当前位置: 仪器信息网 > 行业主题 > >

大气边界层污染观测

仪器信息网大气边界层污染观测专题为您整合大气边界层污染观测相关的最新文章,在大气边界层污染观测专题,您不仅可以免费浏览大气边界层污染观测的资讯, 同时您还可以浏览大气边界层污染观测的相关资料、解决方案,参与社区大气边界层污染观测话题讨论。

大气边界层污染观测相关的资讯

  • 大气边界层污染垂直加强观测试验启动
    p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/67f76a1b-1bfc-4a97-b7e5-0de6a85ef5df.jpg" title=" 1.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/fbabd4b1-7a49-4d9f-88f6-0af16db14e26.jpg" title=" 2.jpg" / /p p style=" text-indent: 2em text-align: center " 中科院大气物理所供图。 /p p style=" text-indent: 2em text-align: justify " 从中国科学院大气物理研究所获悉,该所主持的国家重点研发计划项目“陆地边界层大气污染垂直探测技术”日前在河北省望都县启动了大型大边界层污染加强观测试验。 /p p style=" text-indent: 2em text-align: justify " 这次观测试验预计将持续10天左右,主要探测平台是一个32米长、1900立方米的大型系留汽艇,艇上载有二氧化硫、二氧化氮、臭氧、一氧化碳、PM2.5、总挥发性有机物,以及气溶胶质谱、粒径谱、黑炭和颗粒物计数等大气污染观测仪器,同时还搭载有风速、风向,温度、湿度、气压、三维湍流脉动风速脉动温度等气象要素观测仪器。 /p p style=" text-indent: 2em text-align: justify " “这是一次在京津冀地区开展的规模较大的多平台、多要素大气边界层综合观测试验,将获得冬季重污染期间点面结合、三维立体的大气污染垂直分布信息。”项目首席科学家、中科院大气物理所研究员胡非说,此次观测试验的特点是测量要素全,观测范围全,观测的时空分辨率高,观测的连续性和空间代表性强。 /p p style=" text-indent: 2em text-align: justify " 在这次观测试验中,项目自主研发的新型臭氧激光雷达、二氧化氮激光雷达、高空湍流超声风速仪探测系统以及涡度相关PM2.5湍流通量观测系统等均属首次亮相,自主研发的基于汽艇浮空器平台的“软塔”梯度观测系统,也拟在实验后期开展观测试验。 /p p style=" text-indent: 2em text-align: justify " 胡非认为,这次试验将为不同大气污染探测设备的对比校验、数据质量控制、数据融合和归一化、标准化研究,以及大气污染模式的发展提供帮助,为我国大气污染垂直探测技术和科学研究的发展作出贡献。 /p p style=" text-indent: 2em text-align: justify " 在望都加强观测的同时,项目还在津冀地区开展了包括北京325米高塔和天津255米高塔梯度观测、激光雷达走航观测、飞机观测和地面台站观测在内的同步协同观测。 /p p style=" text-indent: 2em text-align: justify " 此外,为与京津冀地区的观测相对照,由项目参加单位在珠三角地区也同时实施了大气边界层污染加强观测试验,主要探测平台有深圳356米高塔和广州600米电视塔,以及大气污染移动观测车等。 /p p style=" text-indent: 2em text-align: justify " 据了解,离地面1~2千米厚的大气边界层是大气污染的主要发生地,为深入认识大气污染机理和开展大气污染防治,迫切需要进行污染物在大气边界层内的垂直分布规律研究。目前国内外有多种大气边界层和大气污染探测设备和分析仪器,但它们之间的可比性、融洽性和校准技术研究还很不够,制约着该领域的发展。“陆地边界层大气污染垂直探测技术”项目旨在解决基于塔基、地基遥感、艇基和飞机等一体化探测平台的边界层三维垂直结构探测技术。 /p
  • 中科光电受邀参加“大气-气溶胶-边界层-云”华北地空联
    2016年5月28—29日,大气、气溶胶、边界层和云相互作用试验研究会在河北邢台召开。中国科学院院士吴国雄、中国工程院院士丁一汇、北京大学环境科学与工程学院院长朱彤、河北省气象局副局长彭军、邢台市气象局局长赵黎明、北京师范大学全球变化与地球系统科学研究院首席科学家李占清、中国科学院大气物理研究所、中国科学院合肥物质研究院、中国气象局大气探测中心、北京师范大学、中国科学院遥感与数字地球研究所、德国马普研究所等相关专家、学者都参加了此次会议。无锡中科光电技术有限公司作为受邀企业,也参加了此次会议。 会议前,参会人员对“大气-气溶胶-边界层-云”华北地空联合实验观测现场进行了参观。无锡中科光电与各单位的领导、专家一起参观了在邢台气象观测站的数十种观测仪器和设备,认真听取了实验人员的讲解和资料分析。北京师范大学全球变化与地球系统科学研究院首席科学家、“千人计划”学者、此次观测试验负责人李占清教授指出,“邢台气象观测站的实验,首次采用双飞机对云内外以及边界层内外开展观测。此次观测实验还联合了中国气象局、中国科学院、北京大学等单位,利用各自先进的仪器设备和探测技术,形成了一套完整的大气-气溶胶-云-降水的综合观测系统,是开展气溶胶、云物理、人工影响天气、天气和气候变化研究最完整的观测设施。” 会议开始时,河北省气象局副局长彭军和邢台市气象局局长赵黎明对各专家、学者的到来表示欢迎,并指出此次大气、气溶胶、边界层和云相互作用试验研究会对了解河北省大气、云、地面三者之间的相互作用,以及近地面边界层的污染和大气稳定度对云和降水的重大意义。接着,各专家、学者分别对河北气象情况、地空联合试验、气溶胶光学与辐射特性主题进行了详细的介绍和分析。 无锡中科光电技术有限公司对快速源解析走航车进行了详细的讲解,强调数据应用的重要性,利用基于振镜的快速扫描技术和车载多轴DOAS技术,采用走航快速源解析监测方法和数据分析方法,构建了车载走航快源解析系统。无锡中科光电首创了国内走航与锥形扫描应用技术,综合了点、线、面源锥形扫描识别和垂直走航观测方法,对重点污染区域中污染物进行3D扫描和移动走航追踪观测,可有效获取区域污染物空间立体分布、变化规律和排放特征,实现污染区域快速源解析,做到大气灰霾追因与控制。 无锡中科光电始终致力于大气灰霾追因与控制技术,大力发展地基遥感监测设备和数据分析能力,解析颗粒物污染来源、污染特征及污染变化趋势,为短时间空气质量预警预报提供了及时、有效、准确的数据支撑。无锡中科光电也将随时保持与各专家、学者及同行的技术交流和研究成果分享,共同为绿色中国不断努力和奋斗!
  • 中科光电参与“近海海洋边界层大气污染综合立体探测技术研发及应用示范”项目研究
    2018年12月21日至23日,中科院合肥物质科学研究院在合肥组织召开了国家重点研发计划“大气污染成因与控制技术研究”重点专项——“近海海洋边界层大气污染综合立体探测技术研发及应用示范”项目(以下简称 “该项目”)启动与实施方案论证会。这是聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)继参与2016年“大气污染成因与控制技术研究”重点专项和2017年“国家大气污染防治攻关”之后又一国家级大气污染防治科研项目。  会议成立了由技术专家、管理专家和财务专家组成的实施方案论证专家组。中科院合肥物质科学研究院院长匡光力研究员代表项目承担单位致欢迎辞,表示将认真做好项目的组织实施和过程管理工作。中科院前沿科学与教育局地球科学处处长段晓男对项目的启动表示祝贺,对项目的科学实施提出了期望和具体建议。中国21世纪议程管理中心资源环境处处长王磊介绍了“十三五”期间课题管理规划改革方案以及大气专项管理办法,对项目承担单位的组织和管理工作提出了总体要求。  与会专家认真听取了重点项目负责人刘建国研究员和各课题负责人的实施计划方案汇报,充分讨论了项目实施方案和管理机制,形成并论证通过了该项目的实施方案。潘德炉院士代表项目专家组对项目研究工作提出具体要求,强调了加强海洋探测特色仪器与设备的关键技术突破、有效构建立体探测系统的重要性。专家们在论证会上充分交流  该项目汇聚了中科院合肥物质科学研究院、中科院大气物理研究所、国家海洋局第二海洋研究所、中国科学技术大学、复旦大学、中国海洋大学、厦门大学、南京信息工程大学、中国环境监测总站、中国气象局气象探测中心、国家海洋环境监测中心、国家卫星海洋应用中心、深圳市环境监测中心站、上海卫星工程研究所、中科光电等长期从事近海海洋边界层大气污染相关研究的优势单位,将针对近海大气边界层多污染物共存、环境条件复杂(高湿、高盐等)、时空变化不均匀等特点,以快速、在线、立体监测技术研发为核心,研发集成具有自主知识产权、多元数据归一的海洋大气边界层立体探测技术系统,实现近海大气边界层理化结构的高时空分辨率探测;并在黄海、渤海、南海等海域开展技术应用示范,形成相应的技术规范,支撑国家环境监测网络建设,为我国近海大气污染科学研究提供技术保障。 各课题负责人汇报实施计划方案  作为参与此项目的唯一企业,中科光电有幸承担了子课题任务——“近海海洋边界层大气污染物输送通量探测技术研究”。通过此课题将获取高准确度的气溶胶消光系数、退偏振比,并建立准确的近海岸颗粒物质量浓度与消光系数的关系模型,进而识别海源、陆源气溶胶并定量估算气溶胶的近海洋输送,实现对气溶胶传输通量测量的精确化。通过与课题内(间)的风场、污染场数据结合,建立高精度的输送通量反演方法,为定量评价近海海洋污染物提供数据基础。  中科光电总经理万学平先生和业务发展部总监、子课题负责人王界博士出席了项目启动会,并和与会人员就此项目的实施进行了深入交流。 参会人员合影
  • 利用高频光腔衰荡光谱技术同步观测北京和上海大气氨浓度
    氨气是形成二次气溶胶的重要前体物,也是城市大气环境治理的关键物种。中国科学院大气物理研究所组织实施的全国大气氨观测研究网络(AMoN-China)通过被动离线采样发现,城市已成为大气氨排放热点区域。然而,被动采样周期较长(周-月),难以捕捉大气氨浓度在日尺度上的快速变化。同时,以往研究常观察到大气氨浓度在早上5:00-12:00快速增加,这一早高峰现象是否具有普遍性亟待更多高频观测站点资料的验证。鉴于此,中国科学院大气物理研究所研究员潘月鹏课题组与华东师范大学教授吴电明团队合作,基于高频光腔衰荡光谱技术在北京和上海两个超大城市开展了大气氨浓度同步观测实验(测量频率1Hz,精度0.03ppb,图1)。这两个城市位于华北平原氨排放热点区域的南北边缘,是研究区域传输和局地排放对大气氨浓度叠加影响的理想站点。图1. 基于光腔衰荡光谱法测量北京和上海的大气氨浓度2020年5月观测结果发现,北京大气氨平均浓度(23.1±10.3 ppb)接近上海(12.0±5.0 ppb)的两倍,与卫星观测的氨气柱浓度和自下而上统计的氨气排放量的空间分布一致。研究还发现两个城市同时存在氨气早高峰现象,其发生频率大于50%,机动车排放是导致氨气浓度早高峰形成的主要原因。早晨边界层打破后,随着对流发展,富含氨气的残留层向下传输也对早高峰有一定贡献。上述结果促进了我们对城市大气氨浓度动态变化特征及背后驱动因素的科学认识,其高频观测数据可用于提升大气化学传输模型的模拟精度,有助于评估大气氨污染的生态环境效应并为氨减排策略的制定提供参考。该研究成果发表于Atmospheric Environment (JCR一区,IF=5.755)。中国科学院大气物理研究所2019级硕博连读生孙倩为该论文第一作者,潘月鹏研究员和华东师范大学吴电明教授为共同通讯作者。该研究受到北京市自然科学基金(8232050),国家自然科学基金(42077204)和大气边界层物理和大气化学国家重点实验室开放基金(LAPC-KF-2022-09)的共同资助。
  • 污染物监测升级 无人机助力大气环境立体监测
    p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p strong   填补大气环境监测和研究盲区 /strong /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入 研究提供基础数据。 /p p strong   精准化大气研究工具 /strong /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p strong   从无到有的科研“创业” /strong /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p p /p
  • 大气污染研究重点专项名单公示 涉及多项质谱研发
    近日,科技部公示了“大气污染成因与控制技术研究”重点专项拟进入审核环节的2016年度项目信息,其中93个项目名列在内,涉及质谱、气体、颗粒等多项监测技术研发,获得中央财政经费共计10.62亿元,项目实施周期为3-4.5年。  通知原文如下:关于对国家重点研发计划“大气污染成因与控制技术研究”重点专项2016年度项目安排进行公示的通知  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“大气污染成因与控制技术研究”重点专项拟进入审核环节的2016年度项目信息进行公示。序号项目编号项目名称项目牵头承担单位项目负责人中央财政经费(万元)项目实施周期(年)12016YFC0200100基于多离子源飞行时间质谱技术的环境大气有机物在线测量系统研发及应用北京雪迪龙科技股份有限公司黄维2133422016YFC0200200大气有机物实时在线高灵敏监测分析质谱技术及设备中国科学院合肥物质科学研究院沈成银260332016YFC0200300真空紫外光电离大气成核气溶胶质谱仪的研制中国科学院合肥物质科学研究院唐小锋195342016YFC0200400大气污染多平台一体化监测技术中国科学院合肥物质科学研究院周斌3500452016YFC0200500我国东部沿海大气复合污染天空地一体化监测技术南京大学丁爱军3500462016YFC0200600基于Scheimpflug原理的新型大气激光雷达技术研究大连理工大学梅亮170372016YFC0200700基于高光谱分辨率激光雷达的大气气溶胶类型识别关键技术浙江大学刘东156382016YFC0200800城市和工业园区大气NO2 、SO2和CO污染便携式遥测技术研究中国科学院合肥物质科学研究院孙友文175392016YFC0200900星-地多平台联合的大气PM2.5实时无缝监测技术武汉大学沈焕锋2333102016YFC0201000移动污染源排放快速在线监测技术研发及应用示范中国科学院合肥物质科学研究院桂华侨25003112016YFC0201100重点行业固定污染源大气排放高精度在线监测技术研发及应用示范清华大学丁艳军25004122016YFC0201200高精度在线监测大气污染源排放NH3的技术和设备中国科学院大连化学物理研究所黄卫1003132016YFC0201300基于光电集成式微纳气体传感器阵列与组网的大气污染监测系统研究华中科技大学刘欢1573142016YFC0201400基于全光纤气体传感网和智能大数据分析的移动污染源在线监测与超标排放快速识别系统研发杭州电子科技大学蒋鹏2604152016YFC0201500精细网格大气动态污染源清单技术研发及应用示范清华大学贺克斌40003162016YFC0201600安徽燃煤电厂大气污染物的环境化学演化机理与历史排放清单研究中国科学技术大学王儒威2003172016YFC0201700土壤风蚀型开放源颗粒物精细网格动态排放清单的建立方法及不确定性研究天津师范大学陈莉1343182016YFC0201800大气环境监测数据共享技术及应用中国环境监测总站李国刚13733.5192016YFC0201900我国东部城市群污染天气观测及大数据平台建设上海市城市环境气象中心马雷鸣29884.5202016YFC0202000我国东部大气环境集成观测与数据共享技术北京大学赵春生30004.5212016YFC0202100京津冀地区大气污染物同化预报技术研究(青年项目)京津冀环境气象预报预警中心寇星霞1593222016YFC0202200大气反应性有机物降解转化机制及环境效应北京大学邵敏35004232016YFC0202300北京市霾污染条件下PAN的变化特征及其源汇研究中国气象科学研究院徐婉筠673242016YFC0202400长三角典型工业区有机胺降解机制及其对大气颗粒物消光特性的影响南京信息工程大学马嫣1903252016YFC0202500反应性有机污染物在PM2.5上的降解转化机制及环境效应研究中国科学院生态环境研究中心苏贵金2603262016YFC0202600挥发性有机物形成光化学烟雾的分子机理北京师范大学崔刚龙2054272016YFC0202700细颗粒物爆发增长机制与调控原理复旦大学陈建民32003282016YFC0202800大气颗粒物相态及其影响气态污染物二次转化的微观机制北京大学吴志军2603292016YFC0202900大气自由基及臭氧驱动二次颗粒物爆发增长研究兰州理工大学王国英1763302016YFC0203000二次有机气溶胶形成的关键物理化学过程北京理工大学马嘉璧2603312016YFC0203100基于实验模拟的超细粒子成核与生长速率参数化研究南京信息工程大学余欢2143322016YFC0203200连续流室外烟雾箱方法模拟研究大气细颗粒物无机二次组分的爆发增长中国科学院生态环境研究中心郭佳2403332016YFC0203300我国大气重污染累积与天气气候过程的双向反馈机制研究中国气象科学研究院张小曳32004.5342016YFC0203400城市冠层效应对颗粒物重污染的影响研究及在WRF-CHEM模式中的应用上海市城市环境气象中心许建明1203352016YFC0203500气溶胶混合状态与形态对大气化学-气象反馈过程的影响研究南京信息工程大学胡建林2603362016YFC0203600珠三角高密度城市局地污染过程的边界层热-动力机制研究深圳市气象局李磊823372016YFC0203700燃煤电站低成本超低排放控制技术及规模装备中国国电集团公司唐坚30004382016YFC0203800催化臭氧化烟气脱硫脱硝技术研发与应用南京理工大学张舒乐2603392016YFC0203900基于碱性位调控研制NOx净化催化剂及抗中毒技术原理研究中国人民大学常化振2603402016YFC0204000用于燃煤锅炉除尘脱硝一体化的催化膜技术与装置南京工业大学仲兆祥2533412016YFC0204100燃煤工业锅炉超低排放控制技术浙江天蓝环保技术股份有限公司吴忠标33004422016YFC0204200包装印刷业VOCs全过程控制技术与应用工程示范北人集团公司郝郑平29004432016YFC0204300化工行业典型VOCs催化净化技术的研究及应用示范上海华谊丙烯酸有限公司卢冠忠29004.5442016YFC0204400绿色水性工业涂料与涂装技术研究及产业化优美特(北京)环境材料科技股份公司罗运军29004452016YFC0204500短流程旋流吸附-芬顿高级氧化耦合工艺用于橡胶行业挥发性有机物(VOCs)的控制华东理工大学马良2603462016YFC0204600零VOCs排放的绿色功能木器涂层技术中国科学院过程工程研究所王好盛2323472016YFC0204700涂装行业有机废气的强化光催化组合技术开发浙江大学王海强2603482016YFC0204800真空紫外光解-催化氧化协同净化低浓度VOCs技术研究中山大学黄海保2603492016YFC0204900替代燃料车和摩托车污染排放控制技术与系统研究中自环保科技股份有限公司陈启章30004502016YFC0205000低成本低温氧化催化剂的设计及精细化制备清华大学冉锐1923512016YFC0205100基于可控热化学燃烧模式和低成本后处理装置的天然气发动机减排关键技术研究上海交通大学朱磊1493522016YFC0205200船舶大气污染排放控制技术研究与示范上海齐耀科技集团有限公司陈瑾45004532016YFC0205300船舶尾气高效脱硝技术及关键材料研究天津大学刘庆岭2603542016YFC0205400船用低速机高压SCR系统性能优化及其与主机匹配技术研究(哈尔滨工程大学朱元清2043552016YFC0205500船用高效无毒SCR脱硝催化剂技术与示范南京工业大学沈岳松2073562016YFC0205600基于废气-燃料重整再循环技术的船用LNG发动机排放控制关键问题研究武汉理工大学张尊华1753572016YFC0205700基于陶瓷膜吸收的新一代船舶尾气脱硫技术研究南京工业大学邱鸣慧1613582016YFC0205800硫和微粒排放双达标的船舶尾气梯级洗涤装置关键技术研究宁波大学况敏1423.5592016YFC0205900新型等级孔分子筛创制及催化船舶尾气脱硝研究南昌大学彭洪根1144602016YFC0206000城市扬尘控制技术及应用示范四川沃尔宜环保科技有限公司李广辉15004612016YFC0206100城市料场(灰场)扬尘控制阳光膜封闭技术与材料中钢集团天澄环保科技股份有限公司马晓辉2543622016YFC0206200大气污染的暴露测量及健康风险来源解析技术中国环境科学研究院段小丽26883.5632016YFC0206300大气污染物中可吸入微生物组分测量技术清华大学朱听1553642016YFC0206400基于诱导痰的大气细颗粒物暴露生物标志研究复旦大学陈仁杰1953652016YFC0206500我国大气污染的急性健康风险研究中国疾病预防控制中心环境与健康相关产品安全所施小明31814662016YFC0206600大气污染促发心律失常及脑卒中急性发作的暴露-效应研究上海交通大学解玉泉1703672016YFC0206700大气污染对妊娠期妇女血压的影响及其导致妊娠期高血压疾病的风险研究华中科技大学李媛媛2003682016YFC0206800大气细颗粒物暴露对妊娠期妇女心血管系统急性影响及其表观遗传机制研究复旦大学张蕴晖2003692016YFC0206900基于TGFβ /Smads信号通路的大气超细颗粒物急性暴露诱发心血管疾病的分子机制研究中国人民解放军军事医学科学院卫生学环境医学研究所林治卿1023702016YFC0207000基于空间分析模型和生物监测当量构建大气污染急性健康危害的预警预测体系和干预策略中山大学董光辉1823712016YFC0207100室内公共场所污染物快速检测、形成机制及干预技术中国科学院过程工程研究所陈运法28544722016YFC0207200等离子体辅助红外技术对SVOCs污染物进行在线痕量检测和同步源解析研究大连理工大学杨德正2003732016YFC0207300面向室内VOCs快速检测的高灵敏半导体气体传感器的研究吉林大学孙鹏1323742016YFC0207400学校室内PM2.5实时监测体系构建及教室空气质量改善的健康收益研究复旦大学赵卓慧2023752016YFC0207500国家及主要区域空气质量改善路线图研究环境保护部环境规划院雷宇12174762016YFC0207600多尺度大气污染防治情景费效模型研究及示范南京大学毕军19003.5772016YFC0207700空气质量统计诊断模型北京大学陈松蹊16034782016YFC0207800极端随机扰动下的煤炭依赖型城市能源与大气系统情景费效分析模型研究西安建筑科技大学祝颖563792016YFC0207900典型面源排放标准评估和制修订的技术方法体系研究北京全华环保技术标准研究中心江磊18004802016YFC0208000移动源排放标准评估及制修订方法体系研究中国环境科学研究院倪红18003812016YFC0208100重点工业源大气污染物排放标准评估与制修订关键技术方法体系研究中国环境科学研究院武雪芳18004822016YFC0208200固定源大气污染物排放现场执法监管的技术方法体系研究中国环境科学研究院孙启宏23003832016YFC0208300船舶排放控制区大气污染物在线监测与实时监管技术交通运输部水运科学研究所刘春玲2603842016YFC0208400排污许可证管理政策与支撑技术研究环境保护部环境规划院蒋洪强15004852016YFC0208500大气污染多组分在线源解析集成技术南开大学冯银厂26643862016YFC0208600光学多模态动态源解析方法研究清华大学深圳研究生院曾楠2603872016YFC0208700耦合在线观测的细颗粒物组分源追踪解析优化技术上海交通大学程真1603882016YFC0208800区域大气复合污染动态调控与多目标优化决策技术研究环境保护部环境规划院蔡博峰15653.5892016YFC0208900北京及周边地区大气复合污染动态调控与多目标优化决策技术中国环境科学研究院段菁春26214902016YFC0209000大气重污染综合溯源与动态优化控制研究中国人民解放军防化学院黄顺祥2003912016YFC0209100大气环保产业园创新创业政策机制试点研究环境保护部环境规划院逯元堂18613.5922016YFC0209200大气环保产业园创新创业政策研究及应用盐城海灜实业投资有限公司乔琦23003.5932016YFC0209300萍乡市大气环保产业园创新创业政策研究及应用萍乡市安源区生产力促进中心周晓猛23004.5  公示时间为2016年6月22日至2016年6月26日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:王磊、王顺兵  联系电话:010-58884869/4866  传真:010-58884860  电子邮件:dqzx@acca21.org.cn中国21世纪议程管理中心 2016年6月22日
  • 超10亿条观测研究数据为精细化开展污染溯源提供支撑,大气超级站绘出污染“图谱”
    大气颗粒物和臭氧污染来源解析、重污染过程成因分析、扬尘天气颗粒物污染成因分析等,是大气环境综合观测研究站的基础功能。与城市常规环境空气质量监测站不同,大气环境综合观测研究站的配置以自动化设备为主,观测参数多样,探测空间更加立体化,可实现多参数、多维度、多污染物的综合观测。因此,大气环境综合观测研究站也被称为大气超级站。近年来,基于生态环境部京津冀及周边大气环境综合观测研究站建设开展,逐步形成了“1+6+3”模式观测网(即“1”:中国环境科学研究院主站;“6”:廊坊、天津武清、天津、保定、石家庄、邢台;“3”:太原、济南、郑州),所得的大量环境观测数据和研究成果,为不少城市大气环境污染特征评估及成因溯源提供了重要技术支撑。大气超级站如何运行?“1+6+3”模式观测网是怎么建成的?记者近日采访了中国环境科学研究院大气研究所副所长、大气超级站负责人高健。开展8个领域观测研究,积累大量原始数据2007年启动建站,2011年实现自动化运行,十几年来,大气超级站重点针对颗粒物、臭氧、气象等多个观测领域的颗粒物化学成分、物理特征等十余项指标开展长期连续观测,形成各类观测研究数据超10亿条……在中国环境科学研究院大气所科研楼三层楼顶,记者见到了大气超级站的“真容”。站房面积约200平方米,7个观测室呈纵向一字排列,包括颗粒物质量浓度及气体污染物观测室、在线颗粒物化学成分监测室、颗粒物光学观测室等。此外,近年来中国环境科学研究院的研究团队还为大气超级站配备了恒温恒湿天平称量室、智能电镜分析室、黑炭光学实验室、传感器研发实验室等,很大程度上提升了超级站的研究能力。高健告诉记者,团队的观测研究内容分为8个领域、10个观测细分方向。例如重污染过程成因、颗粒物来源精细化解析、臭氧生成机制与来源等。记者走进大气成分分析实验室,看到不少仪器正在工作着。这里配有高效液相离子色谱分析仪、总有机碳分析仪、EC/OC分析仪、电感耦合等设备,为了保证大气环境综合观测及样品分析的顺利进行和质量保证,还建成了恒温恒湿天平称量室,可进行稳定的温度和湿度控制,并消除震动、湍流等影响。“京津冀大气颗粒物动态源解析关键影响因子评估与综合验证、华北地区大气氮氧化物非均相化学及其对大气氧化性和区域空气污染的影响、京津冀及周边地区重污染过程颗粒物动态源解析……”大气超级站的主站于2021年正式通过生态环境部验收,建设期间,高健团队承担和参与了多项国家及部委重大科研项目。高健说:“这些研究成果为精细化开展重污染过程中颗粒物污染溯源提供了重要支撑。”组建“1+6+3”观测网,为大气污染防治提供科技支撑中国环境科学研究院大气所的西南方向,位于中原地区的河南省郑州市有一座大气超级站子站,它是生态环境部京津冀及周边大气环境综合观测研究站“1+6+3”模式观测网的最远端。“1+6+3”模式观测网是高健团队2014年以来与京津冀及周边典型城市合作建立的,包括北京、天津及河北的多个核心城市,以及山东、河南两省省会。除大气超级站的主站外,天津、济南、石家庄、郑州、太原、廊坊、保定等子站也配有相应的观测硬件设施。谈及它们之间的联系,高健表示:“主站由中国环境科学研究院投入建设,子站由各省市进行建设,主站与子站是协同合作关系。”正是依托这样“科研+业务”的合作关系,“1+6+3”模式观测网的定位基本成型,即针对大气污染防治重点地区(京津冀及周边),立足典型超大城市,建立区域大气环境科学综合观测研究平台。“我们将管理支撑目标分为短期和长期两个方向。短期目标是针对京津冀及周边区域大气重污染过程开展应急溯源,长期目标是对国家重点大气污染成因及防治政策落实效果进行评估。‘十三五’‘十四五’观测的重点是PM2.5,‘十五五’将聚焦PM2.5和臭氧复合污染。”高健说。此外,作为中国环境科学研究院科普教育基地建设试点站点,主站开展了科普基础设施(楼梯玻璃幕墙)改造、科普展品(主题展板及宣传手册)制作等,共接待参观人员(社区居民、中小学生、国外留学生)达500人次。为了更好地为重点地区PM2.5和臭氧协同控制提供高质量的支撑,今年,中国环境科学研究院将对大气超级站主站进行升级改造,包括实验楼改造、主站扩建、配套升级等,也将与山东、河南、河北等省级环境监测站开展更大范围的联网合作观测。“下一步,我们将聚焦于业务需求和学术前沿的实验方向设计,继续开展长期、稳定、持续、开放的大气综合观测,为开展区域或城市大气科学研究做好原始数据积累。”高健表示。国内大气超级站快速发展,高质量发展是必行之路大气超级站自动化程度高、观测参数多,具有较强的研究属性。作为大气环境观测研究的重要组成部分,近20年来,随着我国大气污染防治需求和治理力度的加大,各地大气超级站建设得到快速发展。2016年初,高健团队利用调查问卷方式调研了国内的60余个大气超级站,发现这些大气超级站一多半集中建设在我国华北和华东地区。近年来国内省级大气环境综合观测站(等同于大气超级站)或组分站(简化版本的大气超级站)也得到快速发展,例如山东省数量超过15个,河南省数量超过10个。河南、安徽、广东等省份均已建设完成一批包括省级超级站在内的综合观测网(或组分网),多数站点具备超级站规模和能力。目前,我国各地大气超级站建设和运维费用一般来自于省市财政经费,其主要功能是用于开展城市或省内大气污染溯源及成因分析。一些省份逐渐形成了超级站网,在联网观测分析上逐渐具备优势。高健表示,在大气超级站的建设和应用过程中,应进一步完善数据质控和质量管理制度,加强对监测和数据分析人员的培养,规范数据分析流程和方法,逐步建成完善的业务化监测和管理体系。同时加大与高校、研究院所等科研单位合作力度,共同深入挖掘数据价值,让超级站在我国大气污染防治乃至降碳减污领域发挥更大的作用。
  • 超站联盟会议 ▏听大师们谈超级站技术和京津冀及周边地区的污染
    2017年12月1日,中国大气超站联盟技术交流会暨京津冀及周边地区大气重污染成因研讨会在山东德州隆重举行。此次会议由北京大学环境科学与工程学院、中国环境监测总站共同主办。会议邀请了环保部环境监测司环境质量监测处处长肖建军、中国21世纪议程中心资源环境处处长王磊、国家大气污染防治攻关联合中心主任/中国环境科学研究院院长李海生、中国环境监测总站站长柏仇勇、中国工程院院士刘文清、张远航等多位领导专家出席。会议就大气重污染过程的立体探测与气象影像判识、京津冀及周边地区大气重污染成因综合观测实验、京津冀及周边地区大气重污染成因与来源分析、超级站综合观测实验质控与数据共享、超级站运行和数据分析的技术交流与经验分享等主题进行了研讨,做了专项报告。中科光电激光雷达为多位专家学者的报告提供了有力的数据支撑。张远航院士主持开幕式开幕式致辞柏仇勇站长在开幕式致辞上发表了重要讲话,他认为:1.要通过超站联盟实现资源整合和互联共享,要实现已建超站的联合,专家资源的共享。2.各级监测站要积极参与到超站联盟中去。3.加强国产仪器的研发投入,总理基金两个方面,观测与数据共享。4.科研院所专家资源应参与到污染成因、机理及来源解析中去。柏站长还表示,十九大有两个号召,一是打好大气污染防治攻坚战,二是打赢蓝天保卫展。要说的清,说的准,说的明。大会主旨报告在大会主旨报告中,众多专家学者分享了自己现阶段的研究项目。中科光电激光雷达以精准的监测结果,为多个研究项目提供了理想的数据。中国科学院安徽光学精密机械研究所(以下简称“安光所”)刘文清院士在会上报告了《大气污染立体探测与超站联网监测》,着重提出了超站的区域质控中心建设问题。目前,全国超站点位众多,仪器设备众多,数据种类多样且数据量大,未来需要通过平台进行数据集成共享、组网联动。地基遥感设备的质控及数据分析是超站良好运行的重要组成部分,包括颗粒物激光雷达、臭氧激光雷达、多轴差分吸收光谱仪等。中科光电依托安光所,以环境光学监测仪器工程技术中心为支撑,持续为地基遥感提供核心技术,在立体监测设备层面追求不断更新。 刘文清院士汇报中提及立体监测新设备——双镜微脉冲激光雷达在新设备的研发层面,中科光电与刘院士团队联合研发出一款立体监测新设备——大气颗粒物监测激光雷达(双镜微脉冲激光雷达)。雷达集所有功能为一体,机身小巧轻便,双望远镜光路结构设计更是真正实现激光雷达零盲区探测。该雷达以集成化、零盲区、便携性、多参数、可视化等优势获得了众多关注。北京大学环境与工程学院研究员陆克定、郭松在汇报中也以激光雷达为实验设备。郭松在《德州超级站综合观测进展》的报告中,用大气臭氧探测激光雷达为京津冀的大气污染提供了强力观测。中科光电与安光所作为现阶段臭氧激光雷达技术研发最为成熟的团队,已领先将臭氧激光雷达推向了国内市场。 左图陆克定报告,右图郭松报告 中国环境监测总站大气室主任宫正宇研究员做了《区域组分网建设进展与污染过程分析》的报告,其中展示了国家区域站和组分网大气颗粒物监测激光雷达监测结果(含中科光电产品),对典型污染过程成因进行了分析研究。宫正宇认为,组分网固定站点和污染带输送通道区域站激光雷达监测较好地组成了颗粒物的立体空间监测网络。此外,总站程麟均博士在报告中提出了激光雷达数据统一标准的需求,认为这是大范围区域组网分析的必不可少的基础工作。 左图宫正宇报告,右图程麟均报告 安光所研究员张天舒在大会上提到,利用模式结合组网分析、走航追踪等监测方法,能够更好的研究污染过程,有利于掌握京津冀的气溶胶区域污染分布。这两种监测方法已熟练应用于中科光电的监测业务中。同时,安光所与中国气象科学研究院研究员张小曳展开课题合作。在课题研究中,激光雷达消光系数为研究异常逆温下的气溶胶垂直分布污染及边界层层结结构提供了优质的监测数据,有效支撑了污染扩散趋势研究。 左图张天舒报告,右图张小曳报告中科院大气物理所研究员胡非,在《边界层结构和湍流过程对大气重污染的影响》报告中提出了物质边界层的概念,并用激光雷达的反演来计算边界层高度的差别,以此进行了讨论。聚光科技工程师唐静玥在会上介绍了仪器国产化的公关研制现状,她认为,目前大多数国产仪器依托高校科研院所走出一条产学研相结合的道路。例如,中科光电依托中科院安光所进行的产业化之路。 左图胡非报告,右图唐静玥报告中科光电技术总监郑龙飞也在此次大会分享了《超站平台在厦门金砖保障的应用》,给大家展示了安光所、中科光电在金砖保障期间的超站数据平台的功能应用。保障期间,中国科学技术大学教授刘诚为厦门超站提供了大力支持。刘诚团队通过将卫星反演数据实时推送进平台,直观了解到厦门地区污染物时空分布,掌握了大气层污染物变化趋势,与地基遥感监测数据相互佐证。金砖保障期间刘诚团队的卫星遥感监测凭借着严格的数据质控、数据分析及报告系统核心模块,安光所、中科光电不负众望,满足了专家们的会商需求,得到了福建省环境监测中心、厦门市环境监测中心高度肯定。中科光电技术总监向大家展示金砖保障期间超站数据平台的功能应用院士互动会议期间,中科光电业务总监盛世杰就超站建设、质控等向张远航院士进行了请教。张院士表示未来要进一步加强推动超站建设规范落地,加强提升设备质控和数据共享能力。除此之外,将超站运作建设形成指南且尽快形成草案,通过京津冀大气重污染公关项目推动超站的联网监测,建立合作机制、共享机制。张院士呼吁欢迎更多的像中科光电这样的企业能够加入到超站联盟中来,为总站及全国的超站业务出力。中科光电一直以来热忱的参与了众多超级站大型观测项目,如15年福建青奥会,17年厦门金砖会晤等,并踊跃参与高校、科研院课题合作研究,积极响应十九大“打好大气污染防治攻坚战”、“打赢蓝天保卫战”的两个号召,共同推进超级站的资源整合、数据共享和国标建立,全力支持我国的环境事业。
  • 中科院携手中国联通推进大气污染防治
    7月29日下午,中科院大气所与联通集成公司战略合作签约仪式在中科院大气物理研究所(以下简称大气所)举行。根据协定,双方未来将在在大气污染预报预警模型、大气污染密集监测、环保大数据及增值业务、核污染预测模型等领域建立战略合作伙伴关系,进一步提高各自信息化水平,为国家的环境治理服务。中科院院长、党组书记白春礼,中国联通集团总经理陆益民出席了签约仪式。  在听取和观看了大气所大气边界层物理和大气化学国家重点实验室主任王自发关于大气污染预报预警整体系统的相关汇报和大气污染预测、扩散过程、三维立体边界污染源等情况的相关演示后,白春礼详细询问了该系统近期预测的大气污染情况,以及前期在内蒙古的试点应用情况,充分肯定了大气物理所与联通公司前期合作所取得的成绩。  白春礼指出,中科院与联通公司应在前期合作的基础上,进一步扩大双方合作领域和范围,充分利用中科院的科技智力资源和联通公司覆盖全国的基站网、人员维护等资源,形成优势互补,并以此次签约作为开端,共同推进中科院100多个研究所和联通公司更高、更深层次的合作。  中国联通集团总经理陆益民表示,中国联通具有覆盖全国的高密度基站网、平台、电源、网络和人员维护能力。但是,联通未来的发展不能仅仅满足于为用户提供传统的电信和通信服务,新形势下的产业转型必须面向未来,这就需要借助中科院,找到自身最缺乏的技术创新手段和核心产品。希望以此次合为契机,以联通公司作为平台,加强与中科院的合作,服务社会,为联通转型打下坚实基础。  据了解,大气所此前已同中国联通系统集成有限公司合作开展了内蒙古空气质量预报预警项目建设,取得了非常优秀的成果,获得了内蒙古自治区的高度评价。  大气所所长朱江表示,大气所将发挥自身科研优势,以此次合作为切入点,为国家环保、交通以及住建等业务部门在空气污染防治等方面提供决策支撑,更好地服务于民生。  联通集成公司总经理孙世臻表示,联通将在环保领域提供更为广泛的信息化服务,继续拓宽与大气所在大气污染防治领域的合作空间。  中科院办公厅、前沿科学与教育局、科学传播局、大气所等领导,中国联通相关子公司负责人参加了此次签约仪式。
  • 高能扫描颗粒物激光雷达告诉你:你离污染有多远?
    近年来灰霾现象频发,颗粒物区域污染现象受到社会及政府部门的高度重视。针对区域性大气污染问题,作为一种成熟的主动遥感手段,颗粒物激光雷达为掌握区域大气污染分布和输送规律,解析颗粒物污染特征、污染来源、污染变化趋势,提供了有力支撑。颗粒物激光雷达按工作方式可分为:垂直探测激光雷达和扫描探测激光雷达。其中扫描探测激光雷达是对固定站点监测空白区域、天气突发区域监测的有力补充,对重点污染区域中污染物进行3D扫描和移动观测,可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献,为环境规划与管理、环境监督与执法及政府宏观决策提供科学依据;并可对污染气团进行走航追踪观测,为短时间空气质量预测提供了及时、有效、准确的数据支撑。 大气颗粒物监测激光雷达大气环境监测激光雷达检测车  中科光电大气颗粒物监测激光雷达(高能扫描系列),采用波长532 nm线偏振激光对大气颗粒物进行遥感探测。雷达通过对532 nm垂直和水平偏振信号的探测,解析大气消光系数、退偏振比廓线、边界层高度、光学厚度等参数,进而可获取大气颗粒物时空分布特征、污染层时空变化、颗粒物输送和沉降等信息。产品特点  采用振镜扫描,避免雷达主体光机及探测器电子学系统振动;  扫描振镜具备自动除尘、除湿、除雪功能,可适用于各种天气状况;  采用单脉冲能量毫焦级固体激光器,重度污染条件下,具有较好的探测能力;  系统拥有GIS地理信息系统,可图形化显示扫描区域颗粒物分布情况,排查污染排放源;  系统具有停电自动关机,来电自动开机功能;  激光器使用寿命长,可达16000小时。产品软件  中科光电扫描激光雷达数据采集分析软件具有固定垂直探测、固定斜程探测、车载垂直探测、车载斜程探测、垂直扫描探测、水平扫描探测六种工作模式。软件通过对激光雷达原始数据进行深数据处理,可得到包括消光系数、退偏振比、光学厚度、能见度、边界层、污染物判别、PM10质量浓度时空分布等基本环境监测数据。 流程图采控软件分析软件产品应用  垂直扫描监测  激光雷达发射脉冲处于天顶方向,望远镜垂直接收来自天顶方向的后向散射信号。能够反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征。可应用于雾霾判识、污染过程捕获分析、高空大气光化学过程探测、大气边界层结构特征分析、沙尘暴预警、局地污染预警等环境监测。 垂直扫描监测  区域点源排放监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对烟囱、锅炉、化工厂、电厂、水泥厂等重要的点源实现定点定位扫描,监测污染源烟羽排放的轮廓及强度分布,实时把握污染超标动态,结合当地实际情况建立报警体系,有效实现污染源排查、偷排漏排违法取证工作。 区域点源排放监测  区域线源扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达进行定点定位扫描,结合GIS地理信息,图形化展示交通主干道上空颗粒物的空间分布特征,有效监测区域内若干条交道主干道的排放强度。区域无组织排放扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对建筑工地、餐饮服务区、汽车修理厂、畜禽养殖场等区域,进行实时在线扫描监测,描绘污染物的水平分布规律,确定污染物的空间分布规律。 区域无组织排放扫描监测  区域污染物分布扫描监测  区域污染物分布扫描监测可手动设置水平扫描(针对区域内)、垂直断面扫描(针对区域边界)等不同扫描方式,实现对工业园区、居民生活区、厂区等敏感地带进行定量评估。结合GIS地理信息,图形化显示区域内污染物时空分布及演变特征。 区域污染物分布扫描监测  走航扫描监测  走航扫描监测,是通过在移动平台上搭载激光雷达系统,采用“驻车扫描”或“边走边测”的工作方式,对区域上空污染团的输入、过境、沉降过程进行实时、在线、连续扫描监测,分析污染物的类型、强度以及演变过程。走航扫描监测结合GIS地理信息,可绘制污染团的运动轨迹,追踪污染团动向,结合大气混合层及气象条件,提供典型污染过程的预警建议。走航扫描监测走航扫描监测  高能扫描颗粒物监测激光雷达系统轻便、易于移动,可实现多种扫描方式,方位角与仰角的扫描角度和探测时间都可自行设置,可实现大范围不同方位的连续自动观测,能够探测到同一仰角不同方位角处及同一方位角不同仰角处的颗粒物的变化,对实时环境监测具有较好的帮助。
  • 上海大载荷系留气球垂直观测平台在京津冀地区首次成功升空
    p   2018年12月15日凌晨2点,上海市环境监测中心和中国电子科技集团第三十八研究所以及中国科学院大气物理研究所相关技术人员冒着零下8℃严寒,连续16小时作业一次性完成囊体充气和挂架合拢。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/78ecd249-9ec4-4fe3-a9f7-8bb18b1bf7f9.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 搭载气溶胶和气象在线监测仪器的 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球平台航拍图 /span /p p   中午12:00,第一根1000米大气污染物化学组分和气象参数垂直探空曲线出现在计算机屏幕上,标志着以大载荷系留气球垂直观测平台为核心的大边界层污染加强观测实验在河北省望都县全面启动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34942733-1811-4eff-99d9-c48b14d31c74.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  2018年12月15日600米、800米 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   存在污染物高空传输 /span /p p   本次大型联合实验为国家重点研发计划项目《陆地边界层大气污染垂直探测技术》的重点观测任务。该项目由中国科学院大气物理研究所胡非教授主持,参加单位有中国环境监测总站、上海市环境监测中心、深圳市环境监测中心、北京大学、中山大学、中国科学院合肥物质科学研究院、中国气象局北京城市气象研究所、南京大学和南京信息工程大学等九家单位。 /p p   本次投入实验的大型系留气球长32米,体积为1900立方米,有效载荷220公斤,升空高度可达1200米,是目前国内唯一的一个民用大载荷大气污染观测平台,艇上载有常规“六要素”二氧化硫、二氧化氮、臭氧、一氧化碳、PM2.5、总挥发性有机物,以及气溶胶质谱、粒径谱、黑炭和颗粒物计数等气溶胶化学组分实时观测仪器,同时还搭载有风速、风向,温度、湿度、气压、三维湍流脉动风速脉动温度等气象要素观测仪器。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e5ea6ca2-52fb-4292-8f96-3f259f7254e8.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   2018年12月15日气溶胶化学组分垂直分布图,仪器:ACSM,表明近地面燃煤和生物质气溶胶排放的有机颗粒物和硫酸盐、黑炭贡献显著,硝酸盐则高空传输和地面累积同步存在。 /p p   自2012年以来,在上海市环境监测中心的带领下,由华东理工大学、南京大学、中国电子科技集团第38所和上海民防办等五家单位组成的科研团队联合科技攻关,历经坎坷,最终将2010年上海世博会科技创新成果——安防气球系统改造为适用于大气环境科学研究的垂直观测平台,成为了一个悬置在边界层空域中的高空大气“超级站”。该系统于2013年、2015年、2016年5月、2017年和2018年在上海先后完成了3次冬季气溶胶污染和2次夏季臭氧污染垂直观测试验研究。团队连续攻克了高空与地面不间断供电、数据实时传输、高稳定度在线大气观测挂架设计、大气污染物和气象多维度数据同步集成、倒挂式颗粒物采样气路设计等多重技术难关,逐步探索和形成了一套以数值模型预报为指导、地基观测设备实时配套的近低空大气垂直科学观测方案,成功实现了在边界层高度的大气污染物的定点定时观测,弥补了在大气边界层高度长时间连续稳定观测的空白,为我国区域复合型大气污染成因和传输影响研究提供了一个全新的高空观测技术手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/beaa86ea-1fa0-4c38-8aba-6abc20d6f5bc.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日张远航院士一行赴 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球观测现场指导观测实验 /span /p p   本次在京津冀地区开展的规模较大的多平台、多要素大气边界层综合观测试验,是上海市环境监测中心首次将该系统成功移植到京津冀地区,将获得冬季重污染期间点面结合、三维立体的大气污染垂直分布信息。系留气球垂直观测平台所获得的宝贵的第一手高空边界层内的污染物和气象参数的原位观测资料,将为不同大气污染探测设备的对比校验、数据质量控制、数据融合和归一化、标准化研究,以及大气污染模式的发展提供帮助。该实验和科学装备引发了大气科学研究界的高度关注,12月19日,张远航院士、柴发合教授等一行专家专程赶赴望都实验现场指导,听取课题负责人霍俊涛工程师关于气球垂直观测系统的详细介绍,并充分肯定了该科学观测系统对我国大气科学研究的重大意义。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/47627da1-cdd9-4dbc-934a-3a9c1ef71aa5.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日气球观测课题负责人 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心霍俊涛工程师 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   向张远航院士一行介绍气球垂直 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   观测系统 /span /p p   “仓庚于飞,熠耀其羽”,大载荷系留气球大气和气象垂直观测平台的成功研发和稳定运行,为大气预测预报、污染预警和雾霾治理提供了一把新的解密钥匙,是我国大气环境科学研究大装备的又一重要标志性成果。上海市环境监测中心的技术人员们,不畏艰辛,攻坚克难,为保障祖国的绿水蓝天、建设生态家园贡献自己的力量! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df473542-22bc-4ac7-91d1-cd24bd365562.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月15日凌晨(零下8摄氏度) /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心技术人员在 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   现场调试仪器 /span /p
  • 极地研究新进展:北冰洋汞污染加剧
    中国科学技术大学极地环境研究室谢周清课题组通过雪龙船考察,发现了夏季北冰洋大气汞循环的独特现象,并经分析认为夏季大气化学过程将导致北冰洋汞污染加剧。 汞,俗称水银,是一种大气污染物。由于汞具有较高的蒸气压、低溶解性和较长的大气保留时间,可以在全球传输,从而到达南北极等边远地区。在北极地区,已经发现大气汞在传输过程中会沉降进入水生生态系统,并随食物链在北极熊等生物体中富集,特别是在北极冬天向春天过度时,大气汞由于溴的氧化,转化为可溶性更强的二价汞,犹如下&ldquo 汞雨&rdquo ,加速了大气汞向北冰洋的沉降。与大家对冬春季节&ldquo 汞雨&rdquo 的关注相比,由于北冰洋夏季的大气被认为较干净,这个季节汞的过程被忽视。 谢周清课题组依托我国极地破冰船&ldquo 雪龙&rdquo 号,建立了船基海洋大气环境化学观测平台,开展了多年的海洋边界层走航观测。在2012年的中国第五次北极考察期间,中国雪龙号首次横穿中心北冰洋,通过船基大气汞的在线高分辨率观测并结合2010年雪龙号在北冰洋考察的数据,获取了北冰洋大气汞的时空分布特征。 2012年(a)和2010年(b)北冰洋大气汞浓度分布图 北冰洋大气汞呈现西高东低以及中心海冰区与开阔水域显著不同等空间分布特征。进一步的研究发现,这种变化与海冰融化和淡水输入有关。夏季,随海冰融化,一年或多年老冰中的汞进入水体,在太阳光和微生物作用下,溶于水中的汞被还原再次释放到大气中,导致冰区大气汞浓度高于开阔水域。另一方面,在无冰区楚科奇海大气汞浓度显著高于格陵兰方向海域和挪威海,并拌随海水盐度的下降及有色溶解有机物的上升,表明河流淡水的输入是导致北冰洋西高东低的重要因素。夏季,环北冰洋特别是楚科奇海的河流携带高浓度的汞进入北冰洋,从而增加海水中溶解态汞,与此同时,河流带入高浓度的有机溶解物增加了溶解态汞还原为零价气态汞的能力,进而释放到大气中。那么是否随着全球变暖,夏季海冰消融的加速以及环北极河流输入的增多,北冰洋向大气释放的汞将增大呢? 对比北冰洋夏季大气汞7月至9月的浓度后发现,2010和2012年均表现为夏天大气汞浓度低于秋季,大气汞的变化与一氧化碳背景浓度波动显著相关,表明夏天北冰洋上空也会发生显著的大气化学过程,释放到大气中的汞被氧化重新降落到海洋和冰面上。北冰洋太阳辐射从7月到9月呈减小的趋势,夏季大气化学过程相对较强,从而表现为夏季大气汞浓度低于秋季。这意味着融冰和河水贡献的汞由于大气化学过程的作用,更多的留在北冰洋中,从而加剧汞对北极生态系统的危害。
  • 亚洲第一的气象观测塔
    1978年,我国在北京北郊建造了第一座高为325米的专用气象塔,为亚洲第一。它是中国科学院大气物理研究所的基础科研设备之一,可为研究城市大气污染和大气边界层物理提供高质量的观测资料,为北京市乃至全国提供服务。这个铁塔设有15层观测平台,每层装有测定风、温、湿等气象要素的传感器,可以获得15个不同高度上的观测数据。测量结果用电缆传输至地面计算机进行数据处理,每层的信号可用单片机控制。在塔上还装有三分量风速仪、超声测风仪等先进仪器。气象塔现有PDP-11-37小型计算机系统和一套微机系统,实现了观测和数据处理自动化。
  • 关于召开第二十六届大气污染防治技术研讨会的通知
    第二十六届大气污染防治技术研讨会为进一步推动落实减污降碳协同增效总要求,协同控制PM2.5和臭氧污染,持续改善空气质量,助力深入打好蓝天保卫战,由我会主办的第二十六届大气污染防治技术研讨会拟定于2022年4月16日-17日在浙江省杭州市举办。现将会议有关事宜通知如下:一、组织机构主办单位:中国环境科学学会联办单位:中国环境科学研究院、生态环境部环境规划院、中国环境监测总站、生态环境部卫星环境应用中心、生态环境部华南环境科学研究所、中国科学院过程工程研究所、中国科学院合肥物质科学研究院、浙江大学、浙江工业大学、清华大学、北京大学、华南理工大学、暨南大学二、时间和地点时间:2022年4月16日-17日(15日全天报到)地点:浙江省杭州市三、会议安排(一)开幕式暨特邀主旨报告1.拟邀请国家相关部委领导介绍我国气候变化、大气污染防治有关政策与措施;2.邀请两院院士和知名专家学者,就减污降碳协同增效,PM2.5和臭氧污染协同控制,区域联防联控和重污染天气应急应对等重大环境问题作特邀主旨报告。(二)征文及研讨的主要议题 会议安排了27个学术议题,设27个分会场。分别为:(1)电力行业减污降碳技术及应用;(2)非电行业工业烟气减污降碳技术及应用;(3)CO2捕集、利用与固定(CCUS)技术;(4)大气污染与温室气体协同控制;(5)城市碳减排与大气污染防治协同控制;(6)复合污染下的碳污协同溯源及防控技术;(7)中国大气污染物与碳排放清单;(8)O3和VOCs监测溯源与执法管控;(9)挥发性有机物(VOCs)污染防治技术;(10)区域与城市臭氧污染防控;(11)颗粒物污染控制与技术;(12)区域空气质量的调控原理与技术途径;(13)城市空气质量日管理;(14)大气沉降与生态环境效应;(15)大气边界层物理与大气环境;(16)机动车尾气污染控制技术与创新;(17)空气质量监测预报预警;(18)大气环境遥感监测与评估;(19)恶臭异味监测及防治技术;(20)钢铁、焦化行业超低排放新技术及应用;(21)建材、水泥及固废焚烧烟气污染控制技术;(22)石油石化行业污染防治技术;(23)脱硫脱硝资源化新技术;(24)生活垃圾及工业危废焚烧烟气净化技术;(25)固废资源热转化过程中大气污染物的排放与控制;(26)等离子技术在大气环保领域的应用;(27)大气污染防治环境功能材料研究与应用。学术议题召集专家详见附件2。(三)墙报交流会议期间专门设置墙报交流区域,论文作者可墙报交流研究成果,墙报尺寸宽90cm×高120cm。(四)环保科技成果展会议期间将举办重点行业大气污染治理案例及大气环境监测新技术、新产品、新仪器成果展览展示活动,推进环保科技创新和成果转化。四、论文征集1.论文摘要不超过500字,全文不超过5000字,论文文件格式为word文档。具体要素包括:论文题目、作者姓名、工作单位、论文摘要、关键词、正文、主要参考文献等。2.请在论文后面标注作者的通讯地址、邮政编码和电话,以便进一步沟通。3.会前将印刷论文集作为会议资料,请提交论文人员将电子版论文全文至csesam@126.com信箱。论文截止日期:2022年3月20日。五、参会报名参会可通二维码和电子邮箱方式报名。1.关注中国环境科学学会会议管理系统小程序进行在线注册。2.第二十六届大气污染防治技术研讨会参会回执表(附件3)电子版发至邮箱:csesam@126.com 。六、会议注册1.参会代表会议服务费2000元/人,学生代表凭学生证1600元/人,企业代表2900元/人。2.缴费(1)银行汇款单位名称:中国环境科学学会开 户 行:中国光大银行北京礼士路支行账 号:7501 0188 0003 31250注:1.请发送汇款底单(扫描件)、开具发票的纳税人识别号和发票抬头到论坛专用邮箱;2.汇款注明:“26届大气会议+姓名+电话”;个人汇款需备注正确的发票抬头。(2)在线支付:请扫描中国环境科学学会会议管理系统二维码在线支付。(3)现场缴费:报到现场可刷银联卡(POS机)缴费。(4)发票①电子发票电子发票链接将发送至代表在会议系统注册的手机号和邮箱,请自行下载、打印使用。②纸质发票纸质发票将于会议结束后一个月内邮寄给参会代表。七、疫情防控要求1.参会人员报到时应出示“行程码”和“健康码”绿码,并配合体温检测;2.会议不接受疫情高、中风险等级地区人员参会;3.会议期间,所有参会人员需全程佩戴口罩,如出现发热、咳嗽等可疑症状时,须报会务组并及时就医;4.参会代表需严格遵守杭州市疫情防控要求。八、会务组联系方式1.中国环境科学学会会务组联系人:姚 凯电 话:18600404894 邮 箱:csesam@126.com附件1: 会议学术委员会主任委员:郝吉明 中国工程院院士/清华大学教授岑可法 中国工程院院士/浙江大学教授副主任委员:徐祥德 中国工程院院士/中国气象科学研究院研究员侯立安 中国工程院院士/火箭军后勤科学技术研究所研究员刘文清 中国工程院院士/中国科学院合肥物质科学研究院研究员宋君强 中国工程院院士/国防科学技术大学教授张远航 中国工程院院士/北京大学教授贺克斌 中国工程院院士/清华大学教授贺 泓 中国工程院院士/中国科学院生态环境研究中心研究员张小曳 中国工程院院士/中国气象科学研究院研究员王 桥 中国工程院院士/生态环境部卫星环境应用中心研究员陈松蹊 中国科学院院士/北京大学教授朱 彤 中国科学院院士/北京大学教授高 翔 中国工程院院士/浙江大学教授严 刚 生态环境部环境规划院研究员柴发合 中国环境科学研究院研究员委员(按姓氏以拼音为序):安太成 伯 鑫 岑超平 车慧正 陈 琪 陈建孟 陈良富 陈敏东 陈文韬 陈耀强 陈长虹 程 杰 程 平 程苗苗程水源 党小庆 邓 双 邓积光 丁 焰 董 林 段 雷段二红 段玉森 范绍佳 方双喜 方向晨 冯银厂 付 强付晴艳 高 松 郭 耘 虢清伟 韩 梅 郝郑平 何 洪何 捷 何 炽 胡 非 胡京南 黄海保 黄张根 江 霞姜克隽 蒋春来 荆国华 雷 宇 李 莉 李彩亭 李健军李俊华 李松庚 苑春刚 李卫军 李相贤 李晓东 李振国李正强 林金泰 刘 诚 刘 欢 刘 恢 刘 坚 刘 磊刘昌俊 刘红年 刘建国 刘建琨 刘立成 刘庆岭 刘树华刘志明 柳静献 陆克定 陆胜勇 栾志强 罗永明 吕小明马 良 马春元 马鹏飞 马永亮 毛洪钧 毛志伟 梅 毅苗世光 倪 红 聂 磊 宁 淼 宁 平 潘月鹏 彭 悦彭仲仁 羌 宁 秦 凯 瞿 赞 邵 敏 沈成银 沈恒根沈健林 石 川 石爱军 史国良 宋国君 宋少洁 谭钦文唐晓龙 唐幸福 陶明辉 田贺忠 汪黎东 王 灿 王 琳王 琪 王 强 王格慧 王家德 王建成 王健礼 王书肖王体健 王小明 王新春 王新明 王学军 王雪梅 王自发魏凤玉 翁小乐 吴 烨 吴学成 吴忠标 席劲瑛 向晓东肖文德 谢剑锋 谢品华 谢绍东 邢 奕 修光利 徐明厚薛文博 薛志刚 闫克平 严 密 严志军 晏乃强 燕 丽杨 林 杨林军 姚 群 要茂盛 叶代启 尹 航 袁自冰詹望成 张 凡 张登松 张钢锋 张军营张立强 张丽娟张清宇 张润铎 张少君 张士汉 张新民 张兴赢 张永生张涌新 张长斌 张自力 赵 毅 赵 瑜 赵 震 赵少华赵永椿 郑君瑜 周 振 朱 雷 朱 跃 朱爱民 朱法华朱天乐 朱廷钰 竹 涛 邹铭敏附件2:学术议题召集专家议题1:电力行业减污降碳技术及应用召集人:高 翔院 士浙江大学 朱法华教 高国电科学技术研究院议题2:非电行业工业烟气减污降碳技术及应用召集人:李俊华教 授清华大学 吴忠标教 授浙江大学 唐幸福教 授复旦大学议题3:CO2捕集、利用与固定(CCUS)技术召集人:张士汉教 授浙江工业大学 荆国华教 授华侨大学议题4:大气污染与温室气体协同控制召集人:燕 丽研究员生态环境部环境规划院 张新民研究员中国环境科学研究院议题5:城市碳减排与大气污染防治协同控制召集人:雷 宇研究员生态环境部环境规划院 姜克隽研究员国家发改委能源研究所议题6:复合污染下的碳污协同溯源及防控技术召集人:史国良教 授南开大学 李卫军研究员浙江大学 方双喜教 授浙江工业大学议题7:中国大气污染物与碳排放清单召集人:薛志刚研究员中国环境科学研究院 伯 鑫教 授北京化工大学议题8:O3和VOCs监测溯源与执法管控召集人:沈成银研究员中国科学院合肥物质科学研究院 高 松高 工上海大学议题9:挥发性有机物(VOCs)污染防治技术召集人:叶代启教 授华南理工大学 郝郑平教 授中国科学院大学 黄海保教 授中山大学 程 杰教 授中国科学院大学议题10:区域与城市臭氧污染防控召集人:郑君瑜教 授暨南大学 谢绍东教 授北京大学 谭钦文教 高成都市环境科学研究院议题11:颗粒物污染控制与技术召集人:闫克平教 授浙江大学 柳静献教 授东北大学议题12:区域空气质量的调控原理与技术途径召集人:陆克定研究员北京大学 段 雷教 授清华大学 吴学成教 授浙江大学 孙友文副 研中国科学院合肥物质科学研究院 程苗苗高 工中国环境科学研究院议题13:城市空气质量日管理召集人:宋国君教 授中国人民大学 杨 林高 工陕西省生态环境调查与评估中心议题14:大气沉降与生态环境效应召集人:刘学军教 授中国农业大学 刘 磊教 授兰州大学 沈健林研究员中国科学院亚热带农业生态研究所议题15:大气边界层物理与大气环境召集人:刘树华教 授北京大学 范绍佳教 授中山大学 苗世光研究员北京城市气象研究院 胡非研究员中国科学院大气物理研究所议题16:机动车尾气污染控制技术与创新召集人:丁 焰研究员中国环境科学研究院 毛洪钧教 授南开大学 陈耀强教 授四川大学议题17:空气质量监测预报预警召集人:李健军研究员中国环境监测总站 刘建国研究员中国科学院合肥物质科学研究院议题18:大气环境遥感监测与评估召集人:赵少华正高工生态环境部卫星环境应用中心 付 强研究员中国环境监测总站 车慧正研究员中国气象科学研究院 刘 诚教 授中国科学技术大学议题19:恶臭异味监测及防治技术召集人:陈建孟教 授浙江工业大学 席劲瑛研究员清华大学议题20:钢铁、焦化行业超低排放新技术及应用召集人:朱廷钰研究员中国科学院过程工程研究所 邢 奕教 授北京科技大学议题21:建材及固废焚烧烟气污染控制技术召集人:岑超平研究员生态环境部华南环境科学研究所 何 捷研究员中国建筑材料研究总院议题22:石油石化行业烟气污染深度控制及资源化利用技术召集人:方向晨教 高大连石油化工研究院 江 霞教 授四川大学 马 良教 授华东理工大学/四川大学议题23:脱硫脱硝资源化新技术召集人:马春元教 授山东大学 黄张根研究员中国科学院山西煤炭化学研究所 董 林教 授南京大学议题24:生活垃圾及工业危废焚烧烟气净化技术召集人:陆胜勇教 授浙江大学 严 密副教授浙江工业大学议题25:固废资源热转化过程中大气污染物的排放与控制召集人:邓 双研究员中国环境科学研究院 张 凡研究员中国环境科学研究院议题26:等离子技术在大气环保领域的应用召集人:竹 涛教 授中国矿业大学(北京) 陈 琪教 授北京交通大学议题27:大气污染防治环境功能材料研究与应用召集人:唐晓龙教 授北京科技大学 邓积光教 授北京工业大学 何 炽教 授西安交通大学附件3:第二十六届大气污染防治技术研讨会参会报名表单 位邮 编地 址手 机姓 名职 称邮 箱其他参会人员登记姓名单位手机电话提交论文题 目申请会议发言发言题目议题序号或名称发言人职务/职称汇款帐号账户名称:中国环境科学学会 开户银行:中国光大银行北京礼士路支行银行账号:750101880003312501.请发送汇款底单(扫描件)到会议专用邮箱;2.汇款请在备注栏填写会议名称+缴费者姓名+电话;3.个人汇款还必须在备注栏填写发票抬头。注:因增值税发票要求严格,以下信息请认真填写并确认。发票类型发票抬头项目会议服务费发票类型□增值税电子发票□增值税专用发票(请在所需票据前打√)纳税人识别号税务登记地址、电话开户行银行名称、银行账号备注请在发票类型填写正确信息,如无特殊情况,已开发票不予更换。会议回执表请发到 csesam@126.com 。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:“当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。”近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。1、什么是大气颗粒物激光雷达呢?大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 2、激光雷达提供什么数据呢?① 消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。② 退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。③ 颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。④ 能见度:给出垂直、水平能见度视程。⑤ 外源性污染物强度:外源传输的输送通量和局地污染的占比。3、如何从激光雷达结果上读取沙尘信息呢?我们来分析三个案例。案例分析一:L地经历的一次严重的沙尘过程(数据来源:L地站点)① 沙尘爆发前:雷达图像监测显示,9日白天污染程度较轻,近地面有一定的尘漂浮。② 沙尘爆发期:夜间22时,近地面的退偏振度突然增大,消光系数也有伴随增大的现象,L地区的粗颗粒程度明显增加,近地面的PM10由250μg/m3升至1500μg/m3,沙尘天气加剧。③ 沙尘消散:沙尘天气持续至10日夜间22时,沙团中的粗颗粒明显沉降,退偏振度和消光系数明显减弱,污染物浓度下降,特别是PM10浓度,回落到750μg/m3,经历11日的持续沉降和过境,沙尘天气的影响基本消除,PM10浓度回落到250μg/m3。 案例分析二:过境沙团和沉降沙团的过程监控(数据来源:W地站点)颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。沙尘输入过程的激光雷达监测结果(W地)① 沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。② 沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。③ 沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。④ 沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】案例分析三:沙尘传输的激光雷达组网观测基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。2016年3~5日中央气象台的沙尘落区预报如下图所示。为有效捕获此次沙尘污染传输,我司利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析,实时结果如下图所示,沙尘到达北京、郑州和武汉等地的时间、高度、强度和沙尘团轮廓的演化有很大的不同和较强的关联性。 中央气象台的沙尘落区预报激光雷达组网点位布设沙尘传输的激光雷达组网观测结果致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:  “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。  1、什么是大气颗粒物激光雷达呢?  大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 双波长三通道雷达 扫描雷达  2、激光雷达提供什么数据呢?  消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。  退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。  颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。  能见度:给出垂直、水平能见度视程。  外源性污染物强度:外源传输的输送通量和局地污染的占比。  3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。  案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点)  颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 图 沙尘输入过程的激光雷达监测结果(无锡)  沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。  沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。  沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。  详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】  案例分析二:沙尘传输的激光雷达组网观测  基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 激光雷达组网点位布设 沙尘传输的激光雷达组网观测结果  致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 中科光电高能扫描激光雷达技术亮相第21届中国大气环境科学与技术大会
    2015年12月9-11日,由中国环境科学学会大气环境分会主办,中山大学承办的第21届中国大气环境科学与技术大会在广州成功举行。会议针对大气环境化学与大气污染控制技术、大气边界层物理卫星遥感与仪器观测、大气环境管理与空气质量模拟预报预警、排放清单与大气污染物源解析等主题展开了交流与讨论。大会开幕式由中国环境科学学会大气环境分会理事长柴发合研究员主持,会议邀请了中国工程院院士王文兴、中国环境科学学会理事长王玉庆、中国气象局科技与气候变化司罗云峰等就国内外关注的环境前沿领域热点问题做学术报告。无锡中科光电技术有限公司技术有限公司亦受邀参加此次大会,并做学术演讲。会议现场公司新产品高能3D扫描大气颗粒物监测激光雷达技术引专家学者广泛关注。该系列雷达采用波长532nm线偏振激光对大气颗粒物进行遥感探测,通过3D扫描连续在线监测大气气溶胶的空间立体分布信息。垂直扫描探测,可反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征;污染物分布扫描,可实现对工业园区、居民生活区、厂区等敏感地带污染物定量评估;走航监测扫描,可对区域上空污染团的输入、过境、沉降过程以及演变过程进行监控。
  • 大气环境监测卫星成功发射 减污降碳协同增效再添利器
    4月16日2时16分,我国在太原卫星发射中心成功将大气环境监测卫星发射升空。大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的一颗科研卫星,生态环境部为该卫星牵头用户,卫星和运载火箭系统均由中国航天科技集团有限公司第八研究院抓总研制。   该卫星将在国际上实现CO2的主动激光探测和大气细颗粒物的主被动结合探测,能够对气态污染物、云和气溶胶以及水生态、自然生态等环境要素进行大范围、全天时综合监测,同时可支撑开展气象、农业农村等行业的遥感监测应用工作。   大气环境监测卫星运行于705km的太阳同步轨道,星上搭载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等5台有效载荷,整星重量约2.8吨,设计寿命8年。其中,大气探测激光雷达在国际上采用双体制激光技术探测气溶胶和CO2,通过主动方式对大气CO2柱总量进行精细化探测,获取大范围、高精度的CO2浓度变化信息和气溶胶散射系数廓线、消光系数廓线、光学厚度、边界层高度等垂直分布信息,弥补以往被动观测的不足。高精度偏振扫描仪与多角度偏振成像仪联合观测可获取云和气溶胶多个角度的偏振信息,用于反演全球大气气溶胶和云的时空分布信息,观测幅宽大于1800km,此外,还可通过与大气探测激光雷达载荷的协同观测与应用,实现近地表细颗粒物的定量探测。紫外高光谱大气成分探测仪可获取O3、NO2和SO2等气态污染物浓度信息,幅宽大于2300km,具备每天一次的全球覆盖能力。宽幅成像光谱仪可获取光谱范围从可见光至长波红外(0.415-12μm)的陆表和大气多光谱信息,观测幅宽大于2300km,空间分辨率最高可达75m。   大气环境监测卫星的成功发射,将进一步提升我国的CO2和大气污染物遥感监测能力。在应对全球气候变化方面,实现全球范围CO2的主动激光高精度、全天时探测,探测精度达到优异水平,可为CO2分布和应对气候变化提供精准的遥感数据支撑;在大气环境遥感监测方面,具备对全球细颗粒物(PM2.5)、气态污染物、云和气溶胶的定量化遥感监测以及对工业排放、生物质燃烧等大气污染源的大范围、高动态遥感监测能力,可为我国大气污染防治和空气质量预报提供数据和技术支撑;在水环境遥感监测方面,可实现内陆大型水体水华、水质、水生植被以及近海海域赤潮、溢油、水质等的定量化遥感监测;在自然生态遥感监测方面,可实现生态系统关键参数的定量化遥感反演,为全国和区域生态环境状况调查与评估等业务提供重要数据支撑。   大气环境监测卫星的成功发射,将为落实“精准治污、科学治污、依法治污”、支撑深入打好污染防治攻坚战、实现减污降碳协同增效提供重要数据支撑。“十四五”期间,生态环境部还将牵头组织研制发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升全球主要温室气体和大气污染物遥感监测能力,为支撑国家“双碳”战略、应对全球气候变化提供遥感监测数据支撑。
  • “探针”大气颗粒物激光雷达助力雾霾及沙尘天气监测
    p   针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部日前印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。 /p p style=" text-align: left " & nbsp  & nbsp & nbsp 依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说: /p p   “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。 /p p   1、什么是大气颗粒物激光雷达呢? /p p   大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 /p p    /p p style=" text-align: center " & nbsp img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/953cf944-43c8-42e1-ad34-819e5677432c.jpg" / /p p & nbsp /p p style=" text-align: center "   双波长三通道雷达 /p p    /p p & nbsp /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/b6cf185b-c349-4c2b-b908-4203dbbec112.jpg" / /p p style=" text-align: center "   扫描雷达 /p p   2、激光雷达提供什么数据呢? /p p   消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。 /p p   退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。 /p p   颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。 /p p   能见度:给出垂直、水平能见度视程。 /p p   外源性污染物强度:外源传输的输送通量和局地污染的占比。 /p p   3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。 /p p   案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点) /p p   颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 /p p    /p p & nbsp /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201703/insimg/e0b052d0-3d4c-4288-a91d-bd4c5328d8ef.jpg" / /p p style=" text-align: center "  图 沙尘输入过程的激光雷达监测结果(无锡) /p p   /p p   沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。 /p p & nbsp  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。 /p p   沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。 /p p   沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。 /p p   案例分析二:沙尘传输的激光雷达组网观测 /p p   基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 /p p    /p p & nbsp /p p & nbsp /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/e9c642df-e57a-4117-a882-b73c0172a5a3.jpg" / /p p style=" text-align: center "   激光雷达组网点位布设 /p p    /p p & nbsp /p p & nbsp /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/586db30b-7165-4155-97ba-40770f26e853.jpg" / /p p style=" text-align: center "   沙尘传输的激光雷达组网观测结果 /p
  • 大气监测气球坠落 未伤及人员
    p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201806/noimg/b3a46ef2-29ca-4307-ace9-53c43ab861da.jpg" title=" 大气监测气球.png" / /p p   有消息称,昨天上午10点半左右,奉贤公安分局星火派出所接到辖区群众报警称:在奉贤海湾镇星火农场的农田里掉下一“不明飞行物”,压在电线杆上,请民警到现场查明处置。差不多同时,奉贤公安又接到气象环保部门报警称,一只监测空气的气球缆绳断了,飘走后将要掉下来。 /p p   市环保局新闻联系人表示,这好像是某个科研项目,但具体情况还不清楚。 /p p    strong 警方接到环保部门报警 /strong /p p   据相关媒体报道,接到报警后,奉贤星火派出所民警立即赶往现场,只见掉落的物体体积巨大,足有两三层楼高。 /p p   经过初步查看,民警感觉“不明飞行物”类似热气球,但因民警从未遇到过此类事件,第一时间也不能确认该掉落的物体究竟为何物,遂与奉贤分局指挥中心联系反馈。 /p p   差不多在同一时间,奉贤公安接到气象环保部门报警称,一只监测气球的缆绳断了,飘走后将要掉下来,大概掉在金山、奉贤方向。接到出警民警反馈,结合气象环保部门的报警求助,分局指挥中心判断,该“不明飞行物”应该就是飘走的大气监测气球,遂与气象环保部门取得联系。气象环保部门已派员赶赴现场进行处置。所幸,该气球掉落未造成人员伤亡。 /p p    strong 气球或与科研项目有关 /strong /p p   就此事,记者联系到市环保局媒体联系人,他表示,气球可能与该局联合华东理工大学等高校和有关机构开展的科研项目有关,但具体情况暂时不清楚。 /p p   记者在华东理工大学网站检索到一篇新闻,发表于2017年11月30日。该新闻介绍了环保部领导前往华东理工大学奉贤校区参观指导系留气球垂直观测试验。市环保局下属市环境监测中心有关负责人介绍了系留气球垂直观测的部分结果。通过这篇新闻可知道,上海市环境监测中心联合华东理工大学长期开展系留气球垂直观测。 /p p   市环境监测中心曾经也向记者介绍过他们在奉贤放飞系留气球用于大气环境监测。 /p p   [延伸阅读] /p p   什么是系留气球 /p p   相关资料显示,系留气球是使用缆绳将其拴在地面绞车上并可控制其在大气中飘浮高度的气球。升空高度2公里以下,主要应用于大气边界层探测。 /p p   系留气球是一种依靠气囊内的浮升气体获得浮力,并用缆索拴系固定的浮空器。借助于系留缆索、气动升力和剩余浮力,可以在空中特定范围内实现定高度、长时间驻留。 /p p   为使气球有良好的稳定性,有时做成流线形,横放在空中。球内充氢或氦气。气球可携带自记仪器、无线电遥测仪器 或可通过缆绳传送信息的仪器 也可吊挂仪器在几个预定高度进行梯度观测。观测项目除温、湿、压、风等气象要素外,还用来观测臭氧以及大气污染监测。  系留气球的工作高度取决于气球体积、载荷重量和系缆重量等因素,一般从几百米至3000米。系留气球的抗风能力与球体的气动特性、布局、净浮力和体积大小有关。 /p p   与其他高低空飞行器相比,系留气球具有滞空时间长、耐候性强、部署简单灵活、造价和维护费用低廉等特点。 /p
  • 你(PM2.5)方唱罢我(O3)登场怎么破?大气臭氧探测激光雷达帮你忙
    艳阳高照,碧空如洗,明明天空湛蓝,为何多地出现污染天气?  看看下面这幅中部某市2018年空气质量日历图就明白了,进入夏季后,臭氧会成为影响优良天率的罪魁祸首。夏秋臭氧浓度屡屡超标  随着气温攀升,全国各地陆续入夏。艳阳高照,碧空如洗,也让人心生欣喜,雾霾终于远去,能够享受蓝天白云了。  其实不然,根据监测数据显示,近几日多地出现不同程度的污染,主要污染物为臭氧。显然,颗粒物和臭氧这对影响空气质量的罪魁祸首再次上演了你方唱罢我登场的戏码。2019.05.23 O3小时浓度分布图  臭氧是我国评价空气质量指数的六项指标之一,由于臭氧超标,往往会出现蓝盈盈的“假蓝天”,可以说臭氧是蓝天下的污染。  下图是华北某城市5月份空气质量情况,截至29日,O3为主要污染物的天数有22天,其中12天空气质量为轻度污染或中度污染。华北某城市5月份空气质量日历在天为佛,在地成魔  臭氧“在天为佛,在地成魔”,它本身并不是“污染”,距离地球表面10千米—50千米的臭氧层是我们的保护伞,阻挡紫外线射向地球,对地球生物起到很好的保护作用;而近地面臭氧一旦超标,则会成为无形杀手,危害人体健康。  作为二次污染物,臭氧的形成原因已经非常明确,即氮氧化物(NOx)与挥发性有机物(VOCs)在高温和强光条件下,发生光化学反应,从而形成臭氧。越是光照强、温度高,越容易出现臭氧污染,所以晴空万里并不等于空气质量就一定好。揪出“隐形杀手”  臭氧浓度的分布因时间、地域、空间等存在较大的差异,对于臭氧的探测,不仅需要及时关注地面的浓度变化,更需要探测更大范围内臭氧的空间变化情况,窥得其全貌方能对其产生和消散进行科学研究、有效防治。  大气臭氧探测激光雷达具有系统稳定性强、时间分辨率高、探测盲区低等优势,能够实时、精确地勾勒出不同高度的臭氧浓度变化特征,揪出“隐形杀手”,为臭氧污染防治提供数据信息和科技支撑,减轻臭氧伤害。大气臭氧探测激光雷达  综合分析垂直观测结果和近地面臭氧监测数据,分析臭氧形成机制,确定臭氧污染来源;  掌握臭氧污染的变化规律及时空变化特征,分析污染过程、研究污染特征;  分析臭氧时空分布信息,为开展光化学烟雾和细粒子生成机理研究提供数据基础;  获取臭氧垂直分布及边界层等大气参数信息,构建预警预报体系。经典应用案例
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 中科光电亮相山东省污染源企业自行监测技术交流暨供需对接会
    2018年4月12日,由山东省环保技术服务中心主办的《山东省污染源企业自行监测技术交流暨供需对接会》在济南隆重召开。经过一系列资格审查、技术水平和技术能力评估,组织专家筛选了25家单位作为技术供方,无锡中科光电作为优秀供方单位受邀参与了此次盛会。对接会上,山东省环境监测中心潘光副站长就环境监测政策及技术做专题讲座,山东省环境信息与监控中心污染源监控室主任石敬华就企业自行监测及信息公开有关政策做专题讲座。会议现场,中科光电与170余家有需求的企事业单位进行现场交流研讨,和与会人员探讨了公司新产品——大气颗粒物监测激光雷达(双镜微脉冲雷达)和大气环境遥感监察执法车的技术与服务,使得公司先进、实用的环境监测技术和监测服务技术得到有效推广。不少单位对中科光电的双镜微脉冲雷达技术和大气环境遥感监察执法车的服务模式很感兴趣,现场达成初步合作意向。随着在线自行监测技术及相关政策的推行,环境监测的技术和服务受到越来越多的关注。未来,中科光电会以更完善的监测系统、更精准的监测数据、更高效的工程售后,为环保部门提供更科学的综合服务。雷达小卡片大气颗粒物激光雷达(双镜微脉冲激光雷达) 大气颗粒物激光雷达(双镜筒微脉冲系列)激光器发射532nm脉冲激光进入大气后,与大气中的颗粒物相互作用,获取颗粒物在大气中的时空分布。系统集成GPS/北斗导航系统,可实现定点定向探测、定点扫描探测、走航垂直探测 、走航扫描探测,并自动保存探测区域的同步影像资料。数据产品包括大气颗粒物消光系数、退偏振比、颗粒物质量浓度、边界层高度、云底高和能见度等,综合数据分析平台可实现污染过程分析、污染快速溯源、动态评估区域污染分布。 大气环境遥感监察执法车大气环境遥感监察执法车搭载扫描激光雷达、空气质量六参数(国标法)、云台相机、打印机、定位仪等,结合三维高精度电子地图,快速精准定位定量污染源,同时现场抓拍取证,实现测管联动,同时现场抓拍取证,实现测管联动,精准打击无组织排放,多次为国家重大活动赛事提供空气质量保障服务。
  • 关于召开第二十二届大气污染防治技术研讨会征文与参会报名的通知
    p   各有关单位: /p p   近年来,各地区、各部门按照党中央、国务院部署,加大大气污染防治工作力度,大气污染防治工作取得了显著成效。但总体污染还很重,空气质量还不理想,离老百姓的期待和要求有比较大的差距,大气环境问题依然是社会各界高度关注和亟待解决的环境问题。为进一步改善我国环境空气质量,打赢蓝天保卫战,发挥科学技术在大气污染防治中的支撑作用,提高我国大气污染治理行业的整体技术水平和创新能力,推广先进适用的大气污染防治技术和装备,“第二十二届大气污染防治技术研讨会”定于2018年4月19日至20日在山西省太原市召开。现将会议有关事宜通知如下: /p p   一、组织机构 /p p   主办单位:中国环境科学学会 /p p   联办单位:中国环境科学研究院、清华大学、北京大学、浙江大学、华南理工大学、华北电力大学、北京科技大学、中国科学院生态研究中心、中国科学院过程工程研究所、中国科学院山西煤炭化学研究所、山西大学、太原理工大学、中北大学 /p p   支持单位:国电科学技术研究院、西安热工研究院有限公司、西南电力设计院、国家环境保护工业资源循环利用工程技术中心、国家环境保护电力工业烟尘治理工程技术中心 /p p   协办单位:晋能电力集团有限公司、西山煤电发电公司、太原锅炉集团有限公司、山西晋浙环保科技有限公司 /p p   二、征文及研讨的主要议题 /p p   1、电力行业污染排放控制及运行 /p p   召集人:刘建民 国电科学技术研究院 /p p   史晓文 晋能电力集团有限公司 /p p   (1)颗粒物污染控制 /p p   召集人:闫克平 浙江大学 /p p   姚 强 清华大学 /p p   张 超 西安热工研究院有限公司 /p p   (2)氮氧化物污染控制 /p p   召集人:朱 跃 华电电力科学研究院 /p p   宋玉宝 西安热工院苏州分院 /p p   赵 喆 北京国电龙源环保工程有限公司 /p p   (3)硫化物污染控制 /p p   召集人:高 翔 浙江大学 /p p   王小明 国电科学技术研究院 /p p   (4)重金属污染控制 /p p   召集人:王书肖 清华大学 /p p   张永生 华北电力大学 /p p   (5)废水污染控制及资源化 /p p   召集人:赵 毅 华北电力大学 /p p   王仕龙神华国能集团公司秦皇岛分公司 /p p   (6)固废污染控制及资源化 /p p   召集人:程芳琴 山西大学 /p p   李会泉 中国科学院过程工程研究所 /p p   2、非电行业工业污染排放控制及运行 /p p   召集人:陈运法 中国科学院过程工程研究所 /p p   李俊华 清华大学 /p p   (1)工业锅炉污染控制 /p p   召集人:吴忠标 浙江大学 /p p   罗 莹 中北大学 /p p   (2)冶金焦化行业污染控制 /p p   召集人:朱廷钰 中国科学院过程工程研究所 /p p   黄张根 中国科学院山西煤炭化学研究所 /p p   苗茂谦 太原理工大学 /p p   邢 奕 北京科技大学 /p p   (3)水泥/玻璃/陶瓷等建材行业污染控制 /p p   召集人:岑超平 环境保护部华南环境科学研究所 /p p   马永亮 清华大学 /p p   朱天乐 北京航空航天大学 /p p   3、机动车尾气污染控制 /p p   召集人:贺 泓 中国科学院生态研究中心 /p p   毛洪钧 南开大学 /p p   陈耀强 四川大学 /p p   丁 焰 中国环境科学研究院 /p p   吴 烨 清华大学 /p p   张清宇 浙江大学 /p p   4、挥发性有机物及恶臭污染控制 /p p   召集人:叶代启 华南理工大学 /p p   郝郑平 中国科学院生态研究中心 /p p   谢绍东 北京大学 /p p   5、大气污染与大气边界层 /p p   召集人:刘树华 北京大学 /p p   范绍佳 中山大学 /p p   6、大气雾霾成因与防控 /p p   召集人:贺克斌 清华大学 /p p   陈长虹 上海市环境科学研究院 /p p   程水源 北京工业大学 /p p   7、区域环境空气质量管理 /p p   召集人:柴发合 中国环境科学研究院 /p p   王体健 南京大学 /p p   8、空气质量监测预报预警 /p p   召集人:付 强 中国环境科学学会环境监测专业委员会 /p p   王自发 中国科学院大气物理研究所 /p p   9、空气污染与健康 /p p   召集人:施小明 中国疾病预防控制中心环境与健康所 /p p   张金良 中国环境科学研究院 /p p   三、特邀报告 /p p   1.拟邀请环保部相关领导介绍我国大气污染防治的有关政策与措施 /p p   2.拟邀请两院院士和国内外知名专家学者,就清洁煤技术、大气污染防治技术、工程应用、典型案例、运营管理等内容做主旨报告。 /p p   四、环保科技成果转化专场 /p p   对高等院校、科研院所、国家环境保护工程技术中心、高薪技术企业等大气污染治理、监测等技术持有单位,宣传推介创新科技成果、分享典型工程案例和开展项目对接浅谈。 /p p   五、石化、有机化工、涂装、包装印刷等重点行业VOCs污染控制高级研修班 /p p   会议期间将安排石化、有机化工、涂装、包装印刷等重点行业VOCs污染控制高级研修班,邀请知名专家学者就该领域技术理论、技术发展趋势作报告。让参会者系统了解VOCs污染控制的基础知识以及技术前沿。 /p p   高级研修班设置人数50人,报满截止。所有成绩合格学员由中国环境科学学会颁发《环境保护专业技术培训证书》,在中国环境科学学会网站www.chinacses.org 开设查询服务。报名学员报到时请提交近期蓝底免冠彩色标准证件照1寸2张,身份证(正反面)复印件A4纸1张,学历证书或初级以上职称证书复印件A4纸1张。 /p p   六、环保科技创新成果展 /p p   会议期间将举办大气环境监测及治理新技术、新产品与新仪器成果展示活动,推广优秀环保技术和成功经验。 /p p   七、会议注册 /p p   会议服务费:科研、教职人员1800元/人,学生持有效证件1200元/人 企业代表2800元/人。住宿统一安排,费用自理。 /p p   八、汇款信息 /p p   收款单位:中国环境科学学会 /p p   开户银行:中国光大银行北京礼士路支行 /p p   帐 号:75010188000331250 /p p   汇款注明:“大气会议+姓名+联系电话” /p p   (汇款后请将汇款凭证扫描或截图通过邮件发送至组委会) /p p   九、征文要求 /p p   1.论文摘要不超过500字,全文不超过5000字,论文文件格式为word文档。具体要素包括:论文题目、作者姓名、工作单位、论文摘要、关键词、正文、主要参考文献等。 /p p   2.请在论文后面标注作者的通讯地址、邮政编码和电话,以便进一步沟通。 /p p   3.会前将印刷论文集作为会议资料,请提交论文人员将电子版论文全文至desox@163.com信箱。论文截止日期:2018年3月31日,组委会将组织专家委员认真评审。 /p p   十、会务组联系方式 /p p   1.中国环境科学学会:饶阳 张中华 王国清 姚凯 刘红光 /p p   电 话:010-68668291/68658927/62259894 /p p   2.清华大学 /p p   联系人:曹百灵010-62794833陈建军18211161186 /p p   3.浙江大学 /p p   联系人:郑成航0571-87953129邓官垒15906608739 /p p   4.华南理工大学 /p p   联系人:陈伟楗 020-39380599 /p p   5.山西大学 /p p   联系人:薛占金13073553545 /p p   6.太原理工大学 /p p   联系人:王建成 13834629730秦志峰18734865545 /p p   7.中北大学 /p p   联系人:张珺电话:15234096753 /p p   8.中国科学院山西煤炭化学研究所 /p p   联系人:韩小金 0351-4048310 /p p   会议投稿报名邮箱:desox@163.com,也可通过大会官方网站在线投稿、报名:http://www.chinacses.top/meetings/ /p p   附件:1. 会议学术委员会 /p p   2. 会议组织委员会 /p p   3. 参会报名表 /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/18be8c85-995b-4d43-a00e-e3804639df73.doc" 第二十二届大气污染防治技术研讨会通知.doc /a /p p style=" text-align: right "   中国环境科学学会 /p p style=" text-align: right "   2018年2月5日 /p p /p
  • 涡动相关观测与数据处理基础知识系列之一:通量塔的选址与建塔的基本原则
    近年来,采用涡动相关(eddy-covariance,EC)方法测量温室气体通量的站点数量在迅速增加,但是要在科学目的、工程标准、安装运行成本和实用性之间做出平衡,寻找到最佳的解决方法,仍是一个具有挑战的工作。从观测结果准确性和精确度来说,选址、建塔等站点设计的环节是重中之重。1、位置选择站点选址的基本原则是,该站点能够尽量观测到全部的研究对象,这涉及到两个问题,一个是方向,一个是架设高度。首先是确定观测区域近几年的主风向,可以参考近几年的气象数据。由于中国大部分地区是季风气候,一般在春夏和秋冬会有两个主风向,这时候要考虑通量仪器的架设方向,实验观测的主要周期等。如果仪器架设方向可以随主风向的改变方便调整,或者实验周期是明确区分了春夏或者秋冬,那么在选址时可以选在观测对象的下风向,这样可以尽可能多的观测到目标对象;如果不能改变通量仪器的架设方向,且是长期定位观测,那尽量将观测地点选址在观测对象的中央位置,或者沿主风向的中点位置,这样可以尽可能的在不改变仪器方向和位置的前提下,观测到尽可能多的研究对象。确定架设高度要满足通量仪器的基本观测条件, 即满足湍流运动的充分交换。一般的架设高度是下垫面冠层高度的1.5到2倍(具体确定观测高度的经验法则见图 1);在相对平坦和均匀的下垫面条件下,观测距离大约是观测有效高度的100倍(风浪区原理),具体范围需要根据footprint源区计算,随着湍流运动强度和下垫面情况会有所改变。图 1 确定观测高度的经验法则通量源区代表性分析(Footprint分析)是检验一个通量站质量的重要手段,可以用来进行实验方案的设计指导,观测数据的质量控制,以及通过特定传感器的源区分布和来自感兴趣下垫面(植被)的通量贡献,从而对观测结果进行分析解释。图 2 Footprint分析2、下垫面的影响2.1植被类型涡动相关法测量温室气体通量要求仪器安装在常通量层内,而常通量层假设要求稳态大气、下垫面与仪器之间没有任何源或者汇、足够长的风浪区和水平均匀的下垫面等基本条件。在涡动相关传感器能监测到的“源区域”内植被类型均匀一致的情况下,其观测到的通量结果是比较有意义的,可以用来解释生态系统的温室气体收支情况。但当涡动相关传感器的“源区域”覆盖到不同植被类型时,情况就会变得复杂起来。一个极端的例子是:某站点周围具有两种不同的森林植被类型,每天周期性地,白天,风从一种植被类型吹向另一种;夜间,则正好相反。那么,该站点观测得到的通量资料的日平均值将毫无意义。这种极端的情况虽然极少出现,但许多站点都会有微妙的风向变化,在数据分析时需要做仔细考虑。此外,光、土壤湿度、土壤结构、叶面积以及物种种类组成的空间异质性会导致温室气体源/汇强度的水平梯度。而其植被类型的变化也会造成表面粗糙度的变化,当风通过不同粗糙度或者不同源/汇强度表面的区域时,就会产生非常明显的平流效应(Raupach & Finnigan, 1997 Baldocchi et al., 2000)。图 3 不同下垫面的地表粗糙度(参考 于贵瑞&孙晓敏,2006)地表植被类型的突然变化会导致气流的变化,如气流在从高大森林向低矮草地移动时,会在森林边缘形成回流区(如图 4所示),导致近地面和上方气流方向不一致,其水平长度尺度(距离)等于冠层高度的2-5倍(Detto et al., 2008)。图 4森林边缘附近湍流结构的概念模型(参考Detto et al., 2008)2.2冠层高度通量足迹Footprint描述了EC系统能够观测到的“源区域”,提供了每个表面元素对测量的垂直通量的相对贡献。Footprint取决于观测高度、表面粗糙度和大气稳定度等。如图 5所示,通常来说,传感器的观测高度越高,就越能观测到更远、更广的区域(Horst & Weil, 1994),也便于捕捉植物冠层上方混合良好的边界层中的通量交换。但是观测高度也不是越高越好,在大气层结稳定的条件下(如夜间),过高的观测高度可能会使观测到的“源区域”超出感兴趣的研究区域。因此应该预先计算并确保来自感兴趣区域的通量贡献至少为90%(Gö ckede et al., 2004),在稳定条件下至少50%的时间以确保适当的数据覆盖不同的风向和不同的天气条件。图 5观测高度与通量足迹基于Munger(2012)等确定塔/测量高度(hm)的原则(如图 1),可能存在准确测量实际观测高度和冠层高度的困难,需要考虑后期调整高度的可能性。观测高度必须用三维超声风速计测量路径的中心来确定,其值取决于感兴趣的生态系统的冠层高度(hc),冠层高度值不需要特别准确:采用主要冠层的平均预期高度是合理的。对于冠层高度在生长季节中快速变化的农田、草地和种植园以及同样具有快速变化特性的冰雪下垫面,塔架设计必须考虑允许通过改变塔架高度(例如伸缩式塔架设计)或通过移动传感器来改变测量高度。随着时间的推移为了确保相同的通量观测源区,可以考虑改变测量高度,遵循的原则是测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值的±10%左右。但这种调整的频率不用特别频繁,最多在植被生长期或在积雪季节每隔一周进行。假设在植被生长期开始时的裸土,其测量高度为2 m,在冠层高度达到1.2 米前,不需要改变测量高度;在植被达到1.2米后(例如增加约0.5-0.8米)开始提高测量高度,然后保持测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值。改变表面高度(由于生长和积雪)以及改变测量高度必须准确记录,因为这必须在后期数据处理中考虑。2.3地形影响EC法测量通量假设了地形水平,这样可以保证地形的坐标系和传感器坐标系方向一致,避免平流、泄流效应的影响。图 6复杂地形对EC观测的影响在复杂的地形条件下,风吹过小山时会引起气流的辐合或辐散运动,产生平流效应(Kaimail & Finnigan, 1994)。存在有局地风场影响的站点,在夜间大气稳定,垂直湍流输送和大气混合作用较弱,CO2的水平和垂直平流效应的影响是很重要的(于贵瑞&孙晓敏,2006)。Mordukhovish & Tsvang(1966)的研究表明,斜坡地形能导致水平异质和通量的辐散。对于设在地势较高的观测塔,在夜间对流比较弱时,通常会因CO2沿斜坡泄流而造成大气传输的通量低估,最后导致生态系统净生产力的估算偏高;对于在地势较低沟谷中的观测塔,其问题更加复杂,如果外部的大气平流/泄流通过观测界面进入生态系统,会高估光合作用吸收CO2的能力;如果外部的大气平流/泄流不能通过观测界面,而是从观测界面下部直接进入生态系统,则会在生态系统中暂时储存,最终输出生态系统,造成对呼吸作用的高估。在大多数情况下,实际地形难以满足地形水平的假设,这就需要进行坐标旋转,以消除平流项的影响。当安装铁塔的斜坡坡度特别大时,可以考虑将原本应水平安装的超声风速计调整为与地面平行。3、塔及塔附属设施的影响3.1塔体本身塔本身对观测的影响可分为塔本身对风场的影响,以及塔的偏转、震荡对测量过程的影响两种。3.1.1 对风场的影响自然气流无论是经过几十米的观测塔,还是遇到几毫米的仪器翼梁或电缆,各种尺度的障碍物都会使流线发散,从而导致用于计算通量的流线分离,称为流体失真,流动失真以难以看见的方式影响测量,其影响只能在塔的设计建造阶段进行最小化。在塔的迎风侧(上游),风速受到影响会有所降低。受流动失真影响的逆风距离与障碍物大小的立方成比例,并随着距离的立方体而减小(Wyngaard, 1981, 1988)。在塔的背风侧(下游),风速也减弱,这种效果随着风速的增加而减小(湍流的更快速重构)并且受到障碍物的长度和宽度的影响。图 7 展示了在高塔的迎风侧观察到的风向上的偏转与加速, 图 8则展示了高塔顶部和底部方向迥异的风向。这是由于在背风侧下方产生的回流区造成的,障碍物(塔)尺寸越大,回流区就越容易发展得更大。在塔基通量观测中,森林生态系统的观测常需要10m以上的高塔作为基础,容易导致回流区的产生,回流也增加了向上流动的倾向,并加强了烟囱效应,这可能会显著影响风的测量和干扰混合比梯度。图 7 在塔的迎风侧观察到风向上偏转和加速(引自Sanuki and Tsuda, 1957)图 8 塔顶部的西风流(离地面10米)和离地面2米处的东风回流(引自Vaucher et al., 2004)在建造塔时,尽量选择塔身纤细、结构较少的铁塔,避免对风场的影响,也要注意控制林窗的大小,避免人为形成回流区域。此外,应该尽量减少树木和树枝的移除,因为它们对风的阻力作用可以减少这些回流区域的形成。选择纤细塔体的同时也要保证塔体足够坚固,以确保安全的维护通道和应对整个观测周期中的极端环境。当塔架底座和结构由于受到外界辐射而加热引起对流循环时,可以观察到烟囱效应。这增强了气流的垂直偏转,从而使更多的空气向上移动。烟囱效应取决于基础和塔的质量和热容量、塔的形状、对树冠的干扰程度(清理/切割塔构造的树木)和站点的净辐射量等。烟囱效应是不可避免的,应尽量减少混凝土基础和塔架结构,塔的的横截面也尽量不超过2 x 3 m (Munger et al., 2012)。塔体结构对经过气流的扭曲变形和烟囱效应应该通过专业的方式或通过建模方法(Griessbaum & Schmidt,2009)进行调查(Serafimovich et al., 2011)。3.1.2 对测量过程的影响塔体本身随风速的运动会导致测量中的系统不确定性;塔的移动应限制在0.02 m s-1(即测量风速的精度),并且不应具有在1到20 Hz之间与风向共同变化的力矩(谐波效应);快速响应加速度设备可用于量化塔运动,逐点校正还需要快速响应测斜仪测量以确定旋转速率以及加速度;由于在塔上工作的人员而导致的塔架运动不会随着风或标量交换而变化,但可能会扰乱风场。3.2塔上横臂在1976年的国际湍流对比实验中,一些报告显示直径0.05 m的水平支撑结构造成的平均上升风速为0.1 m/s (Dyer, 1981),它大到足以使涡动相关测量无效。因此,风速计安装臂的尺寸也要尽量小,只需要提供一个安全稳定的测量平台就可以了。王国华等利用成熟的计算流体软件,对布置多个支撑观测仪器的支架所导致的大气边界层风场失真进行定量仿真。他们发现,当支架间距小于6倍的支架直径D或来流风向角小于30°时支架附近流场受到明显的相互干扰。通过对不同来流风向及支架间距离模拟结果的对比分析,认为使用多支架进行多点联合观测时,支架应沿垂直于观测地点常年来流主风向的展向布置。为避免不同支架相互干扰,支架间的最小距离L应大于9倍的支架截面直径。此外,横臂本身需要足够稳定以支撑仪表,可以通过增加侧臂和拉索的方式,以避免横臂的扭矩和振荡。3.3塔下建筑物3.1.1一节讨论了塔体本身对风速和风向造成扭曲从而影响风场的作用,塔下其他障碍物(如设备房间、供电小屋等)也存在这种作用,如图 9 所示。图 9 从障碍物侧面看的迎风流畸变和背风侧流畸变的概念图(引自Davies and Miller, 1982)回流效应在高大的森林冠层中最为明显,但较矮的草地和作物冠层也必须考虑,特别是在附近存放其他设备的房屋的情况下。因此,应尽可能地减少这种流动变形源,在不可减少的情况下,障碍物应远离观测塔,避免对风场的影响。参考文献1. Raupach M R , Finnigan J J . The influence of topography on meteorological variables and surface-atmosphere interactions[J]. Journal of Hydrology, 1997, 190(3-4):182-213.2. Baldocchi D , Falge E , Wilson K . A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. 2000.3. 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 高等教育出版社, 2006.4. Detto M, Katul G G, Siqueira M, et al. The structure of turbulence near a tall forest edge: The backward‐facing step flow analogy revisited[J]. Ecological Applications, 2008, 18(6): 1420-1435.5. Horst T W, Weil J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.6. Gö ckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.7. Munger J W, Loescher H W, Luo H. Measurement, tower, and site design considerations[M]//Eddy Covariance. Springer, Dordrecht, 2012: 21-58.8. Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement[M]. Oxford university press, 1994.9. Mordukhovich M I, Tsvang L R. Direct measurement of turbulent flows at two heights in the atmospheric ground layer(Atmospheric turbulence statistical characteristics dependence on stratification and elevation from heat flux and wind friction stress characteristics)[J]. ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS, 1966, 2: 477-486.10. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements[J]. Journal of Applied Meteorology and Climatology, 1981, 20(7): 784-794.11. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars[J]. Journal of Atmospheric Sciences, 1988, 45(22): 3400-3412.12. Sanukii M, Tsuda N. What are we measuring on the top of a tower?[J]. Papers in Meteorology and Geophysics, 1957, 8(1): 98-101.13. Vaucher G T, Cionco R, Bustillos M, et al. 7.3 FORECASTING STABILITY TRANSITIONS AND AIR FLOW AROUND AN URBAN BUILDING–PHASE I[J]. 2004.14. Griessbaum F, Schmidt A. Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 2009, 135(643): 1603-1613.15. Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2011, 140(3): 429-451.16. Dyer A J . Flow distortion by supporting structures[J]. 1981, 20(2):243-251.17. 王国华, 贾淑明, 郑晓静. 观测支架引起的大气边界层风场的失真规律[J]. 兰州大学学报: 自然科学版, 2012, 48(5):71-78.Davies M E, Miller B L. Wind effects on offshore platforms-a summary of wind tunnel studies[R]. National Maritime Inst., Feltham (UK), 1982.为了保障各位老师同学从仪器维护的工作中解放出来,做数据的使用者,把更多的时间和精力用在数据深度分析和科学价值发掘方面,我们特提供以下技术服务:站点长期正式运维基于站点管理、工作流程/规范、设备安全、系统优化、设备/数据预警、站点/设备监控、数据分析、科研成果凝练和挖掘等多方面综合执行。站点短期巡检发现目前设备安装、使用、维护、运行状态等影响数据质量的问题。数据远程综汇系统升级建立系统平台,对站点运行状态和数据质量进行预警、监控等。数据整理分析和深度挖掘通过数据整理、插补和分析,形成数据质量分析报告;同时深入挖掘数据背后的科学信息,可以多方面地支撑文章写作、项目申请、专利以及软件著作权申请等工作。通量观测技术培训(涡动相关系统、闪烁仪系统等)根据用户的实际需求,可以有针对性地培训涡动通量观测和设备运行的基本原理,数据处理的基本流程,通量数据处理软件介绍及实际操作演示,通量、气象设备日常维护以及仪器标定,站点选址等相关内容。提供远程视频和上门现场培训等多种方案。
  • 地基激光雷达助力大气环境污染监测
    p   距离2017年9月14日,大气重污染成因与治理攻关项目启动不到半年,环境保护部近日召开了大气重污染成因与治理攻关成果研讨与交流会。会上,项目5个专题负责人和北京、天津、德州、邢台等“2+26”城市跟踪研究工作组负责人汇报了大气重污染成因与治理攻关阶段性进展。 /p p   通过调查摸排,项目组获得了更加精准的污染源排放清单,分析结果表明,“2+26”城市在不到全国3%的国土面积上,排放了全国10%以上的二氧化硫和挥发性有机物、15%以上的氮氧化物和一次颗粒物。 /p p   行政管理与技术研发深度融合 /p p   解决科研 “小散慢”问题 /p p   党的十九大将污染防治作为全面建成小康社会三大攻坚战之一,提出“坚持全民共治、源头防治,持续实施大气污染防治行动,打赢蓝天保卫战”。打好污染防治攻坚战,重中之重是打赢蓝天保卫战,明显增强人民的蓝天幸福感。 /p p   按照“1+X”模式,以中国环境科学研究院为主要依托单位,成立了近1500名优秀科学家和一线科技工作者组成的国家大气污染防治攻关联合中心,形成一支行政管理与技术研发深度融合的攻关队伍,负责攻关项目的组织管理和实施。这种按照“虚拟机构、实体操作”的模式运行,是一次科研体制机制的重大创新,着力解决了科研团队和项目“小散慢”的问题。 /p p   成绩的取得立竿见影。经过各方努力和攻关项目的助推,2017年,“2+26”城市细颗粒物(PM2.5)平均浓度同比下降11.7%,重污染天数下降28.8% 北京市PM2.5平均浓度同比下降20.5%,重污染天数下降43.6%,圆满实现了“大气十条”的目标。同时,也为正在制订的三年行动计划作战方案提供有力科技支撑。群众在空气质量改善中的获得感、幸福感显著增强。 /p p   500多名科研人员深入城市基层一线 /p p   解决科研与需求脱节问题 /p p   攻关项目成立了由国家和地方科研人员共同组成的28个跟踪研究工作组,对“2+26”城市进行长期驻点研究和技术指导。500多名科研人员深入城市基层一线,与地方政府及有关部门加强互动,形成了边研究、边产出、边应用、边反馈、边完善的“沿途下蛋”的科研工作模式,建立了“科学研究—措施建议—效果评估—科学研究”的闭环研究机制,着力解决科研与实际脱节、科研成果不落地的问题,同时帮助地方培养人才,促进地方技术力量的“自我造血”,全面支持一些地方政府突破大气污染防治工作“有想法、没办法”的技术瓶颈。 /p p   通过调查摸排,项目组获得了更加精准的污染源排放清单,分析结果表明,“2+26”城市在不到全国3%的国土面积上,排放了全国10%以上的二氧化硫和挥发性有机物、15%以上的氮氧化物和一次颗粒物。初步探明秋冬季大气重污染的来源。燃煤、工业生产、机动车等是京津冀及周边地区秋冬季PM2.5重污染的主要来源。 /p p   在更精准的污染源排放清单的基础上,攻关项目在宏观和中观层面上形成了重污染成因的科学共识,从宏观层面看,排放强度大是京津冀及周边地区秋冬季大气重污染的主因,气象条件不利是诱因。从中观层面看,PM2.5爆发式增长的成因可概括为本地积累、区域传输和二次转化等3种类型。针对“2+26”城市污染物排放强度高出全国平均水平3~5倍的现状,攻关项目提出了精确有效的重点行业治理方案,提出了冶金行业“一市一策”和钢铁企业“一厂一策”治理方案。 /p p   初步建成攻关数据管理和共享平台 /p p   破解科研资源与数据共享难题 /p p   大气重污染成因与治理攻关作为总理基金项目,服务于国家重大战略需求,不是单纯的科研工作,是科学研究与管理决策紧密结合、科学研究与治理行动协同促进的重大科技工程,更是一项重大民生工程,是重要的政治任务。 /p p   为了顺利完成这项重要的政治任务,项目组整合环保、气象、高校、中科院等方面科研资源,初步建成目前我国最大规模的多要素、天地空大气环境综合立体观测网,包括252个空气质量常规监测站、38个颗粒物组分站、4个超级观测站、5台走航观测车、28台地基激光雷达站以及观测卫星等,形成了重污染天气预测预报、全过程监测和成因快速分析的基础能力。建立统一的颗粒物来源解析技术方法,在“2+26”城市设置了109个颗粒物组分采样点,已采集12000多个样品。初步建成攻关数据管理和共享平台,制定数据管理办法和相关技术规定,实现环保、气象、科研各类数据共享约2600万条,破解长期以来科研资源分散和数据共享难题。 /p p   在科研资源和数据共享平台的支持下,攻关项目建成了重污染天气应对技术体系。构建了污染预测预报、会商分析、预警应急、跟踪评估和专家解读等全流程的应对技术体系,预测预报更加精细,应对措施更加精准,科学解读更加及时有效。 /p p   会议要求,全体攻关人员要切实提高政治站位,牢固树立“四个意识”,坚决扛起打赢蓝天保卫战的政治责任,在总结攻关前期工作的基础上,进一步深入、细致、扎实推进攻关各项任务,为“2+26”城市科学制定“一市一策”的三年作战计划提供强有力的科技支撑。 /p
  • 涡动相关(EC)法是NH3/N2O通量原位无扰动高频观测的最优方法
    1. 箱法(Chamber Method) 含义:箱法是一种通过将气体样品收集在密闭或半密闭的空间(称为“箱体”或“室”)中,测量气体浓度随时间的变化来计算气体通量的方法。通常分为静态箱法和动态箱法两种。 静态箱法:箱体固定在地面或其他表面上,封闭一定体积的空气,然后测量气体浓度随时间的变化。动态箱法:通过空气循环系统不断更新箱体内的气体,从而测量气体浓度变化。 优势:简单易用:设备简单,操作容易,适用于各种场地。高灵敏度:能够检测低浓度气体,尤其适合痕量气体的测量。局部测量:适合小范围、高精度的局部通量测量,如土壤、植物或水体的气体交换。 劣势:代表性差:由于测量范围有限,结果可能无法代表大尺度区域的整体通量。扰动效应:箱体可能改变气体交换的自然状态,影响测量结果。间歇性测量:通常为短时间测量,不适合长期连续监测。 应用:土壤呼吸、植被蒸腾、湿地甲烷排放、小水体气体通量等研究。 2. 梯度法(AGM - Automated Gradient Method) 含义:梯度法通过测量不同高度或位置处的气体浓度梯度,结合风速等气象参数,计算气体通量。AGM系统自动化程度高,可以持续、实时地采集气体浓度梯度数据。 优势:连续监测:适合长时间、持续监测气体通量。适用多种环境:适用于平坦地形、大气边界层等多种场景的气体通量测量。自动化操作:数据采集和处理自动化程度高,减少了人为误差。 劣势:数据复杂性:梯度法计算通量涉及气象参数的综合分析,数据处理复杂。环境依赖性强:对风速、稳定性、地形等环境因素敏感,可能影响测量精度。 应用:大气污染扩散研究、温室气体通量监测、边界层气体交换研究。3. 涡度协方差法(EC - Eddy Covariance Method) 含义:涡度协方差法是一种直接测量大气和地表之间气体通量的方法。通过高频测量垂直风速和气体浓度的协方差,计算气体通量。该方法被广泛用于生态系统、气候变化和大气研究中。 优势:原位、无扰动测量:在自然环境中测量气体通量,不干扰生态系统。大尺度应用:适合大尺度生态系统,如森林、湿地、农田等的气体通量监测。长期连续监测:能够进行长时间的连续监测,捕捉季节性或年际变化。 劣势:设备昂贵:仪器设备成本高,维护复杂。数据处理复杂:需要高频数据采集和复杂的数据处理技术。地形限制:在复杂地形或不均匀表面上,测量结果可能不准确。 应用:生态系统碳通量监测、温室气体排放研究、气候变化影响评估。 对比总结箱法适用于局部小范围的精确测量,但存在扰动效应和代表性不足的问题,主要用于土壤和植被等小尺度研究。梯度法适合大气边界层等较大范围的气体通量测量,尤其在自动化和连续监测方面具有优势,但数据处理复杂且依赖于环境条件。涡度协方差法则是研究大尺度生态系统气体交换的标准方法,尽管设备和数据处理成本高,但其无扰动、连续的测量特性使其在长期生态系统研究中不可替代。
  • 无人机监测系统填补技术盲区 助力大气监测精准度升级
    p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。这一监测系统填补了大气环境监测和研究盲区,提升了监测的精准程度,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   填补大气环境监测和研究盲区 /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入研究提供基础数据。 /p p   精准化大气研究工具 /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p   从无到有的科研“创业” /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p
  • 符淙斌院士:防治大气污染须加强基础研究
    符淙斌   “目前,频繁出现的雾霾天气是污染物排放强、大气扩散条件差和跨区域输送等因素综合作用的结果,充分说明了空气污染与天气、气候之间复杂的相互作用和影响,解决相关问题亟须加强基础性科学研究。”近日,中科院院士、南京大学气候与全球变化研究院院长符淙斌在上海市院士中心第60期院士沙龙上阐述了上述观点。   符淙斌指出,人为排放是造成大气污染的“元凶”。同时,天气、气候,即大气的动力条件和热力结构对污染物的空间分布和时间演变起着十分重要的作用。因此,空气污染的预报和极端污染事件的预警、预测必须充分考虑大气条件。   污染物排放出来后,要在大气里输送扩散,同时这些污染物还会发生多相化学反应,然后通过干湿清除返回到地面或水体。在这些影响空气污染的关键过程中,天气、气候变化均可以产生重要影响。   “同样一个地方,今天可以是万里晴空,第二天就可能是漫天雾霾。”符淙斌举例说,在大气污染的时间变化方面,天气过程确实起着非常重要的作用,而天气的变化在长时间尺度上又与东亚季风气候密切相关。从全球来看,东亚地区污染物浓度最大,同时也是季风变化最为剧烈的地区。已有研究表明,我国东部夏季风的强度与PM2.5的指数存在着明显的关系:夏季风弱的时候,PM2.5的浓度高 夏季风强时则反之,强弱年份浓度差异可达20%。   “污染物气溶胶是不是可以影响气候变化,气候变化又是否会影响大气污染?”符淙斌说,“我们发现这两者不是简单的谁影响谁,而是存在着一个非常复杂、相互反馈、相互作用的关系。”   大气条件不仅仅会影响污染物的输送或沉降。实际上,污染物所造成的大气状况的变化,比如说污染物导致的大气和地表吸收的太阳辐射量的变化,会改变低层大气的热力结构,反过来促进污染物的积累,这是一个非常复杂的过程。   国内外相关的数值模拟研究结果表明,因气溶胶引起的地面辐射减少会导致东亚季风减弱,这可以解释中国近年来的南涝北旱 同时,北方干旱又可能增加沙尘和扬尘,进一步加剧低层大气污染物的浓度。   “这一现象是否可以在某种程度上,为我们解决近几年不断加剧的北方雾霾天气提供一个思路?”符淙斌说,“也有学者指出,由于气溶胶增加引起的地表辐射减弱会削弱低层大气垂直混合,增加污染物积累。这与我们目前的大范围重污染事件之间有何种联系有待研究,但空气污染——天气、气候的双向作用会通过正反馈加剧空气污染。”   符淙斌指出,环渤海城市群、长三角城市群和珠江三角洲城市群是近年来全球城市化发展最迅速的地区之一,这三大城市群占据了全国26%的人口并创造了47%的GDP。城市群区有多种气候效应,其中一个气候效应就是降低地面风速。计算机模型模拟结果表明,城市化影响明显降低地表风速。降低地表风速改变了大气扩散条件,也会进一步加剧城市和区域污染。   通过分析最近32年华北平原和中国东部地区平均风速的变化,符淙斌指出,该地区可以清楚地看到风速呈现减弱趋势,而减弱最明显的季节恰恰是在春季和冬季,也正是污染物加剧最显著的季节。   符淙斌强调,国外经验表明,空气污染是可防可控的。当前,要加强大气污染防治的基础研究,以寻求应对和解决之策。这包括两方面,一是要通过学科间的交叉加强观测,充分认识污染形成的机理和输送规律,据此建立更好的模型来描述大气化学过程、大气动力过程和大气物理过程之间的相互作用。二是要推动跨区域、跨部门之间的合作,通过区域间联防联控来提高污染控制成效,同时要通过跨部门协作加强相关问题的治理和预警。在致力于长期治理的同时,更重要的是建立针对重污染的预报预警和应急机制,由此提高应对能力并减弱严重污染对人体健康的影响。   “这些工作均需要高校和科研院所以及环保、气象部门的协同攻关。”符淙斌说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制