熟的监测方法,国家和地方应加强监测能力建设、人员技术培训,以及监测技术方法研究,不断完善生态环境监测网络,以适应新污染物试点监测工作需要。四是部分地区经费紧张,难以支撑新污染物监测,各地应加大对新污染物监测工作的资金投入,做好资金保障,确保新污染物监测工作顺利进行。据了解,新污染物监测整体来说面临成本较大的压力。仪器设备、标准溶液以及试剂耗材等多依赖于从国外进口,价格高昂、购买周期长。当前,国产化仪器设备、标液耗材等的研发及生产需尽快提上日程。“新污染物,种类繁多。”中国科学院生态环境研究中心研究员、环境化学与生态毒理学国家重点实验室常务副主任郑明辉表示,由于我们的技术和财力精力都有限,所以对于新污染物的治理,还要抓住重点,把一些优先需要治理和优先监控的污染物找出来。从战略角度来看,应该尽快将当前最急迫的污染物列入优先监测和优先监管名单,并不断更新优先监测的名单。从优先性角度来看,这也是国际上的趋势。那么,如何识别和判断最优先管控或者是最优先监测的新污染物呢?“一般来看,应该从这几个方面去考虑。”郑明辉表示,首先,评价污染物对生态环境和人体健康的危害或者是风险的程度,这也是国际上管控污染物的一个基本原则。例如,污染物在环境中的浓度;在环境中难降解的程度,也就是持久性;或者虽然在环境中的浓度水平很低,但是经过食物链放大,在生物体内的富集,进而危害生物,也影响到人类健康。“此外,对于我们在用的一些化学品,在有适当的替代技术和替代产品之前,可能还要有一个过渡时期。”郑明辉说:“所以优先性也需要综合分析和考虑。”“新污染物监测任重道远。”袁懋告诉记者,当前,各省(区、市)已迅速响应相关政策,出台、印发《新污染物治理工作方案》。虽然扎实管控、做好治理新污染物的工作,但是依然需要确保“监测先行、监测灵敏、监测准确”,结合监管实际,落实相关技术等保障措施。工作人员正在开展新污染物分析方法研究。中国环境监测总站供图。赵淑莉/摄新污染物监测技术与方法要求高新污染物一般具有“新”“多”“广”等特点。新,是新近发现或者被关注;多,是现有种类多、新增多;广,是来源广,可能来自生产、使用、消费和处置各环节;此外,有些新污染物浓度较低,甚至达到痕量/超痕量水平。这些特点,对新污染物监测技术与方法提出了更高要求,新污染物比其他污染物监测难度大。袁懋告诉记者,目前,新污染物试点监测主要以相关名录为抓手,即聚焦《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》《优先控制化学品名录(第一批)》《优先控制化学品名录(第二批)》,结合各地区重点行业涉新污染物种类以及监测技术能力,确定开展监测的项目。新污染物的监测究竟要经历哪些阶段?袁懋介绍,经历过程主要为调研本辖区涉新污染物行业分布、现场踏勘并编制监测方案、根据测定项目及相关要求形成监测能力、按照标准方法或技术规范开展监测。简而言之,针对不同类型的新污染物,分析方法不同,需分别采样分析。比如抗生素监测,因为抗生素种类很广,根据化合物结构可分为喹诺酮类、磺胺类、四环素类、大环内酯类、β-酰胺类等几大类,因此开展抗生素监测前,要根据调研的制药企业或园区涉原辅料、产品等情况,确定重点监测的抗生素种类,从而有针对性地进行高效监测。研究编制作业指导书,提高数据质量环境监测数据的质量是环保工作的生命线。准确、真实的环境监测数据,是客观评价环境质量状况、反映污染治理成效、实施环境管理与决策的基本依据。一旦自动监测数据被“污染”,造成的危害甚至不亚于生态环境污染本身。生态环境部对监测数据弄虚作假坚决“零容忍”,那么在实施新污染物监测时有哪些注意事项?“只有数据真实了,环境监测才能起到监督、溯源的根本作用,各领域的监测工作才有意义。”袁懋告诉记者,为提升环境监测技术水平,保证环境监测数据质量,根据《国务院办公厅关于印发新污染物治理行动方案的通知》《2023年国家生态环境监测方案》及《关于印发2023年新污染物环境监测试点工作方案的通知》的有关要求,中国环境监测总站将开展新污染物环境监测实验室能力验证。袁懋表示,新污染物试点监测工作,对于有方法标准或行业技术文件满足监测要求的项目,要求试点省份开展监测前进行方法验证,无方法或现有方法标准不满足监测要求的项目,中国环境监测总站组织技术单位编制了作业指导书,供试点监测参考。“为做好今年的试点监测工作,我们组织编制了6项作业指导书,其中抗生素比较受关注。”袁懋说:“针对水质抗生素的监测,作业指导书中规定了每批次样品分析时要进行标准溶液、实验室空白、平行样和基体加标样品测定,并且需要满足对应的指标要求。”袁懋进一步解释说:“这些作业指导书是参照《环境监测分析方法标准制订技术导则》的要求进行编制;其中,我们参照现行的相关监测分析方法标准,在作业指导书中对监测的质量保证和质量控制措施进行了严格的要求。与此同时,新污染物试点监测工作方案中规定,实验室在使用作业指导书前需要按照检验检测机构资质认定要求进行方法确认。这些都是对监测数据真、准、全的有力保障。”“另外,试点监测过程中,中国环境监测总站会同其他技术支持单位对试点省(区、市)开展包括质控在内的帮扶工作,严把数据质量关。”袁懋说:“以‘实打实’的质量控制,‘硬碰硬’的监督检查,狠抓环境监测数据质量,环境监测‘顶梁柱’基础作用将更加突显,将进一步加快我国生态文明建设进程。”潜在新污染物如何监测?《重点管控新污染物清单(2023年版)》(以下简称《清单》)自实施以来,14类重点管控新污染物按照国家有关规定,采取禁止、限制、限排等环境风险管控措施,相关管控实现有单可循,有据可依。记者注意到,在《清单》第五条明确指出,将根据实际情况实行新污染物的动态调整。除了《清单》中明确的14类重点管控新污染物外,还有社会关注度较高的微塑料,以及邻苯二甲酸酯类、有机磷酸酯类、紫外吸收剂、有机锡等其他潜在的新污染物。那么,潜在的新污染物如何监测?据了解,当前,基于监测的新污染物调查筛查主要有两个途径:一是列出调查清单,通过定量方法对关注的区域开展调查,通俗地讲,是带有“目标性”地判断某种新污染物在环境介质中是否存在。然而,如果调查的清单中没有环境介质中赋存的新污染物,将很难被管理人员发现并引起注意。二是使用基于高分辨质谱的高通量方法进行筛查,但目前在前处理、数据采集、谱库和筛查方法学上缺乏统一标准,不能准确定量,筛查结果“千人千面”,不同调查机构的定性和定量结果缺乏可比性。袁懋告诉记者,新污染物种类多、新增多,来源广,应该结合污染源或化学品信息调查、风险评估结果,对环境风险较大的新污染物开展监测。“对列入重点管控清单的新污染物,针对已有监测方法标准的,要抓紧形成监测能力;对尚无监测方法标准的,需加快进行标准方法制修订;以推进重点管控新污染物排污单位自测、执法监测和重点区域环境监测。”袁懋表示,筛查类监测采用的靶向与非靶向分析技术适用于新污染物的研究性监测。国家环境分析测试中心(以下简称分测中心)污染调查评估研究室主任杜兵表示,国家环境分析测试中心基于轨道阱质谱、飞行时间质谱等高分辨质谱技术,开发了基于环境管理需求的高通量靶向非靶向筛查准定量技术。“我们开发了适于不同类别仪器的广谱低损的前处理方法,通过不同离子化模式和数据采集模式的组合,开发高分辨全谱系谱库,开展靶向非靶向分析。使用DDA数据开展高响应污染物靶向/非靶向分析。使用DIA数据采样解卷积模式开展低响应污染物靶向/非靶向筛查,并辅助定量。”杜兵介绍。广泛筛查后,如何对潜在污染物进行更精准的定量分析?杜兵说:“对筛查出的环境污染物,还会与国内外主要管控名录对照,结合毒性效应和暴露水平,按照关注度水平和确认程度水平进行优先级排序,渐次建立高分辨谱库,形成一套基于气相色谱/液相色谱—高分辨质谱技术和统一的稳定同位素标记内标体系以及广谱低损的前处理方法相结合的定量技术,实现跨仪器平台的高通量定量数据的可比分析。”在开展化学物质基本信息调查和优先评估化学物质详细信息调查之外,一些省(区、市)也提出要开展环境筛查性监测,以发现在环境中潜在的新污染物。例如《上海市新污染物治理行动工作方案》就“点名”了《清单》外的内分泌干扰物——双酚A等,提出对其进行环境风险筛查。袁懋表示,为保障新污染物环境监测制度的建立和在全国范围内顺利开展新污染物监测,生态环境监测机构需要加强与科研单位和仪器公司等社会力量的广泛合作。目前,新污染物监测大型仪器分析设备主要依赖进口,我国高端检验检测仪器设备国产化程度不高,市面上现有国产仪器设备是否适用于新污染物监测尚有待进一步评估验证,为保障新污染物环境监测制度的建立和全国范围的顺利开展,充分了解相关国产仪器设备的适用情况,中国环境监测总站将开展新污染物环境监测国产仪器设备比对,助推我国新污染物环境监测技术装备取得国产化突破和质量提升。进一步提高新污染物识别精准化和智能化水平,不断用新技术、新方法解决新污染物监测中的难点、痛点问题,逐渐完善新污染物环境监测技术体系,推进生态环境质量持续改善,让祖国天更蓝、地更绿、水更清,万里河山更加多姿多彩。
  • 第四届环境新污染物检测网络会议全日程公布(更新中)
    随着2022年5月国务院印发《新污染物治理行动方案》(以下简称《行动方案》),持久性有机污染物、内分泌干扰物、抗生素、微塑料等新污染物开始得到人们重视。该《行动方案》提出了明确的任务线:即2022年发布首批重点管控新污染物清单,建立健全有关地方政策标准等;2023年年底前,完成首轮化学物质基本信息调查和首批环境风险优先评估化学物质详细信息调查;2025年年底前,初步建立新污染物环境调查监测体系。目前,各省市地区已陆续发布了新污染物治理实施方案,新污染物治理正在如火如荼进行中!然而,新污染物领域目前仍然存在检测难度大、技术复杂程度高等问题。同时,我国的治理工作起步晚、工作基础薄弱,对标中共中央、国务院的决策部署要求,在法律法规、管理体制、科技支撑、资源配置等方面仍存在诸多不足和短板,需要着力解决。基于此,仪器信息网将于7月27-28日举办第四届环境新污染物检测网络会议,届时将邀请领域内相关专家出席,共同就新污染物的分析新技术、新技术进行交流讨论。点击图片报名会议日程(更新中):7月27日新污染物监测现状总览09:30--10:00有机磷酸酯色谱质谱分析方法及人体内外暴露研究蔡亚岐中国科学院生态环境研究中心 研究员10:00--10:30全/多氟化合物PFAS检测新应用进展黄峥沃特世科技(上海)有限公司 高级市场经理10:30--11:00SCIEX 液质技术在新污染物高通量筛查的策略与典型应用案例分享李广宁SCIEX(中国) 应用支持专家11:00--11:30典型工业过程中的新污染物的筛查方法一览刘国瑞中国科学院生态环境研究中心 研究员11:30--12:00新污染物监测技术发展总览孙毓鑫华南师范大学 教授07月27日POPs的检验检测14:00--14:30有机污染物质谱分析技术马强中国检验检疫科学研究院 副所长14:30--15:00液质联用技术在新污染物中的应用邝江濛赛默飞世尔科技(中国)有限公司 高级应用工程师15:00--15:30微波前处理在环境新污染检测中的应用梅枝意安东帕(上海)商贸有限公司 应用支持专家15:30--16:00基于全二维气相色谱-质谱的大气中新污染物的筛查高丽荣中国科学院生态环境研究中心 研究员16:00--16:30水中POPs分析的难点与解决方案高松吉林大学 研究员16:30--17:00水体中全氟化合物的分析测试技术杨文龙国家环境分析测试中心 高级工程师07月28日抗生素与内分泌干扰物检验检测09:30--10:00待定吕剑中国科学院烟台海岸带研究所 研究员10:00--10:30Perkinelmer QSight LCMSMS应对环境新污染检测中的应用范莹莹珀金埃尔默 高级技术支持工程师11:00--11:30水中内分泌干扰物及检测技术向华上海市供水调度监测中心水质监测站 原高级工程师、质量控制室主任11:30--12:00水质中抗生素等内分泌干扰物检测方法一览翟家骥原北京北排水环境发展有限公司水质检测中心技术主任/高级工程师07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授15:30--16:00污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员欢迎免费报名参与第四届环境新污染物检测网络会议 参会点击:https://insevent.instrument.com.cn/t/4ks
  • 涵盖新污染物、温室气体、水生态等 环境监测总站征集2023国家生态环境监测标准预研项目
    11月29日,中国环境监测总站发布关于征集2023年度国家生态环境监测标准预研究项目(第二批)的通知。通知内容显示,本次征集范围包括:支持质量标准、风险管控标准、污染物排放标准等控制标准制订和实施的分析方法或技术规范;支撑新领域监测需求的分析方法或技术规范;应用监测新技术、新方法的分析方法或技术规范;服务重点工作的分析方法或技术规范;配套分析方法标准的标准样品等。特别值得一提的是,本次征集范围聚焦新领域监测需求,涵盖了新污染物监测技术及方法、新污染物监测技术及方法、 海洋监测技术与方法,水生态等领域相关监测评价技术与方法等。关于征集2023年度国家生态环境监测标准预研究项目(第二批)的通知为加强国家生态环境监测标准的前期研究和技术储备,提高生态环境监测标准制修订质量和效率,受生态环境部生态环境监测司委托,现开展2023年第二批国家生态环境监测标准预研究项目征集工作。有关事项通知如下。一、总体要求监测标准预研究为标准制修订项目立项前开展的标准化研究,监测标准预研究工作按照《国家生态环境监测标准预研究工作细则(试行)》(以下简称工作细则)(见附件1)实施。申报单位应按照工作细则第十条、第十一条等的要求提出项目。二、征集范围2023年第二批国家生态环境监测标准预研究项目征集重点领域主要包括:(一)支持质量标准、风险管控标准、污染物排放标准等控制标准制订和实施的分析方法或技术规范1. 控制标准已规定项目但缺少分析方法标准,从而需要制订的,如《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824—2019)、《石油化学工业污染物排放标准》(GB 31571—2015)、《合成树脂工业污染物排放标准》(GB 31572—2015)中监测标准空缺项目的分析方法;2. 被控制标准引用的分析方法标准因技术落后、适用范围不全、目标物不全、测定下限高或文字表述不清晰等问题需要修订的,如水中多氯联苯、乙醛,环境空气和废气中氨、苯系物等项目的分析方法;3. 配套控制标准实施的技术规范因内容不全、操作性不强等问题需要修订的,如《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157—1996)、《固定源废气监测技术规范》(HJ/T 397—2007)等。(二)支撑新领域监测需求的分析方法或技术规范1. 新污染物监测技术及方法,如《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》《优先控制化学品名录》中尚无监测标准的抗生素、全氟化合物、得克隆、氯化石蜡、微塑料等项目的分析方法,满足新污染物监测需要的灵敏度更高的分析方法,以及相关技术规范;2. 温室气体相关监测方法,如甲烷、氧化亚氮等项目的分析方法;3. 海洋监测技术与方法,如海水水质、海洋沉积物、海洋垃圾等监测相关分析方法与技术规范;4. 水生态等领域相关监测评价技术与方法,如水生生物监测相关分析方法与技术规范。(三)应用监测新技术、新方法的分析方法或技术规范1. 污染源现场快速、在线监测技术;2. 实验室自动化监测技术,如连续流动分析方法等;3. 地下水在线监测技术等;4. 生态环境遥感监测技术等。(四)服务重点工作的分析方法或技术规范履行国际公约监测、海洋污染基线调查、衔接生活饮用水标准相关项目监测等工作需要的分析方法与技术规范。(五)配套分析方法标准的标准样品三、有关事项及要求(一)申报单位填写“国家生态环境监测标准预研究项目申报表”(见附件2),并加盖单位公章。(二)申报单位应于2023年12月8日前,将申报表纸质文件和电子文件报送至中国环境监测总站。电子文件(含word版及盖章扫描pdf版)发送至联系人邮箱(命名为“2023年预研究项目申报表-申报单位名称”),纸质文件邮寄至联系人地址(注明“申报2023年第二批国家生态环境监测标准预研究项目”)。(三)每个预研究项目申报表限填一个项目。(四)以收到预研究项目申报表电子文件盖章版时间为准,逾期不予受理。(五)鼓励有关单位单独或联合申报系列标准预研究项目。四、联系方式中国环境监测总站 吴萌萌电话:(010)84943253生态环境监测司 陈春榕电话:(010)65646262通信地址:北京市朝阳区安外大羊坊8号(乙)邮政编码:100012传真:(010)84943066电子邮箱:bz@cnemc.cn 附件:1. 国家生态环境监测标准 预研究 工作细则(试行) 2. 国家生态环境监测标准 预研究 项目申报表
  • STS计划区域重点项目“土壤污染物快速监测技术及应用”通过验收
    7月28日,中国科学院科技服务网络计划(STS)区域重点项目“土壤污染物快速监测技术及应用”总体验收会在合肥物质科学研究院顺利召开。安徽省科技厅社发处、合肥市蜀山区发改委以及项目研究团队共20余人参加了会议。会议由合肥物质院科发处处长邓国庆主持。验收专家组由国防科技大学、合肥工业大学、安徽大学、合肥学院、安徽省生态环境监测中心、合肥市产业投资控股(集团)有限公司的7位专家组成。项目负责人赵南京研究员从项目研究背景与基本情况、项目目标与任务完成情况、项目主要进展与取得成果、项目组织管理与实施成效以及项目经费使用情况等方面进行了详细汇报。与会专家在听取项目组汇报、查看项目成果展示、审阅相关材料后,对项目的实施给予了高度肯定,认为该项目组高质量地完成了任务书各项考核指标,一致同意项目通过验收。   中国科学院STS区域重点项目“土壤污染物快速监测技术及应用”有效促进了中国科学院重大科技成果在安徽省的转移转化,是中国科学院、安徽省、合肥市蜀山区共同资助,由合肥物质院承担的唯一一项STS区域重点院省合作重点专项。该项目在合肥中科环境监测技术国家工程实验室有限公司、安徽省生态环境监测中心、国家家用电器产品质量监督检验中心(安徽)、皖江新兴产业技术发展中心共同参与下,在安徽铜陵、安庆、亳州等典型工矿企业、污染场地、农用地予以应用,且效果良好。为我国土壤污染监测及场地治理修复提供了高端技术装备,并推动了安徽省环境技术产业发展及“中国环境谷”建设。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制