当前位置: 仪器信息网 > 行业主题 > >

代谢组学平台主管

仪器信息网代谢组学平台主管专题为您整合代谢组学平台主管相关的最新文章,在代谢组学平台主管专题,您不仅可以免费浏览代谢组学平台主管的资讯, 同时您还可以浏览代谢组学平台主管的相关资料、解决方案,参与社区代谢组学平台主管话题讨论。

代谢组学平台主管相关的资讯

  • 聚焦代谢组学平台建设 促进技术向应用转化——访清华大学代谢组学平台主管刘晓蕙博士
    p   清华大学代谢组学平台为国家蛋白质科学研究(北京)设施清华大学蛋白质研究技术中心下设平台之一。经过几年的发展,该平台拥有了完善的代谢产物及脂质物质的二级数据库及常见内源性代谢物的信息采集与数据分析方法,可以提供准确的代谢组学和代谢流分析服务。如今代谢组学领域的人提到清华大学代谢组学平台就像是找到了组织一样。 /p p   仪器信息网编辑近期采访了清华大学代谢组学平台主管刘晓蕙博士,刘晓蕙博士从代谢组学研究现状、代谢组平台建设情况、发展机遇与挑战等方面进行了详细的讲解。 /p p style=" text-align: center " img title=" 刘晓蕙老师0.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/ad3dac0b-15d9-4275-aaec-cf6b762b4cb7.jpg" / /p p style=" text-align: center " strong 清华大学代谢组学平台主管 刘晓蕙博士 /strong /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp 技术应用于实际,万变不离质谱 /strong /span /p p   刘晓蕙博士是一名年轻的80后,但是从事质谱研究却已经有14个年头了。不过期间她所研究的领域还是发生了很大变化。如,2003年博士就读于印第安纳大学,从事基于质谱的蛋白质组学方法开发研究 毕业以后,在布莱根医院/哈佛医学院进行博士后工作,主要从事质谱影像在临床中的应用工作 2013年回到清华大学,任蛋白质研究技术中心代谢组学平台主管,负责代谢组学平台的建立和发展。 /p p   对于三个研究方向的改变原因,刘晓蕙谈到,蛋白质组学、质谱成像、代谢组学学术上的关系是相辅相成的,方向变化是因为个人兴趣点的转移。“当时做了几年蛋白质组学方面的方法研究,觉得这些工作离实际应用较远。而我一直的想法是——希望做一些能真正帮助到别人的工作,同时质谱是不能抛掉的。” /p p   “博士毕业之际,听到布莱根医院/哈佛医学院招聘做‘质谱成像用于临床诊断’的博后,把质谱放在真正的临床当中、放在手术室里。当时冲着这个激动人心的项目就跑过去了。”刘晓蕙回忆到,“因为,大部分手术时用的影像还是术前的影像,在手术之中医生要凭着经验判断肿瘤组织是否切干净了。据统计这样做就算是乳腺癌这种成熟的手术至少有20%手术的肿瘤组织是没有切干净的。而质谱成像技术给出结果是非常快的,完全可以在手术进行时旁边放上一台,随时测试直到切干净为止,这样质谱发挥的作用就大了。” /p p   “后来,我意识到疾病诊断中小分子可能比蛋白质研究更有潜力,有些疾病在小分子上反应的更明显。因为小分子代谢物容易受到调控,而蛋白方面更多受基因影响,这个改变是很缓慢的。疾病状态、免疫系统变化等可能在小分子方面会更容易体现出来,还可以利用到我的质谱背景知识,发挥我的专长,同时还有家庭因素,所以就回到了清华大学。” /p p   谈到这些经历,刘晓蕙认为,“多积累不同背景的知识很有用,多接触不同知识背景的人也可以了解他们思考问题的方式。虽然我的研究方向发生了一定的变化,但不变的是一直在从事质谱方面的研究,也就是说最根本的东西从来没有变过。” /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp span style=" color: rgb(0, 112, 192) " 目标:建立高通量的、结果可靠的代谢组学分析方法 /span /strong /span /p p   2013年刘晓蕙回国进入清华大学负责代谢组学平台的建设和运营,而平台主要做方法开发的工作。鉴于现在代谢组学整体发展程度还不够,平台进行方法开发时遇到了低覆盖率、数据库不完善等问题。为了解决以上问题,刘晓蕙带领团队从硬件、软件方面,在平台仪器配置、方法开发、数据库建设方面开展了一系列工作。 /p p   “工欲善其事必先利其器”,刘晓蕙的代谢组学平台是一个小而精的平台,只有四台仪器四个人。四台仪器都是质谱,包括高分辨的Orbitrap和高灵敏度的三重四极杆质谱。“因为之前做蛋白质组学时体会到了Orbitrap的优势,所以这次自然也选择了Orbitrap。在用Orbitrap采集数据的时候,用FS-ddMS2办法能够同时得到一此和二级信息,而且,Orbitrap只采一级的话也可以正负切换,通量提高了两倍。另外,三重四极杆的特性是灵敏度高,有些代谢产物做筛选的时候色谱条件不合适或者灵敏度达不到,这种情况下会用三重四极杆质谱方法做补充性的工作,结合起来可以达到准确分析的目的。 /p p   “现在代谢组学的方法还不是很成熟、不够完善,所以我们现在想建立的是高通量的、结果可靠的代谢组学分析方法,并且从数据采集到数据分析的整个流程实现自动化。”刘晓蕙说到。“为了实现代谢组学的高通量分析,数据库是非常关键的。目前,代谢组学研究的大部分人使用的还是线上的公共数据库,公共数据库不好的一点是不适合高通量分析。因为公共数据库鉴定100个样品的时候检索速度就会非常慢。所以,高通量分析的话最好使用本地数据库。我们自建的本地数据库即使搜索500个以上数据,使用普通电脑也没有问题。” /p p   另外,鉴于代谢物覆盖率低的问题,目前刘晓蕙的团队正在把不同小分子的检测方法补充进来,通过多种方法结合的方式提高代谢物的检测覆盖率。 /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp span style=" color: rgb(0, 112, 192) " 代谢流、代谢表型研究兴起,代谢组学研究有待突破 /span /strong /span /p p   代谢组学是近些年广受关注的热点,不过,刘晓蕙认为,代谢组学要实现真正的突破还需要时间。目前,无论国内还是国外,其实都没有出现突破性成果。如,很多人想从药物靶点方面着手通过代谢去治疗癌症,但是并没有取得很明确的效果。 /p p   “现在国内欠缺的是代谢流方面的研究。”据刘晓蕙介绍,“代谢流主要是做机理分析,对于机理诠释方面是非常重要的。代谢通路监测方面,单纯监测代谢产物变化有时无法反应整条通路的变化。代谢通路属于网络调控,特异性较小。比如说,一个代谢产物发生变化是一个综合结果,可能有十几条代谢通路产生或消耗。再比如,针对某种病变,我们敲除一个调控蛋白,然后监测到某个代谢产物发生了变化。但是我们不知道它是从哪个通路来的,因为它反映的是重新调控后的稳态。所以,如果要监测它来源于哪条通路就需要做代谢流分析了。代谢流分析对于机理方面的诠释非常明确。” /p p   “质谱不能说是做代谢流分析的唯一的手段,但是却可以肯定的说质谱是代谢流分析的最好手段。现在有人在尝试用NMR去做代谢流分析,但是总体来讲,质谱因为较高的灵敏度或对复杂组分解析程度成为代谢流分析的主要技术。”刘晓蕙说到,“代谢流研究在代谢方面占的比重会越来越大,尤其是在生物学和免疫研究方面,大家会越来越多用代谢流去追踪特定的代谢通路。” /p p   刘晓蕙还指出,除了代谢流之外,代谢组学领域另一个研究热点是代谢表型研究,即通过代谢产物或者轮廓表征疾病的状态。现在很多人在做临床诊断生物标志物方面的工作,通过代谢物检测做一些临床疾病的早期诊断,包括对阿尔兹海默病、心血管疾病的早期诊断等。另外,质谱影像也是通过代谢物去表征疾病的状态,主要是通过组织样本的代谢轮廓去判断这个组织是正常组织还是癌症组织。 /p p style=" text-align: right "   采访编辑:仝令坤 刘丰秋 /p p   strong  后记 /strong /p p   关于质谱技术与代谢组学的关系,刘晓蕙认为不是代谢组学给质谱带来机遇,而是质谱技术的进步带给代谢组学以发展机遇。因为一般情况是技术发展推动学科发展,代谢组学发展很大程度上要依赖质谱等技术的发展。所以,采访中刘晓蕙特别提到,像赛默飞等仪器公司与科研单位以及高校的合作应该长期化、内容不断深入,达到双赢的目的。 /p p    strong 简历 /strong /p p   刘晓蕙,女,博士,清华大学生命科学院助理研究员、清华大学蛋白质研究技术中心代谢组学平台主管。2003年本科毕业于中国科学技术大学,2011年毕业于印第安纳大学并取得博士学位,2011-2013年在哈佛医学院/布莱根医院任博士后。2013年6月起受聘于清华大学生命科学院。研究内容主要应用质谱技术为基础研究脂质组学与代谢组学。 /p p & nbsp /p
  • 走近“中药代谢组学研究平台”
    走近“中药代谢组学研究平台” ——访沃特世用户黑龙江中医药大学王喜军教授   代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统生物学的重要组成部分。研究中药这种成分复杂的混合物,代谢组学是最好的选择。同样,代谢组学也是中药质量控制的主要研究手段,有利于中药的出口和国际化。   根据代谢组学发展的要求,沃特世公司与代谢组学创始人Jeremy Nicholson教授合作,首创全球领先的超高效液相色谱UPLC技术,与高分辨质谱技术和计算技术结合,推出了以超高效液相色谱/高分辨质谱联用仪为代表的中药代谢组学研究平台。   2010年3月24日,仪器信息网受沃特世公司之邀,专访了沃特世中药代谢组学研究平台用户——黑龙江中医药大学王喜军教授,其结合科研实践中的使用感受,详细介绍了沃特世中药代谢组学研究平台具体应用情况。   Instrument:请简要介绍下目前您在中药代谢组学方向的研究课题以及所取得的科研成果。   王喜军教授:首先,我最开始的科研方向是天然产物及复方中药的体内代谢,即 “中药血清药物化学”。“中药血清药物化学”是在九七年提出来的,并于2002年获得了国家科技进步二等奖。在“代谢组学”概念提出后,我就将代谢组学和中药血清药物化学结合起来研究中药方剂的问题,在此基础上进一步提出了新的学科——中医方剂药物代谢组学。同时,我将自己所研究的课题与代谢组学“嫁接”在一起开展了中医症候本质研究。我们承担的国家973项目“基于体内直接作用物质的方剂配伍规律研究”也已经顺利结题。   Instrument:据悉,黑龙江省中药材GAP研究中心作为全国第一家GAP专业研究机构,是由王教授您组织建立的,请您谈谈该中心的成立背景及其主要工作内容。   王喜军教授:该中心是在“九五”末期“中药现代化研究及产业化行动”背景下建立的,这个主题就是要开展中药资源再生,实现可持续化发展。如果要进行中药材大面积有效生产,就要建立药材生产质量管理规范即所谓的GAP。实际上GAP是一个大概念,真正的GAP就是每种药材生产过程中的SOP(标准操作规程)。   该中心主要工作内容就是把黑龙江地道药材按GAP要求进行管理,但这就需要一个专业团队来进行具体研究,以获得相关的实验室试验数据做支撑。黑龙江省中药材GAP研究中心成立后已经先后完成八种黑龙江省的地道药材的GAP研究工作。此外,该中心还解决了中药材大面积生产过程中病害的无公害防治技术,提出了以中药治疗药用植物病害的理念,结束了中药只治疗动物和人类疾病的历史。GAP研究使得中药材生产由农民散在的经验模式种植,进入了科学管理规范状态。   Instrument:请问贵单位在科研工作中主要用到什么分析仪器?其中哪些属于沃特世“中药代谢组学研究平台”的产品?这个平台对您的科研工作起到了怎样的支撑作用?   王喜军教授:中药学是一门综合学科,我主攻体内分析方面的研究,所以分析仪器设备是非常关键的一个环节。目前科研工作中我们主要用到UPLC® 、Q-TOF、SYNAPT™ HDMS 、GC-MS等,另外还包括一些常规分析仪器,比如紫外分光光度计以及PCR等一些分子生物学仪器,其中大部分分析仪器都是沃特世产品。   由于我的专业是生药学,所以科研研究的核心还是药材品种质量。虽然一般分析仪器都能满足日常科研需要,但是不同分析仪器做出来的效果还是有差别的。如果科研需要更高要求的数据,那就对分析仪器质量性能提出了挑战。根据多年来使用感受,我认为沃特世公司的仪器在检测分辨率以及后期数据处理的工作站等方面都是不错的。   中药学无论是质量、活性成分研究以及效应评价,都不能以一种先入为主的态度去研究,而是需要先更多地去认识中药,然后才能更好地解析中药。如果一种仪器设备或手段能够提供更多的信息来让我了解中药,这个仪器可能就是比较好的。只有深入认识中药之后,才可能产生新的思路去研究它。而UPLC就提供了这样一个平台,可以让研究人员在短期内了解被分析样品大量的信息,提供良好数据支持新的思维。沃特世最早推出UPLC/ Q-TOF,它在使分离时间缩短的同时检测分辨率也相应提高,能够更快更好地检测出更多的被测成分。九十年代初,能够鉴定血清中三、五个成分就已经很不错了,而现在已经可以鉴定出四、五十个成分 当时需要用两小时进行分析检测,而现在可能只需要十分钟,这就是UPLC/Q-TOF的优势所在。   Instrument:据了解,王教授您最早购买了一台Q-TOF Micro质谱仪之后又购进一台SYNAPT HDMS质谱仪,请问是因为您所做的研究必须同时购置这两种仪器吗?这两种仪器对您的研究都有哪些帮助?   王喜军教授:因为我个人比较关注新技术、新产品,所以沃特世推出新品之后,我就希望了解新品的优势能具体解决科研中什么问题。比如SYNAPT™ HDMS质谱仪采用四极杆-离子淌度-飞行时间串联之后,与单纯Q-TOF相比,除了具有常规质谱仪按质量/电荷比分离的功能外,还能按照被检测物离子尺寸和形状来分离化合物。对于中药复杂成分来讲,有可能分开传统质谱不能分开的同分异构体分子,这无疑使得检测范围扩大,灵敏度提升。我在科研工作中使用SYNAPT HDMS,就是期望有可能开辟一个新的科研方向。   在已有仪器设备所限定的思维模式下,需要换一种新方法、新手段从而产生新的突破。人的思维与其知识积累、掌握的材料有关,一种新仪器提供的数据很有可能改变既有思维模式。例如我们目前所做的刺五加不同花丝长度的分析就采用这台质谱仪,它解决了科研过程中一些检测上的问题,包括后期多级分析。   Instrument:作为沃特世“中药代谢组学研究平台”的用户,您能否评价一下沃特世公司产品的性能以及该公司的售后服务?   王喜军教授:我在日本读博的时候就开始使用沃特世仪器,当时我们实验室里很多液相色谱仪都是Waters 990,所以对沃特世产品印象很深。我回国后留校从事科研教学工作,学校非常支持我的科研工作。根据我在日本留学时候的体会,建议学校购进了两台Waters 2996。随着沃特世仪器的不断升级以及研究领域的开拓整合,包括后期推出的中药代谢组学平台,逐渐引起我极大的兴趣,所以我在深入了解沃特世产品之后,决定将UPLC以及SYNAPT HDMS 和代谢组学软件MarkerLynx™ 引进来,用于我所从事的中药研究,以期待解决很多分析检测方面的问题。关于这部分,还需要提及了软件处理方面的重要性,一个应用平台要成功除了系统的硬件组成部分要过硬之外,很大程度上还取决于其软件支持方面 ,沃特世公司除了在硬件的稳定性、灵敏度方面不遗余力之外,还开发了配套的软件程序以帮助用户从复杂的质谱图中快速智能地查找出具有生物意义的标记物。例如,目前我们进行的疾病模型、方剂的配伍规律以及中药材基源物质的遗传多样性表型分析等方面研究都在使用这个中药代谢组学平台。   我经常给学生讲,无所谓什么好的手段或好的仪器,能解决问题的就是最好的。我需要质谱与前端分析仪器有效的整合成一种平台,在短时间内使得相似有效成分分离然后才能去检测。我之所以选择沃特世产品,就是因为其产品整合的比较好。其实从目前来讲,各种品牌的质谱仪之间的差别已经不是很大了,而如何将前端的分析仪器和后端的检测仪器有效地整合起来,使得从分析检测数据的采集到后期工作站数据的处理有效连贯起来,这就对不同品牌的仪器提出了较高的要求。不同研究课题之间的联系、通用、互用、整合,就要求检测仪器以及研究方法的一致性,检测手段连贯性、统一性、承接性。而沃特世产品很好的做到了这一点,所以我一直很信赖他们的产品。   我非常关注仪器的维修及时性问题。因为仪器使用过程中不可能预测何时会出现故障,何时需要维修,一旦出现故障,就需要维修或者及时更换零配件,否则仪器“停”了,整个研究工作也就停滞了。再加上我们所做的大部分都是生物样品,即使有低温冰箱也不行,很多成分还是在变化,这对科研项目来讲是非常致命的。不过通过与沃特世长期合作以及与其高层的沟通之后,这些问题目前解决的还是不错的,令人满意。
  • 沃特斯(Waters)创新的代谢组学研究分析平台即将亮相
    2006年8月上海-讯:作为全球领先的液相色谱、质谱、化学品及实验室信息管理系统专业生产厂家, 沃特斯(Waters)将于今秋9月19日至21日参加在上海新国际博览中心举办的慕尼黑上海分析生化展, 重点推介其创新的代谢组学研究解决方案--超高效液相色谱(Waters® ACQUITY UPLC™ )与高分辨率TOF质谱联用的分析平台。 超高效液相色谱(Waters® ACQUITY UPLC™ )是液相色谱系统的领先者。这一创新技术使得液相色谱技术在分离度,灵敏度和速度的综合性能得到全面提升。超高效液相色谱(Waters® ACQUITY UPLC™ )系统利用在填料化学性能、仪器系统优化、检测器设计和数据处理及控制方面的优势,对分离科学进行了重新定义。 超高效液相色谱(Waters® ACQUITY UPLC™ )与高分辨率TOF质谱联用为代谢组学研究提供了功能强大的分析技术平台,可用于鉴定未知化合物、量化已知物质并解释分子的结构和化学特性,这意味即使在复杂的化学混合物样品中,浓度很低的化合物也可以被鉴定。它的重要功能包括代谢鉴定,生物标记物发现以及毒性研究等。 同期,沃特斯(Waters)还将于展会首日9月19日下午14:00至14:30在W2展馆M2会议室举办“沃特斯(Waters)代谢组学研究分析平台”专题论坛,与业内专家共同探讨这一创新的解决方案。 关于沃特斯公司(Waters Corporation) 沃特斯公司(Waters Corporation)在三大分析技术领域:液相色谱技术、质谱技术和热分析技术方面占据世界领先地位。在整个200至250亿美元分析仪器市场份额中约占50亿美元。 媒体查询,请联络: 沃特世科技(上海)有限公司 谢迎锋 小姐 电话:+86 21 54263597 传真:+86 21 64951999 Email:xie_ying_feng@waters.com 网址: www.waters.com www.waterschina.com
  • 上海交通大学与美国Waters公司共创国际一流代谢组学技术平台
    2006年2月上海-讯:作为全球领先的液相色谱、质谱、化学品及实验室信息管理系统专业生产厂家,美国Waters公司与上海系统生物医学研究中心就成立国际一流的代谢组学联合实验室于6月23日在上海交通大学举行了正式的签约仪式。 随着“人类基因组计划”等重大科学项目的实施,人类研究复杂生物系统的能力取得了突破性的发展,人类医学研究进入了系统生物学的时代。代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统生物学的重要组成部分。它是关于生物体系内源代谢物质种类、数量及其变化规律的科学,研究生物整体、系统或器官的内源性代谢物质及其所受内在或外在因素的影响。 代谢组学利用高通量、高灵敏度与高精确度的现代分析技术,对细胞、有机体分泌出来的体液中的代谢物的整体组成进行动态跟踪分析,借助多变量统计分析方法,来辩识和解析被研究对象的生理、病理状态及其与环境因子、基因组成等的关系。“代谢组学”是一种整体性的研究策略,其研究策略有点类似于通过分析发动机的尾气成分,来研究发动机的运行规律和故障诊断等的“反向工程学”的技术思路。由于代谢组学着眼于把研究对象作为一个整体来观察和分析,也被称为“整体的系统生物学”。 通过现代超高效液相色谱/高分辨质谱联用仪等技术分析体液中的代谢物组成谱,并利用多变量统计分析技术,把所有代谢物的组成信息都整合到一起,为在系统和整体的层面上比较和分析生物的代谢特性开辟了新的技术路线,具有广阔的发展前景。近几年来,已经有越来越多的学者将现代代谢组学技术运用到人体和动物的整体代谢与功能性研究中。 代谢组学创始人、英国帝国理工大学Jeremy Nicholson教授认为人体应该作为一个完整的系统来研究,应用代谢组学来理解疾病过程,与中医的整体观和辨“证”论治思维方式不谋而合。代谢组学和中医中药的哲学观相吻合,代谢组学是研究中药最好的选择。研究中药这种复杂混合物的毒性,代谢组学是最好的方法,选择不同产地、不同数量、不同组分的中药,做出代谢组图,根据组成变化与毒性、药效相对应,就可把有效的成分最大化,把有毒的东西剔除。同样,代谢组学也是中药质量控制的主要研究手段,有利于中药的出口和国际化。 代谢组学与有着几千年历史的中医学在许多方面有相近的属性,它们的有机结合将可能有力地推动中医药理论的现代化进程。代谢组学”可能成为我国传统医学走向国际化的通用语言。上海系统生物医学研究中心与上海中医药大学合作,在用代谢组学研究中医肾阳虚证的分子机理、中药肾毒性的预测以及支持中药在国际市场的登记注册等方面已经取得很好成效,显示了代谢组学与中国传统中医药结合的强大生命力。 代谢组学是从整体上研究复杂生命现象的新兴学科。研究代谢组学的关键是要发展大规模、并行化测定复杂混合体系中代谢物组成信息和对大量数据进行分析和建模的能力。技术手段的发展是代谢组学发展的关键因素。上海系统生物医学研究中心依托上海交通大学强大的工程学和理学研究力量,结合深厚丰富的临床和基础医学研究经验,致力于代谢组学研究具有相当的优势。 美国Waters公司是全球分析仪器领域的先导者,在复杂体系分析领域独树一帜,具有领先的分析平台, 配套的计算软件和雄厚的技术储备。学科的发展催生学科研究工具的产生,近年来,他们根据代谢组学发展的要求,与代谢组学创始人Jeremy Nicholson教授合作,首创全球领先的超高效液相色谱UPLC技术,与高分辨质谱技术和计算技术结合,推出了以超高效液相色谱/高分辨质谱联用仪UPLC-QTOF为代表的代谢组学分析系统,一次可以从尿液样品中快速获取2万多个数据点,为从整体上深入把握人体的生理代谢状况,细致入微地刻画和反映人体的疾病过程,提供了先进可行的工具。 为了加快代谢组学的发展,特别是推动我国传统医药国际化的进程,上海系统生物医学研究中心和美国Waters公司决定成立国际一流的代谢组学联合实验室,并于2006年6月23日在上海交通大学举行了正式的签约仪式,双方承诺共同努力将此实验室建设成为我国发展代谢组学的研究基地,人员培训基地和生物医药新用途开发基地。联合实验室将邀请代谢组学创始人、英国帝国理工大学Jeremy Nicholson教授担任顾问,计划每年定期在上海举行代谢组学高级研修班,这将极大的促进我国代谢组学的研究进展和增强及时跟踪国际前沿研究动向的能力,对于推动我国生物医药事业的发展具有十分重要的意义。
  • ACD/Labs在ASMS 2016 发布LC/MS代谢组学软件平台
    p   2016年6月6日,信息软件公司ACD/Labs在美国圣安东尼奥举行的美国质谱年会(ASMS 2016)发布了一款全自动代谢物鉴定软件平台MetaSense。新产品将行业中最广泛的代谢物转化可能性与高效的LC/MS分析相结合,从而更好的进行鉴定、可视化和化学生物转换过程分析。ACD/Labs的解决方案能够更快、更简单而又更精确的检测和鉴别可预知和不可预知的代谢物分子。对于分析科学家来说,这套平台比已有方法具有明显的创新意义。 /p p   MetaSense建立在ACD/Spectrus平台之上,还具有独特的信息管理功能,这使得在代谢组学研究中获得的信息能够运用到其它的研究领域中去。实时数据环境和新型网络可视模块能够使操作者更快更好的做出判断,也有利于团队成员间的信息共享。分析化学家更容易的判断综合的方向,例如帮助科学家研究母体化合物的潜在毒性。 /p p   “无法相信,在处理大量药代动力学问题时科学家们并无有效的处理组学信息数据的工具,他们在人工数据处理与分析的负担越来越重。科学家们面临要在更少的时间内做更多的工作的压力。在这种情况下,如果要更准确更快速的鉴定代谢物和判断最有效的候选药物,很可能要用减少分析的代谢物范围和忽视专业意见来平衡。” ACD/Labs解决方案经理Richard Lee说。“MetaSense 从实质上改善了数据分析的效率,提供行业内最全面的组成分析及化学数据知识,能够帮助科学家更快的做出准确判断。” /p p   MetaSense为分析科学家提供一系列用于深入组学研究的功能: /p p  & nbsp & nbsp   & nbsp 支持LC/MS供应商软件格式 /p p  & nbsp & nbsp   & nbsp 无意义代谢分子质量过滤功能 /p p  & nbsp & nbsp   & nbsp 代谢物预报引擎 /p p  & nbsp & nbsp   & nbsp 兼容人工数据处理 /p p  & nbsp & nbsp   & nbsp 有可选配数据特征集提供LC/MS数据自动处理和分析 /p p  & nbsp & nbsp   & nbsp 自动跟踪母体和代谢物提供稳定性研究数据 /p p  & nbsp & nbsp   & nbsp 自动解读化学环境数据,绘制生物转化路径图 自动建立可查询数据库。 /p p style=" text-align: right " 编译:郭浩楠 /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/zt/asms2016" target=" _self" img title=" 336_168_160606.gif" src=" http://img1.17img.cn/17img/images/201606/insimg/f0e7db27-d942-4bb0-addd-723db5777ccf.jpg" / /a /p ul class=" custom_dot list-paddingleft-1" /ul
  • 赛默飞发布iOmics Cloud多组学云,打造一站式蛋白质组与代谢组生物信息分析平台
    2017年9月22日,在上海代谢组学前沿技术交流会上,赛默飞重磅发布iOmics Cloud多组学云,打造一站式蛋白质组、代谢组生物信息分析平台,致力于将繁琐的生物功能分析、统计分析、可视化图表制作变得简单、快速、可靠,弥补组学分析“最后一公里”的短板,帮助科学家加速组学研究进程,造福科学研究。iOmics Cloud多组学生物信息分析云平台首次发布的iOmics Cloud多组学云包含近20种生物信息学常用工具,帮助客户实现一站式分析。样本 – 数据 – 结果 – 知识是组学分析的“信息流”,在样本处理、数据产出、数据分析已日趋成熟的情况下,“结果 – 知识”的转化成为制约组学分析的最后一环。iOmics Cloud的发布,将有效弥补这一制约环节,让繁琐的生物功能分析、统计分析、图表制作变得简单易懂、快速可靠,即便没有专业背景,也可以一键完成过去大咖才能玩得转的复杂统计和功能分析。iOmics Cloud包含常见的统计分析、生物功能分析、可视化图表制作赛默飞中国区色谱质谱高级商务运营总监李剑峰先生在iOmics Cloud发布时表示“赛默飞质谱已经走过50年,在过去的50年以及未来更长时间我们专注的不仅仅是产品创新,客户体验与应用更是我们关注的焦点。 今天发布的iOmics Cloud多组学云平台解决了样品处理分析的“最后一公里”。质谱分析的趋势就是更易用,更好用,成为医护工作人员都能用的好质谱。我们希望通过领先的云平台解决方案进一步携手广大科学家,医护工作人员推动组学研究,加速科学研究,推动中国的大健康事业;使世界更健康、更清洁、更安全。”赛默飞中国区色谱质谱高级商务运营总监李剑峰先生正式发布iOmics Cloud赛默飞中国区色谱质谱组学业务发展经理吴泽明博士为大家详细讲解了iOmics Cloud的功能,他表示“iOmics云平台的搭建使得赛默飞的蛋白质组学与代谢组学系统解决方案更具领先性与体系完整性,这些创新将加速客户的研究进程,迸发出更大的数据计算价值。” 同时,赛默飞中国研发中心云团队架构师毛智东博士为大家现场演示了iOmics Cloud的注册、登陆和使用方法,让每一位参会人员现场感受iOmics Cloud的功能强大和触手可及。赛默飞色谱质谱组学业务发展经理吴泽明博士和研发中心云团队架构师毛智东博士为大家现场讲解和演示iOmics Cloud由赛默飞与合作伙伴易算生物、悟空平台共同打造和维护,专注于蛋白质组、代谢组的一站式生物信息分析,与另一重要平台Thermo Fisher Cloud形成优势互补,帮助客户让多组学分析变得更简单、更全面、更快捷。iOmics Cloud合作伙伴iOmics Cloud将在10月10日 – 13日举办的北京分析测试学术报告会暨展览会(BCIEA)期间提供现场演示和操作体验,欢迎广大有志之士到赛默飞展位抢先体验。赛默飞iOmics Cloud多组学云平台将在BCEIA后正式上线,敬请期待。
  • 助力新药研究开发与药学科研成果转化---访清华大学药学技术中心PKPD平台主管丁怡
    p span style=" font-family: 微软雅黑 "   i span style=" font-family: 楷体, 楷体_GB2312, SimKai "   /span /i span style=" font-family: 楷体, 楷体_GB2312, SimKai " 清华大学药学技术中心(以下简称“药学中心”)是面向全校的一个从药物发现、药物筛选到药物评价的公共服务平台,可为生命科学与医药学相关研究及相关重大课题的申报与实施提供帮助与支持。早在2010年,清华大学生命科学学院院长施一公教授就提出要建设药物平台,促进清华大学药学及相关学科的发展,提高整体药学研究水平,为清华大学的新药研究与开发提供科研服务。在985专项基金的资助下,2010年8月清华大学启动药物平台建设,购置了一批用于药学及相关学科研究的大型仪器设备 2011年7月第一批仪器安装使用 2015年药学院成立之后,又增加了一些大型仪器设备 迄今为止,药物平台已对全校师生开放服务了超过7年,从最初的“药物发现平台”发展成为如今的“药学技术中心”,在科研支撑和测试服务方面受到校内外广大用户的好评。 /span /span /p p span style=" font-family: 微软雅黑 "   近日,仪器信息网专访了清华大学药学中心PKPD平台主管丁怡教授,就该中心的科研职能、仪器配置、运行机制、管理模式及未来发展等内容作了深度交流。共同接受采访的还有清华大学药学中心筛选平台应用工程师王婷、清华大学医学院生物医学工程系博士研究生鄢晓君。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f48e3352-a694-46f4-8fbe-f30527bffd82.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" font-family: 微软雅黑 font-size: 14px color: rgb(127, 127, 127) " 清华大学药学中心PKPD平台主管丁怡教授(中)、清华大学药学中心筛选平台应用工程师王婷(右)和清华大学医学院生物医学工程系博士研究生嫣晓君(左) /span /p p span style=" font-family: 微软雅黑 "    span style=" font-family: 微软雅黑 color: rgb(79, 129, 189) " strong 为药学学科发展和科研提供技术服务 /strong /span /span /p p style=" text-indent: 2em " span style=" font-family: 微软雅黑 " “我们这个中心建设初期叫药物发现平台,最近申请到学校的校级平台,更名为药学技术中心。” 据丁怡教授介绍,目前清华大学的校级平台已有10个,其中与生命科学相关的有3个:生物医学测试中心、蛋白质研究技术中心和实验动物中心,主要的服务对象是校内外与医学和生命科学相关专业的师生。而药学技术中心的建立则是为满足药学学科发展和科研需求,其目标是采用新型运行机制和管理模式,建立现代化的新药研究与开发体系,以促进清华大学新药研究和成果转化工作的顺利开展,并加速我国创新药物的研发进程。 /span /p p span style=" font-family: 微软雅黑 "   药学中心不仅是从基础研究到科研成果转化的桥梁,同时也是我校对外合作与交流的平台。中心将借鉴世界一流医学转化中心的成功经验,本着“创新、教育、转化”三位一体的思路,努力发展成为国内外知名的药学科研条件平台,并打破医药研发技术壁垒,培养引领医药研发的高端技术人才。 /span /p p span style=" font-family: 微软雅黑 "   药学中心将涵盖分子生物学、分子药理学、细胞生物学、生物信息学、药物化学、分析化学等多种学科 (但所用的仪器设备和现有的几个校级平台是不一样的,侧重在小分子药物的研究与开发),包括药物发现、药物发展、药物评价三个新药研发重要环节的核心技术。 /span /p p span style=" font-family: 微软雅黑 "   为提高仪器设备的有效使用率,药学中心各平台实行设备测试服务及技术服务两种模式。测试服务费依据用户所使用设备的使用时间或样品数进行收费。技术服务依据所提供服务,根据配备技术人员人数及技术难度计算成本收费,同时还可采取课题合作的方式,利用平台仪器设备与课题组开展合作研究。 /span /p p span style=" font-family: 微软雅黑 "   各平台设备主要面向清华大学生命学院、医学院、药学院及其它院系师生开放,并在保证做好校内服务的基础上,向校外高校及研究所提供测试服务。通过建立网上预约使用、仪器设备专人使用和管理、对学生提供培训等,提高大型仪器共享效益和使用效率。 /span /p p span style=" font-family: 微软雅黑 "    span style=" font-family: 微软雅黑 color: rgb(79, 129, 189) " strong 活性筛选和PKPD平台 /strong /span /span /p p span style=" font-family: 微软雅黑 "   目前药学中心已初步建成的平台包括活性筛选平台和PKPD平台,主要工作内容是化合物库的建立、基于靶点的高通量筛选和基于细胞的高内涵筛选、药物血浆药代动力学和药物代谢产物鉴定及药物中杂质筛查等。 /span /p p span style=" font-family: 微软雅黑 "   PKPD平台已配置了多种色谱质谱联用仪,包括低分辨、高分辨液相色谱质谱联用以及气相色谱质谱联用,可做天然药物、合成药物、中药及生物小分子的定性及定量分析,例如药物有效成分分析、杂质成分鉴定、药物代谢产物鉴定、体内药物代谢动力学、脂质组学及代谢组学等。 /span /p p span style=" font-family: 微软雅黑 "   活性筛选平台目前拥有近18万的化合物库储备、配置了标准化实验室、细胞培养洁净间、动物实验操作间及诸多以微量、快速、灵敏和大规模化为特点的高端科研设备和常用配套设备,可为用户高效率地进行生物活性筛选提供技术平台和技术条件。“活性筛选平台的主要工作是做先导化合物筛选、初步生物活性检测及优化,从分子水平、细胞水平到动物水平,我们现有仪器都能做到。”丁怡教授说。 /span /p p span style=" font-family: 微软雅黑 "   活性筛选平台现有的设备包括:双转盘激光共聚焦高内涵成像显微镜(Opera Phenix)、纳升级声波移液系统(Echo550)、多功能酶标仪(EnVision & amp Enspire)、高通量实时荧光检测分析系统(FLIPR Tetra)、全自动移液工作站(Tecan EVO200)、长时间动态细胞成像及功能分析系统(Incucyte Zoom)、全自动细胞计数及活力分析系统(Vi-CELL XR)、洗板分液系统(BioTek EL406 & amp MultiFlo)、全自动生化分析仪、全自动多关节微孔板处理系统等。“所以从整个药物筛选的流程来讲,我们平台已涵盖了药物筛选的各个方面,无论是单个环节还是整体实验流程,我们平台都能给到相应的技术支持。” 活性筛选平台应用工程师王婷介绍说。 /span /p p style=" text-align: center" span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 " 药物筛选主力终端Opera Phenix 高内涵筛选系统 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9fd37265-7cb1-416c-a357-16b610e07f29.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   span style=" color: rgb(155, 187, 89) font-family: 楷体, 楷体_GB2312, SimKai "   span style=" color: rgb(155, 187, 89) font-family: arial, helvetica, sans-serif " 活性筛选平台拥有新一代双转盘扫描型激光共聚焦的成像系统---Opera Phenix 高内涵筛选系统,是平台最高端的药物筛选终端仪器。“这台仪器现在使用比较多,功能齐全,可以做各种关于毒性、细胞生长周期、模式动物的分析,应用比较广泛。”丁怡教授介绍说。 /span /span /span /p p img src=" https://img1.17img.cn/17img/images/201810/uepic/1271fe5c-8194-4cab-a2ab-48b979a2bf01.jpg" style=" float: right width: 300px height: 298px " title=" 3.png" alt=" 3.png" width=" 300" height=" 298" border=" 0" vspace=" 0" / /p p span style=" font-family: 微软雅黑 "   span style=" font-family: 微软雅黑 color: rgb(155, 187, 89) "   span style=" font-family: 微软雅黑 color: rgb(127, 127, 127) " strong span style=" font-family: 微软雅黑 " Opera Phenix高内涵筛选系统具有以下特点: /span /strong /span /span /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   配置1-4个高灵敏度16bit sCMOS 数码相机,可同时获取不同波长的荧光与明场图像,每日最大成像通量不低于10万张,杜绝串扰 /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   配置微透镜双转盘共聚焦成像系统,同时具备宽场荧光、共聚焦荧光、明场,label free数字荧光(DPC)等成像模式 /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   高清晰水浸物镜大幅提高了分辨率、灵敏度与成像深度,即使微组织样品深层也能获得很好的成像效果 /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   荧光激发光采用4色固态激光器,波长分别为:405nm,488nm,561nm,640nm,另外配置专业活细胞观察近红外LED照明为明场光源 /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   Harmony成像分析软件可提供大量预制的实验分析应用方法,同时具备2D及3D的图像可视化及细胞纹理及机器自学习功能,可深度解析不同处理细胞表型差别。 /span /p p span style=" color: rgb(155, 187, 89) font-family: 微软雅黑 "   可与第三方自动化系统整合。 /span /p p span style=" font-family: 微软雅黑 "   清华大学医学院生物医学工程系博士研究生嫣晓君是药物筛选平台的校内用户,她们课题组开发了一种高通量的三维细胞培养孔板,可以为细胞提供三维立体的、更接近体内的生长环境。“我们将二维和三维孔板的抗菌类药板的抗癌类药物的筛选结果与动物模型结果对比,发现三维比二维筛选的误筛率低,可有效减少假阳性结果,准确性更高。”据嫣晓君介绍,三维细胞筛选与二维细胞筛选在仪器操作和使用方面完全相同,但是成像结果有非常大的区别。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d1edc715-2c87-449f-b60c-ff3405b3b5b3.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: left " img src=" https://img1.17img.cn/17img/images/201810/uepic/6048d910-4f94-4874-bfd7-66986cf66cb8.jpg" title=" 6.png" alt=" 6.png" / br/ /p p style=" text-align:center" br/ /p p style=" text-align: left text-indent: 0em " span style=" font-family: 微软雅黑 "   相比于二维的单层细胞,三维培养的细胞形成立体微组织,有厚度信息,会更厚,因此使用普通的显微镜或荧光显微镜只能看到大概的信息。“细胞三维成像对仪器性能的要求更高,确实是需要匹配更高的仪器。比如想要看肿瘤微环境,细胞与细胞之间相互作用以及细微差别,那么你用普通的显微镜相对就比较模糊,看不清细胞间距离的细微信息。但是如果用PerkinElmer的高内涵筛选系统,就能比较清晰地观察到细胞,比如检测核与核之间的间距,有多少细胞聚集在一起,或者细胞聚集的具体位置。而且高内涵的好处是可以高通量、批量地获取并分析数据,非常适合我们这样的高通量三维细胞培养系统。” br/ /span /p p style=" text-align:center" img src=" https://img1.17img.cn/ui/bimg/SH100000/natsuki/5%203DMovie%20(1).gif" style=" text-align: center white-space: normal " / /p p style=" text-align:center" img src=" https://img1.17img.cn/ui/bimg/SH100000/natsuki/5%203DMovie3%20(1).gif" style=" text-align: center white-space: normal " / /p p style=" text-align: left text-indent: 2em " span style=" font-family: 微软雅黑 color: rgb(79, 129, 189) " strong 搭建从先导化合物发现、优化到临床前研究的技术支持平台 /strong br/ /span /p p span style=" font-family: 微软雅黑 "   “从药物发现、药物发展到药物评价是一个系统的工程。我们药学院2016年12月才成立,目前学院大部分老师更多的还是从事基础性的研究,侧重前期药物发现,真正做到后期的还比较少。但既然是药学院,未来一定会做新药,将科研成果进行产业化,这是我们未来的发展方向。”谈及平台未来发展,丁怡教授如是说。 /span /p p span style=" font-family: 微软雅黑 "   清华大学药学中心未来将建设8个子平台: /span /p p span style=" font-family: 微软雅黑 "    span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai " 1) 靶点发现平台:药物新靶点的发现和验证 /span /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   2) 药物化学与合成技术平台:先导化合物的制备和鉴定 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   3) 生物活性筛选技术平台:体内外活性筛选 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   4) 计算机辅助药物设计平台:根据靶点的结构、设计可与之发生作用的小分子,进而进行合成 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   5) 药效/毒性研究技术平台:先导化合物的药效和毒性测试 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   6) 药物制剂与药物递送技术平台:药物转运系统与新剂型研制 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   7) PKPD技术平台:临床前药效和药代动力学研究 /span /p p span style=" color: rgb(79, 129, 189) font-family: 楷体, 楷体_GB2312, SimKai "   8) GMP细胞制备技术平台:建立规范化的符合GMP认证的实验室 /span /p p span style=" font-family: 微软雅黑 "   其中,生物活性筛选平台和PKPD平台以及药物制剂与药物递送平台已初步搭建,并已部分对外开放,待补充完善所需设备后将全面开展相关工作。 /span /p p span style=" font-family: 微软雅黑 "   “单说先进程度,现在很多高校、科研院所都有同样高精尖的仪器设备,所以未来我们要重点提高技术人员的专业能力和服务水平,在同行业内要能做比别人好或者别人做不到的事情。”丁怡教授说。 br/ /span /p p span style=" font-family: 微软雅黑 "   附: strong 丁怡简历 /strong /span /p p span style=" font-family: 微软雅黑 "    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(127, 127, 127) " 教授,现任清华大学药学技术中心PK/PD平台主管。1982年毕业于北京中医药大学获学士 1987年在中国医学科学院中国协和医科大学获硕士 1992年于日本熊本大学药学部获博士 1987年至2002年期间先后在中国医学科学院/中国协和医科大学药物研究所任助理研究员,副研究员和研究员 2000年至2001年在美国北卡州立大学化学系做访问学者 2002年至2016年在清华大学生命科学学院任教授,2016年1月调入清华大学药学院。 /span /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(127, 127, 127) "   从事中药及天然药物的化学成分研究和新药开发。包括从天然产物及常用中药中提取分离各种化学成分,通过结构修饰和结构改造,寻找高效低毒的先导化合物。在确定中药或天然药化学成分及药理活性的基础上,建立有效部位或有效成分的提取工艺。通过化学及药理活性研究,阐明中药作用的物质基础,并建立药材的合理质量控制方法,为新药的研究和开发奠定基础。在明确有效成分或有效部位的前提下,进行新药制备工艺的研究,并建立原料药及制剂的质量控制方法,开发高效、低毒、质量可控的中药或天然药物新药。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(127, 127, 127) "   论文“甾体及三萜皂甙的化学研究”曾获中国医学科学院中国协和医科大学第四届医药卫生青年科技论坛优秀论文三等奖 “抗肿瘤新药紫杉醇及其注射液的研究和开发”获卫生部科技进步一等奖和国家科技进步奖三等奖。在Chem.Pharm.Bull., Phytochemmistry,Biochemical and Biophysical Research Communications 等SCI杂志及国内核心期刊上发表论文100多篇,结合中药新药的临床前研究,申请发明专利5项。 /span /p
  • 978万!中国农科院生物所农业生物代谢组学平台能力提升仪器设备采购项目
    一、项目基本情况项目编号:ZGGJ-BJ21-24031115项目名称:中国农科院生物所农业生物代谢组学平台能力提升仪器设备购置项目预算金额:978.000000 万元(人民币)采购需求:序号标的名称数量(台/套)单项设备最高限价(万元)本项目最高限价(万元)是否允许采购进口产品简要技术需求或服务要求备注1全二维液相色谱-三重四极杆质谱联用仪1253978是详见招标文件第五章采购需求投标人需注意,本项目报价时,货物单项报价不允许超过给出的单项设备最高限价,否则按无效投标处理2超高效液相色谱-四极杆静电场超高分辨液质联用仪1576是3气相色谱-离子迁移谱1149是 合同履行期限:交货日期:采购人指定时间,详见招标文件第五章采购需求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月27日 至 2024年05月31日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:北京市朝阳区慧忠路5号远大中心C座2层203方式:北京市朝阳区慧忠路5号远大中心C座2层203,本招标文件每套(每包)售价为500元人民币,售后不退。购买招标文件需报名供应商首先在中工国际招标有限公司网站上进行信息填报,填报链接:http://101.200.176.189/qpoaweb/prg/gys/baoming.aspx?id=7225md58填报并将公司信息提交成功后对公转账或现场付款,本项目接受线上获取招标文件,详见特别告知。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业科学院生物技术研究所     地址:北京市海淀区中关村南大街12号        联系方式:82106142      2.采购代理机构信息名 称:中工国际招标有限公司            地 址:北京市朝阳区慧忠路5号远大中心C座2层203            联系方式:15600611080            3.项目联系方式项目联系人:张跃电 话:  15600611080
  • 百趣生物完成近亿元A轮融资 用于代谢组学科研服务仪器平台扩建
    7月15日,上海百趣生物医学科技有限公司(下称“百趣生物”)宣布完成近亿元A轮融资,本轮融资由启明创投独家领投。据了解,本次融资资金将主要用于百趣生物代谢组学科研服务仪器平台的扩建、检测试剂的研发及生产,在继续扩大百趣生物在代谢组学市场技术优势的前提下,促进代谢组学与蛋白质组学等多组学的技术融合,加快代谢组学产品的临床转化进程,推进质谱在生命科学领域的快速发展。  百趣生物(前身为“阿趣生物”)于2012年在上海复旦科技创业示范园成立,旨在对人体、动物、植物、微生物等生物样本进行代谢组学和蛋白质组学等多组学研究,并将研究成果通过核心技术转化成可应用于临床和大健康的早筛或诊断的创新产品,从而提升生命的质量。百趣生物专注于创新质谱技术在生命科学与医学健康领域的应用,致力于成为大生命科学领域权威的检测分析机构。经过10年的发展,百趣生物目前已建立了完善的科研服务、药企服务、临床质谱服务和大数据信息化服务平台。  百趣生物的创始团队来自于复旦大学、中国科学院等知名高校,深耕代谢组学技术十多年,立足上海,放眼全球,依托数千平方米的研发、生产、服务基地,建立了完善的非靶标代谢组学、高通量靶标代谢组学、脂质组学、代谢流、蛋白质组学、抗体测序等检测分析平台,在国内代谢组学科研服务市场具有领先性。百趣生物的业务、服务已遍及全国各省市,港澳台和海外地区,与超过1500家高校、研究所、医院、制药企业、食品企业建立了长期稳定的合作关系,年复合增速达到70%。
  • 安捷伦发布Agilent Bravo 代谢组学样品前处理平台新品
    Bravo 代谢组学样品前处理平台配备有专为自动化样品前处理流程而设计的台板附件和软件,是最先进的液体处理平台。手动进行代谢组学研究的样品前处理会引发很多变量。实现前处理过程的自动化有助于提高样品通量、一致性和重现性。通过简单、可靠、标准化和自动化的血浆样品前处理流程开启您的代谢组学研究。特性专为血浆代谢组学设计 — 所有硬件、附件和软件专为血浆代谢组学样品前处理而设计,整个平台体积小巧、紧凑结果可靠 — 通过标准化和可重现的流程,实现实验间和用户间的数据一致性和更低的 CV 值可扩展性 — 提高通量且不影响结果质量直观的软件 — 简单的用户界面帮助不同技术水平的用户快速启动和运行流程适用性强 — 可与支持孔板形式的任意 LC/MS 系统兼容创新点:提供代谢物提取的成套解决方案,通过提高一致性、可靠性、效率和无人值守时间,可帮助您更快地获得可靠结果,发现有意义的生物标记物。 创新的 Captiva EMR-Lipid 技术基于体积排阻和疏水相互作用的结合来去除脂质。高效的脂质去除过程确保最大程度地减少离子抑制对目标分析物的影响,从而显著改善方法可靠性和稳定性。Captiva 除脂和样品净化可增强代谢物信号强度。 自动化的样品前处理可确保样品和样品间、不同批次间以及不同实验者之间的实验流程的高一致性。这意味着更低的 CV、更小的差异、更少的重复测定以及更可靠的结果。 Agilent Bravo 代谢组学样品前处理平台
  • 代谢组学,妙手何来?|迈理奥,开拓代谢组学新科技的先锋
    今天要讲到的代谢组学妙手来自何方? 来自我们优秀的用户——迈理奥(Meliomics)。迈理奥的快速崛起,源自于他们对代谢组学领域的深刻理解和持续创新,而安捷伦出色的仪器和解决方案也为其提供了重要支持。日前,我们有幸采访到了迈理奥首席科学家厉良教授(加拿大皇家科学院院士)和学术总监李佳博士,深入了解了代谢组学领域及其检测环节所面临的挑战与机遇。厉良教授是享誉国际的质谱和代谢组学专家,加拿大皇家科学院院士、加拿大国家代谢组学研究创新中心联合主任、加拿大阿尔伯塔大学终身教授、人类代谢组计划联合发起人、人类代谢组学数据库 HMDB 联合创始人,积累了丰富的学术成果,获得诸多行业赞誉。图 1. 厉良教授正在接受采访 什么是代谢组学? 随着人们生活水平的提高,健康已成为重要关注点。常规体检通过检测肌酐、尿酸、胆红素等代谢物来评估健康状态。然而,对于某些复杂的疾病,常规检测方法可能无法提供足够的信息,需要更先进的技术来辅助。以新生儿筛查为例,代谢组学技术能在几分钟内快速识别 40 多种遗传代谢病的生物标志物。那么,什么是代谢组学呢?代谢组学是通过质谱等高通量技术手段,研究和发现特定生理时期内生物体的所有低分子量的物质,并进行定性和定量分析,探索代谢物变化与生物过程之间的有机联系。简单来说,代谢组学就是研究生物体内所有小分子代谢物的科学。癌细胞为了满足自身快速增殖的能量需求,通常会加速和增加生物能量代谢途径,包括通过糖酵解提高葡萄糖摄取以及引起三羧酸循环的变化。想象一下,借助代谢组学技术,我们有望在癌症早期进行发现和干预,避免病情发展到晚期扩散才进行治疗。这种早期诊断和干预策略,能够显著提升治疗效果,改善患者的生存质量。 图 2. 葡萄糖、乳酸和三羧酸循环对抗肿瘤免疫的影响 质谱检测在代谢组学领域面临哪些挑战?如何应对? 代谢组学领域的研究在检测环节面临很多挑战,厉良教授介绍到,代谢物常用质谱进行检测,但检测方法还有几个层面亟待提升。迈理奥正在通过颠覆性的创新技术克服常规代谢组学方法的瓶颈,从而提升检测的准确性和效率。 01 代谢物的检测覆盖率:很多代谢物电离效率不高或难以在色谱柱上保留,导致质谱不容易捕捉到这些物质。针对这一问题,迈理奥巧妙运用了化学衍生化的方法,使代谢物拥有疏水基团和叔胺结构,显著提高其色谱柱的保留性能和离子化效果,结合安捷伦高分辨质谱仪器,提升代谢物检测灵敏度 10-1000 倍,可检测8000-13000 个色谱峰对,极大地提升了代谢物的检测效率。使得更多的代谢物能够被准确、全面地检测到。 02 代谢物的定量分析:代谢物的准确定量应使用其对应的同位素内标矫正,但并不是所有代谢物均有同位素内标,或即使有,价格往往非常昂贵。针对这一难题,迈理奥采用同位素双标记的方法,为每种代谢物生成一一对应的同位素内标,进行精确的定量分析。代谢组学研究中很多时候不需要绝对定量检测,仅需要通过相对定量检测确定代谢物的变化趋势,即可为进一步研究和转化提供重要参考。 03 代谢物的鉴定:质谱灵敏度较高,因此会检测到很多离子信号,但是如何鉴定其为具体的某种代谢物,这方面能力仍然需要提升。 为了得到更准确的代谢物鉴定结果,迈理奥建立了专业的三层级代谢物鉴定数据库,实现了1400+个代谢物的精准鉴定和7000+个代谢物的可靠推定。为了进一步提高代谢物的鉴定能力,迈理奥正在构建基于 AI 的规模更大、更专业化的数据库,此举旨在提高鉴定精度,确保检测结果的准确性,从而为科学研究和临床应用提供更加可靠的支持。图 3. 迈理奥技术人员进行代谢组学实验 在代谢组学研究领域,质谱仪需要满足哪些要求? 在代谢组学研究领域中,质谱仪发挥着非常重要的作用,因此厉良教授认为,质谱仪需要尽量满足以下要求:1灵敏度,确保能够检测出样本中浓度很低的化合物,使多种代谢物的峰强度和面积都能得到很好的体现; 2分辨率,确保能够区分并准确识别具有接近质量数的多种代谢物;3稳定性,确保从样品前处理、液相分离、到质谱检测等各个环节都保证较高的稳定性,从而确保大队列和长时间的检测项目都能保证检测输出的一致性; 4数据处理能力,确保有软件能便捷地把各种峰型的结果进行分析汇总。图 4. 安捷伦仪器安捷伦的高端质谱仪器,在灵敏度、分辨率、稳定性和数据处理方面都可以满足需求,而且在性价比方面也占有一定优势,方便将来向更多的实验室推广整套技术和解决方案。图 5. 安捷伦软件界面 代谢组学的临床转化和应用前景? 在基因组-转录组-蛋白质组-代谢组的系统生物学框架内,代谢组学处于最下游,最接近生物表型,比其他组学更具时间敏感性,因此可以更容易直接与表型建立关系。通俗点讲,就是我们的基因可能不会经常变化,但是代谢物却在一直变化,观察整个代谢组的变化,可以评估人体的健康或疾病状态,例如最常见的就是糖检测和诊断糖尿病之间的联系。 图 6. 系统生物学与人体表型之间的联系目前,代谢组学在临床领域的应用主要有三个方面:1疾病生物标志物的发现:代谢组学可以帮助识别与特定疾病相关的生物标志物,这些标志物可用于疾病的早期诊断、疾病的分型或预后评估。这对于提高疾病的检测精度和患者管理具有重要意义。 2药物代谢与反应监测:在药物开发的临床试验阶段(包括一期、二期和三期),代谢组学通过分析代谢组的变化,帮助明确药物的作用机制。此外,它还可以用于评估不同人群对治疗的响应水平,支持精准医疗的实施。3疾病预防和健康管理:通过观察多种代谢物(如指纹图谱)的变化,代谢组学可以评估个体的整体健康状况,并预测潜在的疾病风险。这为早期干预提供了依据,有助于预防疾病的发生。 迈理奥是谁?作为开拓代谢组学新科技的先锋,迈理奥在首席科学家厉良教授的全程指导下,组建了以归国博士赵爽为核心的专业团队,创建了全球领先的 DeepMarker MT 代谢组学平台和 DeepMarker LT 脂质组学平台,专注于全方位、个性化、一站式的科研服务和创新医疗诊断技术的开发,推动生物标志物探索、健康检测等生命科学领域的创新与变革。 颠覆性的技术创新突破了常规方法的瓶颈,已应用于数百项研究,涉及疾病诊断、健康监测、药物研发、中医药研究、食品农业、环境监测等领域,助力高水平的科学研究以及高效的临床转化,成果显著,如阿尔茨海默症(加拿大脑计划)生物标志物的探索、乌帕替尼(艾伯维)的新适应症疗效评估、食品发酵过程监测等,体现了更高灵敏度、高覆盖率、高精准定量、高稳定性的全方位、多层面的领先优势。结语代谢组学作为后基因组时代发展最快、最热门、极具潜力的组学新兴学科,广泛应用于生命科学各领域,为发现生物标志物、探寻疾病机制等提供了强大的技术平台。感谢迈理奥一直走在突破代谢组学技术瓶颈、助力千亿级疾病早筛市场的道路上。安捷伦也将继续与迈理奥及各位行业合作伙伴通力协作,通过提供尖端、稳定、高性能的产品平台,以及专业的服务和支持,助力更多本土企业实现创新和发展。
  • 助力代谢组学精准研究,安捷伦与清华大学联合举办“代谢组学解决方案专题讲座”
    p img src=" http://img1.17img.cn/17img/images/201808/insimg/e017bc51-a3ae-4abc-800c-36d898027b8b.jpg" style=" float:none " title=" 061.jpg" / /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/9adc9c98-3838-4e4a-9cc2-70eb2d093da6.jpg" style=" float:none " title=" 062.jpg" / /p p & nbsp & nbsp 近日由安捷伦科技与清华大学蛋白质研究技术中心代谢组学平台合办的“代谢组学解决方案专题讲座”在清华大学生物新馆举行。来自清华大学及其他院校超过120 名师生参加了此次讲座。本次活动上,安捷伦科技的专家们分享了针对代谢组学研究领域如何实现多维度的动态研究以及不同疾病能量代谢通路与细胞功能的关联研究等方面的干货心得。& nbsp /p p & nbsp & nbsp 安捷伦液质联用产品应用经理冉小蓉博士为大家带来了题为《开启深度研究,洞悉机理机制—代谢组学、代谢流与 Seahorse 的前沿整合方案》的报告,向大家介绍了安捷伦拓展代谢组学深度研究的前沿解决方案。安捷伦基于 MPP 的非靶向/靶向代谢组学工作流程有效地发现差异代谢物,并匹配可能激活的通路;基于 VistaFlux 的定性代谢流解决方案提供更快、更准、更完整的差异代谢物在通路上动态活动规律的研究;Seahorse 在活细胞水平上的细胞能量代谢分析,实现对组学/代谢流结果的正交生物学验证。安捷伦这三个方案的整合,无疑实现了对一个复杂生物学问题从生物标记物的发现到机理机制深入阐释的多维度的动态研究。& nbsp /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/4c75825d-51d8-4473-9d30-47d4b6438257.jpg" title=" 063.jpg" / /p p & nbsp & nbsp 来自 Seahorse 团队的产品经理张小宇则着重从能量代谢角度做了《从能量角度看细胞:新的视角,独到的精彩》的报告。Seahorse 细胞能量代谢平台,可通过监测细胞的体内糖酵解/线粒体呼吸引起的胞外酸化速率、氧气消耗速率来判定不同状态下的细胞实时代谢状态,佐证代谢理论,方便、快捷地帮助研究者进行不同疾病能量代谢通路与细胞功能的关联研究。& nbsp /p p & nbsp & nbsp Agilent 的整体解决方案,将包括生物标志物的发现、鉴定、靶向验证以及通路分析过程中所需要的硬件、软件、消耗品及服务支持的整体融入到代谢组学综合解决方案中,为开启代谢组学的精准研究,提供了有力的条件。& nbsp /p p & nbsp & nbsp 此次讲座受到广大清华师生的热烈欢迎,会后安捷伦的工程师也为广大师生进行了长时间的问答和技术探讨。此次讲座是安捷伦与清华大学代谢平台的第一场联合讲座,后续还会有更多的关于技术分享的活动 /p
  • 质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭
    质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭 蛋白质作为生命活动的功能执行者,使得质谱表征的蛋白质组学能够为生命活动提供更加贴近表型的解释,它为疾病致病机理发现、癌症的早期诊断及新型标志物研发、预后预测、精准分型、指导用药、临床样本数字化等均提供了准确全面的信息,是人类对抗疾病的一大利器。 代谢组学作为蛋白质组学的下游组学,同时也是环境暴露、治疗干预、生活习惯以及上游组学这一系列事件在人体的最终直观放大反应,也是更能直观反应生物体系的状态的组学,因此代谢组学的研究是精准医疗的重要一环。近几年,在学术前沿领域有众多的学者意识到代谢组学的重要性。赛默飞 × 华大基因赛默飞携手华大基因紧跟学术前沿,结合组学研究需求,推出基于Orbitrap在组学中的研究方案,助力组学技术的进展,紧跟热点,分享单细胞/微量样品、精准医学等相关应用。 代谢组学系列讲座 基于Orbitrap平台的代谢组学和脂质组学方案时间: 10月28日 15:00~16:30内容简介: 1. Orbitrap仪器原理、用于小分子组学的硬件优势 2. 用于小分子组学的主要软件Compound Discoverer和Lipidsearch介绍 3. 相关应用案例介绍吴珊湖,赛默飞世尔科技(中国)有限公司液质联用小分子领域应用工程师,主要支持LC-MS、LC-MSMS系列平台的应用开发,在小分子组学、杂质分析、中药定性等方面具有丰富的经验。肠道菌群与代谢组学关联分析时间: 10月28日 16:30~17:30内容简介: 1. 宏基因组/16S与代谢组关联分析方法 2. 宏基因组/16S与代谢组关联分析案例梅占龙,哥本哈根大学生物信息学博士,任华大基因质谱平台信息分析负责人。擅长代谢组学技术研究及生物信息分析,参与开发多款华大基因代谢组学分析流程。在代谢组学的应用上有丰富经验,与客户合作发表文章多篇。 扫码报名 医学蛋白质组学系列讲座 蛋白质组学在精准医学研究中的应用时间: 11月5日 15:00~16:00内容简介: 1. Orbitrap超高分辨质谱的发展及其在蛋白质组学领域的全面解决方案 2. 蛋白质组学技术在精准医疗领域的应用及进展齐英姿,赛默飞世尔科技大分子方向应用工程师,毕业于军事医学科学院国家蛋白质科学中心北京,一直从事蛋白质组学相关技术支持工作;2021年加入赛默飞世尔科技,具有丰富的蛋白质组学研究以及质谱数据分析相关经验。单细胞/微量样本的蛋白质组学技术时间: 11月5日 16:00~17:00内容简介: 1. 单细胞蛋白质组学技术的发展和现状 2. 单细胞和微量蛋白质组学技术的应用案例李思奇,哥本哈根大学生物化学博士,深圳华大基因质谱平台资深研发工程师。擅长蛋白质组学和质谱技术的开发与应用,负责多项实验技术的设计、搭建和优化,参与发表多篇SCI文章。 扫码报名扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 代谢组学知多少?大咖带你洞悉代谢组学技术与前沿应用
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学,是整合包括色谱联用质谱和核磁共振等现代分析技术、生物化学以及生物信息学等学科的一门交叉学科技术,用于研究生命活动链条下游的代谢物内稳态情况。相比于其他组学,代谢组学反映生命体已经发生的生物学事件,因此能够更准确直接地反映生命体终端和表型信息。目前,广泛应用于代谢组学数据采集的技术平台有氢/碳核磁共振技术、气相色谱-质谱技术、液相色谱-质谱技术、毛细管电泳-质谱技术以及直接进样质谱技术等。鉴于代谢物种类多样且浓度差异大,代谢组学研究需要依托高灵敏度、高分辨率的分析技术。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于此,仪器信息网将于 span style=" color: rgb(192, 0, 0) " strong 2020年9月8日 /strong /span 举办 a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" span style=" color: rgb(192, 0, 0) " strong “代谢组学技术及应用新进展”网络研讨会 /strong /span /a ,聚焦代谢组学的多个细分领域,如代谢组学基础研究、微生物代谢组学、代谢组学与中医药、药物开发代谢组学、疾病诊断与代谢组学等,从技术难点、数据分析到应用进行剖析,为业内专家与相关研究学者提供更灵活的交流机会,促进合作。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 会议日程(点击图片报名参会) /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6f5b37a6-fb5c-404f-bd85-a2685936ae49.jpg" title=" 日程0812-1320.png" alt=" 日程0812-1320.png" / /a /p p style=" text-indent: 2em line-height: 1.75em text-align: center " strong style=" text-indent: 2em color: rgb(0, 112, 192) " 专家阵容 /strong br/ /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" img style=" max-width: 100% max-height: 100% width: 300px height: 306px " src=" https://img1.17img.cn/17img/images/202008/uepic/f1e3e61b-ba44-4f18-a3eb-624f3493ff48.jpg" title=" 厉良.jpg" alt=" 厉良.jpg" width=" 300" height=" 306" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告题目:《用于深度代谢组分析的LC-MS的最新进展》 /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告人:加拿大阿尔伯塔大学 厉良教授 /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 厉良教授于1983年在浙江(杭州)大学获得化学学士学位,1989年获得美国密歇根大学化学博士学位。1989年7月加入加拿大阿尔伯塔大学,任化学系教授和生物化学系兼职教授。他是加拿大代谢组学创新中心(TMIC)的联合主任。厉教授是加拿大皇家学会科学院院士。他于2005年至2019年是加拿大分析化学研究主席。2000年至2005年担任阿尔伯塔省癌症研究所蛋白质组学资源实验室主任。他于2007年至2019年担任阿尔伯塔大学分析化学部主任。他是人类代谢组数据库(HMDB)项目的联合负责人。他的实验室建立了已经被代谢组学研究社区广泛使用的内源性人类代谢物的HMDB MS/MS质谱谱库。他的实验室是开发用于生物系统定量和全面代谢组分析的高效化学同位素标记液相色谱质谱(HP-CIL & nbsp LC-MS)平台的先驱。厉教授获得过多项国内和国际奖项和荣誉。自2005年以来,他是国际分析化学期刊Analytica Chimica Acta的编辑。他还是许多科学期刊的编辑顾问委员会的成员。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 363px " src=" https://img1.17img.cn/17img/images/202008/uepic/355dbdfd-aa48-4d25-8cc8-6b819432a5ed.jpg" title=" 唐惠儒.jpg" alt=" 唐惠儒.jpg" width=" 300" height=" 363" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告题目:《脂蛋白亚类及其组成的定量分析》 /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告人:复旦大学人类表型组研究院 唐惠儒教授 /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 教授,博士生导师。1986年获西北轻工业学院(现陕西科技大学)学士学位;1991年,获英国伦敦大学Royal Holloway College化学系,物理有机化学,博士学位;1992-2000年先后任英国BBSRC食品研究所Research Scientist、Senior Research Scientist。2001-2005年任英国帝国理工学院生物医学部生物化学系Senior Scientific Officer,兼代谢组学核磁共振设施总监(终身职位)。2005-2014年先后任科院武汉物理与数学所研究员、博士生导师、研究部副主任、中科院生物磁共振分析重点实验室主任。2014年11月起任复旦大学特聘教授。 英国皇家化学会Fellow (FRSC, CChem)、美国化学会会员、陕西科技大学客座教授、华中科技大学生命科学及技术学院兼职教授 J Proteome Res, Current Metabolomics, Arch Pharm Res, World J Hepatol, Chin J Anal Chem, 《波谱学杂志》、《现代科学仪器》、《基础医学与临床》等刊物编委。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 348px " src=" https://img1.17img.cn/17img/images/202008/uepic/a2940969-29b5-4ade-b6b7-e02e9245f867.jpg" title=" 袁必锋.jpg" alt=" 袁必锋.jpg" width=" 300" height=" 348" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" span style=" text-align: center " 报告题目:《核酸修饰组学及核酸修饰代谢分析》 /span /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告人:武汉大学 袁必锋教授 /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 武汉大学化学与分子科学学院教授、博士生导师,国家自然科学基金优秀青年基金获得者(2015年)。2001年和2006年于武汉大学生命科学学院分别获得学士和博士学位。2006年至2010年在新加坡国立大学和加州大学河滨分校开展博士后研究。2011年任武汉大学化学与分子科学学院教授、博士生导师。担任Chemical Research in Toxicology 顾问编委 (Editorial Advisory Board)、Scientific Reports 编委、Chinese Chemical Letters 编委、《色谱》编委、《分析测试学报》青年编委、《高等学校化学学报》青年编委、中国生物物理学会代谢组学分会理事。主要研究方向为生物分析化学、核酸化学生物学。在所从事的研究工作中,建立了DNA、RNA、蛋白质等多种生物大分子修饰(表观遗传修饰)的高灵敏分析方法,开展了生物大分子修饰和疾病的相关性研究;建立了多种代谢组学分析方法,开展了基于代谢组的临床疾病标志物分析。在PNAS、Nucleic Acids Research、Chemical Science 等学术刊物上发表了170余篇SCI论文。 /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/62db9fd0-83a7-49a1-bfb3-4a3a961351f1.jpg" title=" 吕海涛.jpg" alt=" 吕海涛.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告题目:《精准靶向代谢组学及其转化研究实践》 /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/#huiyirich" target=" _blank" 报告人:上海交通大学 吕海涛研究员 /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-align: justify text-indent: 2em " 吕海涛博士,上海交通大学研究员/课题组长/博士生导师,国家重点研究发计划课题负责人,权威的QUT校长特聘教授席国际人才基金获得者,交通大学绿色通道引进高层次人才和功能代谢组科学实验室主任。2009年于黑龙江中医药大学获得生药学博士学位。2009-2013年先后华盛顿大学医学院和麻省理工学院等完成博士后训练。曾任重庆大学“百人计划”研究员/博士生导师,创新药物研究中心(药学院)主任助理。先后在Mass Spec Rev,J Proteome Res, Mol Cell Proteomics,Pharmacol Res和Liver Int等著名杂志发表SCI检索论文46篇。担任中国生物物理学会代谢组学分会副秘书长,美国科学促进会(AAAS)荣誉会员等。担任著名SCI检索杂志Phytomedicine (Q1, IF 4.2) 副主编,Frontiers in Microbiology (Q1, IF 4.1) 副主编,和Pharmacological Research (Q1, IF 5.57)顾问主编, Proteomics-Clinical Application, ACS Pharmacology and Translational Science编委等,国家自然科学基金委和澳大利亚NHMRC基金评审专家。近五年,先后主持国家重点研发计划课题1项,国家自然科学基金面上项目2项,QUT校长特聘教授国际人才基金等10余项课题研究工作。省部级科技奖2项。 /span /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" text-align: justify text-indent: 2em " 点击图片报名参会 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" text-align: justify text-indent: 2em " /span /strong /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/webinar2020metabolomics/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 305px " src=" https://img1.17img.cn/17img/images/202008/uepic/fd8cd6dd-fe2f-44b6-94c7-bd7944e8020a.jpg" title=" 69035020200728.jpg" alt=" 69035020200728.jpg" width=" 600" height=" 305" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 扫码加入会议交流群 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 399px " src=" https://img1.17img.cn/17img/images/202009/uepic/34536ad5-31f7-4a81-940d-2f9b47b6e86f.jpg" title=" 微信图片_20200902104609.jpg" alt=" 微信图片_20200902104609.jpg" width=" 300" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" text-align: justify text-indent: 2em " /span /strong /span br/ /p
  • 贾伟教授眼中的代谢组学
    最近代谢组学的创始人、英国帝国理工的Jeremy Nicholson教授一直在鼓吹“表型组”,即Phenomics。表型组的概念目前还不是那么清晰,可以笼统地理解为研究某一生物或细胞除了基因组以外的所有组学的集合,而其中最核心的部分,就是代谢组!上个月复旦大学的唐惠儒教授(唐教授曾在帝国理工的寺院练过多年的弹指神通)告诉我,复旦的金力教授正在牵头开展基于表型组的大型队列研究。在队列研究的范畴内,他们把表型组定义为个体从胚胎发育到出生、成长、衰老以及死亡过程中的形态特征、功能行为、分子组成规律,分成三个层面 - 生物特征、物理特征、化学特征,来进行系统的测量。  我个人很推崇这个表型组研究的策略,因为前面文章讨论过 – 基因组学不可能是精准医学的唯一手段。如果说疾病是遗传因素和包括生活方式在内的所有环境因素共同作用的一种结果的话,表型组反映的信息则更接近疾病本身。  我们知道细胞内的生命活动由众多基因、蛋白质、以及小分子代谢产物来共同承担,而上游的(核酸、蛋白质等)大分子的功能性变化最终会体现于代谢层面,如神经递质的变化、激素调控、受体作用效应、细胞信号释放、能量传递和细胞间通讯等,所以代谢组处于基因调控网络和蛋白质作用网络的下游,所提供的是生物学的终端信息。如同我们在长江的上游建大坝或对江水改道,这些项目的生态影响会在下游的河道和地域体现出来一样,我们经常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么。  我们称细胞内的代谢物特征性变化为代谢指纹 (Metabolic Fingerprints),分泌到胞外的代谢物为代谢足迹 (Metabolic Footprints)。与基因组、转录组学和蛋白组学比较,代谢组学还具有以下特点。首先,基因和蛋白表达在功能水平上的微小变化会在代谢物上得到放大,从而使检测更容易 其次,许多基因和蛋白的非功能性变化不会在代谢物上反映出来,从而起到了上游信息向下游传递过程中“噪音过滤”的效果 第三,代谢物的种类要远小于基因和蛋白的数目,物质的分子结构也要简单得多,因而代谢组学所采用的代谢物信息库,远没有全基因组测序及大量表达序列标签的数据库那么复杂。另外,常见代谢产物在各个生物体系(如植物的初级代谢、微生物、动物)中都相似,所以代谢组学研究中采用的平台技术可以在不同的生物体系中得到应用。  唐人孟浩然有两句诗 - 人事有代谢,往来成古今。从万物皆有兴衰代谢的角度来看,我们的生物世界其实是由代谢组组成的,是这些不同的代谢组让我们生物界呈现出五彩缤纷、气象万千的表型。我们地球上的各种植物含有几十万种(大约25-50万种植物化学分子)代谢物,微生物界大约有几万种代谢物,而我们哺乳动物体内常见(分子量小于1500)代谢产物有5-7千种。这三类代谢组互相渗透,植物和微生物的代谢物通过食物、营养补充、药物等形式进入我们人体的代谢网络,也使我们每一个人的代谢表型呈现出各种不同的特征。  我曾经在以前的一篇博文中把人体的代谢网络比喻成我们所居住的都市交通网络,从市中心(譬如上海的人民广场)到城市外围的任意一点(如浦东国际机场)理论上有无数条途径可走,但大家都知道最可行的途径也就是少数几条。而我们现在究竟要走哪一条道路去机场,主要看这一刻我们的交通工具、交通状况、时间和资金情况。生命活动其实也是一样的,我们人类三万多基因,尽管功能基因所占比例不大,但它们排列组合之下,就会出现无穷多种可能性,而奇妙的是,在指挥系统近乎无穷多种可能的指令下,仅仅产生出几万种蛋白,而下游的代谢物和代谢通路更少,尤其是主要的代谢通路(交通主干线)更是屈指可数,可以在一张白纸上画清楚。那么这说明什么呢?说明再复杂的生物系统在它的功能层面有着简单的、共性的一面。有人对收集到的各种癌细胞进行检测,发现了共有大约5百万种基因突变方式,但这些变化再复杂还是有章法可循的,它们无非是要在功能层面(譬如代谢层面)实施调整和转换,达到一个或几个简单的目的 – 要么获取更多的能量,要么获得更多的物质,或者设法排除更多的废弃物,或者增强自身的抗氧化抗应激(抗药物)能力。总之癌基因调控的目的明确 - 要生存、增殖、从周边掠夺资源并向周边扩散。如果我们能够这样来看问题,我们就可以在寻找共性的变化中把复杂问题简单化,而代谢组学将是疾病分子表型和功能研究中的一门核心技术!  再举个例子来说明为什么代谢组学重要。现在肠道菌群研究已经成为科技界最为火爆的领域之一,你搞生物的话要是不谈点菌群啥的你都不好意思出门开会!但是,这个领域目前玩的只有一个技术 – 测序,不是16S rRNA测序就是NextGen宏基因测序!测序告诉我们的是什么呢?是肠道细菌的种类信息,从门到属到种(有时甚至能到株)的分类和丰度值,如同你要研究一个城市的安全问题,这个检测技术可以帮你搞到一本覆盖全市大多数居民的花名册,仅此而已。两个肠道菌群组成相差很大的健康人站在一起,我们无法判断他们结构上的差异意味着什么,如果两个人用同一种饮食,这些菌群差异在两个人代谢和生理上会带来的什么样的功能性变化我们尚难以预测。当然菌群研究者们说他们可以通过检索数据库获得功能信息,但这些功能信息怎么来建模预测呢?每一种代谢功能下各种细菌进行相加或是加权后相加?那么互相抵消互相干扰的怎么算呢?最简单明了的代谢功能表征方法就是测代谢组!由此获得的数据是各种细菌集成的功能以及与宿主共同作用下的最终结果!  但是,代谢组学目前尚无法全面进入精准医学和相关健康领域的产业化服务。其主要瓶颈有两个,一是标准化的问题,二是通量的问题。代谢组学往前发展的一个必经之路是定量化和标准化。基因测序技术目前成为转化研究和技术产业化的首选工具,一个重要原因是这种高通量检测技术的标准化已日渐成熟并正在行业内逐步得到普及。目前国内测序行业多家企业在基因组数据分析处理(包括测序采样与分析、碱基读出、载体标识与去除、拼接与组装、间歇填补、重复序列标识等等)逐步建立了统一的标准和流程。我们可以把华大基因比喻成秦统一六国,它积极参与国际领域内大数据管理、整合和共享标准的建立,利用自身硕大的测序平台体量和技术实力,在技术标准方面成为行业内的执牛耳者。而代谢组学则还没有发展成熟,还处于春秋战国诸侯争霸时期。  目前代谢组学除了核磁共振仪外,主要分析仪器为质谱。而包括飞行时间质谱(TOF)、三重四级杆串联质谱(TQ)、四级杆飞行时间串联质谱(QTOF)、离子回旋共振质谱(ICR)、轨道离子阱(Orbitrap)等高分辨质谱仪的生产厂家不下十家。这些厂家都有自己独特的仪器配置、数据处理软件、以及数据库。不同厂家用的工作软件和数据库之间都无法对话(cross-talk),因此一旦购买了某一个厂家的设备来做代谢组学,研究者往往只有照搬该厂家提供的全套分析工具,因而整个行业缺乏包括数据处理标准、数据分析途径、生物描述规范、以及报告标准在内的统一的代谢组学标准流程或标准协议。对于代谢产物鉴定,各个实验室的做法也是参差不齐,有的完全依赖国际数据资源库,有的用厂家自带数据库,有的用自己的标准品来鉴定,以致于数据的质量良莠不齐!  代谢组学要想全面进入临床医学和健康产业的服务领域,需要化大力气解决技术平台的行业标准化问题。从代谢组学设备生产厂家到各个实验室之间都需要逐步改变工作模式,从各自为战百花齐放到互相合作统一标准,共同建立行业内的技术规范,不同平台产生的数据可以交互验证(cross-validation),最终建立起一个行业内可以共享的代谢组学数据库。  也只有在行业普遍接受的技术标准的前提下,我们才可能扩大检测规模。而没有一定的检测通量,例如一次检测数万或数十万样本的能力,代谢组学技术也很难在大型研究项目和精准医学领域扮演一个有意义的角色。前面说到复旦大学开展的基于大型队列的表型组学研究,目前已经纳入计划的队列达到二十万人,以每个人在六个时间点采集样本计,总样本数就达到了120万份,随着计划的推进,样本数将持续上升。可以想象,只有采用统一的技术标准和具备足够检测通量的代谢组学实验室才可能承担这类项目的研究工作。  记得八十年代读书的时候看过一部纪录片《话说长江》,有二十五集,当时这部电视播出后举国轰动,中国观众在信息闭塞了几十年后,通过一条流淌了数千万年全长六千多公里的河流的介绍,第一次直观的、全景的在电视中看到了自己国家广袤的大地、多彩的人文、以及长江流域美丽的自然风光。每天晚上随着主题歌响起,每个人的心里开始激动和期盼,“你从雪山走来,春潮是你的丰采 你向东海奔去,惊涛是你的气概̷̷ ”同样,我们今天尽管科学高度发达,人类对于自身几乎是所有的重大疾病的发病机制的认知水平还处于Dark Ages(黑暗时代)阶段,随着基因组学的日趋成熟和表型研究工具如代谢组学的广泛应用,我们将会把基因和表型信息连接起来,有可能逐步打开一些疾病的黑箱,像了解一条古老的河流一样逐步认识我们的生命,一步一步地逼近疾病和生命的本质!
  • 明日开播|第六届代谢组学前沿—空间代谢组学专题报告抢先看!
    3月15日-16日,仪器信息网将举办“第六届代谢组学前沿”主题网络研讨会,共邀请18位国内知名科研院校和仪器企业的相关专家进行探讨交流。3月16日上午,中国科学院深圳先进技术研究院罗茜研究员、中国医学科学院药物研究所贺玖明研究员、中国科学院深圳先进技术研究院赵超副研究员和振电(苏州)医疗科技有限公司首席执行官王璞博士4位专家将围绕空间代谢组学技术在环境污染、生物医药和肿瘤疾病前沿应用以及相干拉曼散射成像技术在空间代谢组学研究新进展等进行报告分享。点击报名》》》 精彩报告重磅来袭 罗茜 中国科学院深圳先进技术研究院 研究员《空间代谢组学研究环境污染对健康的影响》3月16日 09:30-10:00中国科学院深圳先进技术研究院生物医学与健康工程研究所研究员,博士生导师。2008年在香港浸会大学获得博士学位。现担任深圳市单分子检测技术与仪器开发工程实验室副主任,中科院深圳先进院平台支撑处处长,中科院所级中心暨分析测试中心主任,中科院深圳先进院P3实验室主任。主要从事空间代谢组学的质谱新方法和新技术研究。发表SCI文章近50余篇;中国及PCT专利20余项;主持国家自然科学基金委重大仪器研制项目(自由申请)和重大研究计划(培育),国家发改委平台建设、科技部重点研发专项、中科院仪器研制项目、广东省和深圳市基础重点、技术攻关和科研平台建设等20余项以及负责筹建中科院深圳先进院P3实验室设施。【摘要】污染物不仅对生态环境造成损害,也对人类健康产生巨大风险。暴露于污染物可能产生不同的生物效应,如发生免疫和炎症反应、氧化应激、代谢紊乱和遗传损伤等增加患病风险。基于高分辨质谱的代谢组学技术可为污染物对生物体造成的影响提供更深入的分子机制的理解。质谱技术、质谱成像和AI数据解析的发展,在空间原位代谢信息基础上对污染物暴露引发的小分子代谢异常、脂质代谢异常和代谢通路异常进行非靶向、拟靶向和靶向的分析。『报名观看』王璞 振电(苏州)医疗科技有限公司 首席执行官/CEO《基于相干拉曼技术的空间代谢组学新进展》3月16日 10:00-10:30王璞,博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。王璞本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。王璞以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。王璞曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。【摘要】相干拉曼散射成像技术是一种新型的光学成像技术,通过激光的非线性效应,将样品中的分子振动信息转化为图像信息,从而实现对样品的定性及定量分析。该技术具有无标记、高分辨率、超灵敏、快速成像等优点,因此在生物医学、材料科学等领域得到了广泛应用:如生物医学领域的细胞成像、组织成像、病理诊断、合成生物学以及超多重免疫组化等方面;也可以用于材料科学领域的材料表征、成分分析、离子动态等方面,如钙钛矿研究、锂电池电极分析和光催化研究等。随着技术的不断发展,非线性分子光谱成像技术将会在更多领域得到应用。『报名观看』贺玖明 中国医学科学院药物研究所 研究员《空间代谢组学技术创新与生物医药应用研究进展》3月16日10:30-11:00博士,博士生导师,药物分析专业;中国医学科学院北京协和医学院药物研究所天然药物活性物质与功能国家重点实验室 研究员,主要研究方向:质谱成像空间分辨代谢组学新技术新方法及其生物医药应用研究。开发出空气动力辅助离子化及质谱成像新技术和空间分辨代谢组学新方法,建立了以空间分辨代谢组学技术为特色的新药代谢研究平台。近5年,发表了包括Nat. Commun., Adv. Sci., PNAS,APSB,JPA,Theranostics,CCL,Anal. Chem.等Q1区论文10余篇。曾获 2010 年北京市科学技术奖二等奖(2)、CAIA2019 特等奖(2)。国家药品监督管理局创新药物安全与评价重点实验室学委委员;担任《药学学报》、Acta Pharm Sin B、J Pharm Anal青年编委,Molecules、TMR Modern Herbal Medicine和《药学研究》编委;中国医药生物技术协会药物分析技术分会常务委员,中国质谱学会常务委员。【摘要】待定 『报名观看』赵超 中国科学院深圳先进技术研究院 副研究员《临床超声指导的质谱空间组学用于肿瘤代谢》3月16日11:00-11:30赵超,中国科学院深圳先进技术研究院副研究员,中国科学院大学博士生导师。 研究方向为质谱多组学和质谱成像方法开发、环境污染物的生物体暴露和健康危害机制研究、肿瘤代谢机制等。以一作/通讯作者在国际期刊(Nucleic Acids Res., Sci. Bull., Mass Spectrom. Rev., The Innovation 等)发表论文 30 余篇。主持国自然面上、青年基金、广东省面上基金、深圳市基础研究重点项目等。入选广东省引进高层次人才计划(珠江人才)、深圳市海外高层次人才计划、香江学者计划。担任Journal of Analysis and Testing(IF 4.7)、Journal of Pharmaceutical Analysis (IF 8.8),Phenomics 青年编委。 【摘要】多数生物和化学成像技术依赖于样品的固有属性对目标物进行可视化。迄今为止,很难在复杂生物过程中获取较为全面的可视化信息。多模态策略旨在克服单个技术的局限性,获取更多的“隐藏”信息,为研究复杂生物过程中的高维光谱、空间信息提供新的视角。通过整合质谱成像(MSI)等多种影像技术,提出基于MSI的多模态融合策略能够帮助我们更好的理解疾病发生发展的分子机制。『报名观看』 会议日程 “第六届代谢组学前沿”网络研讨会报告时间报告方向专家单位3月15日上午09:00-09:30《质谱驱动的精准代谢组学技术》朱正江研究员中国科学院上海有机化学研究所生物与化学交叉研究中心09:30-10:00《组学金规—基于Orbitrap Exploris 480的代谢组学方案》史碧云资深应用工程师赛默飞世尔科技(中国)有限公司10:00-10:30《基于代谢组学的新药靶点和生物标志物发现》胡泽平研究员清华大学10:30-11:00《布鲁克4D-脂质组学方案以及前沿应用介绍》张荣应用工程师布鲁克(北京)科技有限公司11:00-11:30《基于质谱的代谢物鉴定与功能研究》林树海教授厦门大学11:30-12:00《基于点击化学质谱探针技术的DEHP体内代谢示踪研究》朱泉霏教授武汉纺织大学3月15日下午13:30-14:00《集成化分离-质谱联用平台用于靶向代谢组学分析》刘震教授南京大学14:00-14:30《脂谱探寻:基于脂质介质的生物标志物研究》Winnie HUANG液质应用专家安捷伦科技(中国)有限公司14:30-15:00《慧眼分析—EAD电子活化解离助力代谢分子结构精准解析》刘婷高级应用流程经理SCIEX中国15:00-15:30《多模态分子科学交叉融合驱动的功能代谢组学转化医学研究》吕海涛终身教授香港浸会大学15:30-16:00《岛津4in1技术方案及其在代谢组学中的应用》任彪应用工程师岛津企业管理(中国)有限公司16:00-16:30《识别代谢物干扰现象提高代谢物鉴定结果的准确性》陈立青年研究员复旦大学代谢与整合生物学研究院16:30-17:00《代谢物与神经障碍》房中则教授天津医科大学17:00-17:30《仪采通让仪器选型更轻松》李茹买家服务运营经理仪器信息网3月16日上午09:30-10:00《空间代谢组学研究环境污染对健康的影响》罗茜研究员中国科学院深圳先进技术研究院10:00-10:30《基于相干拉曼技术的空间代谢组学新进展》王璞首席执行官/CEO振电(苏州)医疗科技有限公司10:30-11:00《空间代谢组学技术创新与生物医药应用研究进展》贺玖明研究员中国医学科学院药物研究所 天然药物活性物质国家重点实验室11:00-11:30《临床超声指导的质谱空间组学用于肿瘤代谢》赵超副研究员中国科学院深圳先进技术研究院扫码加入代谢组学交流群(发送备注姓名+单位+职位)温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn
  • 清华大学药学院胡泽平:代谢组学与代谢流分析技术
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 代谢是生理的基础。近年的研究证明,绝大多数人类疾病,如癌症、糖尿病和心血管疾病等都与代谢异常相关。因此,针对疾病的代谢水平上的分子机制研究已成为基础生物、转化医学研究和药物研发的焦点之一,而代谢组学和代谢流分析是代谢研究重要技术手段。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 今天介绍的这位专家是清华大学药学院的胡泽平,其 span style=" text-indent: 2em " 课题组的主要研究方向是以先进的生物质谱为平台,发展高效、精准的新型代谢组学和代谢流分析技术;揭示生理、疾病及药物耐药性的代谢分子机制与功能;针对疾病及药物耐药性的代谢漏洞,设计新型药物治疗靶标和治疗方案;并以功能性生物标志物和药物代谢组学促进药物研发、实现精准治疗。以下内容整理自网络资源,以飨读者。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c22bd31-db8f-4927-a06a-643abb6f2757.jpg" title=" 胡.jpg" alt=" 胡.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 清华大学药学院 胡泽平研究员 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/bcc4f1f2-3e98-495b-ba32-e7fce58b1e48.jpg" title=" 胡2.png" alt=" 胡2.png" / /p p style=" text-indent: 2em line-height: 1.75em " strong style=" text-align: justify text-indent: 2em " Q:代谢组能让我们全面理解一个生物系统,它能为研究者提供许多功能性信息。请您介绍一下,目前代谢组学主要研究手段有哪些?该领域目前的研究及临床应用情况如何? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢是生物体进行生命活动的基础,代谢紊乱已被证明与糖尿病、肿瘤、炎症等诸多疾病密切相关。代谢组学是代谢研究的重要技术手段之一。 /p p style=" line-height: 1.75em "   从研究目的和方法的角度看,通常可将代谢组学分为非靶向代谢组学和靶向代谢组学两种类型。非靶向代谢组学致力于尽可能全面地对生物体系中的所有内源性小分子代谢物进行系统分析,而靶向代谢组学则更侧重于针对科研人员所感兴趣的一组特定的代谢物进行分析。此外,近年来,结合非靶向和靶向两种方法优势的“拟靶向”代谢组学方法也得到一定程度的发展。分析手段方面,代谢组学主要采用液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)、核磁共振(NMR)等分析平台,其中最为常用的是LC-MS平台。 /p p style=" line-height: 1.75em "   随着近年来人们越来越多的认识到代谢研究的重要性,代谢组学在生命科学和医药研究中也得到更为广泛的应用,包括细胞代谢调控、代谢新通路、疾病代谢机制、药物新靶标发现与确证、药物药效及毒性评价、疾病诊断或预后生物标志物、药物代谢组学、精准用药等领域。 /p p style=" line-height: 1.75em "    strong Q:我们看到目前代谢组学在促进药物研发、实现精准治疗的过程中,越来越受到重视,与其它研究方法相比,它的优势有哪些?还有哪些需要克服的困难? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢物处于生物系统中生化活动的终端,因此反映的是已经发生的生物学事件。此外,基因表达和环境因素的变化对生物系统所产生的影响都可在代谢物水平上得到最终的表型体现。因此,与其他组学相比,以小分子(通常指分子量& lt 1000)代谢物为主要研究对象的代谢组学能够更为准确地反映生物体的终端和整体信息。通过代谢组学分析,可以深入理解相关的代谢异常。 /p p style=" line-height: 1.75em "   尽管代谢组学在上述的研究领域取得了广泛应用,其自身的发展仍然存在一些需要解决的问题。由于代谢物种类多样且浓度差异大,代谢物的分析仍然存在多方面的挑战,如基质效应、离子化抑制、代谢物的鉴定等。与其他组学特别是已经很大程度上实现了标准化的基因组学和转录组学相比,代谢组学的应用受到了不同实验室间差异性的阻碍,涉及大样本量如临床样本的代谢组学研究更需要高度可重复的可靠代谢组学分析方法,因此亟需进一步推进代谢组学的方法学标准化,包括从样品采集、制备和处理到数据的分析和解释的整个过程,从而在各实验室之间实现更为一致和可重复的代谢组学研究,以更高的准确度和精确度检测代谢表型的微妙差异。此外,检测和鉴定更多低丰度代谢物以实现更广泛的代谢组覆盖是代谢组学的另一项技术挑战。如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常极少,需要超高灵敏度的方法来实现准确分析。另外,多组学数据整合正成为代谢研究的重大需求和技术瓶颈,需要开发新的生物信息学工具,将代谢组学与其他组学(基因组学、转录组学和蛋白质组学)相结合,并对多组学数据进行数据整合和预测建模,以加速大数据的多组学研究。 /p p style=" line-height: 1.75em "    strong Q:通过生物质谱发展超灵敏度的新型痕量代谢组学和代谢流分析技术是您的课题组研究方向之一,请您介绍下,为什么要发展超灵敏的痕量代谢组学方法?什么是代谢流分析?它的具体作用是什么? /strong /p p style=" line-height: 1.75em "   胡泽平:如前面提到的,如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常很少,需要超灵敏的方法来实现准确分析。这将为深入理解干细胞、疾病、发育和免疫细胞的代谢分子机制提供必需的技术支持,同时也将为捕捉早期肿瘤病人血液中细微的代谢变化、检测和鉴定更多低丰度代谢物以实现更广泛的代谢物覆盖、及发现早期诊断生物标志物提供技术基础。我们前期发展的基于三重四级杆质谱的超灵敏靶向代谢组学技术率先使在5,000-10,000个分离自小鼠的造血干细胞中进行代谢组学分析成为可能,并由此取得重要生物学发现,这充分证明了超灵敏痕量代谢组学技术的重要性。 /p p style=" line-height: 1.75em "   虽然代谢组学是研究代谢的重要技术手段,但由于代谢网络是复杂并且动态变化的,而代谢组学仅能提供静态的代谢物丰度信息,因此仍存在局限性。代谢流分析技术则可以很好地弥补这一局限。代谢流分析技术利用稳定同位素标记特定的化合物,通过分析下游代谢产物的稳定同位素标记模式,推算出该化合物在在细胞内代谢通路中的周转速率、方向和分布规律 通过对不同状态的生物体进行代谢流分析,即可得到生物体特定代谢通路的活跃程度,从而在动态水平上描述细胞的代谢活性。结合代谢组学和代谢流分析技术,可以更好地理解细胞内代谢网络的代谢物水平变化、流量分布和周转速率,发掘主要代谢异常通路及其生物学功能,并揭示其上下游相互调控机制。这可为理解疾病发生机制、药物靶点发现与确证等提供强有力的科学依据。代谢流分析已经广泛应用于代谢相关疾病如糖尿病、癌症、免疫、神经退行性疾病等的发病机制研究中。 /p p style=" line-height: 1.75em "    strong Q:我们了解到,您在2016年12月加入了清华大学药学院并建立了代谢组学与疾病代谢课题组。您认为您课题组的主要特色是什么?到目前为止,课题组进展怎样?已经取得哪些重要成果? /strong /p p style=" line-height: 1.75em "   胡泽平:我们课题组多年来致力于疾病的代谢机制研究与药物新靶标的发现与确证,重点专注于以发现和确证药物新靶标为导向,通过发展新型痕量代谢组分析(包括代谢组学和代谢流)技术,揭示生理、疾病、或耐药性的代谢异常新通路并深入阐释其分子新机制,来发现和确证新型药物靶标,逐步形成了“发展新技术、揭示新机制、鉴定新靶标”的主要研究特色。具体来说为: /p p style=" line-height: 1.75em "   发展并验证基于色谱-质谱联用技术(LC-MS和GC-MS)的超灵敏痕量代谢组学方法,用于分析痕量样本(尤其是干细胞、发育)中的代谢物变化规律 发展基于稳定同位素示踪的代谢流分析技术,用于分析代谢异常通路的动态周转速率与方向 /p p style=" line-height: 1.75em "   以所发展的代谢组学和代谢流分析技术,结合转录组学、生物信息学和分子 / 细胞生物学等方法,发掘与生理(干细胞、发育)、疾病(癌症、感染性疾病、心肌肥大)或药物耐药性相关的代谢重编程通路及其关键代谢酶,揭示其相应的功能与分子调控机制 /p p style=" line-height: 1.75em "   基于上述功能和机制研究,发现与疾病、耐药性相关的代谢漏洞(代谢脆弱性),确证其作为新药、克服耐药的新型分子靶标的可行性,进而用于新药研发或联合用药 发掘相应的生物标志物,用于指导临床精准用药。 /p p style=" line-height: 1.75em "   我们课题组目前已经发展了一系列基于色谱-质谱平台的代谢组学(靶向和非靶向)和代谢流分析技术方法。其中包括一种前面所提及的超灵敏的痕量靶向代谢组学方法,可在极少量(~5,000)细胞中进行代谢组学研究,并应用该方法与合作者揭示了造血干细胞异于其他造血细胞群的代谢特征及其生物学意义。此外,我们以所创建的代谢组学和代谢流分析方法为基础,进行了多项疾病代谢机制的合作研究,包括阐释了癌症细胞中新的代谢通路 非小细胞肺癌的发病、恶性黑色素瘤的转移、以及造血干细胞的代谢重编程及其分子机理,为深入理解癌症发病或转移机制,并发现新型治疗靶标提供了分子基础。 /p p style=" line-height: 1.75em "   在2016年12月回国以来的工作中,我们:1. 率先揭示了ASCL1低表达的小细胞肺癌(SCLC)亚型依赖于次黄嘌呤脱氢酶(IMPDH)介导的嘌呤从头合成的代谢机制,确证了IMPDH可作为该亚型SCLC治疗的药物新靶标,并发现了特异性靶向IMPDH的新药咪唑立宾,突破了数十年来SCLC治疗缺乏有效靶向治疗药物的瓶颈(Cell Metabolism, 2018) 2. 率先揭示了“发热伴血小板减少综合症”(Severe fever with thrombocytopenia syndrome, SFTS)病毒感染后引发精氨酸代谢异常,继而导致血小板减少和T细胞免疫功能抑制的潜在致病机制 并在临床试验中确证了“精氨酸补充疗法”可以促进患者恢复,为治疗这一致死率高达10-30%的病毒性传染病、降低病死率提供了重要的新理论和新策略(Science Translational Medicine, 2018)。另外,我们在非小细胞肺癌对EGFR TKI的耐药性、心肌肥大的代谢机制等研究中也取得了一些进展,目前相关工作正在顺利开展中。 /p p style=" line-height: 1.75em "    strong Q:在许多代谢过程中代谢产物的动态变化范围存在个体差异问题,且易受到饮食、环境、年龄等各种因素影响,所以代谢物作为生物标记物存在一定局限性。在高噪音背景下检测出代谢组生物标记物有一定难度。您在研究过程中是否遇到过类似情况?针对这一问题,研究人员有何对策? /strong /p p style=" line-height: 1.75em "   胡泽平:作为精准医学的“关键词”之一,生物标志物的发现已经成为当前医学领域的研究热点之一。包括代谢组学等在内的组学技术的快速发展为发现生物标志物带来了更大的可能性。如前所述,代谢物是存在于信号通路的终端产物,因此代谢组学所提供的信息与表型更为接近,更适于疾病分型和标志物发现的研究。但是在实际研究尤其是在人体研究中,不同代谢物的水平本身相差悬殊,并且容易受到年龄、性别、饮食、是否用药等其他因素的干扰。此外代谢组学常用的技术手段如质谱检测也容易受到其他杂质的干扰,表现为强烈的背景噪声,而且不同的检测和分析体系,有不同的噪音模式。因此,基于代谢组学的生物标志物发现需特别注意排除artificial的因素影响,而这一直以来都是相关研究的挑战和难题。从代谢组学分析技术层面来说,可通过利用高特异性、高灵敏度的平台,如液相色谱-串联质谱(LC-MS/MS)和高分辨质谱等,并采用严格的质量控制,来对包括低丰度次生代谢物在内的尽可能多的代谢物进行全覆盖分析,并进行可靠的代谢物鉴定。从生物学角度来说,单独某一种代谢物的升高,既可能是因为合成途径的增强,也可能是由于消耗途径的抑制。因此可通过分析代谢通路上、下游代谢产物来寻找一组(而不是单一的)相关性生物标记物 尤其重要的是,针对相关性生物标记物进行进一步的生物学功能和机制验证,从而实现“功能性生物标志物”的发现,将对疾病的准确诊断或预后发挥更为重要的意义。 /p p style=" line-height: 1.75em "    strong Q:您在清华大学药学院开展代谢组学分析技术和疾病代谢研究,您认为代谢组学分析技术在药物研发中所起的作用是什么?将来还可以应用在哪些方面? /strong /p p style=" line-height: 1.75em "   胡泽平:多年来的研究证实,代谢在疾病的发生、发展中起着重要作用。代谢组学研究生物体在受到病理生理刺激或遗传修饰后(包括基因或环境的改变),其内源性代谢产物的种类及数量变化,因此所有对生物体系有影响的因素均可反映在代谢组中。利用代谢组学技术对代谢组的静态和动态进行分析,可以帮助我们理解代谢异常的生物学变化过程,在疾病的病理机制、治疗靶点的发现和验证、药物的作用及毒性研究中发挥着重要作用。 /p p style=" line-height: 1.75em "   近年来,代谢组学在理解疾病(如肿瘤)的病理机制,以及药物的作用、毒性、耐药机制研究中的作用已经受到广泛关注。因此,代谢组学在新药靶标发现与确证,以及克服耐药性的研究,以及相应的药物研发中将发挥越来越重要的作用。此外,药物代谢组学在指导临床精准用药中也将扮演更令人鼓舞的角色。 /p p style=" line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 0em line-height: 1.75em "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 胡泽平课题组研究方向: /span /p p style=" text-align: justify text-indent: 0em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   基于色谱-质谱联用平台的新型代谢组学(靶向、非靶向)和代谢流分析(metabolic flux analysis)技术开发:创建和验证基于色谱-质谱联用平台(LC/MS和GC/MS)的高灵敏度、高特异性、高通量的代谢组学技术,用于分析和发现生物样本的代谢组特征与异常 创建稳定同位素示踪的代谢流分析技术,用于测量分析代谢异常相关通路的动态周转速率和方向。两者作为代谢水平上分子机制研究的互补有力工具。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 生理(干细胞、发育)、疾病(癌症、肥厚型心肌病、感染性疾病)、抗癌药物耐药性的代谢分子机制与功能:利用代谢组学和代谢流分析,结合转录组学、生物信息学和细胞、分子生物学等技术,发掘与疾病、干细胞或药物耐药性相关的代谢重编程与异常代谢通路,理解其功能与分子调控机制 并针对其代谢脆弱性发现新型药物或联合用药的分子靶标,用于新药研发、疾病分子分型和精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 基于分子机制的功能性生物标志物研究:基于代谢组学筛选和代谢分子机制研究,发现并验证高灵敏度和高特异性的功能性生物标志物,用于癌症早期检测或药物疗效预测 并对患者进行分层,以不同治疗方案实现精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 药物代谢组学(pharmaco-metabolomics)与精准治疗:以药物代谢组学分析用药患者代谢表型的个体差异及其与药物应答(药效和毒性)及药代的相关性,并揭示其分子机制,以指导临床用药、促进药物研发、实行精准治疗。 /span /p p style=" line-height: 1.75em " br/ /p
  • 安捷伦科技成功举办2013年系列脂质组学及代谢组学研讨会
    安捷伦科技成功举办2013年系列脂质组学及代谢组学研讨会 生物学的复杂性一直是研究人员通过组学方法寻找答案的强大阻力,虽然基因组学、转录组学、蛋白组学、代谢组学在工业界和学术界中应用广泛,但由于组学实验中通常产生高水平噪音,所以这些单独进行的实验往往缺乏统计学意义,难以揭示出有价值的相关性结果。 安捷伦公司凭借其横跨四大组学(基因组学、转录组学、蛋白组学和代谢组学)领域的全面分析产品,能够提供完整的多组学分析解决方案,在众多生命科学公司中独树一帜。 2013年6月初,安捷伦公司分别在上海和北京成功举办脂质组学及代谢组学研讨会,基于多组学平台的系统生物学解决方案研讨会,侧重分享安捷伦在脂质组学和代谢组学等领域的最新技术和应用进展。特邀全球脂质组学领域的领军科学家新加坡国立大学的Prof. Markus R. Wenk以及来自安捷伦公司的首席科学家Prof. Rudolf Grimm、应用支持部资深工程师冉小蓉博士、资深工程师余翀天博士、应用支持部曹喆经理、自动化解决方案业务经理梁冬博士与参会专家交流先进思想和技术,分享成功案例,展示领先的研究者们如何应用安捷伦系统生物学解决方案来回答多组学方法等领域的问题。本次研讨会吸引了来自中科院、知名医院、高校及研究机构的专家前来参会,并与演讲嘉宾进行积极热烈的讨论。 (图为:Prof. Markus R. Wenk演讲现场) (图为:Prof. Rudolf Grimm演讲现场) 作为世界领先的脂质组学/代谢组学解决方案的供应商,安捷伦公司积极参与了6月3日-4日由中国科学院上海生命科学研究院主办的2013多不饱和脂肪酸与代谢国际研讨会,与国内及国际相关领域专家学者汇报了&ldquo 安捷伦最新生物信息学软件及其在代谢组学的应用&rdquo 的演讲以及展示了相关产品,技术和应用。新加坡国立大学的Prof. Markus R. Wenk也作为特邀国际学者嘉宾做了精彩的大会演讲报告。 (图为:Prof. Markus R. Wenk在2013年多不饱和脂肪酸会议演讲现场) 关于安捷伦科技 安捷伦科技公司(NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012财年,安捷伦的净收入达到 69亿美元。如欲了解关于安捷伦的详细信息,请访问www.agilent.com。 有关安捷伦代谢组学解决方案,请登录: http://www.chem.agilent.com/zh-cn/solutions/metabolomics/pages/default.aspx 有关安捷伦蛋白质组学解决方案,请登录: http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx 有关安捷伦基因解决方案,请登录: https://www.chem.agilent.com/store/Login.aspx?ReturnUrl=%2fzh-cn%2fsolutions%2fgenomics%2fpages%2fdefault.aspx 有关安捷伦自动化解决方案,请登录: http://www.chem.agilent.com/zh-cn/Products/Instruments/automation/Pages/default.aspx 订阅Access Agilent电子刊物,请登录: www.agilent.com/chem/accessagilent:cn
  • 布鲁克和吉凯基因共建战略合作,共同打造行业高标准组学平台
    2020年8月4日上海 -- 布鲁克道尔顿中国(以下简称:布鲁克)与上海吉凯基因医学科技股份有限公司(以下简称:吉凯基因)签署战略合作协议,双方将共同打造行业内高标准的蛋白质组学综合性平台。吉凯基因临床科研事业部总经理曾立博士、布鲁克道尔顿中国区商务经理何磊先生携相关负责人参与此次签约仪式。左2:吉凯基因临床科研事业部总经理曾立博士;右2:布鲁克道尔顿中国区商务经理何磊先生;左1:吉凯基因临床科研事业部副总经理徐述先生;右1:布鲁克道尔顿中国区应用经理刘先明先生双方就建立前沿的蛋白质组和代谢组学研究平台,加深合作以帮助科学家系统性解决蛋白组以及代谢组研究领域所遇到的复杂问题进行深度探讨。会谈中,曾立博士提到:“吉凯基因自2002年成立以来,一直与临床医生保持着广泛而深入的合作,在合作中建立了更贴近医生,更侧重于临床样本的科研服务平台。吉凯基因致力于将最前沿的质谱技术应用到临床科研和诊断中,努力解决技术问题,将珍贵的临床样本转化成有价值的资源。”何磊先生提到:“布鲁克最新推出的timsTOF Pro质谱系统,是为组学研究而开发的最新一代离子淌度高分辨质谱仪,基于timsTOF Pro开发的 4D-蛋白组学技术以其优异的灵敏度、超强的稳定性、无以伦比的扫描速度而享誉业界。期待着与吉凯基因深入合作,共同为临床科研领域的用户提供更完善的解决方案。”随后,吉凯基因临床科研事业部公共平台经理金菁博士同布鲁克道尔顿中国区蛋白质组学应用经理刘先明先生就高深度、高精准度的前沿蛋白质组学分析技术进行详细交流和探讨。最后,布鲁克生命科学质谱全球执行副总裁Rohan Thakur博士作远程致辞。开启转化蛋白组学4D时代!布鲁克将离子淌度分离的概念引入组学研究,使得组学研究进入了4D新时代。基于TIMS(捕集离子淌度技术)的CCS值测定技术的出现,让每一个离子都能被检测到,这推动了深度机器学习技术,从而更深入挖掘信息。过去的一年里,各个研究团体对timsTOF质谱平台(timsTOF Pro和timsTOF fleX)的接受度超过我们预期,因为使用者们也意识到TIMS技术带来的优势。timsTOF Pro带来的采集速度与灵敏度的同时提升,使得其在短梯度下也能实现蛋白深度覆盖,结合其在大队列样本分析中展现出的卓越稳定性,相信基于4D质谱平台开发的高通量和高灵敏度临床蛋白组学方法,必将在生物医学基础研究和临床诊断中有着广阔的应用前景。伴随随着4D-蛋白质组学方案的不断完善,转化蛋白组学将进入全新时代,临床队列研究也必将从中获益。有了在4D-蛋白质组学积累的经验,布鲁克继续推进技术创新,又推出了timsTOF fleX质谱平台和MALDI-2新型离子源,实现对组学数据与质谱成像信息的整合。通过这些技术,您可以在同一台质谱上,对特定细胞群进行识别定位,通过组织成像发现在肿瘤内、肿瘤边界和肿瘤远端的脂质或细胞表面聚糖的变化,再进行蛋白质组学、脂质组学和代谢组学的深度分析。这样的研究在过去是不曾有的,这进一步推进了质谱新技术向临床应用的转化。
  • 智慧碰撞 探讨代谢组学研究的难题与挑战——紫荆代谢组学国际会议成功召开
    仪器信息网讯 2021年7月20日,由清华大学药学院主办、安捷伦科技(中国)有限公司协办的紫荆代谢组学国际会议在北京文津国际酒店成功召开。清华大学药学院胡泽平研究员和中国科学院化学物理研究所许国旺研究员共同担任本次会议主席,会议线上线下同步进行,近百位观众现场参会,近3万人次参与线上互动。会议现场会议开始,清华大学药学院教授、副院长、中药研究院院长、清华大学药学技术中心主任尹航教授,以及安捷伦高级副总裁兼首席技术官、美国国家工程院院士Darlene Solomon博士分别进行了致辞。尹航教授 清华大学药学院副院长尹航教授提到,今年是清华大学建校110周年,清华大学始终坚持面向世界科技前沿和国家的重大战略需要,坚定地走中国特色的自主创新之路。清华大学长期以来以文理学科交叉、中西融合的多学科平台为科学发展和社会进步做出了贡献。在新冠疫情的大环境下,我们积极响应习总书记提出的“面向人民健康”的号召,承担起引领科技发展方向,增进人类健康共同福祉的重要使命。今天的代谢组学会议是从整体角度出发,用高通量、可量化的组学数据分析,为疾病的发生、发展等全过程的全面认识提供支持,通过多组学的数据的整合分析已经成为科学家探索生命机制的新方向。代谢组学检测的是基因转录翻译等系列事件的最终产物,能够准确反映生物体系的状态,是当前组学发展的重要组成部分,期待今天的会议大家能够了解当前代谢组学研究的前沿进展。Darlene Solomon 安捷伦高级副总裁兼首席技术官、美国国家工程院院士Darlene讲到,此次大会聚焦生命科学和转化研究的重要课题,新冠疫情也证明,只有生命科学的进步才能为人类创造更健康的生活环境。目前生命科学研究面临很多挑战,需要技术的持续创新突破相关研究瓶颈。创新是安捷伦的基因,安捷伦不仅通过总部研发的持续投入来实现创新方案的推出,还不断拓展与科研学术客户的紧密合作来发掘创新的源泉。公司非常重视在组学解决方案上的创新,提供行业领先的代谢组学、脂质组学及多组学解决方案,同时整合细胞分析、NGS及病理学分析,帮助科学家实现疾病机制及下一代转化研究。安捷伦愿意成为用户最佳的合作伙伴,成就用户科研目标,提升人类生活质量。本次会议聚焦代谢组学前沿技术、代谢重塑与肿瘤、代谢重塑与病毒传染病等研究中的最新进展,共有10位国内外代谢组学领域具有重要影响力的专家学者通过现场或者在线的形式分享了精彩的报告。许国旺 研究员 中国科学院大连化学物理研究所报告题目:《向着代谢组的全景分析》税光厚 研究员 中科院遗传发育所分子发育生物学国家重点实验室报告题目:《Systematic discovery and functional analysises of metabolic disorders in COVID-19》Jason Locasale,PhD,Duke University(线上)报告题目:《The Impact of Cellular Metabolism on Chromatin Dynamics and Epigenetics 》瑕瑜 教授 清华大学化学系报告题目:《脂质组精细结构分析的质谱方法》张金兰 研究员 中国医学科学院北京协和医学院药物研究所报告题目:《基于代谢途径内源性代谢物分析新方法研究》朱正江 研究员 中国科学院上海有机化学研究所报告题目:《基于离子淌度质谱的多维高分辨代谢组学技术》冉小蓉 博士 安捷伦创新合作研究中心报告题目:《代谢组学、代谢流整合细胞分析——深入功能和机理阐释》Daniel Raftery,PhD, University of Washington报告题目:《So Why is Biomarker Validation So Hard in Metabolomics? Exploring Data Quality and Confounding Effects》Justin R.Cross,PhD,Donald B.and Catherine C.Marron Center Metabolism Center报告题目:《Building a successful in horse metabolomics capability for biomedical research》胡泽平 研究员 清华大学药学院报告题目:《新型代谢组学技术揭示病毒性传染病的代谢重塑》会议特别设置了圆桌讨论环节,主持人胡泽平从对报名听众征集到的200多个的问题中选择了7个具有代表性的问题,包括代谢组学技术标准化、脂质组学质谱精细结构、非靶向代谢组学中代谢物鉴定深度、空间代谢组学、代谢流技术、单细胞和亚细胞的代谢组学、多组学联合研究等内容。与会嘉宾现场进行了热烈的讨论,智慧碰撞,为代谢组学研究人员提供了更多思路。圆桌讨论全体参会人员合影后记:代谢组学作为生命组学家族的最新成员和重要环节,被广泛应用于与生物医药相关的各个领域,如疾病机制阐释、药物靶标发现、药物毒理及安全评价、精准医学和用药及中医药现代化等研究。此外,代谢组学与其他生命组学和人工智能等生物计算技术结合,可推动精准大健康的逐步实现。紫荆代谢组学国际会议,专家们带来了满满的干货,现场嘉宾和听众收获匪浅,纷纷表达了对清华大学药学院和安捷伦的感谢。正如许国旺研究员所言,代谢组学是正在成长发育的青少年,以后前景不可估量。目前代谢组学研究中还存在一些挑战和难题,这样的学术探讨十分必要,期待在相关领域专家和仪器企业的共同努力下,推进代谢组学更快发展,更好的应用于人类健康的保障当中。
  • 超高分辨质谱助力组学发展|赛默飞助阵第二届全国代谢组学及蛋白质组学双星峰会
    上海 双星峰会2021年11月27-29日,第二届全国代谢组学及蛋白质组学双星峰会在上海隆重召开,此次会议汇集了近200位国内外相关领域的知名专家、学者以及临床疾病、中医药、肿瘤、植物等多个研究方向的研究人员积极参与,共同交流探讨基于质谱的蛋白组学及代谢组学在精zhun医学、创新药、植物生理、营养健康、环境和食品等转化应用,共商我国代谢组学和蛋白质组学在后疫情时代的研究与发展。为降低疫情影响,大会采取线上同步直播的方式,在线人数达到600人。在此次会议中,赛默飞质谱组学应用专家鼎力助阵,分享超高分辨质谱技术在组学研究中的应用及进展,助力组学研究发展。在本次大会主会场上,赛默飞质谱组学应用资shen工程师范自全报告了“组学前沿-超高分辨质谱技术在组学研究中的应用和进展”,引起大家高度关注。上世纪90年代初开展的人类基因组计划,在破译人类遗传信息密码的同时,为科研学者提供了大量的完整基因编码序列,从而奠定了大量、快速鉴定蛋白质序列的坚实基础。然而,蛋白质以及代谢物的数量远远超过基因组中基因数量——基因分析量在万级,而蛋白质分析量可能在十万-百万级。完整的组学分析对质谱的性能提出了非常高的技术需求。赛默飞Orbtrap超高分辨质谱技术具有超高分辨率、超高质量精度、超高的稳定性及灵敏度等性能优势,助力科学家进行高通量的蛋白质和代谢物的结构表征和定量分析。质谱技术作为蛋白质和小分子物质的主要检测手段,借助赛默飞Orbitrap高分辨率质谱凭借其高精zhun的定性、定量能力,助力蛋白质组学和代谢组学研究实现精确医疗研究。通过蛋白质组、代谢组、脂质组等多种组学的联合研究,为疾病致病机理发现、疾病的早期诊断及预后生物标志物、疾病分型以及新的治疗靶点研究提供理论依据。随着研究人员对蛋白质组学和代谢组学研究的深入,对样品中分子的空间分布情况及其相互作用的需求日益增加。质谱成像技术能够直观的检测样品中分子的空间分布信息,近年来受到了高度关注与广泛应用,成为与传统光学显微成像互为补充的新一代“分子成像显微镜”。基于Orbitrap的成像技术具有超高的质量及空间分辨率,ji致清晰的成像结果为多种应用领域提供全面丰富的多层次数据。例如在赛默飞质谱成像技术支持下,Spengler教授团队研发出低至1.4μm 空间分辨率的应用,小鼠脑组织成像结果更加清晰。这个水平的空间分辨率也使得单细胞质谱成像技术成为可能。在较大的组织甚至整体动物研究方面,国内学者采用自主研发的空气动力学气流辅助解吸电喷雾电离质谱成像技术,在大鼠脑、肾脏和人食道癌组织中观察到数千种代谢物,并且采用人工神经网络算法,突破了定量研究中的难题,为疾病研究提供了有力的分析工具。会场外赛默飞领xian的Orbitrap质谱技术在现场一众质谱厂商中尤显突出。展台上全方位展示了基于其超高分辨的静电场轨道阱(Orbitrap)质谱平台结合其功能强大的软件平台提供的蛋白质组学及代谢组学全流程的整体解决方案,助力科研超越。
  • 安捷伦与Stemina宣布在代谢组学领域合作
    安捷伦科技公司与 Stemina 生物标记物发现公司(Stemina Biomarker Discovery, Inc.)日前宣布,两家公司将共同努力促进 Stemina 的代谢组学研究。Stemina 将应用代谢组学方法进行干细胞的生物标记物发现,继而用于药物筛选和药物研发。   安捷伦提供1290 Infinity UHPLC 系统用于分离干细胞代谢产物,结合 6530 精确质量四极杆飞行时间质谱仪(Q-TOF MS)进行代谢产物的鉴定。安捷伦还提供Mass Profiler Professional 软件,帮助 Stemina的研究人员对代谢组学实验得到的复杂数据进行阐释。   “我们很高兴能够拓展与安捷伦的合作,从而改善我们的科学平台,促进我们对于发育毒性和孤独症相关的重要小分子的发现,”Stemina 首席执行官 Beth Donley 说,“Stemina自2007 年成立以来就一直使用安捷伦的技术,我们对安捷伦的仪器、支持与合作非常满意。”   “代谢组学是我们的一个主要增长领域,Stemina所进行的创新工作正是我们希望支持的,”安捷伦副总裁兼生物系统事业部总经理 Gustavo Salem 说,“我们近年来积极开发用于生命科学的 LC/MS 产品组合,而 Mass Profiler Professional 软件能够对代谢组学研究中得到的大量复杂数据集进行可视化的生物学通路分析。”   关于 Stemina 生物标记物发现公司   Stemina 研究团队是基于首席科学官、兽医师 Gabriela Cezar 博士的研究而建立的,致力于发现、开发以及商品化分子生物标记物,从而提高药物安全,保障人类健康。Paul R. West 博士是公司的生物分析化学部主任。Stemina 细胞分析是两种顶尖技术的战略性结合:人类胚胎干细胞(hES)技术和代谢组学技术。Stemina 使用安捷伦质谱系统分析hES 细胞响应药物、损伤或疾病时所分泌的小分子以及产生的分化细胞(例如心肌细胞和神经细胞)。该公司已经在人类胚胎干细胞对药物响应的代谢组学分析上取得了重大进展。该项研究的成果就是筛选致畸药物的分析方法“devTox™ ”。更多 Stemina 相关信息,请访问www.stemina.com。   关于安捷伦科技公司   安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者。公司的 16,000 名员工在 110 多个国家为客户服务。在 2009 财政年度,安捷伦的业务净收入为 45 亿美元。更多安捷伦科技相关信息,请访问:www.agilent.com。
  • 沃特世在ASMS 2016发布代谢组学离子淌度数据库
    Waters(沃特世公司)在第64届美国质谱年会(ASMS 2016)发布了为以离子淌度质谱为基础的研究提供代谢分析参考的全新数据库Metabolic Profiling CCS Library。Metabolic Profiling CCS Library包含了900余种碰撞横截面值(CCS), CCS能够评价气相分子的三维形状,是另一维度的分子鉴定标准,能够从不同角度验证常规质谱的分析结果。该数据库还包括600余种MS/MS质谱信息。  Waters UNIFI Scientific Information System是Waters一款将仪器控制与数据分析相结合的独特软件平台,能够实现色谱和质谱结果的可视化管理。Metabolic Profiling CCS Library是UNIFI Scientific Information System中的一部分。  Metabolic Profiling CCS Library能够使得科学家在应用离子淌度技术时能够准确的鉴定复杂样品基质中的生物标记物。CCS是能够精确反应离子大小、形状的重要参数,在非靶向代谢组学研究中涉及极为复杂的少数样品时,研究者可通过CCS分辨不同样品组间显示的显著区别,从而鉴别其内源性代谢物与脂质。  “无论是鉴别内源性生物标记物的作用还是了解疾病的发展阶段,代谢组学和脂质组学对于生物标记物的发现与翻译研究非常重要。对于想要更深入的了解生物学基础的研究者,促进非靶向代谢组学研究的离子淌度质谱是非常合适的工具。离子淌度可以增加色谱峰的峰容量,其CCS能够提高研究者鉴定特定代谢物的准确性。”Waters 组学解决方案高级业务发展经理 David Heywood评论说。  Waters Vion IMS QTof and SYNAPT G2-Si HDMS 高分辨质谱系统能够减少离子淌度分析中的操作复杂性。Metabolic Profiling CCS Library适用于这两套质谱系统。编译:郭浩楠
  • 【专刊推荐】代谢组学:方法的开发及应用
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp Journal of Analysis and Testing (JOAT) 是由中国有色金属学会、北京有色金属研究总院于2017年正式出版的英文国际期刊,每年出版四期,合作出版机构是德国Springer Nature。Journal of Analysis and Testing (JOAT)以快速发表最新重要研究成果为办刊宗旨,为分析化学及相关学科的科研人员提供一个及时交流科研成果与思想的新平台; 致力于发表分析化学科学和技术研究的前沿性论文,快速报道分析化学科学的基础研究和应用进展。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong JOAT专刊“代谢组学:方法的开发及应用” /strong 由 strong 中科院大连化学物理研究所许国旺研究员 /strong 担任客座主编。 span style=" text-indent: 2em " 专刊重点总结了 strong 代谢组学相关领域的最新进展 /strong ,报道了对详细结构表征和对特定代谢物进行精准的测定。包括5篇综述和4篇原创论文。希望本期专刊的这一系列文章对读者了解代谢组学的研究进展有益。 /span span style=" text-indent: 2em " & nbsp 本网与JOAT联合将对专刊发表的论文逐篇进行详细介绍,以飨读者! /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 749px " src=" https://img1.17img.cn/17img/images/202007/uepic/aa59fe8e-3cda-43f9-a637-21e5898cbb4d.jpg" title=" 1111111111.png" alt=" 1111111111.png" width=" 600" height=" 749" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong style=" text-align: center text-indent: 2em " 代谢组学:方法的开发及应用 /strong /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 许国旺(中科院大连化学物理研究所) /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 受JOAT邀请,我担任客座主编,组织了本期专刊:代谢组学:方法的开发及应用。专刊包括5篇综述和4篇研究论文。代谢组学是一门研究生物体内代谢物的科学,已被用于寻找疾病诊断和分型中新的生物标记物、助力药物研究开发,同时在植物和微生物领域也发挥重要作用。为完成代谢组学研究,分析方法相当重要。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本专刊关注亲水代谢组学分析中LC-MS面临的挑战,新加坡南洋理工大学王玉兰教授和复旦大学人类表型组研究院唐惠儒教授等综述了非衍生和衍生策略,可为亲水性代谢组学分析提供多样性选择。中科院上海有机化学研究所朱正江研究员等综述了离子色谱-质谱在非靶向代谢组学中从分离到鉴别过程中的应用,讨论了这一技术在提高非靶向代谢组学分析能力方面未来的发展。中国药科大学许风国教授等综述了化学选择性探针的工作流程、设计及在天然产物富集和代谢物衍生中的应用。脂质组学是代谢组学中关注脂质的细分领域。韩国首尔大学Kown教授等主要讨论了非靶向LC-MS基脂质组学的最新进展,强调了在代谢表型研究中数据处理的重要性。单细胞水平的代谢组学研究越来越引起关注。中科院大连化学物理研究所石先哲研究员等综述了基于微流控和质谱的单细胞代谢组学研究的最新进展。这些综述都总结了代谢组学相关领域的最新进展。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 除了综述,研究论文也报道了全新成果。清华大学瑕瑜教授等的论文采用基于Paternò -Bü chi(PB)光化学衍生的在线LC-PB-MS方法,开展了人血小板中磷脂异构体的全面解析研究,可以实现对磷脂质的多级结构鉴定,包括头部集团,链组成,脂肪酰基/烷基链中C=C位置。中国医学科学院张金兰研究员等基于实验室已建立的酸性鞘糖脂分析方法,提出脑胶质瘤大鼠中酸性鞘糖脂代谢紊乱和替莫唑胺抗脑胶质作用的UHPLC-Q-TOF-MS分析结果。上海交通大学系统生物医学研究院吕海涛研究员等发表了基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢的最新研究成果。为了增强大豆中总蛋白结合的色氨酸的定量分析的准确性,美国密苏里大学雷振天博士等比较了四种通用蛋白质沉淀方法,并选用最优方法从糖类中分离大豆蛋白质。这些论文反映了对详细结构表征和对特定代谢物进行精准测定的要求。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我对所有积极响应并为提交论文付出努力的的作者和编辑部的支持表示感谢。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 点击附件查看文章: /strong /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/47fed32a-ec72-4a4f-95ac-11f3a376106d.pdf" title=" Xu2020_Article_Editorial.pdf" Xu2020_Article_Editorial.pdf /a /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 许国旺研究员简介 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/202007/uepic/d449e087-e105-4390-9f06-44790cee8e81.jpg" title=" 微信图片_20200727112400.jpg" alt=" 微信图片_20200727112400.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1991年在中国科学院大连化物所获理学博士学位。1995.10-1997.9获得马普(Max-Planck-Institut)研究基金在德国Tuebingen大学医学院工作。1997年11月任中科院大连化物所研究员。1999年5月被聘为博士生导师。2004年获国家自然科学基金委杰出青年基金资助,2005年起担任代谢组学研究中心主任,2008年、2017年起分别担任中国科学院分离分析化学重点实验室副主任和主任,2016年起担任大连化物所生物技术部常务副主任。现为中国化学会色谱专业委员会主任、中国抗癌协会肿瘤代谢委员会副主任、中国化学会理事、中国质谱学会常务理事。2007-2014年曾任J. Chromatogr. B的editor,& nbsp 现正在担任TrAC的特约编辑和Anal. Chim. Acta, Metabolomics, Anal. Bioanal. Chem.,Metabolites, J. Pharm. Biomed. Anal.,J. Chromatogr. B,和J. Sep. Sci.等10多个国内外杂志编委。国际高效液相色谱会议(HPLC)科学委员会常委,第30届国际毛细管色谱会议和第33、37届国际高效液相色谱会议副主席。他也是多届国际毛细管色谱会议(ISCC)的科学委员会委员和国际代谢组学会议的组织者和科学委员会成员。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 至今为止,已发表SCI文章420多篇,包括PNAS, Nature Protocols, Hepatology, Clin. Chem., Cancer Res., Diabetes Care, Advanced science, Anal. Chem., TrAC, J. Chromatogr. A, J. Proteome Res.等国际著名杂志。H-指数: 59(Web of Science)、74 (Google)。申请发明专利超百件(其中50多项已授权)。一项成果获国家科技进步二等奖(第五名),一项获辽宁省科技发明二等奖(第一名),两项成果获中国分析测试协会科学技术成果一等奖。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 许国旺研究员一直从事色谱及其联用技术的基础理论及应用研究。根据样品对象的复杂性,在方法学上,走过了从经典一维色谱到中心切割多维色谱、再到全二维色谱的研究过程,逐渐形成了以“多维色谱+联用技术+化学信息学”的科研特色;在研究对象上,从石化、环保领域逐渐实现了向生命科学(药物、代谢组学、生物催化)领域的转化。从1996年开始开展“健康和代谢的关系”研究,并逐步进入代谢组学领域,将研究方向集中到代谢组学的技术平台和其在重大疾病的生物标志物发现、中药疗效毒性和作用机理研究等。许国旺是我国最早进行代谢组学研究的学者之一。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 主要研究方向:复杂样品分离分析方法的创新性研究;代谢组学分析技术平台及其在疾病、中药、植物表型、食品安全等方面应用的研究。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 许国旺研究员课题组主页: a href=" http://www.402.dicp.ac.cn/" target=" _blank" strong http://www.402.dicp.ac.cn/ /strong /a /p p br/ /p
  • 拓展组学研究的边界 _ 赛默飞携手迈特代谢共建战略合作实验室
    拓展组学研究的边界 | 赛默飞携手迈特代谢共建战略合作实验室近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与武汉迈特维尔生物科技有限公司(以下简称:迈维代谢)合作实验室签约暨揭牌仪式在武汉隆重举办!国际知名代谢组学专家海南大学罗杰教授、知名蛋白质组学专家中国医学科学院苏州系统医学研究所叶子璐研究员出席并见证签约仪式。本次战略合作将通过结合赛默飞全球领先的质谱技术和迈维代谢领先的组学技术创新平台,推动双方深入拓展蛋白质组学及代谢组学分析研究领域,进一步推动新技术在医学研究、生命科学领域的成果转化和应用,开启多组学驱动的数字生命新时代!赛默飞与迈维代谢签约仪式多组学研究对于生物体内的各种生物过程、疾病的发生机制以及药物的研发都有着重要的意义。迈维代谢创造性开发了以“广泛靶向”专利技术为核心的高通量、超灵敏代谢组技术平台,已成为国内代谢组学领域发展最快、成果最多的知名企业之一。本次的战略合作,通过联合赛默飞强大的质谱技术,将进一步帮助迈维代谢拓展蛋白质组学及代谢组学分析的无限可能,深入更多组学研究高精尖领域,达到前所未有的研究深度。赛默飞色谱与质谱业务中国区商务副总裁何燕女士为迈维代谢颁发 Orbitrap Astral 高分辨质谱仪中国首批用户证书 近年来以质谱分析技术为核心的多组学研究,极大的推动了精准医学的进步,迈维代谢专注于领先的代谢组学服务,自主创新建立了220万代谢物的专属数据库,与赛默飞的战略合作将进一步帮助迈维代谢拓展蛋白质组学等多组学领域,从广泛的靶向分析到更广阔的非靶向分析,结合产学研发展需求,助力精准医学的研究和临床和转化! 会议邀请了中国医学科学院苏州系统医学研究所叶子璐研究员,为参会人员带来《Faster and ultra-sensitive analysis of proteomes enabled by narrow-window DIA》报告,为大家带来 Orbitrap Astral 高分辨质谱在蛋白质组学的最新全球数据,让与会专家领略到 Astral 在蛋白质领域的无限潜力。赛默飞液质应用专家带来《赛默飞全新一代高分辨质谱技术提升蛋白组学分析极限》报告,报告中提到 Astral 从解决通量的 8 分钟超过 8000 个蛋白的鉴定水平,到追求鉴定覆盖度的 15000 个蛋白的鉴定,Orbitrap Astral 高分辨质谱仪兼具超高的检测通量和深度蛋白组覆盖能力。在代谢组学方面,Astral 既能提供高质量分辨率的一级图谱,又能利用非对称轨道无损质量分析器提供快速、高灵敏度的二级图谱采集,从而开发出全新的 workflow(SQUAD),在一次上样中完成精准定性定量的过程,解决了代谢组学走进大数据时代的问题。系统生物学研究内容主要包括“基因-蛋白-代谢-表型”等多个层次,越来越多研究表明,多组学已成为生命科学和医学研究的重要工具。“基因组反映了可能发生的变化,蛋白组和代谢组反映了正在或者已经发生的变化”,迈维代谢持续创新质谱技术,创新性的开发出了广泛靶向代谢组检测技TM,建立了行业领先的植物代谢数据库和医学代谢物数据库 MWDB,真正实现了“高通量、超灵敏、广覆盖”,尽可能多的检测样本中所有的小分子化合物。与此同时,迈维代谢和赛默飞达成战略合作,在引进新一代质谱平台 Orbitrap Astral 并同步配置 Orbitrap Exploris 120 质谱仪后,双方进一步深入技术联合开发,携手努力打造为世界领先的创新蛋白质组和代谢组研发中心。加快和深化对拓展蛋白质组学及多组学领域的探究,更好地服务于生命科学和医学健康研究领域,助力精准医学高质量发展!关于迈维代谢武汉迈特维尔生物科技有限公司(简称“迈维代谢”) ,总部位于武汉国家生物产业基地,此外建有上海/嘉善华东研发中心、长沙 GMP 生产中心、武汉迈维医学检验实验室,另设北美子公司,是国内首家代谢组学境外公司。公司专注于提供领先的代谢组学技术服务及创新临床检测产品应用,致力于代谢基础研究、分子设计育种、疾病诊断、药物研发及与代谢组学相关领域应用研究,为生命科学研究、改善人类健康做出持续贡献。
  • 聚焦代谢组学,结缘大咖团队
    一个最受关注日渐活跃的研究方向 世间万物朝夕发展,科学技术日新月异。在探索自然、解密生命的研究征程里,总是顺应着技术的进步与研究的深入源源不断地出现新的领域与方向,组学是其中一门代表学科,发展至今拓展出了多个分支,备受学术界青睐。第一个提出来的组学(omics)概念是1986年由美国遗传学家Thomas H. Roderick提出的基因组学(genomics)。基因组学是对生物体所有基因进行集体表征、定量研究及不同基因组比较研究的一门交叉生物学学科。之后又基于差异组别整体分析对比的原理,产生了各种不同研究对象的组学,如转录组学(transcriptomics)是在整体水平上研究细胞中基因转录的情况及转录调控规律的学科;蛋白组学(proteomics)研究一种细胞乃至一种生物所表达的全部蛋白质的的数目、水平及其更新等;表型组学(phenomics)是研究某一生物或细胞在各种不同外部环境条件下所有表型的学科。 各类组学的关系代谢组学Metabonomics /Metabolomics 是一门对生物体内小分子代谢物组成的时空变化进行研究的学科。代表了生物动态系统中最下游的阶段,是系统生物学的重要组成部分。我们借用学者的总结把答案描述得通俗易懂一点,那就是“基因组学和蛋白质组学告诉你什么可能会发生,而代谢组学则告诉你什么确实发生了。” 中科院大连化物所许国旺课题组 许国旺课题组是国内最早从事代谢组学的研究团队之一,开展着国际前沿的研究和引领着学科发展的趋势。 许国旺研究员于1991年在中国科学院大连化物所获得理学博士学位,97年晋升为研究员,99年聘为博士生导师,2005年起担任代谢组学研究中心主任,2016年起担任大连化物所生物技术部常务副主任, 2017年起担任中国科学院分离分析化学重点实验室主任。现为中国化学会色谱专业委员会主任、中国抗癌协会肿瘤代谢委员会副主任、中国化学会理事、中国质谱学会常务理事。现担任TrAC-Trends Anal. Chem.的特约编辑和Anal. Chim.Acta, Metabolomics, Anal. Bioanal. Chem.,Metabolites,J. Pharm. Biomed. Anal.,J. Chromatogr. B,Chromatographia等10多个国内外杂志编委,国际高效液相色谱会议(HPLC)科学委员会常委,以及多届国际毛细管色谱会议(ISCC)的科学委员会委员和国际代谢组学会议的组织者和科学委员会成员。至今为止,已发表SCI文章410多篇,包括PNAS,Hepatology, Clin. Chem., Cancer Res., Diabetes Care, Diabetologia, Anal. Chem.,TrAC, J. Chromatogr. A, J. Proteome Res., Mol. Cell Proteome等国际著名杂志。H-指数: 57(Web ofScience)、72 (Google)。申请发明专利超百件(其中50多项已授权)。一项成果获国家科技进步二等奖(第五名),一项获辽宁省科技发明二等奖(第一名),两项成果获中国分析测试协会科学技术成果一等奖。 许国旺研究员课题组是中科院大连化物所最具综合实力的课题组之一,前身是国家色谱研究分析中心气相色谱组,2001年大连化物所成立生物技术部后,更名为高分辨分离分析及代谢组学组, 也是我国最早进行代谢组学研究的课题组之一。该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。 许国旺研究员及组员合影,摄于2019年9月 有幸结缘默默倾献 岛津公司作为全球著名的分析仪器综合生产厂商,具有着世界上顶尖的液相色谱、气相色谱等色谱产品和单四极杆质谱、三重四极杆质谱、高分辨质谱LCMS-IT-TOF和Q-TOF,无机质谱ICP-MS,生命科学产品MALDI-TOF、质谱显微镜等齐全的质谱产品。这些质谱仪器与分离技术联用,加上专业的数据库、方法包和丰富的数据处理软件,可以满足代谢组学研究的各种需求。在科技的前行中,岛津公司的产品有缘进入到许国旺老师的实验室,并以优异的性能和诚挚专业的服务获得许老师团队的认可,开始了多年紧密的互相合作。 中国科学院大连化学物理研究所许国旺研究员课题组实验室配备了一系列岛津分析仪器,从早期的色谱光谱分析仪器LC-10ATvp、GC-17A+QP-5000、 UV-2450,到气质联用仪GCMS-QP 2010、GCMS-QP 2010 Plus,再到高端质谱仪器如离子阱飞行时间质谱液质联用仪LCMS-IT-TOF,三重四级杆液质联用仪LCMS-8050,三重四级杆气质联用仪TQ-8050等。2001年大连化物所高分辨分离分析及代谢组学组成立之后,截至2019年10月,课题组利用岛津分析仪器已经在国内外各类期刊上发表了77篇文章。研究方向涵盖到以代谢组学分析技术平台在疾病、中药、植物表型等方面的应用,复杂样品分离分析新方法、新技术等方面。 工作中的岛津仪器:左LCMS-8050;右GCMS-TQ8050 来自岛津用户的真实体验与评价 相伴多年,默默倾献。岛津公司的产品与服务获得了许国旺研究员的高度评价。许国旺研究员表示:“岛津公司作为全球著名的分析仪器综合生产厂商,不但是世界上顶尖的液相色谱、气相色谱等分离仪器的生产厂商,也是质谱领域的领先者。中国科学院大连化学物理研究所“高分辨分离分析及代谢组学课题组”,已在色谱领域钻研探索多年。近年来以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,正在开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。岛津公司一直鼎力支持本课题组的科研工作,从早期的色谱光谱分析仪器、气质联用仪,再到高端质谱仪器如离子阱飞行时间质谱液质联用仪、三重四级杆液质联用仪、三重四级杆气质联用仪等。通过与岛津公司长期的密切合作,课题组的科研工作取得了一系列成果。“ 岛津钟启升博士与许国旺研究员合影 科研路漫漫,岛津长相伴。在此衷心感谢许国旺老师及其课题组成员杰出工作和无私分享的同时,我们也希望继续以先进的科学技术和优质的服务与更多科技工作者结缘,成为你们科研路上坚实的后盾,做你们迈向学术高峰的忠诚伴侣。 撰稿人:钟跃汉
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
  • 沃特世推出全新CCS数据库,用于代谢组学/脂质组学生物标志物的结构鉴定
    囊括900多个内源性物质的CCS(碰撞截面积)数据库,提高分析人员对非目标性生物标志物鉴定的信心沃特世公司(纽约证券交易所代码:WAT)近日针对基于离子淌度质谱技术的科学研究推出了全新的代谢组学与脂质组学分析数据库。此数据库囊括了900多个化合物的碰撞截面(CCS)测得值,CCS值体现了测量气态离子的三维构象,为确认生物标志物的结构提供了另一个参数。此外,数据库中还包括600个化合物MS/MS质谱图,用于生物标志物的结构确认。 这一全新的数据库目前已经整合至沃特世公司独有的软件平台UNIFI科学信息系统中,该平台兼具仪器控制、数据分析、可视化以及色谱和质谱结果管理功能。此外,该数据库还可与Progenesis QI软件联合使用。沃特世已经在美国质谱协会(ASMS)第64届年会上隆重介绍了这款全新的数据库。 借助全新的CCS数据库,科学家们可以通过离子淌度分离技术准确鉴定复杂样品基质中的生物标志物。CCS值是一项精确的离子物理化学性质,与气态离子的大小、形状和所带电荷有关。在样品量有限且样品高度复杂的非靶向代谢组学与脂质组学研究中,研究人员可利用数据库中的CCS值确认不同样品组中表现出显著统计差异的内源性代谢物和脂质的鉴定结果。 沃特世组学解决方案高级市场开发经理David Heywood表示:“代谢组学与脂类组学是生物标志物发现和转化研究的关键技术,无论我们是需要通过鉴定目标内源性生物标志物进行功效研究,或者需要了解疾病进展,这些技术都在研究中占据着重要的位置。在非靶向代谢组学与脂质组学研究中,研究人员需要尽可能多地获取基本生物学信息,因此离子淌度质谱技术必不可少。离子淌度技术可提高总体色谱峰容量,而CCS值则能够帮助研究人员更加有信心地对特定代谢物进行准确鉴定。” 适用于UNIFI的代谢组学与脂质组学分析CCS数据库可与Vion IMS QTof和SYNAPT G2-Si HDMS系统配合使用,使高分辨淌度质谱的使用更加简单方便。 高分辨淌度质谱技术则能够与Progenesis? QI软件配合使用,可以帮助从事生物标志物鉴定的研究人员在代谢组学与脂质组学中获得稳定可靠的鉴定结果。 更多信息:http://www.waters.com/clarity 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 ###Waters、UNIFI、Progenesis、Vion、SYNAPT和HDMS是沃特世公司的商标。
  • 代谢组学研究最新进展与代谢物鉴定分析交流会顺利举行
    p   strong  仪器信息网讯 /strong 2016年5月6日,由中国科学院大连化学物理研究所代谢组学研究中心与大连达硕信息技术有限公司联合主办的代谢组学研究最新进展与代谢物鉴定分析交流会通过仪器信息网网络讲堂平台顺利举行。 /p p   本次会议采取了网络直播与现场会议相结合的模式,300多名用户报名参加了在线的网络直播会议,同时有近50名来自有大连理工大学、黑龙江中医药大学等高校的研究人员在大连化物所参加了现场会议。 /p p   据介绍,本次交流会的举行主要是为了庆祝OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统开发完成。该系统由大连达硕信息技术有限公司与中国科学院大连化学物理研究所代谢组学研究中心共同开发完成,基于近2000个标准化合物,4个主流网络数据库,以及用户自建数据库,可实现代谢物的快速、批量、准确定性分析。 /p p style=" TEXT-ALIGN: center" img title=" 会议直播.jpg" style=" HEIGHT: 347px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201609/insimg/dc5e6755-def3-4ad1-b27d-8b13c1d917d8.jpg" width=" 500" height=" 347" / /p p style=" TEXT-ALIGN: center" img title=" 许国旺2c.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/606abeb9-aeb1-45dc-937f-46d81e32daad.jpg" / /p p   会议中,中国科学院大连化学物理研究所代谢组学研究中心许国旺研究员首先从代谢组学概述、代谢组学研究方法、代谢组学应用的新进展、前景展望等四个方面对代谢组学做了详细介绍。 /p p   代谢组学是研究生命体对于内在基因突变、病理生理变化以及外在环境等因素刺激作用下的体内的动态多元的代谢物响应,定性定量描述生物体内所有内源性代谢物。与其他组学相比,基因及环境因素改变而引起的变化在代谢组上体现的更为显著,并且代谢组变化快速、使得其对环境变化的应答更为及时灵敏,对于发现实际表型变化前的早期代谢扰动具有重要的潜力。目前,代谢组学在疾病、植物、肠道菌群、药物研发、食品等领域都有应用。 /p p   许国旺在报告中提到“基因组学和蛋白质组学告诉你可能发生了什么,而代谢组学则可以告诉你已经发生了什么,疾病变化往往在代谢组中能更早的体现出来,因而在早期疾病诊断中更具优势。” /p p   对于代谢组学的未来的发展,许国旺介绍说如何更好的表征代谢物,拓展代谢组学的分析能力,从而促进代谢组学在生化医学领域的应用是大家所关注的,如进行规模化代谢物鉴定,提高对所获取代谢物信息的利用率 高通量分析,应对大规模代谢组学分析 提高对低丰度代谢物信息的利用 由经典的表型发现向功能表征推进等。 /p p   大连达硕信息技术有限公司总经理曾仲大博士在会议中介绍了OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统的开发背景,需要解决的主要问题,采取的解决方案和关键技术,以及相应的应用实例。 /p p   曾仲大介绍说代谢物的鉴定是后续深度生物解释的基础和前提。而目前普遍认为,常规方法(主要指LC-MS sup n /sup 、GC-MS和NMR)能检测和鉴别的代谢物应不到样品中代谢物总量的10-15%。一次常规的代谢组学血液分析,在所获得了成千上万质谱特征中,往往仅能鉴定出几十至上百种代谢物,且大多数情况下并没有验证其准确性。 /p p   OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统融合多级质谱的精确质量数与保留时间信息,实现未知代谢物的多层次鉴定分析。该软件的特色在于快速、准确的实现未知代谢物定性,减少繁复的操作步骤,降低对使用者的要求。它拥有信息完备的自建标准数据库、集成了主流网络数据库、采用先进的定性匹配算法、能够实现多层次未知物定性,可实现定性经验的传递,以及丰富的数据库功能。 /p p   本次会议得到了用户的充分认可,会后仪器信息网的网友们通过多种渠道对许国旺研究员和曾仲大博士带来的精彩报告表示感谢。错过会议的网友们可查看本次网络讲座的视频回放,了解报告详细内容。请见链接: a href=" http://www.instrument.com.cn/webinar/Video/play/103101" http://www.instrument.com.cn/webinar/Video/play/103101 /a /p
  • 布鲁克核磁 & 质谱网络研讨会 — 代谢组学专题
    布鲁克作为全球知名的仪器供应商,多年来一直专注于开发核磁和质谱技术在代谢组学研究中的应用,并不断取得突破性进展。此次,布鲁克核磁共振联合质谱部门将举办代谢组学行业专场网络研讨会。会中,布鲁克的技术专家们将为您带来核磁共振和质谱技术在行业的最新应用。您将了解到:核磁代谢组学方案疾病的发生必然导致机体出现病理生理异常,进而诱导体内代谢物水平发生变化。而代谢组学通过对体内复杂代谢物的动态变化进行分析,实现疾病的早期诊断和个性化治疗监控。本报告将分享Bruker Biospin最新发布的疾病诊断研究(IVDr)方案,包括一键式全自动地完成人体体液样本的NMR数据采集、谱图解析、代谢物定量以及疾病诊断分析。该报告将分享许多应用实例,敬请期待。质谱高通量代谢组学方案代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学,主要的研究对象是脂质,氨基酸等小分子代谢物。代谢组学的研究通常会伴随快速稳定检测大批量样本的困扰,仪器的性能和结果的稳定性是保证此类研究质量的关键,布鲁克质谱以其优越的性能在高通量的样本分析方面表现出了极大的优势,为代谢组学的分析提供了稳定优异的分析平台。时间和地点:2020年5月27日,周三,下午14:30-16:00观看方式:点击观看演讲嘉宾:任萍萍博士布鲁克核磁高级应用科学家毕业于中科院武汉磁共振中心,在NMR及分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。樊朝阳布鲁克道尔顿应用工程师负责代谢组学质谱新技术的推广,有丰富的代谢组学质谱分析经验。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制