当前位置: 仪器信息网 > 行业主题 > >

新型普适碱基编辑器

仪器信息网新型普适碱基编辑器专题为您整合新型普适碱基编辑器相关的最新文章,在新型普适碱基编辑器专题,您不仅可以免费浏览新型普适碱基编辑器的资讯, 同时您还可以浏览新型普适碱基编辑器的相关资料、解决方案,参与社区新型普适碱基编辑器话题讨论。

新型普适碱基编辑器相关的资讯

  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • 上科大与西湖大学团队联合在微型基因编辑器开发与机制研究方面取得进展
    在国家自然科学基金项目(批准号:22277078、22077083、22207074)资助下,上海科技大学季泉江教授与西湖大学申怀宗教授团队合作在微型基因编辑器的开发与机制研究方面取得新进展,相关成果以“氧化硫酸杆菌微型Cas12f1核酸酶的分子结构与工程进化(Structure and engineering of miniature Acidibacillussulfuroxidans Cas12f1)”为题,于2023年7月31日在《自然催化》(Nature Catalysis)杂志上发表。论文链接:https://www.nature.com/articles/s41929-023-00995-4。 该研究通过冷冻电镜技术解析了微型基因编辑系统CRISPR-AsCas12f1的三元复合体的结构,揭示了其精细结构特征与工作机制,并基于结构引导的蛋白质理性设计,系统性提升了它在哺乳动物细胞中的基因编辑活性。CRISPR-Cas基因编辑技术因其简便性和高效性,被广泛应用于生物医药、农业育种、合成生物学等领域。然而,常用的Cas9与Cas12a核酸酶具有较大的分子尺寸(1,000个氨基酸),限制了其在基因治疗等方面的应用。2021年,季泉江团队证明了微型基因编辑器-AsCas12f1(含422个氨基酸,分子尺寸为Cas9的1/3)的编辑活性。本研究中,季泉江与申怀宗团队利用冷冻电镜技术解析了AsCas12f1-sgRNA-dsDNA三元复合体的精细分子结构,阐明了AsCas12f1可以形成不对称同源二聚体结构,进一步结合一分子sgRNA(小向导RNA),从而靶向结合于靶DNA序列上。AsCas12f1独特的分子结构决定了它能够以更小的分子尺寸,发挥与大型核酸酶相似的基因编辑功能,其sgRNA中存在的多茎环同轴RNA螺旋结构,为理解Cas核酸酶演化进程中的“蛋白替代RNA”假说提供了新证据。此外,团队还揭示了AsCas12f1自发形成同源二聚体的分子机制、识别原间隔序列临近基序的关键氨基酸残基位点、以及同源二聚体中各个单体核酸酶分子对sgRNA结合、底物识别与切割的具体功能。基于上述结构生物学信息,团队通过sgRNA截短与核酸酶氨基酸残基替换,得到工程改造后的AsCas12f1-v5.1,其在哺乳动物细胞中的基因编辑活性提升了1.5~13.5倍,同时基因脱靶编辑效率显著低于Cas9和Cas12a。该研究开发的小尺寸基因编辑器AsCas12f1-v5.1可满足病毒递送系统对分子尺寸的严苛要求。上海科技大学季泉江课题组助理研究员吴兆韡博士、博士研究生潘登和西湖大学生命学院刘栋梁博士为共同第一作者。上海科技大学季泉江教授和西湖大学申怀宗教授为共同通讯作者。上海科技大学为第一完成单位。
  • Mol Cell|北大伊成器课题组开发新型RNA编辑技术RESTART
    2022年12月14日,北京大学伊成器课题组在Molecular Cell杂志在线发表了题为CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons的研究论文,首次报道了名为RESTART(RNA Editing to Specific Transcripts for Pseudouridine-mediAted PTC-ReadThrough)的新型RNA单碱基编辑技术。该技术利用改造的guide snoRNA,招募细胞内源的假尿苷合成酶复合物,在RNA特定位点处实现高效、准确地尿苷(U)到假尿苷(Ψ)的编辑。在mRNA的无义突变位点精准引入假尿苷修饰,将提前终止密码子转换成ΨAA、ΨAG或ΨGA,以实现提前终止密码子的通读及功能蛋白的全长表达。无义突变(Nonsense mutation)是基因序列中编码氨基酸的密码子突变成终止密码子(TAA,TAG,TGA)的单碱基突变。无义突变产生提前终止密码子(Premature termination codon,PTC),导致翻译提前终止,产生较小、不具功能的蛋白产物。根据人类基因突变数据库(Human Gene Mutation Database, www.hgmd.org)的统计,无义突变占据了超过20%的疾病相关单碱基突变。目前有多种潜在的技术可用于治疗无义突变疾病,但仍存在局限性。例如:(1)CRISPR/Cas9依赖的DNA碱基编辑技术可实现精准的碱基修复,但是仍存在安全性问题。细菌来源的Cas蛋白可能会引发人体免疫反应;并且一旦出现基因组水平上的脱靶,将会是永久性的。此外编辑元件尺寸较大,使药物的体内递送受到限制。(2)RNA碱基编辑技术是在RNA水平上进行的,不会对基因组序列进行永久改变,因此安全性较高。但是,RNA编辑工具的脱靶效应仍存在安全隐患。因此,领域内亟需拓展新型RNA编辑工具,开发更加特异和安全的RNA编辑器。图一、RESTART技术原理研究表明,RESTART技术具有广泛的适用性。在多种不同组织来源的细胞系以及人的原代细胞——例如支气管上皮细胞和皮肤成纤维细胞中,RESTART都可以介导高效和精准的编辑。在对疾病无义突变修复和蛋白功能恢复的诸多应用尝试中,RESTART的高效性均得到了充分验证,反映了该技术在疾病治疗中的巨大潜力。例如,RESTART成功恢复了来源于Hurler综合征小鼠的α-L-艾杜糖醛酸酶缺陷细胞中IDUA蛋白的功能。该技术为无义突变疾病的治疗和RNA假尿苷修饰的基础研究都提供了一种全新的工具。传统的RNA编辑技术主要是通过脱氨反应(如A-to-I或者C-to-U)实现碱基编辑,其产生的脱靶会在RNA上引入突变,从而存在安全隐患。与这些技术不同,假尿苷修饰不会改变碱基互补配对,不会影响密码子的编码信息;RESTART产生的少量脱靶也不会影响RNA的稳定性和蛋白的翻译。此外,RESTART系统是由人源的snoRNA和修饰酶衍生而来的,理论上可以避免免疫原性。因此RESTART是一个高效且安全的潜在治疗技术。综上,RESTART技术作为一种可编程的不依赖CRISPR的RNA假尿苷编辑技术,拓展了RNA编辑的策略,可通过高效编辑mRNA上的无义突变位点介导翻译通读和蛋白功能的恢复,并且具有较好的安全性,展现了良好的疾病应用前景。在递送方面,RESTART适用于装载至腺相关病毒(AAV)等载体中进行递送;并且guide snoRNA可以通过体外转录和体外合成等多种方式制备,未来也可以与小RNA递送体系,例如GalNAc3进行偶联。除此之外,RESTART技术也将推动假尿苷修饰领域的研究,为该领域基础研究和无义突变疾病治疗领域都提供有利的工具。北京大学生命科学学院伊成器教授为该论文的通讯作者,课题组博士后宋靖慧(已出站)、博士生董利婷、孙含笑、罗楠、博士后黄强为共同第一作者。该工作得到农业部项目、科技部重点研发计划、国家自然科学基金等项目资助以及北大-清华生命联合中心、蛋白质与植物基因研究国家重点实验室等的支持。北京大学高性能计算平台,生命科学学院仪器中心及凤凰工程等多个平台对本项目提供了重要的技术支撑。原文链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(22)01100-5
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 北大药学院案例分享 | MST技术助力新型RNA编辑系统开发
    Part 1研究背景RNA的A-to-I编辑是一种普遍发生于细胞中的转录后修饰。在RNA上,依赖腺苷脱氨酶(ADAR)介导的腺苷脱氨作用可以通过引导RNA和外源性ADAR酶实现对RNA特定位点的A-to-I编辑,从而通过纠正突变的RNA来实现疾病治疗。然而,外源性ADAR融合蛋白的异位表达会增加脱靶编辑的风险,故利用内源性ADAR蛋白的A-to-I的编辑策略更有发展前景。Part 2研究内容2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。图1:3’-笼式arASO编辑UAG终止密码子,启动EGFP表达Part 3MST技术应用为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图2:MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明,3’-笼式arASO在没有光刺激的情况下与ssRNA(AC错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(AC错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图3:MST技术检测结果说明胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑。https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1Part 4技术优势MST技术可应用于不同样品类型的亲和力检测,不论是蛋白和核酸,还是核酸和核酸。此外,亲和力检测时无需固定,即使核酸的极性较强,也不会出现黏附等问题。MST亲和力检测时间短,只需要10min即可完成,无需担心核酸降解。
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • Revvity宣布与阿斯利康签订下一代碱基编辑技术的新许可协议
    根据非排他性协议,阿斯利康(AstraZeneca)有权使用专有基因编辑技术,帮助推进在细胞治疗方面的工作中国上海 – 2023年5月23日 – Revvity 有限公司 (NYSE: RVTY)近日宣布与阿斯利康 (AstraZeneca, LSE/STO/Nasdaq: AZN) 签订新的许可协议,基于Revvity的 Pin-point ™基因编辑系统技术,即一种具有强大安全性的下一代模块化基因编辑平台,可帮助阿斯利康推进其细胞治疗工作。Revvity生命科学资深副总裁Alan Fletcher博士表示:“我们的基本目标是将Pin-point™平台从临床前研究转化为临床研究,并最终影响患者的生活。本着这种精神,我们很高兴地宣布与阿斯利康签订非排他性协议,以支持其在治疗癌症和免疫介导疾病方面所进行的细胞疗法的研究。”Pin-point™技术介绍Pin-point系统及其碱基编辑技术旨在实现高效且精确的单基因和多基因编辑,而不会对细胞的生存能力或功能产生意外影响。与传统的CRISPR技术相比,后者会在DNA中产生双链断裂,而这种新的编辑系统使用修改后的Cas酶仅切割DNA的一条链。这项技术让基因破坏和碱基修复更具有可控性。Pin-point系统与其它碱基编辑系统的区别在于完全实现了模块化,可选择不同组件以实现针对具体基因编辑目标的最佳性能。目前Pin-point系统已经在T细胞和iPSC中展示了碱基编辑的能力,表明该技术在各种细胞类型和治疗指标中具有潜力。Revvity 还开发了全新的专有方法,利用碱基编辑机制来插入基因,例如通过在敲入CAR的同时敲除免疫标志分子来创建同种异体 CAR-T 细胞疗法。Pin-point 碱基编辑系统是Revvity公司细胞和基因疗法产品组合的一部分,该组合涵盖了基因调控和编辑、细胞分析、免疫测定以及优化的AAV和慢病毒载体开发和制造,以提高细胞基因疗法的特异性、有效性和安全性。解决方案涵盖从功能基因组学分析、有效载荷设计、QA/QC 和载体优化以及表征、自动化和工艺开发领域,助力客户实现其细胞和基因治疗研究、开发和制造目标。关于Revvity在Revvity,我们将“不可能”视为灵感,将“做不到”视为原动力。Revvity提供健康科学解决方案、前沿技术和专业服务,业务涵盖科研探索、开发、诊断、治疗的端到端全流程。依托在转化多组学技术、生物标志物鉴定、成像、疾病的预测、筛查、检测与诊断、信息学等领域的多年深耕,Revvity正以科技之能,突破人类潜能的边界。2022年Revvity的营业额超过30亿美元,全球拥有11,000多名员工,为制药和生物技术、诊断实验室、学术界和政府客户提供服务。公司是标准普尔500指数的成员,客户遍及全球190 多个国家和地区。
  • 盘点基因编辑新利器: 韩春雨发现的NgAgo只是工具库中一员
    Argonaute蛋白模型  CRISPR-Cas9工具让科学家几乎能随意改变基因组。人们称赞它比以往的技术明显更简单、更廉价及更通用。CRISPR-Cas9在全球各地的实验室中大放光彩,并带来了一些医学和基础研究的新应用。  但该技术也有其局限性。美国加州大学圣地亚哥分校生物工程师Prashant Mali指出,它擅长到基因组的一个特定位点,并在那里完成切割。“但有时候你感兴趣的应用还要多一点。”  今年年初,研究人员怀着热情扑向了一种名为NgAgo的新基因编辑系统。这也显示了他们对CRISPR-Cas9存在不满,以及寻找替代方法的强烈动机。哈佛大学医学院遗传学家George Church说:“这暗示了每种新技术是多么的脆弱。”  NgAgo只是不断扩大的基因编辑工具库中的一员。在该工具库中,有些是CRISPR的变体,另一些则为编辑基因组提供了新途径。  迷你版Cas9  或许有一天,CRISPR-Cas9会被用来改写导致遗传疾病的一些基因。但这一系统的组件——Cas9酶和引导其到达目标序列的一段RNA过大,无法填塞到基因治疗最常用病毒的基因组中并将外源遗传物质运送到人类细胞中。  从葡萄球菌中取得的迷你Cas9形式是一种解决方案。它非常小,可以硬塞进当前市场上基因治疗采用的病毒中。去年12月,两个研究小组利用迷你Cas9在小鼠中纠正了导致杜氏肌营养不良的基因。  扩大范围  Cas9不会到处进行切割——某一DNA序列必定存在于切割位点附近。这一要求在许多基因组中很容易得到满足,但对于一些实验来说可能是令人痛苦的限制。研究人员正在寻找一些微生物提供有着不同序列要求的酶,这样便可以扩大能够改造的序列数量。  这样的一种酶Cpf1,可能成为有吸引力的替代品。比Cas9更小的Cpf1有不同的序列要求,且高度特异。另一种叫作C2c2的酶,靶向RNA而非DNA——这一特征有潜力用于研究RNA及利用RNA基因组对抗病毒。  真正的编辑器  许多实验室只利用了CRISPR-Cas9删除基因的一部分,由此破坏其功能。Church说:“人们想将这样的编辑宣布为胜利,但烧掉书的一页并不等于编辑了这本书。”  那些想用一段序列交换另一段序列的研究人员,则面对着一个更艰难的任务。当Cas9切割DNA时,细胞往往会在缝合断裂端时生成一些错误。这可以造成许多研究人员想要的缺失。  想要改写一段DNA序列的研究人员,依赖于可以插入新序列的不同修复信号通路——发生这一过程的频率比容易出错的缝合要低得多。明尼苏达大学植物学家Daniel Voytas说:“每个人都说,未来或能一次编辑多个基因,而我认为:‘我们现在甚至无法高效编辑一个基因。’”  但过去几个月里的一些进展给Voytas带来了希望。在今年4月,研究人员宣布他们让Cas9丧失功能,将其与可将一种DNA碱基转变为另一种DNA碱基的酶连接在了一起。丧失能力的Cas9仍然靶向它的向导RNA指定的序列,但无法进行切割:其连接的酶转变了DNA碱基,最终将此处的C碱基转变成了T碱基。近日,发布在《科学》杂志上的一篇论文报道了类似结果。  Voytas等人希望连接其他使得Cas9丧失功能的酶将生成不同的序列改变。  追逐Argonaute  今年5月,发表在《自然—生物技术》杂志上的一篇论文推出了一个全新的基因编辑系统。研究人员称,他们能够利用一种叫作Argonaute的蛋白无需向导RNA或一段特定的邻近基因组序列,可在预定位点切割DNA。转而他们采用了对应靶区域的一段短DNA序列编程了Argonaute蛋白。  这一研究发现引发了关于CRISPR-Cas9将被取代的兴奋与猜测,但一些实验室迄今为止无法重现这些结果。韩国首尔国立大学基因组工程师Jin-Soo Kim提到,即便如此,来自其他细菌的Argonaute仍有望提供一条前进的道路。  编程一些酶  另一些基因编辑系统也在准备中,尽管有些已徘徊多年。在一个大型细菌研究计划中,Church的实验室并没有触及CRISPR,而是依靠了一种叫作lambda Red的系统,无需向导RNA可以编程lambda Red以改造DNA序列。然而,尽管该实验室已开展了13年的研究,lambda Red还是只能在细菌中起作用。  Church等人表示,实验室也正在致力于开发整合酶和重组酶,用作基因编辑器。 “通过利用酶的多样性,我们可以生成更强大的基因组编辑工具箱。我们必须继续探索这些未知的事物。”
  • 中科院动物所开发新型基因组编辑工具CRISPR/Cas12b
    p style=" text-align: justify " & nbsp & nbsp & nbsp & nbsp 近年,CRISPR基因编辑技术及其相关应用成为生命科学领域备受关注的热点研究方向。基于这种技术,科学家们可高效、快速、便捷地对感兴趣的基因进行编辑,从而在基础科研、农业和医学的发展中具有重要应用。 /p p style=" text-align: justify "   目前CRISPR系统中有两类效应蛋白家族(Cas9和Cas12a/Cpf1)被成功改造成哺乳动物及其它模式生物的基因组编辑工具,包括首先由Doudna JA、Charpentier E和Zhang F等实验室在2012年和2013年报道的Cas9系统。她/他们利用Cas9系统有效地实现了哺乳动物基因组的编辑,并带动了基因编辑领域的迅猛发展,将基因编辑技术成功拓展到基因转录表达调控、表观遗传修饰、全基因组功能筛选、碱基编辑、基因组成像和细胞谱系追踪等多种生物学应用。以及Zhang F等人在2015年发现并改造的Cas12a(又称为Cpf1)系统,也能实现哺乳动物等多个物种的基因组编辑。与此同时,科学家们也在一直致力于新的基因编辑系统的建立,尤其是更适合基因治疗使用的工具系统。 /p p style=" text-align: justify "   近年来鉴定出的一个新的CRISPR系统,Cas12b(又称为C2c1),因其嗜高温的特性没能应用于基因组编辑。中国科学院动物研究所研究团队通过系统挖掘,成功地鉴定出若干能在人体生理温度工作的Cas12b/C2c1酶。经过系统改造,两种Cas12b/C2c1酶被成功开发成为哺乳动物基因组编辑工具,能够编辑人类细胞基因组并应用于制备动物疾病模型。这些Cas12b/C2c1是双RNA导向的核酸酶,识别5& #39 -TTN的PAM序列,切割DNA后产生粘性末端。进一步改造可以将这些Cas12b/C2c1酶用于基因组的激活等延展应用。与之前报道的Cas9和Cas12a/Cpf1酶相比,Cas12b/C2c1酶有若干优势与特点:(1)Cas12b/C2c1比应用最为广泛的SpCas9和Cas12a/Cpf1更小,因此更容易用于需要在体递送的基因治疗。(2)Cas12b/C2c1能够在宽广的温度范围和pH范围保持高的酶活性,有望适用于具有不同生理温度的多个物种。同时与SpCas9相比,Cas12b/C2c1核糖核酸酶(RNP)在人血浆中更稳定。(3)Cas12b/C2c1很难耐受向导RNA与靶DNA之间的碱基错配,因此比SpCas9和Cas12a/Cpf1的脱靶效应更小,这意味着它在进行基因组编辑时更加安全。针对这项新技术,该研究团队已于一年前提交了专利申请,并正在开发这项技术在基因治疗中的应用。 /p p style=" text-align: justify "   相关成果于11月27日在国际学术期刊Cell Discovery& nbsp 发表。该研究工作由动物所和中科院干细胞与再生医学创新研究院完成。动物所研究员李伟为论文的通讯作者;博士生滕飞、崔彤彤为共同第一作者。该研究受到中科院战略科技先导专项及科技部、基金委等的资助。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/9f925f6a-7afd-4161-981e-f2f0cdb3679a.jpg" title=" W020181127602168069846.jpg" alt=" W020181127602168069846.jpg" / & nbsp br/ /p p style=" text-align: center " 动物所开发新型基因组编辑工具CRISPR/Cas12b /p p br/ /p
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 实验室中首次“撞”出构建生命的四种基本碱基
    大约40亿年前,地球上开始出现早期生命。目前较为流行的一种理论认为,是陨石或小行星等地外天体的撞击触发了关键的化学反应,从而产生了一些与生命有关的物质。现在,捷克科学院的研究人员在实验室中重演了这一过程:他们利用激光轰击黏土和化学物质汤,模拟一颗高速小行星撞击地球时的能量,最终生成了构建生命的至关重要的基本组件&mdash &mdash 形成RNA必需的4种碱基。   研究人员在发表于美国《国家科学院学报》上的论文中称:&ldquo 这些发现表明,地球生命的出现并非意外,而是原始地球及其周围环境条件的直接结果。&rdquo   实验并未证明地球生命就是由此诞生的,因为从这四种碱基到生命的出现,中间还有很多必不可少的神秘步骤,但这可能是这一过程的一个起点。   论文领导作者、捷克科学院海依罗夫斯基物理化学研究所的斯瓦托普卢克· 思维斯说,科学家们此前已经能够用其他方法制造这些RNA碱基,比如使用化学混合物和高压,但这是首次通过实验来检验&ldquo 撞击产生的能量可触发关键化学反应&rdquo 的理论。   据物理学家组织网12月9日(北京时间)报道,研究人员用一个长约152米的激光器产生的无形激光束,轰击名为甲酰胺的化学物质汤,这种液体据认为存在于我们的原始星球上。该激光的功率非常高,在不到十亿分之一秒时间内的输出相当于几个核电站,产生的能量高达十亿千瓦,甲酰胺样本的温度瞬间升高至4200摄氏度以上,从而发生了一系列化学反应。研究人员在最终产品中,发现了RNA的四种碱基&mdash &mdash A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)和U(尿嘧啶),其中前三种也是DNA的碱基。   专家对这项实验的重要性看法不一。美国佛罗里达州应用分子进化基金会的杰出生物化学家史蒂夫· 本纳说,这项研究意义重大,因为它生成了早期地球上可能存在的原始材料。但英国医学研究委员会分子生物实验室的约翰· 萨瑟兰认为,产生的碱基量太少了,没有什么价值。   总编辑圈点   科学家们一般相信,生命起源可以追溯到天外来客,如宇宙射线和小行星。虽然已有很多办法在实验室里制造出了生命的&ldquo 零件&rdquo ,但我们对于生命的发生史只能猜想,不能实证。除非我们找到一颗适合的行星,制造高能量的撞击,再等上几亿年,看看有没有生命诞生。假如有那本事,地球人早就移民过去了。研究生命的诞生史好像没什么用,但自己的身世来历,人类哪能不关心呢!
  • 世卫呼吁建立人类基因编辑全球注册制度
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/83ba5944-232d-411d-8b2a-b865ae29611b.jpg" title=" 0.jpg" alt=" 0.jpg" style=" text-align: center " / /p p style=" text-indent: 2em " 为世界卫生组织(WHO)提供建议的一个专家委员会于3月19日表示,“迫切需要”建立一个透明的全球登记制度,旨在列出所有与人类基因编辑相关的实验。WHO当天在瑞士日内瓦宣布,将在未来两年内与相关利益攸关方广泛协商,制定一个强有力的人类基因编辑国际治理框架。 br/ /p p   此前两天,由研究人员和生物伦理学家组成的人类基因编辑全球治理和监督标准咨询委员会在日内瓦举行了会议,会议达成了一个广泛共识,即“在这个时候,任何人继续进行人类生殖系基因组编辑的临床应用都是不负责任的”。 /p p   该WHO委员会联合主席Margaret Hamburg在当天举行的媒体电话会议上表示:“我不认为一个含糊不清的禁令是我们需要做什么的答案。”Hamburg曾任美国食品和药物管理局局长,目前在华盛顿特区美国国家医学院任职。其他几个有关基因编辑的备受瞩目的声明和报告也避免使用“中止”这个词,尽管它们同样强调,这项技术仍有太多的风险和未知因素,无法将其用于生殖系修饰——这种修饰可以将改变传递给下一代的精子、卵子或胚胎,即使这些修饰的目的是预防危及生命的疾病。 /p p   Hamburg强调,该委员会有一个“更广泛的责任”,而不是简单地宣布中止人类基因编辑研究。他们计划在未来18个月里展开“深入研究”,进而阐明全球标准,并创建一个“强有力的国际治理框架”,最终“负责任地管理”这一强大的技术。 /p p   Hamburg没有提供关于提议的登记制度的细节,比如由谁来操作它。但他表示其中应该包括生殖系实验和不那么充满伦理色彩的研究,这些研究以不可继承的方式修改人类基因组。 /p p   目前有十几个争议较小的此类实验正在进行中,这些实验使用CRISPR和其他基因组编辑器修改所谓的体细胞,而不是生殖细胞,并已被列入由美国国家医学图书馆运营的ClinicalTrials.gov等在内的注册中心。Hamburg解释说,委员会希望科学论文的出版商和此类研究的资助者应要求他们接受或支持的工作进行注册。Hamburg说:“对我们所有人来说,更好地了解正在进行的研究是很重要的,我认为这将创造出研究界更多的责任感。” /p p   据悉, strong 该委员会将向WHO总干事提交建议,后者将最终决定是否采取行动。 /strong /p p   WHO总干事谭德塞在一份声明中说:“基因编辑为改善人类健康带来了新的前景,但同时也伴随着一些伦理和医学上的风险……(WHO)希望汇集一些世界最优秀的专家,就这一复杂问题提供指导。” /p p   按计划,该委员会未来两年内将与包括患者群体、民间团体、伦理学家、社会学家等在内的利益攸关方进行一系列面对面和网络磋商,就制定人类基因编辑国际治理框架咨询意见。WHO强调,这一框架应具备可扩展、可持续的特点,并适用于国际、地区、国家及地方各个层面。 /p p   委员会还一致同意, strong 应创建人类基因编辑研究的“中央登记体系”,以便为正在开展的工作建立一个开放、透明的数据库。委员会要求WHO立即着手开展这一工作。 /strong /p p   此外,委员会还邀请所有参与人类基因编辑研究的人员展开讨论,以便更好地了解技术环境和当前的治理安排,并为相关科研工作提供帮助以确保其符合当前科学和伦理的最佳做法。 /p
  • 遗传发育所建立基因组编辑高效调控内源基因蛋白质翻译新方法
    p style=" text-align: justify " & nbsp & nbsp 基因组编辑是在基因组水平对基因进行精确、定向修饰的一种高效生物技术方法。简单、高效的CRISPR/Cas9编辑体系的出现给生命科学带来了新的技术革命。CRISPR/Cas9通常在基因组靶向位点造成DNA碱基的添加或删除,导致基因功能的缺失。近日,中国科学院遗传与发育生物学研究所高彩霞研究组建立了一个通过CRISPR/Cas9高效调控内源mRNA翻译的方法。该方法可通过提高蛋白质翻译效率,增加目标基因的编码蛋白水平。 /p p style=" text-align: justify " & nbsp & nbsp 蛋白编码基因的表达产物一般受到转录、转录后RNA加工、蛋白质翻译及翻译后加工、蛋白降解等多个水平的调控。真核细胞的mRNA由5’非翻译区(5’Untranslated Region,5’UTR)、编码蛋白的开放阅读框区(Open Reading Fragment)及3’端非翻译区(3’Untranslated Region,3’UTR)构成。研究发现,5’UTR存在一些具有翻译能力的开放阅读框,称为上游开放阅读框(Upstream Open Reading Fragment,uORF)。与之对应,5’UTR之后的开放阅读框被称为主开放阅读框(Primary Open Reading Fragment,pORF)。uORF通常能够抑制下游的pORF的翻译。生物信息学分析表明,uORF在动植物中广泛存在,人、小鼠、拟南芥、水稻、玉米中超过30%的mRNA含有预测的uORF,但还缺乏高效、精细的方法对uORF进行功能研究与遗传操作。 /p p style=" text-align: justify " & nbsp & nbsp 高彩霞研究组利用CRISPR/Cas9对uORF进行编辑,发现能够显著提高目标基因的翻译效率。通过CRISPR/Cas9编辑拟南芥和生菜中的4个基因的uORF翻译起始区及周边序列,获得了多个相应基因的uorf突变体。这些uorf突变体目标基因的pORF的mRNA翻译水平都有不同程度的提高。其中,通过突变维生素C合成途径中关键基因GGP(GDP-L-galactose phosphorylase)上游的uORF,可使生菜叶片中维生素C含量提高约150%。利用CRISPR/Cas9编辑uORF翻译起始区会出现两种结果:(1)完全破坏uORF的翻译起始能力导致uORF功能缺失;(2)改变uORF的翻译起始密码子(例如ATG突变为翻译起始能力较弱的GTG)及其周边序列,使uORF对pORF的抑制效率发生微调。该研究展示了通过基因组编辑uORF操纵mRNA翻译,调控蛋白质水平在植物分子生物学研究及遗传育种中的应用前景。此外,该方法可能随着新型基因组编辑工具不断出现及方法的进一步优化,而变得覆盖率更广且更易操作。由于uORF在动植物基因中普遍存在,该方法也具有广阔的应用前景。 /p p style=" text-align: justify " & nbsp & nbsp 相关成果于8月6日发表在《自然-生物技术》上。高彩霞研究组副研究员张华伟,博士研究生司小敏、姬祥为论文共同第一作者。该研究得到了科技部、国家自然科学基金委基础科学中心、中科院的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/db01d975-1e1c-43d2-8ca4-feabbe73f981.jpg" title=" W020180807251428902441.jpg" / /p p style=" text-align: center " CRISPR编辑uORF调控蛋白质翻译水平 /p
  • 免疫细胞疗法能否成为肿瘤的主要治疗方法?
    分享:基因编辑技术能否有助于将细胞疗法用于治疗实体瘤?珀金埃尔默旗下Horizon Discovery的乔纳森弗兰普顿 (Jonathan Frampton) 在给Laboratory News的一篇撰文中,介绍了如何利用碱基编辑技术来降低当前昂贵的治疗成本,使其成为治疗癌症的主流方法。开发同种异体细胞疗法还需解决一些挑战,包括如何避免破坏患者的免疫系统。目前有两种有效的细胞疗法能治疗“液体肿瘤”(白血病和淋巴瘤)。诺华研发的Kymriah和吉利德科学研发的Yescarta两种药物使用的细胞均属于嵌合抗原受体(CAR) T细胞——两者最初均表现出高反应率,这种高反应率会在部分患者中形成持久的临床反应。虽然这些疗法的前期效果良好,但如何让下一代细胞疗法能够有效治疗实体瘤,仍面临不少问题。2019年,美国新增约176,000名液体肿瘤患者,而实体瘤新增患者约为160万(几乎增长10倍)。此外,由于Kymriah和Yescarta 均属于自体疗法(使用患者体内的细胞用于药物生产),这种个体的治疗成本很高,分别为475,000美元(Kymriah)和373,000美元(Yescarta),这远远超出了大众可以承受的医疗预算范围。相比之下,如使用一般抗癌药物,患者每月的花费约为10,000 美元。这种情况下,需要作出哪些改变,才能让细胞疗法成为治疗癌症的主要方法呢?基因编辑技术—能否将细胞疗法用于治疗实体瘤?尽管细胞疗法是一种复杂的癌症治疗形式,但它可以直接靶向液体肿瘤。细胞疗法可以通过血液进入白血病和淋巴瘤细胞,从而不需要靶向特定的组织或器官,也无需在杂乱无章的毛细血管网络中进行导航以及长时间驻留在免疫抑制和缺氧的实体瘤微环境中。人们普遍认为,需要进一步完善细胞疗法才能应对和克服这些挑战,从而提高患者的生存率。 避免出现脱靶染色体易位要增加存活率、增殖率和持久性,需要精确调节治疗细胞,这可能涉及对多个基因进行编辑。虽然普遍使用的基因编辑器CRISPR-Cas 在改变单个遗传信息时具有很强的稳健性,但这一过程会使得DNA双链产生断裂 (DSB) ,导致细胞出现脱靶染色体易位。借助单编辑或双编辑技术,在正确的指引和谨慎使用下,就很少会出现遗传信息的改变;不过,如需要编辑多个基因,产生染色体易位和其他遗传畸变的风险就会增加,这种风险可能会引起致癌细胞的产生,对于患者来说这无疑是一种潜在的灾难。在需要对一个或两个基因进行编辑,如果可以精确地识别出用于患者治疗的已编辑过细胞,就可避免易位现象。然而,当需要编辑的细胞较多时,很难精确识别已编辑细胞,进而导致致癌易位风险的增加。碱基编辑器:避免出现双链断裂碱基编辑作为基因编辑领域一项相对较新的技术,正在受到人们的关注。碱基编辑器可以在不使用核酸酶来导入DNA 双链断裂的情况下,持续高效地在原代细胞中进行基因编辑。利用碱基编辑在DNA中形成一个缺口(或单链断裂)并借助脱氨酶改变特定的碱基对,这样就可以通过在早期编码外显子中引入终止密码子来实现高效的基因敲除。未来几年,碱基编辑会对细胞疗法的发展产生更明显的影响,尤其是对同种异体细胞、非自体细胞治疗的发展的影响。通用型同种异体细胞疗法?借助同种异体细胞疗法,可以将健康供体转换为通用型治疗细胞,可以大规模生产治疗细胞并集中储存,在治疗需要时可以随时获取。但要开发同种异体细胞疗法会面临一些挑战,包括如何才能避免破坏患者的免疫系统。为了克服这个问题,就必须改造现行的同种异体细胞疗法,使其具有隐身模式,在这种模式下,患者的免疫系统将它视为“自我”的一部分。要开发出这样的细胞,需要修改多个基因,而且这些基因很可能会被敲除。碱基编辑器将在编辑多个基因方面发挥关键作用,这样能够在不使用免疫抑制药物的情况下,延长同种异体治疗细胞在患者体内的存活时间。同种异体细胞疗法的供应链简单、易大规模生产,成本上比自体细胞疗法更低。相关医疗经济研究结果表明,如果能够实现规模经济,同种异体细胞疗法的费用可以降到每剂7500美元,毫无疑问这将有助于进一步推广细胞疗法,使其成为主流疗法。推广细胞疗法持久临床反应的高效细胞疗法是另一个可以实现的目标。它需要将免疫细胞的疗法在治疗液体肿瘤中的成功经验转应用于治疗实体瘤,它需要修改免疫细胞,使其能够适应更为复杂的实体瘤微环境,同时降低此类疗法的成本。这两个目标都可以通过应用高效的基因编辑技术开发同种异体细胞疗法来实现。目前人们正利用CRISPR-Cas进行细胞开发,随着安全性不断提高,未来的同种异体细胞疗法利用碱基编辑器来改变基因信息,将为真正的细胞疗法治疗肿瘤带来雨霖。作者: Jonathan Frampton,珀金埃尔默旗下Horizon Discovery业务发展合伙人(Corporate Development Partner)
  • Nature评出需要关注的7大技术 生命科学仪器前景可期
    p   7位专家预测了2019年将推动他们各自所在的领域向前发展的技术进展,包括高分辨率成像和从头构建基因组大小的DNA分子等。对生命科学技术来说,2019年看起来非常令人期待。而对于分析仪器来说,上榜的测序系统、显微镜和冷冻电镜亦是前景可期。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 1.Sarah Teichmann:扩展单细胞生物学 /strong /span /p p   Sarah Teichmann是英国韦尔科姆基金会桑格研究所细胞遗传学负责人。 /p p   在过去十年中,我们已观察到研究人员一次能够分析的单细胞数量大幅增加。这将继续增加下去,这主要归因于细胞捕获技术的改进、使用条形码对细胞进行标记的方法以及将现有技术结合在一起的更智能方法。 /p p   这种增加可能听起来很平凡,但是它允许我们进行不同类型的实验和在更高的分辨率下研究更复杂的样品。比如,研究人员将能够同时研究20或100个人的样本,而不是仅能分析一个人的样本。这意味着我们将能够更好地控制人群多样性。 /p p   我们还将能够分析更多的发育时间点、组织和个体,从而能够增加我们的分析的统计学意义。 我们的实验室刚刚参与了一项分析来自6个物种的25万个细胞的研究工作,结果表明负责先天免疫反应的基因快速地进化,而且在不同物种之间存在着较大的细胞间差异---这两种特征有助于免疫系统产生有效的和微调的反应。 /p p   我们还将看到我们在单细胞水平中同时观察不同基因组模式的能力取得进展。比如,我们将能够观察到称为染色质的蛋白-DNA复合物是开放的还是封闭的,而不是仅局限于RNA。这有助于了解细胞分化时的表观遗传状态,以及免疫系统和神经系统中的表观遗传记忆。 /p p   将单细胞基因组学与表型关联在一起---比如将蛋白表达或形态与给定细胞的转录组关联在一起---的方法也将取得进展。我们可能会在2019年看到更多的这类东西,无论是仅通过测序还是将成像和测序结合在一起。实际上,我们一直在见证这两种技术的趋同进化(convergent evolution):测序在分辨率上越来越高,成像越来越多样化。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2.Jin-Soo Kim:改进基因编辑器 /span /strong /p p   Jin-Soo Kim是韩国首尔国立大学基础科学研究所基因组工程中心主任、化学教授。 /p p   蛋白质工程正在推动基因组工程的发展。第一代CRISPR基因编辑系统使用核酸酶Cas9,即一种在特定位点切割DNA的酶。 /p p   CRISPR/Cas9仍然被广泛使用,但是许多经过基因改造的CRISPR系统正在用新的Cas9变体替代这种天然存在的核酸酶,比如xCas9和SpCas9-NG。这些变体扩大了靶向空间---能够进行编辑的基因组区域。有些变体还比第一代的Cas9更具特异性,从而能够最大限度地减少或避免脱靶效应。 /p p   去年,研究人员报道了将CRISPR基因组编辑用于临床治疗的新障碍。这些障碍包括p53基因的激活(与癌症风险有关) 出于意料之外的“ span style=" color: rgb(0, 112, 192) " strong 在靶 /strong /span (on-target)”效应,比如大片段DNA缺失 对CRISPR系统存在的免疫原性。 /p p   因此,想要让基因组编辑具有临床应用价值,就必须解决这些限制。其中的一些问题是由DNA双链断裂引起的。但是并非所有基因组编辑酶都会产生双链断裂---“碱基编辑器(base editor)”将单个DNA碱基直接转换为另一个碱基。因此,碱基编辑既比传统的基因组编辑更干净,也更有效。去年,瑞士研究人员在小鼠中利用碱基编辑器校正了一种导致苯丙酮尿症的基因突变。 /p p   但是,碱基编辑器在它们能够编辑的由前间隔序列邻近基序(protospacer adjacent motif, PAM)确定的序列上存在着限制。蛋白质工程可用于重新设计和改进现有的碱基编辑器,甚至可能构建出新的编辑器,比如与灭活的Cas9融合在一起的重组酶。与碱基编辑器一样,重组酶不会诱导双链断裂,但是能够在用户事先确定的位点上插入所需的序列。 /p p   RNA引导的重组酶肯定会在新的维度上扩展基因组编辑。 基因编辑技术在临床上的常规使用可能还需要几年的时间。但是我们将在未来一两年内看到新一代的基因编辑工具:有很多研究人员对这项技术感兴趣,每天都在使用它。新问题层出不穷,但创新的解决方案也层出不穷。我期待着惊喜的出现。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 3.庄小威(Xiaowei Zhuang):提高显微镜分辨率 /span /strong /p p   庄小威是美国哈佛大学化学与化学生物学教授 2019年突破奖获得者。 /p p   超分辨率显微镜的原理验证演示仅在10年或20年前发生,但是如今,这种技术相对来说比较普遍,可供生物学家使用---并且导致了大量的新知识。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/fb070d2b-6d5b-4f3c-9c61-b7a57acc444c.jpg" title=" 2019-02-18_215317.png" alt=" 2019-02-18_215317.png" / /p p style=" text-align: left " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   图片来自Bogdan Bintu, The Xiaowei Zhuang Laboratory, The Alistair Boettiger Laboratory, Science 362, eaau1783 (2018)。 /span /p p   一个特别令人兴奋的研究领域是确定基因组的三维结构和组装。越来越明显的是,基因组的三维结构在调节基因表达中起着重要作用。 /p p   在过去的一年中,我们报道了对染色质(形成染色体)进行纳米级精度成像的研究工作,将它与数千个不同类型细胞的序列信息相关联在一起。这种空间分辨率要比我们之前的研究提高一到两个数量级,这就让我们能够观察到单个细胞将染色质组装成在不同细胞间差异很大的区域。我们还提供了关于这些区域如何形成的证据,这让我们更好地理解染色质调节的机制。 /p p   除了染色质之外,预计在超分辨率成像领域的空间分辨率会有很大改善。大多数实验的分辨率仅有几十纳米,但仍然无法与成像的分子相比,尤其是当我们想要分析分子间的相互作用时。不过,我们看到荧光分子和成像方法的改进显著地提高了分辨率,而且预计在1纳米分辨率下的成像将变得常见。 /p p   与此同时,时间分辨率将越来越好。目前,研究人员必须在空间分辨率和成像速度之间做出妥协。但是,通过更好的照明策略和更快的图像采集,这些限制是可能被克服的。成千上万的基因和其他类型的分子共同起作用来塑造细胞的行为。能够在基因组水平上同时观察这些分子发挥作用将为成像提供巨大的机会。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 4.曾红葵(Hongkui Zeng):绘制大脑连接图谱 /span /strong /p p   曾红葵是美国艾伦脑科学研究所结构科学执行主任。 /p p   单个细胞和各种细胞类型之间的连接是如此复杂以至于在全局和群体水平上绘制它们之间的连接图谱已不再足以理解它们。因此,我们在单细胞水平下绘制基于细胞类型的连接图谱。 我们能够通过“顺行”和“逆行”追踪来实现这一目标。 /p p   这些追踪方法揭示了由特定细胞延伸出来的称为 span style=" color: rgb(0, 112, 192) " strong 轴突投射 /strong /span (axon projection)的结构。我们还使用更多的基于单神经元形态学的方法来观察单个神经元的轴突投射在哪里产生和终止。 /p p   电镜数据集的产生取得了很大的进展,这些数据集的覆盖范围比以前大得多。比如,在美国霍华德休斯医学研究所珍妮莉亚研究学院,研究人员正在努力绘制果蝇中的每个神经元和突触。 图像采集和样品处理的改进是这些进展取得的关键 因此,计算方面的改进也是如此。 /p p   在艾伦脑科学研究所,我们参与了借助机器学习算法构建小鼠大脑神经连接的虚拟图谱。 巨大的特异性编码在大脑的这些连接中。但是,如果不了解全局和局部水平下的特异性,那么我们理解行为或功能的能力基本上建立在一个 span style=" color: rgb(0, 112, 192) " strong 黑匣子 /strong /span ---我们缺乏理解神经元活动和行为的物理基础---的基础上。 span style=" color: rgb(0, 112, 192) " strong 连接组学 /strong /span (connectomics)将填补这方面缺失的真实信息。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 5.Jef Boeke:推进合成基因组研究 /span /strong /p p   纽约大学朗格尼医学中心系统遗传学研究所主任。 /p p   当我意识到能够从头开始编写一个完整的基因组时,我想这将是一个从新的视角研究基因组功能的好机会。 /p p   从纯科学的角度来看,一些研究团队在合成简单的细菌和酵母基因组方面取得了进展。但是在合成完整基因组方面仍然存在着技术挑战,特别是哺乳动物基因组。 /p p   一项有助于降低DNA合成成本的技术将会有所帮助,但尚未投入市场。如今发生的大多数DNA合成都是基于一种称为 span style=" color: rgb(0, 112, 192) " strong 亚磷酰胺三酯 /strong /span 合成(phosphoramidite chemistry)的方法。由此产生的核酸聚合物在它们的最大长度和保真度方面都存在着限制。迄今为止,这种合成方法取得如此较好的作用,这本身就是一种奇迹。 /p p   许多公司和实验室正在寻求酶促DNA合成---这种方法有可能比化学合成更快、更准确和更便宜。迄今为止,还没有公司在商业上提供这样的酶。但去年10月,一家位于法国巴黎的名为DNA Script的公司宣布,它已经合成了长150个碱基的寡核苷酸,这几乎与化学DNA合成的实际长度限制相匹配。 /p p   我们都在等待着更多地了解这一点。 作为一个团队,我们还研究了如何组装较大的人类染色体DNA片段,而且我们能够使用这种方法构建出长1万个碱基或以上的DNA片段。如今我们将使用这种方法来分析已知在确定疾病易感性方面起着重要作用的大型基因组区域,或者导致其他表型特征出现的大型基因组区域。 /p p   我们能够在酵母细胞中快速合成这些基因组区域,因此我们应当能够构建出数十到数百种以前无法测试的基因组变体。通过使用它们,我们将能够检查在全基因组关联研究中涉及的在疾病易感性方面具有一定意义的数千个基因组位点。这种分析策略可能让我们最终能够确定这些基因组变体发挥的作用。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 6.Venki Ramakrishnan:揭示分子结构 /span /strong /p p   Venki Ramakrishnan是英国剑桥MRC分子生物学实验室结构生物学家。 /p p   理解结构是理解功能的关键步骤。 strong span style=" color: rgb(0, 112, 192) " 冷冻电镜 /span /strong (cryo-EM)技术让研究人员能够使用比以往更少和更低纯度的样品来解析出高分辨率结构。这意味着我们不仅能够观察到以前从未观察到的结构,而且我们还能够研究更具挑战性的问题,比如蛋白复合物的动态变化或生化途径中的不同状态。 /p p   就目前而言,cryo-EM作为一个领域所处的水平大致是晶体学在20世纪60年代或70年代时的水平。第一波技术已出现了,但是这个领域仍然在取得巨大的进展。下一代检测器,比如由英国科学与技术设施委员会设计工程师Nicola Guerrini和她的同事们开发出的检测器,将提供更好的信号并允许我们观察到更小的分子。 我们已观察到许多令人兴奋的结构。 /p p   英国MRC分子生物学实验室的神经科学家Michel Goedert和结构生物学家Sjors Scheres及其团队对一种称为tau的蛋白的细丝进行成像,意外地发现它在不同类型的痴呆症(包括阿尔茨海默病)中表现出明显不同的蛋白折叠。 第二个取得进展的领域是样品制备。 /p p   在cryo-EM中,溶液中的少量分子进入细金属丝网,多余的分子将被清除,并将剩下的薄薄的一层分子被冷冻。但是,空气-水界面处的分子可能发生变性或裂解。此外,撞击样品的电子可能让这些分子携带电荷,从而导致它们移动并变得模糊。许多人正在努力将这些影响降至最低,以便提供更能够进行准确测量的稳定样品。 /p p   有了这些进展,我们应该能够观察到细胞中及其表面发生的分子事件。我们或许能够观察DNA复制或剪接等过程中构象变化的复杂循环,从而了解整个分子过程。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 7.Casey Greene:应用人工智能(artificial intelligence, AI)和深度学习 /span /strong /p p   Casey Greene是宾夕法尼亚大学佩雷尔曼医学院系统药理学与转化疗法助理教授。他对于人工智能的应用发表了自己的意见。 /p p   生命科学家已熟练地使用深度学习软件和人工智能来构建预测模型,这些预测模型告诉我们很多东西,比如在哪里能够找到基因调控元件结合的基序。但是,如今,科学家们想要揭示更深层真相----比如,基因调控本身的细节以及为何某些遗传特征是重要的---的模型。 /p p   在接下来的一年里,我们最为兴奋的是计算方法,它们足够强大,可用于人们在发表论文时上传的大量随机基因组数据中。一种令人兴奋的技术就是 span style=" color: rgb(0, 112, 192) " strong 迁移学习 /strong /span (transfer learning)。 /p p   通过使用这种方法,用户能够使用仅与一种问题直接相关的数据集来了解该问题的广泛特征,然后利用这种算法了解到的信息来分析用户所关心的数据集。比如,在去年发表的一项研究中,科学家团队想要使用针对一种称为 span style=" color: rgb(0, 112, 192) " strong 抗中性粒细胞 /strong /span 胞质抗体相关性血管炎(anti-neutrophil cytoplasmic antibody-associated vasculitis)的罕见疾病的数据集来训练一种模型。但是没有足够的数据来做到这一点。 /p p   因此,他们利用来自1400多项其他研究的RNA测序数据来训练相关模型,并将这种模型应用于疾病治疗,从而揭示出与免疫和代谢功能相关的导致这种疾病症状的基因网络。希望不久之后,可以观察到更多的论文发表,在这些论文中,转移模型能够产生新的科学。 /p p   希望有朝一日,这些方法将不仅可以为特定情景和解答特定问题的答案提供预测模型,还可从生物学角度揭示发生了什么来产生我们所看到的数据。也希望在未来一年内,这些方面将会取得一定的进步,但这也将需要投入大量的技术和资源来协助进行模型解释。如果五年后在这方面取得成功,必定是令人激动的。 /p
  • 《自然》:两种新型基因编辑系统问世 魔剪家族添新员
    12月21日,英国《自然》杂志发表一项生物学进展,报告了两种新型的CRISPR/Cas基因编辑系统。  CRISPR被称为“生物科学领域的游戏规则改变者”,现已发展成为该领域最炙手可热的研究工具之一。以往研究表明,通过介入,CRISPR能使基因组更有效地产生变化或突变,效率比既往基因编辑技术更高。现在,生物学家们正致力于用CRISPR探究治疗人类遗传疾病的方法,而这种突破性的技术就是通过一种名叫Cas9的特殊编程的酶发现、切除并取代DNA的特定部分。它来源于细菌,在细菌内帮助抵抗入侵的病毒。目前的系统都是来自人工培育的细菌,而大量未培养的原核生物也成为替代性基因编辑工具的潜在来源。  此次,美国加州大学伯克利分校研究人员吉利安.本菲尔德及其同事,分析了上万新改造的基因组,这些基因组来自在地下水、土壤、婴儿肠道和其他各种环境中发现的微生物群落,结果研究人员发现了两种新型CRISPR/Cas系统,他们将其分别称为CRISPR/CasX和CRISPR/CasY。随后,这两种系统在CRISPR/Cas9系统的发现者之一詹妮弗.杜德纳的实验室接受了检测,其活性得到证实。  新型CRISPR/Cas系统将作为一种基因组编辑工具,被研究人员广泛用于精准添加、删除或修改DNA片段。在CRISPR-Cas中的Cas,指的是在预定位置剪切双链DNA的DNA剪切酶。在最新的研究中,论文作者还报告了在古菌域首次发现Cas9,这一点尤为引人关注,因为过去认为,缺乏细胞核的原核生物都是没有此类系统的。
  • 中科院微生物所等发表植物基因组编辑研究综述
    p   序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。CRISPR-Cas9系统自出现以来,作为可转化植物的基因组编辑工具已得到广泛应用。CRISPR-Cas9对基因组靶位点进行定向切割,造成DNA双链断裂。DNA双链断裂主要通过两种高度保守的机制进行修复,即非同源末端连接(Non-homologous end joining, NHEJ)和同源重组(Homologous recombination, HR)。通过NHEJ方式,断裂的DNA会重新连接,但往往是不精确的,断裂位置会产生少量核苷酸的插入或删除,通常产生基因敲除突变体 与之相反,HR方式以同源序列为模板进行合成修复,可以产生精确的定点替换或插入突变,精准编辑靶基因。通过基因组定向突变进行基因功能鉴定和性状改良在植物中已得到广泛应用。然而,在植物中进行精准基因组编辑的需求极其迫切,尤其是对于那些难以转化的物种。目前,新开发出来的Cas9变体、新型RNA导向的核酸酶、碱基编辑系统和无DNA的CRISPR-Cas9递送方法都为植物基因组工程提供了前所未有的机遇。近日,中国科学院微生物研究所邱金龙研究组最近发表文章综述了植物基因组编辑的现状,重点关注由于植物基因组编辑的自身特点(如图)所带来的特殊挑战和机遇,并介绍了新近发展出的基因组编辑工具、方法及其在植物中潜在的应用。文章最后还展望了植物基因组编辑的前景和未来方向。 br/ /p p   该文章已于近日在线发表在《自然-植物》(Nature Plants)上。邱金龙研究组助理研究员尹康权为第一作者,邱金龙和中科院遗传与发育生物学研究所研究员高彩霞为共同通讯作者。相关研究得到了国家转基因专项(2016ZX08010-002)、国家重点研发项目(2016YFD0100602)北京市科委项目(Z171100001517001)、中科院战略性先导科技专项(XDB11030500)和国家自然科学基金(31672015)等经费支持。(来源:中科院遗传与发育生物学研究所) /p p    a href=" https://www.nature.com/articles/nplants2017107" target=" _self" title=" " 文章链接 /a /p p br/ /p
  • 重磅:韩春雨基因编辑实验在国外得到实验事实证实
    p   澳大利亚国立大学Gaetan Burgio博士公布的实验结果Sanger测序图。该图看起来很混乱,但仔细观察可以发现,每一个碱基的峰图,后面都跟着一个滞后的峰,如下图所示,我们用与碱基相同颜色的箭头标出了峰的位移,这实际上是移码突变造成的。我们在一个诱变/恢复试验中,将发生移码突变的片段和野生型的片段的混合物进行Sanger测序,就会出现类似的峰图。 /p p style=" text-align: center " img title=" 科学网.jpg" src=" http://img1.17img.cn/17img/images/201608/noimg/02f28637-3ef1-47f6-976c-f5cb14ab27b7.jpg" / /p p   因此事实上,Burgio博士的实验中,目的基因发生了移码突变,造成这种峰图,可能恰恰证实了NgAgo有效。不过似乎NgAgo切割基因组的效率并不高,造成了多种移码型的混合物。众所周知,基因编辑技术的主要作用之一,就是在基因中造成移码突变,使其失去功能. p   Burgio博士说他们所用的引物已经过验证,是特异性的,那么,如果NgAgo无效,实验中除了目的基因的完整片段以外,不会出现任何额外条带,更不会出现移码现象。 /p p   那么出现的那些额外条带,为什么经过Sanger测序,序列是非特性的呢?我估计是因为他们设计的guider ssDNA的序列特异性不好导致的。他们的guider序列,应该就是之前CRISP/CAS9实验所用的guider,但CRISP/CAS9识别序列必须包含PAM序列,所以对序列特异性的要求没有那么高,而NgAgo方法采用ssDNA作为guider,没有PAM序列的限制,但同时对guider序列的特异性要求就高了。如果guider序列的特异性不够,肯定会对基因组序列乱切。 /p p   打个比方,这就像用google查找一个词“韩春雨”,找到的一定是“韩春雨”,但是如果你只输入“春雨”,那么出来的就不一定是“韩春雨”,还有“春雨贵如油”,“春雨医生”,...,等等。 /p p   一种新技术在诞生之际,一般都存在很多问题。如果韩春雨没有造假, 那么NgAgo技术作为一种新技术,前途是光明的,但无疑需要针对不同的生物、细胞和基因序列,进行设计、实验条件优化,提高基因组切割和编辑效率。 /p /p
  • 贝斯生物完成数千万美元A1轮融资
    本轮融资将用于推进公司包括通用现货型Super-NK产品和体内编辑疗法在内的多个碱基编辑治疗管线进入IND申报和临床试验阶段,并不断拓宽合作应用场景。近日,碱基编辑及先导编辑公司贝斯生物宣布完成了数千万美元A1轮融资,由香港Great Eagle VC领投,BV百度风投、信熹资本、广大汇通、英国SPARK VC等机构跟投,现有股东弘晖基金持续追加投资,华兴资本担任独家财务顾问。本轮融资将用于推进公司包括通用现货型Super-NK产品和体内编辑疗法在内的多个碱基编辑治疗管线进入IND申报和临床试验阶段,并持续发挥公司碱基编辑底层专利工具和先导编辑专利工具的优势,不断拓宽合作应用场景。本次融资后,Great Eagle VC 首席投资官James Zhang 博士将加入贝斯生物董事会。贝斯生物于2021年4月正式成立。该公司由在生物医学领域具有20年临床医生、科研、创业、和风险投资经验的徐天宏博士发起创立,专注于研发新型基因编辑NK细胞治疗产品及基因治疗产品。贝斯生物在NK细胞领域和基因编辑领域拥有一系列自己的核心技术、专利和Know-how, 已经建立了完备的NK细胞基因工程改造平台,并且完成了概念验证。目前研发管线包括多个First in Class通用型细胞治疗产品,适应症包括肺癌、肝癌、脑胶质瘤等多种实体肿瘤,以及血液肿瘤中的未被满足的治疗需求。贝斯生物的创始团队成员早年从斯坦福大学医学院、贝勒医学院、MD Anderson癌症中心等生物医学科研机构博士毕业后,分别在基因编辑,NK细胞,免疫细胞研发和CMC,运营管理,临床和投融资等领域有20到30年的经验,成功负责过中美多个免疫细胞产品的IND和NDA。公司拥有一系列碱基编辑(Base Editing)和先导编辑(Prime Editing)的专利技术,开发了近200个碱基编辑工具,可以满足大多数应用场景的需求。其中一项最核心的碱基编辑技术具备“0脱靶”、高靶向编辑效率和较小尺寸等优点,在提高体内和体外基因编辑临床应用的安全性和有效性上具有优势。并且,这项技术在中国和欧美可以自由实施(FTO,Freedom to operate),是一项名副其实的底层编辑技术。此外,贝斯还开发了编辑效率最高的先导编辑技术。贝斯生物一方面在继续优化和开发新的基因编辑技术,另一方面在采用自身的碱基编辑和先导编辑技术开发通用现货型NK细胞治疗产品和体内基因编辑疗法。同时,公司把FTO的底层碱基编辑技术进行对外授权合作,目前已分别和国内外两家公司合作开发不同领域的基因编辑产品。目前贝斯生物合计已申请及许可十多项碱基编辑和先导编辑专利,其中多项已经获得授权,从而构建了基因编辑平台的完整专利布局。贝斯生物的“0脱靶”碱基编辑技术从上海科技大学获得授权,黄行许教授是该编辑技术的发明人,目前已经在多个体内和体外系统验证了其“0脱靶”和高效靶向编辑的特点。因此,贝斯的编辑技术在临床应用的安全性方面具有优势。在核心编辑工具的基础上,贝斯着手建立自己的优势。首先是碱基编辑/先导编辑的PBMC来源的通用现货型NK细胞疗法产品 (Super-NK)。将基因编辑/碱基编辑推向临床应用,NK细胞是最安全的应用场景,这是由NK专门清除变异细胞的生物学特征决定的。贝斯生物的科学创始人朱诗国教授在MD Anderson 癌症中心博士后工作期间即开始研究NK细胞,专注于NK细胞肿瘤免疫治疗领域超过16年,在国际上率先攻克了NK细胞体外扩增的障碍。贝斯的首款Super-NK产品去年已经进入IIT临床试验阶段。贝斯同时在开发不同的Super-NK产品,分别针对不同适应症,可以满足实体肿瘤、血液肿瘤以及病毒感染疾病等严重未被满足的临床需求。其次是体内碱基编辑产品。贝斯采用自主开发的递送系统递送“0脱靶”的碱基编辑器,实现了高效的靶向编辑效率,目前正在开展临床前研究,预计明年IND。最后是依托贝斯专利保护的底层编辑工具的先进性,积极拓展与外部企业技术授权或合作开发的新机会。贝斯已经和美国一家造血干细胞公司开展合作设立JV,采用贝斯的碱基编辑技术编辑造血干细胞,治疗一些严重的遗传疾病。贝斯生物创始人徐天宏博士表示:“非常感谢新老投资人对贝斯生物的认可和支持。贝斯生物成立一年多以来取得了非常快速的发展,组建了一支在基因编辑和NK细胞研发,细胞产品生产、工艺开发、QAQC,临床研究拥有非常丰富经验的团队,并在上海浦东金桥建成了可以满足注册临床和早期商业化生产的GMP生产基地。公司第一个碱基编辑产品已经进入IIT临床研究。希望以本轮融资为契机,进一步加速技术平台升级,以推动我们FIC创新产品快速的临床研究,加速细胞与基因编辑药物的临床应用和全球化布局。“Great Eagle VC首席投资官James Zhang博士表示:“基因编辑技术有广阔的应用空间,为人类基因疾病的治疗和抗癌创新细胞疗法带来了曙光。贝斯生物拥有自主知识产权和准确而高效的基因编辑工具,我们很荣幸能够领投本次融资,并深信贝斯团队能为基因编辑领域的发展和患者治疗作出更多的贡献。“BV百度风投投资副总裁安峰表示:“贝斯生物是一家以融合创新技术开发新型治疗产品为策略的公司。在技术平台方面,公司拥有自主知识产权的碱基编辑和原代免疫细胞工程化两大技术平台,实现了关键基因编辑技术在全球的FTO,解决了原代细胞产品临床转化应用中的产业化瓶颈;在产品开发方面,充分发挥碱基编辑工具相对于传统病毒在细胞改造方面的优势,以及在体内应用更精准的靶向要求,开发针对不同适应症的体外细胞治疗和体内基因治疗产品,并初步获得临床有效性和安全性验证,处于同行业领先地位。BV百度风投非常看好公司未来的发展前景,会持续支持公司进行技术转化,实现最优的临床价值。“信熹资本合伙人黄玮婷表示:“贝斯生物是难得的做真正源头创新的优秀团队,具备全球领先的底层基因编辑能力,拥有高编辑效率、’0脱靶’等技术优势和全球FTO的专利。同时贝斯生物选择的首个落地场景,即碱基编辑通用型NK细胞(Super-NK)疗法在实体肿瘤和血液肿瘤领域有广大的市场前景。依托于公司在NK细胞领域深厚的理解与经验,我们相信贝斯生物有望真正实现一种低成本、广谱、安全、有效的现货通用型创新细胞疗法。“广大汇通投资总监王世仪表示:“基因编辑和细胞治疗在癌症治疗和遗传病上体现出了优秀的潜力,受到业界广泛关注。贝斯生物拥有碱基编辑和先导编辑的底层专利,通过基因编辑技术在较短的时间开发出数条非常有潜力的NK细胞产品线。广大汇通一直关注医疗领域的底层创新,非常高兴能成为贝斯生物的合作伙伴,陪伴公司成长为全球化的基因编辑平台,将基因编辑技术应用在更多的领域。“英国SPARK VC合伙人WILLIAM LU表示:“贝斯生物的爱国海归团队专注碱基编辑和先导编辑核心技术的自主研发,构建完整的专利平台布局,参与相关生物技术领域里国家安全能力建设,发展潜力巨大。“
  • 我国学者开发出高效微型CRISPR-SpaCas12f1基因编辑系统
    上海科技大学季泉江教授团队在Cell Reports发表了题为 “Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease”的研究论文。该论文报道了Syntrophomonas palmitatica Cas12f1(SpaCas12f1)的生化特征及DNA切割机制,证明CRISPR-SpaCas12f1系统能在细菌中实现多种编辑目的,且通过工程化向导RNA使该系统转化为哺乳动物细胞中高效的基因组编辑器。CRISPR-Cas系统是目前常用的基因编辑工具,但是由于传统的Cas核酸酶分子量普遍太大,使其在在体基因治疗的应用中受限。近年来,为了解决这一难题,小的Cas核酸酶逐渐被发现和探究。其中,Cas12f 核酸酶是目前紧凑的 CRISPR 效应核酸酶,比传统Cas9和Cas12a核酸酶小一半以上,在临床治疗应用中具有巨大潜力,然而高效的Cas12f基因编辑系统仍旧较少。图1.CRISPR-SpaCas12f1的表征与改造来自Syntrophomonas palmitatica的紧凑型SpaCas12f1只有497个氨基酸,该研究首先系统地表征了SpaCas12f1的生化特性及对DNA识别与切割的模式,证明了SpaCas12f1是一种镁离子依赖的嗜热核酸酶,可在tracrRNA和crRNA的帮助下有效切割含有5' -NTTY (Y代表C或T)PAM的双链DNA。此外,SpaCas12f1拥有与AsCas12f1相似的切割模式,即在靶向链上引入一个切口,非靶向链上引入两个切口(图1)。由于SpaCas12f1在大肠杆菌中拥有质粒干扰活性,为探究其能否成为一个在细菌中高效的基因组编辑工具,研究人员通过引入SpaCas12f1和Lambda Red重组酶系统及单链修复模板,实现了CRISPR-SpaCas12f1在大肠杆菌(Escherichia coli)和肺炎克雷伯氏菌(Klebsiella pneumoniae)中多种精准的基因组编辑。同时,研究人员发现SpaCas12f1的tracrRNA具有独特的head-to-toe的发夹结构,这是限制SpaCas12f1在哺乳动物细胞有效编辑的主要因素。通过对RNA二级结构预测及小RNA测序结果分析,研究人员设计了五种策略,系统地工程化向导RNA,成功地获得了高效的引导RNA,gRNA_MS13,从而实现CRISPR-SpaCas12f1高效哺乳动物细胞编辑。这项研究扩展了微型CRISPR核酸酶工具库,并为基因治疗和工程化微型CRISPR系统提供了新的思路。
  • GOTI技术可灵敏检测基因编辑是否脱靶
    p style=" text-indent: 2em text-align: justify " 基因编辑的“子弹”如果没有命中目标,就会产生脱靶效应,可能会导致诸如癌症等不良的基因变异。这种风险让人们对这种新的技术手段望而却步。近日,中国科学院神经科学研究所与国内外研究机构的研究者们合作开发了一种被命名为GOTI的技术,能够准确、灵敏地检测到基因编辑方法是否会产生脱靶效应,使基因编辑技术向安全地带迈进了一步。 /p p style=" text-indent: 2em text-align: justify " 此前,人们推出过多种检测脱靶的方案。但小鼠或者人类个体间基因存在很大差异,基因编辑所产生的脱靶效应会被淹没在这些差异之中。以往的检测方法很难从这些差异中分辨出哪些是基因编辑所造成的脱靶,哪些是个体本身的差异,因此无法有效判别基因编辑工具的安全性。 /p p style=" text-indent: 2em text-align: justify " GOTI颠覆了原有的脱靶检测手段。实验的精妙之处是利用小鼠胚胎做实验。在受精卵分裂成两个时,基因编辑其中的一个,并用红色荧光蛋白进行标记。编辑之后,让两个细胞继续分裂,等小鼠胚胎发育到14.5天时,基于红色荧光蛋白筛选出基因编辑细胞和没有基因编辑的对照细胞。 /p p style=" text-indent: 2em text-align: justify " 由于这两组细胞基因背景完全一致,且无需基因组体外扩增,避免了遗传背景的干扰,同时还可以清楚地展现单个碱基的突变,GOTI因此展现出强大的灵敏性,对数量极少的基因编辑脱靶也可感知。 /p p style=" text-indent: 2em text-align: justify " 此外,研究人员使用GOTI技术发现BE3单碱基编辑会产生大量脱靶突变。这一发现使人们重新审视原本认为“特别安全、几乎不会有脱靶”的单碱基突变技术,并为基因编辑工具的安全性评估带来了突破性的新技术,有望成为新的行业检测标准。相关研究结果于3月1日发表在《科学》上。 /p p br style=" text-indent: 2em text-align: left " / /p
  • CRISPR技术助中国科学家成功修复人类胚胎中的基因突变
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/a316d279-462e-4bdb-8348-3d0fd22fce5f.jpg" title=" 1.png" / /p p style=" text-align: justify " & nbsp & nbsp 近日,这项成果以“Correction of the Marfan Syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos”为题发表在《Molecular Therapy》杂志上。上海科技大学的黄行许教授和广州医科大学附属第三医院的刘见桥教授为这一研究的通讯作者。 /p p style=" text-align: justify " 关于马凡综合症 /p p style=" text-align: justify " & nbsp & nbsp 马凡综合征是一种以结缔组织为基本缺陷的遗传性疾病,也有先天性中胚层发育不良、Marchesani综合征、蜘蛛指征、肢体细长症之称,其典型病症包括周围结缔组织营养不良、骨骼异常、内眼疾病和心血管异常。 /p p style=" text-align: justify " & nbsp & nbsp 据估计,全球每5000人中有1人患有马凡综合症,由于这种遗传疾病会在全身引起问题,因此往往可能是致命的。如果一个人患有马凡综合症,他们的孩子将也有50%的可能会患有此病。 /p p style=" text-align: justify " 在这项新研究中,中国团队从马凡氏综合征患者捐赠的健康卵子和精子着手,利用体外受精技术培养成能自行发育的人类胚胎,然后通过“碱基编辑”技术纠正引起该病症的FBN1(编码原纤维蛋白1)基因中单个碱基的突变,为这种疾病提供了潜在的早期治疗。 /p p style=" text-align: justify " 碱基编辑器 /p p style=" text-align: justify " & nbsp & nbsp 过去的研究曾表明,编辑双链DNA会产生不必要的剪切,甚至于可能会导致癌症。最新研究中并没有使用典型的CRISPR基因编辑技术。相反,他们尝试了一种“碱基编辑器”的技术,可以简单替换单个碱基(例如将A替换为G)。 /p p style=" text-align: justify " & nbsp & nbsp 碱基编辑器是由Broad 研究所的华人学者 David Liu 教授的团队开发,可以让细胞内 DNA 的一种碱基通过简单的化学反应,变成另一种碱基,达到精准编辑基因的目的。 /p p style=" text-align: justify " & nbsp & nbsp 如今最常用的是 CRISPR 基因编辑技术,通过处理后的病毒携带基因片段,进入细胞内 DNA 替换原有基因。这种技术,需要切割 DNA 才能实现基因编辑。而碱基编辑器的突破在于,它不需要切割 DNA,直接在 DNA 上进行化学反应,来精准编辑基因。而此前,CRISPR 基因编辑技术可能会引起随机插入和删除等突变,而碱基编辑器技术则几乎避免了这种情况。 /p p style=" text-align: justify " 更好的方式 /p p style=" text-align: justify " & nbsp & nbsp 鉴于要纠正该病症的突变基因,只需要将FBN1基因中的G改变为健康的A。研究人员试图用碱基编辑纠正导致马凡综合征的突变。 /p p style=" text-align: justify " & nbsp & nbsp 根据这项研究,黄行许教授和刘见桥团队成功纠正了导致18个活的人类胚胎出现马凡综合症的突变。其中16个胚胎仅携带FBN1基因经过修正的版本,而在2个胚胎中发生了额外的编辑。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/8905cefd-7c05-429f-a588-26ad6bfa4a2d.jpg" title=" 2.png" / /p p /p p style=" text-align: center " 本研究通讯作者黄行许(左),刘见桥(右) /p p style=" text-align: left " & nbsp & nbsp “总的来说,这项初步研究提供了概念上的证明,并开启了基于碱基编辑的基因治疗的潜力,”上海科技大学的研究员黄行许教授说,“尽管如此,距离到临床应用,它还有很长的路要走。” /p p br/ /p
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • 从“单个修改”到“全面覆盖” 我国科学家开发基因编辑新技术
    基因编辑技术是面向未来的技术,以CRISPR为代表的基因编辑技术,基本实现了对基因的“单个修改”——单碱基和短序列尺度的精准编辑。那么,能不能发明一种新的基因编辑技术,实现一次修改全面覆盖?中国科学院动物研究所/北京干细胞与再生医学研究院的生物学家们开发了一种具有自主知识产权的基因编辑新技术,成功实现了以核糖核酸(RNA)为媒介的基因精准写入,为新一代创新基因疗法的发展提供了基础。这项成果由中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成,相关论文发表在7月8日晚出版的国际学术期刊《细胞》上。李伟介绍,基因组脱氧核糖核酸(DNA)是生命的蓝图,对基因组DNA实现任意尺度的精准操作代表对生命蓝图进行修改绘制的底层能力,是基因工程技术发展的核心。目前,实现大片段基因尺度的DNA在基因组的高效精准整合,是整个基因工程领域急需突破的难题。针对这一重大技术挑战,多种基因写入技术已被开发,但是这些技术大多依赖于DNA模板作为基因写入的供体。在实际医学应用中,DNA供体面临免疫原性高、在体递送困难、在基因组中具有随机整合风险等诸多挑战。研究人员将视线转向RNA供体。RNA供体具有更低的免疫原性、可被非病毒载体有效递送、在细胞内迅速降解、无随机整合风险等特点,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。在多次尝试后,研究团队选定R2逆转座子进行攻关。李伟介绍:“结合基因组数据挖掘和大分子工程改造等手段,我们开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因高效精准的整合,最高效率超过60%。”这一技术的突破,意味着可以通过外源功能基因的精准写入,来干预涵盖不同位点多种突变谱的基因所导致的遗传缺陷等疾病,能够开发更为通用的基因与细胞疗法,具有广泛的应用前景。李伟说:“这一技术目前尚无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。这也是我们下一步工作的重点。”
  • 最新!2023年度“中国科学十大进展”发布
    2月29日,国家自然科学基金委员会发布了2023年度“中国科学十大进展”。2023年度“中国科学十大进展”主要分布在生命科学和医学、人工智能、量子、天文、化学能源等科学领域。2023年度“中国科学十大进展”分别为:• 人工智能大模型为精准天气预报带来新突破• 揭示人类基因组暗物质驱动衰老的机制• 发现大脑“有形”生物钟的存在及其节律调控机制• 农作物耐盐碱机制解析及应用• 新方法实现单碱基到超大片段DNA精准操纵• 揭示人类细胞DNA复制起始新机制• “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子• 玻色编码纠错延长量子比特寿命• 揭示光感受调节血糖代谢机制• 发现锂硫电池界面电荷存储聚集反应新机制1、人工智能大模型为精准天气预报带来新突破天气预报是国家重大战略需求,也是国际科学前沿问题。华为云计算技术有限公司田奇团队在天气预报领域取得了新突破。基于人工智能方法,他们构建了一个三维深度神经网络模型,称为盘古气象大模型。其主要技术贡献有三点。一是采用了三维神经网络结构,更好地建模复杂的气象过程。二是采用地球位置编码技术,提升训练过程的精度和效率。三是训练具有不同预测时效的多个模型,减少迭代误差、节约推理时间。盘古气象大模型在某些气象要素的预报精度上超越了传统数值方法,且推理效率提高了上万倍。在全球高分辨率再分析数据上,盘古气象大模型在温度、气压、湿度、风速等重要天气要素上,都取得了更准确的预测结果,将全球最先进的欧洲气象中心集成预报系统的预报时效提高了0.6天左右。盘古气象大模型也可用于极端天气预报。在2023年汛期,盘古气象大模型成功预测了玛娃、泰利、杜苏芮、苏拉等影响我国的强台风路径。2、揭示人类基因组暗物质驱动衰老的机制在人类基因组中,“暗物质”——非编码序列占据了98%,其中有约8%是内源性逆转录病毒元件,它是数百万年前古病毒入侵并整合到人类基因组中的残留物,通常情况下处于沉默状态。然而,随着年龄的增长,这些沉睡的古病毒“化石”的封印是否会被揭开,进而加速我们身体的衰老进程尚不得而知。中国科学院动物研究所刘光慧研究员带领研究团队,通过搭建生理性和病理性衰老研究体系,结合高通量、高灵敏性和多维度的多学科交叉技术,揭示在衰老过程中,表观遗传“封印”的松动将导致原本沉寂的古病毒元件被重新激活,并进一步驱动衰老的“程序化”和“传染性”。这项工作提出了古病毒的“复活”驱动衰老及相关疾病的新理论,为理解衰老的内在机制和发展衰老干预策略提供了新依据,为科学评估和预警衰老、防治衰老相关疾病以及积极应对人口老龄化提供新思路。3、发现大脑“有形”生物钟的存在及其节律调控机制生物钟的准确性和稳定性与健康息息相关。由于缺乏对生物节律调节机制的认识,当前国际上尚未能研究出基于生物节律的有效治疗药物。大脑的视交叉上核(SCN)是生物钟的指挥中枢,但SCN如何维持机体内部节律稳定性,从而抵御外界环境的干扰,尚不清楚。军事医学研究院李慧艳研究员和张学敏研究员通过合作研究发现了大脑“有形”生物钟的存在。他们发现大脑生物钟中枢SCN神经元长有“天线”样的初级纤毛,每24小时伸缩一次,如同生物钟的指针,通过它可实现对机体生物钟的调控。大脑SCN区域具有大约2万个神经元。神奇的是,这2万个神经元始终保持着“同频共振”,维系着生物钟的稳定性,但机理始终是个谜团。他们发现初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义,为节律调控新药研发开辟了新的路径。4、农作物耐盐碱机制解析及应用我国有15亿亩盐碱地未被有效利用,通过培育耐盐碱农作物,可提高盐渍化土地产能,将为我国粮食安全提供有效保障。尽管学术界对于植物耐盐性有较深入认知,但对植物耐碱胁迫的认识严重不足,这阻碍了耐盐碱作物的培育。盐碱地资料图。图片来源:视觉中国中国科学院遗传与发育生物学研究所谢旗领衔的8家单位科研团队联合攻关,在粮食作物耐盐碱领域取得重要突破。通过对耐盐碱差异大的高粱资源全基因组大数据进行关联分析,研究团队发现一个主效耐碱相关基因AT1,编码G蛋白亚基。不同的AT1基因突变型在调控这一过程中发挥决定作用,为作物耐碱理论研究提供了新视角。研究还发现在水稻、玉米及小作物谷子等主要粮食作物中AT1调控机制也是类似的,为主要作物的耐盐碱分子育种奠定了理论基础。在取得理论突破的基础上,团队对高粱进行耐盐碱育种改良。在宁夏平罗盐碱地进行的田间实验表明,AT1基因的利用能够使高粱籽粒产量和全株生物量增加。AT1基因还可用于改善主要禾本科作物水稻、小麦、小米和玉米等的耐盐碱性。5、新方法实现单碱基到超大片段DNA精准操纵基因组编辑是生命科学领域的颠覆性技术,将对医疗和农业等领域的发展产生重要影响。但是,精准基因组编辑技术的底层专利目前被国外垄断,我国亟待创制具有自主产权的新技术。另外,大片段DNA的精准操纵技术研发刚刚起步,将是全球基因组编辑技术竞争的制高点。中国科学院遗传与发育生物学研究所高彩霞团队与北京齐禾生科生物科技有限公司的赵天萌团队合作,实现了基因组编辑在方法建立、技术研发和工具应用的多层次创新。研究团队首次运用人工智能辅助的结构预测建立了蛋白聚类新方法,率先将基于结构分类的理念引入工具酶挖掘领域,并基于此开发了系列具有重要应用价值的新型碱基编辑器和我国完全拥有自主产权的、首个在细胞核和细胞器中均可实现精准碱基编辑的新型工具CyDENT。此外,研究团队开发了首个植物大片段DNA精准定点插入技术,为高效作物育种和植物合成生物学奠定了技术基础。研究团队还利用基因组编辑实现了作物性状的精准调控。该成果有望进一步拓宽基因组编辑的育种应用,助力作物种质创新。6、揭示人类细胞DNA复制起始新机制DNA复制从染色体上多个地方开始,这些地方被称为复制起始位点。复制起始过程分两步:一是在起始点上组装MCM双六聚体。二是激活MCM双六聚体,成为复制体,启动复制。如果这个过程出现问题,会导致严重的疾病,比如癌症、早衰和侏儒症等。为了深入了解人体细胞DNA复制是如何开始的,该项工作解析了人体内的MCM双六聚体复合物的冷冻电镜结构。在这个结构中,复制起点DNA,被固定在MCM的中央通道里,形成一个初始开口结构。形成该结构,DNA双链需要被拉伸和解开。该研究还发现,如果初始的开口结构被破坏,那么所有的MCM-DH就无法稳定地结合在DNA上,导致DNA复制完全被抑制,就像是复印机坏了,无法开始复印文件一样。这一发现对癌症治疗有重要的应用价值。因为癌症细胞在生长过程中必须进行DNA复制。在不影响正常细胞运作的情况下,通过阻止癌细胞在DNA上组装MCM双六聚体,将会是一种全新的、有效的、而且非常精准的抗癌疗法,为抗癌药物的研发开辟了新的道路。7、“拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子伽马射线暴(简称伽马暴)是天空中突然发生的短暂伽马射线爆发现象。近些年,一些望远镜发现了伽马暴在万亿电子伏特能段随时间下降的余辉,但早期起始阶段一直未被探测到。我国高海拔宇宙线观测站“拉索”(LHAASO)首次记录了伽马暴万亿电子伏特光子爆发的全过程,探测到早期的上升阶段,由此推断喷流具有极高的相对论洛伦兹因子。“拉索”还看到了GRB 221009A(史上最亮伽马暴,起源于24亿光年外的大质量恒星死亡瞬间)的余辉在700秒左右出现了快速下降,这一光变拐折现象被认为是观测者看到了喷流的边缘所致。从光变拐折的时间得到喷流的半张角仅有0.8度。这是迄今发现最窄的伽马暴喷流,意味着它实际上是一个典型结构化喷流的核心。我国高海拔宇宙线观测站“拉索”。图片来源:中国科学院高能物理研究所“拉索”还精确测量了高能伽马射线的能谱,呈现单一的幂律,延伸至十万亿电子伏特以上。这是伽马暴观测到的迄今最高能量的光子。在余辉标准模型下,高能余辉辐射起源于相对论电子的逆康普顿散射,理论预期这样的能谱在高能段会逐渐变软。但“拉索”的观测没有发现能谱变软现象,这对伽马暴余辉标准模型提出了挑战,意味着十万亿电子伏特光子可能产生于更复杂的粒子加速过程或者存在新的辐射机制。8、玻色编码纠错延长量子比特寿命理论上,量子计算机具有超越经典计算机的算力,但受噪声干扰后容易出现量子退相干,导致错误率比经典计算机至少高十多个量级。量子纠错是解决该问题的重要途径,通过量子编码使得一个被保护的逻辑量子比特的相干寿命,超过量子电路中最好的物理比特的相干寿命。此时,意味着纠错过程超越了量子纠缠的盈亏平衡点,这是构建逻辑量子比特的必要条件。但量子态具有不可克隆性,量子计算机无法通过备份来纠正错误,量子纠错过程会引入新的错误,造成误差累积,甚至出现越纠越错的局面。南方科技大学和深圳国际量子研究院的俞大鹏院士与徐源研究团队,联合福州大学郑仕标、清华大学孙麓岩等团队依据玻色编码量子纠错方案,开发了基于频率梳控制的低错误率宇称探测技术,大幅延长逻辑量子比特的相干寿命,超盈亏平衡点达16%,实现了量子纠错增益。该成果是通往容错量子计算道路上的一项重要成果。9、揭示光感受调节血糖代谢机制国内外多项公共卫生调查研究显示,夜间过多光暴露显著增加罹患糖尿病、肥胖等代谢疾病风险。然而,光是否以及如何调节机体的血糖代谢,是尚未解决的重要科学问题。中国科学技术大学薛天研究团队发现光暴露显著降低小鼠的血糖代谢能力。哺乳动物感光主要依赖视网膜上的视锥、视杆细胞和对蓝光敏感的自感光神经节细胞(简称ipRGC)。利用基因工程手段,研究团队发现光降低血糖代谢由ipRGC感光独立介导。进一步研究发现光信号经由视网膜ipRGC,至下丘脑视上核、室旁核,进而到达脑干孤束核和中缝苍白核,最后通过交感神经连接到外周棕色脂肪组织,并最终确定了光降低血糖代谢的原因,是光经由这条通路抑制棕色脂肪组织消耗血糖的产热。进一步研究表明,光同样可利用该机制降低人体的血糖代谢能力。这项研究发现了全新的“眼-脑-外周棕色脂肪”通路,回答了长久以来未知的光调节血糖代谢的生物学机理,拓展了光感受调控生命过程的新功能。这项工作发现的感光细胞、神经环路和外周靶器官,为防治光污染导致的糖代谢紊乱提供了理论依据与潜在的干预策略。10、发现锂硫电池界面电荷存储聚集反应新机制锂硫电池具有极高的能量密度和较低的成本,然而,锂硫电池的广泛应用还未能实现。因为它在充放电过程中,电池性能会快速下降。受限于传统原位显微研究技术的时空分辨率低及锂硫体系不稳定等因素,人们对其内部发生的化学反应过程尚不清楚,无法针对性解决问题。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高分辨电化学原位透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示出电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • 新发现,基因组编辑技术可对DNA进行微调
    Crispr基因编辑——一种分子剪刀可以让科学家对生物体的DNA进行有针对性的改变。Crispr基因编辑毫无疑问是治疗镰状细胞病的一个希望。镰状细胞病是一种与之相关的血液疾病,被称为地中海贫血,是一种罕见的失明,以及一种毁灭性的疾病,被称为转甲状腺素淀粉样变性,在这种疾病中,一种畸形的蛋白质会在体内堆积。有时候,科学家可以使用Crispr剪掉有问题的DNA以达到治疗疾病的目的,但在某些情况下,保留一个基因并对其进行微调,即系进入表观遗传编辑,可能会达到更好的目的。表观遗传学是研究DNA在一生中发生的化学变化,这些变化反过来又影响基因的表达。这些变化可能是由于一个人的行为(如饮食或吸烟)或环境暴露(如毒素或紫外线)造成的。表观遗传学是一种分子记忆,反映了我们多年来遇到的经验。这就是为什么,在拥有相同DNA密码的同卵双胞胎中,一个可能会患上癌症,而另一个则保持健康。虽然基因编辑依赖于改变DNA密码本身,而表观遗传编辑则涉及到上调或下调单个基因的表达。基因包含制造重要蛋白质的指令,而它们的表达是基因被“开启”来制造它们的过程。如果将基因比喻成音板上的音量旋钮,表观遗传编辑控制着它们的设置是“响亮的”还是“柔和的”。对于这样的“音量控制”进行实验是一个新领域,而刚好在今年5月发表在《科学进展》杂志上的一项研究提供了一个有趣的线索,揭示了一个可能的应用:对抗早期饮酒改变基因工作方式的方式。在之前的研究中,科学家们发现,青春期的酗酒会改变杏仁核的大脑化学成分–杏仁核是大脑中控制恐惧和快乐反应的小杏仁形状的部分。在啮齿动物和人类身上,他们都发现,在生命早期接触酒精似乎会减少一种名为Arc的基因的表达。这个基因是大脑可塑性的主要调节器,也就是大脑基于经验的适应能力。当Arc的表达被抑制时,这种变化与成年后易患焦虑和酒精使用障碍有关。在这项新研究中,由伊利诺伊大学芝加哥分校酒精表观遗传学研究中心主任、精神病学教授Subhash Pandey带领的团队想看看他们是否可以通过在老鼠杏仁核中对Arc进行表观遗传编辑来逆转这种改变。他们构建了一种经过修改的Crispr形式,这种Crispr不是编辑或删除基因,而是增加基因的表达。然后,他们将其注射到成年大鼠的大脑中,这些成年大鼠在青少年时期曾接触过酒精——相当于10至18岁的人类。这种早期的接触意味着Arc的表达在成年动物中已经受到抑制。Subhash Pandey表示他们瞄准了杏仁核的中央核,因为这是处理进入大脑的信息的关键中枢,也是焦虑、恐惧和饮酒行为的中心。注射Crispr使Arc的表达恢复到基线水平,Subhash Pandey称之为大脑的“工厂重置”。之后,这些啮齿动物摄入的酒精减少了,焦虑也减少了——研究人员通过行为测试来测量这一点,包括老鼠在所谓的“高架迷宫”中的表现。十字形迷宫由两条暴露在外的臂和两条封闭的臂组成。啮齿类动物的压力越大,它们就越不愿意在迷宫的露天部分呆上一段时间。Subhash Pandey说:“我们没有看到任何迹象表明他们的饮酒水平会回到基线,所以我们认为,也许这种表观基因编辑会产生持久的影响,我认为,就如何将这种疗法转化为人类治疗而言,还有很多工作要做,但我抱有很高的希望。”为了测试Arc基因是否真的导致了这一结果,研究人员还设计了一种旨在减少其表达的Crispr注射。他们在青春期没有接触酒精的老鼠身上进行了测试。注射后,老鼠比之前更焦虑,喝了更多的酒。这项研究提出了一种可能性,即我们的分子记忆可能会被修改,甚至被删除。加州大学伯克利分校的遗传学教授、加州大学伯克利分校和加州大学旧金山分校创新基因组学研究所的科学主任费奥多尔乌尔诺夫说:“这项研究展示了改变基因对其经历的记忆的可行性,这深深给我留下了深刻的印象。”但是他也强调,老鼠不是人类,我们不应该草率下结论。乌尔诺夫说表示治愈一只老鼠和用表观遗传编辑器给一个酗酒成瘾的人注射之间的距离还很遥远。我们是否具备向那些轻度饮酒问题的人的杏仁核进行快速注射还有很长的路要走。乌尔诺夫作为表观遗传编辑公司Tune Therapeutics的联合创始人之一,他认为,这样的实验疗法可以在多次治疗后复发、没有其他治疗选择的酒精成瘾患者中进行测试。然而,与直接编辑基因一样,调整基因表达可能会产生意想不到的后果。因为Arc是一种与大脑可塑性有关的调节基因,修改它的表达可能会产生酒精成瘾以外的影响。俄勒冈健康与科学大学遗传学教授贝琪弗格森(Betsy Ferguson)研究成瘾和其他精神疾病的表观遗传机制,她说:“我们不知道这种变化会改变其他什么行为。”“这是一种平衡,既要找到有效的方法,又要找到不会破坏日常生活的方法。”另一个复杂的因素是,随着时间的推移,酒精的使用会改变数十个、甚至数百个基因的表达。在人类中,这可能不像提高Arc的表达那么简单,这只是其中之一。虽然解决方案似乎是调整所有这些基因,但同时操纵许多基因的表达可能会导致问题。“我们知道行为,包括饮酒行为,是由许多基因控制的,这真的是一个具有挑战性的问题来解决,”Betsy Ferguson说。目前还不清楚这种编辑的影响会持续多久。Betsy Ferguson表示自然发生的表观遗传变化可能是暂时的,也可能是永久性的,有些甚至可以传给后代。总的来说,她认为使用表观遗传编辑治疗酒精成瘾的想法很有趣,但她希望看到结果被复制,并在更接近人类的大型动物身上试验Crispr治疗。相信这一天可能不会太远,因为最近有几家公司推出了表观遗传编辑商业化。在总部设在圣地亚哥的Navega治疗公司,研究人员正在研究如何通过抑制一种名为SCN9A的基因的表达来治疗慢性疼痛。当它高度表达时,它会发出许多疼痛信号。但简单地删除这个基因并不是一个好主意,因为一定程度的疼痛是有用的;当身体出现问题时,它会发出信号。(在极少数情况下,携带SCN9A突变的人对疼痛具有免疫力,这使他们容易受到无法感觉到的伤害。)。在Navega的实验中,小鼠的表观遗传编辑似乎抑制了几个月的疼痛。点击图片免费报名参加“第五届基因测序网络大会”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制