当前位置: 仪器信息网 > 行业主题 > >

量子调控与量子信息

仪器信息网量子调控与量子信息专题为您整合量子调控与量子信息相关的最新文章,在量子调控与量子信息专题,您不仅可以免费浏览量子调控与量子信息的资讯, 同时您还可以浏览量子调控与量子信息的相关资料、解决方案,参与社区量子调控与量子信息话题讨论。

量子调控与量子信息相关的论坛

  • 【技术@创新】我科学家在单分子自旋态的量子调控研究中取得新进展

    [size=4][font=黑体]简介:量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展[/font][/size]量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展。他们发现在酞菁铁分子Kondo效应中由于分子中心铁原子在金属表面的吸附位置不同对Kondo效应产生很大影响。相关研究结果发表在9月7日出版的《物理评论快报》(Phys. Rev. Lett. 99, 106402 (2007))上。这是首次报道吸附位置对单分子Kondo效应的调控作用,为单分子自旋态的量子调控及其在量子信息中应用研究提供了新思路。 Kondo效应是指磁性杂质中的局域自旋与自由电子强关联相互作用所引起的一系列低温反常现象。近年来,扫描隧道显微镜技术的迅速发展使人们能够精确地测量单个磁性原子或分子在金属表面上的Kondo效应,而在原子尺度上探索影响Kondo效应的因素是实现单分子自旋态量子调控的关键。 物理所高鸿钧研究组利用低温扫描隧道显微镜及扫描隧道谱,在对吸附在金表面的磁性分子酞菁铁的测量中,发现了Kondo温度高于室温的Kondo效应,并发现分子中心铁原子在金表面的吸附位置对Kondo效应影响很大。他们发现酞菁铁分子在金表面存在两种吸附取向,虽然在分子中心测量的扫描隧道谱显示两种分子取向都存在Kondo效应,但是彼此却存在很大差别。这种差别主要表现在两个方面:根据Fano理论拟合的Kondo温度,以及扫描隧道谱在费米面附近的线型。第一性原理计算及实验测量表明,两种取向的分子的中心铁原子吸附在金表面的不同位置:第一种分子取向,铁原子吸附在金表面两金原子之间的桥位置;第二种分子取向,铁原子吸附在金表面金原子的正上方。他们的理论分析表明,分子中心铁原子在金表面的吸附位置不仅影响到局域自旋与自由电子耦合相互作用的强弱,而且还会影响扫描隧道谱测量中隧穿电子的通道。 近年来,高鸿钧领导的研究组对纳米功能结构材料的调控生长、机制与物性等进行了系列研究(如:Phys. Rev. Lett. 97, 246101 (2006);97, 156105 (2006);96, 226101 (2006);96, 156102 (2006);Adv. Func. Mater. 17, 770 (2007))。根据该工作观察到的吸附位置对单分子Kondo效应,他们提出了调控单分子自旋量子态的可能途径:1)通过基底上不同位置或不同基底的物理化学性质(如:Phys. Rev. Lett. 97, 156105 (2006));2)通过调节纳米分子体系中非功能性侧链(如:Phys. Rev. Lett. 96, 226101 (2006))。这对量子调控和量子信息研究具有重要意义。 以上工作得到了国家自然科学基金委、国家科技部和中国科学院的资助。

  • 观察量子信息新方法可及时纠错量子状态

    中国科技网 讯(记者华凌)据物理学家组织网1月15日(北京时间)报道,耶鲁大学研究人员成功开发出一种新方法,既可以观察量子信息,同时还能保持其完整性,这将给量子力学研究提供更大的控制权,以纠正随机错误,并将极大地提升量子计算机的发展前景。该研究结果发表在最新一期《科学》杂志上。 耶鲁大学应用物理与物理研究教授米歇尔和主要研究者弗雷德里克说:“盯着一个理论公式是一回事,能够真正控制一个量子对象是另一回事。这项实验是量子计算过程中必不可少的一次彩排,可以真正积极地理解量子力学。” 在量子系统中,信息是由量子比特来存储的。量子比特可以假定为“0”或“1”两个状态,这两个状态在同一时刻是叠加的。正确认识、解释和跟踪它们的状态对于量子计算非常必要。但通常情况下,监视量子比特会损害其信息内容。 新开发的这种非破坏性的测量系统可以观察、跟踪和记录一个量子位所有状态的变化,同时保持量子比特的信息价值。研究人员说,原则上,这将允许其监视量子比特的状态,以纠正随机错误。 米歇尔说:“具有与量子比特对话的能力,并且听到它在告诉你什么,这就是关键所在。量子计算机一个主要问题是量子比特存储的信息‘寿命’有限,并持续衰减,所以必须予以纠正。” 弗雷德里克说:“只要你知道过程中发生了什么错误,就可以修正。这些错误基本上是可以撤消的。” 该研究团队现在可以成功地测量一个量子比特,未来面临的挑战是一次测量和控制更多的量子比特。他们正在开发基于此目的的超高速数字电子技术。 总编辑圈点: 薛定谔那只既死又活的猫,生动地诠释了量子世界的奇妙之处:量子时刻处于“0”和“1”两个状态,而你对单个量子状态的任何“窥探”都将改变其状态。科学家的新发现如果确实是针对单个量子比特,那么无疑是量子物理领域的一大突破。它在为更精确的量子计算提供测量基础的同时,也为量子密码领域的研究人员提出新的挑战:依靠量子状态不可测来杜绝量子通信被偷窥的方法,或许要更新了。 《科技日报》2013-1-16(一版)

  • 离子“跑车”可迅速加速和突然刹车 可作为量子计算机中的量子位来传递信息

    中国科技网讯 据物理学家组织网8月9日报道,美国国家标准与技术研究院(NIST)的物理学家开发出了“另类跑车”——速度可以从零迅速提升到每小时161公里,然后在短短几微秒时间内“刹车”的铍离子。这些离子在骤然停顿时可以保持完全静止,“高速行驶”对它们几乎没有影响。科学家认为,这一点对于研制未来的量子计算机将大有帮助。 这些离子在一个离子阱中的行驶速度比以前所能达到的速度加快了100倍,确切来说,单个离子仅用8秒时间就前进了370微米。这项新实验还证明,研究人员可以对离子阱中离子的快速加速和突然停止进行精确控制,并且不会影响到离子的电子能级,这对于研发量子计算机而言非常重要,因为存储在这些能级中的信息需要被传递出去,而信息内容不能遭到破坏。 量子计算机可以解决很多目前相当棘手的重要问题。携带信息的量子位(或量子比特)需要在处理器中四处移动。用离子充当量子位,信息传递可以通过移动离子来实现。在过去,移动离子所用的时间比通过离子进行逻辑运算的时间要长,而新研究让这一难题迎刃而解。 研究人员在《物理评论快报》上描述了实验过程。他们将被囚禁的离子冷却至最低的量子运动能态,然后分别用一个和两个离子进行实验,让它们在一个多区离子阱中移动几百微米的距离。快速加速激发了离子的振荡运动,这是研究人员不希望的,但他们很好地控制了减速,使离子在停下来时恢复到了它们最初的量子态。 快速现场可编程门阵列(FPGA)技术是成功控制离子加速和刹车的法宝。研究人员对施加到离子阱中各种电极上的电压电平和持续时间进行编程,平稳的电源电压可以让离子快速移动,同时也能防止它们出现振荡。 研究人员认为,随着控制精度的提升,离子的运动速度还可以更快,并且在停止后仍然能够回到最初的量子态。但他们还必须努力应对许多实际的挑战,比如抑制环境中的嘈杂电场给离子运动带来的不必要的热量。(陈丹) 《科技日报》(2012-8-11 二版)

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 我国实现量子信息百公里隐形传输

    2012年08月14日 来源: 新华网 作者: 徐海涛 我国科学家潘建伟等人近期在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。国际权威学术期刊《自然》杂志8月9日重点介绍了该成果。 量子信息因其传输高效和绝对安全等特点,被认为可能是下一代IT技术的支撑性研究,并成为全球物理学研究的前沿与焦点领域。基于我国近10年来在量子纠缠态、纠错、存储等核心领域的系列前沿性突破,中科院于2011年启动了空间科学战略性先导科技专项,力争在2015年左右发射全球首颗“量子通讯卫星”。 中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础。 “在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将能达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。”研究组成员彭承志介绍说,量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。 8月9日,国际权威学术期刊《自然》杂志重点介绍了这一成果,代表其获得了国际学术界的普遍认可。《自然》杂志称其“有望成为远距离量子通信的里程碑”、“通向全球化量子网络”,欧洲物理学会网站、美国《科学新闻》杂志等也进行了专题报道。

  • 拓展量子技术应用新维度——自旋电子学介入量子应用领域成果初现

    本报记者 刘霞 综合外电http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980109_change_chd36128_b.jpg用激光操控单个电子自旋模拟图http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980140_change_chd36126_b.jpg 今日视点 科学家们一般认为,研究微观粒子运动规律的新兴技术——量子技术主要应用于计算、通讯和加密等领域,但据物理学家组织网近日报道,现在,科学家们利用自旋电子学(其基本理念是理解和操作电子的自旋来推动技术的发展)扩展了量子技术应用领域的新维度,使他们可以利用量子力学完成一些此前没有想到过的任务,比如用激光处理量子信息以及在纳米尺度上进行温度测量。 这两项研究都建立在对钻石内的氮晶格空位中心进行操控的基础上,都利用了这一瑕疵固有的“自旋”特性。氮晶格空位中心是钻石原子结构上的一种瑕疵,钻石晶格中的一个碳原子被一个氮原子取代,使其附近空缺出一个晶格空位,围绕氮原子旋转的自旋电子就变成一个量子比特(qubit)——量子计算机的基本单位。 这两篇文章的主要研究者、美国芝加哥大学分子工程学教授戴维·艾维萨洛姆表示:“过去20多年来,科学家们一直在研究如何隔离和控制固态内单个电子的自旋,最新研究就是基于这些研究所获得的结果。科学家们的初衷是制造出新的基于量子物理学的计算技术,但最近几年来,随着研究的不断深入,我们的关注点也在不断扩展,因为我们开始意识到,量子物理学的原理也适用于新一代的纳米传感器。” 用激光操控量子比特 艾维萨洛姆和加州大学圣巴巴拉分校(UCSB)以及德国康斯坦茨大学的6名合作者一起,研发出了一项新技术,他们在发表于5月7日美国《国家科学院学报》上的一篇论文中介绍了如何借助此项技术,只用激光就实现了对量子比特的操控,包括初始化、读取电子自旋态等。新方法不仅比传统方法更能实现统一控制,而且功能更多样,为探索新型固态量子系统打开了大门,也为科学家们朝着最终制造出性能远胜传统计算机的量子计算机开辟了新的路径。 传统计算机的基本信息单位是比特(bit),只能在0和1中选择其一;而量子比特能以多个状态同时存在,也即同时为0和1,这就使得量子计算机能够进行更复杂的操作,计算能力更强。 尽管氮晶格空位中心是一种很有前景的量子比特,过去10年来一直被广泛研究,但要用工业或生长的方法造出所需钻石却是极大的挑战。 艾维萨洛姆表示,与传统技术不同,他们研发的是一种利用激光脉冲在半导体内控制单个量子比特的全光策略,其“消除了对微波电路或电子网络的需求,仅仅用光和光子就可以做一切事情”。 作为一种全光学方法,新技术也有潜力进行升级,控制更多量子比特。另外,新方法的用途更加广泛,也可以用于探索其他物质内的量子系统,否则,这些物质很难被用来做量子设备。 基于电子自旋学的温度计 此前,科学家们也用氮晶格空位中心作为量子比特,在室温下制造出了可用于磁场和电场的传感器。现在,在发表于5月21日出版的美国《国家科学院学报》上的一篇论文中,研究人员展示了另外一种操控氮晶格空位中心的方法,并制造出了一种量子温度计。艾维萨洛姆估计,基于上述研究,他们可以研发出一款多功能的探测器。 艾维萨洛姆说:“我们能用这款探测器测量磁场、电场以及温度。或许最重要的是,因为这个探测器是一个原子尺度的瑕疵,能包含在纳米尺度的钻石粒子内,因此,它可以在一些极富挑战性的环境下工作,比如测量活体细胞或微流体电路内的温度。” 最新创新的关键是,科学家们研发出了一种控制技术操控自旋,使其能更灵敏地探测温度的变化。该研究的领导者、加州大学圣巴巴拉分校物理系研究生戴维·托尼表示:“过去几年,我们一直在探索用钻石内的这种瑕疵的自旋来制造温度计。最新技术让环境噪音的影响达到了最小,使我们能进行更加灵敏的温度测量。” 而且,科学家们可以在很大温度范围内(从室温到227摄氏度)对这种自旋电子进行操控。 艾维萨洛姆还表示,这一系统也能被用来测量生物系统内的温度梯度(自然界中气温、水温或土壤温度随陆地高度或水域及土壤深度变化而出现的阶梯式递增或递减的现象),比如活体细胞内部的温度梯度。 《科技日报》(2013-06-15 三版)

  • 【分享】单原子量子信息存储首次实现 助量子计算机研发

    据美国物理学家组织网5月3日(北京时间)报道,德国马克斯普朗克量子光学研究所的科学家格哈德·瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息——将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。

  • 国仪量子:成功研制可商用W波段脉冲式电子顺磁共振波谱仪

    [align=center][img]https://img1.17img.cn/17img/images/202404/uepic/c76fabfd-be4f-4b7f-9ef3-3be47874e493.jpg[/img][/align][align=center][color=#7f7f7f]4月2日,国仪量子研发人员正在操作W波段脉冲式电子顺磁共振波谱仪[/color][/align][color=#000000]“W波段脉冲式电子顺磁共振波谱仪的研制成功,使国仪量子成为目前国内能研制生产该类高端科学仪器的厂商。也标志着中国成为继德国之后,第二个有能力研发该型电子顺磁共振波谱仪的国家。”4月2日,国仪量子技术(合肥)股份有限公司传感事业部副总经理石致富站在最新研发的仪器前向记者介绍。[/color][color=#000000]根据揭榜项目任务书的项目目标和考核指标,国仪量子最终任务全部完成,部分指标超额完成。专家组召开验收会议,认为该产品达到了国际先进水平,此攻关任务已经完成。[/color][color=#000000]近年来,安徽在量子信息领域“从0到1”的原始创新不断突破:[/color][color=#000000]目前,安徽集聚量子科技产业链企业60余家、数量居全国首位,全国首条量子芯片生产线建成运行,全国首个量子信息未来产业科技园挂牌运营,量子专利授权量全国领先,以国盾量子、国仪量子、本源量子、问天量子、中电信量子集团等为龙头的量子高新技术企业不断涌现。[/color][color=#000000]安徽发展量子信息等未来产业,具有强劲的科技创新策源能力。[/color][color=#000000]国仪量子在2021年承接了安徽省制造业重点领域产学研用补短板产品和关键共性技术攻关任务,项目针对“W波段电子顺磁共振波谱仪”进行工程化、产品化开发,解决产品化实现涉及到的核心技术难题,研制出用户友好、皮实可靠,可产品化出售的W波段电子顺磁共振波谱仪。W波段电子顺磁共振波谱仪具有高分辨率、高灵敏度的优势,是一种重要的高端科学分析装置,将给生物、化学、物理以及交叉学科等领域提供一项强有力的研究手段,可用于进行蛋白质、RNA、DNA 的结构解析,从而解决生物学、医学、制药学中的关键问题。[/color][color=#000000]得益于中国科学技术大学、合肥国家实验室等高校与科研机构,合肥在量子信息技术的科研领域具有先发优势,为量子科技发展提供了强有力的人才和智力支撑。[/color][color=#000000]“我们团队在量子精密测量领域有着十多年的研究积累,以长相干、多比特、高精度量子操控为核心目标,目前已掌握了世界领先的高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、高精度扫描钻石探针技术等核心技术。”石致富说。[/color][color=#000000]“揭榜挂帅”是用市场竞争来激发创新活力的一种机制。国仪量子相关负责人表示,“揭榜挂帅”有助于选拔领头羊、先锋队,聚力突破关键共性技术瓶颈,提高制造业自主创新能力,带动产业链上下游的技术进步,强化供应链保障。[/color][color=#000000]未来,国仪量子将持续加强研发投入力度,在核心技术上不断追求更高标准。与用户协同创新,推动技术落地,赋能多个行业的升级发展,在全球量子领域逐渐发出中国声音,也让“安徽身影”更加活跃。[/color][来源:安徽经济网][align=right][/align]

  • 人造钻石创室温量子比特存储时间新纪录

    科技日报 2012年06月09日 星期六 本报华盛顿6月7日电 (记者毛黎)全球著名的人造钻石超材料生产商六元素公司(Element Six)7日表示,美国哈佛大学和加州工学院以及德国马普光量子研究所合作,利用该公司获得的单晶体人造钻石,创下了室温量子比特存储时间超过1秒钟的新纪录。这是人类首次实现用一种材料在常温下将量子比特存储如此长时间。 研究人员认为,人造钻石系统的多能性、稳定性和潜在的延展性有望让其在量子信息科学和量子传感器领域开拓新的应用。六元素公司位于英国阿斯科特的人造钻石研发小组用化学气相沉积技术开发出新的人造钻石生长工艺。公司创新主任斯蒂芬·库伊表示,人造钻石科学领域发展迅速,新钻石合成工艺能将杂质控制在兆分之几,这是真正的纳米工程化学气相沉积钻石合成技术。 参与合作的哈佛大学物理学教授海尔·鲁金表示,六元素公司独特的人造钻石材料是研究获得进展的核心,常温下单个量子比特存储时间超过1秒是一项十分令人兴奋的成果,它是初始化、存储、控制和测量4项需求的结合。新发现有望帮助人们开发新的量子通信和技术,在近期则有助于研发新的量子传感器。 量子信息处理涉及操纵人造钻石中单个原子尺寸的杂质和探讨单个电子自旋量子特性,新的研究成果代表着量子信息处理的最新发展。在量子力学中,电子量子自旋(量子比特)可以同时是0和1,此特性提供了量子计算的框架,同时也提出了更直接的应用,如新的磁传感技术。 总编辑圈点 谁会对1秒钟锱铢必究呢?但从量子的标准来看,这算是很长一段时间了。在量子计算的构建过程中,长期以来人们都只能局限在数公里的范围内利用量子点传输量子信息,而如果一种材料能做到捕捉、较长时间的稳定存储住继而转发信息,也就意味着扩大了量子网产生作用的区域。更何况,很多物质的量子态都要求接近绝对零度,能在室温下操作量子比特,尤显珍贵。

  • 量子理论!

    量子理论是一项科学的杰作,但物理学家至今仍不知道该如何来理解它。一个世纪似乎还不够整整一百年前,第一届国际物理学会议在比利时布鲁塞尔举行。会议的议题是讨论如何认识新奇的量子理论并把它同我们的日常生活经验联系起来,以期给我们一个对世界清晰自洽的描述。然而,这个问题现在依然困扰着物理学家。微观粒子所具有的一些性质实在是出乎寻常,比如原子和分子就具有可以在不同地方同时出现的神奇能力,可以同时顺时针和逆时针旋转,或者即使相隔半个宇宙也可瞬间影响到对方。问题是,我们人也是分子和原子组成的,为什么我们就没有上述性质呢?“量子力学的应用立足于何处?”牛津大学的科学哲学家哈维•布朗这样问道。尽管最终答案还未出现,人类探寻的努力还是有回报的。比如,一个已经引起高科技产业和情报机构注意的全新领域已经诞生。这就是量子信息学。量子信息学可以让我们从一个崭新的角度来探索物理终极理论,它或许还可以告诉我们宇宙的起源。对于一个被量子理论的怀疑者——阿尔伯特•爱因斯坦——嗤之为让优秀物理学家沉睡不醒的“柔软枕头”的理论来说,这已经算是硕果颇丰了。出乎爱因斯坦所料,量子理论如今已经成为一项杰作。迄今尚无实验与量子理论所做的预言相抵触,并且人们相信它可以在微观尺度上很好地描述宇宙规律。这就导致了最后一个问题:量子理论意味着什么?物理学家是用“诠释”——一种和实验完全相符的对量子理论本质的哲学思考,来试着回答这个问题的。“现在我们有一大堆诠释。”在牛津大学和新加坡量子技术中心同时任职的弗拉托克•维德勒如是说。没有一种科学理论可以像量子力学这样可以从这么多角度来理解。为什么会有这样的情况?这么多的诠释中有没有一种可以胜过其他的?举个现在被称为哥本哈根诠释的量子论诠释作为例子,它是由丹麦物理学家尼尔斯•波尔提出的。该诠释的一个观点是说,任何不通过测量来谈论电子在原子中的位置的尝试都是无意义的。只有当我们用一个非量子的或“经典的”仪器去观察的时候,它才会显示出我们称之为物理性质的属性,进而才会成为现实的一部分。接着我们还有“多世界诠释”,在该体系中量子奇异性可以通过任何事物在无数平行宇宙的多重存在性得到解释。也许你更喜好“德布罗意-玻姆诠释”,在这里量子理论被认为是不完备的:我们还缺少一些隐藏属性,如果知道它们,我们就能理解所有东西。还有许多其他的诠释,比如吉亚尔迪-里米尼-韦伯诠释,交易诠释(这其中有逆时间而行的粒子),罗杰•彭罗斯的引力诱导坍缩诠释,模态诠释……在过去的一百年里,量子世界已经变得拥挤而热闹。撇开这些熙攘热闹的景象,对大多数物理学家来说,只有少数解释至关重要。美妙的哥本哈根最受欢迎的诠释莫过于波尔的哥本哈根诠释了。它之所以受欢迎,是得益于大多数物理学家不想费神去考虑哲学问题。类似于“到底什么构成了测量”或者“为什么它可能导致现实的改变”这样的问题是可以被忽略的——物理学家只想从量子理论中得到有用的结论。这就是为什么被不加怀疑而使用的哥本哈根诠释有时也被叫做“闭嘴,乖乖计算”诠释。“考虑到大多数物理学家只是想做计算并将所得结果应用于实际,他们中的绝大多数都是站在‘闭嘴,乖乖计算’这一边的。”维德勒说。然而这种方式也有不足之处。首先它不会告诉我们任何关于实在的根本性质。那需要通过去寻找量子理论可能失效的地方来获得,而不是成功的地方。(New Scientist, 26 June 2010, p 34)“如果真要有什么新的理论出现的话,我不认为它会来自大多数物理学家工作的固体物理学领域。” 维德勒说。其次,作茧自缚式的研究也意味着不大可能出现量子理论的新的应用。我们对量子理论可以采取的多方面的视角正是新想法产生的催化剂。“如果你正在解决不同的问题,那么用不同的诠释来思考会有好处。” 维德勒说。没有其他的领域能比量子信息学更明显地表明这一点了。“如果人们没有担忧过量子物理的基础,量子信息学这个领域甚至不会存在。”奥地利维也纳大学的安东•蔡林格说。这个领域的核心是量子纠缠现象——一部分粒子的性质的信息被全体粒子所共有。这就导致了被爱因斯坦称为“幽灵般的超距作用”,即测量一个粒子的性质会瞬间影响到另一个和它纠缠的同伴的性质,不管它们之间距离有多远。当纠缠现象第一次在量子理论的方程中被发现时,它被当作过于奇怪的想法,以至于爱尔兰物理学家约翰•贝尔创造了一个思想实验来表明纠缠现象无法在真实世界中显现。而当真的可以做出这个实验真的之后,它证明了贝尔是错的,并且告诉物理学家有关量子测量的大量细节。它还为量子计算奠定了基础,通过量子计算,以前对粒子进行成千上万的并行测量才能得到的结果,现在单个的测量就可以告诉你答案。此外的应用还有量子密码学,通过利用量子测量的特殊性质来保护信息安全。不难理解,所有这些技术吸引了政府和渴望最高端技术的工业界的关注——同时防止它们落入敌手。然而物理学家更感兴趣的是这些现象可以告诉我们哪些自然界的本质规律。量子信息实验暗含的一个结论是说微观粒子包含的信息是实在的根源。哥本哈根诠释的支持者诸如蔡林格,把量子系统看作信息的载体,而用经典仪器进行的测量不过是记录和显示系统所包含的信息的过程。“测量是在更新信息。”蔡林格说。这个把信息作为实在的基本组成的新观点导致了有人猜测宇宙本身或许就是一台巨大的量子计算机。尽管哥本哈根诠释在大踏步前进,仍然有不少物理学家盯着它的弱点不放。这在很大程度上是由于哥本哈根诠释要求微观量子系统和对它的测量的经典仪器或观察者,二者必须人为区分开。例如,维德勒曾经探寻过量子力学在生物中所扮演的角色:细胞中各种各样的过程和机制本质上都是量子的,比如光和作用和光线感知系统(New Scientist, 27 November, p 42)。“我们发现世界上越来越多的东西可以用量子力学来描述——我并不认为在‘量子’和‘经典’之间有明确的界限。”他说。以宇宙的尺度来考虑事物的本性也给哥本哈根诠释的批评者提供了弹药。如果经典观察者的测量过程对于创造我们观察到的实在是必不可少的,那么是谁的观测使得现有宇宙得以存在?“你确实需要一个在系统外的观察者才能让哥本哈根诠释是合理的——但根据定义,宇宙外没有任何东西。”布朗说。这就是为什么,布朗说,宇宙学家更倾向于赞同由普林斯顿的物理学家休•埃弗里特在上世纪50年代晚期创立的诠释。他的“多世界诠释”宣称实在并不受限于测量概念。作为替代的是,量子系统固有的无限可能性在它们自身的宇宙各自显现。大卫•多伊奇,牛津大学的物理学家并曾经为第一台量子计算机拟定蓝图,说他现在只能用平行宇宙的概念来考虑计算机的运行。对他来说,其他的诠释都是无意义的。并不是说多世界诠释就没有受到批评——事实恰恰相反。新泽西罗格斯大学的科学哲学家蒂姆•莫德林很赞同放弃把测量这一概念当作一个特殊过程。但同时,他也不相信多世界诠释可以提供一个很好的框架来解释为什么一些量子结果要比其他的更有可能出现。当量子理论预言一个测量的结果出现的可能性要高十倍于另一个,反复的实验可以证明这一点。依照莫德林所说,多世界诠释认为由于世界的多重性,所有的可能都会发生,但它并没有解释为什么观察者看到的总是(通过计算算出的)最可能出现的结果。“这里有个深层问题需要解决。”他说。多伊奇说这些问题在这一两年内已经被解决。“埃弗里特处理概率的方式是有缺陷的,但这几年里多世界诠释的理论家们已经清除掉了这些缺陷——问题已经解决了。”他说。然而多伊奇的论证太玄奥了以至于并不是每个人都承认他的说法。更难回答的问题还有被多世界诠释支持者称为“怀疑眼神的反对”。多世界诠释一个明显的推论是说宇宙中有很多你的复制品——比如,猫王现在仍然在另一个宇宙中的拉斯维加斯进行表演。很少有人能接受这种想法。这个问题只有靠时间来解决了,布朗认为。“人们普遍难以接受存在许多你和其他人的复制品这种想法,”他说,“但这只是人们能否逐渐习惯的问题。”多伊奇认为当量子世界奇怪方面可以用到现实技术中时,人们将能接受多世界的概念。一旦量子计算机可以实现在同一时间在不同的状态来处理任务,我们将不会认为这些多重的世界不是物理层面的事实。“到时候人们将会很难坚持说多世界的想法只是嘴上说说而已。” 多伊奇说。他和布朗都宣称多世界的概念已经得到宇宙学家的支持。来自弦论、宇宙学和观测天文学的论证已经让宇宙学家猜测我们生活在多重的宇宙中。去年,加州大学圣克鲁兹分校的安东尼•阿奎尔,麻省理工的马克斯•蒂格马克以及哈佛大学的大卫•莱泽完成了把宇宙学和多世界的想法联系起来的大致方案。但多世界诠释并不是引起宇宙学家注意的唯一的诠释。在2008年,伦敦帝国理工的安东尼•瓦伦蒂尼指出在大爆炸之后就充满宇宙的宇宙微波背景辐射或许能支持德布罗意-玻姆诠释。在这个方案下,微观粒子具有未被发现的被称为“隐变量”的性质。(

  • [求助]请教关于量子效率的问题

    各位大虾,在这里向大家讨教下面几个问题.[1]量子效率可分为外量子效率和内量子效率两种说法.在关于荧光粉的研究论文中,有的有给出这两个值,而有的并没有区分,只是给出一个量子效率值.不知这个情况所给的量子效率是否就是指外量子效率?[2]包头钢铁学院李玉林老师在杂志上一篇名为"灯用稀土荧光粉的发展"的论文(见附件)上说卤粉的量子效率有90%.她也没清楚说明这是否为外量子效率.不知不同色温的卤粉是否有不同的量子效率?如果是的话,那么它们的值一般在什么范围呢? 请知道的大虾帮忙提供一些信息.在此先谢了![em17]

  • 新型光子芯片能测量更多光量子态

    据报道,无线电和真空管问世以来,电子计算和通信有了很大发展。今天,消费设备的处理能力和内存等级在几十年前是无法想象的。但是,随着计算和信息处理设备的体积越来越小、功能越来越强,量子物理定律强加的一些基本限制正在出现,这一领域未来的发展前景可能与光子学密切相关。光子学是与电子平行的光学基本概念,光子学理论上类似于电子,但如果用光子代替电子,光子装置处理数据的速度比电子装置快得多。量子计算机。   目前,光子学领域的基础研究仍然非常活跃,但由于缺乏重要的设备,无法进行实际应用。美国 加州在理工大学开发新的光子芯片,延迟线特别是光子量子信息处理器,可以生成和测量光量子态。   根据光子的基本特性,不同种类的光子被分为能量、动量、偏振等特征,由这些不同特征决定的光子状态称为光量子态。   这种新的光子芯片基于在光学领域广泛使用的铌酸锂材料,在芯片一侧产生所谓的光压缩状态,在另一侧测量。时钟和数据恢复/重定时光压缩状态,简单地说,据悉在量子等级中降低“噪音”的光,近年来光压缩状态技术被用于加强激光干涉引力波天文台(LIGO)的灵敏度测量,LIGO天文台是利用激光束探测引力波的探测装置,如果科学家使用基于光的量子装置处理数据,低噪音照明状态也很重要。   加州理工大学电子工程与应用物理学副教授阿尔雷扎马兰迪 (Alireza Marandi)说:“我们可以利用它突破许多传统非线性光学研究的局限,甚至打破许多传统假设。”   另一方面,据马兰迪介绍,光子芯片技术显示了以太赫兹主频运行量子光学处理器的最终发展方向,专用时钟/计时比苹果笔记本电脑MacBook Pro的计算处理器快上千倍,未来5年内可以通信。据合著者、博士后学者拉杰维尔奈尔拉 (Rajveer Nehra)介绍,该研究报告指出:“光学一直是实现量子计算最有希望的方法之一。因为在可扩展性和室温下的超高速逻辑操作中有内在的优点。但是,可扩展性应用的主要课题之一是在纳米光子学中生成和测量足够的量子状态。 电子元器件是信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。面对成千上万种功能迥异的电子元器件,以及复杂的供应渠道和货源,往往一个器件的品质就可能影响到整个产品设计,加上近期电子元器件价格大涨,如何提升采购效率降低采购成本对于控制企业产品成本,提高产品竞争力有着极其现实的意义。 随着互联网的发展,用户都在便捷地通过型号搜索并比较渠道。[b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括电源管理[url=https://www.szcxwdz.com]芯片[/url]、处理器及微控制器、接口芯片、放大器、[url=https://www.szcxwdz.com]存储器[/url] 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 【zz】量子计算机

    量子力学和计算机这两个看似互不相干的理论,其结合却产生了一门也许会从根本上影响人类未来发展的新兴学科——量子信息学,通常人们通俗地称之为“量子计算机”。本文将简要的介绍量子信息理论的基本概念和历史背景,量子计算机的研究进展,及对这一学科未来发展前景的展望。   在介绍量子信息论的专业知识之前,先谈谈量子计算机的提出及其产生过程。众所周知,20世纪后半页计算机技术大行其道,人类进入信息时代。随着计算机芯片的集成度越来越高元件越做越小,集成电路技术现在正逼近其极限,科学家们看到传统的计算机结构必将有终结的一天,而且尽管计算机的运行速度与日俱增,但是有一些难题是计算机根本无法解决的,例如大数的因式分解,理论上只要一个数足够大,这个难题够目前最快的计算机忙几亿年的。  几十年前,一些先驱者,如美国IBM公司的Charles H. Bennett等人就开始研究信息处理电路未来的去向问题,他们指出,当计算机元件的尺寸变得非常之小时,我们不得不面对一个严峻的事实:必须用量子力学来对它们进行描述。八十年代初期,一些物理学家证明一台计算机原则上可以以纯粹的量子力学的方式运行,之后很长一段时间,这一研究领域渐趋冷清,因为科学家们不能找到实际的系统可供进行量子计算机的实验,而且还尚不清楚量子计算机解决数学问题是否会比常规计算机快。  进入20世纪90年代,实验技术和理论模型的进步为量子计算机的实现提供了可能。尤其值得一提的是1994年美国贝尔实验室的Peter W. Shor证明运用量子计算机竟然能有效地进行大数的因式分解。这意味着以大数因式分解算法为依据的电子银行、网络等领域的RSA公开密钥密码体系在量子计算机面前不堪一击,几年后Grover提出“量子搜寻算法”,可以破译DES密码体系。于是各国政府纷纷投入大量的资金和科研力量进行量子计算机的研究,如今这一领域已经形成一门新型学科——量子信息学。量子信息的存储——量子比特(q-bit)  量子计算机为什么会有这么大的威力呢?其根本原因在于构成量子计算机的基本单元——量子比特(q-bit),它具有奇妙的性质,这种性质必须用量子力学来解释,因此称为量子特性。为了更好地理解什么是量子比特,让我们看看经典计算机的比特与量子计算机的量子比特有什么不同。我们现在所使用的计算机采用二进制来进行数据的存储和运算,在任何时刻一个存储器位代表0或1,例如在逻辑电路中电压为5V表示1,0V表示0,如果出现其他数值计算机就会以为是出错了。  而量子比特是由量子态相干叠加而成,一个具有两种状态的系统可以看作是一个“二进制”的量子比特,对量子力学有了解的人都知道,在量子世界里物质的状态是捉摸不定的,如电子的位置可以在这里同时也可以在那里,原子的能级在某一时刻可以处于激发态,同时也可以处于基态。我们就采用有两个能级的原子来做量子计算机的q-bit。规定原子在基态时记为 |0〉,在激发态时原子的状态记为 |1〉 ,而原子具体处于哪个态我们可以通过辨别原子光谱得以了解。微观世界的奇妙之处在于,原子除了保持上述两种状态之外,还可以处于两种态的线性叠加,记为 |φ〉=a |1〉+ b |0〉 ,其中a,b分别代表原子处于两种态的几率幅。如此一来,这样的一个q-bit不仅可以表示单独的“0”和“1”(a=0时只有“0”态,b=0时只有“1”态),而且可以同时既表示“0”,又表示“1”(a,b都不为0时)。  举一个简单的例子,假如有一个由三个比特构成的存储器,如果是由经典比特构成则能表示000,001,010,011,100,101,110,111这8个二进制数,即0~7这8个十进制数,但同一时刻只能表示其中的一个数。若此存储器是由量子比特构成,如果三个比特都只处于 |0〉或 |1〉则能表示与经典比特一样的存储器,但是量子比特还可以处于 |0〉与 |1〉的叠加态,假设三个q-bit每一个都是处于( |0〉+ |1〉) / (√2) 态,那么它们组成的量子存储器将表示一个新的状态,用量子力学的符号,可记做:|0〉|0〉|0〉+ |0〉|0〉|1〉+ |0〉|1〉|0〉+ |0〉|1〉|1〉+ |1〉|0〉|0〉+ |1〉|0〉|1〉+ |1〉|1〉|0〉+ |1〉|1〉|1〉   不难看出,上面这个公式表示8种状态的叠加,既在某一时刻一个量子存储器可以表示8个数。量子信息的运算——量子算法  接下来我们看看量子计算机如何对这些态进行运算。假设现在我们想求一个函数f(n),(n=0~7)的值,采用经典计算的办法至少需要下面的步骤:  存储器清零→赋值运算→保存结果→再赋值运算→再保存结果……  对每一个n都必须经过存储器的赋值和函数f(n)的运算等步骤,而且至少需要8个存储器来保存结果。如果是用量子计算机来做这个题目则在原理上要简洁的多,只需用一个量子存储器,把各q-bit制备到( |0〉+ |1〉) / (√2)态上就一次性完成了对8个数的赋值,此时存储器成为态 |φ〉,然后对其进行相应的幺正变换以完成函数f(n)的功能,变换后的存储器内就保存了所需的8个结果。这种能同时对多个态进行操纵,所谓“量子并行计算”的性质正是量子计算机巨大威力的奥秘所在。  可能有人会还担心我们怎么把所需要的数据从8个或更多个结果中挑选出来呢?对具体的问题这就要要采用相应的量子算法,例如Shor提出的大数因式分解算法,和Grover的量子搜索算法漂亮地解决了两类问题。按照Shor算法,对一个1000位的数进行因式分解只需几分之一秒,同样的事情由目前最快的计算机来做,则需1025年!而Grover的搜索算法则被形象地称为“从稻草堆中找出一根针”!尽管量子算法已经很多了,但是到目前为止真正的量子计算机才只做到5个q-bit,只能做很简单的验证性实验。  除了最基本的量子位,量子计算,量子超空间传送等概念,在量子计算机的研究中还有许多有趣的现象和新的概念,如量子编码,量子逻辑门和量子网络,量子纠缠交换等。量子计算机能做什么  量子计算机可以进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式。在利用EPR对进行量子通讯的实验中中我们发现,只有拥有EPR对的双方才可能完成量子信息的传递,任何第三方的窃听者都不能获得完全的量子信息,正所谓解铃还需系铃人,这样实现的量子通讯才是真正不会被破解的保密通讯。此外量子计算机还可以用来做量子系统的模拟,人们一旦有了量子模拟计算机,就无需求解薛定愕方程或者采用蒙特卡罗方法在经典计算机上做数值计算,便可精确地研究量子体系的特征。 展望  现在用原子实现的量子计算机只有5个q-bit,放在一个试管中而且配备有庞大的外围设备,只能做1+1=2的简单运算,正如Bennett教授所说,“现在的量子计算机只是一个玩具,真正做到有实用价值的也许是5年,10年,甚至是50年以后”,我国量子信息专家中国科技大学的郭光灿教授则宣称,他领导的实验室将在5年之内研制出实用化的量子密码,来服务于社会!科学技术的发展过程充满了偶然和未知,就算是物理学泰斗爱因斯坦也决不会想到,为了批判量子力学而用他的聪明大脑假想出来的EPR态,在六十多年后不仅被证明是存在的,而且还被用来做量子计算机。

  • 量子点电视

    什么是量子点电视?量子点电视听上去很高深莫测,其实就是QLED电视的另外一个名称,QLED是"Quantum Dot Light-Emitting Diode"的简写,中文译名是“量子点发光二极管”,这是一项家电厂商期待在未来取代OLED的新技术,原理是通过蓝色背光源照射照射直径不同的红色和绿色量子点,从而形成红绿蓝(RGB)三原色,然后再通过滤光膜等呈像系统和驱动系统形成图像。说白了,量子点电视其实还是一种LED电视。量子点是一种纳米材料,其晶粒直径在2-10纳米之间,量子点受到电或光的刺激会根据量子点的直径大小,发出各种不同颜色的单色光。可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光。那么什么是LED电视呢?首先我们先来说说液晶电视的根源性产品——LCD电视。LCD(Liquid-Crystal Display)最开始其实是液晶显示器,加入收看电视功能后成为LCD电视。这种电视通过背光源照射液晶面板,RGB三色液晶分子通过不同排布完成成像。请记住一点:在LCD阶段,液晶电视重要的背光源是CCFL冷阴极背光灯,可以暂时理解为我们的灯管,我们将这时的LCD电视称之为CCFL冷阴极背光源液晶电视。随后LED电视出现了,其实LED依旧是一种LCD液晶电视,它的准确名称是LED背光源液晶电视,LED电视和LCD电视的成像原理完全相同,只是背光源由CCFL改为了LED,相比而言厚度更薄、更加节能,但没有本质区别。量子点电视有何优势?要说到量子点电视的优势,首先我们得来说说OLED。OLED有机发光二极管(Organic Light-Emitting Diode)的屏幕是由有电流通过时能够发光的有机材料组成,它让电视机更轻薄,甚至可以弯曲。不过,因为成本高、良品率低、有机材料易氧化、无法适应户外和强光环境、以及某些场景下能耗过高等问题,采用OLED技术的电视一直未能普及。OLED技术当前主要掌握在两家全球最大家电厂商LG和三星电子手中。这两家韩国厂商是老对手,同时也是重要的液晶面板生产厂商。LG押宝OLED,希望借此超越三星电子的全球电视厂商老大的地位。然而因为OLED现阶段的高价,导致市场销量一直难以达到预期。此时,三星电子决定将研发重心转移到QLED上来。与OLED电视相比,量子点电视有四大优势:更宽广色域显示、更精准色彩控制、更长使用寿命以及更强节能性。由于量子点受到电或光的刺激,会根据其直径大小,发出各种不同颜色的非常纯正的高质量单色光,这一点甚至比OLED显示屏更强,众所周知OLED显示屏是通过滤镜得到纯色,而通过过滤的色彩虽然更纯、但也会有失真的情况,而量子点并不需要过滤,也就不会出现这种情况。同时可以在更低的电压下工作,能耗会降到最低。此外,由于量子点电视使用的无机材料不易被氧化,因此其显像寿命比OLED多出两万小时。当前量子点电视值得买吗?当前暂时只有TCL一家厂商推出了量子点电视,且55英寸的量子点电视的官方售价高达12999元人民币,而TCL 55英寸的4K超高清LED电视的官方零售价格只有5599元人民币。一台量子点电视的售价是同尺寸同分辨率的LED电视售价的2倍还要高。TCL此时推出量子点电视,打造自己品牌的意味更浓。而三星电子和LG要明年才能加入量子点电视阵营,届时消费者可选的余地将会更大。同样,新推出的技术还有可能有缺陷,具体如何有待市场检验,所以综上所叙,现在量子点电视并不值得购买,建议消费者持币观望。此外,业界也有观点认为,85%以上的色域普通人的肉眼实际是很难分辨的,因此厂商强调的高色域效果消费者并非都能感受到,也就是说,OLED电视的色域已经完全能满足普通用户的需求了。http://img1.mydrivers.com/img/20141222/5d677d4db4334f2d8e207c471c7bdd82.jpg

  • 新方法可生产形状尺寸可控的石墨烯量子点

    科技日报 2012年05月19日 星期六 本报讯 (记者张巍巍)据物理学家组织网5月18日(北京时间)报道,美国堪萨斯州立大学的研究人员开发出一种新方法,可生产出大量形状和尺寸可控的石墨烯量子点,这或将为电子学、光电学和电磁学领域带来革命性的变化。相关研究报告发表在近日出版的《自然·通讯》杂志上。 由于边缘状态和量子局限,石墨烯纳米结构(GN)的形状和大小将决定它们的电学、光学、磁性和化学特性。目前自上而下的GN合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放等。但这些方法都具有生产率低、形状尺寸不可控、边缘不光滑、无法轻易转移至其他基底或溶解于其他溶剂等问题。 该校化学工程系的维卡斯·贝里教授等科研人员利用钻石刀刃对石墨进行纳米切割,使其变成石墨纳米块,这是形成石墨烯量子点的前提。这些纳米块随后将呈片状脱落形成超小的碳原子片,生成的ID/IG比值介于0.22和0.28之间,粗糙度低于1纳米的石墨烯结构。科研团队通过高分辨率的透射电子显微镜和模拟证明,生成的GN边缘笔直、光滑,而通过控制GN的形状(正方形、长方形、三角形和带状)和尺寸(不超过100纳米),研究人员能够大范围控制石墨烯的特性,使其应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。 贝里表示,新型石墨烯量子点材料在纳米技术领域具有巨大的发展潜力,他们期望能通过此次研究进一步促进石墨烯量子点的发展。 总编辑圈点 石墨烯出现短短几年,产业界已有很多人预言它将成为未来电子业的中坚材料。制造纳米级的石墨烯点以代替硅晶单元,是石墨烯在电子业应用的关键一步,也是现在各国科学家竞相探索的目标。今年年初,美国莱斯大学成功利用碳纤维制造了纳米级的石墨烯圆片,效率比以往大为提高。这次堪萨斯大学实验成功的“石墨纳米切割”方式,进而能够控制石墨烯纳米点的形状,无疑开辟了一条新的技术思路。

  • Biomed. Opt. Express:首次利用量子点控制脑细胞

    神经细胞能够被量子点控制,图片来自CNRI/Science Photo Library。在量子物理学和神经科学的史无前例的结合中,称作量子点(quantum dot)的微小颗粒首次被用来控制脑细胞。对大脑的这种控制可能有朝一日提供一种治疗诸如阿尔茨海默病、抑郁症和癫痫症之类的疾病的非侵入式方法。在近期,量子点可能通过重新激活视网膜细胞而被用来治疗眼睛失明。美国华盛顿大学西雅图分校Lih Lin说,“很多脑部疾病是由于不平衡的神经活性而导致的。操纵特异性神经元可能允许它们恢复到正常的活性水平。”人工刺激大脑的一些方法已经存在,不过每种方法都有它的缺点。尽管在帕金森疾病中人们采用深度大脑刺激方法来触发脑细胞活性并阻止导致虚弱性震颤的异常信号传导,但是该方法所需的电极是高度侵入性的。颅磁刺激(transcranial magnetic stimulation)方法能够刺激来自头部外面的脑细胞,但是它不是高度靶向的,因而同时影响大脑大部分区域。光遗传学研究人员能够利用光控制基因修饰的脑细胞,但是由于这些修饰,这种技术迄今为止在人类中被视为是不安全的。如今,Lin领导的研究小组利用量子点---光敏感性的直径只有几个纳米的半导体颗粒---设计出另一种方法。首先,他们在用量子点覆盖的薄膜上培养前列腺癌细胞。这些癌细胞的细胞膜紧挨着量子点放置。研究小组然后将光照射在纳米颗粒上。来自光线的能量激活量子点内的电子,从而导致周围的区域带负电荷。这就导致癌细胞中一些电压控离子通道打开从而允许离子进入或逃离癌细胞。在神经细胞中,打开离子通道是产生动作电位的关键性一步,而这种动作电位是大脑中细胞进行沟通的信号。如果电压变化足够大的话,动作电位就产生。当Lin领导的研究小组在神经细胞中重复他们的实验时,他们发现刺激量子点导致它的离子通道打开,这样神经细胞就被激活。对人而言,量子点将需要被传送到大脑组织。Lin声称这应当不是一种问题。她说,“一种重要的优势在于量子点表面能够被不同分子修饰。”这些分子能够附着到量子点上以便靶向特异性脑细胞,也能够以静脉注射方式进行传送。一种关键性障碍是将光源传送到大脑。为此,Lin认为这种技术将在重新激活视网膜受损细胞中首次使用,因为视网膜自然地吸收光线。共同作者Fred Reike是视网膜疾病的专家。他说,量子点在这种领域有着较大的潜力,因为它们能够直接影响在视力的信号传导途径中发挥着关键性作用的离子通道。英国利兹大学Kevin Critchley对此也同意,“量子点在生物医学应用中有着光明的未来”,但是可能也存在一些限制,如潜在性毒性问题。Lin说,“基于我们的研究结果,我们对这种技术在帮助我们解答生物学问题以及最终诊断和治疗人类疾病上的潜力保持乐观。”

  • “量子力学在哪?你正沉浸其中”——看量子力学在真实世界中的10大应用

    新视野 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188203_change_chd2882_b.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188218_change_chd2883_b.jpg 数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途——譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种过程虽缓慢、成效却十分积极的积累中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。此后的十年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。到1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,耗电不过100瓦特。今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。而这一切都必须归功于量子力学。 二、量子干涉“搞定”能量回收 无论怎样心怀尊敬,对于我们来说,不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。而此“能量回收”就是个例子。 每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。因为在引擎点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。对于这种情况,亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。 量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效的将热量转化为电能。更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200枚100瓦灯泡的电能——尽管理论让人茫然,这数字可是清楚明白。 该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。而我们只需知道,这都是量子干涉“搞定”的。 三、不确定的量子,极其确定的时钟 作为普通人, 一般是不会介意自己的手表是快了半分钟,还是慢了十几秒。但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。这些原子钟比之前所有存在过的钟表都要精确。其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。 看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。不管是恒星还是小行星,它们都时刻处在运动当中。同时距离也是必须考虑的因素。一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。 那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。它们能够消减原子钟测量原子振动的能力。现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。它们目前正在试图将这一方法应用到所有原子钟上去。毕竟科技越发达,对准时的要求就越高。 四、量子密码之战无不胜篇 斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。借助这种方式,斯巴达的军官能够发出一条敌人看起来显得语无伦次的命令。而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。 斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。因而当合法的信息接收者检查钥匙时,就会轻易发现倪端,进而更换新的密钥。 量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d706.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d707.jpg 五、随机数发生器:上帝的“量子骰子” 所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。它们借助量子力学,能够召唤出真正的随机数。不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。 然而,在量子世界,所有的一切都是

  • 中国科学家攻克拓扑量子纠错难题

    “非常重要的原理性实验,一个艰苦卓绝的英雄主义的量子光学实验”——获得《自然》杂志审稿人如此好评的,是该杂志在量子信息领域首篇以中国为第一单位发表的论文。该论文在世界上首次成功实现了拓扑量子纠错,取得可扩展容错性量子计算领域的重大突破,为将来实现真正的量子计算打下了坚实基础。 论文由中国科学技术大学微尺度物质科学国家实验室潘建伟及其同事陈宇翱、刘乃乐等,与澳大利亚、加拿大科学家合作完成,发表在23日出版的《自然》上。据潘建伟介绍,量子计算机由于其超越经典计算机极限的强大并行运算能力,成为科学家们梦寐以求的目标。但是,量子计算机与环境耦合而产生的各种噪声使计算产生各种错误。近年来,学术界提出了拓扑量子纠错这一全新概念,把量子态的拓扑性质应用于量子纠错过程中,使得可扩展容错性量子计算在现实条件下成为可能。 潘建伟团队创造性地发展了一套全新的实验技术,将双光子纠缠的亮度提高了4—5倍,八光子簇态的总效率至少提高了200倍。同时,研究人员还研制了一种特殊的滤除噪声的八光子干涉仪,以此观测到了具有拓扑性质的八光子簇态,并将此簇态作为量子计算的核心资源,实现了拓扑量子纠错。(记者 赵永新 蒋家平)

  • 【转帖】美国理学家首次实现原子间单量子能量交换

    据美国物理学家组织网2月23日报道,美国国家标准研究院物理学家首次在两个分隔的带电原子(离子)之间建立了直接运动耦合,实现了原子之间的单量子能量交换。这一技术简化了信息处理过程,可用于未来的量子计算机、模拟技术和量子网络中。相关研究发表在2月23日的《自然》杂志上。研究人员解释说,他们让两个铍离子在电磁势阱中震荡进行能量交换,这一交换中是以最小能量单位——量子来进行的。这意味着离子被“耦合”在一起,表现出像宏观世界中如钟摆、音叉那样的“和谐震荡”,做重复的来回运动。实验利用了一种单层离子势阱,并将其浸在液氦浴中冷却到零下269摄氏度。离子之间相隔40微米,漂浮在势阱表面。势阱表面装有微小电极,让两个离子靠得更近,以便产生更强的耦合作用。超低温度可以抑制热量,避免扰乱离子行为。研究人员在势阱上放了震荡脉冲来检测铍离子频率。  研究人员还用激光制冷减弱两个离子的运动,再用两束反向紫外激光束将一个离子进一步冷却到静止状态,调节势阱电极间的电压,就开启了耦合作用。经测量,离子的能量交换每155微妙仅有几个量子,而达到单个量子交换时频率更低,间隔为218微秒。从理论上讲,离子之间这种能量交换过程能一直持续,直到被热量打断。  “首先,一个离子轻微震动而另一个静止,然后震动传给了另一个离子,它们之间的能量运动是一个最小的能量单位。”论文第一作者、国家标准技术研究院博士后研究员坎顿·布朗说,“我们可以调节耦合作用,影响能量交换的速度和程度,还能控制耦合作用的开启或终止。”用电极电压来调整两个离子的频率,让它们离得更近,耦合作用就开始了。当两个离子频率最接近时,耦合作用最强。由于正电荷离子之间的静电作用,它们之间倾向于互相排斥。耦合使每个离子都具有了两个电子的特征频率。  在未来的量子计算机中,上述技术可用于解决量子系统的复杂问题,破解当今使用最广的数据加密编码。不同位置的离子直接耦合可以简化逻辑运算,有助于校正运算过程错误。该技术还可能用于量子模拟,以解释复杂量子系统如高温超导现象的原理机制。  研究人员还指出,类似的量子交换作用可以用来连接不同类型的量子系统,如离子和光子,在未来的量子网络中传递信息,如势阱中的离子可以在超导量子比特(昆比特)和光子比特之间作“量子转换器”。

  • 【转帖】量子点的“战争”不可避免

    量子点的“战争”不可避免随着现在一种被称为量子点的纳米材料越来越多地受到电子以及生命科学产业的重视,分析人士担心在量子点技术领域复杂的专利权问题将引发一场昂贵且没有赢家的法律战争。 纽约市雷克斯研究公司的副总裁Matthew Nordan认为,“在未来三年内很有可能会发生一场针对量子点技术的法律大战。” 然而,有专家称,也许有方法可以避免这些无谓的法律战争。 Stephen Maebius是美国华盛顿纳米科技行业法律顾问公司Foley & Lardner公司的主席,他表示“研究量子点的那些公司可以通过专利交换的方式来避免由诉讼引起的干扰,把原本花在长达数年官司的百万美元投入到研究中去。” 量子点是半导体纳米微晶体,大小只有十亿分之一米,仅仅由10个原子组成。这种材料在吸收了少量的光线后能够发出明亮的荧光。科学家们能够改变量子点吸收的光线颜色,然后再对量子点的体积和结构进行调整就能让这种材料散发出颜色极为精确的荧光。例如,直径大于6纳米的硒化镉量子点能够发出红色的荧光,而直径小于3纳米的硒化镉量子点则会发出绿色的荧光。 量子点能够帮助科学家们对细胞和器官的行为成像,而成像细节级别在价值5亿美元的全球生物探测试剂市场中是前所未有的。生命科学研究中所使用的传统的光燃料分子是作为分子标签使用,帮助科学家们监测细胞与器官生长、发展,而它们通常在几秒钟内就会失去发光能力。而量子点的发光时间却更长,让研究者们能够实时监测细胞与器官在死亡与健康情况下的表现。 美国加利福尼亚州海达德地区的Quantum Dot(量子点)公司刚成立不久,它已经和诸如Genentech,, Roche 和GlaxoSmithKline几个业界巨头开始合作。 量子点还能够通过吸收光线产生电子。美国科罗拉多州戈尔登地区的国家可再生能源实验室的研究人员在五月份一期的《纳米快讯》中解释说,这将使新的太阳能系统性能提高到现有最好的太阳能电池性能的两倍。目前我们生产的太阳能电池吸收光线中的一个光子,然后,最多把它转换成一个电子,而剩下的能源就被白白浪费掉。而量子点能够将太阳光中的单个高能量光子转换成多达三个电子。这意味着,理论上来说基于量子点的太阳能电池能够将太阳能中65%的能量转换成为电能,而今天最好的电池也只能够达到33%。 纳米技术法律与商业周刊的一位编辑John Miller解释说:“现在一些公司注册的专利含盖范围很广,几乎包括了所有的半导体纳米晶体,有的公司甚至在专利申请书上仅仅描述像硒化镉这样特殊的材料。” 和Quantum Dot公司一样,另一家位于加利福尼亚州帕洛阿尔托地区的Nanosys公司声称,拥有量子点领域中除Quantum Dot独家关键专利外的所有专利。 Quantum Dot公司的执行总裁 George Dunbar表示,“如果有人阻止我们获得知识产权,那我们一定会把他们揪出来。” 然而,几家研究量子电的公司针对这些排他主义性宣言已经想出了几个对策。 纽约州托伊地区Evident科技公司的总裁Clinton Ballinger说:“我们并没有看到有关专利重叠的声明,我们感觉每向前迈进一步,都好像是跨进了新的领域。虽然花费了很多时间在这片雷区探索,但是我们觉得手中好像有一份地图在指引我们前进。在那里我们几乎没有束缚。” 例如,Evident公司发布了第一个利用非重金属制成的量子点。 “日本和欧洲都十分反对使用镉,而大多数的量子点都是由镉或铅制” Ballinger说,他还指出美国很快也会开始限制这些金属的使用。 Nordan强调说“在量子点技术领域,人们谈论最多的就是诉讼,而不是专利授权。这就像是笼罩在这一领域上空的一片黑云一样,而在诸如富勒烯这类的领域中,你所听到的大多是竭尽全力的诉讼大战,而不是专利交换授权,和平相处。正确的解决办法是专利交换授权,专利交换在信息产业领域的运行非常成功,但是你必须把自己的骄傲抛在脑后。” 虽然以生命科学应用为目的出售量子点是明显的事实,但是Ballinger认为针对量子点技术的法律大战并不会出现。他说“我们完全接受专利授权,这是理智之选。” Dunbar并没有排除采用专利交换解决问题的可能性,但是他认为:“只有和那些财务状况稳定的公司进行交易时,专利交换才有用。而据我所知,目前达到这一标准的公司并不多。” 转载出处:中国科技信息网

  • 法美两科学家获2012年诺贝尔物理学奖[图] 他们测量和操控单个粒子并保持其量子特性

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def81206.jpg戴维·瓦恩兰http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def8220e.jpg赛尔日·阿罗什http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/011349804739421_change_hzp2a20_b.jpg 10月9日,在瑞典首都斯德哥尔摩,瑞典皇家科学院专家解读2012年诺贝尔物理学奖得主研究成果。新华社记者 刘一楠摄 中国科技网讯 据诺贝尔奖委员会官方网站报道,北京时间9日17时45分,2012年诺贝尔物理学奖在瑞典斯德哥尔摩揭晓,法国物理学家塞尔日·阿罗什和美国物理学家戴维·瓦恩兰因“提出了突破性的实验方法,使测量和操控单个量子体系成为可能”获此殊荣。 塞尔日·阿罗什和戴维·瓦恩兰各自独立发明和发展了测量及操控单个粒子的方法,并能在实验过程中保有粒子的量子力学特质,而这种方式在此之前被认为是不可企及的。两位科学家的工作领域均属于量子光学,事实上,他们所采用的方法还有很多共通之处:戴维·瓦恩兰使用光子来控制和测量被囚禁的带电离子,塞尔日·阿罗什则采用了相反的途径,他控制并测量了被囚禁的光子,具体需要原子穿越陷阱来实现。 塞尔日·阿罗什1944年9月11日出生于摩洛哥卡萨布兰卡,目前居住于巴黎。1971年在法国皮埃尔与玛丽·居里大学,即巴黎第六大学取得博士学位。现任法国巴黎高等师范学院教授和法兰西学院教授,兼任量子物理系主任。他还是法国物理学会、欧洲物理学会和美国物理学会的会员,被认为是腔量子电动力学的实验奠基者。曾获洪堡奖、阿尔伯特·迈克尔逊勋章、查尔斯·哈德·汤斯奖、法国国家科学研究中心金奖等诸多奖项。其主要研究领域为通过实验观测量子脱散(又称量子退相干),即量子系统状态间相互干涉的性质会随时间逐步丧失。脱散现象可对量子信息科学形成两方面的影响:一是涉及量子计算领域,另一方面则与量子通信相关。 戴维·瓦恩兰1944年2月24日出生于美国威斯康星州密尔沃基。1970年在美国哈佛大学取得博士学位。现任美国国家标准技术研究所研究员和组长,美国科罗拉多大学波德分校教授。他还是美国物理学会、美国光学学会会员,并于1992年入选美国国家科学院。曾获得阿瑟·肖洛奖(激光科学)、美国国家科学奖章(物理学)、赫伯特·沃尔特奖、本杰明·富兰克林奖章(物理学)等。他的主要工作包括离子阱的激光冷却,以及利用囚禁的离子进行量子计算等,因此被认为是离子阱量子计算的实验奠基者。(记者 张巍巍) 《科技日报》(2012-10-10 一版) 他们是量子物理实验派双杰 ——记2012年诺贝尔物理学奖获得者 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def85615.jpg 10月9日下午,2012年诺贝尔物理学奖揭晓。瑞典皇家科学院诺贝尔奖评审委员会将奖项授予给了量子光学领域的两位科学家——法国物理学家塞尔日·阿罗什与美国物理学家戴维·瓦恩兰,以奖励他们“提出了突破性的实验方法,使测量和操控单个量子系统成为可能”。 诺奖官方网站称,塞尔日·阿罗什与戴维·瓦恩兰两人分别发明并发展出的方法,让科学界得以在不影响粒子量子力学性质的情况下,对非常脆弱的单个粒子进行测量与操控。他们的方式,在此前一度被认为是不可能做到的。 而这就是诺贝尔物理学奖此次垂青于两位实验派物理学家的原因。 进入量子光学的神秘之门 本届物理奖的两位得主戴维·瓦恩兰与塞尔日·阿罗什是同年生人。 塞尔日·阿罗什,1944年出生在摩洛哥卡萨布兰卡,1971年于法国巴黎的皮埃尔与玛丽·居里大学取得博士学位,目前在法兰西学院和法国巴黎高等师范学院任教授。在拿到本届诺贝尔物理学奖前,他已被业内誉为腔量子电动力学的实验奠基人。 戴维·瓦恩兰,1944年出生于美国威斯康星州密尔沃基,1970年于哈佛大学取得博士学位,目前作为研究团队带头人和研究员,就职于美国国家标准与技术研究院(NIST)与科罗拉多大学波德分校。瓦恩兰亦一直有着“离子阱量子计算实验奠基者”的头衔。 他们两人是量子物理实验派双杰。两人研究的范畴都属于量子光学,这一领域在上世纪80年代中期以后经历了长足发展,而他们的学术生涯一直在与单光子与离子打交道,研究光与物质在最基本层面上的相互作用。 曾经很长时间以来,实验派物理学家们想在一个微观层面上研究光与物质的相互作用,这完全是难以想象的事。因为,对于光或者其他物质的单个粒子而言,经典物理学已不适用,量子力学的法则在此时取而代之。但是单个粒子却很难从周围环境中被分离出来,并且,它一旦和周遭环境发生相互作用,便会立即丧失其神秘的量子特征。 如此让人束手无措的局面,使得很多量子力学理论所预言的怪异现象无法被科学家们直接观察到。于是长期以来,研究人员只能依靠那些法则已证明可能会影响到量子奇异特性的实验来进行观察研究。而这或许让实验派物理学家们感觉一直跟在理论的后边亦步亦趋。 真正改变实验物理学的人 扭转这一窘状的正是阿罗什与瓦恩兰,他们两人带领各自的研究小组,分别发展出理想的方法,用于测量并操控非常脆弱的量子态。 具体而言,两人所采用的方法既有共通特点亦各有精妙之处:瓦恩兰捕获带电原子(离子),随后使用光(光子)对其进行操控和测量,这些离子被放置在超低温中,防止被外界“打扰”。该方法关键在于巧妙的使用激光束以及激光脉冲抑制了离子的热运动,离子因此进入特定的量子叠加态中——叠加态正是量子世界最神秘的特性——从而保持住了单个粒子的量子特征。 而阿罗什虽然同样使实验处于真空和超低温环境,却采用的是完全相反的手段:利用原子对光子进行操控和测量。他将两面特制的、反射能力极强的镜子组成空腔,捕获住光子并让其在空腔中停留0.1秒——这点儿时间已足够光子在消失前绕地球一圈——这时他再让里德伯原子(比一般原子大1000倍的巨大原子)穿过空腔,每次通过一个里德伯原子,原子离开时,会“告诉”他空腔里还有没有光子。 试着分别去操纵一个光子与离子,借以深入洞察一个微观的世界——原本仅仅是理论学派的领域,正是塞尔日·阿罗什与戴维·瓦恩兰的研究“打开了新时代量子物理学实验领域的大门”。现在,借助他们的新方式,实验物理学家们得以操控粒子或对粒子进行计数。 实验、应用、改变人们的生活 但阿罗什与瓦恩兰的成就并不止于此。 在公布本届物理奖获得者后,诺奖组委会还介绍了两人的成果在应用层面上的意义。据组委会称,阿罗什与瓦恩兰在他们的研究领域采取了突破性的方法,产生其中一个应用是将建立起一种新型的、基于量子物理学的超快计算机,这或将导致极其先进的通信和计算模式。换句话说,这是向着研制具有惊人运算速度的量子计算机迈出了第一个脚步。科学家预想,或许,就在本世纪,量子计算机会彻底改变我们每个人的日常生活——正如经典计算机在上个世纪曾彻底颠覆每个人的生活方式一样。 而阿罗什与瓦恩兰的研究产生的另一个应用是:“会带来一种非比寻常的精准时钟,并在未来成为一个新的计时标准。”这种超高精度钟表的精确度将比今天所使用的铯原子钟高出数百倍。此前,世界最精确的时钟曾经就是瓦恩兰就职的科罗拉多州国家标准与技术研究所制造的量子逻辑钟,它的误差约为每37亿年1秒。 阿罗什与瓦恩兰展示了如何在不破坏单个粒子的情况下对其进行直接观察的方法,但他们做到的却不只是在量子世界控制住粒子,其带给人们生活的改变,将远超今天目力所能够看得到的。 那么,荣摘诺奖桂冠又是否改变了科学家本人的生活呢?据英国广播公司(BBC)在线版消息称,塞尔日·阿罗什本人仅仅提前了20分钟被组委会告知自己获奖的消息。 “我很幸运,”塞尔日·阿罗什说,但他指的并不是自己得奖这回事,“(接到来电时)我正在一条街上,旁边就有个长椅,所以我第一时间就坐了下来。”他形容那一刻的心情,“当我看到是

  • 中国科大实现99.9%世界最高保真度的固态量子存储器

    中国科技网合肥5月12日电 中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室李传锋研究组,在固态系统中首次实现单光子偏振态的量子存储器,保真度达99.9%,刷新世界纪录。研究成果5月11日发表在美国《物理评论快报》上,并被美国物理学会网站“物理概要”栏目作亮点报道。 量子存储器是量子信息领域的核心器件之一,是量子隐形传态、量子密集编码等基本量子信息过程的必需元件。同时,它还可用来实现量子中继,以解决远程量子通信中的信息损耗问题,以及用于分布式量子计算、量子精密测量等。 国际上常用的量子存储器存在带宽窄和扩展性差等缺点,难以应用于实用化的量子网络。近几年兴起的基于稀土离子掺杂晶体的固态量子存储器,具有寿命长、稳定性高、带宽较宽、扩展性强等优点,但由于这种晶体有双折射效应,不能用光的偏振状态(光波的振动状态)来加载信息,而光的各种偏振态是量子信息最方便的载体。因此,怎样实现光子偏振态的固态量子存储器是国际学术界一大难题。 李传锋小组利用两块1.4毫米厚的掺钕钒酸钇晶体,分别处理光的两种正交偏振态,同时把一片特殊设计的光学元件(波片)置于两块晶体之间,来实现这两种偏振态的互换。整个量子存储器就像一片很小的“三明治”,紧凑而稳定,扩展和集成都十分方便。在实验中,他们摈弃了传统的固态量子存储方案中使用的“共线式”光路,设计出交叉式光路,使得预处理用的泵浦光与待存储的光不再重合,降低了泵浦光带来的噪声,从而极大地提高了存储器的保真度,可达99.9%,远高于此前单光子偏振存储95%的最高保真度。 该成果对进一步提高实用化量子通信网络元件的小型化和集成化具有重要意义。该超高保真度量子存储可应用于容错量子计算等具有苛刻要求的研究领域。(通讯员 杨保国 记者 吴长锋) 《科技日报》(2012-05-13 一版)

  • 奥地利实现143公里量子远距传输打破中国纪录

    2012年09月07日 08:21 新浪科技 http://i0.sinaimg.cn/IT/2012/0907/U5385P2DT20120907081946.jpg奥地利物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录  新浪科技讯 北京时间9月7日消息,据美国物理学家组织网6日报道,维也纳大学和奥地利科学院的物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录。这项成就是在朝着基于卫星的量子通讯道路上向前迈出的重要一步。研究成果刊登在《自然》杂志上。  实验中,奥地利物理学家安东-泽林格领导的一支国际小组成功在加那利群岛的两个岛屿——拉帕尔玛岛和特纳利夫岛间实现量子态传输,距离达到143公里。此前的纪录由中国研究人员在几个月前创造,成绩为97公里。  打破传输距离并不是科学家的首要目标。这项实验为一个全球性信息网络打下了基础,在这个网络,量子机械效应能够大幅提高信息交换的安全性,进行确定计算的效率也要远远超过传统技术。在这样一个未来的“量子互联网”,量子远距传输将成为量子计算机之间信息传送的一个关键协议。  在量子远距传输实验中,两点之间的量子态交换理论上可以在相当远的距离内实现,即使接收者的位置未知也是如此。量子态交换可以用于信息传输或者作为未来量子计算机的一种操作。在这些应用中,量子态编码的光子必须能够传输相当长距离,同时不破坏脆弱的量子态。奥地利物理学家进行的实验让量子远距传输的距离超过100公里,开辟了一个新疆界。  参与这项实验的马小松(Xiao-song Ma,音译)表示:“让量子远距传输的距离达到143公里是一项巨大的技术挑战。”传输过程中,光子必须直接穿过两座岛屿之间的湍流大气。由于两岛之间的距离达到143公里,会严重削弱信号,使用光纤显然不适合量子远距传输实验。  为了实现这个目标,科学家必须进行一系列技术革新。德国加尔兴马克斯-普朗克量子光学研究所的一个理论组以及加拿大沃特卢大学的一个实验组为这项实验提供了支持。马小松表示:“借助于一项被称之为‘主动前馈’的技术,我们成功完成了远距传输,这是一项巨大突破。主动前馈用于传输距离如此远的实验还是第一次。它帮助我们将传输速度提高一倍。”在主动前馈协议中,常规数据连同量子信息一同传输,允许接收者以更高的效率破译传输的信号。  泽林格表示:“我们的实验展示了当前量子技术的成熟程度以及拥有怎样的实际用途。第一个目标是基于卫星的量子远距传输,实现全球范围内的量子通讯。我们在这条道路上向前迈出了重要一步。我们将在一项国际合作中运用我们掌握的技术,中国科学院的同行也会参与这项合作。我们的目标是实施一项量子卫星任务。”  2002年以来就与泽林格进行量子远距传输实验的鲁珀特-乌尔森指出:“我们的实验取得了令人鼓舞的成果,为未来地球与卫星之间或者卫星之间的信号传输实验奠定良好基础。”处在低地球轨道的卫星距地面200到1200公里。(国际空间站距地面大约400公里)乌尔森说:“在从拉帕尔玛岛传输到特纳利夫岛,穿过两岛间大气过程中,我们的信号减弱了大约1000倍。不过,我们还是成功完成了这项量子远距传输实验。在基于卫星的实验中,传输数据更远,但信号穿过的大气也更少。我们为这种实验奠定了一个很好的基础。”(孝文)

  • 超导量子计算用mK级国产稀释制冷机实现商用量产

    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。[b]中科院物理所[/b]2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。[b]合肥知冷低温科技有限公司[/b]2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。[b]本源量子[/b]2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【分享】潘建伟小组建成世界上首个光量子电话网

    潘建伟小组建成世界上首个光量子电话网 相关论文发表于《光学快报》 [color=#DC143C](这就意味这新一代的通讯传输方式将要诞生了)[/color] 记者从中国科学技术大学获悉,日前,该校潘建伟研究小组在实用化量子通信方面取得了重大进展,在合肥建成世界上首个光量子电话网,这标志着绝对安全的量子通信由实验室走进了日常生活。 据介绍,量子通信是量子力学和经典通信的交叉学科,有着传统通信方式所不具备的绝对安全特性,在国家安全、金融等信息安全领域有着重大的应用价值和前景。从20世纪90年代开始,海内外科学家一直致力于将量子通信理论进行实用化的研究,但因实验器件的不完美性和缺乏真正的单光子源,量子通信系统的安全通信速率随着距离增加而急剧下降,量子通信系统只能停留在实验室内,不具备应用价值。 2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下,量子通信的安全速率随距离增加而严重下降的问题。2006年夏,中国潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学-维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的量子保密通信实验,其中,潘建伟小组最近完成的实验又将绝对安全通信距离延长到200公里。 此后,由中国科大潘建伟、陈增兵、彭承志等人组成的团队针对量子通信实用化展开了攻关研究,研制成功量子电话样机,并在商业光纤网络的基础上,组建了可自由扩充的光量子电话网,节点间距达到20公里,实现了“一次一密”加密方式的实时网络通话和3方对讲机功能,真正实现了“电话一拨即通、语音实时加密、安全牢不可破”的量子保密电话。该成果已于今年4月发表在国际光学领域著名期刊《光学快报》(Optics Express)上,并立即被美国《科学》杂志以“量子电话呼叫”为题进行了报道。 据悉,光量子电话网的建成,是中国科学家继自由空间量子纠缠分发、绝对安全距离大于100公里的量子保密通信之后,在实用化量子通信领域取得的又一国际领先的研究成果。

  • 【我们不一YOUNG】+水环境监测前沿科技之量子点技术

    [align=left][font=宋体][color=black][back=white]量子点光谱传感技术是清华大学电子工程系博士生导师鲍捷在全球范围内首次提出。量子点光谱传感技术是将量子点(新型纳米晶材料)与成像感光元件完美结合,通过把大量不同材料或粒径的量子点有规律地打印在薄膜上,代替传统光谱仪的分光元件,实现了光谱仪器的传感器化。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]简而言之,就是把我们原来的分光光路,变成了阵列分光。再形成指纹图谱进行分析。因此,量子点光谱传感技术开发的原位、实时的水质监测方法,通过测量被研究光[/back][/color][/font][font=宋体][color=black][back=white](水样中污染物质反射、吸收、散射或受激发的荧光等)的光谱特性,用非传统化学分析的手段获得水体中特定物质的光谱信息,包括波长、强度等谱线特征,建立光谱数据与水环境各要素的映射关系,通过光谱大数据分析,快速返回水域污染物信息,从而可以无需使用任何化学试剂实现监测水质参数,了解水质状况和测量获取水质特征吸光度谱示意图污染程度。[/back][/color][/font][/align]

  • 科学家在量子气体中观察到“第二声”

    证实了70年前朗道提出的温度波理论2013年05月17日 来源: 科技日报 作者: 常丽君 科技日报讯(记者常丽君)“第二声”也叫温度波或熵波,是一种量子力学现象,目前只在超流液氦中才能观察到。据物理学家组织网5月16日(北京时间)报道,最近,奥地利因斯布鲁克大学和意大利特兰托大学物理学家合作实验,在量子气体中也观察到了这种温度波的传播,证实了列夫·朗道70年前假设的理论。相关论文发表在《自然》杂志上。 在低于临界温度时,一些液体会变成超流体而失去摩擦力。此外,超流状态下液体的导热性能极高,会以一种完全不同的温度波的形式来传输能量。由于这种波很像声波,因此也被称为“第二声”。为了解释超流体的性质,物理学家列夫·朗道1941年发展了双流体力学理论,他假设低温下的液体包含超流液和普通液体两部分,后者随着温度下降而逐渐消失。 迄今为止,人们只能在液氦和超冷量子气体中观察到超流动性。另一种超流系统是中子星,在原子核中也发现有超流现象的证据。超流性与超导性密切相关,后者是在低温下表现的零电阻现象。 超冷量子气体是把几十万个原子在真空容器中冷却到接近绝对零度(零下273.15摄氏度)获得的,利用激光能够对此状态下的粒子进行高精度地控制和操纵,因此是观察量子力学现象,如超流动性的理想模型系统。“十多年来,虽然这一领域已有大量研究,但要在量子气体中探测到第二声现象还很困难。”因斯布鲁克大学实验物理学院、奥地利科学院量子光学与量子信息研究所的鲁道夫·格里姆说,“然而到最后,证明它却容易得让人惊讶。” 在实验室中,格里姆的量子物理学家小组准备了由30万个锂原子构成的量子气体,用调制激光束给雪茄烟形的粒子云加热,然后观察到了温度波的传播。“虽然在超流氦里只产生了一个熵波,但我们的费米子气体也显出了一些热膨胀,由此形成了可检测的密度波。”格里姆解释说,这也是研究人员第一次在量子气体中检测到超流体的不同部分。“在我们之前还无人做到这一点,这填补了费米子气体研究中的一个基本缺口。” 该研究是因斯布鲁克物理学家与意大利科学家长期合作的成果。特兰托大学玻瑟—爱因斯坦凝聚中心小组领导之一是列夫·皮塔伊夫斯基,他也是列夫·朗道的学生。他们修改了朗道关于第二声理论的描述,使之与实验中近乎一维的几何波形更加适应。鲁道夫·格里姆说:“利用这一模型,解释实验的检测结果变得更加容易。这一成果代表了我们合作的顶峰。” 总编辑圈点 这是一种完全缺乏黏性的物质状态,如果将其放置于环状的容器中,由于没有摩擦力,它可以永无止尽地流动。它能以零阻力通过微管,甚至能从碗中向上“滴”出而逃逸。这种超流状态下的液体,导热性能极高,会以“第二声”的形式来传输能量。尽管探测“第二声”非常困难,但证明它却相当容易。此次在量子气体中观察到它,是否意味着,这种神奇的超流体现象离我们的生活越来越近了呢? 《科技日报》 2013-5-17 (一版)

  • 量子物理或可“操纵”过去事件

    科技日报 2012年04月25日 星期三 本报讯(记者张巍巍)据物理学家组织网4月24日(北京时间)报道,维也纳大学量子光学和量子信息学院以及维也纳量子科学与技术中心的研究人员首次在实验中证明,有关两个粒子是否处于纠缠或分离的量子状态,或可由这些粒子被测量后和不再存在时来决定,从而实现对过去事件的模拟、操纵。相关研究结果将发表在最新一期的《自然—物理学》杂志上。 作为奥地利理论物理学家和量子力学的奠基人之一,埃尔温·薛定谔曾表示纠缠是量子力学的特殊性质,其也是新兴的量子密码学和量子计算等量子信息技术的关键资源。 纠缠的粒子所表现出的相关性,比经典物理学定律所允许的更强大也更复杂。如果两个粒子处于纠缠的量子态,它们就能完全地定义共同属性,并以损失自己的个体特性为代价。这就像两个原本没有方向的骰子,在处于纠缠态时,它们将随机显示出同样的朝向;相反,如果它们处于分离的量子态时,其中每一个都将显示出自己明确的朝向,因为每个粒子都有自己的特性。通常,我们会认为无论骰子是否纠缠,量子态的性质至少应是现实的客观事实,物理学家安东·塞林格教授所带领的研究团队现在却可在实验中证明,情况并非一直如此。 他们实现了名为“延迟选择纠缠交换”的“思想实验”,这项实验由亚瑟·佩雷斯于2000年提出。在实验中,两对纠缠的光子可被生成,每对中的一个光子将被发送至“维克多”一方。剩下的两个光子,一个被发送至“爱丽丝”处,一个被发送至“鲍勃”处。“维克多”现在能在两种测量中选择,如果他决定以被迫的纠缠态方式测量自己的两个光子,随后“爱丽丝”和“鲍勃”的光子对也将变为纠缠态;如果“维克多”选择单独测量自己的每一个粒子,“爱丽丝”和“鲍勃”的光子对也将以分离态收尾。 而现在的量子光学技术能支持研究团队推迟“维克多”的选择和测量,并以“爱丽丝”和“鲍勃”对于自身光子的行为作为参考。此次研究的主要作者马晓松(音译)解释说,借助高速的可调谐双态分析器和量子随机数生成器,无论“爱丽丝”和“鲍勃”的光子是否处于纠缠态并显示出量子关联,或是处于分离态并显示出传统关联,都可以在它们被测量后再做出决定。 根据爱因斯坦的名言,量子纠缠效应将呈现出“鬼魅似的远距作用”。而这一实验又向前迈进了一步,依照传统的观念,量子力学甚至可模拟对过去事件的未来影响,实现量子对于过去的“操纵”。 总编辑圈点: 和我们熟悉的宏观世界相比,无论是那只著名的薛定谔猫,还是两个相距遥远却存在“心灵感应”的粒子,量子世界的种种现象(假设)总是容易颠覆一些人们既定的认识。本文的研究看似很复杂,但说不定反而更容易让人理解——特别是对于那些福尔摩斯和波洛的拥趸,以及穿越剧的粉丝们。不过,相较而言,量子纠缠对过去事件的再现应该更加类似于神探对犯罪现场的精准还原,而远没有穿越剧的编剧、导演肆意派一位现代人改变历史那般厉害。

  • 科学家首次用相机拍下量子纠缠图像

    中国科技网讯 据物理学家组织网8月9日(北京时间)报道,英国格拉斯哥大学、赫瑞-瓦特大学以及加拿大渥太华大学的研究人员携手合作,首次利用照相机拍摄到量子纠缠的图像。量子加密通信、量子计算等技术的发展都需要依靠量子纠缠的物理特性,最新研究成果朝着开发这类应用迈进了一步。相关论文发表在《自然·通讯》杂志上。 量子纠缠是一种量子力学现象,处于纠缠态的两个粒子即使距离遥远,也保持着特别的关联性,对一个粒子的操作会影响到另一个粒子。简单来说就是,当其中一个粒子被测量或者观测到,另一个粒子也随之在瞬间发生相应的状态改变。这种仿佛心有灵犀一般的一致行动超出了经典物理学规则的解释范畴,被爱因斯坦形容为“鬼魅似的远距作用”。 在此次实验中,研究小组使用了一个具有高灵敏度的照相机来测量光子的高维空间纠缠。光子的纠缠态是用一种特殊的晶体将一个单光子一分为二来创建的。通过给这些光子对拍照,研究人员可以对光子位置之间的关联进行测量,这是经典物理学所无法实现的。借助201×201像素阵列,照相机可在同一时刻观察到量子光场的全景,研究小组也得以看到多达2500种不同的纠缠态。 参与该项研究的格拉斯哥大学物理学和天文学学院教授迈尔斯·帕吉特说:“一张图片胜过千言万语,这句格言用在此处再恰当不过了。每个像素都含有自己的信息,从而可能给量子加密通信的数据容量带来革新。” 他表示:“这项研究是朝着未来量子技术迈进的重要一步,同时也显示了照相机的一个重要新功能,那就是在量子信息科学方面的应用。”(记者 陈丹) 总编辑圈点 在量子世界中,与奇怪的定理相联系的是许多奇怪的现象,比如测不准原理,比如薛定谔的猫,再比如这个爱因斯坦的“幽灵”——量子纠缠。一副万物皆可能有默契的样子,让人无论站在人文还是科学的高度上,仅靠言语都难于描述一二。幸好,现在科学家把它拍下来了,当嘴巴因无力选择缄默时,我们还可以靠眼睛,直观的对视那无比奇妙的微观世界,期盼着从中窥探更多的可用信息,以完成宏观世界中对量子通信及量子计算的建设。 《科技日报》(2012-8-10 一版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制