当前位置: 仪器信息网 > 行业主题 > >

金属配合物低维晶体

仪器信息网金属配合物低维晶体专题为您整合金属配合物低维晶体相关的最新文章,在金属配合物低维晶体专题,您不仅可以免费浏览金属配合物低维晶体的资讯, 同时您还可以浏览金属配合物低维晶体的相关资料、解决方案,参与社区金属配合物低维晶体话题讨论。

金属配合物低维晶体相关的资讯

  • 化学所在金属配合物低维晶体方面取得新进展
    p & nbsp & nbsp 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。 /p p style=" text-align: justify " & nbsp & nbsp 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 & nbsp Coord. Chem. Rev.2016, 312, 22 & nbsp Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。 /p p style=" text-align: justify " & nbsp & nbsp 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图:基于金属配合物低维晶体的光放大与温度响应 /p p br/ /p
  • CASA发布《碳化硅金属氧化物半导体场效应晶体管通用技术规范》团队标准【附标准全文】
    碳化硅(SiC)具有宽禁带、耐击穿的特点,其禁带宽度是Si的3倍,击穿电场为Si的10倍;且其耐腐蚀性极强,在常温下可以免疫目前已知的所有腐蚀剂。而金属氧化物半导体场效晶体管(简称:金氧半场效晶体管;英语:Metal-Oxide-Semiconductor Field-Effect Transistor,缩写:MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。2020年12月28日,北京第三代半导体产业技术创新战略联盟发布一项联盟标准T/CASA 006-2020《碳化硅金属氧化物半导体场效应晶体管通用技术规范》。该项标准由中国科学院微电子研究所牵头起草,按照CASAS标准制定程序(立项、征求意见稿、委员会草案、发布稿),反复斟酌、修改、编制而成。标准的制定得到了很多CASA标准化委员会正式成员的支持。标准于2021年1月1日施行。附件下载https://www.instrument.com.cn/download/shtml/976637.shtml【相关阅读】企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇第27批国家企业技术中心名单出炉,涉及这些仪器厂商探寻微弱电流的律动:超高精度皮安计模块亮相三家半导体设备商上榜“中国上市企业市值500强”862项标准获批,涉及半导体、化工检测和检测仪器等领域盘点各地十四五规划建议”芯“政策湖北省集成电路CMP用抛光垫三期项目拟购置43台仪器设备
  • 我国科研人员为氧化镓晶体管找到新结构方案
    26日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。作为新一代功率半导体材料,氧化镓的p型掺杂目前尚未解决,氧化镓场效应晶体管面临着增强型模式难以实现和功率品质因数难以提升等问题,因此急需设计新结构氧化镓垂直型晶体管。研究人员分别采用氧气氛围退火和氮离子注入工艺制备了器件的电流阻挡层,并配合栅槽刻蚀工艺研制出了不需P型掺杂技术的氧化镓垂直沟槽场效应晶体管结构。氧气氛围退火和氮离子注入所形成的电流阻挡层均能够有效隔绝晶体管源、漏极之间的电流路径,当施加正栅压后,会在栅槽侧壁形成电子积累的导电通道,实现对电流的调控。类似于硅经过氧气氛围退火处理可形成高阻表面层,氧化镓采用该手段制备电流阻挡层具有缺陷少、无扩散、成本低等特点,器件的击穿电压可达到534伏特,为目前电流阻挡层型氧化镓MOSFET(金属氧化物半导体场效应晶体管)器件最高值,功率品质因数超过了硅单极器件的理论极限。研究人员表示,这两项工作为氧化镓晶体管找到了新的技术路线和结构方案。
  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离 Rui Chen 和John P. McCauley 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。 ■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。 ■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。 沃特世解决方案 ACQUITY UPC2TM 系统 Investigator SFC系统 Empower&trade 3软件 ChromScope&trade 软件 ACQUITY UPC2BEH和BEH 2-EP色谱柱 关键词 铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2 引言 有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。 多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。 由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters® ) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。 实验 仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。 色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。 样品描述 样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。 结果与讨论 图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。 图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃ 下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。 图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。 图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流 速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。 图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。 图5 一对Flrpic同分异构体的紫外光谱。 理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。 图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。 图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。 图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。 结论 在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。 本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。 参考文献 1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47. 2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87. 3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91. 4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48. 5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77. 6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18. 7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • 《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案(线上)讨论会顺利召开
    2021年5月26日下午,联盟团体标准T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案线上讨论会顺利召开。本次会议共计15位专家代表参与标准研讨。会议由联盟标委会高伟博士主持,联盟秘书长于坤山提到团体标准作为国行标的补充,具有十分重要的意义,目前第三代半导体特别是碳化硅相关的应用发展迅速,国内外都非常的关注,但是缺乏相关的标准,该项标准的制定有助于促进相关平台的建设,推动企业研发工作的同时促进上下游之间的交流。本次会议主要针对T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案的范围、术语与定义、试验方法等内容进行充分讨论,并提出了诸多修改意见。SiC MOSFET的热阻在热管理设计中具有重要作用,热阻能够为器件运行时的结温评估与结构评价提供信息,为器件设计与优化改进提供参考,衡量器件散热性能的关键指标之一。准确的热阻测试对于SiC MOSFET的鉴定、评价具有重要意义。
  • 芯片上的突破!清华制成世界上栅极长度最小晶体管
    近日,清华大学集成电路学院教授任天令团队在小尺寸晶体管研究方面取得突破,首次制备出亚1纳米栅极长度的晶体管,其具有良好的电学性能。相关成果发表在最新一期《自然》杂志在线版上。亚1纳米栅长晶体管结构示意图。图片来源:清华大学官网晶体管是芯片的核心元器件,更小的栅极尺寸能让芯片上集成更多的晶体管,并提升性能。过去几十年,晶体管的栅极尺寸在摩尔定律的推动下不断微缩。但近年来,随着晶体管的物理尺寸进入纳米尺度,造成电子迁移率降低、漏电流增大、静态功耗增大等短沟道效应越来越严重。因此,新结构和新材料的开发迫在眉睫。目前主流工业界晶体管的栅极尺寸在12纳米以上。为进一步突破1纳米以下栅长晶体管的瓶颈,任天令团队巧妙利用石墨烯薄膜超薄的单原子层厚度和优异的导电性能,将其作为栅极,通过石墨烯侧向电场来控制垂直的二硫化钼(MoS2)沟道的开关,从而实现等效的物理栅长为0.34纳米。“在相当长的一段时间内,要打破这一纪录是非常困难的。”纽约州立大学布法罗分校纳米电子学科学家李华民评价道,这项新工作将栅极的尺寸极限进一步缩小到“仅一层碳原子的厚度”。那么,对于小尺寸晶体管的研究,当初如何想到采用石墨烯材料来突破瓶颈?“单层石墨烯厚度仅0.34纳米,因此采用石墨烯作为栅极,能够实现极短的栅极尺寸。石墨烯本身是平面结构,这就要求沟道是垂直结构,要实现垂直的沟道结构是其中一个难题。另外石墨烯除了侧壁能够栅控,其表面也能栅控,因此屏蔽石墨烯表面电场也是难点,我们开发出了自氧化铝层来对石墨烯表面电场进行屏蔽。”3月20日,任天令在接受科技日报记者采访时表示。随着摩尔定律的发展,晶体管栅长逐步微缩,本工作实现了亚1纳米栅长的晶体管。图片来源:清华大学官网如何让1纳米以下栅长晶体管从实验室成果走向产业化?任天令答道:“1纳米以下栅长晶体管只是一个维度的尺寸微缩,未来还需要配合沟道的微缩,而这需要借助光刻机,比如把沟道尺寸通过极紫外(EUV)光刻进一步微缩到5纳米,并进一步实现超大规模的芯片。”如果说这项研究实现世界上栅长最小晶体管,推动摩尔定律进一步发展到亚1纳米级别,是否意味着这也是一个新的开始,将会有新的探索——诞生更小级别的晶体管?“是的,这确实是新的开始,还将会有新的探索——诞生更小级别的晶体管。”面对记者的提问,任天令肯定地回答道,“前提是能够研发出更小原子尺寸的单层材料。目前在元素周期表上比碳原子小的材料是潜在的候选者,但需要注意,比碳原子小的这些材料目前还不存在单原子层结构,因此未来诞生更小级别的晶体管难度很大。比如利用氢原子来进行栅极控制很可能是晶体管栅极长度的终极尺寸,但是制备金属氢本身就是世界性难题,虽然《科学》2017年报道了金属氢,但是金属氢极不稳定,且不存在单原子层结构,因此难度很大。”那么,在未来集成电路的应用中,这种二维薄膜将赋予相关产品怎样与众不同的性能?任天令介绍说:“二维薄膜的未来集成电路将会带来柔性、更高密度、透明的电子产品,比如目前很热点的柔性电子屏幕,但目前的CPU不是柔性的,如果采用了二维材料,就有机会实现一个全柔性的手机,包括CPU、存储器也可以是柔软的。对于本工作而言,我们团队在实现世界上栅长最小晶体管基础上,还实现了更低功耗的晶体管,这就意味着未来的芯片可以更加节能。”“这次的科研工作,属于研究团队经过长期积累获得的一个成果,中间的过程充满挑战。这一工作是中国自主知识产权,未来我们还将继续进行沟道微缩及大规模芯片集成等工作,为中国芯作出一份贡献。”任天令强调。
  • 半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!
    【科学背景】二维(2D)半导体具有原子级厚度,是潜在的高度缩放晶体管沟道材料,因其能够抑制短沟道效应而成为研究热点。然而,要超越传统的硅基晶体管,需要在2D半导体上开发无瑕的超薄高介电常数(κ)介电材料,以实现高效的栅极控制。然而,由于2D半导体表面没有悬挂键,直接进行原子层沉积(ALD)来沉积介电层存在非均匀成核和电流泄漏的问题,特别是在介电层厚度小于3nm的情况下。为了解决这个问题,科学家们提出了多种界面工程方法,包括等离子预处理和种子层预沉积,但这些方法通常会引入额外的界面电荷散射、较差的热稳定性或整体栅极电容降低等问题。有鉴于此,南开大学材料科学与工程学院张磊,吴金雄等教授提出了一种垂直金属辅助的范德华(vdW)集成方法,这种方法能够在不损伤2D半导体表面的情况下,将高κ介电材料层叠到2D半导体上。研究中开发了一种铋氧化物(Bi2O3)辅助的化学气相沉积(CVD)方法,用于垂直生长钯、铜和金等单晶纳米片,这些纳米片具有原子级平整的表面。通过无聚合物的机械压合方法,这些纳米片可以轻松转移到目标基板上。此外,CVD生长的钯与ALD过程兼容,能够在其上沉积超薄高κ介电材料如Al2O3和HfO2,同时保持其原子级平整表面。通过一步转移过程,研究人员将小于3nm的Al2O3/Pd和HfO2/Pd异质结构堆叠在几层的MoS2或石墨烯上,形成了清洁的vdW界面,没有有机污染或沉积引起的损伤。结果表明,使用2nm厚Al2O3或HfO2介电材料的顶栅MoS2场效应晶体管(FET)展示了约61mV/dec的亚阈值摆幅、0.45V的低工作电压、107的开/关比、10&minus 6A/cm² 的栅极漏电流和~1mV的可忽略滞后。【科学亮点】(1) 实验首次介绍了铋氧化物辅助化学气相沉积(CVD)方法:&bull 首次开发了铋氧化物辅助CVD方法,用于垂直生长单晶金属纳米片,如钯、铜和金,这些纳米片具有原子级平整表面。&bull 创新性地展示了纳米片通过无聚合物机械压合技术轻松转移到目标基板上,这一过程没有引入有机污染物,保持了原子级平整度。(2) 实验通过vdW集成成功实现了亚1nm CEC的2D晶体管的制备:&bull 使用了铋氧化物辅助CVD生长的钯纳米片作为基础,成功实现了超薄高介电常数(高κ)介电材料(如Al2O3和HfO2)的原子层沉积(ALD),保持了介电材料的原子级平整度。&bull 在少层二硫化钼(MoS2)和石墨烯上,通过一步转移过程堆叠了小于3nm厚的Al2O3/Pd和HfO2/Pd异质结构,形成了清洁的vdW界面,避免了常见的沉积损伤和有机污染物的引入。(3) 实验所制备的MoS2顶栅场效应晶体管(FET)展示了亚1nm CEC(0.9nm)的高介电常数(高κ)介电材料(Al2O3或HfO2)的优异性能。具体包括低至0.45V的操作电压、106 A/cm² 的栅极漏电流。【科学图文】图1:垂直生长的单晶金属化学气相沉积chemical vapour deposition,CVD生长、无聚合物转移和表征。图2:垂直生长钯Pd纳米片的原子层沉积atomiclayer deposition,ALD兼容性和范德华van der Waals,vDW集成。图3:以亚3nm Al2O3/Pd作为顶栅介质和电极的MoS2晶体管。图4:以2nm HfO2/Pd作为顶栅介质和电极的MoS2晶体管。【科学结论】本文的科学启迪在于了一种新颖的方法,利用铋氧化物辅助化学气相沉积(CVD)生长垂直单晶二维金属纳米片,并成功将其作为高质量原子层沉积(ALD)氧化物的平台。这一方法不仅解决了传统ALD技术在二维半导体表面上沉积难题,还避免了传统转移技术中介电层厚度过大的问题。通过铋氧化物的引入,实现了在原子级别上对金属表面的垂直生长,从而为超薄介电层的制备提供了一种新途径。此外,本文还通过简化的一步法集成过程,成功在二维半导体上形成了范德华界面,避免了传统转移过程中的有机污染和损伤,确保了介电层的质量和性能。这不仅有助于在极小的电容等效厚度下实现高效的栅极控制,还为制造更高性能的二维场效应晶体管(FET)奠定了基础。原文详情:Zhang, L., Liu, Z., Ai, W. et al. Vertically grown metal nanosheets integrated with atomiclayerdeposited dielectrics for transistors with subnanometre capacitanceequivalent thicknesses. Nat Electron (2024). https://doi.org/10.1038/s41928024012023
  • AMAT可以通过EUV和3D门全能晶体管实现二维缩放
    近日,应用材料公司宣布推出了创新技术,帮助客户继续使用EUV进行2D缩放,并详细介绍了业界最广泛的技术组合,用于制造下一代3D门全能晶体管。芯片制造商正在寻求两种互补的途径,以在未来几年内提高晶体管密度。一个是经典的摩尔定律2D缩放,使用EUV光刻和材料工程创建较小的特征。另一种是使用设计技术协整(DTCO)和3D技术,巧妙地优化逻辑单元的布局,以增加密度,而不受光刻间距变化的影响。后一种方法,包括背面配电网络和门全方位(GAA)晶体管,随着经典2D扩展速度的放缓,预计将在未来几年推动逻辑密度改进的比例越来越大。总之,这些技术可以帮助芯片制造商,因为他们的目标是提供具有更高功率、性能、面积、成本和上市时间(PPACt)的下一代逻辑芯片。应用材料公司高级副总裁兼半导体产品部总经理 Prabu Raja 博士说:“应用材料公司的战略是成为我们客户的 PPACt 支持公司™ ,今天我们将展示七项创新,旨在使客户能够继续使用 EUV 进行 2D 扩展。“我们还详细介绍了GAA晶体管将如何以与今天的FinFET晶体管完全不同的方式制造,以及应用材料公司如何为GAA制造提供最广泛的产品线,包括外延,原子层沉积和选择性材料去除的新步骤,以及两种新的集成材料解决方案。断续器用于制造理想的 GAA 栅极氧化物和金属栅极。扩展 2D 缩放极紫外(EUV)光刻技术的出现使芯片制造商能够产生更小的特征并提高晶体管密度。然而,该行业已经达到了一个临界点,即EUV的进一步扩展带来了挑战,需要新的沉积,蚀刻和计量方法。在EUV光刻胶开发之后,芯片图案需要通过一系列中间层(称为转移层和硬掩模)进行蚀刻,然后才能最终蚀刻到晶圆中。到目前为止,这些层都是使用旋装技术沉积的。今天,应用材料公司推出了用于EUV的Stensar™ 高级图案化膜,该膜使用应用材料公司的精密CVD(化学气相沉积)系统进行沉积。与旋入式沉积相比,应用材料公司的 CVD 薄膜可帮助客户调整 EUV 硬掩模层,使其具有特定的厚度和蚀刻弹性,从而在整个晶圆上实现近乎完美的 EUV 图案传递均匀性。应用材料公司还详细介绍了其Sym3 Y蚀刻系统的特殊功能,使客户能够在蚀刻到晶圆之前将材料蚀刻和沉积在同一腔室中,以帮助改善EUV图案。Sym3腔室轻轻地去除EUV抗蚀剂材料,然后以特殊方式重新沉积材料,以平均由“随机误差”引起的模式变异性。改进的EUV模式可提高良率,并改善芯片功耗和性能。因此,应用材料公司的 Sym3 技术正在迅速超越存储器(应用材料公司是 DRAM 市场导体刻蚀系统的头号供应商)发展到代工厂逻辑。® 应用材料公司还展示了如何使用其PROVision eBeam测量技术来深入观察多层芯片内部,以精确测量整个晶圆上的EUV图案特征,帮助客户解决其他测量技术无法诊断的“边缘放置错误”。2021年,应用材料公司eBeam系统收入几乎翻了一番,并已成为eBeam技术的头号供应商。® 工程3D栅极全能晶体管新兴的GAA晶体管展示了客户如何利用3D设计技术和DTCO布局创新来补充2D扩展,以快速提高逻辑密度,即使2D扩展速度变慢。材料工程的创新也为GAA晶体管提供了功率和性能的改进。在FinFET中,形成晶体管电路径的垂直通道通过光刻和蚀刻成型,这些过程可能导致通道宽度不均匀。不均匀性会对功耗和性能产生负面影响,这是客户转向 GAA 的主要原因之一。GAA晶体管类似于旋转90度的FinFET晶体管,因此通道是水平的而不是垂直的。GAA通道采用外延和选择性材料去除成型,这些技术使客户能够精确地设计宽度和均匀性,以实现最佳功率和性能。应用材料公司的第一款产品是外延系统,从那时起,该公司一直是市场领导者。应用材料公司于 2016 年推出 Selectra 系统,率先推出了选择性材料去除系统,是市场领导者,客户正在使用 1,000 多个腔室。® 制造GAA晶体管的一个主要挑战是通道之间的空间只有10nm左右,客户必须在通道的所有四个侧面周围沉积多层栅极氧化物和金属栅极堆栈,以尽可能小的空间。应用材料公司为栅极氧化物堆栈开发了 IMS™ (集成材料解决方案)系统。较薄的栅极氧化物可产生更高的驱动电流和晶体管性能。然而,较薄的栅极氧化物通常会导致更高的泄漏电流,从而浪费功率并产生热量。应用材料公司的新型IMS系统将等效氧化物厚度减少了1.5埃,使设计人员能够在不增加栅极泄漏的情况下提高性能,或保持性能不变,并将栅极泄漏减少10倍以上。它将原子层沉积 (ALD)、热步骤、等离子体处理步骤和计量集成到一个高真空系统中。应用材料公司还展示了用于设计GAA金属栅极堆栈的IMS系统,使客户能够改变栅极厚度,以调整晶体管阈值电压,以满足从电池供电的移动设备到高性能服务器等特定计算应用的每瓦性能目标。它在高真空下执行高精度金属原子层沉积步骤,以防止大气污染。
  • 深入其“镜”!《晶体结构与缺陷的电子显微分析实验案例》出版
    晶体之秘,一镜解之长期以来,材料科学研究一直围绕着材料的结构-性能关系展开。对于绝大多数材料,晶体结构及各类缺陷决定了其性能和使役行为。因此,分析表征材料的晶体结构及缺陷是材料研究的核心内容。自从德国电气工程师 Ernst Ruska 与 Max Knoll 发明了电子显微镜后,经过近百年的不断发展,电子显微术已成为材料晶体结构及缺陷表征最常用、最有力的工具之一,是材料研究不可或缺的重要手段。电子显微术的发展和应用极大地拓展了人们对材料结构的认知,推动了材料科学的迅猛发展,催生了众多的高性能新材料。“中国相”的发现1、1946年夏,郭可信从浙江大学化工系毕业后通过公费留学考试,于1947年9月到瑞典斯德哥尔摩的皇家理工学院金相学实验室专攻冶金学,其间主要利用X射线衍射方法研究合金中的相结构。后来逐渐接触电子显微镜,用的是当时瑞典唯一的一台RCA电镜,没有衍射功能。2、1955年,郭可信用萃取复型法研究合金钢回火初期生成的碳化物,同年11月去伦敦作“δ-铁素体的金相学”的学术报告,并去剑桥大学参观。郭可信用胶膜(萃取)复型观察到几十埃大小的VC颗粒及针状Mo2C,这是V、Mo在钢中产生晶粒细化及析出硬化(或二次硬化)的原因, 于是在1956年写了一篇文章。这是用电镜进行这类研究工作的早期著作。3、1956年3月, 郭可信看到周总理“向科学进军”的动员令,兴奋不已,4月底乘机经苏联回到阔别九年的祖国,任职于中国科学院金属研究所。之所以来到沈阳工作,与那时金属所有一台苏联人仿制西门子的透射电镜不无关系。4、1962年中国科学院又分配给金属所一台民主德国产的电镜,仍然不能做电子衍射。郭可信等用它观察到铝合金中的位错运动和交滑移,并在1964年第4届欧洲电子显微学会议上做了展示。1965年金属所又争取到一台日本电子株式会社生产的JEM-150电镜, 用它开展镍合金中位错、层错的衍衬像研究。5、6、1967年夏,中国科学院分配给金属所一台之前通过贸易定购的捷克产电镜。郭可信带领其他人居然把这台捷克电镜安装起来,并调试出十几埃的电子显微像。7、60年代中期至70年代中期, 郭可信亲自在JEM-150电镜上做了些相分析工作,发现M23C6与M6C 都属面心立方晶系。为了得到三维的不同取向电子衍射图,他还和北京分析中心的孟宪英利用她的JEM-100电镜开展了倾斜晶体的实验, 确定了一些含钒矿物的点阵类型, 后来这种技术在国内得以广泛传播。8、改革开放之后的1980年,郭可信了解到院里准备引进一两台电子显微镜, 随即便去北京争取,并向郁文秘书长立下军令状,保证在电镜安装后三年内做出出色成绩。这样,院里决定为金属所订购一款当时分辨率最高的透射电镜,型号为JEM200CX。郭可信带领研究团队统筹安排诸多研究方向,相继取得了一批具有国际领先水平的研究成果:在四面体密堆晶体(Frank-Kasper相)的电子衍射图中观察到五次对称的强电子衍射斑点,并给予正确的诠释;独立在Ti-Ni合金中发现具有五次旋转对称的三维准晶(被西方学者称为“中国相”);首先发现八次、十次旋转对称的二维准晶;首先发现一维准晶;首先发现具有立方对称的三维准晶,并阐明准晶的必要条件。9、这些工作将当时中国的准晶研究引领至国际前沿。通过这台电镜完成的研究工作共培养出硕士、博士和博士后共计36名, 其中有2人当选为中国科学院院士。相关研究成果获国家自然科学奖一等奖和四等奖各1项,中国科学院自然科学奖和科技进步奖4项。10、2000年后,这款已经服役近30年的 JEM200CX基本不能处于正常工作状态了。2016年,金属所把该电镜的镜筒做了解剖,整机摆放在研究生教育大厦(郭可信楼)一楼大厅供学习和参观。以上图文选自《晶体结构与缺陷的电子显微分析实验案例》一书,更多有关电子显微镜历史发展和科学家精彩故事请详阅本书。回到科学初心,用实验案例探索晶体的奥秘书名:晶体结构与缺陷的电子显微分析实验案例书号:978-7-04-061096-3作者:马秀良 著定价:149.00元出版日期:2024年1月01 内容简介本书涵盖作者自20世纪80年代末师从郭可信先生起至近年带领研究团队在有关电子衍射方面所积累的主要实验案例,旨在以“案例”的形式梳理电子显微学及晶体学的基础知识,展示如何通过对材料基础科学问题的再认识,从而对经典问题产生新理解,分享发现的乐趣,传授30余载的学术经验。本书主体(第2~6章)按晶体的对称性从低到高依次展开,包括单斜、正交、四方、六方、三方、菱方、立方晶系,涉及周期性晶体14种布拉维点阵中的13种点阵类别以及部分准晶体,共40余种物相。第1章和第7章是科学研究中相关历史事件的精彩片段,不但能引起读者对本领域历代先驱者的无限敬仰,也能激发年轻学者投身于基础科学研究、探索自然奥秘的热情和决心。本书适合作为电子显微学以及材料相关专业研究生的教学参考书,也可供材料科学与过程领域的科研工作者和从业者阅读和参考。02 作者简介马秀良,满族,1964年出生于辽宁省东沟县。1988年毕业于大连理工大学材料工程系。曾师从我国著名科学家郭可信先生,在中国科学院北京电子显微镜实验室和大连理工大学从事 AI 基合金中十次对称准晶及复杂合金相的冶金学和晶体学研究,1994年获博士学位,1995—2005 年先后在德国多特蒙德大学,日本精细陶瓷研究中心、东京大学,中国香港城市大学,以及德国鲁斯卡电镜中心等从事固体材料结构与缺陷的高分辨电子显微学研究,2001—2022年为中国科学院金属研究所研究员,先后任沈阳材料科学国家(联合)实验室固体原子像研究部主任(2006—2018),沈阳材料科学国家研究中心材料结构与缺陷研究部主任(2018—2022),金属研究所第十二届学术委员会主任(2019—2022)。现任中国科学院物理研究所研究员、松山湖材料实验室研究员、大湾区显微科学与技术研究中心负责人。院士推荐
  • ​ 加州大学Science,先进成像技术揭秘维格纳分子晶体的新视角
    【科学背景】随着纳米技术和量子材料科学的进展,二维(2D)过渡金属二硫属化合物(TMDC)莫尔超晶格引起了越来越多的关注。这种材料提供了一个强大的平台,用于模拟每个莫尔晶胞包含一个或几个人工原子的强关联量子固体。这种模拟不仅帮助科学家们理解了量子相变和电子关联效应,还揭示了许多新奇的量子现象和材料特性,例如莫特绝缘体、广义维格纳晶体和量子反常霍尔绝缘体。然而,在研究TMDC莫尔超晶格的过程中,科学家们面临着一些挑战。传统上,大多数研究集中在模拟费米-哈伯德模型,这种模型通过单一的在位排斥能U描述原子内相互作用,忽略了原子内部的自由度。这种简化虽然有助于理解基本的量子相互作用,但无法全面描述多电子系统中复杂的电荷分布和相互作用。最近的理论研究预测,在莫尔超晶格中的多电子人工原子中,由于单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争,可以产生显示出不寻常电荷密度分布的量子态。然而,这些理论预测缺乏实验验证,尤其是在直接成像和观察这些维格纳分子的长程有序排列方面。为了解决这些问题,科学家们进行了多方面的探索。最近,加州大学伯克利分校王枫、Hongyuan Li、Michael F. Crommie及麻省理工Liang Fu等人在“Science”期刊上发表了题为“Wigner molecular crystals from multielectron moiré artificial atoms”的最新论文。他们开发了一种先进的扫描隧道显微镜(STM)成像方案,以实验证明在扭曲的二硫化钨(tWS2)莫尔超晶格中多电子人工原子中维格纳分子晶体的存在。他们的研究不仅验证了理论预测,还展示了这些维格纳分子晶体如何通过机械应变、莫尔周期和载流子类型进行调节。这些发现为理解多电子系统中的复杂相互作用提供了新的视角,也为设计和控制新型量子材料提供了有力的工具。【科学亮点】(1)实验首次在扭曲双层二硫化钨(tWS2)莫尔超晶格中观察到了多电子人工原子中的维格纳分子晶体。通过扫描隧道显微镜(STM)成像,作者实验证明了在这些多电子人工原子中,维格纳分子晶体的形成。这些晶体结构代表了一种电子的晶体相,展示了电子在不同位置的强局部化现象,以最小化库仑能量。(2)实验通过以下几个方面得到了重要结果:&bull 使用扫描隧道显微镜(STM)观察到了多电子人工原子中维格纳分子的出现。当库仑相互作用占主导地位时,这些维格纳分子在多电子人工原子中形成。&bull 实验结果展示了维格纳分子晶体的高度可调性。通过调整机械应变、莫尔周期和载流子类型,可以调节这些维格纳分子的排列和特性。&bull 理论模拟进一步解释了电子-电子相互作用和莫尔势在导致维格纳分子晶体形成中的作用。这些模拟结果明确了单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争对电子态的影响,并展示了在不同维格纳参数RW下电子配置的变化。&bull 研究表明,在小RW值时,多电子莫尔原子的基态可以通过简单地填充非相互作用轨道来近似,形成中心峰值的电荷分布。然而,在足够大的RW值时,电子会强烈局部化,形成维格纳分子,展示了相互作用主导的电子结构和轨道重构。【科学图文】图1: 莫尔超晶格中的多电子人造原子。图2:Wigner分子的CBE和VBE隧道电流测量。图3: Wigner分子晶体结构工程。图4:Wigner分子晶体的数值模拟。【科学启迪】本研究揭示了在二维过渡金属二硫属化合物(TMDC)莫尔超晶格中,多电子人工原子可以形成维格纳分子晶体这一独特的电子晶体相。这种相对传统量子固体的革新在于其来源于人工设计的原子结构,而非自然存在的原子。通过扫描隧道显微镜(STM)的隧道电流测量方案,研究团队首次直接观察到了这一电子晶体相的形成过程,为理解和利用强关联电子系统提供了新的实验平台。此外,研究还展示了通过调节电荷载流子类型、莫尔周期和机械应变,可以有效地控制和调节维格纳分子晶体的性质。这种可控性不仅为量子材料的设计和制备提供了新的策略,还为探索在维格纳分子晶体内部产生的自旋、电荷和拓扑现象打开了全新的研究方向。因此,本文不仅在实验上验证了理论预测,还为开发新型量子材料及其应用奠定了坚实的基础,同时推动了强关联量子系统研究的前沿进展。文献详情:HONGYUAN LI. et al. Wigner molecular crystals from multielectron moiré artificial atoms. Science, 2024, 385(6704): 86-91;https://www.science.org/doi/10.1126/science.adk1348
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 镉米冲击波仅冰山一角 全面重金属危机需警惕
    专家呼吁,重金属污染导致的健康危机将继续出现,有关部门应早做准备   自2月14日报道“镉米杀机”后,中国多地政府部门迅速作出反应。北京、南京、海口、昆明、厦门、青岛等城市的质监部门均对媒体表示,近期当地市场抽检未见镉米。   本刊记者还从多个渠道获悉,此次镉米舆情,已经传递到相关部委高层。农业部官员则告诉本刊记者,镉米污染问题由国务院食品安全委员会牵头负责。   多地关注镉米   2月14日以来,中国内地多个城市的农业、质监或粮食部门陆续通过媒体,称本地市场上没有镉超标大米。还有一些地区的政府部门,表示将进行摸查或调查。   据《北京晨报》报道,京粮集团相关负责人表示,北京市民餐桌上的大米主要来自黑龙江、辽宁、吉林等地,极少量来自南方,但也都远离本刊“中国大米污染不完全分布图”上所显示的广西阳朔兴坪镇等地。   上海市粮油行业协会秘书长赵志伟对《新闻晨报》称,上海市售大米主要来自东北、江苏等地,很少有湖南、江西等地的大米,且大米在进入正规粮油便利店、超市、卖场之前,供应商须提供产地合格证。   广东也迅即表态。据《新快报》报道,广州市质监局表示,尽管根据国家标准,镉并非大米的必检项目,但近两三年质监部门已经把镉纳入检测中,目前尚未发现本地产大米出现镉超标现象。广州市工商局则表示,针对媒体曝光的镉超标产地大米,已着手对批发市场和零售市场进行摸查登记。而广东省农业厅表示,广东大米一直都有检测镉,尚未收到相关报告,目前正积极了解调查广东大米的相关情况。   《南国都市报》报道称,海口市质监部门相关负责人表示,春节期间曾对海口及周边县份进行检测,检测中凡是获证企业的大米都未出现镉超标。镉一般在重工业比较多的地方土壤中存在,而海口周边没有重工业。   广西南宁农业局办公室副主任杜勇则告诉《当代生活报》,几年前确曾听说桂林阳朔县出现过稻米镉金属超标,但南宁市多年来未接到有关镉米的任何报告。此外,他在第一时间将镉米的相关媒体报道转给局里的农艺师和稻米专家看,大家认为稻米镉金属超标主要分布在矿山密集区域或者是大型化工企业常年存在的地方,而这两个条件南宁市均不具备。   《东南快报》记者从福建省质监部门获得的消息则是,该省2011年1月13日公告的2010年四季度全省粮食加工品监督抽查结果,共抽查442家企业生产的456批次粮食加工品,产品抽样批次不合格率为零。   不过,与一些地方政府部门的表态相比,学者的研究却揭示出另外一番景象。例如,广州大学环境科学与工程学院陈迪云教授等人近几年发布的多篇论文披露,福建沿海一些地区稻米中镉含量超标。该研究小组2008年在福建沿海地区10条主要流域布点采集水稻样品185件,结果有16.8%的样品铅超标,11.4%的样品镉超标,而镉和铅含量高的样品主要集中分布在漳州、福州、福清等工业发达的城市周边地区。   警惕环境健康危机   除了政府部门,多位专家也就镉米问题发表观点。   国务院发展研究中心于保平研究员表示,他在2002年就听说过这方面的问题,一些地区的地方政府说耕地受到重金属严重污染。但一些地区,明知有污染,还让老百姓种,“污染面太大,地方政府也管不过来。”   当然,有专家表示,镉米问题在中国并不算突出,镉米对人体的伤害也没有人们想像中那么严重。一位研究人员称:“在我多年的研究中,的确发现有些地方土壤污染严重,而当地百姓又常年食用被镉污染了的大米,有的群众确实吃了20年、30年,甚至年头更长。但是据我们观察,没有出现大的严重健康问题,只是有一些初步症状,有些污染区人群甚至看不到明显的健康异常。”   本刊记者还获悉,2010年11月,环保部科技标准司在贵阳召开了《贵州省赫章县污染及人群健康状况调查》项目验收会议。这是中国首次按照《环境镉污染所致健康危害区判定标准》(GB/T17221-1998)技术要求,对镉污染区进行系统性评价,调查结果显示:赫章县土壤环境镉污染严重,当地人群日均和最大累积镉摄入量仍超过世界卫生组织建议最大允许暴露值,但人群健康损害尚未达到该标准的判定条件。   北京大学医学部公共卫生学院教授潘小川表示,目前中国还没有出现普遍的镉中毒现象。可能在一些职业病中有体现,但缺乏流行病学上的证据。   不过,潘小川指出,随着政策管控的不断加强,近些年工业排污问题在一定程度上有所减轻和改善,但环境污染造成的健康危害需要长期积累才会显现,在时间上具有滞后性。中国正在进入因重金属污染造成的环境健康危机高发期。   在日本富山县,由于镉污染导致的痛痛病患者从上世纪60年代开始维权,1972年诉讼获胜,但直到最近两年仍有人被认定为痛痛病患者。   专家指出,从某种意义上讲,镉米只是土壤重金属污染问题的一个缩影。根据各个污染区的不同情形,稻米中超标的有害重金属不只是镉,可能还包括砷、汞、铅等。除了稻米,其他农作物同样可能受到重金属超标的影响。无论如何,以镉米为代表的重金属污染问题,都值得全社会警惕。   潘小川教授强调,除了加强污染控制,政府应该牵头组织资料收集、整理工作,尤其在尚未爆发环境健康危机但有过严重污染历史的地区,需亡羊补牢,早做准备,包括建立预警机制、对暴露人群实施保护措施等。可以预见,环境污染导致的健康危机将继续出现,“想压也压不住。”   镉污染调查难   多位专家表示,在镉米等重金属污染以及对健康影响的问题上,相关调查和基础性研究极为缺乏。而现实中这方面的调查研究可能遭遇重重阻力。   中国疾病控制中心环境所研究员尚琪表示,他们近年到镉污染区进行健康调查时,面临不少难题。   通常的情况是,疾病控制机构的调查未及全面展开,当地即出现聚众和上访事件 随后,地方政府便不支持学术机构的调查 最终这类调查往往不了了之。   尚琪说,这种情况导致学术界和高层政府无法全面了解镉污染区居民健康状况。因此,他呼吁公众未来能够支持调查,理性看待镉污染问题。   而本刊记者访问的大多数食用镉米的村庄中,村民皆表示政府部门从未组织过镉是否超标的体检,也未听说有卫生或疾病控制部门的调查人员来过。   多位学者向本刊记者确认,由于担心出现上访事件,地方政府往往阻挠学者的调查,同时也不愿让村民知道较为真实的镉污染现状。   中国政法大学环境资源法研究所所长、污染受害者法律帮助中心主任王灿发教授还指出,与土壤污染相关的诉讼很难开展。   2008年,王灿发接触过湖北省大冶市镉污染严重的一个村子。“当时有村干部找到我们,希望通过打官司要点赔偿,但后来由于种种原因再无下文。”王灿发的团队希望找到具体村民,以受害个体提起诉讼,但村干部要求代表整体村民,不让他们接触具体村民。   此外,在广东省北部的大宝山矿区,有研究人员的研究成果显示,当地的镉等重金属污染非常严重。“河水都是红色的。”王灿发说,但等到2007年着手诉讼时,检测显示当地土壤和居民体内的镉超标又不那么严重了,“不知道是怎么回事。”   台湾如何应对镉米   台湾农业部门官员表示,岛内土壤污染管控推行多年,近年来未再传出镉污染消息   连日来,台湾平面及电视媒体皆引述本刊的“镉米杀机”报道,关注大陆镉米污染的情况及后续处理。   其实,台湾人对镉米并不陌生。上世纪八九十年代台湾也曾爆发镉米事件,其中学课本还详细记录了当初的“镉米事件”,并对镉污染造成的“痛痛病”有清楚的描述。   1982年,桃园县出现台湾第一宗镉米事件。调查发现,污染源头是工厂的含镉废水。农民用污水灌溉,产出的大米镉含量超过台湾规定的允许值0.4毫克/千克。这个标准与日本相仿,比大陆的0.2毫克/千克宽松。此事曝光后,政府强制农田休耕,并要求环保部门提出整治计划。   但镉污染并未销声匿迹。1996年,台湾中南部的彰化和美、云林虎尾、台中大甲也出现一连串镉米事件。媒体调查后更发现,彰化平原的米仓已被工厂废水污染几十年,只是消息一直被掩盖。   上世纪70年代台湾开始的中山高速公路等“十大建设”,带动了台湾出口导向的经济发展。而彰化平原上一块块良田上,也盖起了违规电镀工厂,其排出的重金属废水对环境造成伤害。   台湾“农委会”统计,全岛80多万公顷农地中,按照台湾标准,第4级农地污染面积约5万公顷,第5级农地污染面积约790公顷。第5级是指土壤中有外来重金属介入,应列为重点监测地区,并进行相关工作。   与大陆相比,台湾重金属污染土地的面积其实相当有限,但在环保意识逐渐抬头的台湾,镉米等重金属污染事件一度引发民众哗然。   “人民生活水平提高,就会开始关心吃的健康。”台湾主妇联盟环境保护基金会董事长陈曼丽告诉本刊记者,“当时我们非常关注爆发的镉米事件,就像一群什么都管的婆婆妈妈,觉得面对生活环境的病态与教育的缺失,应该勇于行动。”   从走上街头抗议镉米事件开始,这家成立于1989年的非政府组织,开始推动台湾的土壤保护。多个环保团体也逐渐以结盟的方式,发动地方民众与民意代表,向政府部门陈情。   在政府层面,土壤重金属污染开始受到管控。1999年,台湾“经济部”发布《台湾省地下水管制办法》 2002年,“环保署”公布《农地土壤重金属调查及列管计划》 2005年,《土壤及地下水污染整治法》通过。台湾农地污染管控也有了更详细的权责分工——“环保署”负责农地污染管理,定期进行水质、土壤的采样检验 “农委会”担任辅导农民的角色 “卫生署”职掌市售商品的检验。   2005年底,时任台湾“环保署长”的郝龙斌率队稽查全台污染农田周围的非法电镀工厂,他还强调,依据法律,未来所有严重污染的土地都要整治,现在要找出污染制造者,并课以重罚,以支付未来农地整治每公顷上千万新台币的庞大经费。   对于遭受污染的土地,台湾“环保署”用“翻土稀释”方法等进行修复整治。“农委会农粮署”黄科长告诉本刊记者,台湾在土壤整治处理上的固定程序,已使岛内农业土地有了严格管控。   据他介绍,台湾农业区设置了地下水抽测机,定期筛检地下水的重金属含量 在工厂附近则设置“水质监测站”,一旦工厂排出废水,马上会有反应,然后用大尺度到小尺度的方式抽检土壤和作物。大尺度是以每1000米抽一个样品来做检验,再缩小到500、200、100米的范围,“其实有镉污染的农作物会长得很差的,看作物也可以有端倪。”   “这些工作行之有年,我们现在仍在进行后续的追踪。近几年台湾没有再传出有镉污染的消息了。”黄科长说。
  • 天然“准晶体”可能源于太空
    据英国广播公司(BBC)1月3日报道,美国和意大利科学家表示,他们对在俄罗斯发现的天然“准晶体”矿石进行了化学分析,结果表明,这种矿石很可能是陨石的一部分,在陨石与地球的撞击中遗落到地球上。研究发表在《美国国家科学院院刊》上。   准晶体首次被以色列科学家达尼埃尔谢赫特曼发现,他也因此而独享2011年诺贝尔化学奖。1982年4月8日,正在美国霍普金斯大学从事研究工作的41岁谢赫特曼发现了“准晶体”,其原子结构打破了传统晶体内原子结构必须具有重复性这一黄金法则,在科学界引起轩然大波。“的确,那时候,人们根本不接受那种晶体的存在。”美国化学协会主席纳西杰克逊去年10月5日接受美国《纽约时报》采访时表示:“因为他们认为这违反了自然‘规则’。”   随后,科学家们在实验室中制造出了各种准晶体,而且,2009年,意大利佛罗伦萨大学的科学家卢卡宾迪和同事在俄罗斯东部哈泰尔卡湖获取的矿物样本中发现了天然准晶体,这种新矿物质由铝、铜和铁组成。此前的分析表明,“准晶体”这种结构能天然形成而且也能在自然环境下保持稳定,但是,“自然界如何制造出这一结构”一直是个未解之谜。   现在,宾迪和美国普林斯顿大学的保罗斯坦哈特对这种矿石的化学成分进行了分析,结果表明,这种矿石可能是陨石的一部分,陨石在与地球的碰撞中遗落到地球上。他们在论文中指出,该样本中含有一些只能在高压下形成的硅石。这种硅石要么形成于地幔中,要么形成于陨石撞击地球那样的高速碰撞中。而结果显示,这块岩石样本经历过一个压力和温度及巨大的、典型的高速碰撞—小行星带上的流星就由这种碰撞产生 另外,这种岩石中不同氧元素的相对丰度更接近其他流星中而非地球上的岩石的氧元素的相对丰度。   该研究团队指出:“我们的研究显示,准晶体可能源于环境更多变的太空中,这也表明,准晶体能在很多环境下自然产生,而且,在宇宙学时标(足以明显看出宇宙演化的时间尺度,动辄以亿年为单位)上保持稳定。”   准晶体具有独特的属性,其坚硬又有弹性、非常平滑,而且,与大多数金属不同的是,其导电、导热性很差,因此在日常生活中可用来制造不粘锅、发光二极管、热电转化设备等。
  • QSense发布QSense High Pressure 高压石英晶体微天平新品
    QSense® High Pressure高压石英晶体微天平专业研究高压条件下油岩界面的相互作用,可以实时了解真实高压条件下,石油组分、驱油添加剂和其他相关化学物质之间的界面相互作用,为您的研究提供了一整套的解决方案。即使是微小的改变,也能对您的工作产生极大的影响,而将您的决定建立在分析科学的基础上,则会增加成功的机会。借助QSense® High Pressure高压模块,我们希望能充分激发您的想象力,通过实验测试、分析讨论和方法优化以得到更好的结果。QSense® High Pressure高压石英晶体微天平是一款可模拟现实高压反应条件的石英晶体微天平分析设备。压力设置高至200Bar,温度设置高至150℃。您也可以对仪器参数进行个性化定制,以满足特定的实验需求。高压石英晶体微天平由高温样品台、高压流动池、高压泵、液体处理单元和电子单元组成 QSense® High Pressure高压石英晶体微天平——专家之选您比我们更了解您的研究领域。然而,无论是努力提高石油产量,防止管道的污染,还是为发动机寻找适合的润滑添加剂,充分地了解反应过程都极具价值。通过提高对油岩界面相互作用的理解,您或许能在未来做出更明智的决定。QSense® High Pressure高压石英晶体微天平——强有力的研究工具QCM-D是耗散型石英晶体微天平的简称。该技术可记录石英晶体芯片的振荡频率和耗散的变化,为在纳米尺度上研究分子与表面的相互作用提供了新的视角。使用QSense® 耗散型石英晶体微天平分析仪,您可以实时跟踪表面上发生的质量、厚度和结构物理特性等变化。QSense® 检测得到的质量吸附/脱附量以及反应速率 模拟现实高压反应条件不同的反应条件下进行的测试可能得到完全不同的结果,而这就是我们开发QSense® 高压石英晶体微天平的驱动力。我们可提供芯片表面定制,以满足您的不同实验需求。基于QCM-D的检测结果,您可实时根据界面反应得出结论,并对反应流程进行优化。1. 在高压和高温的条件下进行QCM-D实验2. 根据您的特定需求选择芯片的材质和涂层3. 使用不同的有机溶剂和样品,筛选实验方案选择QSense® High Pressure高压石英晶体微天平的三个理由:1. 基于对结果至关重要的表面相互作用过程信息做出更明智的决定2. 从表面材料、化学反应、压力和温度等方面模拟真实的反应条件3. 为您的实验室装备一套高灵敏度的科学分析工具QSense® High Pressure高压石英晶体微天平的典型应用领域:石油开采从地下油藏或沥青砂中提取石油需要仔细考虑工艺条件。通过运用科学的分析可找到优化的方法。提高原油采收率聚合物和表面活性剂的使用可以改变注入水的粘度和岩石的润湿性,从而更好地溶解矿物中的石油。测量矿物芯片表面上聚合物或表面活性剂的吸附和释放的原油,可以优化采收液组成并提高原油采收率。使用较少的表面活性剂可以提供更环保的解决方案并降低成本。沥青提取从油砂中提取沥青非常困难。可以使用涂有沥青的二氧化硅芯片模拟油砂并对沥青的释放过程进行分析。通过研究沥青的脱附情况,找出优化的pH和温度条件,进而尽可能地提高采收率。管道流动保障管道污染和堵塞是一个代价高昂的问题。通常通过添加化学物质对管道流动进行保障。防止污垢沉积检测污垢形成的过程,寻找方法或添加剂以减少污垢沉积。使用碳钢芯片模拟管道表面,研究不同条件下原油/沥青质的吸附和释放,进而找出优化的化学成分、表面材料、压力和温度。燃料和润滑油润滑油被广泛用于控制摩擦和增加运动部件的使用寿命。润滑油溶液由各种具有表面活性的化学物质组成。优化发动机润滑油了解表面活性化学物质的吸附性质是找到平衡润滑剂的关键。利用不锈钢芯片研究燃料和润滑油添加剂对发动机性能的影响。实时观察吸附情况,寻找化学物质间的微妙平衡,从而优化润滑油的性能。QSense® High Pressure高压石英晶体微天平的技术参数:芯片和样品处理系统工作温度a4 – 150 °C, 由软件控制,精度为 ± 0.02 °C工作压力90 – 200 bar (与交替蠕动泵联用,也可在常压下工作)芯片数量1芯片表面超过50种标准材料,包括金属、氧化物、碳化物和聚合物例如:金、二氧化硅、不锈钢SS2343 & SS2348、氧化铁、高岭石等其他材料如钢和矿物,可根据客户要求定制测量特性时间分辨率,1个频率 100 个数据点/秒液相质量灵敏度b电子单元参数电源和频率100 / 115-120 / 220 / 230-240 V AC, 50-60 Hz电源应正确接地软件和电脑要求数据采集软件 (QSoft)USB 2.0, Windows XP 或更高版本数据分析软件(QSense Dfind)操作系统:64位Windows 7 SP1, 8, 8.1, 10或更高版本显示器分辨率: 1366×768像素内存:4 GB数据输入/输出格式Excel, BMP, JPG, WMF, GIF, PCX, PNG, TXT尺寸和重量高 (cm)宽 (cm)长 (cm)重量 (kg)电子单元1836219样品池89112高压阀门和控制面板685050ca 30HPLC 泵14264210 a 温度的稳定性取决于环境变化对样品池升温或冷却的影响。如果附近有气流或热源使室温变化超过±1℃,则可能无法达到系统设定的温度稳定性。b 通过标准的QSense® 流动模块采集数据 (单频模式下每5秒采集一个数据点,假定Sauerbrey关系是有效的)。当QSense® 高压系统芯片背面存在液体时,灵敏度会降低。以上技术参数仅对此配置有效。所有技术指标如有更改,恕不另行通知。创新点:1. 市面上所有其他类似产品均无法实现压力控制和高温控制。 2. 高温高压测试是石油工业真是生产场景模拟的必不可少的条件,此产品第一次实现了此情景的界面实时跟踪表征。 QSense High Pressure 高压石英晶体微天平
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 第七届郭可信电子显微学和晶体学暑期学校举办
    郭可信先生是我国著名的电子显微学和晶体学家,在国内率先引入高分辨电子显微镜,开始从原子尺度直接观察晶体结构的研究。郭可信先生为我国的金属材料物理研究以及电子显微学研究事业培养了大量的人才,桃李满天下。为继承郭可信先生的遗志,为中国电子显微学的持续发展做贡献,2008年由郭可信先生的学生倡导发起,国内外从事电镜研究应用的华人学者经过认真商讨,决定每年举办一次郭可信电子显微学和晶体学暑期学校,并以材料科学和生物学应用为主题轮流举行。   2014年7月26日-27日,&ldquo 第七届郭可信电子显微学和晶体学暑期学校&rdquo 在中国科学院上海生命科学研究院生化与细胞所/国家蛋白质科学中心&bull 上海(筹)举办。本期暑期学校为&ldquo 2014冷冻电镜(cryo-EM)三维分子成像国际研讨会&rdquo 的一个组成部分,着眼于冷冻电镜相关实验技术及计算软件的实践技术培训,旨在培养我国生物冷冻电镜高技术人才及年轻后备人才,加强我国在这一领域的科研实力。   根据冷冻电镜的技术特点,本期暑期学校分为了电镜操作技术培训和图像处理技术培训两个部分。邀请了来自海外的知名专家学者进行讲授培训。   电镜操作技术培训   冷冻电镜技术作为结构生物学及细胞生物学的新兴研究方法,在过去十几年里技术上取得了长足的发展,最近几年在国内也得以推广并取得极大进步,越来越多的研究小组关注这一技术的应用。 加州大学旧金山分校 程亦凡博士   来自加州大学旧金山分校的程亦凡博士介绍了冷冻电镜的基本原理、仪器构造、生物样品制备、三维重构的原理、以及电子晶体学、单颗粒三维重构、电子断层三维重构技术的特点与应用等内容。 布兰迪斯大学 徐晨博士   布兰迪斯大学的徐晨博士从冷冻电镜设施的建立、冷冻电镜样品的制备和操作,以及当前电镜操作的自动化、远程控制等先进技术。最后,徐晨还介绍了新型图像探测器&mdash 直接电子探测器的市场和应用情况。 匹兹堡大学医学院 Peijun Zhang博士   匹兹堡大学医学院的Peijun Zhang博士介绍了共聚焦显微镜与冷冻电镜结合使用在活细胞检测方面的应用。 美国斯克利普斯研究所 Anchi Cheng博士   来自美国斯克利普斯研究所的Anchi Cheng博士介绍了其参与研发的Leginon电镜数据自动收集的软件与方法。Leginon是目前应用比较成熟的单颗粒自动化数据收集软件之一。 霍华德&bull 休斯医学研究所 Dan Shi博士   此外,还有来自霍华德&bull 休斯医学研究所的Dan Shi博士介绍了电子衍射数据收集的相关内容。   图像处理技术培训   虽然近年来冷冻电镜技术进入快速发展期,然而与其配套的图像处理及三维重构技术在国内发展还相对滞后,一定程度上制约了该技术在我国的应用。此次培训班专门开设了电镜数据图像处理及三维重构技术课程,帮助学员系统全面地掌握最新的冷冻电镜图像处理技术和软件。 美国Baylor医学院 Steven Ludtke博士   EMAN2的开发者&mdash &mdash 美国Baylor医学院的Steven Ludtke博士介绍了单颗粒冷冻电镜三维重构软件EMAN2。1999年,Steven Ludtke博士等人推出了EMAN软件的第一个版本,如今EMAN已成为世界上使用最广泛、用于高分辨率单颗粒重构的软件之一。 英国剑桥MRC分子生物学实验室 Sjors Scheres博士   英国剑桥MRC分子生物学实验室的Sjors Scheres博士介绍了RELION软件包,以及最大概然统计分析理论和贝叶斯理论在电镜图像分析和三维重构中的应用。在最近解析的高分辨率电镜结构中,很多应用了RELION软件包。 德国Jü lich研究中心 Gunnar Schroder博士   德国Jü lich研究中心的Gunnar Schroder博士介绍了DireX软件包在电镜三维密度图限制下柔性建模、分析评估方法及其软件的发展与应用。 图像处理技术培训现场 电镜操作技术培训现场   在整个培训期间,除了邀请专家进行授课培训外,还安排了充分的时间让学员进行实际操作培训,并由授课老师直接进行指导。接受培训的学生们表示通过此次培训对于冷冻电镜及三维重构技术有了更深入的了解和认识,对于自己日后的研究工作颇有帮助。(撰稿:秦丽娟)   附录:郭可信电子显微学和晶体学暑期学校的由来   郭可信先生是我国著名的电子显微学和晶体学家,在国内率先引入高分辨电子显微镜,开始从原子尺度直接观察晶体结构的研究。郭可信先生与钱临照、柯俊先生等科学家发起创建了中国电子显微镜学会,并亲任理事长。同时郭先生在国际科学界具有重要影响,曾任亚太地区电子显微学会联合会主席等,并且郭可信先生为我国的金属材料物理研究以及电子显微学研究事业培养了大量的人才,桃李满天下。   为继承郭可信先生的遗志,为中国电子显微学的持续发展做贡献,2008年由郭可信先生的学生倡导发起,国内外从事电镜研究应用的华人学者经过认真商讨,决定每年举办一次郭可信电子显微学和晶体学暑期学校,并以材料科学和生物学应用为主题轮流举行。每年的暑期学校都电镜学习培训班和学术研讨会相结合的形式,一方面培养大家的电镜基础知识和操作技术,另一方面能够更好的了解国内外电镜应用的最新研究进展。   首届郭可信电子显微学和晶体学暑期学校在清华大学举行,并举办&ldquo 冷冻电镜三维分子成像国际研讨会&rdquo 。此后,为了有系统持续性地推动冷冻电镜研究领域的交流与发展,加强我国科研的国际交流合作,使青年学者有机会与该领域权威科学家面对面交流,并得到高层次的培训,在中国每两年举办一次生物领域的&ldquo 郭可信电子显微学与晶体学暑期学校&rdquo 及&ldquo 冷冻电镜三维分子成像国际研讨会&rdquo ,第二届会议2010年在中科院生物物理所举办 第三届会议2012年在中国科技大学举办。
  • 2012 年全国药物晶体工程技术研讨会
    为了推动中国医药行业提升创新能力,并促进国内药物晶体工程学科发展,力扬参加了由中国医药工业信息中心和上海医药工业研究院药物晶体工程研究实验室联合举办之「2012 年全国药物晶体工程技术研讨会」。会议中,力扬除了展示 Avantium 高输出结晶系统,更在会上分享高输出结晶技术在医药研发中的应用,让与会者认识 Avantium Crystal16 及 Crystalline 平行结晶仪的好处,帮助他们迈向自动化药物结晶研究的成功道路。 会议详情 日期: 2012 年 3 月 7 日 - 9 日 时间:上午 9 时至下午 5 时 30 分 地点:上海瀚海明玉大酒店 (上海市虹口区周家嘴路 1888 号)
  • 半导体情报,中国科学家发明新型“热发射极”晶体管!
    【科学背景】随着信息技术和电子设备的迅猛发展,对高性能、高速运算的需求日益增加。因此呢,晶体管作为核心电子器件,其性能的提升成为了关键研究方向。传统的晶体管,如金属氧化物半导体场效应晶体管(MOSFET)和双极结晶体管(BJT),已经在现代集成电路中取得了显著成功。然而,随着应用对速度和功能的要求不断提高,热载流子晶体管作为新兴技术开始受到关注。热载流子晶体管是一类利用载流子过剩动能的设备,与常规晶体管依赖于稳态载流子输运不同,热载流子晶体管通过将载流子调节至高能状态来提升设备的速度和功能。这种特性对于需要快速开关和高频操作的应用,例如先进电信和尖端计算技术,具有重要意义。然而,传统的热载流子生成机制主要包括载流子注入和加速,这些机制在功耗和负微分电阻(NDR)方面限制了设备的性能。例如,载流子注入机制和加速机制都无法提供低于60&thinsp mV&thinsp dec&minus 1的超低亚阈值摆幅,这对于现代低功耗应用至关重要。为了解决这些问题,中国科学院金属研究所研究员刘驰、孙东明和中国科学院院士成会明,联合中国科学院金属研究所研究员任文才团队、北京大学助理教授张立宁团队合作提出了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET)。该晶体管利用加热载流子的受激发射机制,实现了低于1毫伏每十年(decade)的超低亚阈值摆幅,超出了玻尔兹曼极限,并且在室温下具有大于100的峰值-谷值电流比的负微分电阻。通过这种新颖的机制,HOET克服了传统热载流子晶体管在功耗和NDR方面的限制,提供了一种具有显著潜力的多功能晶体管,适用于低功耗和负微分电阻应用,为后摩尔时代的技术进步提供了新的解决方案。【科学亮点】(1)实验首次报道了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET),该晶体管利用加热载流子的受激发射实现了超低亚阈值摆幅和高峰值-谷值电流比的负微分电阻(NDR)。(2)实验通过结合块状材料和低维材料(石墨烯和锗),利用其不同的能带组合形成潜在障碍,从而实现了以下结果:&bull 该HOET实现了低于1毫伏每十年(decade)的亚阈值摆幅,超出了玻尔兹曼极限,这使得设备在低功耗应用中表现优异。&bull 在室温下,HOET的负微分电阻具有大于100的峰值-谷值电流比,这在石墨烯设备中为最高之一,显示出优异的性能。&bull 进一步演示了具有高反相增益和可重配置逻辑状态的多值逻辑应用,展示了设备的多功能性和高性能。【科学图文】图1:器件结构及基本特性。图2:超低SS和SEHC机制。图3:负微分电阻。图4: 用于MVL技术的HOET。【科学结论】本文的研究提供了对热载流子晶体管(HET)领域的重要科学启迪。传统的热载流子生成机制,如载流子注入和加速,存在限制设备性能的不足,特别是在功耗和负微分电阻(NDR)方面。本文提出了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET),利用加热载流子的受激发射机制,显著突破了传统机制的限制,实现了低于1毫伏每十年(decade)的超低亚阈值摆幅,并在室温下展现出大于100的峰值-谷值电流比。这一创新不仅提升了器件的性能,还为低功耗和NDR应用提供了新颖的解决方案。通过将块状材料与低维材料结合,利用不同能带组合形成的潜在障碍,HOET展示了如何通过新机制生成热载流子,推动了热载流子晶体管技术的发展。这项研究为后摩尔时代的电子器件设计开辟了新的方向,尤其是在高性能、低功耗和多功能应用方面,具有重要的科学价值和应用前景。参考文献:Liu, C., Wang, XZ., Shen, C. et al. A hot-emitter transistor based on stimulated emission of heated carriers. Nature (2024). https://doi.org/10.1038/s41586-024-07785-3
  • 蔡司首款晶体学CT系统隆重上市
    扩展了无损衍射衬度断层扫描成像解决方案德国耶拿,2021年3月24日作为无损3D成像系统性能的引领者,蔡司发布了全新微米CT(microCT)系统Xradia CrystalCT™ ,为工业和科研实验室实现各种金属和合金、增材制造、陶瓷和药物样品等多晶材料的三维晶体学成像提供解决方案。蔡司微米CT(microCT)系统Xradia CrystalCT的研发基于传统CT而设计,旨在提供衍射衬度断层扫描(DCT)成像,也是首次在全球范围内将DCT技术商业化。它使得研究人员能够将三维晶体学信息和吸收衬度断层扫描数据有机的结合。蔡司Xradia CrystalCT是蔡司与实验室衍射成像先驱Xnovo Technology ApS合作开发,并提供DCT成像的最新Xradia平台。 蔡司Xradia CrystalCT是搭建在微米CT上的商业化实验室衍射衬度断层成像(DCT)系统。与传统的破坏性三维晶体学成像方法相比,无缝的大体积晶粒成像让实验数据量更具代表性。高级的采集模式可实现自由拼接扫描以快速准确地获取三维晶粒数据。先进的数据采集模式通过免拼接的扫描方式,可快速准确地得到三维晶粒数据。大尺寸样品的成像能力降低了实验室中的很多限制,可实现更多样品类型的分析和更少的样品准备时间,从而缩短了整体分析时间。更快地采集速度可缩短样品运行时间,从而提高实验室分析效率。对金属等材料的晶体结构进行成像并量化材料内部晶体学取向的能力有助于理解和优化材料性能。微米CT非破坏性成像的特性促进了对原位显微结构演变的理解,可控外场环境中,例如热处理,力学加工以及模拟环境对材料行为的影响。这些研究有助于评估新型、更轻巧和更坚固的先进材料的性能和耐久性,并解决诸如功能性、安全性和改进的经济性等问题。在蔡司3D X射线显微镜Xradia 620 Versa上提供的DCT成像功能的扩展模块之前,DCT成像只能在同步辐射光源上实现。蔡司Xradia CrystalCT除了作为一个DCT平台之外,它还是一个优秀的微米CT成像系统,它是建立在高度成熟稳定的蔡司Xradia Versa基础上,为一系列3D成像需求提供出色的分辨率和图像质量。利用蔡司Xradia CrystalCT对铝铜合金进行了结合衍射衬度和吸收衬度的多模块成像和分析。图片展示了使用CrystalCT对材料进行多模式成像表征。三维渲染图是衍射衬度成像和吸收衬度成像的叠加演示,其中衍射衬度成像是依据铝晶粒的晶体学取向进行着色,吸收衬度成像中铜富集的相显示高对比度颗粒和偏析浸润的晶界。 来源: M. Kobayashi, 丰桥技术科学大学, 日本Al-4wt%Cu拉伸样品的三维晶粒图像,其测试区域截面尺寸(长)为1.25 mm,(宽)为1.0 mm,(厚)为0.5 mm。使用高纵横比的黄金角螺旋扫描模式(helical phyllotaxis HART)。蔡司 X射线显微镜负责人Daniel Sims表示:借助CrystalCT,我们将Xradia Versa平台多年来的创新和优势带给更广泛的受众。迎合市场需求的CrystalCT产品提供了一系列被证实成熟可靠的3D成像性能。此外,我们的客户还可以额外享受投资保护,因为平台具有高度可扩展性和广泛的附加功能,随着业务和实验室需求的扩大,可以升级到蔡司顶级Versa机型。Xnovo公司CEO Erik Lauridsen说:“我们很自豪能够支持下一代基于实验室的衍射成像技术,现在该技术将得到更广泛的应用。借助在数据重建和分析方面成熟的专业知识,我们能够将DCT方法应用到微焦点计算断层扫描平台上。而蔡司的微米CT系统为该应用提供了理想的环境。”
  • 芯片上“长”出原子级薄晶体管
    美国麻省理工学院一个跨学科团队开发出一种低温生长工艺,可直接在硅芯片上有效且高效地“生长”二维(2D)过渡金属二硫化物(TMD)材料层,以实现更密集的集成。这项技术可能会让芯片密度更高、功能更强大。相关论文发表在最新一期《自然纳米技术》杂志上。这项技术绕过了之前与高温和材料传输缺陷相关的问题,缩短了生长时间,并允许在较大的8英寸晶圆上形成均匀的层,这使其成为商业应用的理想选择。新兴的人工智能应用,如产生人类语言的聊天机器人,需要更密集、更强大的计算机芯片。但半导体芯片传统上是用块状材料制造的,这种材料是方形的三维(3D)结构,因此堆叠多层晶体管以实现更密集的集成非常困难。然而,由超薄2D材料制成的晶体管,每个只有大约三个原子的厚度,堆叠起来可制造更强大的芯片。让2D材料直接在硅片上生长是一个重大挑战,因为这一过程通常需要大约600℃的高温,而硅晶体管和电路在加热到400℃以上时可能会损坏。新开发的低温生长过程则不会损坏芯片。过去,研究人员在其他地方培育2D材料后,再将它们转移到芯片或晶片上。这往往会导致缺陷,影响最终器件和电路的性能。此外,在晶片规模上顺利转移材料也极其困难。相比之下,这种新工艺可在8英寸晶片上生长出一层光滑、高度均匀的层。这项新技术还能显著减少“种植”这些材料所需的时间。以前的方法需要一天多的时间才能生长出一层2D材料,而新方法可在不到一小时内在8英寸晶片上生长出均匀的TMD材料层。研究人员表示,他们所做的就像建造一座多层建筑。传统情况下,只有一层楼无法容纳很多人。但有了更多楼层,这座建筑将容纳更多的人。得益于他们正在研究的异质集成,有了硅作为第一层,他们就可在顶部直接集成许多层的2D材料。
  • 3D打印新技术精细“雕刻”光子晶体
    五彩缤纷的蝴蝶翅膀、光鲜靓丽的孔雀羽毛、闪耀着金属光泽的昆虫甲壳……点缀着这些大自然奇妙杰作的并非普通色素,而是光与光子晶体结构发生散射、干涉、衍射等作用后形成的结构色。光子晶体是由不同折射率介质周期性排列而形成的光学超材料,也被称为光学半导体。通过设计和制造光子晶体材料及相关器件来控制光子运动,并在此基础上进一步实现光子晶体材料的各种应用,是人们长久以来的梦想。近日,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林、副研究员吴磊等研究人员组成的研究团队利用连续数字光处理(DLP)3D打印技术,实现了具有明亮结构色的三维光子晶体结构制备,为创新结构色制备方法及扩展3D打印的应用开创了新的途径。创新方法,让光子晶体精准“生长”光子晶体作为未来光子产业发展的基础性材料,其独特的三维光学控制能力使其在集成光学元件、光子晶体光纤及高密度光学数据储存等领域都有广阔的应用前景。3D打印技术近年来的成熟发展,也使其成为最好的光子晶体制备手段之一。宋延林向记者介绍,虽然近年来有一些将3D打印技术应用于多种图案化光子晶体制备的案例,但普通的3D打印技术因为墨水中树脂的光固化速度和纳米粒子组装速度的差异,存在结构色效果较差、打印精度较低、难以实现复杂三维结构等问题。上述方法制备的多种图案化光子晶体具有表面形貌粗糙和保真度较差等缺陷,难以被广泛应用于光学器件中。要实现高精度、高保真的光子晶体结构3D打印,就必须要开拓出新的方法。此次研究中,研究团队使用了连续数字光处理3D打印技术。与常见的将原材料层层挤出、堆叠而成的3D打印技术不同,连续数字光处理3D打印技术基于光敏树脂材料在紫外线照射下会快速固化的特性,利用紫外线光束在光敏树脂溶液中雕刻形成3D结构。此次研究团队所采用的连续数字光处理3D打印方法主要的打印步骤如下:首先,在透明基板上滴上墨水,将墨水上方的成型平面缓缓下降,与墨水进行接触;接下来,通过基板下方的光束将打印图案照射在墨水上;之后,受到紫外线照射的墨水会凝固成预先设计好的形状。一滴滴小小的墨水被“雕刻”为一个3D光子晶体结构,其整个产生的过程仿佛是从基板上“生长”出来。宋延林表示,研究团队所采用的连续数字光处理3D打印技术主要在两方面上取得了重要改进。在打印模式上,市面上的光固化连续数字光处理3D打印技术大都是层层打印,打印速度较慢。研究团队研发出的低黏附光固化界面,让液滴与基底之间的粘附力极低,打印过程没有任何“拖泥带水”,能够实现迅速连续打印成型,极大地提升了打印的速度。在成型方式上,市面上的光固化连续数字光处理3D打印技术通常要采用液槽来盛装大量液态树脂。采用液槽来盛装大量液态树脂的方式导致在连续打印过程中,不该固化的区域因为受到照射而固化,不仅造成原材料的大量浪费,也降低了连续打印过程中的稳定性及分辨率。研究团队摒弃了液槽,而是以单墨滴为成型单元,通过控制固化过程中气、固、液三相接触线,显著减少了液体树脂在固化结构表面的残留。同时,以单墨滴为成型单元还降低了界面粘附,增加了液体内部树脂的流动,显著提高了3D打印的精度和稳定性。克服困难,逐个击破墨水难题除了创新打印方式,此次研究中,研究团队对打印所需的墨水也进行了大胆革新。“我们这次研究中最困难的环节就是打印墨水的开发。”宋延林表示。针对上述问题,研究团队创造性地研发出了利用氢键辅助的胶体颗粒墨水,赋予了打印结构高质量的结构色与光子晶体特性。研究团队研发的墨水由三部分组成:实现三维结构构建的光固化单体和光引发剂、保证结构色的纳米颗粒、减少光散射的添加剂。在单体的选择和引发剂合成上,考虑到环保要求,研究团队合成的墨水为水性体系。但由于目前广泛使用的引发剂大多为油溶性,少数水溶性的引发剂又与3D打印所采用的光波波长不匹配,光引发效率较低。为了能够得到较高光引发效率的水溶性引发剂,团队查阅了大量文献并进行了反复的摸索实验,最终成功合成出了水溶性的光引发剂。除了引发剂,光固化单体的选择更加至关重要。宋延林表示,合格的光固化单体必须满足既能实现三维结构化,又不能在打印过程中引起聚合物和纳米颗粒的相分离的条件。论文第一作者张虞表示,“最终我们找到了丙烯酰胺这种适合的单体。”选定单体后,还需确定光固化单体与纳米颗粒的比例。如果光固化单体较少,就会无法打印。反之,如果光固化单体太多,则会影响纳米颗粒的运动和分散,进而影响结构色的质量。团队经过大量实验,对多种不同的比例组合反复尝试,最终确定了最佳比例。最后,为了减少光的散射对打印过程的影响,尽可能地提高打印结构的色彩饱和度,在添加剂的选择上,团队尝试了包括碳纳米管、碳纳米纤维以及黑色墨水等多种材料。但上述材料均存在种种缺陷,研究团队最终将经过特殊处理的炭黑作为添加剂。前景广阔,让结构色“五彩斑斓”在此次研究中,研究团队发现,视角、胶体颗粒粒径以及打印速度等因素都会影响3D结构色的呈现。当胶体颗粒粒径和打印速度不变时,随着视角增加,结构色蓝移,即从橙色转变为黄绿色,最后转变为蓝紫色。这种视角依赖的特性,使得连续数字光处理3D打印技术在个性化珠宝配饰及装饰、艺术创作等领域有着比较广阔的应用前景。除了视角变化会影响结构色的呈现外,当打印速度固定时,控制固定胶体颗粒粒径、调节打印速度,都可以得到覆盖可见光范围的系列结构色。采用顺序切片、依次投影、分段打印的方式,还可使同一物体结构上呈现出多种结构色。除了实现“信手拈来”般地制备结构色,研究团队利用此种连续数字光处理3D打印技术制备出的多种具有光滑内外表面、低光学损耗及颜色选择性的线性光传输和非线性光传输3D结构,也验证了该方法在制造高效光学传输器件方面的独特优势。宋延林表示,未来研究团队会在光子晶体功能器件的制备方面继续进行新的探索。
  • 宁波材料所在高迁、高稳氧化物薄膜晶体管方面取得研究进展
    由于跟非晶硅面板制程兼容,非晶氧化物InGaZnO(IGZO)自从在实验室被发现后,很快进入了显示驱动工业应用,如AMLCD、AMOLED、LTPO 面板驱动。以IGZO 为代表的非晶氧化物薄膜晶体管(TFT)在较高的迁移率 (10 cm2/Vs 左右)、低温大面积制程(可至G8面板以上)、低的关态电流(约比低温多晶硅TFT低1000倍)等方面具有独特的优势。然而,伴随着显示技术的快速发展,现有显示驱动无法匹配新型高品质显示的迫切需求。具体而言,伴随着显示面板大面积化(75 Inch)、超高清化(8K)和高帧频(240 Hz)的发展趋势及未来Micro-LED等高性能显示的涌现,客观上要求TFT器件在保持较低关态电流这一优势的同时,器件场效应迁移率要大于40 cm2/Vs,并兼具较好的性能稳定性。鉴于此,中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队的梁凌燕、曹鸿涛研究员基于InSnZnO(ITZO)半导体材料,围绕靶材-薄膜-工艺-器件研究链条开展科研攻关,阐明了靶材质量、源漏电极工艺、稀土掺杂及金属诱导工艺等对ITZO-TFT性能的影响规律,为后续实现高迁、高稳的TFT器件打下了坚实基础。系列工作发表在IEEE EDL. 42, 529-532(2021)、Appl. Phys. Lett. 119, 212102 (2021)、IEEE TED. 69, 152-155 (2022)、ACS Appl. Electron. Mater. 2023, 10.1021/acsaelm.2c01673。近期,该团队携手中山大学的刘川教授和相关企业提出了高电子迁移率输运层和光电子弛豫层的叠层设计,将迁移率和稳定性的关联/矛盾关系进行了解耦,器件迁移率和稳定性(特别是光照和偏压稳定性)分别与输运层和弛豫层各自的物性及厚度相关联,由此实现了高迁移率(40 cm2V-1s-1,归一化饱和输出电流225 μA)和高稳定性(NBIS/PBTS △Vth = -1.64/0.76 V),器件性能水平极具竞争力,解决了目前氧化物TFTs普遍存在的输运和稳定性难以兼顾的难题。根据氧化物半导体输运的渗流理论以及经典的载流子扩散机制对实验结果进行了模拟,理论预测跟实验结果相吻合,验证了本设计的有效性和可行性。此外,器件的输运层和弛豫层厚度均超过20 nm,容易实现大面积均匀性,具有很好的工业导入前景。研究结果发表在Adv. Sci. 2023, 2300373. 10.1002/advs.202300373。上述工作得到了国家重点研发计划(2021YFB3600701)、国家自然科学基金(62274167)、中科院重点部署(ZDRW-XX-2022-2)等项目的支持。TFT应用中的木桶效应以及电子输运/光电子弛豫叠层设计解决策略与成效
  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。   在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。   最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。   福建物构所深紫外非线性光学晶体材料研究获进展
  • 耐上千摄氏度高温的光子晶体问世
    据美国物理学家组织网近日报道,美国麻省理工学院(MIT)的一个研究小组找到了一种采用金属钨或钽制造出可耐受1200摄氏度高温的光子晶体途径。这种材料可广泛应用于智能手机、红外线化学探测器和传感器、深度探索太空的宇宙飞船等供电装置。相关论文刊登在最新一期的《美国国家科学院院刊》上。   光子晶体指能对光作出反应的特殊晶格,可影响光子运动的规则光学结构,类似于半导体晶体对于电子行为的影响。其晶格尺寸与光波的波长相当,是不同折射率的电介质材料在空间呈周期性排列构成的晶体结构。   MIT军用纳米技术研究所工程师赛拉诺维奇表示,几乎完全可以采用标准的微细加工技术和现有设备将这种新型耐高温、二维光子晶体制造成计算机芯片。与早期制造的高温光子晶体的方法相比,采用新方法制造出的材料具有“更高性能、简单操作、坚固耐用”等特点,适合低成本的大规模生产。   美国国家航空航天局也对这种材料很感兴趣,因为它具有为深度探索太空提供永续动力的潜力。完成这样的任务通常利用少量的放射性物质的能量,采用放射性同位素热电源(RTG)。例如,计划在今年夏天抵达火星的“好奇”号探测器使用的就是RTG系统,可以连续不间断作业多年,而不像太阳能供电站,到了冬天就会出现发电不足的情况。   这种耐高温光子晶体应用前景十分广阔,可用于太阳能光热转换或太阳能光化学转换装置、放射性同位素的供电设备、氮氢化合物发电机或工业领域电厂余热回收的配套设施等。但制造这种材料还存在许多障碍,高温会导致晶体蒸发、扩散、腐蚀、开裂、熔化或快速化学反应。为了克服这些挑战,MIT的研究小组正在对高纯度的钨在结构上进行专门精密的几何设计,以避免材料在被加热时损坏。   该材料还可以取代电池,为便携式电子设备有效供电,采用丁烷作燃料运行热光生电机产生能量,作业时间比电池长10倍。
  • 西安交大发明无损调控微纳尺度含缺陷晶体力学性能的新方法
    p   早在2008年,单智伟教授与合作者们就在《自然材料》报道了微纳尺度单晶镍中的“力致退火”现象,即通过对微纳尺度的单晶体施加载荷并使其发生塑性变形, 晶体内部的缺陷密度将大大降低甚至为零,同时材料的强度得到明显提升。由于该发现迥异于人们基于已有知识的判断,即塑性变形通常使晶体内部位错密度升高,因而受到研究人员的广泛关注。随后该现象在多种面心立方晶体中得到了验证。但是,基于模拟计算和一些实验观测,人们普遍认为体心立方金属不会有力致退火现象,原因是体心立方金属的螺位错具有不共面的特性,通常表现出一系列不同于面心立方金属的变形行为。经过对已有工作的仔细梳理和分析,单智伟教授等认为在合适的尺寸范围内,体心立方金属中也应该存在类似的力致退火现象。通过巧妙的实验设计,研究团队以令人信服的证据证实了上述推测,从而推翻了此前人们对于该问题的认知(黄玲等,《自然通讯》,2011)。 /p p   尽管力致退火现象的普适性得到了证实,但是其应用前景却得到了质疑,原因是力致退火的过程总是伴随着显著的塑性变形,从而使样品几何发生明显的改变。能否在不改变样品几何的条件下将其内部的缺陷去除呢?在日常生活中,我们知道如果要把一根半埋于土壤中的柱状物直接拔出来是比较困难的,但是如果我们先将其进行多次小幅晃动,则最终可能较轻松地将其拔出地面。受此启发,可以推断,如果对含缺陷的晶体施加一循环载荷,控制好力的幅值,使其足够大,能使缺陷动起来并在镜像力的帮助下逐渐从材料表面湮灭和逃逸,但同时又足够小,不在晶体内产生新的位错,就有可能在不改变样品几何的条件下,使得材料中的缺陷密度大幅降低,甚至到零,也就是实现“力致修复”。如果上述想法得到实现,其在纳米压印等领域就可能得到有效的应用。 /p p   基于上述想法,借助于定量的原位 a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 透射电镜 /span /a 纳米力学测试装置,选取亚微米单晶铝为研究对象,研究团队的王章洁博士对其进行了低应变幅的循环加载,发现在几乎不改变材料外观几何的情况下,微纳尺度单晶铝内的缺陷逐渐被驱逐出样品,导致缺陷密度大幅度下降,进而使得材料的强度得到了大幅度的提升。同时发现,可以通过控制应变幅和循环周次等来调控材料内的缺陷密度,进而调控材料的屈服强度。另外,课题组还发现可以通过检查力和位移曲线是否有滞后环以及环的大小来诊断被测材料中是否有可动缺陷以及其数量的多少。这些发现不仅对于理解小尺度材料内的缺陷在循环载荷下的演变规律具有显著的科学意义,并且对于调控对缺陷敏感的功能材料的性能有重要的启发意义和应用前景。 /p p   值得注意的是,当块体材料经受循环加载时,通常会引起材料内部缺陷的增殖与聚集,并进而引起裂纹萌生,并在承载应力远小于宏观屈服应力的情况下发生断裂,也就是所谓的疲劳断裂,它也是很多工程构件失效的主要形式。对微纳尺度材料进行循环加载可导致“力致修复”与块体材料中循环加载所导致的疲劳破坏的效应完全相反。这一事实再次表明,作为连接连续介质力学和量子力学的桥梁,微纳尺度材料的结构与行为的内在机理和规律不能通过外推已有的宏观材料的机理和规律来得到,而是具有其独特性,必须通过创新实验方法和思路来加以揭示和解释。 /p p   近日,西安交大微纳尺度材料行为研究中心(简称“微纳中心”, http://nano.xjtu.edu.cn)在美国科学院院刊 (PNAS, Proceedings of the National Academy of Sciences of the United States of America)在线发表(http://www.pnas.org/content/early/2015/10/14/1518200112)了他们的最新研究成果,即在不改变样品外观几何的条件下,可以通过小应变循环加载的方式来诊断和调控微纳尺度单晶材料中的缺陷,进而达到调控其力学性能的目的。 该论文的作者包括微纳中心的新讲师王章洁博士、李巨教授、马恩教授、孙军教授和单智伟教授, 约翰霍普金斯大学的博士生李庆杰,清华大学的崔一南博士、柳占立副教授和庄茁教授,美国麻省理工学院道明博士,美国卡耐基梅隆大学的Subra Suresh 教授。马恩教授和李巨教授同时分别为约翰霍普金斯大学和美国麻省理工学院的全职教授,并分别担任微纳中心的海外主任和学术委员会主任。该研究工作得到中国国家自然科学基金、973项目及111项目的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/d5aa1b18-2d88-40a5-a6c7-669b88c9ce82.jpg" title=" 图1.png" width=" 600" height=" 408" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 408px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/71dd12f6-2be0-449f-b8db-404d6b6bbdd3.jpg" title=" 图2.png" / /p
  • 半导体情报,科学家首次研发小于1纳米的晶体管!
    【科学背景】镜像孪晶界(MTBs)指的是在MoS2等材料中,两个相邻单层晶体通过精确的60°旋转形成的镜像反射结构。这种特殊的结构不仅具有稳定性,还被理论预测具有一维电子态的特性,可能展现出与传统二维材料不同的电子传输性质。然而,过去对MTBs的研究主要局限于小尺寸晶体和非控制条件下的实验,这限制了其在实际应用中的潜力发挥。因此,韩国浦项科技大学Moon-Ho Jo教授团队联合通过确定性的外延生长,成功地实现了可扩展的MTBs结构,并验证了其作为一维金属性质的稳定性和可靠性。这一研究不仅扩展了对MTBs电子性质的理解,还为将其应用于二维电子电路中提供了新的合成途径。在研究的过程中,研究团队不仅实现了对MTBs结构的精确控制,还探索了其作为电子元件中的潜在应用,如利用MTBs作为接触和互连的可能性。通过将MTBs集成到二维场效应晶体管(FETs)中,他们成功地展示了在低功耗逻辑电路中的先进性能。【科学亮点】(1)实验首次利用位置控制的外延生长技术,在原子厚的范德瓦尔斯半导体中实现了确定性MoS2镜像孪晶界(MTBs),并将其作为一维门的局部应用。(2)实验通过简单的直流测量验证了这些MTBs在室温下作为稳健的一维欧姆导体的金属性质,证实其在单个和网络水平上的大规模应用潜力。此外,作者报道了将外延MTBs集成为原子尺度的门,构建vdW异质结场效应晶体管(FETs)的成功案例。【科学图文】图1 | 在外延范德华硫化钼MoS2 单层ML双晶中的镜像孪晶MTB。图2 | 范德华vDW MoS2 单层ML双晶中,1D外延金属网络。图3 | 通过位置控制成核设计的1D外延金属网络几何结构。图4 | 具有MoS2镜像孪晶界MTB作为1D局域栅的场效应晶体管field-effect transistors,FET。【科学启迪】在本研究中,作者首次通过位置控制的外延方法成功实现了确定性的MoS2镜像孪晶界(MTBs),这些MTBs表现出显著的一维金属性质。通过简单的直流测量,作者验证了这些MTBs在室温下作为稳健的一维欧姆导体的能力,展示了其在电路长度尺度上的金属性质。此外,作者还将这些MTBs成功集成为一维门,构建了集成的二维场效应晶体管(FETs),并在单个和阵列FETs中展示了其在低功耗逻辑电路中的优异性能。这些研究成果不仅为利用范德瓦尔斯半导体中的MTBs构建高效电子器件提供了新的合成途径,还展示了在实现大面积单晶生长方面的潜力。未来,通过更精确地控制晶体纹理的大小、位置和取向序列,作者有望进一步推动创新的二维电子电路设计,利用MTBs作为关键的接触和互连元件,从而实现更高效、更紧凑的电子器件。这些发现不仅对范德瓦尔斯材料的工程设计具有重要意义,还为下一代电子技术的发展开辟了新的可能性。原文详情:Ahn, H., Moon, G., Jung, Hg. et al. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01706-1
  • 岛津公司积极参与中国晶体学会第7届学术年会
    由中国晶体学会举办,南开大学和天津理工大学承办的第7届学术年会,于9.25~28日在天津社会山国际会议中心顺利召开。此次会议吸引到国内外X射线专家从业者包括粉末衍射、单晶衍射、小角散射等,以及相关仪器厂商,约600多人参加。同时,第7届全国晶型药物研发技术学术研讨会也同期举行,堪称晶体研究者的一次盛会。 此次会议的主题是“新时代的晶体学与美好生活”,共收到650多篇论文摘要,安排学术报告293个。设立7个分会场,包括:大分子晶体学、功能分子晶体分会、多晶(粉晶)衍射、非线性光学及激光晶体材料、电子显微学、晶型药物、极端条件晶体材料和小角散射。3天的会议,紧张而紧凑,得到了与会代表的一致好评。大会现场 高松院士作“低配位镧系单分子磁体”大会报告 作为有着100多年历史,从事X射线设备研发、生产、销售一体的仪器厂商,岛津企业管理(中国)有限公司受邀参加了此次会议。并带来了X射线全线产品展示,包括X荧光光谱技术、电子探针显微镜、X射线衍射技术、X射线光电子能谱技术,受到了与会代表的广泛关注。岛津展位关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 可在P型与N型间转换的新式晶体管问世
    据美国物理学家组织网12月21日(北京时间)报道,德国科学家研制出一种新式的通用晶体管,其既可当p型晶体管又可当n型晶体管使用,最新晶体管有望让电子设备更紧凑 科学家们也可用其设计出新式电路。相关研究发表在最新一期的《纳米快报》杂志上。   目前,大部分电子设备都包含两类不同的场效应晶体管:使用电子作为载荷子的n型和使用空穴作为载荷子的p型。这两种晶体管一般不会相互转化。而德累斯顿工业大学和德奇梦达公司携手研制的新式晶体管可通过电信号对其编程,让其自我重新装配,游走于n型晶体管和p型晶体管之间。   新晶体管由单条金属—半导体—金属结构组成的纳米线嵌于一个二氧化硅外壳中构成。从纳米线一端流出的电子或空穴通过两个门到达纳米线的另一端。这两个门采用不同方式控制电子或空穴的流动:一个门通过选择使用电子或空穴来控制晶体管的类型 另一个门则通过调谐纳米线的导电性来控制电子或空穴。   传统晶体管通过在制造过程中掺杂不同元素来确定其是p型还是n型,而新式晶体管不需要在制造过程中掺杂任何元素,通过在一个门上施加外部电压即可重新配置晶体管的类型。施加的电压会使门附近的肖特基结阻止电子或空穴流过设备,如果电子被阻止,空穴能流动,那么,晶体管就是p型,反之则是n型。   研究人员解释道,使这种再配置能起作用的关键是调谐分别通过肖特基结(每个门一个)的电子流动情况,模拟显示,纳米线的几何形状在这方面起关键作用。   尽管该研究还处于初期阶段,但新式晶体管展示出了极佳的电学特性。比如,与传统纳米线场效应晶体管相比,其开/闭比更高,且漏电更少。该研究的领导者沃尔特韦伯表示:“除采用人造纳米线外,采用目前先进的硅半导体制造技术也可以制造出这种晶体管,还可以用到自对准技术,大大提高工作频率和速度。”   接下来,科学家们计划通过改变材料的组成来改进新式晶体管的性能,并制造出由其运行的电路。他们表示,最大的挑战是,在将其与其他晶体管结合在一起时,如何将额外的门信号整合进来。
  • 复旦大学微电子学院朱颢研究团队实现低功耗负量子电容场效应晶体管器件
    当前MOSFET器件的持续微缩所带来的功耗问题已经成为制约集成电路发展的主要瓶颈。研发新原理器件以突破MOSFET亚阈值摆幅(SS)为60mV/dec的室温极限,是实现高速度、低功耗CMOS技术和集成电路的重要途径。近年来,包括隧穿晶体管(TFET)、负电容晶体管(NCFET)、冷源晶体管(CSFET)等在内的多种器件技术为实现陡峭亚阈值摆幅和低功耗器件性能提供了思路。复旦大学微电子学院朱颢研究团队针对上述晶体管器件技术的关键需求,与美国国家标准与技术研究院(NIST)及美国乔治梅森大学合作,提出了一种具有陡峭亚阈值摆幅的负量子电容晶体管器件。研究成果以《Steep-Slope Negative Quantum Capacitance Field-Effect Transistor》为题在近日召开的第68届国际电子器件大会(IEDM,International Electron Devices Meeting)上发表,微电子学院朱颢以及美国NIST的Qiliang Li为通讯作者,课题组杨雅芬博士为第一作者,复旦大学微电子学院为第一单位。该工作将单层石墨烯二维金属系统集成于MoS2晶体管的栅极结构中,构建负量子电容晶体管(NQCFET)器件,利用单层石墨烯在低态密度条件下产生的负电子压缩效应,通过栅极电压调控形成负量子电容。类似于传统基于铁电材料的负电容器件,NQCFET器件中利用石墨烯提供的负量子电容贡献,实现内部栅压放大和小于60mV/dec亚阈值摆幅的特性。该工作中,通过对器件栅极叠层结构以及制备工艺的优化,实现了最小31mV/dec的亚阈值摆幅和可忽略的滞回特性,以及超过106的开关比,有效降低器件静态与动态功耗。同时结合理论仿真揭示了器件陡峭亚阈值摆幅的形成机理,为未来高速低功耗晶体管器件技术的发展提供了新的路径。该项研究工作得到了国家自然科学基金等项目的资助。负量子电容晶体管器件结构与器件性能图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制