当前位置: 仪器信息网 > 行业主题 > >

高分辨离子迁移谱

仪器信息网高分辨离子迁移谱专题为您整合高分辨离子迁移谱相关的最新文章,在高分辨离子迁移谱专题,您不仅可以免费浏览高分辨离子迁移谱的资讯, 同时您还可以浏览高分辨离子迁移谱的相关资料、解决方案,参与社区高分辨离子迁移谱话题讨论。

高分辨离子迁移谱相关的论坛

  • 离子迁移谱分辨率如何提高?

    请问离子迁移谱在分辨率指标方面,目前国际上、国内分别做到什么水平?现在主流的提高离子迁移谱分辨率的方法是什么?

  • 求助离子迁移谱与飞行时间质谱的区别

    离子迁移谱和飞行时间质谱 都是依靠时间来确定物质,前者依靠迁移率来分辨,后者依靠质荷比判定。哪位分析下二者的区别,是不是飞行时间质谱在常压下,原理就与离子迁移谱一样了。

  • 离子迁移谱IMS相关资料

    离子迁移谱IMS好像在仪器信息网上的相关帖子很少,所以给大家提供一份相关的资料让大家可以先了解一下。资料是关于离子迁移谱一些原理及目前相关应用领域的简单介绍。而至于用离子迁移普测试农残,水产等相关物质的标准检测方法目前还在研讨与制定之中。所以,目前还无法提供相关资料给大家。但是我想应该用不了多久就应该有结果了。因为我目前也正在做相关的工作。离子迁移谱IMS在很早就有人研究探索过,但是直到目前为止,国内似乎还没有发现有相关仪器公司能够自己研发一款能够用于农残,水产等检测的IMS仪器投放市场。不过很快就会有相关仪器投放市场了。在此不加以细说,因为我不是搞销售的。如果对离子迁移谱感兴趣的朋友也可以买一本《离子迁移普》(第2版)【美】Gary A.Eiceman&Zeev Karpas 著 郭成海 曹树亚 译 国防工业出版社 出版的书籍看一下。而且这本书也是目前唯一一本对离子迁移谱IMS做出比较详细介绍的书籍。本人很少发帖,所以有什么做得不好的地方还请各位朋友海涵!

  • 离子迁移谱和质谱的区别

    最近关注离子迁移谱,哪位高手能说说离子迁移谱,我觉得都用离子源离子化,但是质谱仪有四级杆什么的,离子迁移谱有什么部件?有点模糊。

  • 【原创大赛】一种基于离子迁移谱的气相色谱检测器及其应用

    离子迁移谱作为气相色谱的检测器,兼有色谱的高分离能力和离子迁移谱的高灵敏度,有利于实现复杂混合物的实时在线监测。基于在色谱、离子迁移谱方面的研究基础,本实验室搭建了一套以离子迁移谱为检测器的气相色谱仪,分别对检测器的温度、总电压、尾吹气流速等参数进行了系统优化,并用于碘甲烷、1,2-二氯乙烷、四氯化碳和二溴甲烷4种卤代烃化合物的检测。实验结果表明,参数优化后的离子迁移谱检测器对碘甲烷、1,2-二氯乙烷、四氯化碳和二溴甲烷的检出限可分别达到2,0.02,1和0.1ng,线性范围有两个数量级。离子迁移谱与气相色谱联用,其二维的分离能力可以为复杂混合物的准确定性提供更多的信息,还可以实现不同化合物的选择性检测。

  • 电离子迁移谱(ESI-IMS)

    不知道大家对离子迁移谱了解不? 如果我要做食品加工中的添加剂检测,请问离子迁移谱有什么方法标准和参数吗?

  • 【求助】离子迁移谱仪用户调查

    离子迁移谱技术是20 世纪 60 年代发展起来的一种痕量探测技术,国外 20 世纪 80 年代将 IMS 技术应用于现场分析检测。 IMS 技术的原理是通过气态离子的迁移率来表征各种不同的化学物质,达到对各种物质分析检测的目的,具有极高的探测灵敏度。 离子迁移率谱仪方法(IMS)是一种高效的毒品、爆炸品、生化武器等的检测方法,可以在秒级别时间内对邮件、包裹等物品内是否有爆炸物品、毒品等做出判别,同时能对人体是否隐匿爆炸物品直接进行检测,有效提高打击恐怖活动力度,确保人民生命和财产安全。因此IMS技术为各级安全机构的检测,提供了很好的检测手段。可广泛应用于机场、海关、边防、车站、码头及体育场馆等反恐缉私场所 本人对离子迁移谱仪在国内的使用情况非常感兴趣,希望使用离子迁移谱仪的坛友能支持我的问卷调研,并将填好后的问卷反馈给我,email:luomeina2003@163.com,欢迎大家的参与和讨论。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=61734]离子迁移谱仪用户调查[/url]

  • 【我们不一YOUNG】高分辨分离分析新技术在食品安全检测领域的应用进展

    [align=center][size=18px]高分辨分离分析新技术在食品安全检测领域的应用进展[/size][/align][size=18px][font=&]前言[/font][font=&]食品安全与质量对全球经济、人类健康和国土安全至关重要。然而,由于食品种类的多样性及化学成分的复杂性,微生物病原体、重金属、食品添加剂、生物毒素、农/兽药,甚至食品包装材料微塑料成分等多种痕量污染物的快速鉴别成为现代社会食品安全分析的一大挑战。除了食品化学污染外,食品还面临着非法掺假、降解变质等,虽然传统技术(如色谱分析法、光谱分析法等)可以实现食品中目标化合物的检测,但繁琐的样品前处理过程(分离、提取、净化、富集等)已不适用于当代食品检测学中对风险物质的快速高通量筛查。[/font][font=&]因此,针对复杂化学混合物中分子离子的筛选,离子迁移谱(IMS)作为一种快速分离技术,新增了一维离子淌度信息——碰撞横截面积,其测量与气态离子的大小、形状和所带电荷有关,不受样品基质影响,检测信噪比也有所提高,因此能够有效分辨同分异构体、多电荷态物质等。同时高分辨MS作为分析复杂样品的常用设备,具有在原子和分子水平上进行多组分分析的优点,且各种类型的离子碰撞解离技术极大地扩展了MS在食品分析方面的应用。一方面,质谱数据库的构建以及机器学习算法程序的应用,大大提高了食品中未知风险成分的高分辨筛查与预测能力 另一方面,敞开式离子化质谱法(AMS)作为传统MS的一个重要的创新突破,是一种快速有效的复杂样品直接分析方法,因此成为高通量定性分析、无损反应监测的绝佳选择。[/font][font=&]高分辨MS作为实验室仪器在分析应用领域有着较大发展,但也存在体积庞大、价格昂贵、操作复杂、不能随时移动等局限性,因此无法在食品环境污染、食品风险因子、突发应急监测等需要进行现场快速检测的领域得到有效应用。目前质谱仪器正向高效率、便携化、可视化方面发展,出现了微型质谱仪。未来开发无需样品前处理、可由非专业人员操作、具备高分辨分离分析性能的微型质谱仪,对满足原位、实时、无损的食品现场快检十分重要。[/font][font=&]本文重点概述了近十年高分辨分离分析技术在食品安全领域的最新进展与应用,分别通过在线质谱耦合技术、高分辨筛查技术以及微型质谱仪3大领域展开介绍,并对食品安全检测新装置的前景进行了展望。[/font][font=&]1、 在线质谱耦合技术[/font][font=&]MS是在线过程优化和智能控制的基本仪器,在线质谱法的优势是能够表征化学反应过程,如化学产物和杂质的形成以及底物的消耗,在线质谱技术作为一种高灵敏检测技术,已由推测化学反应机理研究逐渐向痕量物质的实时快速检测和准确定量方面应用。为了实现各种设备与质谱的在线联用,最关键的问题是在两个设备之间开发合适的接口,以解决大气压气流对质谱检测器造成的真空冲击。目前MS已实现与色谱分离技术(例如超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]、毛细管电泳、超临界流体色谱)串联,但涉及富集提取-色谱分离-质谱检测的耗时过程。然而,随着IMS与AMS的出现与发展,在线质谱法有了新的可供选择的耦合方式,并已有成功应用于小型化设备现场分析的案例。[/font][font=&]1.1 离子迁移谱法[/font][font=&]1.1.1 漂移管离子迁移谱法[/font][font=&]1.1.2 吸入离子迁移谱法[/font][font=&]1.1.3 场不对称形离子迁移谱法[/font][font=&]1.1.4 行波离子迁移谱法[/font][font=&]1.1.5 捕获离子迁移谱法[/font][font=&]1.2 敞开式离子化质谱法[/font][font=&]1.2.1 喷雾电离[/font][font=&]1.2.2 电场电离[/font][font=&]1.2.3 光电离[/font][font=&]1.2.4 热电离[/font][font=&]2、高分辨筛查技术[/font][font=&]高分辨筛查技术一般分为靶向筛查和非靶向筛查,靶向筛查可减少一定干扰离子的存在,但不适合在复杂食品样品中发现潜在风险化合物 非靶向筛查可获得样本所有离子的碎片信息,更适合复杂样本的高通量筛查分析。但由于样品制备、有机溶剂、采集方法和数据分析等差异,不同高分辨MS用于筛查风险物质的方法准确性存在很大差异。因此,构建高质量质谱数据库,尽可能去除不同仪器与实验操作的干扰,减少对参考标准品的依赖,对未知化合物的有效筛查至关重要。[/font][font=&]2.1 质谱数据库[/font][font=&]2.2 质谱预测[/font][font=&]3 、微型质谱仪[/font][font=&]微型质谱仪在保留完整质谱功能的同时,去除了繁琐的样品前处理过程,具有更低的功耗特性,也更具有价格优势。为了适应现场监测的便携性,分析仪器的小型化与AMS分离技术的结合已经成为许多科学领域的关注点,让大多数样品在现场电离,更适用于非专业操作者使用。与实验室大型质谱仪要求的高真空系统相比,微型质谱仪既可以耦合非敞开式电离源,也可以耦合敞开式电离源。因此真空系统和大气压接口的设计成为各种类型微型质谱仪研制的关键。[/font][font=&]总结与展望[/font][font=&]随着多种MS新技术的发展,数据库以及机器预测范围的大幅增加,未来研制出具备高分辨分离分析性能、集在线质谱耦合技术与高分辨筛查技术于一身的微型质谱仪十分可能。虽然微型质谱仪已在食品安全、消费品安全、公共安全等多个领域取得了很大进展,但仍然存在许多挑战,包括:[/font][font=&](a)非均相样品的采样与分析 [/font][font=&](b)复杂样品成分导致的离子抑制影响定量准确性 、(c)大气压气流对质谱检测器造成的真空冲击 [/font][font=&](d)检测受到温度、湿度、样品接触面积等因素影响较大。[/font][font=&]以上干扰均可能导致食品风险控制中假阳性结果的出现。因此,研发新型高选择性表面功能化改性材料,定向偶联到厘米级电离芯片上,实现微型质谱仪富集-分离-电离的一体化,可有效消除基质干扰,提高原位检测的准确性。同时,研制具有稳定梯度压力分布的小型多级真空系统以及低气压下的高效离子传输与聚焦技术,对实现快速、稳定、高灵敏、高分辨率的小型原位装置十分必要。[/font][/size]

  • 离子迁移谱技术在快速检测有毒有害物中的应用

    背景:离子迁移谱(ion mobility spectrometry,IMS),也叫做离子迁移率谱,它并不是最近才开发的新技术,而是由Cohen和Karasek两位科学家于20世纪70年代初提出,最初是作为实验室分析化学技术发展起来的。因为它以离子漂移时间的差别来进行离子的分离定性,借助类似于色谱保留时间的概念,所以起初又被称为等离子体色谱。近年来,这一技术日臻完善,已被应用在多个领域,其中包括各国军事领域的化学战剂监测,各级安全部门的爆炸物监测,海关和机场人口安检部门对毒品、麻醉剂等违禁物品的监测以及环境监测部门对有毒有害气体的监测。随着应用范围的拓宽,IMS技术引起了世界各国专家的研究兴趣,因此使得这一技术不断得到更新和发展,同时它是当今世界最先进的舰用化学战剂侦检系统。对于中国来说,由于此技术开发起步晚和发达国家技术保护,与国外同类产品相比相对落后,无法区分各类型和精度较差,误差和故障率高。目前,离子迁移谱(IMS)技术已经跃升至“快速检测有毒有害物的十大技术”之首,主要应用于食品安全、农药残留物、爆炸物、毒品、化学毒剂的检测以及环境监测。所以此技术21世纪初商业化后,得到了广大科研者的认同,我相信不久将来其必将成为快速检测行业的必备仪器。优势:可以提供更快的速度和降低运营成本的高效液相色谱法相当的性能。此外, IMS无需使用有机溶剂,相关的分离过程中的溶剂处置成本也为零。IMS更加绿色环保,替代了高效液相色谱法。独特的样品引入系统,完全消除交叉污染,并在几秒钟内实现真正意义上的快速分析。它是集速度,特异性和灵敏度的理想应用。IMS具有体积小,探测能力强,快速准确检测的特点。其对环境要求不高,无须使用有机溶剂即可达到液相色谱的分离效果。除实验室快速筛查外,现场无需任何调试即可快速进入工作状态,其紧凑的仪器结构和资本运营成本低的优势非常适合质量安全风险评估中心的实验室和现场快速分析(如农,兽药残留物、非法添加物及水质污染的机动式检测)。IMS基本上涵盖所有的高效液相色谱法或高效液相色谱-质谱分析的化合物分析方法,其分析效率更高,样品前处理更加简单。以下是液相离子迁移谱HRIMS相对于传统液相分析系统的优势应用功能:1.超越分子物理分离,提供额外的化学信息给出了未知分子的近似分子量;提供有关分子三级结构的信息;2.对高效液相色谱法的正交技术分析色谱灵敏的分子;分析没有吸收的分子;最佳异构体的分离;(特别适合同分异构体及热不稳定性化合物与记性化合物的分离分析)3.与高效液相色谱法相比有投资资本,但运营成本大大节约,消耗在减少通过过滤空气分离;不需要洗脱溶剂;减少日常维护需要的费用;不要购买HPLC色谱柱;4.绿色技术不需要溶剂流动相辅助,节约溶剂处理费用,仅需少量的空气或氮气;

  • 【原创大赛】全自动阵列离子迁移谱仪连续监测挥发性有机化合物

    参评论文题目:全自动阵列离子迁移谱仪连续监测挥发性有机化合物。论文概述: 为了拓宽离子迁移谱仪的检测范围、提高化合物的识别准确度,研制了一套阵列离子迁移谱仪,该仪器基于63Ni源正离子模式、63Ni源负离子模式和真空紫外灯光电离模式的组合电离源,可以连续监测空气中挥发性有机化合物。仪器采用全自动的采样进样系统,同时检测了二甲基亚砜的正离子和二氯甲烷的负离子,实现了正负离子的同时检测。通过对阵列离子迁移谱图的综合解析,识别了63Ni源正离子模式下难以鉴别的丙烯腈、间二甲苯和丙酮。连续4 d定量测定丙酮样品,结果表明仪器对丙酮的线性检测范围为2个数量级,线性相关系数R优于0.995,相对标准偏差控制在4.0%~18.3%。采用动态跟踪法,连续24 h在线监测了模拟泄漏的丙烯酸甲酯,监测结果直接反映了其泄漏的时间和浓度。

  • 低分辨质谱与高分辨质谱

    杂质分子量为300.1,用低分辨全扫描的分子离子301.1,二级碎片为212.2和86.2,用高分辨定性时分子离子为301.1353,但二级碎片却与低分辨质谱不太一致,分别为198.0354和86.0902,这是因为仪器不一样导致的吗?低分辨是安捷伦三重四级,高分辨质谱为waters飞行时间质谱,同一物质二级碎片不一致是可以接受的吗?

  • 基于气相-离子迁移谱的不同干燥方式下金银花挥发性成分分析

    【序号】:1【作者】:【题名】:基于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]-离子迁移谱的不同干燥方式下金银花挥发性成分分析【DOI】:【年、卷、期、起止页码】:【全文链接】:http://115.239.174.206:8081/rwt/301/https/NNYHGLUDN3WXTLUPMW4A/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZCYO20220607002&uniplatform=NZKPT&v=9mQnF6_NPy9CkZpmVWAW5IdBJr02Xz48I2TE2lo4qm2h1JA6Ye1txiDgNHATUNl9

  • 【质谱比较】高分辨质谱与低分辨质谱的区别?

    高分辨质谱与低分辨质谱不管在仪器上还是应用上都不一样,那我们就一起来谈谈这个问题吧本期主题:高分辨质谱与低分辨质谱讨论内容:1、高分辨质谱与低分辨质谱的分子量范围2、高分辨质谱与低分辨质谱的灵敏度差异3、高分辨质谱与低分辨质谱的定性定量...................等等相关的讨论筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇=总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 高分辨质谱负离子模式

    [color=#444444]各位大侠,请问在做高分辨质谱的时候,负离子模式有没有结合OH-离子才显示负电荷的?[/color]

  • 高分辨质谱

    请问结构鉴定时,通常用到高分辨质谱,高分辨质谱哪种类型的呢?傅立叶变换?离子阱?飞行时间?四级杆是不是很难达到呢?

  • 高分辨率质谱技术在高质荷比离子分析方面的进展

    现代质谱(MS)面临的一个主要挑战是如何在高质荷比(m/z)区域实现高质量分辨率和高精度的分析。为了提高MS的实际应用能力,了解最新技术的局限性及其在应用科学中的地位至关重要。本综述总结了高分辨质谱(HRMS)中的重要仪器和相关的研究进展,这些仪器的前沿研究将其工作范围扩展到高m/z区域。[font=&][size=14px][color=#222222]高分辨质谱[/color][/size][/font] [font=&][size=14px][color=#222222](HRMS)[/color][/size][/font] [font=&][size=14px][color=#222222]在现代分析科学中具有不可或缺的作用,因为它具有精确识别未知化合物和定量样品中待测化合物的优越性能。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]质量分辨率[/color][/size][/font] [font=&][size=14px][color=#222222](MRP)[/color][/size][/font] [font=&][size=14px][color=#222222]、质量准确度、灵敏度和适用的质量范围是决定质谱仪性能最重要的属性。[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]是量化离子峰锐度的因子,人们将其定义为观察到的质量[/color][/size][/font] [font=&][size=14px][color=#222222](m)[/color][/size][/font] [font=&][size=14px][color=#222222]与最大峰高的特定分数之比,在谱图中通常用质谱离子峰的半峰宽[/color][/size][/font] [font=&][size=14px][color=#222222](FWHM)[/color][/size][/font] [font=&][size=14px][color=#222222]高度或[/color][/size][/font] [font=&][size=14px][color=#222222]δm[/color][/size][/font] [font=&][size=14px][color=#222222]表示。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]具有较高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪可以潜在地分辨更多的特征,因为它可以产生具有较高峰值容量的质谱图。[/color][/size][/font] [font=&][size=14px][color=#222222]另一方面,质量精度是指测定的[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]与其精确理论值的差值;[/color][/size][/font] [font=&][size=14px][color=#222222]质量精度可以代表测量结果的正确性。[/color][/size][/font] [font=&][size=14px][color=#222222]高质量精度可通过几个基本要求获得,例如仪器需要具有足够的电子分辨率、高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]、稳定的离子源和稳定的电气系统等。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]MS[/color][/size][/font] [font=&][size=14px][color=#222222]的灵敏度是高质量应用中的另一个关键问题。[/color][/size][/font] [font=&][size=14px][color=#222222]它依赖于合适的样品制备和电离方法,例如电喷雾电离[/color][/size][/font] [font=&][size=14px][color=#222222](ESI)[/color][/size][/font] [font=&][size=14px][color=#222222]可以从水溶性样品中产生多电荷分子,基质辅助激光解吸电离[/color][/size][/font] [font=&][size=14px][color=#222222](MALDI)[/color][/size][/font] [font=&][size=14px][color=#222222]主要从固体样品中产生单电荷分子。[/color][/size][/font] [font=&][size=14px][color=#222222]旨在提高电离效率的研究十分常见,在这里我们鼓励读者查阅相关文献和综述文章。[/color][/size][/font][font=&][size=14px][color=#222222]高分辨率仪器通常被认为是具有提供[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]以上[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的仪器。[/color][/size][/font] [font=&][size=14px][color=#222222]通过使用具有这种[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪,人们可以在低[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222] 1[/color][/size][/font] [font=&][size=14px][color=#222222],如图[/color][/size][/font] [font=&][size=14px][color=#222222]1[/color][/size][/font] [font=&][size=14px][color=#222222]所示。[/color][/size][/font] [font=&][size=14px][color=#222222]在高[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内,这种分辨能力可以区分初级离子[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即电离离子,如质子、钠离子等[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、同位素、修饰[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即翻译后修饰[/color][/size][/font] [font=&][size=14px][color=#222222][PTMs][/color][/size][/font] [font=&][size=14px][color=#222222]或标记[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、微小的结构变异或与小分子相关的复合物。[/color][/size][/font] [font=&][size=14px][color=#222222]然而,为了实现独特的元素成分分配,所需的[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]要高得多[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222]1/δm 100)[/color][/size][/font] [font=&][size=14px][color=#222222]。[/color][/size][/font] [font=&][size=14px][color=#222222]我们将在下文重点介绍[/color][/size][/font] [font=&][size=14px][color=#222222]HRMS[/color][/size][/font] [font=&][size=14px][color=#222222]在[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内实现[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]左右[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的关键技术。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352869.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图1 质量分辨率和相应分析能力的相关性[/size][/font][size=14px][color=#000000]高分辨技术[/color][/size][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]傅立叶变换(FT)和飞行时间(TOF)质谱是满足高m/z范围(MRP 10000和m/z 10000)中高MRP标准的两个主要质谱仪类别。[/color][/size][/font] [font=&][size=14px][color=#222222]离子回旋共振(ICR)和轨道阱(Orbitrap)质量分析器是FTMS系列的主要成员,而TOFMS系列由几个变体组成,包括线性分析仪、反射分析仪和多反射/多转分析仪。[/color][/size][/font] [font=&][size=14px][color=#222222]大多数FT和许多TOF质谱仪都是混合仪器,前面有四极杆质量过滤器(即Q-TOFMS),便于串联MS分析。[/color][/size][/font] [font=&][size=14px][color=#222222]本文不讨论磁质谱,因为它们主要用于低质量数化合物的检测,尽管它们也提供较高的MRP。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]大多数质谱仪的MRP随着m/z的增加而下降。[/color][/size][/font] [font=&][size=14px][color=#222222]例如,傅里叶变换离子回旋共振质谱(FT-ICRMS)的MRP随着m/z的增加而线性降低,而Orbitrap-MS的MRP与m/z平方根的倒数成比例。[/color][/size][/font] [font=&][size=14px][color=#222222]因此,尽管Orbitrap在m/z= 200时提供了140000的MRP,但在m/z在10000的范围内时,MRP会降低到16000。[/color][/size][/font] [font=&][size=14px][color=#222222]TOFMS与上述质谱仪呈现的规律不同,其MRP独立于m/z或在特定条件下随着m/z的增加而逐渐增加。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]图2显示了基于MRP的商业化质谱仪的经验规律。[/color][/size][/font] [font=&][size=14px][color=#222222]在过去的十年中,这些技术的最大MRP已经有了相当大的进步,研究人员将这些仪器的MRP推向了另一个高度。[/color][/size][/font] [font=&][size=14px][color=#222222]表1总结了重要的商业化HRMS或其改进版本的分析特性,这些特性决定了仪器在高m/z范围内的适用性。[/color][/size][/font] [font=&][size=14px][color=#222222]我们还列出了制造商报告的低质量范围(m/z 10000的低分辨率数据。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近的一项研究表明,在基于Orbitrap的单粒子电荷检测(CD)技术中,人们通过在低离子计数条件下确定了大量单个离子的电荷和接近理论预测的高MRP,而这一方法以更长的采集时间作为代价。[/size][/font] [font=&][size=14px]关于大分子检测中其它电荷检测质谱法(CDMS)细节的文章可以在别处找到,这里不做赘述。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352873.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图4 在Orbitrap质谱仪上实施源内离子捕获以提高高质量结构分析能力的示意图[/size][/font][font=&][size=14px]A,仪器的修改用红色标明;B,传输平台的示意图;C,正常/源内离子捕获模式中的相对电位。该仪器实现了更有效的去溶剂化和碰撞冷却,从而提高了MRP和质量传输效率。[/size][/font][font=&][size=14px]FTMS需要复杂的长时间镜像电流瞬态测量(通常从几秒到几分钟)来获得大蛋白质的同位素分辨率,这对高通量分析是不利的。[/size][/font] [font=&][size=14px]然而,高分辨率并不总是必要的,也就是说,电荷状态的分化需要比识别细微PTM分化(例如磷酸化)相对更低的MRP。[/size][/font] [font=&][size=14px]此外,仪器需要保持超高的真空度,以确保振荡离子有足够的平均自由程;[/size][/font] [font=&][size=14px]或者,TOFMS是另一种通用的选择。[/size][/font] [font=&][size=14px]关于高扫描速度和自由空间电荷效应,我们将在下一节讨论。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]3、飞行时间质谱[/color][/size][/font][font=&][size=14px]飞行时间质谱仪根据离子飞越无磁场区域的时间来分析离子,由此可以推断出它们的m/z。[/size][/font] [font=&][size=14px]在为离子提供势能(qU,其中U是离子源的电势)的电场下,离子源区域会产生离子。[/size][/font] [font=&][size=14px]在离子产生之后,离子被抽出并加速到封闭在飞行管内的无场区域。[/size][/font] [font=&][size=14px]加速过程将离子的势能转化为进入无场区域前的动能()。[/size][/font] [font=&][size=14px]在无场区域内,不同m/z的离子表现出不同的速度。[/size][/font] [font=&][size=14px]飞行时间(t)和离子质量(m)之间的简化关系为:[/size][/font][font=&][size=14px]其中L为无场区域的长度。[/size][/font] [font=&][size=14px]在TOFMS中,MRP可以转换为时间t/(2Δt)。[/size][/font] [font=&][size=14px]由于t随L呈线性变化,因此目前的共识是原则上飞行管长度越长,MRP越高。[/size][/font] [font=&][size=14px]根据定义,降低Δt可以实现更高的MRP。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]为了在飞行时间质谱中获得较高的MRP,电离时离子的能量和空间扩散需要最小化。[/size][/font] [font=&][size=14px]值得注意的是,能量扩散随着离子m/z的增加而增加。[/size][/font] [font=&][size=14px]提高飞行时间质谱仪MRP的两个最重要的技术是离子延迟引出和反射器技术。[/size][/font] [font=&][size=14px]离子延迟引出在Wiley和McLaren (1955)介绍的两级离子源中完成。[/size][/font] [font=&][size=14px]这种离子源的第一阶段是电离发生。[/size][/font] [font=&][size=14px]电离后,离子被引出,并被一个温和的电场推向第二阶段。[/size][/font] [font=&][size=14px]第二阶段用强电场将离子加速到它们朝向无场区域飞行的最终速度。[/size][/font] [font=&][size=14px]当进入无场区域时,不同m/z的离子通过它们到达检测器表面的时间而被分离。[/size][/font] [font=&][size=14px]延迟引出是在电离后的第一级施加较短的延迟电压,延迟范围在几十纳秒到低微秒之间的一种方法。[/size][/font] [font=&][size=14px]它有效地最小化了离子的初始能量扩散对到达时间的影响。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]另一方面,反射器使用飞行管中的环形电极堆来产生电场,以反射离子的轨迹。[/size][/font] [font=&][size=14px]反射器可以进一步补偿离子在反射过程中的能量差异,因为初始能量较高的离子会在反射器中传输更深,而初始能量较低的离子会传输更浅,如图5所示。[/size][/font] [font=&][size=14px]通过适当选择反射器后的飞行距离,具有相同m/z但不同初始能量的离子将同时到达探测器,实现飞行时间聚焦效果。[/size][/font] [font=&][size=14px]使用反射器的另一个优点是飞行距离的增加,这可以增加t和MRP。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352874.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图5 飞行时间质谱仪中反射器的示意图[/size][/font][font=&][size=14px]具有较高动能的离子在反射器中穿透得更深,促进了检测器的聚焦效果。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]自20世纪60年代以来,TOFMS一直是最受欢迎的技术之一。[/size][/font] [font=&][size=14px]在线性飞行时间质谱仪中,基本上不存在质量上限,因为离子经过电势加速后会沿着直线向检测器传输。[/size][/font] [font=&][size=14px]由于离子运动不受射频电场的控制,轨迹与m/z无关,常规线性模式飞行时间质量分析仪可以检测MDa水平的离子(即使用专用的基质分子,电荷检测器,或专门的低温离子探测器,如下所述),尽管其灵敏度和MRP都没有完全优化。[/size][/font] [font=&][size=14px]为了获得高分辨率光谱图,典型的TOF质谱仪是在反射模式下运行的,在低质量范围内提供大约10000–60000的MRP。[/size][/font] [font=&][size=14px]尽管其MRP在大多数质量范围内低于FTMS,但TOFMS的扫描速度比FTMS快2-3个数量级,可完美匹配联用分析系统。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS中有几个变化进一步增强了MRP。[/size][/font] [font=&][size=14px]最有吸引力的解决方案是安装静电扇区或多个反射器,以增加飞行距离。[/size][/font] [font=&][size=14px]一个例子是多圈或螺旋飞行时间质谱仪,它可以很容易地将飞行距离延长到几十米以上。[/size][/font] [font=&][size=14px]对于m/z约为10000的离子,这种仪器的最大MRP超过20000。[/size][/font] [font=&][size=14px]虽然飞行时间质谱基本上没有质量上限,但最大可观测m/z仍然受到一些关键因素的限制,包括样品制备、电离、离子轨迹、检测器特性等。[/size][/font] [font=&][size=14px]这种仪器方面的限制主要是指用于检测大分子的离子检测器的灵敏度。[/size][/font] [font=&][size=14px]例如,传统微通道板(MCP)检测器的灵敏度随着离子速度的降低而降低。[/size][/font] [font=&][size=14px]由于较高的m/z离子表现出较低的速度,这种检测器对于大分子分析是低效的。[/size][/font] [font=&][size=14px]为了克服这一问题,其中一个有效的解决方案是用更灵敏的替代物取代MCP检测器,例如通过能量感应撞击离子的能量敏感型低温检测器。[/size][/font] [font=&][size=14px]低温检测器可以将飞行时间质谱的质量上限提高到大约2 MDa。[/size][/font] [font=&][size=14px]低温探测器的缺点是响应时间长,通常在微秒范围内,这会导致较高的δt产生。[/size][/font] [font=&][size=14px]响应时间比传统的MCPs长两个数量级以上,无法产生高分辨率的质谱图。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个不可避免的问题是检测器偏向于检测低质量的离子,该问题主要是由于低质量离子导致的检测器饱和所致。[/size][/font] [font=&][size=14px]这种偏差源于MCP检测器在离子撞击表面后恢复其离子记录能力所需的时间。[/size][/font] [font=&][size=14px]在恢复时间窗口内,同一检测器区域的离子传输受到阻碍。[/size][/font] [font=&][size=14px]由于质谱通常存在低m/z的杂质离子,这些杂质离子可能是与基质相关的分子或较大离子的碎片,因此对高m/z离子的灵敏度要低得多。[/size][/font] [font=&][size=14px]人们可以通过改变检测器电压来调整增益效果,从而降低偏好程度;[/size][/font] [font=&][size=14px]也可以通过离子或检测器门控来使该问题最小化,以保持检测器在高m/z范围内的灵敏度。[/size][/font] [font=&][size=14px]有一种动态仪器优化方法被证明可以将灵敏度提高2-3倍。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个限制是,质谱仪存在离子损失现象,反射器不适合分析高m/z离子。[/size][/font] [font=&][size=14px]这种损失可能是由于离子在进入反射器之前在飞行管中的亚稳态衰减,因此它们在不同的时间到达检测器。[/size][/font] [font=&][size=14px]反射器的另一个可能的问题是较高的m/z离子具有较宽的发散角,使得离子轨迹在反射后偏离检测器轴。[/size][/font] [font=&][size=14px]为了进行高m/z离子的检测,人们通常通过商用化的TOF仪以线性模式进行实验,但这不可避免地会降低光谱的MRP。[/size][/font] [font=&][size=14px]人们发展了一种综合的计算方法来预测线性飞行时间质谱仪的最终构型,这表明离子源区域的尺寸以及引出电压和延迟的组合在MRP的改进中起着关键作用。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]4、正交和四极杆飞行时间质谱[/color][/size][/font][font=&][size=14px]串联质谱(MS[/size][/font] [font=&]n[/font] [font=&][size=14px])是一种技术,该技术在概念上集成了两个或多个质量分析器,可以提高质谱破译复杂化合物信息的能力。[/size][/font] [font=&][size=14px]最初开发于20世纪80年代初的四极杆-飞行时间(Q-TOF) MS已成为高分辨率和高质量应用中最常见的混合仪器之一。[/size][/font] [font=&][size=14px]四极质量分析器包括四个平行的双曲线或圆柱形杆状电极,并通过调节直流(DC)电压和RF电压的频率和幅度来传输或存储特定m/z的离子。[/size][/font] [font=&][size=14px]四极质量分析器通常设计紧凑,且需要低真空,并且具有很高的离子容量。[/size][/font] [font=&][size=14px]四极杆质量分析仪兼容各种电离技术(如ESI和MALDI)以及离子激活方法(例如电子激活解离和光诱导解离)。[/size][/font] [font=&][size=14px]四极杆质量分析器的主要缺点包括对离子传输、质量检测范围和质量分辨能力(通常为单位质量分辨率)的限制。[/size][/font] [font=&][size=14px]混合Q-TOFMS得到了广泛的认可,因为它保留了双方的优点(分别是选择性和高MRP ),而没有增加缺点。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]离子传输效率的提高使得在Q-TOFMS中检测大分子化合物成为可能。[/size][/font] [font=&][size=14px]根据RF频率和振幅以及杆组件的直径,传统的四极杆质量分析仪可以在高达4000的有限m/z下运行。[/size][/font] [font=&][size=14px]Q-TOFMS通过增加四极杆区内的压力进而促进对大分子径向运动的碰撞冷却,导致了离子传输效率的提高。[/size][/font] [font=&][size=14px]Q-TOFMS通过将四极杆的射频频率降低至300 kHz,实现了更宽的m/z范围至40000(一种蛋白质复合物,m/z为38150的GroEL伴侣蛋白)。[/size][/font] [font=&][size=14px]在这种情况下,不同的真空泵保持着高压,包括紧挨在取样锥后面的一个室(10 mbar)、六极周围的一个金属套筒(局部压力为8×10[/size][/font] [font=&]3[/font] [font=&][size=14px] mbar)和一个碰撞室(1.5×10[/size][/font] [font=&]2 [/font] [font=&][size=14px]mbar)。[/size][/font] [font=&][size=14px]正交TOF区域中的离子传输效率也通过在离子透镜上使用低计数网格和较低重复率的离子反射器(即加速前的传输时间为410 μs)而得到提高。[/size][/font] [font=&][size=14px]可检测的m/z超过85000(碘化铯簇),在m/z约为84000时信噪比(SNR)为5。[/size][/font] [font=&][size=14px]在串联MS模式下,四极杆具有窄带质量过滤器,因此只有窄m/z范围内的(前体)离子被传输到TOF区域,从而提高了检测动态范围和信噪比。[/size][/font] [font=&][size=14px]理论上,四极杆质量分析仪传输的离子比设定值高4-5倍:[/size][/font] [font=&][size=14px]将离子传输的m/z设置为32000应传输m/z为128000-160000的离子。[/size][/font] [font=&][size=14px]随着电离和检测效率的进一步提高,Q-TOFMS可以继续检测超过90000的m/z离子。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]此外,在Q-TOF质谱仪中,离子光学已得到改进,以实现更好的MRP以及质量相关传输。[/size][/font] [font=&][size=14px]低温度系数陶瓷垫片的使用可以减少温度引起的质量漂移,该瓷片可以利用对称屏蔽对所有电极进行更好的离子聚焦;[/size][/font] [font=&][size=14px]与之前的模型相比,MRP提高了约35%。[/size][/font] [font=&][size=14px]离子从四极杆通过正交TOF转移至检测器,这进一步改变了离子光学设计理念。[/size][/font] [font=&][size=14px]更详细地说, “步进式转移时间”可以调整不同m/z的离子从碰撞单元行进到正交加速单元的时间。[/size][/font] [font=&][size=14px]使用较大的入口孔径和较高的加速场,探测效率提高了30%。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近,离子淌度谱(IMS)是一种集成到飞行时间质谱中的一种技术。[/size][/font] [font=&][size=14px]IMS的加入为大分子分析提供了另一个分离维度,在电场的影响以及缓冲气体的存在下,具有不同迁移率或平均碰撞横截面的离子根据不同的淌度信息被分离开。[/size][/font] [font=&][size=14px]与四极杆质量分析仪类似,离子淌度池具有减少能量分布、降低化学噪音、提高检测动态范围和传导MS[/size][/font] [font=&]n[/font] [font=&][size=14px]的优势。[/size][/font] [font=&][size=14px]IMS的各种设计,例如行波离子迁移谱(TWIMS)、捕集离子迁移谱(TIMS)和环形离子淌度(cIM),都被证明可以增强淌度分离和离子传输。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]首个市售的IMS-Q-TOFMS于2006年推出(Waters,Synapt high definition MS[HDMS])。含有TW堆叠环形离子导向器的离子淌度池取代了六极杆,有效地将离子从离子源区域桥接至四极杆质量分析器,并消除了不需要的中性物质。在该系统中,位于四极杆和正交TOF之间的“TRIWAVE”系统(捕集、IM和转移池)不仅能实现淌度分离,还能激活离子,因此有利于定量结构分析。TIMS的工作原理是通过使用电场推动离子与逆流的中性漂移气体分子不断碰撞,从而分离离子。TIMS质谱于2016年才商业化,并因其对天然大分子组装体的结构解析能力而广受欢迎。现代的IMS-Q-TOFMS可以在m/z 10000以上提供平均50000的MRP[/size][/font] [font=&][size=14px]。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][size=14px][color=#000000]5、数据处理技术[/color][/size][font=&][size=14px]由于数据复杂性和分析要求的增加,数据处理是HRMS的另一个重要部分。[/size][/font] [font=&][size=14px]与仪器的重大发展相反,数据处理可能是提高数据质量的一种有效而方便的手段。[/size][/font] [font=&][size=14px]在傅立叶变换质谱(FTMS)中,数据处理尤为重要,因为在傅里叶变换之前对原始数据进行校正、滤波和变迹是获得谱图的常见做法。[/size][/font] [font=&][size=14px]例如,人们发现相位校正可以显著提高FT-ICRMS的光谱质量,包括SNR、MRP和质量准确度。[/size][/font] [font=&][size=14px]在其他质谱数据中,离线或采集后处理提高了分子鉴定的谱图质量。[/size][/font] [font=&][size=14px]例如,人们可以通过波变换、翘曲函数以及其他方法提高峰值检测和降噪的效率。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]研究表明,充分的校准可以将质量准确度提高一个数量级以上。[/size][/font] [font=&][size=14px]另一方面,采集后数据校准可以通过比较多个光谱以自校准方式进行。[/size][/font] [font=&][size=14px]复杂光谱中蛋白质的鉴定也可以通过使用多峰拟合和模拟技术提高蛋白含量来实现。[/size][/font] [font=&][size=14px]相比之下,人们通过使用简单的峰对齐算法(而不是使用复杂的校准函数),就可以实现在线的自校准[/size][/font]

  • 求助一个关于高分辨质谱确定分子式的问题

    [color=#444444]我做有机催化方法学的,化合物做质谱,只允许高分辨小数点后第四位有差异。最近做了两个样品,和别的样品的区别就是同时含有乙酰基保护的氮和一个较远的双键,高分辨做出来,加了钾离子还差2,如果是加钠离子和一个中性水分子就是对的,但是在做高分辨质谱的过程中有没有可能引入水分子的情况呢?这点很不解呀,请教这方面专业的,能不能告诉我一般情况下会加哪些阳离子或者中性分子呢?[/color]

  • 负离子模式下做的高分辨质谱

    负离子模式下做的高分辨质谱

    [color=#444444]求教各位大神,我在负离子模式下做的高分辨质谱,主体和F是1:1配位,现在质谱结果显示加乙酸分子量刚好和模拟的一样,请问大神像这样直接加乙酸合适不,这个图能用不[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141601250821_6373_1676638_3.jpg!w690x517.jpg[/img][/color]

  • 【原创大赛】高分辨质谱数据系统源程序的设计

    响应斑竹的号召,现献上一篇"高分辨质谱数据系统源程序的设计".参加五届原创大赛.谢谢朋友们的青睐,邀请我参加团队.因此这篇文章是以"平凡的独特"团队名义出马的.希望大家喜欢. 高分辨质谱数据系统源程序的设计Daichaozheng 2004年在全国有机质谱会议上与两位同事共同发表了题为“高分辨质谱数据系统的研制”一文。由于篇幅的限制,文章仅对系统的功能作了大致的描述,没有具体解释编写程序的内容。今天在此,借质谱版块宝地将高分辨质谱数据系统的源程序公布出来,希望能与有兴趣的朋友们切磋。高分辨采集采用较慢的磁场扫描速度。首先按常规进行质量校正,为了避免仪器不稳定带来的系统误差,样品与标样同时进入,数据采集前要确认“高分采集” 钮。采集完成后进入“高分数据”处理。从文件目录中选择要处理的高分数据文件。从总离子流图上选择任一次扫描。屏幕上方出现高分连续谱图,中间是中分辨棒图。用鼠标右键在中分辨谱图点击可在连续谱图上标明相应的峰。采用这种方法把高分连续谱图上标样的两个峰识别出来。用鼠标左键划取高分连续谱图局部以放大。在屏幕上方填入标样峰的精确质量,用鼠标右键在高分连续谱图点击两个标样峰。两个标样峰之间各峰的精确质量即可得到。对此工作希望进一步了解的朋友可想法与武汉大学或河北大学联系交流。因为近10年了他们的VG质谱仪一直采用的这套数据系统。VB源程序如下:

  • 高分辨质谱问题

    [color=#444444]各位,最近做了一系列化合物的结构表征,氢谱和碳谱都对,ESI高分辨打出来出了M+1和M+Na,这倒是对,但是前面还有许多其他峰,好多的,高分辨不是只出分子离子峰吗?那些还用分析吗?另外其中两个样品还出了M+NH3,搞不清楚为什么会这样?怎么会有NH3呢?结构中有吲哚环,有硝基[/color]

  • 高分辨质谱仪在中药研发和质控中的应用

    [i][b]草药成分分析是一项复杂和困难的工作,其化学成分是中药发挥药效作用的物质基础,是实现中药现代化的关键所在。然而,中药有效成分的结构鉴定是其成分分析的瓶颈,如何快速发现中药中的有效成分,并鉴定其结构?本文应用AB SCIEX TripleTOF[sup][/sup] 高分辨质谱仪对人参中有效成分分析进行了研究。[/b][/i] 如何在高分辨数据中,快速发现和鉴定目标结构的化合物, 已成为中药成份研究的限速挑战。近年来,LC/MS 凭借其高通量、高灵敏度以及强大的定性、定量能力等特点,逐渐成为中药分析的主流仪器。不同类型的LC/MS 具有特定的工作流程,AB SCIEXTripleTOF[sup][/sup] 高分辨质谱仪是具有高分辨定性能力和三重四极杆定量能力的新一代高分辨串联质谱仪。运用特有的动态背景扣除(DBS)、质量亏损(MDF)、中性丢失(NL)数据采集功能,一次进样可同时获得高质量的TOF MS和TOFMS/MS,从而完成化学成分的分析和确证。结合PeakView[sup][/sup]软件中简单快捷的XICManager 进行目标化合物的筛查和确证,能够提高数据分析速度和数据结果的准确度,成为中药成分分析和鉴定方面得心应手的工具。[align=center][/align][b]  实验内容[/b][i][b]  仪器和试剂[/b][/i]  甲醇、乙腈均为色谱纯,其他有机试剂为分析醇 人参50% 甲醇提取液,经SPE 处理后获得人参提取液 ABSCIEX TripleTOF[sup][/sup]5600 质谱系统,岛津公司LC-20A [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]。[i][b]  采集方法与实验条件[/b]  ■质谱采集方法[/i]  Tr ipl eTOF[sup][/sup]5600,TOF MS-IDA-MS/MS 负离子测定 TOF MS,m/z 100~1600,200 ms TOF MS/MS-10 MS/MS,m/ z 50~1300,80 ms,IDA 动态背景扣除(DBS)开启。[i]  ■ 质谱参数[/i]  喷雾电压(IS):-4500 V 去簇电压(DP):-70 V 辅助加热气温度(TEM):500℃ 雾化气(Gas1):50 psi 辅助加热气(Gas  2):50 psi 气帘气(Curtain gas):30 psi。  ■[i] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件[/i]  流速:0.2 ml/min 流动相:A 相:0.02% 甲酸水溶液 B 相:0.02% 甲酸乙腈溶液。色谱柱: Phenomenex Luna5 μm, 2.1×150 mm),梯度洗脱。[i][b]  数据处理工作流程[/b][/i]  通过智能DBS-IDA 采集方法,一次进行获得高分辨的TOF MS 和TOF MS/MS,高分辨的TOF MS 通过PeakView[sup][/sup] 进行目标化合物以及非目标化合物的提取或结构特征提取发现可能的中药成分,通过FormulaFinder 计算其分子组成,再结合高分辨TOFMS/MS 进一步做结构分析,以确定化合物,分析流程如图2 所示。[b]  结果与讨论[/b][i][b]  目标化合物的筛查与鉴定[/b][/i]  人参主要成分为三萜皂苷类,在负离子模式下,很容易产生加合离子,本实验的流动相中含有甲酸,人参皂苷的分子离子为加合醋酸的离子,根据苷元的不同分为二醇型皂苷和三醇型皂苷,其在负离子条件下产生三醇型皂苷特征性碎片475.38,二醇型碎片459.38,结构特点如图3所示。  使用PeakView[sup][/sup] 软件中的XICmanager 对人参皂苷目标化合物筛查,将人参皂苷目标化合物序号或名称和分子式信息导入到软件中的XICmanager,即可筛查目标化合物,可根据4 大标准(保留时间、质量精度、同位素比例、谱库)判断筛查到的色谱峰是否为目标化合物。利用已知的68 种人参皂苷类成分,筛查到37 种人参皂苷类成分,提取离子流色谱图、测得的精确质量数以及保留时间、强度和质量准确度简单直观显示出来,并同时根据获得的高分辨TOFMS 和TOF MS/MS 进一步的确证,筛查结果如图4 所示。  人参皂苷中有多种同分异构体,仅通过高分辨的TOF MS 不能确定,如人参皂苷Re & Rd 分子组成均为C49H84O20, 必须通过高分辨的MS/MS 进一步确定结构。图5 展示了根据人参皂苷的结构特点,并结合高分辨MS/MS 对人参皂苷结构的推测。  PeakView[sup][/sup] 软件解析化合物的结构根据一级质谱的质量精度、同位素比例、不饱和度等信息, 运用PeakView[sup][/sup] 软件推测可能化合物分子式,同时也能给出MS/MS 的分子组成。在PeakView[sup][/sup] 软件中导化合物结构式,可对二级碎片结构进行预测。[i][b]  查找结构相关化合物(NLF, PIF)[/b][/i]  中药成分中同一类成分都具有相似的母核或结构特征,如会产生相同的碎片或具有相同的中性丢失部分,因此可通过中性丢失过滤(NLF)和产物离子过滤(PIF)查找结构相似的化合物。根据人参皂苷的结构特点,人参三醇苷能产生475.3 的碎片以及人参二醇苷能产生459.3 的碎片,可通过PIF 找到满足特点的人参皂苷,同时可通过人参皂苷上结合糖的部分在ESI模式下,很容易中性丢失糖 162.053,146.058,可通过NLF 来找到满足中性丢失六碳糖的皂苷类成分,满足这些特征的离子提取,同时满足条件的离子在TOF MS 上会以红色标记,同时得到的MS/MS 可进一步进行确认,从而能够全面地完成人参皂苷类成分的分析鉴定。通过目标代谢物以及PIF、NLF 方式,共鉴定出人参皂苷类成分45 种,结果如表1 所示。[b]  小结[/b]  高分辨质谱具有简单的数据采集流程, 可应对中药成分分析的要求,但如何在高分辨数据中快速发现和鉴定目标结构的化合物,已成为中药成份研究的限速挑战。凭借TripleTOF[sup][/sup]5600系统的高扫描速度、高分辨以及高质量准确度,可同时获得高分辨的TOF MS 和TOF MS/MS,能通过目标化合物提取以及PIF、NLF 处理获得的高分辨数据,快速简便地查找到目标化合物。实验结果表明:所获得的各成分均具有较高的质量准确度,质量准确度均小于2 ppm

  • 高分辨质谱到底“高”在哪里?

    高分辨质谱  用低分辨质谱测定时,分子的质量数都是整数表示,如CO、N2、C2H4和CH2N的质量都是28。如果用高分辨质谱测定就能得到如C2H4=28.031299,CH2N=28.018723,因此,根据高分辨质谱所测得的精密质量就可以对结构加以剖析和区别  小分子化合物确定结构式有多种方法,NMR,高分辨质谱(由于每个元素的原子量实际都是小数的,通过高分辨质谱可以直接获得化学式!  其中高分辨质谱我们强烈推荐THERMO LTQ ORBITRAP  Orbitrap具有高分辨率[最高可达45万半峰全宽(FWHM)],高质量精度(0.1×10-6~1×10-6),质量范围宽,动态范围广的优点,可提供大范围的定性和定量分析,并且克服了其他高分辨质谱如傅里叶变换离子回旋共振(FTICR)质谱、飞行时间(TOF)质谱的尺寸大,维护与操作复杂的缺点。  在药物分析的应用  此段摘取贺美莲 郭常川 石峰 姜玮 所著的《Orbitrap高分辨质谱技术在药物分析领域中的应用进展》  在药物代谢方面的应用  Orbitrap高分辨质谱可以在很宽的质量范围内生成全扫描数据,同时提供组分的定性和定量分析[21]。此外,在各种生物基质(如血浆、血清,尿液等)中的药物代谢物分析需要复杂的前处理过程,而Orbitrap质谱对于复杂生物基质中的痕量分析物也可进行准确的分析,从而简化了样品前处理过程。基于这些优势,Orbitrap质谱已成为药物代谢研究中强有力的分析工具  在中药组分分析方面的应用  Orbitrap串联超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]实现单针进样即可高通量获取中药中的成百上千化合物的定性和定量信息,能够显著提高中药复杂体系中化学成分的快速分析鉴定能力。  中药由于成分复杂,对于其真正起治疗作用的化学成分往往不够清晰。应用二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联LTQ-Orbitrap质谱对丹参中的酚酸和双萜类成分进行定性和定量分析。根据裂解机制和高分辨MSn数据,共鉴定或初步表征了102个化合物,同时检测到丹参样品中的14个生物活性化合物,其中10个酚酸类和4个双萜类,这些成分是丹参发挥心血管疾病治疗作用的主要成分。  从中药中探索新的化学实体是筛选候选药物的重要来源。采用Orbitrap高分辨质谱鉴定蛇麻花中具有潜在抗菌活性的化合物,对钩藤中的92个吲哚生物碱进行系统表征并发现56个新的潜在生物活性分子,进一步明确了钩藤治疗作用的物质基础。  在药品杂质检查方面的应用  杂质检查是药品质量安全评价的重要环节。得益于其强大的定性和定量分析性能,Orbitrap技术可为原料药中杂质和药物降解产物研究提供强有力的支持。采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联紫外检测器和高分辨质谱检测器(UPLC-UV-LTQ-Orbitrap)对左旋甲状腺素的氧化降解杂质进行鉴定,利用时间分辨的高分辨质谱数据和自动数据处理的结合能够推断出单个化合物基础上杂质形成的动力学及其形成机制;通过比较降解曲线,总共识别了4个主要类型的甲状腺素降解杂质的产生路径。  采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联Orbitrap质谱仪对伊潘立酮降解杂质进行分离和鉴定,通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析共鉴定了7种降解杂质,并发现在水解和氧化条件下,伊潘立酮是不稳定的。  在中成药非法添加筛查方面的应用  [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联高分辨质谱技术不仅可以用来筛查已知的非法添加成分,还可以发现并鉴定复杂基质中的未知成分,先后对中成药中非法添加的磷酸二酯酶-5抑制剂、降糖药和糖皮质激素的筛查和鉴定进行了研究。在63批次中成药和34批次保健品样本的检测中,共有7批保健品检测到降糖药,涉及二甲双胍、苯乙双胍和格列本脲等在非法添加糖皮质激素的检测中,分析物响应与质量浓度(1.0~1 000 ngmL-1)呈良好的线性关系,回归系数(r2)大于0.999 0,所有分析物检测下限(LODs)为1.0 ngmL-1,在42批中成药中共有22批样品检测到醋酸泼尼松,其中1批样品同时检测到了泼尼松和醋酸氢化可的松。  在蛋白质组学的应用  目前广泛使用的用于蛋白质鉴定的质谱分析主要使用两种类型质谱:一种是MALDI-TOF直接对分子量进行测量;另一种是使用ESI-MS高分辨率质谱分析电喷雾得到的多电荷信号,然后对信号进行去卷积分析,获得精确分子量数值。这两种方法各有其优点及适用的领域  采用直接MALDI-TOF进行分子量测定的主要问题是,MALDI-TOF质谱仪在不同质量区域内分辨率差别很大,分子量越大,分辨率越低。因此当样品为大分子蛋白质样品(比如抗体类药物)时,MALDI-TOF无法测得精确分子量,更不用说对蛋白质的糖基化等修饰形式进行分析。  (1) 抗体类蛋白质药物的精确分子量测定  抗体类蛋白质药物是生物医药界非常重要的一类样品,这些蛋白质分子的分子量非常大,一般情况下150KDa左右。因此在没有高分辨率质谱仪的情况下,要对这类蛋白质进行精确分子量测定是困难的。  在高分辨率质谱仪,特别是orbitrap原理的质谱仪出现以后,抗体类蛋白质的去卷积分子量测定变得容易实现。  (2) 还原后抗体类样品的不同亚基精确分子量测定  抗体类蛋白质样品通过还原,可以将轻链和重链分开,然后通过HPLC分离,在线进行MS分析得到亚基的精确分子量。  (3) 小分子量(25KDa)蛋白质样品的精确分子量测定  常用蛋白质样品包括抗体类蛋白质(150 KDa),同时也包括一些相对较小的蛋白质分子。对着这些相对较小的蛋白质,进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析,并去卷积分析得到精确分子量,不需要太高的分辨率即可实现(早期的离子阱,如LTQ就可以实现对小分子量蛋白质的分子量测定)。  高分辨率质谱可以对蛋白质样品(约10-150KDa)进行精确分子量测定,精度达到1Da左右,可以满足分析蛋白质的修饰状态(比如糖基化、磷酸化、氧化、C末端K缺失情况等),并可以对这些修饰情况进行定量分析

  • 苯醌负离子模式高分辨质谱解析

    苯醌负离子模式高分辨质谱解析

    苯醌做高分辨质谱,ESI负离子模式,仪器型号是[font=宋体]德国[/font][font='Times New Roman','serif']Thermo Scientific [/font][font=宋体]公司[/font][font='Times New Roman','serif']Q Exactive[/font][font=宋体]高分辨[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url],质谱出108,为M而不是M-1,求解?[/font][font=宋体][/font][font=宋体][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制