当前位置: 仪器信息网 > 行业主题 > >

气相分子吸收光谱

仪器信息网气相分子吸收光谱专题为您整合气相分子吸收光谱相关的最新文章,在气相分子吸收光谱专题,您不仅可以免费浏览气相分子吸收光谱的资讯, 同时您还可以浏览气相分子吸收光谱的相关资料、解决方案,参与社区气相分子吸收光谱话题讨论。

气相分子吸收光谱相关的方案

  • 11气相分子吸收光谱法在炼油废水水质分析中的应用
    文中从标准曲线的建立、精密度考察、准确度考察及样品干扰消除等方面分析了气相分子吸收光谱法对炼油废水中硝酸盐氮分析的适用性。结果表明,在采取了正确的消除干扰措施后,气相分子吸收光谱法能准确的测定炼油废水中的硝酸盐氮的含量。
  • 6 气相分子吸收光谱法测定水中的氨氮
    应用气相分子吸收光谱法测定水中的氨氮,测定了该方法的检出限、精密度和准确度,并对实际样品进行了测定和加标回收实验,发现该方法的精密度和准确度均较好,在实际应用当中有一定的优越性。
  • 气相分子吸收光谱法测定印染废水中的氨氮
    , 纳氏试剂比色法测定印染废水的氨 氮, 减少废水的取样量能降低色度对氨氮测定的干扰。随着取样量的减少,相对标准偏差有所提高,说明取样量的减少对实验精密度会造成影响。气相分子吸收光谱法测定印染废水的氨氮,取样量的调整对氨氮浓度无明显影响,相对标准偏差也无明显区别。实验表明,气相分子吸收光谱法测定印染废水的氨氮,不需预处理,相比纳氏试剂比色法,方法简便,精密度高。
  • 1 碱性过硫酸钾氧化-气相分子吸收光谱法测定水中总氮
    采用改进后的碱性过硫酸钾氧化-气相分子吸收光谱法测定水中总氮,方法灵敏度高,重复性和准确度良好,适用于海水、地面水、养殖水及入海排放口的水质监测。
  • 4 气相分子吸收光谱法测定沉积物中的硫化物
    本文将海洋规范的酸化吹气前处理方法与行业标准的气相分子吸收光谱法测定水中硫化物两种方法结合起来使用,求得沉积物中的硫化物含量。该法的操作简便,省力省时,精密度好,结果可靠。所得加标回收率为95%,相对标准偏差为3.0%。?
  • 气相分子吸收法测定水中凯氏氮
    1、操作简单,检测限低;2、可用于地表水和废水乙醛、丙烯醛和丙烯腈项目的测定;3、本试验改进了水中凯氏氮的测定方法,使用气相分子吸收光谱仪,减少了样品分析时间,同时通过2次测定法,消除了亚硝酸盐对测定的影响。
  • 气相分子吸收光谱法快速测定水中高锰酸盐指数
    采用 DG200 加热反应器消解,用亚硝酸盐还原 后,直接用分子吸收原子吸收光谱法进行测定的方 法。具有测定快速、准确度高、浊度影响少、所用试 剂安全环保的特点,特别适合于应急、在线监测、流 动注射领域的仪器的开发与使用。
  • 原子吸收光谱仪的运用现状及趋势
    目前,食品中的重金属检测方法很多,例如原子荧光法、紫外可见分光光度法等,但在实际检测过程中,都具有一定的局限性。原子吸收光谱法最早出现于20世纪50年代,该方法主要用于定性、定量分析无机元素,是现阶段无机元素测定的主要手段之一,原子吸收光谱法可以检测元素周期表上的大部分元素,但是其检出限和不同元素的性质相关,原子吸收光谱法的特点是可以进行微量和痕量元素分析,这是其他绝大多是检测手段所不具有的,同时原子吸收光谱检测法还具有测定精密度高、选择性好、适用范围广、快捷准确等特点,因此,其在检测领域的应用非常广泛。
  • 原子吸收光谱仪在铁矿石分析中的应用
    原子吸收光谱仪仅提供了微量金属元素分析的平台,仪器生产厂家没有提供具体的分析方法。我公司的原子吸收光谱仪自2000年8月安装后,我们对元素标液的配制、铁矿石分析的前期化学处理,干扰元素的消除以及原子吸收条件如灯 电流、燃烧头高、入射狭缝、助(燃)气压力等等,做了大量的试验工作,确定了最佳的分析条件,制定了内控标准《火焰原子吸收光谱分析法测定铁矿石中的钾、钠、铅、锌》。
  • 9 气相分子仪测定水质中的汞
    气相分子吸收光谱仪目前仅应用于测定水质中的总氮、硝酸盐氮、亚硝酸盐氮、氨氮、硫化物等,为拓宽应用范围,试用于测定水质中的汞取得了较好的效果。实验表明,该方法灵敏度高,检出限为0.002ng,能满足环境分析要求。
  • 气相分子吸收光谱法测定土壤中的硝酸盐氮
    1.采用进口长寿命连续光源,1个灯涵盖现有标准所有项目测试波长。可以对待测物质自动扫描,选择最大吸收峰。2.测试时只需选定测试项目就可自动生成仪器参数,不需根据不同项目手动设定测试条件。转换测试项目只需30秒就可完成,无需换灯预热。3.流动注射进样系统,进样泵替代手动进样;进样流量电子调节系统,流量精度0.1%。大口径进样管,无需为样品可能会堵塞管路而烦恼。4.全密闭反应分离器系,反应过程在全密闭环境中完成。流路系统全部为耐腐蚀高强度高分子聚合材料。5.加热系统:配备全内置自动在线加热模块,过热设定温度自动停止,确保安全。6.内置式氨氮在线氧化系统, 自动氧化氨氮成亚硝酸盐,无需人为添加氧化剂。7.氨氮测定时自动除去亚硝酸盐氮干扰。8.配备除水系统,分析过程中完全不使用任何干燥剂。9.电子压力报警系统:压力不足或缺气时,报警并自动关闭进样及加热系统。10.强大的软件操作系统,有断电保护功能,如突然断电或死机,已测试数据不会丢失。11.软件系统具有自检功能: 测定前仪器自动检测通讯口、波长、狭缝及灯位置等。12.软件具有反控功能,由软件直接设置仪器测试波长,泵转数,进样时间等测试条件。
  • 原子吸收光谱测定生物样品中的铊含量
    近年来,铊中毒案件在我国逐年增加。对生物样品中铊元素进行准确的定性、定量分析鉴定,用普通的化学方法是非常困难的。目前,有条件的地方可以用原子吸收光谱仪、电感藕合等离子体光谱仪、离子色谱仪等分析技术来确定铊元素的存在与定量。本文应用国产原子吸收光谱仪对一起铊中毒案件进行了分析鉴定。检验样品分别为受害人尿、透析后血(昏迷住院),及开棺后解剖提取的另一受害人的脑、心、胃、肝、肾和肌肉等组织。应用原子吸收光谱分析技术测定生物样品中铊元素含量,其方法具有可靠、准确、简便、快速、抗干扰性强等优点。实验部分一、仪器及试剂1. AA-7001型火焰/石墨炉原子吸收光谱仪(北京东西电子技术研究所),配备铊空心阴极灯2. 波长276.8nm3. 工作曲线线性范围:0.2~30mg/L4. 测定Tl的特征浓度:0.12mg/L5. AA-7000原子吸收工作站;6. 浓硝酸、双氧水(均为分析纯)。
  • 原子吸收光谱仪配套用水该怎么选?
    在原子吸收光谱实验中,纯水主要用于样品的制备、标准溶液的制备、作为空白样品等,可算得上是一种基础试剂。水中的离子杂质会给实验带来化学干扰,通常会使检测结果偏低。 因此,在进行原子吸收光谱实验时,纯水的水质如何,也是决定分析实验成功与否的关键要素之一。GB/T 15337-2008《原子吸收光谱分析法通则》规定:常量分析时,所用水应符合GB/T 6682中二级水的规格;痕量分析时,所用水应符合GB/T 6682中一级水的规格。
  • 瞬态吸收光谱研究光催化反应动力学
    光催化一般是指存在催化剂的条件下使光化学反应速率加快的反应。光催化剂通常是半导体金属氧化物:ZnO,Fe2O3或TiO2,光照时,其能够产生电子和空穴,然后与表面上的化学物质发生反应。本文讲述爱丁堡仪器LP980瞬态吸收光谱仪用于检测TiO2中光激活的载流子动力学,并通过二氯化物自由基的时间依赖性吸收来阐明其反应动力学。
  • 原子吸收光谱测定分析报告
    原子吸收光谱测定分析报告,很好的表现了研究的结果,客户主要考察仪器稳定性,现场做样结果满足客户要求。
  • 瞬态吸收光谱研究温度依赖的三重态光谱以及寿命
    分子中的三重态在许多实际应用中都发挥着重要作用,从磷光材料到光动力疗法,甚至是光伏太阳能电池。呈现三重态光化学性质的新材料正在不断开发中,了解其三重态的寿命和能量转移过程是其设计和优化的基本要求。在此我们简单的介绍如何利用瞬态吸收光谱来研究和理解分子的光激发三重态的性质。在本文中,我们通过ns-TA和PL研究在不同温度下二苯甲酮的光致三重态。二苯甲酮(图2)是一种高效的三重态敏化剂,这归因于其较高的系间窜越率(?100%)。它的S1状态是通过将电子从非键合轨道n导到羰基的π*轨道而产生的。因此,在图2中标记为(n,π*)。较高的激发态S2由C=O的π轨道产生,因此它为(π,π*)态。二苯甲酮从S1到T的系间窜越非常有效,因为(n,π*)和(π,π*)状态之间的转换更加容易。这会导致大量的三重态发生,这些三重态可能通过磷光,非辐射弛豫或三重态-三重态湮灭(TTA)事件演变而来。
  • 应用原子吸收光谱分析技术测定生物样品中的铊含量
    近年来,铊中毒案件在我国逐年增加。对生物样品中铊元素进行准确的定性、定量分析鉴定,用普通的化学方法是非常困难的。目前,有条件的地方可以用原子吸收光谱仪、电感藕合等离子体光谱仪、离子色谱仪等分析技术来确定铊元素的存在与定量。本文应用国产原子吸收光谱仪对一起铊中毒案件进行了分析鉴定。检验样品分别为受害人尿、透析后血(昏迷住院),及开棺后解剖提取的另一受害人的脑、心、胃、肝、肾和肌肉等组织。应用原子吸收光谱分析技术测定生物样品中铊元素含量,其方法具有可靠、准确、简便、快速、抗干扰性强等优点。实验部分一、仪器及试剂1.AA-7001型火焰/石墨炉原子吸收光谱仪(北京东西电子技术研究所),配备铊空心阴极灯。2.波长276.8nm3.工作曲线线性范围:0.2~30mg/L4.测定Tl的特征浓度:0.12mg/L5.AA-7000原子吸收工作站;6.浓硝酸、双氧水(均为分析纯)。二. 实验方法分别取检材(肝、肾、尿等)1~2克(毫升),剪碎后放入三角烧瓶中,加浓硝酸浸没检材,放置加热板上加热消解,同时滴加适量双氧水帮助样品彻底消化水解。将消化液转入25ml容量瓶,用去离子水分次洗涮三角烧瓶并转入容量瓶定容。供原子吸收光谱仪及ICP/MS定性、定量分析。结果与讨论1.采用上述实验方法对所送生物样品进行了分析鉴定,结果见表一。(见全文)2.为了比较国产原子吸收光谱仪与进口高档电感耦合等离子体质谱仪(ICP/MS)在检测生物样品中有毒金属元素时的差异,我们应用Agilent 7500 ICP/MS对所送样品进行了分析测定,结果见表一。从表一所示检测结果可知,国产原子吸收光谱仪与进口高档电感耦合等离子体质谱仪对生物样品中铊元素的检测结果基本一致。3.随着国产原子吸收光谱仪制造技术的不断进步,如今,国产原子吸收光谱仪已可同时安装六只元素灯,在微机的控制下,可快速自动设定分析参数,在技术性能上和进口原子吸收仪相当接近,成为同时准确测定多种常见有毒金属元素的有效工具。参考文献(略)
  • 使用Frontier 和腔增强吸收光谱用于痕量气体检测
    使用FT-IR 检测低浓度气体需要长光程去增加吸收。传统的方法是采用多次反射的气体池,红外光是在两块镜子之间多次反射使光程可以达到几十米。在腔增强测量中,在每次反射中都是高准直的辐射光通过镜子。通过使用高反射率的镜子, 有效光程将会增加几千倍。这种方法使得在相对较小的体积下检测低浓度气体成为可能,例如检测呼吸时的代谢物。腔增强吸收光谱(CEAS)与我们熟知的光墙衰荡光谱(CRDS)相似,CRDS 是用来测试激光脉冲激光经过多次反射后的衰减信号。通过检测由吸收导致的衰减率的增加,CRDS 能够检测到PPb 浓度的小分子。铃流技术通常被应用于小分子,主要是近红外光谱的波长激光源可以通过调谐非常狭窄的线状光谱来实现。相比之下本文描述的CEAS 使用的是宽带源光谱是广泛应用于更大的分子。
  • 国内外石墨炉原子吸收光谱仪测定食品中铅的对比
    以GB/T 5009.12-2003食品中铅的测定和GB 2762-2005食品中污染物限量的国家标准为实验依据,使用国内外多家仪器厂家的石墨炉原子吸收光谱仪对食品中铅含量进行了测定。比对研究证明,在食品领域,国内石墨炉原子吸收光谱仪的测试精密度和准确度能够满足国家标准对食品中铅限量测试的要求
  • PerkinElmer:使用Frontier 和腔增强吸收光谱用于痕量异戊二烯检测
    使用FT-IR 检测低浓度气体需要长光程去增加吸收。传统的方法是采用多次反射的气体池,红外光是在两块镜子之间多次反射使光程可以达到几十米。在腔增强测量中,在每次反射中都是高准直的辐射光通过镜子。通过使用高反射率的镜子, 有效光程将会增加几千倍。这种方法使得在相对较小的体积下检测低浓度气体成为可能,例如检测呼吸时的代谢物。腔增强吸收光谱(CEAS)与我们熟知的光墙衰荡光谱(CRDS)相似,CRDS 是用来测试激光脉冲激光经过多次反射后的衰减信号。通过检测由吸收导致的衰减率的增加,CRDS 能够检测到PPb 浓度的小分子。铃流技术通常被应用于小分子,主要是近红外光谱的波长激光源可以通过调谐非常狭窄的线状光谱来实现。相比之下本文描述的CEAS 使用的是宽带源光谱是广泛应用于更大的分子。
  • 森谱6810原子吸收光谱仪在测定胶囊中铬元素的应用
    森谱6810原子吸收光谱仪在测定胶囊中铬元素的应用摘要 本文详细介绍了应用森谱6810原子吸收光谱仪测定胶囊中铬元素的分析方法和结果讨论。 森谱科技6810型原子吸收分光光度计,配置高灵敏度石墨炉控制器,用于准确分析明胶胶囊中的重金属元素,具有操作方便,灵敏度高,重复性好等特点。同时高精度自动进样器和国内独创的石墨炉内部可视系统,帮助使用者精准、轻松的完成最优化的进样。
  • 使用Frontier进行痕量气体检测的腔增强吸收光谱
    腔增强吸收光谱(Cavity-Enhanced Absorption Spectroscopy, CEAS)与更为人所熟知的腔衰荡技术(Cavity Ringdown Technique, CRDS)有相似之处,后者检测连续反射后穿过其中一面镜子而射出的信号的衰减。通过检测吸收物种导致的衰减速率的增加,CRDS能够检测ppb浓度的小分子。衰荡技术一般用于研究小分子,NIR激光源的波长可以调谐为较窄的各个光谱谱线。相比之下,本文叙述的是将宽带光源应用于较大分子而产生较宽光谱的CEAS。
  • PerkinElmer:使用Frontier 和腔增强吸收光谱用于痕量甲烷检测
    使用FT-IR 检测低浓度气体需要长光程去增加吸收。传统的方法是采用多次反射的气体池,红外光是在两块镜子之间多次反射使光程可以达到几十米。在腔增强测量中,在每次反射中都是高准直的辐射光通过镜子。通过使用高反射率的镜子, 有效光程将会增加几千倍。这种方法使得在相对较小的体积下检测低浓度气体成为可能,例如检测呼吸时的代谢物。腔增强吸收光谱(CEAS)与我们熟知的光墙衰荡光谱(CRDS)相似,CRDS 是用来测试激光脉冲激光经过多次反射后的衰减信号。通过检测由吸收导致的衰减率的增加,CRDS 能够检测到PPb 浓度的小分子。铃流技术通常被应用于小分子,主要是近红外光谱的波长激光源可以通过调谐非常狭窄的线状光谱来实现。相比之下本文描述的CEAS 使用的是宽带源光谱是广泛应用于更大的分子。
  • 原子吸收光谱仪检测钨铁、砷、铋含量
    原子吸收光谱仪检测钨铁、砷、铋含量试样用草酸、过氧化氢分解。加入硫酸磷酸混合酸蒸发除去过氧化氢,并络合钨。加入硫代氨基脲—抗坏血酸溶液将砷(Ⅴ)还原为砷(Ⅲ),并抑制基体元素的干扰。用硼氢化钾作还原剂,还原生成砷化氢、铋化氢,由载气(氩气)带入石英原子化器中原子化,在特制砷、铋空心阴极灯的发射光激发产生原子荧光,于原子荧光光谱仪上测量其原子荧光强度,计算砷、铋的质量分数。
  • 原子吸收光谱测定电镀液中Co、Ni、Na元素分析报告
    原子吸收光谱测定电镀液中Co、Ni、Na元素分析报告,实验过程清楚,实验目的明确,实验结果很好的说明了实验的情况。
  • 原子吸收光谱(AAS)在医药领域中的应用
    原子吸收光谱(AAS)在医药领域中的应用,该方法能分析元素周期中绝大多数重金属与非重金属元素,直接或间接用于元素成分分析。
  • 德国耶拿:原子吸收光谱仪器与技术的发展与展望
    对AAS仪器的关键部件光源、分光系统与光电检测器件以及实验室研发的CS-AAS仪器装置,近年来取得的进步进行了评述,结合2004年由德国Analytik jena AG 公司在世界上首次推出ContrAA 300型顺序扫描连续光源火焰原子吸收光谱商品仪器,对CS-AAS仪器装置的发展现状与未来作了分析讨论。此外,还对二极管激光器光源进入AAS领域后引起的变化和各种小型、微型原子化器的出现所兴起小型专用AAS实验仪器装置,以及一次测量背景校正技术的商品化等等作了介绍。
  • 北京东西分析仪器:国内外石墨炉原子吸收光谱仪测定食品中铅的对比
    以GB/T 5009.12-2003食品中铅的测定和GB 2762-2005食品中污染物限量的国家标准为实验依据,使用国内外多家仪器厂家的石墨炉原子吸收光谱仪对食品中铅含量进行了测定。比对研究证明,在食品领域,国内石墨炉原子吸收光谱仪的测试精密度和准确度能够满足国家标准对食品中铅限量测试的要求
  • 微波消解-石墨炉原子吸收光谱法测定紫菜中铅、镉元素含量
    关于食品中铅、镉的检测方法,目前已知的主要包括原子吸收光谱法、分光光度比色法、电感耦合等离子体质谱法等。由于石墨炉原子吸收光谱法具有仪器检测精密度和灵敏度高、样品检测限低、实际用样量少、仪器成本相对较低的优点,故采用这一方法对铅、镉进行检测。而像紫菜这种海洋产品又经过脱水加工的食品微量元素和重金属元素偏高,检测过程相互干扰特征谱线的吸收,造成检测结果偏差较大。Agilent AA 280Z 原子吸收光谱仪具有塞曼扣背景功能可校正结构化背景和光谱干扰,可覆盖全波长范围。同时,具备在线添加基体改性剂功能,可以用化学的方法改变样品的基体组成,以改变被分析元素的挥发性,降低干扰,或将被分析元素以特定形态隔离出来,从而分离出背景信号和被分析元素的原子吸收信号。对复杂基体,基体改性剂可在原子化阶段增强原子吸收信号和降低背景信号。可以稳定而准确地测定紫菜这种复杂基质食品的元素含量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制