当前位置: 仪器信息网 > 行业主题 > >

生物医学信号处理

仪器信息网生物医学信号处理专题为您整合生物医学信号处理相关的最新文章,在生物医学信号处理专题,您不仅可以免费浏览生物医学信号处理的资讯, 同时您还可以浏览生物医学信号处理的相关资料、解决方案,参与社区生物医学信号处理话题讨论。

生物医学信号处理相关的资讯

  • 学术界的福利:《拉曼光谱的生物医学应用》教材即将面世
    第三届全国生物医学拉曼光谱学术会议刚刚在上海圆满落幕。会议期间,一场小型的研讨会也如期悄然进行——这场研讨会围绕着《拉曼光谱的生物医学应用》教材而展开。《拉曼光谱的生物医学应用》教材编写研讨会现场国家把人民健康放在优先发展的战略规划,加快推进健康中国建设的举措对培养创新工科人才提出了更高要求,迫切需要教材创新。当前,拉曼光谱技术在生物医学领域的应用正处于临门一脚的关键时间点,若干相关技术在快速发展和产业化阶段。但是,我国拉曼光谱的研究自上世纪九十年代才较广泛开展,相关的中文教材仍较少,主要的教材包括1998年出版的《拉曼光谱在化学中的应用》、2005年的《拉曼光谱及其在结构生物学中的应用》和2008年的《拉曼光谱的分析与应用》等,出版年代都比较久远,内容无法涵盖快速发展的技术和应用。目前,国内尤其缺乏聚焦“拉曼光谱技术在生物医学领域的研究和应用”的教材。因此,自2022年起,上海交通大学叶坚教授开始倡导并提议编写一本《拉曼光谱的生物医学应用》教材,联合厦门大学任斌教授、上海师范大学杨海峰教授共同组建教材编写核心团队。截止目前,教材编委会有34名来自各大院校的拉曼领域知名专家学者加入。在2023年光散射会议期间,编委会已组织召开第一次线下会议,会议确定了各章节编写规范和大纲。此次召开的教材编写研讨会旨在进一步协调各章节内容,推进教材整体有序发展。3月28日晚8点,教材编写研讨会如期召开。此次会议议程分为三个部分,首先由叶坚教授介绍教材的基本情况。据叶老师介绍,本教材旨在传递最基础、最翔实、最前沿的拉曼光谱学知识,有利于研究生在理解其技术基础应用的同时、了解目前的最新国际学术前沿进展,从而拓宽基础、开阔思维、发挥专业自主性和创造潜能、优化知识结构。教材全书共13章,将系统阐述拉曼光谱的基础理论、仪器和检测方法、数据处理等方面的内容,并介绍生物医学各领域的拉曼光谱应用。这本教材面世之后,将适合从事于生物医学工程、纳米光子学、生物光子学、分析化学、应用光学等专业的相关学者、研究人员、技术人员、研究生和本科生参考使用。上海交通大学叶坚教授介绍教材的基本情况教材编委会成员林俐老师介绍教材编写规范和进度。她提到,教材撰写应该以介绍原理和方法学为主,不涉及太多应用,尤其避免写成文献综述的形式。此外,本教材已获教育部生物医学工程专业教指委十四五规划教材立项、并获交大出版社的基金支持,计划于今年完成统稿和提交出版社。随后,各章节的负责老师依次发言、介绍本章节的推进情况。教材将首先阐述“拉曼光谱的基本原理”;随后,全面介绍拉曼光谱的仪器和检测方法、非线性拉曼光谱及多种增强光谱技术、数据挖掘处理等方面的内容;在生物医学应用方面,教材将全面介绍拉曼光谱在体液、病原体和微生物、细胞、组织、活体、药物分析等各个领域的检测应用,并着重介绍获取高质量样本拉曼光谱的方法学;最后,教材还将介绍拉曼光谱与其他技术的联用、并对拉曼光谱在生物医学领域应用和发展提出展望。刘玉龙教授介绍”拉曼光谱的基本原理”章节刘国坤教授介绍“拉曼光谱中的数据挖掘”章节王平教授介绍“非线性拉曼光谱技术”章节韩晓霞教授介绍“生物分子的拉曼光谱“章节叶坚教授介绍“表面等离激元增强拉曼光谱”以及“拉曼光谱在体液检测中的应用”章节崔丽教授介绍“拉曼光谱在微生物和病原体检测中的应用”章节徐抒平教授介绍“拉曼光谱在细胞检测中的应用”章节季敏标教授介绍“拉曼光谱在组织检测中的应用”章节林俐助理教授介绍“拉曼光谱在活体检测中的应用”章节陆峰教授介绍“拉曼光谱在药物分析中的应用”章节会议最后,各章节的其他参与专家也纷纷发表看法。厦门大学吴德印教授提出可以将生物分子的光谱指认与数据挖掘相结合,提高指认的准确性;中南大学张志敏教授虽未亲临现场,他撰写的化学计量学分析部分,详细地介绍了光谱预处理、谱库检索、化学模式识别和模型评价等内容,为数据挖掘奠定了良好基础;厦门大学王翔教授表示已完成表面等离激元纳米材料模拟仿真的内容撰写,从麦克斯韦方程组的基本形式出发引导读者一步步推演;中科院的宋一之教授和付钰教授分别完成了拉曼光谱用于“抗生素药敏快速检测”和“微生物检测”的内容,是细菌拉曼检测方面的重要补充;中科院杨勇教授也将参与拉曼光谱在临床病原体和微生物检测应用的内容撰写;武汉纺织大学沈爱国教授将补充沉默区拉曼信号分子和表面增强拉曼光谱相结合的最新进展;暨南大学周海波教授参与撰写“拉曼光谱药物分析”的章节,补充药物代谢分析等相关内容;徐蔚青教授提出将推动教材仪器章节的实验设计,将其与多功能拉曼光谱教学仪器创新结合起来,促进实验与教学的联动。本次研讨会气氛热烈,讨论踊跃,不仅加深了与会者对教材基本概念的理解,也为各章节之间的内容协作奠定了坚实的基础。教材讨论环节当晚10点,教材编写研讨会在众人的热烈讨论声中落下帷幕,教材编委会专家合影留念。研讨会的成功召开不仅展现了拉曼光谱在生物医学领域的发展前景,而且影响深远,将推动该领域教材的飞速发展和创新!教材编委会专家合影留念
  • 赛默飞参加第18届东亚生物医学讨论会议暨第10届两岸生物医学研讨会
    中国上海,2011年12月15日&mdash 2011年12月7日-9日,第18届东亚生物医学讨论会议暨第10届两岸生物医学研讨会于上海召开,此次会议由中科院上海生命科学研究院生物化学与细胞生物学研究所(以下简称:中科院上海生化与细胞所)主办。赛默飞世尔科技(以下简称:赛默飞)赞助了此次会议的欢迎晚宴,与行业内的专家学者进行了积极的交流。此外,赛默飞还在会场设立了展台,向与会嘉宾展示了赛默飞在生物医学领域的先进产品及解决方案。 此次会议约有100位生物医学领域的专家学者参加,其中有60人为日本、韩国和台湾地区的参会者。本届会议的组委会由中科院上海生化与细胞所所长林安宁(主席),中科院上海生化与细胞所副所长景乃禾,周金秋、龚祖埙等专家组成。会议的主题为&ldquo 分子与细胞&rdquo ,讨论的议题包括&ldquo 信号传导:途径与调控&rdquo ,&ldquo 肿瘤生物学和肿瘤治疗&rdquo ,&ldquo 免疫学&rdquo ,&ldquo 分子和细胞生物学&rdquo ,&ldquo 微生物学与传染性疾病&rdquo 等。 由赛默飞赞助的欢迎晚宴上,中科院上海生化与细胞所所长林安宁教授、台湾大学生化与分子研究所的前任所长,台湾&ldquo 中研院&rdquo 院士林荣耀教授、日本东京大学医学科学研究所副所长Yoshinori MURAKAMI教授和前任所长,AIMBN的首任主席新井贤一教授、日本京都大学病毒研究所所长Masao Matsuoka教授、韩国首尔大学分子与生物遗传研究所所长Jae Bum Kim教授、韩国三星Sungkyunkwan大学生物医学研究所Joobae Park教授分别上台致辞,对赛默飞公司对我们会议的支持表示感谢。赛默飞中国区副总裁兼总经理迈世福发表了演讲,预祝会议成功举办。晚宴中,迈世福和林安宁所长、景乃禾所长以及中科院上海生化与细胞所科研管理处处长江舸就中国科研发展、青年PI培养等话题进行了交谈。 赛默飞中国区副总裁兼总经理迈世福先生与日本东京大学医学科学研究所所长新井贤一教授(右一) 赛默飞展台 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.cn
  • 雷尼绍:助力生物医学发展“加速度”
    赶在18年的尾巴,雷尼绍参加了全国第二届生物医学拉曼光谱学术会议。这是一场汇集了学术、医学界和仪器厂家等各行业的年度跨界盛典,也是引领未来生物医学拉曼光谱技术发展趋势的风向标。 在会议上,我们被“聚众围观”的是作为首次在中国展出的全新雷尼绍RA816生物分析仪。 作为一款操作简单的紧凑型台式拉曼成像系统,RA816生物分析仪将拉曼光谱的化学分析能力和先进的光学及光谱成像技术结合在一起,专为生物研究领域设计。RA816能够快速揭示生物样品的详细生化信息,包括组织活检、组织切片及生物流体等,具有高的灵敏度和特异性,有助于发现和验证早期疾病,目的是将拉曼光谱分析推向临床研究。目前我们的解决方案已应用在众多客户的实验室中,为研究工作提供可靠而有价值的分析结果,帮助用户发现更多信息,加速研究工作的进展。各领域专家和学者的跨界交流、增强合作,在现场处处得到完美展现。展位的圆桌交流会上各位专家讲解的报告,引起了与会老师的浓厚兴趣,围绕实际问题进行具体分析,积极地交流和讨论,碰撞出的智慧火花闪烁在会场之中。远道而来的英国雷尼绍Martin Isabelle博士在会议中讲到,拉曼光谱及成像可以分析特定的生物分子结构,区分不同的组织或细胞器,同时结合空间信息,得到生化物种的分布及大小。报告中通过对具体的组织或细胞的案例分析,包括结肠组织、皮肤组织、脑胶质瘤细胞等,揭示了拉曼光谱快速鉴别/区分癌变、异变及正常组织/细胞的能力,帮助研究者更好地了解疾病的开始、进展及治疗响应,揭示了拉曼光谱分析走向临床研究的巨大潜力。会议顺应拉曼光谱技术在生物医学领域日新月异发展的现状,旨在推动国内拉曼光谱学界同仁与生物学、基础医学、临床医学及纳米科学等相关领域学者的交流与合作。拉曼分析小福利 衬底选择中的大学问对组织或者细胞做拉曼分析的时候,经常会发现衬底会对样品信号有较强的影响,这时就需要在测试前选择合适的制样衬底。生物样品拉曼分析常用的衬底材料:CaF2和MgF2是最理想选择,对生物拉曼信号的干扰最小,但成本相对较高;熔融石英也可以接受,但确实存在一定的拉曼背景;高度抛光的金属载玻片非常适用于组织切片成像和部分细胞成像。
  • 赛默飞推出AI图像处理软件 助生物医学研究一臂之力
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " 赛默飞世尔科技今天在Microscopy和Microanalysis 2019上发布 span style=" text-indent: 2em " 了Avizo2D软件,这是一款基于人工智能的自动成像和分析软件,旨在帮助材料和生命科学研究人员从他们的电子中获取快速准确的统计数据显微镜(EM)图像没有广泛的图像处理专业知识。这一新软件使科学家们能够构建定制的“配方”或自动化,可重复的工作流程脚本,加快图像分析速度。该软件结合了深度学习模型,先进的图像处理技术和使用Python脚本和科学工具的模块,帮助研究人员无缝分析他们的EM图像。 /span /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " “通过Avizo2D,研究人员可以快速获得材料和生物医学研究中具有挑战性问题的可靠答案,而无需成为图像处理专家,”赛默飞世尔科技公司材料和结构分析总裁Mike Shafer说。 “该软件可以节省数小时的手动工作,实现可重复的图像分析,使科学家能够更快地获得所需的准确结果。” /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 来自Amira-Avizo在线食谱库的数十种预定义食谱可直接用作工作流程脚本或定制,以满足研究人员的特定分析需求。科学家还可以将Avizo2D与赛默飞世尔科技的MAPS软件相结合,使他们能够优化仪器使用时间,并在收集数据时获得即时反馈和额外的理解。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " text-indent:=" " white-space:=" " text-align:=" " span style=" margin: 0px padding: 0px font-size: 18px background-color: rgb(255, 192, 0) " strong style=" margin: 0px padding: 0px " 关注【3i生仪社】掌握更多生命科学行业资讯 /strong br data-filtered=" filtered" style=" margin: 0px padding: 0px " / /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " img src=" https://img1.17img.cn/17img/images/201908/uepic/f1611613-5075-4769-95f2-4f9897bb2207.jpg" title=" qrcode_for_gh_91d290758d40_344.jpg" alt=" qrcode_for_gh_91d290758d40_344.jpg" width=" 204" height=" 204" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 204px height: 204px " / /p
  • 生物医学遭遇大数据
    目前获取海量数据变得越来越方便,但一家机构与另一家产生的资料有很多差别,把这些信息集中分析时就需要一个共同的标准。   标准化虽然艰难,但与会的业内人士普遍认为,当务之急是解决生物医学和信息科学兼通的复合型人才缺乏困境。   大数据时代正在深刻影响生物医学研究:海量数据需要在不同系统和机构间共享和分析,但因缺乏统一的标准而使研究者无从下手 信息技术和生物医学的结合更加紧密,两者兼通的复合型人才也明显缺乏。   面对如潮水般涌来的海量数据,如何更好地利用,成为了信息技术和生物医学领域共同面对的挑战。   大数据时代来临   2012年,美国政府发布了《大数据研究和发展倡议》,旨在利用大量复杂数据集合获取知识和提升洞见能力,投入金额高达2亿美元。   所谓大数据,或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理并整理成为帮助决策更积极目的的资讯。   2月18日至20日,由李嘉诚基金会出资举办的以“信息技术与未来医学”为主题的第二届“与大师同行”学术交流活动上,来自耶鲁大学、麻省理工学院与哈佛大学博劳德研究所、美国劳伦斯伯克利国家实验室、中国工程院等研究机构的国际知名学者,对大数据对生物医学的影响、大数据时代生物医学研究标准化困境和复合型人才缺乏难题进行了探讨。   中国工程院院士韦钰对《中国科学报》记者表示:“生物医学正进入大数据时代,很多研究都是大数据研究、大数据存储,从大数据里面挖掘新信息。”   她举例说,比如现在诊断某种疾病,医生可能需要调用患者的基因数据、从小到大的病历等大量数据。   深圳华大基因研究院院长汪建近日曾表示,大数据与大科学是未来生物经济发展的核心点。“要解决当前生命科学的问题,需要从时空状态对生老病死进行解读,这就需要大数据。这种大数据揭示的就是大科学,从而衍生出大产业。”   仅以深圳国家基因库为例,其中的样本量已达130万份,其中人类样本115万份,动植物、微生物等其他样本15万份。至2013年底,预计实现1000万份可溯源生物样本的存储,2015年底实现3000万份生物样本的存储。   而这仅仅是不断膨胀的大数据的冰山一角。   标准化困境   不同系统和科研机构之间难以实现标准化的数据共享和分析,这令很多科学家无所适从。   美国特拉华大学生物信息学和计算机生物学中心主任吴慧华对《中国科学报》记者表示,上述问题是生物医学与信息科学结合过程中遇到的关键难题。目前获取海量数据变得越来越方便,但一家机构与另一家产生的资料有很多差别,把这些信息集中分析时就需要一个共同的标准。   以对大数据需求最为迫切的医院为例。美国劳伦斯伯克利国家实验室基因组科学部主任鲁宾(Rubin)表示,理想状态下的目标是建立统一的电子病历系统,这些信息应该有统一的标准,但现实并非如此,各个医院存储的数据标准不同,而且不同系统存储的信息也不一样。   据吴慧华观察,目前在美国等国家,不同机构和资料库产生和存储的数据都是遵从不同的标准,标准化问题在业内尚未达成共识。   对于标准化之难,鲁宾对《中国科学报》记者解释道,数据量大并非关键,而是数据类型的多样性导致了难以统一标准。   他说,比如基因测序,虽然数据量很大,但属于同一类型,就比较容易在同一标准下进行分析,而生物医学方面的数据就困难得多,涉及血压、心跳等多种不同类型的临床和数字化信息,有些数据之间难以关联,这便造成了标准化的挑战。目前各个国家已经开始重视这个问题,信息科学和生物医学的学者需要更加紧密的合作。   在吴慧华看来,中国科学家应该积极加入国际标准的讨论、设计和制定中,更多参与国际上的生物医学信息共享。   复合型人才缺乏   标准化虽然艰难,但与会的业内人士普遍认为,当务之急是解决生物医学和信息科学兼通的复合型人才缺乏困境。因为两者结合过程中的标准化及一系列问题的化解,需要研究者对两个领域都有很深的造诣。   据与会专家介绍,目前鲜有高校主动设置生物医学和信息科学的交叉学科和院系,横跨这两个领域的复合型人才大多源自学者自发或在导师引导下的选修。   耶鲁大学医学院干细胞研究中心主任林海帆对自己的一位学生印象深刻。这位学生曾经主动提出关注生物信息方面的研究,当年很多老师以为他不务正业。最后他选择了兼修信息科学,现在已经是生物医学和信息科学兼备的稀缺人才。   “我发现有的学生虽然选择生物专业,但其实很有数学天分,我们研究所信息部的主任就是这样培养出来的。”林海帆对《中国科学报》记者表示。   吴慧华也是这种复合型人才的典型。她同时具备生物学和计算机科学教育背景,曾获台湾大学理科学士学位、美国普渡大学植物病理学硕士和博士学位,得克萨斯大学泰勒分校第二硕士学位(计算机学)。   为促进多学科研究和教育,她2009年在特拉华大学创立生物信息学与计算生物学中心(CBCB),由来自5个学院的60多名教师组成,并创立或负责多个生物信息学教育项目。   麻省理工学院和哈佛大学博劳德研究所副主任、首席信息官梅西罗夫(Mesirov)向《中国科学报》记者介绍,美国政府正在推动计算机科学和生物学等交叉学科的教育,从国家级科学中心的层面促进高中阶段的学生就开始学习交叉学科的知识。   这也许对中国会有所借鉴。
  • 2016年国际生物医学工程与医疗仪器学术产业大会通知(第一轮)
    2016年国际生物医学工程与医疗仪器学术产业大会通知(第一轮)  (Bio-med and Innovative Medical Devices 2016)  由中国仪器仪表学会、中国生物医学工程学会、中国光学工程学会联合主办,中国仪器仪表学会医疗仪器分会、清华大学医学院、解放军总医院检验科和中关村医疗器械产业技术创新联盟联合承办的2016年国际生物医学工程与医疗仪器学术产业大会(Bio-med and Innovative Medical Devices 2016),将于11月29-30日在北京召开,会议规模400人。  会议遵循为创新医疗仪器产业发展提供良好的产学研用管对接的平台,通过学术引领、促进产业繁荣发展和共同进步的宗旨,聚焦健康社会、精准医疗、基因诊断、居家养老等主题。本次会议学术交流形式包括大会特邀报告、分会场邀请报告、口头报告以及优秀论文电子墙报展示等。会议同期还将安排企业交流专场,为企业提供展览展示及寻求科技合作的平台。  一、组织架构  1、大会学术委员会(按姓氏拼音排序)  名誉主席:金国藩   主席:程 京  副主席:曹雪涛、陈凯先、樊瑜波、顾 瑛、李兴德、尤 政、俞梦孙  成员:陈 群、崔彤哲、邓玉林、果德安、洪 波、康熙雄、李 宁、李金明、李劲松、李路明、李为公、卢爱丽、骆清铭、马长生、任秋实、唐劲天、唐玉国、王成彬、王晓庆、王拥军、邢婉丽、魏勋斌、朱险峰  2、大会组织委员会(按姓氏拼音排序)  主席:吴幼华  副主席:池 慧、赵雪燕、朱险峰  成员:陈 蓓、郝红伟、康亚文、李 瑾、李 靖、李明远、刘 鹏、刘 毅、茅伟明、秦永清、王 东、许俊泉、严壮志、俞 海、张 彤、张 莉、张送根、周智峰、祝连庆  3、论文评审委员会(按姓氏拼音排序)  主任:朱险峰  副主任:魏勋斌、祝连庆  成员:邓玉林、洪波、李劲松、任秋实、骆清铭、严壮志  二、会议安排  时间:2016年11月29-30日  地点:北京 京仪大酒店  1、主会场:11月29日上午8:50-12:30  时间会议报告报告专家  8:50-9:00领导讲话  9:00-9:40医学技术前沿曹雪涛(中国工程院院士、中国医学科学院院长)  9:40-10:20中医技术前沿陈凯先(中国科学院院士、上海中医药大学教授)  10:20-10:30中场休息  10:30-11:10待定李青(卫计委医药卫生科技发展研究中心主任)  11:10-11:50Translational Biomedical Optics for Label-free Imaging of Tissue Histology in vivo李兴德(美国约翰霍普金斯大学教授)  11:50-12:30问道健康中国程京(中国工程院院士、清华大学医学院教授、博奥生物集团有限公司总裁)  2、分会场:2016年11月29日下午-30日上午  分会场主题会议主席  穿戴式健康设备卢爱丽、王磊  先进临床检验技术王成彬  先进影像与治疗技术唐劲天  中医发展论坛果德安  先进激光医疗技术顾 瑛  行业监管促进产业创新发展樊瑜波  新技术发展论坛魏勋斌  三、会议征文  1、征文范围:  1. 生物医学信号处理 2. 医疗仪器与健康监护  3. 穿戴式医疗设备 4. 微纳机电系统  5. 微流控芯片技术 6. 生物医学大数据  7. 分级诊疗 8. 临床检验与POCT  9. 生物医学成像技术 10. 基因诊断  11. 生物光子学与光学分子成像  2、投稿须知:  1.凡内容符合主题范围,未在国内外正式刊物或其他会议上发表的中文论文均可投稿   2.投稿论文撰写要求请参照www.etmchina.com公布的《仪器仪表学报》投稿要求及论文模板,投稿时请提交MS Word版本   参见:http://www.etmchina.com/down.do?method=listFront&pid=2  3.论文的结构依次为:论文题目(中英文)、作者姓名、单位、所在城市及其邮编、摘要(中英文)、关键词(中英文)、正文、参考文献、作者简介   4.如果论文内容可能涉密,请作者主动提交“已通过工作单位保密审查”的证明   5.论文一经提交,即表明作者同意会议主办方拥有论文版权   6.投稿时务必提供联系人的姓名、职称、电话、手机、E-mail、详细通信地址   7.投稿截止日期:2016年11月15日。  3、征文投寄邮箱:  luwang@ capitalbio.com yiliao@cis.org.cn  4、论文集:  经过大会评审委员会评审通过的论文将推荐到《仪器仪表学报》增刊发表。  四、会议联系方式  1、会务组联系人:  王 璐 18510056847 邮箱:luwang@ capitalbio.com   范丽云 15801190516 邮箱:liyunfan@capitalbio.com   李 靖 13701158832 邮箱:lijing@cis.org.cn  联系电话:010-80726868-6207  地址:北京市昌平区生命科学园路18号  2、各学会联系人:  中国仪器仪表学会:张莉 010-82800752 zhangli@cis.org.cn  中国光学工程学会:李瑾 022-58168516 lijin@csoe.org.cn  中国生物医学工程学会:康亚文 010-69156448 swyxgch@126.com  五、会议缴费须知:  1、收费标准:  主会场注册费1000元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  主会场及分会场注册费1500元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  10月30日前注册八五折优惠。  2、缴费方式:  1、汇款  账户名称:中国仪器仪表学会  开 户 行:工商银行北京北新桥支行(行号102100000431)  账 号:0200004309014464348  收款人电话:13520672025(洪爱琴)  * 汇款附言注明:医疗仪器会议+参会人员名字  * 如需发票,请注册时写明发票抬头并于11月15日前将款汇到  2、现场缴费  现金或刷卡, 现场收取并开具收据 会后大会秘书处将发票邮寄给您,签到时还请写明收寄人详细地址。  中国仪器仪表学会  中国光学工程学会  中国生物医学工程学会  2016年10月12日
  • 2015生物医学成像新技术新方法青年论坛举行
    2015年11月22日,由北京大学、中国科学院生物物理研究所联合主办的“2015年生物医学成像新技术新方法青年论坛”在北京大学中关新园科学报告厅举行。共有100多名生物医学成像领域的青年科学家前来参加了此次会议。  北京大学科学研究部部长周辉致辞欢迎各位青年学者的到来。18位青年科学家就自己的研究方向作了精彩的报告。  上午的会议由中科院生物物理所研究员卓彦主持。北京大学生命科学学院研究员唐世明介绍了其团队发展和利用双光子成像技术在清醒猴脑皮层研究视觉神经回路方面的情况。因为猴视觉与人比较接近,所以可以获得更加接近人类视觉神经回路的结果。目前其团队已经实现700-800μ m的活猴脑成像深度。中科院心理研究所研究员左西年主要介绍了国际人脑神经影像“重测信度”与可重复同盟(CoRR),他通过功能磁共振成像数据,就计算方法的重复性、稳定性以及临床应用等方面进行了讲解。中科院自动化研究所研究员张鑫介绍了他们开发的围绕脑网络研究的多尺度、多模态的成像设备。中科院武汉物理与数学研究所研究员周欣介绍了肺部气体MRI仪器和方法以及肺部重大疾病MRI成像。浙江大学教授牛田野、田梅分别介绍了定量低剂量锥束CT、PET成像技术取得的临床应用新进展和未来的发展方向。北京大学医学部基础医学院刘绍飞老师讲述了活体小动物分子影像监控下的肿瘤精准治疗的探针研究。中科院自动化所研究员王坤介绍了肿瘤光学成像的前沿技术和其研究所在该方面取得的工作成果。  会议休息期间,多位青年科学家就自己的研究方向进行了海报展示,并同与会代表进行了深入交流。  下午的报告由北京大学教授陈良怡和研究员孙育杰主持。上海交通大学教授魏勋斌以“in vivo counting of circulating cells”为题,开启了下午的精彩环节。清华大学教授廖洪恩介绍了医学三维成像和精准诊疗的研究意义、现状和未来的发展方向。复旦大学教授季敏标介绍了其小组在受激拉曼散射成像技术用于脑肿瘤的无标记探测中所取得的最新进展。上海交通大学教授贺号介绍了其利用光刺激显微系统对细胞信号的调控研究。中科院上海生命科学研究院神经科学研究所研究员王凯介绍了自适应光学技术在斑马鱼、果蝇、小鼠深层神经组织成像中的应用。来自台湾的陈壁彰教授介绍了一种“lattice light sheet microscopy”实现超快超高成像的进展。吉林大学的吴长峰教授介绍了基于半导体聚合物的荧光探针设计及其在生物医学成像中的应用,引起了参会者的极大兴趣。来自中科院生物物理所的徐平勇研究员介绍了他们在光激活和光转化荧光蛋白用于多种超高分辨荧光显微成像的应用。中科院生物物理所的孙飞研究员介绍了目前国际上各种电子显微镜技术的现状和他们在电镜成像方面所取得的成绩。最后,来自北京师范大学的贺永教授以他们在脑成像方面所取得的进展结束了下午的报告。  北京大学分子医学所程和平院士充分肯定了此次会议的成功,表达了对未来的期望。各位与会学者纷纷表示此次会议给予了他们学习交流的机会,对未来中国生物医学成像的发展起到重要的推动作用。  本次会议得到了北京协同创新研究院、脉动科技有限公司和北京锐驰恒业仪器科技有限公司的赞助支持。
  • 2016年国际生物医学工程与医疗仪器学术产业大会第二轮通知
    由中国仪器仪表学会、中国生物医学工程学会、中国光学工程学会联合主办,中国仪器仪表学会医疗仪器分会、清华大学医学院、解放军总医院检验科和中关村医疗器械产业技术创新联盟联合承办的2016年国际生物医学工程与医疗仪器学术产业大会(Bio-med and Innovative Medical Devices 2016),将于11月29-30日在北京召开,会议规模400人。  会议遵循为创新医疗仪器产业发展提供良好的产学研用管对接的平台,通过学术引领、促进产业繁荣发展和共同进步的宗旨,聚焦健康社会、精准医疗、基因诊断、居家养老等主题。本次会议学术交流形式包括大会特邀报告、分会场邀请报告、口头报告以及优秀论文电子墙报展示等。会议同期还将安排企业交流专场,为企业提供展览展示及寻求科技合作的平台。  一、组织架构  1、大会学术委员会(按姓氏拼音排序)  名誉主席:金国藩  主席:程 京  副主席:曹雪涛、陈凯先、樊瑜波、李兴德、尤 政、俞梦孙  成员:陈 群、崔彤哲、邓玉林、果德安、洪 波、康熙雄、李 宁、李金明、李劲松、李路明、李为公、卢爱丽、骆清铭、马长生、任秋实、唐劲天、唐玉国、王成彬、王晓庆、王拥军、邢婉丽、魏勋斌、朱险峰  2、大会组织委员会(按姓氏拼音排序)  主席:吴幼华  副主席:池 慧、赵雪燕、朱险峰  成员:陈 蓓、郝红伟、康亚文、李 瑾、李 靖、李明远、刘 鹏、刘 毅、茅伟明、秦永清、王 东、许俊泉、严壮志、俞 海、张 彤、张 莉、张送根、周智峰、祝连庆  秘书长:张 莉、王 东  3、论文评审委员会(按姓氏拼音排序)  主任:朱险峰  副主任:魏勋斌、祝连庆  成员:邓玉林、洪波、李劲松、任秋实、骆清铭、严壮志  二、会议安排  时间:2016年11月29-30日  地点:北京 京仪大酒店  第一分会场:11月30日上午  穿戴式健康设备 卢爱丽(论坛主席)  第二分会场:11月29日下午  先进临床检验技术 王成彬(论坛主席)  Speakers and topics coming very soon  第三分会场:11月29日下午  先进影像与治疗技术 唐劲天(论坛主席)  第四分会场:11月29日下午  中医发展论坛 果德安(论坛主席)  第五分会场:11月30日上午  政策环境促进产业创新发展 樊瑜波(论坛主席)  Speakers and topics coming very soon  第六分会场:11月29日下午及11月30日上午  新技术发展论坛 魏勋斌(论坛主席)  三、会议征文  1、征文范围:  1. 生物医学信号处理 2. 医疗仪器与健康监护  3. 穿戴式医疗设备 4. 微纳机电系统  5. 微流控芯片技术 6. 生物医学大数据  7. 分级诊疗 8. 临床检验与POCT  9. 生物医学成像技术 10. 基因诊断  11. 生物光子学与光学分子成像  2、投稿须知:  1.凡内容符合主题范围,未在国内外正式刊物或其他会议上发表的中文论文均可投稿   2.投稿论文撰写要求请参照www.etmchina.com公布的《仪器仪表学报》投稿要求及论文模板,投稿时请提交MS Word版本   参见:http://www.etmchina.com/down.do?method=listFront&pid=2  3.论文的结构依次为:论文题目(中英文)、作者姓名、单位、所在城市及其邮编、摘要(中英文)、关键词(中英文)、正文、参考文献、作者简介   4.如果论文内容可能涉密,请作者主动提交“已通过工作单位保密审查”的证明   5.论文一经提交,即表明作者同意会议主办方拥有论文版权   6.投稿时务必提供联系人的姓名、职称、电话、手机、E-mail、详细通信地址   7.投稿截止日期:2016年11月15日。  3、征文投寄邮箱:  luwang@ capitalbio.com yiliao@cis.org.cn  4、论文集:  经过大会评审委员会评审通过的论文将推荐到《仪器仪表学报》增刊发表。  四、会议联系方式  1、中国仪器仪表学会医疗仪器分会秘书处联系人:  王 璐 18510056847,010-80726868转6207 luwang@ capitalbio.com  陈 鹏 13811529795,010-57287898 eric@futurexpo.cn  地址:北京市昌平区生命科学园路18号  2、各学会联系人:  中国仪器仪表学会:张莉 010-82800752 zhangli@cis.org.cn  中国光学工程学会:李瑾 022-58168516 lijin@csoe.org.cn  中国生物医学工程学会:康亚文 010-69156448 swyxgch@126.com  五、会议协办单位及支持媒体  协办单位:北京未来畅想科技有限公司  支持媒体:医械信息网 仪器信息网 火石创造 分析测试百科网 艾兰博曼 威斯腾转化网 高创汇  六、会议缴费须知  1、收费标准:  主会场注册费1000元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  主会场及分会场注册费1500元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。  10月30日前注册八五折优惠。  2、缴费方式:  1、汇款  账户名称:中国仪器仪表学会  开 户 行:工商银行北京北新桥支行(行号102100000431)  账 号:0200004309014464348  收款人电话:13520672025(洪爱琴)  * 汇款附言注明:医疗仪器会议+参会人员名字  * 如需发票,请注册时写明发票抬头并于11月15日前将款汇到  2、现场缴费  现金或刷卡, 现场收取并开具收据 会后大会秘书处将发票邮寄给您,签到时还请写明收寄人详细地址。报名请点击如下链接:http://e.eqxiu.com/s/D5oRw0bZ?eqrcode=1&from=singlemessage&isappinstalled=0  中国仪器仪表学会    中国光学工程学会    中国生物医学工程学会  2016年10月27日
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 高灵敏度VAHEAT显微温度控制器在生物医学领域的应用
    高灵敏度VAHEAT显微温度控制器在生物医学领域的应用在处理生物样本时,大多数情况下需要研究温度这一变量对研究目标的影响,所以,选择精zhun、易操作的温度控制器十分重要,然而传统的加热仪器在对样品加热时热平衡的建立缓慢,容易产生温度梯度,并对成像分辨率造成影响,因而需要购买物镜加热器等多个设备以实现稳定的热平衡状态以及减小对成像分辨率的影响,为实验带来诸多不便。基于以上问题,Interherence公司推出了用于超分辨显微镜中精确控制样品温度的VAHEAT显微温度控制器,VAHEAT显微温度控制器可实现对温度的精zhun控制并对超分辨率成像不产生影响。除此之外,与传统的温度加热仪器相比,VAHEAT显微温度控制器具有结构紧凑、与各类显微镜兼容、多种加热模式的优良特性。VAHEAT显微温度控制器有两种智能基板,基底是玻璃制成的,带有储液器的凹槽是由与生物细胞具有相容性的硅树脂制成的,符合大多数细胞的培养。图 1:VAHEAT显微温度控制器无需进一步修改即可安装在显微镜上 图 2:a) VAHEAT 组件。该设备由智能基板 (1)显微镜适配器 (2)探头 (3) 控制单元 (4) 控制器b) 智能基板(具有透明的纳米制造的加热元件和直接位于视野中的温度探头)c) VAHEAT 设置为 60°C 时,Smart 基板的热图像显示整个区域均匀加热目前VAHEAT温度控制器以实现了在活细胞成像、DNA结合和解离行为、微流控、生物大分子相分离以及神经科学等生物医学领域的应用:(1)在活细胞成像的应用:VAHEAT实现了在生物成像过程中精确的温度控制,研究了细胞对温度响应的行为过程,例如多细胞肿瘤球体中的 Ca 2+活性或神经元的热刺激。(2)DNA结合和解离行为的研究:双链 DNA 的熔点在 60°C 到 90°C 之间,具体取决于序列和链长度。使用VAHEAT可实现传统加热台无法实现升至高于解离熔点的 DNA 动力学研究。(3)生物大分子相分离的应用:相分离与生物信号的传导、基因的表达、细胞物质运输等生命机制有重要关系。其中,在蛋白表达这一过程中,相分离的发生除了与蛋白本身的化学结构有关之外,还与蛋白分子的浓度、溶液PH、盐浓度以及温度有关。可靠的温度控制和精确的读数是定量研究的关键要素。VAHEAT温度控制器采用集成到智能基板中的温度探头不仅确保了可靠的测量条件,还能够感应薄层中的相变。(4)神经科学领域的研究:细胞功能以及细胞间通讯取决于温度。尤其是神经科学实验严重依赖于对环境条件的精确控制,例如对突触功能、其可塑性以及动作电位传播的研究。VAHEAT可以实现在设定的温度下进行荧光标记实验以及膜片钳实验,而无需复杂笨重的孵化室。图 3:使用 VAHEAT 对空间限制下 60°C 和 70°C 生长的嗜热细菌进行成像 图 4:使用 VAHEAT研究减数分裂过程中的染色体分离(酵母25- 37°C活细胞成像)图 5:VAHEAT 用于单分子 TIRF 测量中的精确温度控制(慕尼黑工业大学 Hendrik Dietz 的实验室用 DNA 折纸构建的大分子运输系统)图 6:使用 VAHEAT 表征金纳米粒子扩散常数的温度依赖性关于Interherence:德国Interherence公司拥有量子和生物光子学领域的专家团队,为高灵敏度光学显微镜的发展做出很大贡献。该团队采用了现代纳米制造和薄膜技术,推出了VAHEAT生物显微温度控制器,作为传统显微镜的附加产品,首次实现了在扩展温度范围内的精确温度控制,以确保生物物理光学研究可靠的测量条件。上海昊量光电作为德国Interherence公司在中国的代理商,可为您提供专业的技术服务,若您对Interherence公司提供的VAHEAT生物显微温度控制器有兴趣,欢迎通过邮箱、电话或微信进行沟通!关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!相关文献:1. Molinaro, C., et al., Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Advances, 11, 12500–12506 (2021).2. Mengoli, V., et al., Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. The EMBO Journal, 40, e106812 (2021).3. Stömmer, P., A synthetic tubular molecular transport system. Nature Communications, 12, 4393, (2021).
  • 超灵敏多光谱光声显微镜,具有广泛的生物医学成像潜力
    “光学分辨率”光声显微镜是一种新兴的生物医学成像技术,可用于癌症、糖尿病和中风等多种疾病的研究工作。但是灵敏度不足,一直是其获得更广泛应用的长期障碍。据麦姆斯咨询报道,近期,香港城市大学(CityU)的一支研究团队开发出一种多光谱、超低剂量的光声显微镜(SLD-PAM)系统,该系统的灵敏度极限得到了显著提高,为未来新的生物医学应用和临床转化提供了可能,相关研究成果以“Super-Low-Dose Functional and Molecular Photoacoustic Microscopy”为题发表于Advanced Science期刊。多光谱光声显微镜系统及其灵敏度增强示意图光声显微镜结合了超声波检测和激光诱导光声信号,以创建生物组织的详细图像。当生物组织被脉冲激光照射时会产生超声波,然后超声波被检测并转换为电信号用于成像。与传统的光学显微镜方法相比,这种新颖的技术可以在更大的深度上实现毛细管水平或亚细胞级别的分辨率。然而,灵敏度不足阻碍了该技术的更广泛应用。“高灵敏度对于高质量成像很重要。它有助于检测不强烈吸收光的发色团(通过吸收特定波长的可见光赋予材料颜色的分子)。它还有助于减少光漂白和光毒性,减少对脆弱器官生物组织的干扰,并在宽光谱范围内提供更多可选的低成本、低功率激光器。”香港城市大学生物医学工程系Wang Lidai教授解释道。例如,在眼科检查中,为了更安全和舒适,优选低功率激光器。他补充称,对于药代动力学或血流的长期监测,需要低剂量成像以减轻对组织功能的干扰。为了克服灵敏度挑战,Wang Lidai教授及其研究团队最近开发了一种多光谱、超低剂量的光声显微镜系统,突破了传统光声显微镜的灵敏度极限,将灵敏度显著提高了约33倍。他们通过光声传感器设计的改进,结合用于计算的4D光谱空间滤波器算法,实现了这一突破。研究人员通过使用实验室定制的高数值孔径声透镜、优化光学和声学波束组合器,以及改进光学和声学对准来改进光声传感器的设计。该光声显微镜系统还利用低成本的多波长脉冲激光器,提供从绿光到红光的11种波长。其激光器以高达兆赫的重复频率工作,光谱切换时间为亚微秒级。超低剂量照明下的血管形态提取为了证明光声显微镜系统的重要性和新颖性,该研究团队通过绿光和红光光源的超低脉冲体内动物成像,对其进行了全面的系统测试,并得到了显著的成果。首先,该光声显微镜系统能够实现高质量的体内解剖和功能成像。超低的激光功率和高灵敏度,显著地减少了眼睛和大脑成像的干扰,为临床转化铺平了道路。其次,在不影响图像质量的情况下,该光声显微镜系统较低的激光功率,将光漂白减少了约85%,并能够使用范围更广的分子和纳米探针。此外,该系统成本显著降低,使研究实验室和诊所更能负担得起。Wang Lidai教授说道:“该光声显微镜系统能够在对受试者损伤最小的情况下,对生物组织进行非侵入性成像,为解剖、功能和分子成像提供了一种强大而有前景的工具。我们相信该光声显微镜系统有助于推进光声成像的应用,实现许多新的生物医学应用,并为临床转化铺平新的道路。”接下来,Wang Lidai教授及其研究团队将利用该系统在生物成像中测试更广泛的小分子和基因编码生物标志物。他们还计划在宽光谱中试验更多类型的低功率光源,以开发可穿戴或便携式光声成像显微镜。论文链接:https://doi.org/10.1002/advs.202302486
  • 基因组大数据、生物质谱等将为生物医学带来新机遇
    p   云计算正在成为生物医学界的“宠儿”。——8月14日,北京贝瑞和康生物技术有限公司与阿里云共同向外界宣布双方达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。 /p p   此次,双方共同合作的“神州基因组数据云项目”将首先聚焦于基因组大数据在云平台上的批量计算、分析、存储,进而在基因大数据领域共同进行前沿探索。 /p p   “打造基因组大数据,相当于建立了一个中国人基因版的《本草纲目》,将记载中国人群最核心的基因信息、生命信息,为中国人群重大疾病的预测、预防、诊断和治疗奠定基础。它的意义将不亚于《本草纲目》这部东方医药巨典。”贝瑞和康首席生物信息官于福利博士说。 /p p   中国是世界出生缺陷率最高发地区之一。每年1600万至2000万的出生人口中,有80万至120万出生缺陷儿。1996年到2010年,中国新生儿出生缺陷发生率增幅达70.9%,每一万名新生儿中就有149.9人患有先天性缺陷。 /p p   这一不利的局面将随着“神州基因组数据云”项目的实现得到改观。据了解,贝瑞和康自主构建的中国人群基因组大数据库目前已包含超过四十万份基因组数据。通过对该数据资源的深入挖掘,能够进一步揭示中国人群遗传突变分布,这将极大助益于提升中国人遗传疾病诊断的效率和精准程度。 /p p   贝瑞和康作为国际领先的基因测序技术临床转化服务商,致力于为临床医学疾病筛查和诊断提供“无创式”整体解决方案,是无创DNA产前检测和针对肿瘤循环DNA的肿瘤个体化医疗基因检测的行业领导者。 /p p   基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种罕见疾病的可能性,如地中海贫血病。 /p p   业内人士指出,随着下一代基因测序、生物质谱和医学成像等医学技术的迅猛发展,大数据浪潮为生物医学带来了前所未有的机遇,将根本性的改变生物医学基础研究和医疗实践,但同时生物医学领域数据爆炸式的增长也对海量数据的存储和分析提出新的挑战。云计算将大量计算资源、存储资源和软件资源虚拟化,形成规模庞大的共享资源池,可以有效解决生物医学对IT资源的弹性需求。 /p p   目前,新一代基因测序技术要得到比较准确的信息,一般认为30X 的基因测序深度是必须的,所以一个人的基因组检测大约需要产生 90Gb 的数据。如此大的数据,在一般的电脑或小型服务器上运行起来非常困难。 /p p   阿里云是全球领先的云计算服务平台。客户通过阿里云,用互联网的方式即可远程获取海量计算、存储资源和大数据处理能力。根据IDC调研报告,阿里云是国内最大的公共云计算服务提供商。 /p p   此次,阿里云与贝瑞和康达成合作,正是基于阿里云批量计算服务的强大能力,利用云计算的优势降低成本,提高数据分析的速度。 /p p   阿里云批量计算服务是一种适用于大规模并行批处理作业的分布式云服务,适用于生物基因分析、渲染、多媒体转码、科学计算、金融保险分析等多个行业领域。 /p p   阿里云高级专家林河山介绍说,“借助批量计算服务,用户可以调动海量计算资源快速完成基因大数据的处理。批量计算服务提供简单易用的API,允许用户通过有向无环图的方式灵活组建工作流,计算资源管理、作业调度和数据分发由系统自动完成。同时,批量计算服务支持自定义镜像,并允许应用通过网络文件系统(NFS)协议高效访问阿里云对象存储(OSS)上的数据,使得用户原有分析流程可以轻松上云。结合阿里云对象存储,批量计算服务能够帮助生物信息分析专家在云上快速构建大规模基因组学应用。” /p p   他进一步说,“此次与贝瑞和康的合作,阿里云将不断优化基于基因组学的云解决方案,以契合医学时代发展的需求。” /p p   业内专家预计,双方合作完成的基因组数据云将对中国临床医学的精准诊断,预防和治疗的发展产生深远的推动力。 /p p   无疑,借助阿里云的批量计算服务,用户将更便捷、更简单、更迅速完成基因大数据计算,大大降低客户的成本。同样,因为云计算的赋能,为研究人员开展大规模的基因组学研究大开“方便之门”,将催生一批影响人类健康相关的变革性成果。 /p
  • 华粤行成功参展第四届国际生物医学和环境科学技术大会
    4月16-19日,第四届国际生物医学和环境科学技术大会在广州市中山大学东校区(大学城校区)隆重举行并顺利闭幕,本届大会以&ldquo 基因组稳定性和癌症发展&rdquo 为主题,邀请了在相关研究领域中取得重大科研成果的48名专家学者作大会主题报告和分会场专题报告。与会专家交流并讨论了DNA损伤信号和DNA损伤修复,端粒生物学,衰老和环境基因毒理学的机制,尤其是癌症生物学和癌症干预等相关的研究成果。华粤行仪器有限公司(我司)倾情赞助本次大会。 借此机会,我司为与会的各位专家及师生们介绍了系列细胞/动物研究的新技术新产品,包括日本NEPA GENE NEPA21新一代高效基因转染系统、美国Biospherix低氧培养系统、DBT Juli荧光显微镜等,获得广大师生们的热烈欢迎及极大的关注。 我司NPEA21基因转染系统及biospherix低氧培养装置宣传易拉宝 参会老师正在仔细阅读了解我司的产品资料 我司销售人员为参会学生讲解高效基因转染系统NEPA21
  • 行业应用 | 生物学和生物医学领域的纳米压痕仪应用
    力学性能表征对生物医学和生物材料的研发有重要的作用。对于许多生物材料,有时不得不在非常局部或相对较小的区域内研究其力学性能。此外,临床前研究通常在小动物模型(如大鼠或小鼠)上进行。因此,测试方法必须适用于局部区域测试,以便在如此小的样本上也可以进行检测。最近几年引入生物医学的纳米压痕技术尤其适用于这类表征。本应用报告展示了纳米压痕在骨骼、牙齿和隐形眼镜性能测试中的一些应用在过去的几十年里,生物材料的力学性能表征已成为其重要的发展需求。研究人员和工程师有兴趣了解生物材料(软组织和硬组织、骨骼、肌腱、软骨、牙齿等)和人工(人造)生物材料(植入物、可溶解缝合线、永久或临时性的支架等)的力学性能。了解组织和器官等生物材料的力学性能对于开发人体内的新材料和组织以及评估不同医疗方法的效果是必要的。在以上许多应用中,需要去研究相对较小的局部区域内的表面力学性能,此外,临床前研究通常在小动物模型(如大鼠或小鼠)上进行。测试方法必须适用于局部区域测试,以便在如此小的样本上也可以轻松进行检测。纳米压痕技术在生物医学领域已经应用了大约二十年。若干研究人员使用这种方法研究骨关节炎或不同营养方案对骨骼力学性能的影响。纳米压痕技术非常有用,主要是因为与表征骨骼整体结构性能的宏观拉伸或压缩测试相比,它提供了骨骼中不同组织的微观力学性能。压痕表征材料的局部特性在研究药物治疗或病变的效果时极其重要,因为这些处理方式通常会导致生物材料局部刚度的变化。只有对健康骨骼结构的特性有很好的了解,才能在相应的药物治疗中取得好的效果。因此,除了对治疗过的骨骼进行测试外,还必须对健康骨骼进行类似的测试。此外,测试参数应该满足对应压痕测试的材料体积总是相同的(或至少非常相似)且代表可以观察到处理结果的相关的结构单元。牙釉质是另一种通过纳米压痕测试进行研究的材料。纳米压痕技术确实是对这种小样品进行力学性能测试的最适合的方法之一。尽管硬质生物材料或生物体材料的纳米压痕测试代表了很大一部分的局部力学测试,但在越来越多的应用中,需要测量更软的(生物)材料。这些软材料可以具有远低于 100MPa 的弹性模量,并且经常必须保持在流体中。此外,它们的表面可能不平整,无法通过标准方法(如切割或抛光)进行制备。这种软材料的一个典型例子是关节软骨。最近针对各种类型的支架对软骨再生的影响,开展了广泛的研究。柔性隐形眼镜因其使用简单、成本低廉而被许多人在日常生活中使用。不同隐形眼镜的刚度(以弹性模量表示)和最终蠕变可能会因所用材料的类型不同而显著变化。材料的选择受到光学性能、佩戴舒适性或镜片使用时间的影响。隐形眼镜的刚度可以使用生物压痕仪进行局部测量,该生物压痕仪能兼容在液体中进行测试。仪器压痕是一种表征生物医学和生物体材料局部力学性能的新技术。安东帕仪器化压痕测试的优势是可以测试硬质和软质生物材料和生物体材料的硬度和弹性模量。纳米压痕测试仪适用于许多类型材料的局部力学分析,比如干燥的或浸泡在液体中的,硬的或软的材料都可以被测试。
  • 微观世界显真容:质谱成像助力生物医学研究
    质谱成像(MSI)作为一种新兴的分子成像工具,凭借其高灵敏度、特异性及无需标记等优势,已经在生物医学研究领域展现了巨大潜力。其可以直接获取分子轮廓,并直观地显示每种离子化化合物在样品(尤其是生物组织)中的空间分布。作为探索空间多组学最有前途和最有发展前景的技术之一,MSI 不仅能定位药物和代谢物的分布,还能深入了解疾病进展和药物干预背后的表型变化。本文将结合多种质谱成像技术,包括常压透射式激光解吸/后光电离质谱成像、基质辅助激光解吸电离质谱成像、解吸电喷雾离子化质谱成像、飞秒激光电离成像质谱、离子迁移率分离、飞行时间二次离子质谱、激光剥蚀电感耦合等离子体质谱、成像质谱显微镜等技术,深入探讨了其在肿瘤研究、药物代谢分析和单细胞研究中的突破性成果。◆ 常压透射式激光解吸/后光电离质谱成像技术 由中国科学技术大学国家同步辐射实验室潘洋等的研究团队,共同发展的常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI)新方法,能够在无需复杂样品前处理的情况下,实现对生物组织中多种内源性化合物的原位可视化分析。该技术结合了透射式激光解吸电离和紧凑型后紫外光电离装置,显著提高了空间分辨率和灵敏度。在复杂临床样本分析中,t-AP-LDI/PI-MSI被用来分析肿瘤组织的代谢物分布,揭示了黑素瘤微环境的代谢异质性,这为深入了解肿瘤发生的复杂分子机制具有很大的参考价值。点击了解最新进展~◆ 基质辅助激光解吸电离质谱成像技术 (→点击查看相关仪器)基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种经典的技术,通过在样品表面添加基质,使得样品在激光照射下能够能够高效地解吸和电离组织样品中小分子代谢物、脂质和蛋白质。MALDI-MSI在肿瘤标志物发现、药物分布研究等方面应用广泛,为生物内源性化合物的直接鉴定和定位提供了强有力的支持。已有研究使用不同的纳米材料作为衬底,从而显著提高分析物的解吸电离效率和检测灵敏度。此外,MALDI-MSI还被成功应用于单细胞分析,通过优化样品制备和基质选择,能够在单细胞水平上检测代谢物和脂质,这对于细胞异质性研究具有重要意义。例如,杭纬等相继研发出的质谱仪器能够实现单细胞内药物分子的3D成像分析,揭示了抗癌药物诱导癌细胞凋亡的动态过程。蔡宗苇等研发出冰冻3D细胞微球方法用于MSI分析,并结合代谢组学揭示了环境污染物对细胞球增殖的影响。点击了解最新进展~◆ 解吸电喷雾离子化质谱成像技术 解吸电喷雾离子化质谱成像(DESI-MSI)是一种无需样品前处理的即时质谱成像技术,可在大气压下进行快速、直接的化学成分分析。近年来,DESI-MSI在临床诊断中的应用逐渐增多,能够在手术过程中实时识别癌组织边界,为外科医生提供重要的指导信息。此外,DESI-MSI在环境科学中也展现出潜力,尤其是在分析复杂环境基质中的污染物时,DESI-MSI能够快速、准确地检测和定位多种化学物质。贺玖明团队还开发出基于AFADESI-MSI技术的空间分辨代谢组学新方法,揭示肿瘤转移机制,建立了以空间分辨代谢组学技术为特色的代谢研究平台。点击了解最新进展~◆ 飞秒激光电离成像质谱技术 飞秒激光电离成像质谱(fs-Laser Ionization Imaging Mass Spectrometry)技术凭借其超快激光脉冲和精确的电离能力,在质谱成像领域独树一帜。该项技术可高效分析热敏性和易碎性样品,超越了传统光学显微镜的分辨率限制。通过微米级分辨率进行激光烧蚀和质谱仪的软电离源,其能够鉴别和分析生物分子和其他微观物质,在分子水平上揭示样品的化学组成和空间分布,推进了多个研究领域的进展。其已经能够在亚细胞水平上进行高分辨率质谱成像,为细胞生物学、神经科学等领域的研究提供了前所未有的视角。◆ 离子迁移率分离技术 (→点击查看相关仪器)离子迁移率分离技术(IMS)的引入,为质谱成像带来了革命性的变化。IMS通过分离气相中的离子,根据它们在电场中的迁移速度不同来实现分离,这取决于离子的碰撞截面积和电荷状态。离子迁移率质谱成像(IM-MSI)利用IMS的优势,提高了分子特异性和空间分辨率,尤其是在分析小分子异构体方面表现出色。这项技术在药物开发、疾病诊断和生物标志物的发现等领域展现出巨大的潜力,为生物医学研究提供了新的视角。李灵军团队利用离子迁移率分离和双极性电离质谱成像(MSI)技术实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。点击了解最新进展~◆ 飞行时间二次离子质谱技术 (→点击查看相关仪器)飞行时间二次离子质谱(TOF-SIMS)技术是一种仍然处于高速发展中的高分辨率表面分析技术,具有高空间分辨率、高化学专一性、高灵敏度的独特优势,广泛应用于生物组织和单细胞成像等生命科学研究领域。TOF-SIMS是迄今为止,能在亚细胞水平上对生物分子进行无标记2D和3D成像的、为数不多的分析技术之一,为研究细胞膜组成、药物分布和疾病标志物提供了宝贵的信息。汪福意课题组长期致力于TOF-SIMS方法与应用研究,发展了基于TOF-SIMS和荧光共聚焦显微镜联用的成像分析方法,并在单细胞水平上开展了金属抗肿瘤化合物、细胞内生物大分子蛋白质与DNA之间的相互作用等研究。点击了解最新进展~◆ 激光剥蚀电感耦合等离子体质谱技术 (→点击查看相关仪器)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术通过激光剥蚀样品并结合ICP-MS的高灵敏度检测,实现了对生物组织中金属元素和有机化合物的空间分布分析。该技术在金属组学和元素生物化学研究中,特别是对揭示元素在生物体内的分布和功能方面,提供了强有力的手段。LA-ICP-MS技术能够以高空间分辨率对生物样本进行元素成像,对于研究微量元素与疾病的关系以及药物代谢等领域具有重要价值。中科院高能物理研究所丰伟悦研究团队对LA-ICP-MS在单细胞分析和生物成像方面的研究,为理解生物样本中的元素分布和相互作用提出了新的见解,也为生物医学研究和纳米材料的安全性评估提供了重要的技术支持。◆ 成像质谱显微镜 (→点击查看相关仪器)成像质谱显微镜结合了光学显微镜和质谱成像技术的优势,能够在单细胞甚至亚细胞水平上提供高分辨率的化学信息,并对生物分子进行定量分析。该技术为研究细胞内的分子动态和相互作用提供了可能,对于理解疾病的发生和发展机制具有重要意义。成像质谱显微镜为揭示细胞内复杂的分子网络和相互作用提供了新的研究工具。点击了解最新进展~质谱成像技术的不断创新与发展,极大提升了生物样本化学信息的解析能力,并在细胞、组织及器官层面揭示了样品的复杂化学组成及空间分布。随着技术的发展,质谱成像将在未来生物医学研究中继续发挥重要作用,为疾病诊断、治疗方案优化以及生命科学研究带来新的突破与希望。更多精彩内容↓↓↓上述内容综合了当前质谱成像技术在生物医学研究中的最新研究进展和应用实例。有关更多信息和研究讨论,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有来自国内外的顶尖专家分享他们在质谱成像领域的最新研究成果和见解,赶紧点击下方的图片报名吧。
  • iCMS2017第八届质谱网络会议——生物医学及生命科学
    p    strong 仪器信息网讯 /strong & nbsp 仪器信息网与中国化学会质谱分析专业委员会合作举办的第八届质谱网络会议(iConference on Mass Spectrometry,iCMS2017) 于2017年11月21日正式开幕。本届质谱网络会议为期四天(11月21日-24日),共设质谱新技术、生物医学及生命科学、食品分析、环境分析、药物分析共五个专场。 /p p   生物医学及生命科学专场在11月22日举行,普渡大学教授陶纬国、安捷伦资深应用工程师 宋越、德克萨斯大学奥斯汀分校研究助理张佳玲、沃特世高级应用工程师陈熙、复旦大学副教授申华莉、中国科学院水生生物研究所高级实验师杨明坤、SCIEX高级市场发展专员刘宏伟、中国农业大学副教授李溱、中南大学教授詹显全在线上给大家分享了精彩的报告。 /p p    span style=" font-size: 20px " strong 生物医学及生命科学 (上) /strong /span /p p style=" text-align: center " span style=" font-size: 20px " /span & nbsp img title=" Andy Tao.png" src=" http://img1.17img.cn/17img/images/201711/insimg/a0e9ef8b-ba00-4a01-bb1b-57715ea120cd.jpg" / /p p style=" text-align: center " strong 报告人:普渡大学教授 陶纬国 /strong /p p style=" text-align: center " strong 报告题目:血液中囊泡内磷酸化蛋白分析在癌症检测中的应用 /strong /p p   目前肿瘤诊断的主要方式是组织活检,那么有没有一种更好的替代诊断方式,是否可以用液体活检替代组织活检?陶纬国跟大家分享了他进行的研究成果。生物体内,蛋白的磷酸化与癌症发生有着密切联系。而肝脏分泌的磷酸酶,会将血液中的这些蛋白去磷酸化,同时还存在其他蛋白的干扰,想从血液中找到这些磷酸化蛋白极为困难。陶纬国发现胞外囊泡的存在却使这一想法成为了可能,微囊泡和外泌体中有稳定存在的磷酸蛋白。通过质谱技术对乳腺癌患者血浆内的磷酸蛋白进行鉴定研究,他发现用胞外囊泡中的磷酸蛋白进行疾病诊断是可行的,可以替代组织活检,这是一种识别疾病生物标志物的新方法。接下来,他还会就相关方向进行更加精准的乳腺癌研究、前列腺癌动物模型研究等。 /p p style=" text-align: center " img title=" Song Yue.png" src=" http://img1.17img.cn/17img/images/201711/insimg/ed1f2c94-eb42-484a-a054-c775c4eafdc8.jpg" / /p p style=" text-align: center " strong 报告人:安捷伦资深应用工程师 宋越 /strong /p p style=" text-align: center " strong 报告题目:基于高分辨质谱技术的定性代谢流分析 /strong /p p   宋越介绍了安捷伦蛋白质组学研究平台以及基于高分辨质谱技术的定性代谢流分析的完整解决方案。代谢流机理研究的方法为稳定同位素标记法,即通过监测同位素异数体的变化来研究机理。代谢流研究已经从低分辨走向高分辨率质谱,数据采集完之后进行处理,因为 sup span style=" font-size: 12px " 13 /span /sup C天然同位素的存在会干扰计算,所以耗费较长时间,而安捷伦的Profinder软件可以直接扣除本底背景干扰,节省分析时间。另外,VistaFlux是安捷伦的独家解决方案,在创建目标代谢物列表采集数据后,可快速提取特征,同时通路可视化,可以将整个数据分析过程降低至数分钟。宋越以治疗白血病药物的代谢流分析、天冬氨酸代谢通路研究为案列,说到安捷伦可以为代谢组学研究提供稳定可靠的软硬件平台。 /p p style=" text-align: center " img title=" Zhang Jialing.png" src=" http://img1.17img.cn/17img/images/201711/insimg/152abcc1-46cd-457b-a41d-30f1cbe41c3d.jpg" / /p p style=" text-align: center " strong 报告人:德克萨斯大学奥斯汀分校研究助理 张佳玲 /strong /p p style=" text-align: center " strong 报告题目:新型手持式质谱笔在癌症研究中的应用 /strong /p p   传统的组织学检测方法通常耗时耗力,并且癌症组织复杂的组织结构和细胞形态,使得该方法具有明显的局限性。张佳玲的报告讲的是新型手持式质谱笔在癌症研究中的应用,即一种自动化并且生物兼容的手持式质谱装置用于对人体癌症的快速且无损的分析。该装置称为质谱笔,通过对水滴的自动控制在所要分析的组织表面进行萃取,以获得生物分子信息来进行分析和诊断。张佳玲研究团队分析了20张人体的组织切片以及253个人体组织样品,包括甲状腺,肺,乳腺,以及卵巢的正常和癌症样品。在不同的人体样品中,研究人员可以检测到丰富的分子信息包括低分子量的代谢物分子,脂类以及蛋白分子。通过统计学方法对所获得质谱数据进行分析,结果显示对正常组组织和癌症组织的区分,灵敏度和专一性分别可达到96.4%和96.2,准确率为96.3%。最后,他们还对活体小鼠进行分析,实验结果显示分析过程不会对小鼠造成任何明显的损伤。 /p p style=" text-align: center " img title=" Chen Xi.png" src=" http://img1.17img.cn/17img/images/201711/insimg/949b061e-f84a-4c67-93b1-0a4295df080e.jpg" / /p p style=" text-align: center " strong 报告人:沃特世高级应用工程师 陈熙 /strong /p p style=" text-align: center " strong 报告题目:使用新型质谱技术(离子淌度、非变性质谱、氢氘交换质谱)进行蛋白高级结构表征 /strong /p p   针对蛋白质高级结构表征研究,陈熙介绍了多种新型质谱技术,包括离子淌度高分辨质谱、非变性质谱、氢氘交换质谱技术。通过应用案例分析,她详细介绍了这些技术在生物药分析上的最新应用进展,非变性质谱通过搭配不同选择范围的四级杆可以实现大分子量蛋白的测定,使复杂糖基化蛋白的完整分子量测定成为可能 离子淌度分离技术根据化合物漂移的时间差异为常规高分辨质谱增加了更多一个维度的分离能力,有助于蛋白质药物常规结构表征如二硫键错配 氢-氘交换质谱技术在蛋白质药物高级结构、动态变化、小分子结合位点研究上发挥着重要作用。 /p p style=" text-align: center " img title=" Shen Huali.png" src=" http://img1.17img.cn/17img/images/201711/insimg/87407340-322c-4c4c-b957-3617f697b219.jpg" / /p p style=" text-align: center " strong 报告人:复旦大学副教授 申华莉 /strong /p p style=" text-align: center " strong 报告题目:N-糖蛋白质组富集,鉴定和定量新方法的发展和应用 /strong /p p   蛋白质糖基化修饰具有重要的生物学功能,机体功能的实现主要依赖蛋白不同修饰,但糖修饰蛋白的特异识别/富集、位点/糖链结构、糖肽/糖链定量的分析方法一直滞后,是目前国际研究的热点和难点。申华莉课题组发展了一系列N-糖基化位点的富集,鉴定和定量新方法:包括N-糖基化修饰的富集新方法,N-糖基化肽段富集方法的整体优化,实现了高灵敏的N-糖基化肽段富集 发展了完整糖肽鉴定的质谱流程和搜库软件pGlyco 2.0,实现了大规模,自动化和高准确度的one-step N糖肽质谱鉴定,并获得迄今为止最大的N-糖肽数据集。她以凝集素芯片揭示阿尔兹海默病鼠脑蛋白糖链模式变化的实际案例介绍了这一流程及其在疾病研究中的应用。 /p p span style=" font-size: 20px " strong   生物医学及生命科学 (下) /strong /span /p p style=" text-align: center " span style=" font-size: 20px " img title=" Ge Feng.png" src=" http://img1.17img.cn/17img/images/201711/insimg/3c1bd4af-a9aa-45e4-ba30-bc12f328d163.jpg" / /span /p p style=" text-align: center " strong 报告人:中国科学院水生生物研究所研究员 葛峰( /strong strong 杨明坤代讲 /strong strong ) /strong /p p style=" text-align: center " strong 报告题目:蛋白基因组学(Proteogenomics)及其分析软件的开发和应用 /strong /p p   蛋白基因组学(Proteogenomics) 是基于高精度的串联质谱数据对基因组进行注释,不仅能在蛋白质水平上验证基因表达和模式,还能提供蛋白质组层面特有的信息,如翻译后修饰、信号肽等,目前已成为功能基因组学研究不可或缺的重要工具。然而,对海量质谱数据实现全面和精准的解读仍是当前蛋白基因组学研究的瓶颈,目前仍缺乏专业、高效的蛋白基因组学分析方法与软件,限制了其在生命和健康领域的应用。 /p p & nbsp & nbsp & nbsp 杨明坤讲到,课题组在前期完成的模式蓝藻的蛋白基因组学分析工作的基础上,基于水生所的超级计算平台,开发了开源的针对原核生物的蛋白基因组学专业分析软件GAPP。该软件整合了多组学数据库搜索、类别错误率评估以及非限制性翻译后修饰鉴定等多种方法,可实现针对海量质谱数据的快速、精准分析。利用该软件对已发表的幽门杆菌(Helicobacter pylori)蛋白质组学数据进行了测试,重新注释了幽门杆菌的基因组,鉴定到84.9%的已注释编码基因并发现了20个新基因,同时,利用该软件还实现了幽门杆菌的蛋白质翻译后修饰的全局系统发现,为幽门杆菌基因组的深入解读及其功能分析奠定了基础,也为深入研究幽门杆菌致病的分子机制提供了新的研究方向。该软件实现了“一键式”的原核生物蛋白质基因组学快速、精准分析,使用者只需具备简单的生物信息学知识,按照软件的指令,可在24小时内完成原核生物的蛋白质基因组的精准鉴定和功能分析,该软件有望成为解读原核生物基因组及其功能分析的有力工具。 /p p style=" text-align: center " img title=" Liu Hongwei.png" src=" http://img1.17img.cn/17img/images/201711/insimg/360ad919-ebd9-4006-a9a4-99d59a90f6f5.jpg" / /p p style=" text-align: center " strong 报告人:SCIEX高级市场发展专员 刘宏伟 /strong /p p style=" text-align: center " strong 报告题目:SCIEX在精准医学中的全面解决方案 /strong /p p   刘宏伟给大家带来了SCIEX在精准医学中的全面解决方案的报告。关于精准医学,她讲到,精准应该是对正确的病人,在正确的时间,给正确的治疗。相对于无差别治疗,更应该根据个人情况进行个性化治疗。从科研到临床,SCIEX提供一整套解决方案,用于蛋白、代谢、脂质水平的分析,从高分辨质谱到三重四极杆质谱,从生物标志物发现到验证,SCIEX提供了完整的癌症标志物研究路线。接着,她重点介绍了SWATH技术,该技术被广泛应用于差异表达分析、蛋白质相互作用、翻译后修饰、大规模临床样品定量分析。然后,刘宏伟以先天性肾上腺皮质增生症、儿茶酚胺检测两个实际案列介绍了SCIEX质谱在临床方面应用。最后,她就下一代代谢组学做了展望,并就工业代谢组学、脂质组学等做了相关介绍。 /p p style=" text-align: center " img title=" Li Zhen.png" src=" http://img1.17img.cn/17img/images/201711/insimg/9fc9cc4c-48d8-442a-b3fa-b81e4c7e6ee0.jpg" / /p p style=" text-align: center " strong 报告人:中国农业大学副教授 李溱 /strong /p p style=" text-align: center " strong 报告题目:基于高分辨质谱的植物代谢组学研究 /strong /p p   植物代谢组学研究生物胁迫和非生物胁对植物代谢的影响以及植物产生的免疫应答反应。对不同基因型、不同生长时期的植株或植物不同部位的代谢物进行全面的定性与定量分析,发掘和鉴定未知代谢物,构建代谢途径和代谢调控网络。 /p p   李溱的报告以拟南芥为模式植物,使用高分辨质谱技术研究了植物在内源茉莉酸缺失和外源茉莉酸处理下代谢物的变化情况,分析了拟南芥野生型,茉莉酸合成功能缺失突变体(opr3)和经过外源茉莉酸处理不同时间的opr3的代谢组。他对检测到的超过一万个特征离子信号进行统计分析和鉴定,共鉴定到109个差异化合物。这些化合物参与硫代葡萄糖苷代谢,色氨酸/吲哚乙酸代谢,氨基酸和多肽代谢,脂质代谢等代谢通路,揭示了内源茉莉酸在植物中的重要调控功能,实验结果进一步通过定量PCR等技术进行了验证。代谢组学还可以与基因组学研究相结合,开展基于代谢组学的数量性状位点(mQTL)分析和全基因组关联分析(GWAS)。报告使用mQTL技术研究玉米的驯化过程,分析了玉米和玉米的祖先大刍草的代谢物差异,及其在驯化过程中的变化。对调控丁布类代谢物的性状位点进行了定位和功能分析。研究为筛选作物优良形状,作物育种提供指导方向。 /p p style=" text-align: center " img title=" Zhan Xianquan.png" src=" http://img1.17img.cn/17img/images/201711/insimg/82a8f876-1bf5-47f2-92d0-a5fb49f3e512.jpg" / /p p style=" text-align: center " strong 报告人:中南大学教授 詹显全 /strong /p p style=" text-align: center " strong 报告题目:质谱技术在肿瘤酪氨酸硝基化蛋白质组学中的应用 /strong /p p   蛋白质酪氨酸硝基化是一种化学性质稳定的氧化损害的标志物,该修饰主要由体内亚硝酸盐途径产生。硝基化产生于生理条件下、富集于病理条件下、参与氧化还原系统,并且该修饰可通过酶和非酶机制而逆转。蛋白质酪氨酸残基的硝基化就是在苯环上加了一个硝基基团,使酪氨酸残基苯环上的电子密度降低,影响酪氨酸残基的化学特性。 /p p & nbsp & nbsp & nbsp 詹显全通过研究发现蛋白质酪氨酸硝基化可发生在重要的蛋白质结构域或基序部位,如发生在受体-配体及酶-底物间的相互作用区域则影响其相互作用强度,如发生在二聚化区域则影响蛋白质的二聚化,如发生在酪氨酸激酶磷酸化基序则与磷酸化竞争同一个酪氨酸位点来影响蛋白质的磷酸化调节;而且,在组织和细胞内存在脱硝基化酶来逆转硝基化过程。这样,蛋白质酪氨酸硝基化不仅是氧化应激的生物标志物,而且也通过调节和改变蛋白质的功能参与多种疾病如肿瘤的病理生理过程。质谱是探测、鉴定和定量酪氨酸硝基化蛋白质及其修饰位点的关键技术,是阐明蛋白质酪氨酸硝基化在肿瘤中作用的必须环节。此演讲将讨论蛋白质酪氨酸硝基化与肿瘤的关系,酪氨酸硝基化蛋白质组学的策略、特点及其在肿瘤研究中的应用,肿瘤硝基化蛋白质组学的现状、未来发展趋势及其质谱在其中扮演的关键作用。 /p p iCMS2017第八届质谱网络会议开幕 质谱新技术专场强势首发 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171121/233975.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171121/233975.shtml /span /a /p p iCMS2017第八届质谱网络会议——食品、环境、药物分析 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171124/234313.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171124/234313.shtml /span /a /p p & nbsp /p p & nbsp /p p & nbsp /p
  • 第四届中国、澳大利亚生物医学研究大会通知
    第四届中国、澳大利亚生物医学研究大会暨2013国际衰老生物学和衰老性疾病研讨会   大会时间:2013年10月10-13日   会议论文提交截止日期:2013年7月30日   会议优惠注册截止日期:2013年7月30日   大会地点:中国浙江省杭州市西苑宾馆   大会语言为英文   大会宗旨:进一步加强各国在医学、生物学领域的横向交流与合作,促进医学和衰老生物科学研究的国际化快速发展。   主办单位:杭州市政府、杭州师范大学、澳大利亚华人生物医学协会   承办单位:杭州师范大学衰老研究所、浙江杭州未来科技城、澳大利亚华人生物医学科学协会   协办单位:首都医科大学、山东大学   大会主题:   1、脑退行性疾病   2、心血管疾病   3、癌症生物学   4、消化、代谢与内分泌疾病   5、呼吸系统疾病及肺衰老   6、骨髓与血液疾病   7、病毒感染与免疫相关性疾病   8、细胞治疗与干细胞生物学   9、中药及药物研发与临床试验   10、流行病学、公共健康与健康管理。   特邀报告人: No. 姓名 单位 1 David Adams 皇家墨尔本理工大学 2 David Anderson 墨尔本伯纳特研究所 3 Greg Anderson 昆士兰医学研究院 4 Perry Bartlett 昆士兰脑研究所 5 Michael Berndt 澳大利亚科廷大学 6 Richard Boyd 蒙纳士大学免疫及干细胞实验室 7 Judith Clements 昆士兰科技大学 8 Qihan Dong 悉尼大学 9 Greg Dusting 墨尔本大学澳大利亚眼科研究中心 10 Matthias Ernst 沃尔特和伊丽莎. 霍尔医学研究所 11 Roger Evens 蒙纳士大学 12 David Finkelstein 墨尔本大学心理健康研究院 13 Eric Gilson 里昂高等师范学校分子与细胞生物学实验室 14 Tom Gonda 癌症、免疫学和代谢药物研究所 15 Peter Gunning 新南威尔士大学 16 Adrian Herington 昆士兰科技大学 17 David Huang 沃尔特和伊丽莎. 霍尔医学研究所 18 Evan Ingley 西澳大利亚医学研究所 19 Fang-Xu Jiang 西澳大利亚医学研究所 20 David Jans 蒙纳士大学 21 LevonKhachigian 新南威尔士大学 22 Rajiv Khanna 昆士兰医学研究院 23 KumKumKhanna 昆士兰医学研究院 24 Martin Lavin 昆士兰医学研究院 25 Han-Woong Lee 延世大学实验动物研究中心 26 Peter Leedman 西澳大利亚医学研究所27 Peter Little 皇家墨尔本理工大学 28 Kate Loveland 蒙纳士大学医学院 29 Xia Lou 澳大利亚Curtin大学 30 Barry Marshall 诺贝尔生理与医学奖获得者 31 Christina Mitchell 蒙纳士大学医学、护理与健康学院 32 Grant Morahan 西澳大利亚医学研究所 33 Judy MY Wong 不列颠哥伦比亚大学 34Hilda Pickett 儿童医学研究所 35 Susan Prescott 儿科和儿童健康学校 36 Andrew Roberts 沃尔特和伊丽莎. 霍尔医学研究所 37 Rob Saint 墨尔本大学 38 Peter Schofield 新南威尔士大学 39 Ian Smith 蒙纳士大学 40 Wayne Tilley 阿得雷德大学 41 Shaofang Wang 澳大利亚Chemcentre 42 Xueying Wang 新加坡国立大学 43 Wang Zhaoqi Leibniz衰老研究所 44 Bryan Williams 蒙纳士大学医学院 45 Steve Wilton 神经肌肉和神经系统紊乱中心 46 Jianping Wu 澳大利亚Curtin大学 47 曹雪涛 中国医学科学院、北京协和医学院 48 陈畅 中国科学院生物物理研究所 49 陈晨 昆士兰大学 50 陈丰原 中南大学 51 陈佺 中国科学院动物研究所 52 陈香美 解放军肾脏病研究所 53 陈小章 香港中文大学 54 陈雁 中科院上海生命研究院营养科学研究所 55 陈晔光 清华大学 56 程涛 中国医学科学研究院 57 丛羽生 杭州师范大学衰老研究所 58 丁长海 Tasmania大学、蒙纳士大学 59 丁健 中国科学院上海药物研究所 60 范汉东 杭州师范大学衰老研究所 61 冯新华 浙江大学 62 郭清 杭州师范大学 63 何琪杨 中国医学科学院药物生物技术研究所 64 贺福初 军事医学科学院放射医学研究所 65 贺林 复旦大学生物医学研究院 66 鞠振宇 杭州师范大学衰老研究所 67 柯未名 澳大利亚驻上海总领事 68 柯杨 北京大学 69 黎健 北京老年医学研究所 70 李碧波 克利夫兰州立大学 71 李春光 西悉尼大学 72 李林 上海生科院73 刘峰 中南大学 74 刘海燕 苏州大学 75 刘建平 北京大学 76 刘俊平 杭州师范大学衰老研究所 77 刘林 南开大学生命科学院 78 刘平生 中科院生物物理所 79 罗建红 浙江大学 80 马大龙 北京大学 81 孟安明 清华大学 82 倪崖 浙江省医学科学院 83 聂广军 国家纳米科学中心 84 欧汝冲 Baker心脏研究所 85 裴钢 同济大学 86 秦晓群 中南大学 87 饶子和 清华大学 88 沈月全 南开大学生命科学学院 89 史丽云 杭州师范大学医学部 90 宋保亮 中国科学院上海生命科学研究院生物化学与细胞生物学研究所 91 田小利 北京大学生命科学学院 92 童坦君 北京大学医学部 93 王炳辉 蒙纳士大学 94 王福俤 浙江大学 95 王晗 苏州大学 96 王红阳 东方肝胆外科医院 97 王林发 澳大利亚联邦科学与工业研究组织 98 王明荣 协和医科大学 99 王文恭 北京大学 100 王晓民 首都医科大学 101 吴国瑞 阳明大学 102 吴励 清华大学 103 吴缅 中国科技大学 104 肖智雄 四川大学 105 徐大为 瑞典Karolinska研究院 106 徐家科 西澳大学 107 徐涛 中国科学院生物物理所 108 许大康 杭州师范大学衰老研究所 109 许宏球 浙江杭州未来科技城 110 杨宝峰 哈尔滨医科大学 111 杨磊 杭州师范大学 112叶纪明 皇家墨尔本理工大学 113 尹玉新 北大基础医学院 114 俞迪 蒙纳士大学 115 詹启敏 中国医学科学院 116 张学军 安徽医科大学 117 张运 山东大学 118 周金秋 上海生命科学研究院 119 周中军 香港大学 120 朱大海 北京协和医科大学 121 朱宏建 墨尔本大学 122 朱学良 上海生命科学院   持续更新   议程: 2013.10.10 星期四 12:00-23:00 注册(参观杭州未来科技城) 18:00-21:00 欢迎晚宴 2013.10.11 星期五 8:40-9:00 开幕式(主会场) 9:00-10:30 大会主题报告一(主会场) 诺贝尔奖获得者Barry Marshall教授 10:30-10:50 茶歇 10:50-12:00 大会主题报告二(主会场) 12:00-13:00 午餐 13:00-15:00 大会分会报告 脑疾病(1)(一号分会场) 心血管疾病(1)(二号分会场) 病毒性疾病(三号分会场) 消化、代谢与内分泌疾病(四号分会场) 衰老生物学和长寿(1)(五号分会场) 15:00-15:20 茶歇 15:20-17:30 大会分会报告 脑疾病(2)(一号分会场) 心血管疾病(2)(二号分会场) 基因表达和调控机制(三号分会场) 肥胖与糖尿病(四号分会场) 衰老生物学和长寿(2)(五号分会场) 18:00-20:00 市政府招待晚宴2013.10.12 星期六 9:00-10:30 大会主题报告三(主会场) 10:30-10:50 茶歇 10:50-12:00 大会主题报告四(主会场) 12:00-13:00 午餐 13:00-15:00 大会分会报告 衰老生物学和长寿(3)(一号分会场) 免疫相关疾病(1)(二号分会场) 信号转导的机制(三号分会场) 离子和细胞器的动态平衡(四号分会场) 流行病学、公共健康与健康管理(五号分会场) 15:00-15:20 茶歇 15:20-17:30 大会分会报告 骨髓与血液疾病(一号分会场) 免疫相关疾病(2)(二号分会场) 癌症(1)(三号分会场) 干细胞(1)(四号分会场) 澳大利亚和中国间的国际合作(五号分会场) 18:00-20:00 大会晚宴 2013.10.13 星期日 9:00-10:30 大会主题报告五(主会场) 10:30-10:50 茶歇 10:50-12:00 大会主题报告六(主会场) 12:00-13:00 午餐 13:00-15:30 大会分会报告 激素、生长因子、类固醇(一号分会场) 新技术与手段(二号分会场) 癌症(2)(三号分会场) 干细胞(2)(四号分会场) 中医学、药物开发和临床试验(五号分会场) 15:30-16:00 茶歇 16:00-17:30 闭幕式(主会场)18:00-21:00 晚宴 2013.10.14 星期一 全天 参观杭州未来科技城、西湖博览会   大会注册:   请参会人员在线提交注册文件至邮箱:ACBRC2013@hznu.edu.cn   邮件主题格式:ACBRC注册+姓名+单位   邮件请附以下内容(见附件1):   1. 大会注册表   2. 汇款凭证扫描件   3. 大会论文   4. 有效学生证件扫描件。   注册费用: 2013年7月30日(含30日)之前注册 中方普通代表:1500元人民币 中方学生代表:800元人民币 外籍普通代表:490美元 外籍学生代表:290美元 特邀报告嘉宾:800人民币或150美元 2013年7月30日之后注册 中方普通代表:2000元人民币 中方学生代表:1100元人民币 外籍普通代表:690美元 外籍学生代表:390美元特邀报告嘉宾:1600人民币或300美元 团体注册 每五人减免其中一人注册费   费用说明:   ①注册费包含餐费(午餐、晚餐、会议茶歇)、材料费、会务费等,住宿自行安排(如需入住大会酒店,请详细填写注册表中的相关内容。由于大会酒店房间有限,会务组将按预定先后顺序安排。费用报到时自行支付)。   ②会议安排墙报交流区,选择&ldquo 墙报交流&rdquo 的会员,请按照90cm x 120cm(宽x高)的标准进行制作。   ③会议提供50个学生交通补贴名额,分别为中方和外方学生代表提供1500元和4000元人民币的交通补贴,并且免除住宿费。欲申请该项补贴的学生代表请提交论文摘要,会务组将选取最为优异的50名学生予以资助。   付款方式:   1. 银行汇款   人民币账户:   收款单位:杭州师范大学   开户银行:浙江省杭州市中国交通银行下沙支行   银行账号:331065950018000482533   美元账户:   收款单位:杭州师范大学   开户银行:交通银行浙江省分行   银行账号:331065950146300000896   2. 会场现金支付(人民币)   大会卫星会议   1、脑疾病研讨会,2013年10月14-15日,北京   2、心血管疾病研讨会,2013年10月14-15日,济南   联系方式:   电话:86-571-28865725   邮箱:ACBRC2013@hznu.edu.cn   secretariat@acabs.org.au   会议网址:http://ageing.hznu.edu.cn   http://www.acabs.org.au   大会地址:   浙江西苑宾馆   文一西路1008号   Telephone: 86-400-6464-888
  • iCEM 2017特邀报告:生物医学特殊电镜样品的制作方法
    p style=" text-align: center " strong 第三届电镜网络会议(iCEM 2017)特邀报告 /strong /p p style=" text-align: center " strong 生物医学特殊电镜样品的制作方法 /strong /p p style=" text-align: center " strong img width=" 400" height=" 342" title=" 陈明霞-处理.jpg" style=" width: 400px height: 342px " src=" http://img1.17img.cn/17img/images/201705/insimg/9f4b7901-2b87-4644-b621-3ad25498e170.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong & nbsp /p p style=" text-align: center " strong 陈明霞 高级工程师 /strong /p p style=" text-align: center " strong 西安交通大学医学部电镜室 /strong /p p strong   报告摘要: /strong /p p   生物医学电镜样品种类繁多,除了常规电镜样品的制作外,有些样品需要特殊处理,例如:如何在组织中分辨细小的弹性纤维,石蜡标本转换成电镜标本如何能保存好细胞的微细结构,皮肤组织表皮角质层如何解决切片时分离、分散等问题,通过实验可以取得较好效果。 /p p strong   报告人: /strong /p p   陈明霞,高级工程师,西安交通大学医学部电镜室负责人,1980年至今一直从事电子显微镜工作,主要承担透射电镜和扫描电镜下细胞超微结构观察,熟练生物医学电镜样品技术。 /p p   中国电镜学会第八届、第九届理事会理事,第九届生物医学专业委员会委员,第九届中国电子显微镜学会教育(实验技术与培训)委员会生物医学委员,陕西省电镜学会副理事长,陕西省分析测试协会理事。 /p p    strong 报告时间:2017年6月23日上午 /strong /p p   strong  立即免费报名: a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _blank" http://www.instrument.com.cn/webinar/meetings/iCEM2017/ /a /strong br/ /p p style=" text-align: center " & nbsp a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _self" img title=" 点击免费报名参会.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/c9793b9d-a3ec-4cb2-a453-330b3d0cbf03.jpg" / /a /p
  • 超灵敏生物医学检验! 苏州医工所在DNA逻辑电路构建方面取得进展
    基于DNA碱基之间的互补配对原则,可以设计组装多种复杂的二级结构,进而开发出具有特定功能的DNA分子器件,包括分子开关、纳米机器、分子框架、逻辑电路等。这些分子器件不仅在生命科学研究领域内发挥着重要的作用,而且在能源、信息、生物计算等研究领域内都具有重要的意义。DNA逻辑门是将DNA等生物分子或其他外界信息作为输入(input),通过DNA结构变化引发的各种表征结果作为输出(output),布尔运算后可以使得各种输入之间的相互识别关联关系得以明确。此外,通过将前一个逻辑门的输出作为后一个逻辑门的输入,可以构建多个级联的逻辑门,即逻辑电路。逻辑电路的组合、信号输出方式具有多样化的特点,具有广泛的应用前景。近期苏州医工所缪鹏研究员课题组发展了一种基于DNA双足步行的电化学纳米机器,并通过级联链置换构建出一系列的DNA逻辑电路,用于研究复杂生物样本中多种生物分子的关联关系。首先在电极界面修饰茎环结构的轨道探针分子;在上游均相体系中引入目标触发的链置换聚合反应用于特定序列单链的大量合成;利用DNA三通结结构完成双足步行链的组装;在茎环结构驱动链的存在条件下使其在电极界面交替行走,完成电化学信号分子的富集探测(图1)。进一步地,利用不完整三通结及双链结构的设计,进行级联链置换反应构建出AND, OR门,并与NOT门联合发展出NAND, NOR, XOR, XNOR门。所构建的双输入逻辑电路表现出良好的逻辑运算、操作性能(图2)。随后,通过四通结及双链结构的设计完成了三输入AND, OR门的搭建。发展的一系列逻辑电路不仅可应用于超灵敏生物医学检验,也为生物分子信息控制、通信、生物计算机等领域的研究工作提供了新的思路。相关工作得到了国家重点研发计划(2017YFE0132300)、国家自然科学基金(81771929)等项目的资助。结果已发表ACS Cent. Sci. 2021, 7, 1036-1044 (IF=14.553)。  论文链接:https://pubs.acs.org/doi/abs/10.1021/acscentsci.1c00277 图1 DNA双足步行器的示意图及结果 图2 双输入的逻辑电路示意图及结果 图3 三输入的逻辑电路示意图及结果
  • 拉曼光谱在生物医学领域将“大展拳脚”——第十九届全国光散射学术会议之分会场
    p    strong 仪器信息网讯 /strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。据中山大学陈建教授介绍,本次会议共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,注册参会人数450余人,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇。 /p p   为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。就像李灿院士在闭幕式上的致词时提到的,除了基础理论研究之外,光散射各项“落地”的研究工作也渐渐丰富起来,此次会议上所展示的将光散射技术用于食品安全、生物医药、刑侦等领域的研究工作所占比例非常之大。之前编辑已经简单介绍了“表面增强拉曼”这一“热火”的分会场,现在让我们再来看看“食品安全/生物医学/刑侦及其它”分会场有哪些特色。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/fc6a45fd-173c-467c-8339-d8ba61017a84.jpg" title=" 现场.jpg" / /p p style=" text-align: center " “食品安全/生物医学/刑侦及其它”分会场 /p p   “食品安全/生物医学/刑侦及其它”分会场共安排了15个邀请报告、21个口头报告;从分会场的报告内容和数量来看,目前生物医学已经成为拉曼光谱的热点研究领域,相关技术研究获得了日新月异的发展。 /p p   在医学上,通过探测有疾病所引起的组织、体液或细胞的分子组成变化,拉曼光谱可以在分子和细胞水平上诊断疾病。相对于其他方法,拉曼光谱应用于医学诊断具有非破坏性、非侵入性、不用试剂和高度自动化等优点,因此,拉曼光谱技术在生物医学和临床诊断上的应用研究是目前的一个重要方向,拉曼光谱或将成为未来生物医学的主要检测手段。 /p p   下面,部分精彩报告如下: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/c26c1d0c-4709-4603-9392-c2998ca654ea.jpg" title=" 黄岩谊.jpg" / /p p style=" text-align: center " 北京大学 黄岩谊研究员 /p p style=" text-align: center " 报告题目:利用受激拉曼散射显微成像和测序技术实现复杂异质生物体系的精确定量分析 /p p   对于一个复杂的、充满异质性的生物体系,如何实现单个细胞水平上的精确定量分析,即是技术挑战,也是回答许多科学问题的关键。黄岩谊研究员利用实验室搭建的可以同微流控芯结合使用的受激拉曼散射显微(SRS)成像系统,对单个细胞进行脂滴生成过程中的SRS成像和定量描述,并对每个细胞进行芯片上的裂解和全转录组扩增及测序,研究了单个细胞水平上脂滴生成过程的调控以及细胞间异质性发生的机理。并利用SRS成像和测序技术对肿瘤组织切片进行分析,达到对形态和遗传信息的关联测量,可以建立表型和基因型的关联性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/d1eb515d-7dd3-495d-82a9-d8ec9143613d.jpg" title=" 沈爱国.jpg" / /p p style=" text-align: center " 武汉大学 沈爱国副教授 /p p style=" text-align: center " 报告题目:“点击”SERS光谱与生物医学分析 /p p   沈爱国副教授研究组在研究中发现,三键编码的单个纳米粒子可通过物理学、化学或生物学方法发生类似于“点击化学”(通过小单元的拼接来快速可靠地完成形形色色分子的化学合成)中的可控拼接,从而实现窄带单峰的三键SERS信号的动态输出。这一全新的信号输出模式形象的被称为“点击”SERS光谱。沈爱国副教授报告中介绍了“点击”SERS光谱方法的建立、应用特点以及在生物医学分析中的应用情况。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/f9c2fbe0-a795-4f58-81a5-20e24d237be9.jpg" title=" 刘定斌.jpg" / /p p style=" text-align: center " 南开大学 刘定斌研究员 /p p style=" text-align: center " 报告题目:拉曼热点构建及其在生物医学中的应用 /p p   刘定斌研究员团队发展了一种靶标介导纳米颗粒组装形成二聚体的方法,通过构建电磁增强热点检测活细胞中miRNAs。不对称功能化的金纳米颗粒探针通过靶标诱导产生均一的二聚体,实现复杂体系中分析物依赖的拉曼信号增强。相比传统的拉曼报告分子,选择细胞沉默区非重叠的染料作为拉曼报告分子可以有效消除细胞内源性物质的背景干扰。此方法能够延伸到细胞水平特异性病理相关生物标志物的检测。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/38d5860d-0afd-4bd3-8663-79d310f20763.jpg" title=" 杨海峰.jpg" / /p p style=" text-align: center " 上海师范大学 杨海峰教授 /p p style=" text-align: center " 报告题目:磁/金纳米优化SERS检测生物标志物 /p p   杨海峰教授团队以植酸钠为稳定剂和桥连剂,以共沉淀法制备Fe3O4磁网结构,并原位合成Au/Ag纳米粒子,制备磁网SERS基底。该基底通过外磁场诱导聚集可产生更多的“hot spot”,提高拉曼检测灵敏度。杨海峰教授将该技术用于唾液毒品标志物、肺泡灌洗液中H7N9病毒、胰腺癌生物标志物CA19-9等的快速检测,有望实现早期诊断。 /p p br/ /p
  • 生物芯片、生物医学仪器等项目取得进展
    863计划生物和医药技术领域生物芯片、生物医学关键仪器和试剂重点项目取得阶段性进展   2009年5月13日,生物中心在京组织召开了“十一五”863计划生物芯片、生物医学关键仪器和试剂重点项目管理工作研讨会。生物芯片、生物医学关键仪器和生物医学关键试剂重点项目课题负责人、863领域专家、特邀专家和863计划管理相关人员近50人参加了会议。生物中心王宏广主任、863联办有关同志出席会议并讲话。   会议总结交流了生物芯片、生物医学关键仪器和生物医学关键试剂三个重点项目的主要进展和任务完成情况,分析探讨了当前生物芯片、医学仪器和试剂发展的形势和机遇,初步提出了进一步做好生物芯片、医学仪器和试剂研究与产业化开发的方向和政策建议。   会上,王宏广主任指出,课题实施只剩下不到两年的时间,尤其是面对科技进步支撑经济发展、应对全球金融危机的背景下,生物和医药技术领域重点项目的实施应该更多地关注既符合民生需求、又具有市场空间的高技术生物医学关键仪器和试剂的开发,在“十一五”末期,要以拉动需求、促进GDP增长作为一项重要的验收考核指标。同时,王主任对各课题承担单位提出要求,严格按照合同完成既定的任务和指标,并依据当前和未来一个阶段的市场需求,着手为“十二五”相关领域的研究工作做好战略研究和前期铺垫。863联办有关同志介绍了863计划近期相关的工作部署,指出做好“十一五”项目的评估和“十二五”战略研究工作的重要性。   生物芯片、生物医学仪器和试剂三个重点项目“十一五”立项突出以研究开发国内急需的产品为主要目标。截止到目前,三个重点项目已获得上市产品13个,销售17252万元,申请专利206项,获得专利59项,发表论文232篇,预计能按立项要求完成“十一五”预定的目标任务。
  • 不断走出舒适圈,挑战拉曼光谱在生物医学领域应用的多种可能——访上海交通大学叶坚教授
    近年来,快速、高灵敏并具有分子指纹识别特性的拉曼光谱技术受到包括生物、医学、材料和分析科学等领域专家和学者的广泛关注和青睐,特别是在生物医学领域掀起了研究热潮。近年来,一系列相关研究成果引人瞩目,成为当今生物医学交叉的前沿热点。特别值得一提的是,今年3月底在上海举办的第三届全国生物医学拉曼光谱学术会议中,拉曼光谱与生物医学的融合碰撞展现了这个前沿交叉领域极具诱惑的应用前景。相对与目前市面上其他分析仪器,拉曼光谱在生物医学领域的优势有哪些?可以解决哪些其他分析手段解决不了的问题?未来的应用前景怎么样?基于以上问题,仪器信息网编辑有幸采访到大会组织委员会主任、上海交通大学叶坚教授。上海交通大学 叶坚教授国内外生物拉曼技术/应用的发展“齐头并进”近年来,拉曼光谱技术在生物医学领域的应用备受关注,不少研究正在走向临床应用。对于拉曼光谱的这种应用走向,叶坚教授谈到,拉曼光谱技术因其分子指纹光谱的高特异性、不易受水的干扰、便携性等特点,在临床医学中具有巨大潜力。此外,表面增强拉曼光谱技术具有单分子级别的检测灵敏度,为生物医学研究提供了重要优势。这些特点使得拉曼光谱技术在解决其他技术难以应对的问题上具有独特优势。另外,叶坚教授还提到,与人工智能的高度融合是生物医学拉曼技术的一个重要发展趋势,人工智能将为该领域相关的研究提供了更大的机会或更深远的方向。谈到当前的研究和应用现状,叶坚教授表示,拉曼光谱技术这几年都在保持快速发展,在生物医药领域不仅有很多醒目的研究成果,而且已有企业正在准备进入或已经进入临床实验的阶段了,特别值得一提的是有不少的初创企业也正在把相关技术推向临床,给这个市场带来更多的新鲜活力。而对于国外内的研究进程,叶坚教授认为,“无论是学术界还是临床应用,我认为国内已经达到和国际上相同水平,应该说是齐头并进的,甚至在某些方向上,我们还处于领先地位。”采访中,叶坚教授还给大家分享了国内很多课题组的亮眼研究成果,比如多个团队的TERS、SERS探针、SERS+AI、SRS、临床无创血糖检测等等亮眼的工作。习惯“交叉”,全球首创成果登上顶刊《Nature》叶坚教授一直致力于拉曼光谱在生物医学领域的研究,并取得了诸多引人瞩目的科研成果。采访过程中,我们了解到,叶坚教授上学的时候是学高分子和化学的,似乎距离现在的研究方向有一定的距离。对于过往略显“复杂”的经历,叶坚教授笑称自己就是非常“交叉”的。据介绍,他在国内、欧洲、美国都学习过一点时间,在企业和高校也有工作的经验,从事过有关材料、化学、光学等方向的研究。也许正是因为他自身的科研背景如此“跨界”,也让他更习惯,也更擅长在交叉学科背景下找到自己感兴趣的科研课题。叶坚教授说,“我在攻读博士学位期间,先从事了有关等离激元纳米材料的研究,然后基于这些材料的研究基础,才开始了有关拉曼和SERS的研究,并在不断研究中发现这是一个非常交叉的研究领域。而后,因为选择了上海交通大学的生物医学工程学院,所以我选择了把拉曼应用在生物医学领域。”而选择将拉曼光谱应用于生物医学领域,对叶坚教授来说既是挑战也是机遇。一方面,其过往学习和工作经历给当前的科研打下了坚实的基础,另一方面生物医学的学科跨界也让其工作充满了很多未知的困难,比如学科背景、资源、团队等。叶坚教授说,“我时刻提醒自己要敢于踏出舒适圈,随时接受各种挑战。尽管前期在摸索方向上比较痛苦,却也让我在不断跨越和交叉中更加聚焦于生物医学领域的研究。”在采访中,叶坚教授用了“习惯”这个词来描述自己的工作日常,他说,自己已经习惯了这个交叉的状态,习惯了不断的面对新的领域、新的问题。不仅如此,虽然他们做拉曼光谱的研究,他同时还鼓励学生去拥抱人工智能、质谱等相关的技术。叶坚老师表示,他们不断的在交叉的学科中探索,吸引交叉的人才,同时也在跟很多临床的医生进行合作,这些资源都是非常珍贵的,也是他非常看重的。当然,在这个过程中,叶坚教授的团队也吸引了专门做人工智能研究的陈舟老师,并在不断的学科交叉中实现了很多的跨越。近一两年,叶坚教授课题组的工作实现了多个“突破”。SERS信号的重复性问题一直是困扰拉曼领域几十年的难题,现有的技术路线并没有很好的解决方案。叶坚教授团队近期发明了数字胶体增强拉曼光谱(dCERS),成果于2024年4月在国际顶级期刊《Nature》刊登。通过将光谱根据是否存在目标分子拉曼特征峰进行0/1数字化,对溶液中的阳性光谱进行计数,避免了依赖信号强度进行定量的问题。通过该单分子计数的方式可以实现对多种分子的定量检测,定量检测限可以达到1 fM以下;其中,dCERS技术所采用的胶体颗粒的合成步骤简单,易于放大生产,在应用中,可以方便建立标准曲线从而实现可靠地定量检测。另外一项技术突破是深穿透拉曼光谱和深层病灶的无创检测。据悉,课题组在2023年的成果报道中有一项全新的世界纪录,在光照安全剂量的条件下达到14厘米猪肉组织的光学穿透。此成果也成功解决了超亮探针的制备、穿透深度的大幅度提升、激光的安全性问题和深度的精准预测四大挑战。除此之外,叶坚教授团队一直从事拉曼光谱在术中检测和成像的医学应用。针对SERS在体内的生物相容性和安全性问题,叶坚教授另辟蹊径从场景入手,发现在前哨淋巴结场景下的术中应用是比较有机会突破的。拉曼探针作为前哨淋巴结显影剂的应用也是课题组近几年一直在做的方向,目前也正积极将此研究向临床推进。最近叶坚教授课题组把拉曼探针应用在猴子的前哨淋巴结术中应用。叶坚教授和团队成员展示前哨淋巴结显影剂拉曼溶胶纳米材料拉曼光谱距临床应用正处于“临门一脚”阶段在谈到拉曼光谱在生物医药领域的应用前景时,叶坚教授表示非常期待,“我认为在未来的3-5年内会有较大的突破,目前有一批企业正处在‘临门一脚’的阶段。当然这些不仅仅是学术界要努力的,还需要拉曼专业人才的培养、国内外仪器厂商的合作、国内的产业链上下游的成熟、国内投资理念的成熟等等。同时,叶坚老师也从多个角度分析了拉曼光谱仪器技术在该领域的应用现状。其介绍说,目前大部分的拉曼仪器其实是一个常规标准的仪器,它更多的是为材料领域做表征服务的,在生物医学领域往往需要更多定制化的设备去满足特殊的需求和场景;另一方面,在生物医学的应用领域中,大家也应关注拉曼光谱使用带来的安全性问题,包括激光安全和纳米材料的生物相容性问题等。特别是在推进该技术走向临床应用的过程中,大家需要对这些潜在的风险进行充分的评估和研究,确保其在发挥高效作用的同时也能保障使用的安全性;此外,生物拉曼数据库的建设和共享的机制也是亟待解决的问题,这也是后续人工智能与拉曼结合的基础。叶坚教授表示,“我认为这其中有很多和厂商合作的机会,如果有厂商愿意与老师们携手合作,我们完全有可能取得非常深入的成果。”据介绍,叶坚教授实验室不仅成果突出,在仪器方面也做了一系列的探索,比如最近搭建了深穿透拉曼的系统、内窥拉曼与手术机器人结合的肿瘤术中光活检系统等。不仅如此,其课题组还开发了基于人工智能的可实时进行信号降噪的算法,有望搭载在现有的拉曼仪器上直接使用,能提升现有的一些仪器的性能和应用。叶坚教授还透露,后续的研究会聚焦在代谢组学的检测。对于课题组一系列的成果,叶坚教授表示,很希望自己的研究成果最终可以产业化并进入临床应用,这也是团队未来努力的方向。采访的最后,叶坚老师表示,拉曼光谱的产业发展需要大家共同的助力。一方面,从技术的角度,SERS的重复性问题在一定程度上阻碍了拉曼光谱技术的产业化进程,希望针对这个问题的初步解决方案能真正推动其产业化进程;另一方面,叶坚教授也提到,从科研,到产业化项目推进,以及人才培养等,拉曼光谱的产业发展需要大家共同去经营,希望全国更多的专家和厂商可以一起加入和交流。后记:我国高度重视人民的健康问题,并将其置于优先发展的战略位置,加快推进健康中国建设的举措对培养创新工科人才提出了更高要求,特别需要教材创新。当前,拉曼光谱技术在生物医学领域的应用正处于临门一脚的关键时间点,相关技术正处于快速发展和产业化阶段。但是,我国仍缺乏聚焦“拉曼光谱技术在生物医学领域的研究和应用”的教材。因此,自2022年起,叶坚教授开始倡导并提议编写一本《拉曼光谱的生物医学应用》教材,联合厦门大学任斌教授、上海师范大学杨海峰教授共同组建教材编写核心团队。截止目前,教材编委会有30余名来自各大院校的拉曼领域知名专家学者加入。在第三届全国生物医学拉曼光谱学术会议期间,编委们围绕着《拉曼光谱的生物医学应用》教材展开一场小型研讨会。敬请期待《拉曼光谱的生物医学应用》教材:https://www.instrument.com.cn/news/20240412/713530.shtml为了展现最新的光谱仪器技术及相关的应用,仪器信息网将于2024年7月16-19日举办“第十三届光谱网络会议, 简称(iCS2024)”。第十三届光谱网络会议将聚焦最新、最前沿的光谱技术及应用,同时也会选择光谱技术在生命科学、食品/制药、环境、材料等领域的应用进展进行深入探讨。本次会议中,叶坚教授也会现场分享最新的成果,「点击此处报名」。
  • 《科学》聚焦中国生物医学新成果
    《科学》聚焦中国生物医学新成果   研究在一个全新的层面上呈现出广阔前景   美国当地时间2月19日,最新出版的《科学》杂志,罕见地同时发表两篇复旦大学生物医学研究院的最新成果。其中关于蛋白质向能量转化过程中“乙酰化修饰”的重要发现,对肝病、肿瘤等代谢疾病的药物研发提供了开拓性的思路,生物医学研究在一个全新的层面上呈现出广阔的前景。   2月19日,该项目的课题组负责人介绍了此项研究在药物研发等方面的意义。两篇分别题为《代谢酶的乙酰化协调碳源的利用和代谢流》和《蛋白赖氨酸的乙酰化调控》的文章,分别研究了乙酰化对蛋白质进行修饰以及对代谢通路进行调控的问题。   据介绍,人体好比一个“战场”,细胞就是士兵,维持着人体的基本功能 “赤手空拳”的蛋白质被乙酰“武装”起来后,才可以变成为人体“作战”的士兵。嫁接上一个乙酰基分子,修饰后的蛋白质就可以对细胞内的各类通路进行精确调节与控制。   乙酰调控蛋白质活性变化,使其中活跃、不活跃的部分相互平衡。而当平衡出现问题,就会导致代谢疾病。据了解,人类疾病中与代谢相关的占80%,包括肝病、肿瘤等。如果研制出一种药物能使乙酰“改邪归正”,对细胞进行正确调控,将成为一种全新的治疗方案。   “教科书中关于代谢调控内容将有可能被改写,乙酰化修饰的概念将可能成为代谢调控新内容”,相关负责人赵世民介绍说,细胞蛋白、代谢酶等大量非细胞核蛋白的乙酰化修饰,都是在研究中首次得到确认。   《科学》杂志以如此大的篇幅聚焦一个科研成果,实为罕见,充分显示了该研究的开拓性意义。《科学》的评论文章称:“了解赖氨酸乙酰化是如何调控,以及改变蛋白质乙酰化对特定细胞通路的影响,对人类疾病的意义不言而喻”。   更多阅读   《科学》杂志发表《蛋白赖氨酸的乙酰化调控》论文摘要(英文)   《科学》杂志发表《代谢酶的乙酰化协调碳源的利用和代谢流》论文摘要(英文)
  • 专家揭晓!iCEM 2024之生物医学电镜技术与应用专场预告
    2024年6月25-28日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(对外)(www.china-em.cn)将联合主办“第十届电子显微学网络会议(iCEM 2024)”。会议结合目前电子显微学主要仪器技术及应用热点,邀请业界知名电子显微学专家、电子显微学仪器技术专家、电子显微学应用专家等,重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。iCEM 2024恰逢电子显微学网络会议创立十周年,会议专场将增设“十周年”主题内容,围绕过去十年我国电子显微学重要进展、未来展望等进行分享。第十届电子显微学网络会议(iCEM 2024)将设置八个分会场:1) 原位/环境电子显微学与应用;2)先进电子显微学与应用;3)扫描电镜/聚焦离子束显微镜技术与应用;4)电子能量损失谱/电镜光谱分析技术;5)低温电子显微学与应用;6)生物医学电镜技术与应用;7)电镜实验操作技术及经验分享;8)电镜开放共享平台及自主保障体系建设。诚邀业界人士线上报名参会。主办单位:仪器信息网,中国电子显微镜学会(对外)参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2024/或扫描二维码报名“生物医学电镜技术与应用”专场预告(注:最终日程以会议官网为准)专场六:生物医学电镜技术与应用(6月27日下午)专场主持暨召集人:李英 清华大学蛋白质研究技术中心 工程师报告题目演讲嘉宾【十周年主题报告】: 微观脑联接图谱绘制技术陈曦(中国科学院自动化研究所 研究员)徕卡在SEM/FIB SEM的制样方案介绍包沈源(徕卡显微系统(上海)贸易有限公司 中国区应用主管)特殊亚结构形成性肾小球病的电镜诊断任雅丽(北京大学第一医院 副主任医师)植物多模态跨尺度技术及其应用张曦(北京林业大学 讲师)光电关联及冷冻电子断层成像对沙门氏菌引发的宿主异源自噬的原位结构研究李美静(深圳医学科学院 特聘研究员)嘉宾简介及报告摘要(按分享顺序)专场主持暨召集人:李英 清华大学蛋白质研究技术中心 工程师【个人简介】2017年参加了第一届超薄切片大赛,获得第二名。参与了2019年清华大学出版社出版的王大亮等老师主编的《医学组织学图谱与实习指导》一书中第一章内容的编写,该书被评为2020年“北京高等学校优质本科教材课件”。参与了2021年高等教育出版社出版的丁明孝等老师主编的《生命科学中的电子显微镜技术》,该书中收录了植物扫描电镜制样、基于单层细胞原位包埋的APEX2标记方法以及光电光联制样方法。参与了清华大学俞立教授课题组关于迁移体的发现及机制与功能研究工作,该成果荣获2022年北京市自然科学奖一等奖(9/13)陈曦 中国科学院自动化研究所 研究员【个人简介】陈曦,中国科学院自动化研究所研究员,博士生导师,中科院关键技术人才。2009年博士毕业于中国科学院自动化研究所。在SCIENCE、CELL REP、IJCAI等期刊和会议中发表论文60余篇,授权发明专利26项。长期从事生物序列切片电镜图像体重建技术研究,致力于解决微观脑联接图谱绘制中体重建的通量瓶颈,为国家脑计划提供突触水平神经环路重建所必需的关键核心技术和系统解决方案。报告题目:微观脑联接图谱绘制技术【摘要】随着微观脑联接图谱绘制技术的发展,如何获得更大体量的生物样品三维电镜数据成为该领域的下一个技术制高点。基于连续切片的三维体电镜技术是行之有效的解决方案,但也随之引入一系列的计算难题。本报告首先介绍微观脑联接图谱绘制的主要技术路线和国际进展,其次是课题组在该领域的工作开展情况。包沈源 徕卡显微系统(上海)贸易有限公司 中国区应用主管【个人简介】博士,华东理工大学先进材料与制备技术专业。博士后工作于华东理工大学物理化学专业。现任职于徕卡显微系统电镜制样技术主管。主讲人长期从事材料、生物样品电镜制备和分析工作,精通常温机械处理、离子束加工、冷冻处理、真空转移等路线,涵盖新能源、半导体、高分子、蛋白质、细胞、组织等领域,从理论基础到分析表征均具有丰富经验。报告题目:徕卡在SEM/FIB SEM的制样方案介绍【摘要】近年来,随着各类电镜表征技术的发展,生物领域的SEM/FIB的制样要求日益增加,特别针对含水冷冻生物样品进行定位加工需求不断增加。对于这类样品,我们需要在极低温的环境下,完成样品固定、定位观察等处理工作,并安全地将其转移至电镜中,同时还需要实现各设备测试数据相匹配,这对于各设备性能和整体解决方案提出了很高的要求。Leica提供了一整条完整的样品低温制备、共聚焦定位、低温镀膜路线,并借助真空冷冻传输系统连接各样品加工、观察设备,保证样品结构的真实性,提高实验的重复性,同时降低使用者的操作难度,为生物样品研究提供一条完整可行的SEM/FIB的制样制样路线。任雅丽 北京大学第一医院 副主任医师【个人简介】任雅丽,北京大学第一医院电镜室,副主任医师;从事病理和超微病理诊断、教学和科研工作;研究方向为肾小球病的发病机制与肾脏的组织计量学;擅长非肿瘤性肾脏病的病理和超微病理诊断;主持国家自然科学基金课题一项,参与国家级课题若干项;在国内核心期刊和 SCI收录杂志发表论著60余篇;现任中国电子显微镜学会委员、中国研究型医院学会超微与分子病理学委员会委员、中国体视学学会生物医学分会理事、中国医学影像技术研究会理事。报告题目:特殊亚结构形成性肾小球病的电镜诊断【摘要】电镜在非肿瘤性肾病的诊断中发挥着举足轻重的作用,对于伴有亚结构形成性肾病的诊断优势更为突出,本报告将就此类肾小球病的诊断与鉴别诊断要点和思路进行解读,内容从单克隆和非单克隆免疫球蛋白到非免疫球蛋白相关疾病,疾病谱从相对常见的淀粉样变性病到非常罕见的冷纤维蛋白原血症肾损伤。张曦 北京林业大学 讲师【个人简介】张曦,从事树木细胞分子生物学、树木生命活动多模态跨尺度成像与分析和树木规模化繁育研究等,担任J of Plant Physiol顾问编辑,Trees-Struct Funct、Plant Methods和电子显微学报等审稿专家。主持国家自然科学基金青年项目、北京市面上项目和博士后面上项目,参与国家自然科学基金重点项目和科技部重大项目等。发表3篇教教改论文,主持1项校级教改项目,参编《植物细胞壁与木材形成》著作1部。近年来,以第一、共一或通讯作者在《Plant Physiology》、《Genome Biology》、《Trends in Plant Science》、《Science China-Life Sciences》、《Plant Methods》等期刊发表学术论文40余篇。获授权国家发明专利6项。带领团队开展良种树木规模化繁育项目,创制“三元三步”促生根技术,入选国家林草局2021年重要推荐成果,获北京大学南昌创新研究院百万经费资助,在中林种子集团及广东、江苏、福建等省市几十家企业推广应用,取得了显著的生态、经济和社会效益。报告题目:植物多模态跨尺度技术及其应用【摘要】植物科学的研究领域广泛,涵盖了从微观的蛋白质分子到宏观的完整生物体,跨越了多个空间尺度。这些多层次系统通过不同类型细胞间的相互作用,赋予了植物器官更高级的功能,为其生长发育和生命活动提供了坚实的物质基础。三维成像技术,从单细胞到整个生物体,已成为揭示细胞复杂结构和系统功能的强大工具。我们运用单分子技术、Micro-CT、LSFM和Auto-CUTs等多模态跨尺度成像技术,对植物的种子、茎、花粉等结构进行精细的三维重构与深入分析,揭示植物细胞活动规律,为植物科学研究提供了创新的技术手段和应用模式。李美静 深圳医学科学院 特聘研究员【个人简介】李美静博士,特聘研究员、博士生导师。2015至2019年在清华大学生命科学学院结构生物学专业攻读博士学位,师从李雪明教授。2019至2023年在马克斯普朗克生化研究所从事博士后研究,师从cryoET领域先驱Wolfgang Baumeister教授。2023年加入深圳医学科学院担任特聘研究员,组建病原与宿主互作的原位结构生物学研究课题组。目前在国际顶级学术期刊Nature上以第一作者(含共一)发表文章2篇,PNAS,3篇,elife,1篇;其中以共通讯作者在PNAS发表文章1篇。李美静课题组以原位结构生物学为主要研究手段,结合分子细胞生物学、微生物学、细胞免疫等方法研究病原微生物与宿主的复杂相互作用。课题组网站https://www.meijingli-cryolab.net。报告题目:光电关联及冷冻电子断层成像对沙门氏菌引发的宿主异源自噬的原位结构研究【摘要】原位结构生物学(in situ structural biology)联合冷冻电子断层成像技术(cryo-electron tomography, cryo-ET)、冷冻聚焦离子束切割(cryo-focused-ion beam (FIB) milling)及冷冻光电关联成像技术(Correlative light electron microscopy, CLEM),研究复杂生物大分子复合物在细胞内不同功能状态下的结构。原位结构生物学不仅能提供纳米级分辨率的结构信息,更能提供不同分子间的时空相互作用。病原微生物与宿主的复杂相互作用是感染性疾病发生的基础。宿主与病原微生物的互作涉及多种复杂生物大分子的协同作用。我们利用基于冷冻光电关联和聚焦离子束切割的冷冻电子断层扫描成像技术系统地观察了沙门氏菌在宿主细胞内引发的异源自噬反应过程。同时,我们在细胞原位研究了异源自噬的关键载体自噬小体的发生、生长及排布的特征,为自噬和病原微生物感染带来新的思考。会议联系1. 会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会(对外)汪老师:13637966635,cems_djw @163.com2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 2016年国际生物医学工程与医疗仪器学术产业大会第三轮通知
    p   由中国仪器仪表学会、中国生物医学工程学会、中国光学工程学会联合主办,中国仪器仪表学会医疗仪器分会、清华大学医学院、解放军总医院检验科和中关村医疗器械产业技术创新联盟联合承办的2016年国际生物医学工程与医疗仪器学术产业大会(Bio-med and Innovative Medical Devices 2016),将于11月29-30日在北京召开,会议规模400人。 /p p   会议遵循为创新医疗仪器产业发展提供良好的产学研用管对接的平台,通过学术引领、促进产业繁荣发展和共同进步的宗旨,聚焦健康社会、精准医疗、基因诊断、居家养老等主题。本次会议学术交流形式包括大会特邀报告、分会场邀请报告、口头报告以及优秀论文电子墙报展示等。会议同期还将安排企业交流专场,为企业提供展览展示及寻求科技合作的平台。 /p p    strong 一、组织架构 /strong /p p   1、大会学术委员会(按姓氏拼音排序) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/ad61cc6d-a292-4958-bac0-7aef5601e95c.jpg" title=" 1.jpg" / /p p   副主席:曹雪涛、陈凯先、樊瑜波、李兴德、尤 政、俞梦孙 /p p   成员:陈 群、崔彤哲、邓玉林、果德安、洪 波、康熙雄、李 宁、李金明、李劲松、李路明、李为公、卢爱丽、骆清铭、马长生、任秋实、唐劲天、唐玉国、王成彬、王晓庆、王拥军、邢婉丽、魏勋斌、朱险峰 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/6c9cc9c1-8bae-4ba0-987c-31aa24d46e36.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 主席:吴幼华 /p p   副主席:池 慧、赵雪燕、朱险峰 /p p   成员:陈 蓓、郝红伟、康亚文、李 瑾、李 靖、李明远、刘 鹏、刘 毅、茅伟明、秦永清、王 东、许俊泉、严壮志、俞 海、张 彤、张 莉、张送根、周智峰、祝连庆 /p p   秘书长:张 莉、王 东 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/791e892c-cd44-49bb-b18e-dd87af7d5da7.jpg" title=" 2.jpg" / /p p style=" text-align: center " 主任:朱险峰 /p p   副主任:魏勋斌、祝连庆 /p p   成员:邓玉林、洪波、李劲松、任秋实、骆清铭、严壮志 /p p   strong  二、会议安排 /strong /p p   时间:2016年11月29-30日 /p p   地点:北京 京仪大酒店 /p p   strong  1、主会场:11月29日上午8:50-12:30 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/d195fe7b-1242-4918-a372-29ba6a8fb12d.jpg" title=" 1.png" / /p p style=" text-align: left "    strong 2、分会场:2016年11月29日下午-30日上午 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201611/insimg/477f8fa7-e76a-4b3e-97df-1554b11eefdb.jpg" title=" 1.png" / /strong /p p    strong 第一分会场:11月30日上午 /strong /p p   穿戴式健康设备 卢爱丽 王磊(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/fb1cca97-9813-415b-857f-18d36f1cb3db.jpg" title=" 3.png" / /p p   strong  第二分会场:11月29日下午 /strong /p p   先进临床检验技术 王成彬 邓玉林(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/685bad37-9cc3-4e93-a80c-b490ee49f539.jpg" title=" 4.png" / /p p   strong  第三分会场:11月29日下午 /strong /p p   先进影像与治疗技术 唐劲天(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/6d0c9554-3014-4f7e-a094-9cdafad37cb0.jpg" title=" 3.png" / /p p    strong 第四分会场:11月29日下午 /strong /p p style=" text-align: left "   中医药发展论坛 果德安(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/00d874ba-c8cb-446c-b520-37ccbd13e1c3.jpg" title=" 4.png" / /p p   strong  第五分会场:11月30日上午 /strong /p p   政策环境促进产业创新发展 樊瑜波(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/e8d35e0a-ddf2-4b74-86a3-1cac445e9b00.jpg" title=" 5.png" / /p p    strong 第六分会场:11月29日下午及11月30日上午 /strong /p p   新技术发展论坛 魏勋斌(论坛主席) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201611/insimg/38810605-4de1-4f95-ac7c-8a1c4c8fa354.jpg" title=" 6.png" / /p p    strong 三、会议征文 /strong /p p    strong 1、征文范围: /strong /p p   1. 生物医学信号处理 2. 医疗仪器与健康监护 /p p   3. 穿戴式医疗设备 4. 微纳机电系统 /p p   5. 微流控芯片技术 6. 生物医学大数据 /p p   7. 分级诊疗 8. 临床检验与POCT /p p   9. 生物医学成像技术 10. 基因诊断 /p p   11. 生物光子学与光学分子成像 /p p    strong 2、投稿须知: /strong /p p   1.凡内容符合主题范围,未在国内外正式刊物或其他会议上发表的中文论文均可投稿 /p p   2.投稿论文撰写要求请参照www.etmchina.com公布的《仪器仪表学报》投稿要求及论文模板,投稿时请提交MS Word版本 /p p   参见:http://www.etmchina.com/down.do?method=listFront& amp pid=2 /p p   3.论文的结构依次为:论文题目(中英文)、作者姓名、单位、所在城市及其邮编、摘要(中英文)、关键词(中英文)、正文、参考文献、作者简介 /p p   4.如果论文内容可能涉密,请作者主动提交“已通过工作单位保密审查”的证明 /p p   5.论文一经提交,即表明作者同意会议主办方拥有论文版权 /p p   6.投稿时务必提供联系人的姓名、职称、电话、手机、E-mail、详细通信地址 /p p   7.投稿截止日期:2016年11月15日。 /p p    strong 3、征文投寄邮箱: /strong /p p   luwang@ capitalbio.com yiliao@cis.org.cn /p p    strong 4、论文集: /strong /p p   经过大会评审委员会评审通过的论文将推荐到《仪器仪表学报》增刊发表。 /p p    strong 四、会议联系方式 /strong /p p   1、中国仪器仪表学会医疗仪器分会秘书处联系人: /p p   王 璐 18510056847,010-80726868转6207 luwang@ capitalbio.com /p p   陈 鹏 13811529795,010-57287898 eric@futurexpo.cn /p p   地址:北京市昌平区生命科学园路18号 /p p   2、各学会联系人: /p p   中国仪器仪表学会:张莉 010-82800752 zhangli@cis.org.cn /p p   中国光学工程学会:李瑾 022-58168516 lijin@csoe.org.cn /p p   中国生物医学工程学会:康亚文 010-69156448 swyxgch@126.com /p p    strong 五、会议协办单位及支持媒体 /strong /p p   协办单位:北京未来畅想科技有限公司 /p p   支持媒体:医械信息网 仪器信息网 火石创造 分析测试百科网 艾兰博曼医学网 威斯腾转化网 高创汇 测序中国 贝壳社 /p p    strong 六、会议缴费须知 /strong /p p    strong 1、收费标准: /strong /p p   主会场注册费1000元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。 /p p   主会场及分会场注册费1500元/人,学会会员(含理事)、学生五折,会员单位人员参会七折。 /p p   10月30日前注册八五折优惠。 /p p    strong 2、缴费方式: /strong /p p   1、汇款 /p p   账户名称:中国仪器仪表学会 /p p   开 户 行:工商银行北京北新桥支行(行号102100000431) /p p   账 号:0200004309014464348 /p p   收款人电话:13520672025(洪爱琴) /p p   * 汇款附言注明:医疗仪器会议+参会人员名字 /p p   * 如需发票,请注册时写明发票抬头并于11月15日前将款汇到 /p p   2、现场缴费 /p p   现金或刷卡, 现场收取并开具收据 会后大会秘书处将发票邮寄给您,签到时还请写明收寄人详细地址。 /p p style=" text-align: right "   中国仪器仪表学会 /p p style=" text-align: right "     中国光学工程学会 /p p style=" text-align: right "     中国生物医学工程学会 /p p style=" text-align: right "   2016年10月27日 /p p br/ /p p br/ /p p 附:报名请点击: a href=" http://e.eqxiu.com/s/D5oRw0bZ?eqrcode=1& amp from=singlemessage& amp isappinstalled=0" target=" _self" title=" " http://e.eqxiu.com/s/D5oRw0bZ?eqrcode=1& amp from=singlemessage& amp isappinstalled=0 /a /p
  • 2015全国生物医学农林电镜研讨会之厂商报告集锦
    仪器信息网讯 &ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 日前在浙江大学举行。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。   在本次会议上,徕卡、天美、布鲁克、超微动力、科扬、戴通等仪器公司介绍了生物电镜相关技术的最新进展及应用情况。 报告人:徕卡显微系统总部产品及市场经理 Ruwin Pandithage   Ruwin Pandithage介绍了徕卡最新推出的冷冻光镜电镜联用系统(Leica EM Cryo CLEM System)。该产品采用了徕卡特别设计的冷冻物镜,这也是世界上第一个商业化生产的冷冻CLEM物镜,因而能够获得比直接用普通物镜观察冷冻样品更高的分辨率,其最大冷冻图像分辨率可达364nm。而配套设计的冷冻传输系统、冷冻物镜接口的冷冻样品台则确保了样品能够从冷冻制样设备中快速、安全、无污染的装载进冷冻荧光显微镜。 报告人:天美(中国)科学仪器有限公司周海鑫   周海鑫在报告中介绍了日立SU8010冷场发射扫描电镜和HT7700透射电镜的技术特点。据介绍,SU8010冷场发射扫描电镜的低加速电压有利于减轻样品的荷电,对样品的损伤小,能够获得样品最表面的对比对信息,是生物样品观察的理想选择。HT7700透射电能将全数字化的高反差与高分辨相结合,标配清洁的涡轮分子泵,配置有实时荧光屏CCD,并具有强大的图像处理软件。 报告人:布鲁克公司(北京)科技有限公司周鸥   周鸥介绍了布鲁克新近推出的能够用于在极低束流下进行不导电/束流敏感样品无损分析、高分子粗糙表面成分分析等的平插式能谱仪XFlash FlatQUAD 可检测更深层次样品信息,检测限低至10ppm的Micro XRF 能够非破坏性的获取样品内部微观结构信息,并以2D或3D图像的形式形象化地显示和测量样品内部结构的微区Micro-CT。 报告人:超微动力科技(香港)有限公司尚振华   尚振华介绍了德国爱希思(EMSIS GmbH)公司推出的具备CMOS速度和CCD图像质量的280万像素的MegaViewG3透射电镜CCD相机,以及世界上最大的侧装CCD相机&mdash &mdash 1600万像素的MORADAG3。 报告人:科扬国际贸易(上海)有限公司衡潘   衡潘介绍了Gatan能够提供的生物电镜附件产品:透射电镜能量过滤系统、电镜三维重构、透射电镜生物成像系统、冷冻电镜解决方案。详细介绍了适用性极广泛的3D成像技术3 VIEW&trade 。3 VIEW&trade 可以在低真空或环境场发射扫描电镜中实现对样品的原位观察,自动获取超精细3D结构。 报告人:戴通公司 石洪波   瑞士戴通公司有着几十年的钻石刀生产经验。该公司自创建以来,一直专心致力于钻石刀的超精密加工和研磨,生产出的钻石刀以精致、精密、耐用和锋利而深受世界各国科学家的喜爱。石洪波在报告中从钻石刀的选材、刀刃定向、清洁维护等方面详细介绍了钻石刀的使用和维护方法。
  • 细胞样本处理自动化、标准化成流式分析“刚需”——访陆军军医大学生物医学分析测试中心主任万瑛教授
    仪器信息网讯自20世纪70年代以来,随着流式细胞技术水平的不断提高,其应用范围也日益广泛。目前,流式细胞分析已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础研究领域,在生物学和医学研究、药物开发、临床检测和环境监测中均发挥着重要作用。近年来,流式细胞仪的标准化也取得了一定的进展,包括检测技术标准化以及数据分析标准化等。近日,仪器信息网在ACCSI2021现场采访了陆军军医大学生物医学分析测试中心主任万瑛教授,请他分享流式细胞术多色化发展以及多色流式样本处理标准化的进展。流式细胞术多色发展成“刚需”流式细胞术多色化发展的原因,主要是来自细胞生物学家的需求。细胞生物学家们在更细致地描述细胞表型,区分稀有细胞群体,筛选新的未知表型,解构复杂的细胞系统,实现节约稀有样本,提升通量等方面都有需求。与此同时,细胞学研究深度和广度的提升对于流式细胞仪参数数量或检测数据维度提出更高的要求,那么基于流式细胞仪硬件多参数能力的提升和新型荧光标记技术的快速发展,自然而然地对多色流式参数提升有了更大的需求。万瑛教授表示,从20世纪70年代流式细胞技术问世之初只能做单色水平分析,到2020年可最多实现60色的水平,流式多色技术的发展取得了很大的进展。多色流式的进展也为数据分析带来了变革,随着数据参数的增多,也从传统的级联分析方法(先根据目标细胞类型选择参数,再进行分析)转变为降维分析方法(使用全部参数进行降维计算,将细胞群体所有异质性展现在二维平面上,再进行分析)。多色流式发展趋势一览实现流式样本制备标准化、高通量化意义重大关于流式细胞的样品制备,万瑛认为该过程中因为人为操作因素会可能导致数据差异化影响,因此他长期专注于实现流式样品标准化制备不受人为因素干扰的研究。随之而来的,也会对一些标准品进行深入研究。他认为这方面的研究会对流式样本全自动制备过程,以及流式的精准检测在临床上广泛推广有很重要的发展意义。据万瑛教授介绍,样本处理是多色流式标准化的关键环节。他的团队针对样本处理中离心洗涤的缺点,设计了一种全新的基于液流速度梯度的细胞洗涤技术。和同类技术相比,该技术具备洗涤效率高、细胞丢失少、状态影响小、重复性好的优势。结合自动化移液技术,可实现样本处理全过程的自动化、标准化和高通量化,为多色流式标准化提供了新的技术选择。
  • 2015全国生物医学农林电镜技术研讨会报告集锦
    仪器信息网讯 &ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 日前在浙江大学举行。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。   本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。 报告人:北京大学生命科学学院 贺新强教授   冷冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将冷冻断裂和复型相结合的透射电镜样品制备技术。样品经冷冻断裂蚀刻后,能够观察到不同劈裂面的微细结构,进而可研究细胞内的膜性结构及内含物结构。北京大学贺新强教授在报告中介绍了课题组利用冷冻蚀刻技术在植物细胞壁研究中的一些应用。利用该技术可以清晰地观察到细胞壁的空间立体结构。 报告人:北京大学第一医院 王素霞教授   电镜诊断学或超微病理学是通过电子显微镜技术,观察组织细胞的超微结构及其病理变化,对疾病做出病理诊断。王素霞教授从超微病理学的特点、超微病理诊断的局限性及其诊断的临床应用,结合诊断电镜样本的处理、电镜超微病理图像研判等方面介绍了医学电镜病理诊断的技术要点与诊断原则。 报告人:云南农科院植物病毒与种质资源研究所张仲凯教授   张仲凯教授在报告中从负染色观察的优势、负染色制样方法、与其他实验结果的比较验证、Tospovirus不同电镜制样方法的超微结构比较等几个方面介绍了植物病毒样品负染色制样及电镜观察分析。 报告人:华东师范大学 倪兵教授   倪兵教授从样品的收集、制样工具的准备、样品制备技术等方面介绍了原生动物纤毛虫的形态学研究技术。据介绍,由于传统的制样过程时间长,而且样品经化学固定-脱水-干燥等步骤,会产生许多假象,如坍塌、细胞收缩等,而冷冻制样技术则能避免这些问题。在报告中,倪兵详细介绍了冷冻扫描电镜技术在原生动物形态观察中的应用。 报告人:浙江大学生物技术研究所 胡东维教授   胡东维教授通过包埋剂的选择、探针的选择、低温包埋的程序、标记方法、免疫金标记的对照方法、标记结果的判断等几个方面,详细介绍了超薄切片包埋后免疫金标记技术的具体制样步骤和注意要点。 报告人:第二军医大学 杨勇骥教授   杨勇骥教授从成功进行胶体金标记的重要关键点、如何设计包埋前免疫标记程序、包埋前免疫标记技术的优缺点等几个方面,介绍了生物样品包埋前免疫金标记技术。 报告人:福建中医药大学 陈文列教授   透射电镜常规制样周期长,是影响电镜技术在临床病理诊断中应用的制约因素之一。微波可用含水试剂和有极性试剂的作用,缩短样品制备的周期。陈文列教授从微波固定仪器的原理、微波炉的选择,在制样过程中影响微波作用的因素、实验注意事项,以及电镜样品微波聚合方法、微波电子染色、微波快速脱钙等应用实例详细介绍了微波技术在透射电镜样品制备方面的应用。   另外,在本次研讨会上关于电镜技术具体应用实例的报告有:中科院遗传所的梁晶晶介绍的《秀丽线虫的透射电镜制样与观察》 北京大学生命科学学院的单春燕博士介绍的《泛素化修饰调节APP在体内-溶酶体系统的膜泡分选》 清华大学李英博士介绍的《生物样品光镜-电镜联用技术应用》等报告。   关于电镜制样技术的相关报告有:北京大学生命科学学院仪器中心王国鹏博士的《高压冷冻制样技术探索》 北京大学生命科学学院仪器中心胡迎春博士的《基于超薄连续切片的TEM三维重构技术》等报告。
  • 程京研究团队获2017年“黄家驷生物医学工程奖”技术发明类一等奖
    p   4月21日,2017年度“黄家驷生物医学工程奖”颁奖仪式在北京会议中心举行,由清华大学、解放军人民总医院和博奥生物集团联合申报的“遗传性耳聋基因诊断芯片系统”项目摘得技术发明类一等奖。项目主导人、中国工程院院士、清华大学医学院教授程京出席颁奖典礼,中国医学科学院院长曹雪涛院士为其颁发了获奖证书。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/noimg/77561053-b6f1-4dde-a5aa-3891fb04f582.jpg" title=" 1.jpg" width=" 561" height=" 355" style=" width: 561px height: 355px " / /p p style=" text-align: center " 程京(右二)被授予获奖证书。 /p p   “遗传性耳聋基因诊断芯片系统的研制及其应用”是在国家863等重大项目支持下,由程京院士所领衔的清华大学、博奥生物集团和解放军总医院共同完成。遗传性耳聋为常见致残性疾病,我国听力残疾者2045万,占残疾人总数的24%,而每年新增的聋儿达3万人。研究证明,60%的重度耳聋源于遗传。如果通过对耳聋基因突变的识别,从而在遗传咨询、产前诊断和新生儿听力筛查等阶段对耳聋进行早期干预,就可以避免很多聋儿诞生的悲剧。 /p p   通过对耳聋遗传高危人群的分子病因学研究,研究团队确定了中国人群最重要的致聋基因及其突变频谱信息,并通过生物芯片设计技术层面和配套仪器的系列技术发明,最终设计出国际首创的遗传性耳聋基因芯片检测系统。 /p p   遗传性耳聋基因芯片检测系统能够检测先天性耳聋、药物性耳聋、大前庭导水管综合征相关的耳聋基因位点,具有准确性高、稳定性好、操作简便等特点,是至今获证最早、覆盖位点最多、筛查人群最大,且唯一实现干血斑等痕量样品检测大高灵敏度产品。此外,围绕芯片核心技术,博奥生物还研发了系列芯片配套仪器设备,实现了大规模样本的自动化平行处理。 /p p   2012年4月以来,采用这一技术,北京、成都、郑州、福州、太原、南通、东莞、济南、新疆等近二十个省市区将新生儿遗传性耳聋基因检测项目列入当地民生工程。5年来共有200多万新生儿接受检测,检出总突变率为4.4%,其中药物致聋基因携带者就有5000多人,直接避免了受检者和家庭成员约5万多人因使用药物不当而致聋,社会和经济效益显著。鉴于该项目所产生的重大社会意义,中国台湾、越南和美国等国家和地区均陆续引入该技术,为当地的耳聋防控提供了新的途径。 /p p   耳聋基因芯片系统作为政、产、学、研、用相结合的重大科技成果转化项目,体现了生物医学与工程的完美融合,成为原始创新转化为临床应用的典范,这也是该项目此次获得“黄家驷生物医学工程奖”的重要原因。 /p p   “黄家驷生物医学工程奖”由中国生物医学工程学会设立,是国内该领域的最高科技奖项。奖项以我国著名医学家黄家驷院士命名,旨在秉承其医工交叉的学术理念,奖励生物医学工程领域在基础研究、技术发明和科技进步方面贡献卓著的科技成果。 /p p br/ /p
  • “100家实验室”专题:访国家生物医学分析中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第三十站:国家生物医学分析中心。   国家生物医学分析中心,是国家科技部(原国家科委)1994年正式批准成立的全国唯一的国家级生物医学分析中心,在药物毒物分析、新药研发、蛋白质组分析、代谢组学分析、细胞分析、环境和食品分析等领域拥有雄厚实力,是我国在上述领域科学研究、新药研发和社会经济活动的重要依托基地。与此同时,中心也是军事医学科学院生物医学分析中心、军事医学科学院仪器测试分析中心、全军环境保护研究监测中心和北京市生物医药分析测试中心。   中心已通过国家计量认证和“中国实验室国家认可”,可提供权威的分析数据和检测报告。中心主要任务是:研究和发展生物医学分析领域的新技术、新方法及其在生物医学中的应用,可承担生物医学领域中的核酸、蛋白质分析,有机药物,有机毒物分析,基因工程重组药物分析,微生物分析,致癌致畸致突变物分析,免疫分析,生物自由基分析,细胞分析,微区元素分析,放射计量分析等科研任务。2004年,国家科技部和北京科委决定在中心共建具有当前国际先进水平的“北京质谱开放技术平台”,为我国在上述领域的科学研究、新药产品开发和社会经济活动提供重要的技术支撑和服务。2009年,中心加入“首都科技条件平台”,面向全社会开放提供技术服务。技术服务项目包括:新药报批服务、科研技术平台、测试服务以及专项服务。     资质证书     国家生物医学分析中心主要由以下技术服务平台组成:代谢组学技术平台、蛋白质组技术平台、中药现代化技术平台、细胞生物学技术平台、结构生物学技术平台、环境和食品安全技术平台、微量元素分析技术平台、药物与毒物分析技术平台以及公共突发事件应急分析技术平台。   中心分为7大专业实验室:质谱实验室、核磁共振实验室、电镜实验室、色谱实验室、环境监测实验室、光谱和元素分析实验室,这些专业实验室拥有大量高尖端分析仪器支撑科研工作的进行:   质谱实验室主要核心仪器为9.4T超高性能混合型四极杆串联傅里叶变换离子回旋共振质谱(Q-FT-ICR-MS) ,配套仪器有:高性能多肽测序质谱、高通量飞行时间质谱、磁质谱、飞行时间质谱、电喷雾串联质谱、离子阱质谱、高分辨气质联用以及无机质谱等,已建立完善的一、二、三代生物质谱系统。     Bruker高性能混合型串联傅立叶质谱(Q-FT-MS):9.4T Apex Qe 仪器说明:全球最新版双离子源(DualSource),分辨率超过140万,准确度优于1.0ppm,主要进行小分子物质结构快速解析、蛋白质与核酸序列测定及翻译后修饰分析以及疾病多肽组学研究。   Waters Micromass 高解析离子淌度质谱Synapt HDMS 仪器说明:该仪器为亚洲第一台引进的,主要进行无标记定量蛋白质组学、蛋白质复合物研究以及复杂体系离子淌度分离分析。     Bruker 高速高灵敏多功能串联飞行时间质谱 Ultraflex III TOF/TOF 仪器说明:该仪器为全球第一台,主要进行蛋白质组学、多肽组学、质谱成像、物药报批、修饰分析以及寡核苷酸分析。   电镜实验室配备有透射电子显微镜、激光扫描共聚焦显微镜、原子力显微镜及活体动物体内成像系统等,为研究组织学、病理学、细胞生物学、遗传学及分子生物学提供了重要的测试手段和技术方法。 Bio-Rad Radiance2100 激光扫描共聚焦显微镜  仪器说明:可对细胞内各种荧光标记物及其组分进行定位、定性和定量分析;对细胞、细胞器进行三维图像重建与定量分析。  Hitachi H7650投射电子显微镜 仪器说明:主要对组织、细胞等进行高分辨率、高灵敏度、高对比度的形态结构观察和组分的定性及定量分析。 Varian 600MHz NMR核磁共振 仪器说明:主要进行核磁共振方法学、天然及合成小分子结构、毒物分析、活体核磁共振、代谢组学以及生物大分子空间构象等领域的研究。 国家医学生物分析中心充分发挥人才、设备和技术优势,在保证向社会提供公正、科学、可靠、准确的检测数据的同时,积极参与国家重大项目的研究攻关和国际合作,在国家科技创新体系中成为集研究、培训、咨询、仲裁、成果鉴定、技术服务为一体的生物医学分析中心。中心作为国家生物安全应急分析基地,多次出色完成事关国家安全的重大事件样品分析。 国家生物医学分析中心承担的课题: 课题来源 项目名称 “863”项目 蛋白质组学新技术在肿瘤泛素通路研究中应用 “973”项目 人类肝脏蛋白质组定位图新技术新方法研究 “973”项目 定位整合、原位修复技术及机理的研究 创新研究群体科学基金 人胎肝蛋白质组学及重要细胞调控因子的发掘 国家科技攻关计划项目 蛋白质定位技术平台建立及应用 北京市肝脏及重大肝病的蛋白质组学研究科技计划项目 肝再生中系列蛋白质复合体的研究 国家自然科学基金 阻断泛素通路中Bcl-2蛋白形成复合体的生物质谱分析 “863”项目 蛋白质组技术平台的建立及其在肿瘤细胞泛素通路与凋亡调控研究中应用 国家自然科学基金 阻断泛素通路对正常和肿瘤细胞影响的巨大差异机制研究 “863”项目 应用蛋白质组技术对白血病细胞凋亡相关蛋白的高通量鉴定 国家科技部 生物质谱技术对蛋白复合体的鉴定 “863”计划青年基金 基于Bcl-2蛋白结构的创新药物发现 北京市自然科学基金 微丝相关新蛋白Lca295的空间结构及其与蛋白质间的相互作用 国家自然科学基金重大研究计划 代谢组学方法在中药毒性研究中的应用 国家自然科学青年基金 寡糖溶液构象的核磁共振研究 国家自然科学基金 新型分子成像技术——质谱扫描成像及其应用 国家科技部 一维固相pH梯度等电聚焦结合生物质谱直接鉴定混合蛋白质的方法初探 国家科技部 质谱(MALDI-TOF-MS)扫描成像技术初探 国家科技部 蛋白质组学技术用于分析肿瘤组织特异性自身免疫性抗原   附录:国家生物医学分析中心   http://www.ncba.cn/   国家生物医学分析中心蛋白质组学网   http://www.proteomics.com.cn/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制