当前位置: 仪器信息网 > 行业主题 > >

测试常用的研究方法

仪器信息网测试常用的研究方法专题为您整合测试常用的研究方法相关的最新文章,在测试常用的研究方法专题,您不仅可以免费浏览测试常用的研究方法的资讯, 同时您还可以浏览测试常用的研究方法的相关资料、解决方案,参与社区测试常用的研究方法话题讨论。

测试常用的研究方法相关的论坛

  • 《常用在线电导率仪检定方法的研究》一文

    《常用在线电导率仪检定方法的研究》一文

    [b][size=16px]《常用在线电导率仪检定方法的研究》(全文见附件)[img=,690,501]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201345527248_2648_1626275_3.png!w690x501.jpg[/img][img=,690,420]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201345599037_8837_1626275_3.png!w690x420.jpg[/img][img=,690,550]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201346101034_9139_1626275_3.png!w690x550.jpg[/img][img=,690,365]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201346168553_299_1626275_3.png!w690x365.jpg[/img][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201346239067_5565_1626275_3.png!w690x136.jpg[/img][/size][/b]

  • 弹簧测试方法的不断研究

    弹簧试验机的加载方法对试验结果影响敢是不容忽视的。早期的加载方法主要为普通交流电机带动传动系统加载,加载速度不可调整,对于弹簧等弹性元件来说,由于回弹应力的存在,快速压缩时自动采集的数据与慢速压缩或静止压缩采集的数据差别很大,现在多采用变速系统如交流伺服调速系统、通过逼真的模拟弹簧的工作状态,真实测量弹簧在这一状态下的内部应力,为弹簧设计提供依据。 随着计算机技术的发展,单片机的功能较简单的缺点又被微机所改善,智能化功能设置专家系统、参数选择、数据库、清晰的视窗中文界面、简单的鼠标操作,使弹簧测试过程中的最理想化状态成为可能,智能化水平得到了极大的提高,操作者只要轻轻点击鼠标,就可以按照预先设置的任意模式进行测量、控制,通过设定不同的试验速度、试验过程中的参数,使试验模式、整个试验过程可以按照人们的意志进行控制,试验曲线和试验数据实时显示,试验数据亦可按行业标准或企业标准进行计算、整理、输出,还可对以往的试验过程、弹簧试验机试验结果进行查询,强大的计算和数理统计功能代替了过去繁杂的工作,大大减轻了人的劳动量。另外,计算机网络技术的应用,又会使检测控制机(简称下位机)与计算中心的主控机(简称上位机)结合起来,实现试验数据的传输、处理、综合管理,在中心实验室,由上位机对下位机群实现综合管理。 随着人们对弹簧测试方法的不断研究,认识会不断深化,试验机会向着高智能人方向发展,模拟弹簧的工作参数、状态、环境的试验机会不断出现。

  • 专用测试设备时间参数的校准方法研究

    [size=14px] 专用测试设备是为测试产品特殊性能而专门设计制造的设备,在大型航天、航空、汽车制造等行业内被广泛用于产品研发测试和性能试验,其技术指标的准确可靠直接影响产品质量。[/size][size=14px]专用测试设备测量参数多,涉及计量专业多,加上设备本身的独特性,极少有适用的正式检定规程或校准规范作指导,实际工作中多依靠计量技术人员在研究特定校准方法的基础上形成的企业自编规范作为依据。[/size][size=14px]专用测试设备对时间参数的测量主要有3种方式:一是利用计时仪表测量;[/size][size=14px]二是调用计算机时钟测量;[/size][size=14px]三是通过可编程计时模块测量。[/size][size=14px]本文对接科研生产实际需求,结合计量实践研究,对第三种测量方式的时间参数提出校准方法。 [/size] 某型专用测试设备用于油泵的性能试验,综合测试产品试验过程中的压力、温度、流量、电功率及时间参数的动态数据。其中,温度、压力、流量参数通过传感器或变送器将产品工况转换成标准模拟信号,经信号调理和采集送至工控机,再按预设系数计算后显示在测量系统数据显示界面上;电参数测量仪利用自带数字通信功能将测得的电功率直接送工控机接收显示;时间参数的测量由测量系统搭配相应的可编程控制器(PLC)定时模块完成。整体原理框图如图1所示。[img]http://www.chinajl.com.cn/Uploads/image/20211214/20211214162033_42650.jpg[/img][size=14px][color=#888888]图1 [/color][/size][size=14px][color=#888888]某型油泵原理框图[/color][/size][b][color=#d92142]二、校准方法[/color][/b][size=15px][size=14px] 通过原理分析,虽然时间测量功能主要由定时模块实现,但对它进行单独校准并不能保证整个测量系统的技术性能,因此需进行系统校准,即用满足技术要求的校准设备对建压时间进行同步测量,与试验台测量结果直接比对来实现校准。按试验台技术协议,建压时间[/size][i][size=14px]t[/size][/i][size=14px]测量范围为0~5s,最大允许误差为±0.05s,考虑到校准测试不确定度比4∶1的要求,校准设备测量不确定度需≤0.012s。综合评估后,选用数字式电秒表作为校准设备,其分辨力最高可达0.0001s,最大允许误差为±(5×10[/size][size=14px]-5[/size][i][size=14px]R[/size][/i][size=14px]d[/size][size=14px]+1个字),且有多种测量模式可选。[/size][/size][size=15px][size=14px] 建压时间是一段持续时间,按下通电键开始,压力升至[/size][i][size=14px]P[/size][/i][size=14px]1[/size][size=14px]结束;数字电秒表有多种测量模式,其中选择“测量一个正电压持续时间”模式的改造难度最低。此种模式下,“III”-“⊥”端接通正电压开始计时,断开正电压停止计时;只要实现按下“产品上电”键与电秒表接通正电压同步,压力值升至[/size][i][size=14px]P[/size][/i][size=14px]1[/size][size=14px]与电秒表断开正电压同步,就能实现建压时间试验测量和校准测量的同步而完成校准。正电压可以利用试验台现场的激励电源提供,正电压的接通、断开可以利用PLC通断模块实现;通断模块的通/断控制指令则由系统开发人员设置与定时模块的控制指令同步发出。[/size][/size][size=15px][size=14px] 选用成都钟表厂生产的415型数字电秒表,最大允许误差为±(5×10[/size][size=14px]-5[/size][i][size=14px]R[/size][/i][size=14px]d[/size][size=14px]+时基),时基选择0.001s,模式置“连续”;以及相应的1214C型PLC通断模块,测量分辨力为0.001s,通断模块初始状态设为断开,串入激励电源正电压通路,校准方法示意图如图2所示。[/size][/size][font=微软雅黑, Helvetica, Arial, sans-serif][size=15px][color=#333333][/color][/size][/font][img]http://www.chinajl.com.cn/Uploads/image/20211214/20211214162034_32228.jpg[/img][size=14px][color=#888888]图2 建压时间校准方法示意图[/color][/size][font=微软雅黑, Helvetica, Arial, sans-serif][size=12px][color=#333333][/color][/size][/font][size=15px][size=14px]Δ[/size][i][size=14px]t[/size][/i][size=14px]=[/size][i][size=14px]t[/size][/i][size=14px]1[/size][size=14px]-[/size][i][size=14px]t[/size][/i][size=14px]2[/size][size=14px] (1)[/size][/size][b]4.校准试验[/b][img]http://www.chinajl.com.cn/Uploads/image/20211214/20211214162034_66050.jpg[/img][font=微软雅黑, Helvetica, Arial, sans-serif][size=12px][color=#333333][/color][/size][/font][align=center]按二、3实施校准,校准数据如表1所示。建压时间示值误差绝对值0.05s,校准结果符合设备技术要求。校准结果的测量不确定度来源及分量计算如表2所示。[/align][size=14px][color=#888888][img]http://www.chinajl.com.cn/Uploads/image/20211214/20211214162035_20793.jpg[/img]表2 建压时间校准结果测量不确定度分析[/color][/size]计算得出扩展不确定度([i]k[/i]=2)约为0.005s0.012s,满足校准要求。

  • 气相色谱分析常用有机溶剂和多种农药残留稳定性的研究

    这篇文章我很感兴趣,所以翻译成中文,英文水平有限,文中有错误的地方,望网友指正。我将摘要帖出来,感兴趣的可下载一看。气相色谱分析常用有机溶剂和多种农药残留稳定性的研究Katerina Mastovska,Steven J.Lehotay美国农业部,农业研究所,东部研究中心,600东美人鱼巷,温德穆尔,PA 19038,美国2004年1月6日收到,2004年4月16日接收修正稿,2004年4月16日接收摘要:在这个研究中,我们研究了六种适合气相分析农药的常用有机溶剂,其中三种,丙酮、乙腈、乙酸乙酯,代表了提取溶剂在测定多种农药残留方法中的使用。另外三种,异辛烷、正已烷、甲苯经常在气相分析前充当交换溶剂的角色。GC分析多种农药残留的理想溶剂应该是相容的:分析物、样品前处理、气相分析。这个研究涉及了各个方面,重点放在所选择的农药在给定的溶剂中的稳定性方面,在这个方面,交换溶剂对极性提取溶剂作了较好的改善。N取代的三唑类杀菌剂(例如克菌丹、灭菌丹、抑菌灵)在乙腈中的降解仅仅在某些lots测试乙腈中观察到,但是即使它发生,这些分析物的稳定性像三氯杀螨醇和百菌清一样,通过增加0.1%的冰醋酸,也能发生显著改善。三氯杀螨醇和百菌清在丙酮中也是不稳定的,硫醚组分的农药(如倍硫磷、乙拌磷)在测试的乙腈中降解。某些拟除虫菊酯的异构体形式(溴氰菊酯,λ-氯氟氰菊酯)在乙酸乙酯和丙酮溶剂中能够被色谱所记录,但是这种影响在气相进样时比在溶剂里更容易发生。根据这几个原因,对于提取一个农产品中广泛极性范围的农药残留来说,乙腈被认为是最合适的溶剂,经过酸化之后,这些之前的问题农药在乙腈中的稳定性可以接受,并且乙腈也能充当一个GC进样的介质,因此交换溶剂在GC分析前通常不要求,如果灵敏度在不分流进样上是一个问题,那么相对于正已烷和异辛烷而言,甲苯显然是最好的交换溶剂,因为它和乙腈的混合性和相对极性更强的农药有强烈的响应(如乙酰甲胺磷、甲胺磷)。关键字:稳定性试验,农药

  • 气相色谱分析常用有机溶剂和多种农药残留稳定性的研究

    这篇文章我很感兴趣,所以翻译成中文,英文水平有限,文中有错误的地方,望网友指正。我将摘要帖出来,感兴趣的可下载一看。气相色谱分析常用有机溶剂和多种农药残留稳定性的研究Katerina Mastovska,Steven J.Lehotay美国农业部,农业研究所,东部研究中心,600东美人鱼巷,温德穆尔,PA 19038,美国2004年1月6日收到,2004年4月16日接收修正稿,2004年4月16日接收摘要:在这个研究中,我们研究了六种适合气相分析农药的常用有机溶剂,其中三种,丙酮、乙腈、乙酸乙酯,代表了提取溶剂在测定多种农药残留方法中的使用。另外三种,异辛烷、正已烷、甲苯经常在气相分析前充当交换溶剂的角色。GC分析多种农药残留的理想溶剂应该是相容的:分析物、样品前处理、气相分析。这个研究涉及了各个方面,重点放在所选择的农药在给定的溶剂中的稳定性方面,在这个方面,交换溶剂对极性提取溶剂作了较好的改善。N取代的三唑类杀菌剂(例如克菌丹、灭菌丹、抑菌灵)在乙腈中的降解仅仅在某些lots测试乙腈中观察到,但是即使它发生,这些分析物的稳定性像三氯杀螨醇和百菌清一样,通过增加0.1%的冰醋酸,也能发生显著改善。三氯杀螨醇和百菌清在丙酮中也是不稳定的,硫醚组分的农药(如倍硫磷、乙拌磷)在测试的乙腈中降解。某些拟除虫菊酯的异构体形式(溴氰菊酯,λ-氯氟氰菊酯)在乙酸乙酯和丙酮溶剂中能够被色谱所记录,但是这种影响在气相进样时比在溶剂里更容易发生。根据这几个原因,对于提取一个农产品中广泛极性范围的农药残留来说,乙腈被认为是最合适的溶剂,经过酸化之后,这些之前的问题农药在乙腈中的稳定性可以接受,并且乙腈也能充当一个GC进样的介质,因此交换溶剂在GC分析前通常不要求,如果灵敏度在不分流进样上是一个问题,那么相对于正已烷和异辛烷而言,甲苯显然是最好的交换溶剂,因为它和乙腈的混合性和相对极性更强的农药有强烈的响应(如乙酰甲胺磷、甲胺磷)。关键字:稳定性试验,农药

  • 山东省计量科学研究院创新泄漏电流测试仪测量网络校准方法

    [color=#3f3f3f]日前,山东省计量科学研究院电子与电磁计量研究所根据泄漏电流测试仪的实际工作状态,提出了采用宽频电流源法对测量网络进行校准的方案,研制了高频电流源,理论推导了输入输出电流的关系,设计了利用高频电流源对泄漏电流测试仪测量网络进行校准的方法,通过直接输入电流的方式对泄漏电流测量网络进行校准,最终通过实验验证了方法的可行性,相对于高频电压源法,该方法更符合实际工作状态。[/color][color=#3f3f3f]据介绍,泄漏电流测试仪通过模拟人体阻抗网络,仿真人体接触电气设备时的实际状况,以此测量电气设备的泄漏电流。电气设备一般采用交流供电,随着电子开关技术被广泛应用于电源系统和设备中,电路中产生了高频谐波电压和高频谐波电流,这些高频信号流过人体时同样对人体造成伤害,因此泄漏电流的测量不仅局限于工频,同样要考虑高频信号。[/color][color=#3f3f3f]根据泄漏电流的人体效应(感知或反应、摆脱、电灼伤),GB/T 12113(IEC 60990接触电流和保护导体电流的测量方法)分别定义了不同的测量网络。目前国际上主要利用高频电压源对泄漏电流测试仪的测量网络进行计量,GB/T 12113给出了采用高频电压源进行校准的方法。[/color][color=#3f3f3f]2018年7月,国际精密电磁测量大会(CPEM2018)在法国巴黎举行,来自美国NIST、中国NIM、英国NPL等50个国家的500多位电磁领域计量专家参会,山东省计量院研究员马雪锋参加了此次会议并现场张贴了论文《利用宽频电流源法对泄漏电流测试仪测量网络的校准》,得到了与会专家的关注,实验方法得到了同行的认可。[/color]

  • 美标日标常用游离甲醛含量测试方法

    [b] 美标日标常用游离甲醛含量测试1. [/b] 目的与范围 1.1 本试验是用分光光度分析法测试纺织品中游离甲醛及释放甲醛的含量,试验方法适宜于下列两种:1.1.1 日本JIS L1041及L1096标准方法1:用于出生不超过24个月的婴儿所使用的纺织品,例如尿布、围裙、内衣、睡衣、手套、针织袜子、外衣、帽、床上用品等。日本JIS L1041及L1096标准方法2:用于超过24个月的儿童或成人使用的纺织品,例如内衣、睡衣、手套和袜等。1.1.2 美国AATCC112测试标准。[b] 2. [/b]设备1. 250ml具塞三角烧瓶2.玻璃滤斗或钢丝滤篓3. 具塞试管及具塞试管架4. 刻度移液管,1ml、5ml、10ml及25ml5. 容量瓶,100ml及1000ml6. 水浴恒温振荡器7. 分光光度计8.量筒50ml、100ml9.璃棒、吸耳球10 烘箱 [b]3. [/b]试剂 3.1蒸馏水 3.2 甲醛(约37%)HCHO(Formaldehyde solution) 3.3标准甲醛溶液(微克/毫升)(Standard Formaldehyde solution) 3.4百里酚酞3.5 冰醋酸 CH[sub]3[/sub]COOH(Glacial aceticacid)3.6 乙酰丙酮(Acety1acetone)3.7 醋酸铵NH[sub]4[/sub](C[sub]2[/sub]H[sub]3[/sub]O[sub]2[/sub]) (AmmoniumAcetate)[b]4. [/b] 试剂配备 4.1 用水稀释3.8ml甲醛溶液到1L,即得甲醛原液为1500ug/ml,用标准方法测甲醛原液浓度。 4.2 将10ml按4.1准备的滴定过的标准原液用水稀释至200ml,此溶液含甲醛75ug/ml。 4.3 乙酰基丙酮 称量150g醋酸铵,溶解于800ml蒸馏水中,加3ml冰醋酸和2ml乙酰丙酮,使其充分混合,再用蒸馏水稀释至1000ml。[b]5. [/b] 试样准备 5.1 JIS L1041及L1096标准:选取直接接触人身的纺织品部分作试样,每测试选取三个试样,并将它剪成小块。 5.2 AATCC112标准:每个测试选取三个试样,分别剪成1g重的样品。[b]6. [/b]测试程序[b] JIS L1041[/b]及[b]L1096 [/b]标准 6.1 方法1 6.1.1 准确称量2.5g已剪碎的试样(剪碎试样尺寸 面积为0.5x0.5cm),并放进三角瓶内。(重量精确±0.01) 6.1.2 注入100ml的蒸馏水,塞上瓶盖,使其充分混合。 6.1.3 把三角瓶置于水浴锅中,40±2℃1小时后取出。 6.1.4 冷却半小时,间歇搅匀后过滤。并将试液转盛于三角瓶内。 6.1.5 用刻度移管取以下所需之溶液,混合于试管中: [img=,489,180]http://ng1.17img.cn/bbsfiles/images/2017/05/201705151633_01_2154459_3.png[/img]6.1.6 用盖塞住试管,置于40±2℃水浴锅中30分钟,然后在室温中冷却30分钟。6.1.7 调校分光光度计的波长至412~415nm,以混合液(0+N)作参对,找出混合液(1+N) 在此波段中最高吸收度的波长,并记录其吸光度(A)。6.1.8 以混合液(0+0)作参照,同样波长,量度混合液(1+0)的吸光度(A[sub]0[/sub]).6.2 方法26.2.1 准确称量1g已剪碎的试样并放进三角瓶。(重量精确±0.01g)6.2.2 注入100ml的蒸馏水,塞上瓶盖,使其充分混合。6.2.3 把三角瓶置浴水浴锅中,加热到40±2℃ 1小时后取出。6.2.4 冷却半小时,间歇摇匀后过滤。6.2.5 用玻璃滤斗将内部所有物质过滤,并将试液转盛于三角瓶内。6.2.6 用吸量管分别吸取以下所需之溶液,混合于试管中:[img=,475,182]http://ng1.17img.cn/bbsfiles/images/2017/05/201705151634_01_2154459_3.png[/img] 6.2.7 用盖塞住试管,置于40±2℃水浴锅中30分钟,然后在室温中冷却30分钟。6.2.8 调校分光光度计的波长至412~415nm,以混合液(0+N)作参对,找出混合液(1+N)在此波段中最高吸收度的波长,并记录其吸收度(A)。6.2.9 以混合液(0+0)作参照,同样波长、量度混合液(1+0)的吸收度(A[sub]0[/sub])。6.3.0 吸光度测试=A-A[sub]0[/sub][b] 6.3 AATCC112[/b]测试程序 6.3.1 准确称量1g重的样品,精确到±0.01g。 6.3.2 在密封的玻璃瓶里注入50毫升蒸馏水。 6.3.3 将钢丝滤篓放进密封玻璃瓶内,将样品放在滤篓上,盖紧玻璃瓶盖。 6.3.4 把密封瓶放入烘箱中,在49±1℃中,加热20小时。 6.3.5 将样品冷却半小时,间歇摇匀。 6.3.6 按步骤6.2.8至6.3.0。[b]7.[/b] 计算[b]JIS L1041/L1096/AATCC112 [/b]7.1 JIS L1041及L1096方法1:试验结果可由下列公式算得:A[sub]r[/sub]=A-A[sub]0[/sub][sub] [/sub] A[sub]r[/sub]:2.5g试样中游离甲醛含量的吸收度。 A:试液与 乙酰丙酮溶液作用后的吸收度。 A[sub]0[/sub]:试液与水的吸收度。7.2JISL1041及L1096方法二、AATCC112:试验结果可由下列公式算得:[img=,2,2]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]游离甲醛在试样中含量(PPm)[img=,437,115]http://ng1.17img.cn/bbsfiles/images/2017/05/201705151634_02_2154459_3.png[/img]K:标准甲醛溶液的浓度(ug/ml)A:试液与乙酰丙酮溶液化学作用后的吸收度A[sub]O[/sub]:试液与水的吸收度。试液与水的吸收度。A[sub]S [/sub]:标准甲醛溶液与乙酰丙酮溶液化学作用后的吸收度W:试样重量(g)[img=,361,100]http://ng1.17img.cn/bbsfiles/images/2017/05/201705151635_01_2154459_3.png[/img] V:溶液的体积(ML数)8. 报告8.1 注明测试方法。8.2 列明 游离甲醛及释放甲醛含量试验结果,以PPm(百分比)表示。[img=,654,370]http://ng1.17img.cn/bbsfiles/images/2017/05/201705151637_01_2154459_3.png[/img]

  • 甲醛的测试方法

    请教一下那位专家环境中:测试甲醛有那几种比较常用的方法实验室:测试甲醛有那几种比较常用的方法谢谢/:d

  • 【原创大赛】可吸附有机卤素(AOX)测试方法改进研究

    【原创大赛】可吸附有机卤素(AOX)测试方法改进研究

    文/胡梦琦(华测团队)1 引言 AOX(Absorbable Organic Halogen,可吸附有机卤素)指在常规条件下,可被活性炭吸附的结合在有机化合物中的卤族元素(包括氟、氯和溴)的总量(以氯计),是总有机卤化物的一部分,主要包括有机氯化物、有机溴化物和少量的有机氟和有机碘化合物,这些有机卤化物对生命体和生态环境的正常运转起着至关重要的作用。有机卤化物大部分为持久性有机污染物,因其具有较强的亲油性,在天然水体中不易降解,易在细胞组织的脂肪部位沉积,大都具有很强的毒性,具有致畸、致癌和致突变性,易导致机体病变,己越来越引起人们的广泛关注。故随着工业过程对环境污染的日益加剧,以AOX为表征的有机卤化物已经成为一项国际性水质指标。1987年,德国联邦废水法规定AOX的直接排放标准为100μg/L,间接排放标准为0.5mg/L。1992年,英国废水管理系统规定禁止排放含有AOX的物质。欧洲和其它一些国家,如瑞典、芬兰、比利时、荷兰、挪威和澳大利亚相继通过了AOX排放标准的相关法令。在中国,根据GB 8978-1996 污水综合排放标准,国家将AOX归类为第二类污染物,排放企业一级限值为1mg/L,二级限值为5mg/L,三级限值为8mg/L。2 测试原理 目前AOX分析常用方法有微库仑法和离子色谱法。两个方法的原理均为使用活性炭吸附水中的有机卤素化合物,然后将活性炭放入高温炉中灼烧分解转换成卤化氢(氟、氯、溴的氢化物),再经碱性水溶液吸收后进行测试。微库仑法是通过使用微库仑计测试电导池内的电荷迁移量来计算,但测试结果为可吸附有机卤素的总和,无法区分卤素。离子色谱法是通过离子色谱测试吸收液中卤素(F、Cl、Br),可得到单独有机卤素的测试结果,且方法可单独测试有机氟、有机氯、有机溴的特性,是未来AOX测试的主要方向。3 原测试方法存在的问题 目前实验室采用的测试方法为《可吸附有机卤素(AOX)的测定离子色谱法 HJ/T 83-2001 》,其存在以下问题。 第一,该方法建立时间较短,涉及仪器、耗材、试剂、环境等较多因素,成熟度较低。 第二,测试对起吸附作用的活性炭柱管要求极高,规定活性炭柱管本底氯值越小越好。但通过对市面上所售的部分国产活性炭进行空白测试,发现其本底氯值大多介于3-10mg/L之间,部分活性碳柱的本底氯值高达20mg/L以上。因此无法满足标准的要求的。 第三,实验需要专用压滤机或搭建简易过滤装置来控制样品在活性炭柱中的流速,专用压滤机成本高,而简易过滤装置不易操作。 第四,试验中使用到的氧化铝舟表面粗糙,易残留样品,且在高温下易断裂。4 方案改进 《可吸附有机卤素的测定 ISO-9562-2004 》及《微库仑法 GB/T 15959-1995 》两个标准中均提供了振荡吸附法和柱吸附法两种前处理方法。参考以上两个方法对目前测试进行以下改进。 首先,采用美国Sigma-Aldrich产的AOX专用活性炭粉来代替国产活性炭柱,以此来改进国产活性炭柱本底氯值较高的问题。 其次,采用振荡吸附法代替原标准中的柱吸附法进行前处理,处理后样品经无氯滤膜过滤后再进行下一步测试,以此来改进样品在活性炭柱中的流速控制问题。 最后,采用化学性质稳定且表面光滑的石英舟代替氧化铝舟,以此来改进氧化铝舟残留及破损问题。5 试验验证5.1仪器及试剂 戴安离子色谱仪 ICS-1100、Thermo AS19 色谱、Thermo AG19 保护柱、戴安ASAS300抑制器Thermo、KOH淋洗液发生装置、节能程控管式炉(杭州卓驰仪器有效公司)、HY-8多用调速振荡器(常州德朗仪器有限公司)。 石英管、石英舟、聚碳酸酯无氯滤膜、大型气泡管、具塞碘量瓶等。 氧气(纯度99.99%)、活性炭粉(美国Sigma-Aldrich)硝酸钠、硼砂、超纯水、对氯苯酚、盐酸、硝酸。5.2前处理 取水样100.00mL,倒入250mL磨口碘量瓶,加入5mL硝酸钠储备液,加硝酸调节PH值2。加入50mg(±0.1mg)活性炭,塞上瓶塞。将碘量瓶置于振荡器上,调节振荡频率为200r/min,振荡时间为1h。通过聚碳酸酯滤膜(0.45μm)抽滤,同时用约25mL的硝酸钠洗涤液洗涤滤饼,抽至近干。将滤饼和滤膜一起置于石英舟内,按HJ/T 83-2001规定的样品处理步骤进行高温吹气,硼砂做吸收液。取100.00ml纯水作为空白样品按上述步骤进行处理。5.3样品测试 离子色谱仪稳定后,将前处理后样品、空白样品直接上离子色谱仪测试。结果按照HJ/T 83-2001的要求计算。5.4加标样品的测试配制1.0mg/L的对氯苯酚使用液(其中有机氯为1.0mg/L),取100.00ml按样品前处理步骤进行前处理,前处理后得到的吸收液上离子色谱仪测试。6 结果与讨论6.1空白测试结果 进行7次空白样品测试。其中AOX=AOX(Cl)+1.866*AOX(F)+0.444*AOX(Cl)。测试结果表明改用振荡吸附法后空白符合标准要求,相对标准偏差较小。测定结果见表1。 表1 空白测试(单位mg/L)测试次数1234567RSD%AOX(F)0.00310.00410.00470.00420.00480.00350.003915.1AOX(Cl)0.03420.03250.03110.03140.03470.03320.03373.4AOX(Br)00000000AOX0.040.04020.03990.03920.04370.03970.0412.6

  • 【分享】环境监测常用分析方法简介

    环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。一、 化学分析法 是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。 重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。随着称量工具的改进,重量法得到进一步发展。例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。 容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。二、 光学分析法 是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种:(一)分光光度法是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。可用于测定金属、非金属、无机和有机化合物等。在国内外的环境监测分析法中占有很大的比重。(二)[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。(三)发射光谱分析法 是在高压火花或电弧激发下,使原子发射特征光谱,根据各元素特征性的光谱线可作定性分析,而谱线强度可用作定量测定。 本法样品用量少、选择性好、不需化学分离便可同时测定多种元素,可用于无机有害物质铬、铅、镉、硒、汞、砷等20多种元素的测定,但不宜分析个别试样,且设备复杂,定量条件要求高,故在环境监测的日常工作中,使用发射光谱分析法较少。但自电感耦合高频等离子体光源(简称ICP光源)研究成功以来,由于它具有灵敏度高、准确度和再现性好,基体效应和其他干扰较少和线性范围宽等一系列优点,并特别适于水和液体试样的分析,因而得到普遍的重视,并成为一种重要的分析手段。 用ICP发射光谱法可分析的试样和元素涉及水、土壤、生物制品、沉积物等共30多种元素。

  • 【原创】你最常用的样品消解方法是哪种???

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测试样品绝大部分都需要进行样品消解。样品消解方法通常有以下几种:1、湿法消解(酸消解法)2、干法消解(灰化法)3、微波消解法不知道你最常用的是哪种???

  • 热界面材料热性能常用测试与考核方法汇总

    热界面材料热性能常用测试与考核方法汇总

    1. 前言 通过前两篇帖子对莱尔德公司各种热界面材料技术参数的分析可以看出莱尔德公司对热界面材料的热性能测试采用了四种测试方法,分别为改进的ASTM D5470方法、HOTDISK方法、闪光法和实际导热性能考核法。这四种方法也是目前业界普遍认可和使用的方法,下面将简要介绍这四种方法在热界面材料热性能测试评价中的具体应用。2. 改进的ASTM D5470方法 ASTM D5470导热型电绝缘材料热传输性能标准测试方法(Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials)是热界面材料的传统测试方法,应用十分广泛。按照该标准的描述,D5470适用于以下三类热界面材料的测试: (1)Type 1:在受到应力后显示出无限形变的粘性液体。包括液态混合物,如油脂,胶及相变材料。这些材料不显示出弹性特征,在移除应力后无回复到原始状态的趋势。 (2)Type 2:粘弹性固体。形变应力并最终与材料内部的应力保持平衡,因而限制了更大的形变。如凝胶,软硬橡胶。这些材料显示出与材料厚度相关的线性弹性特征。 (3)Type 3:微小形变的弹性固体,包括陶瓷,金属以及某些塑料。 ASTM D5470的主要功能在于测量材料的热阻,但如果试样与热阻仪的接触热阻较之试样自身热阻非常微小(一般小于1%),则可以通过测出的热阻及试样厚度直接计算出被测试样的导热系数。需要特别注意的是此时得到的导热系数为等效导热系数或表观导热系数,是被测试样在试样平均温度下的导热系数。 如果试样与热阻仪的接触热阻比较大,那么试样的等效导热系数可在一些列试验后排除接触热阻后精确得出。即先测试不同厚度试样的热阻,再绘制出热阻对厚度的坐标图,则绘制出的直线斜率的倒数即为试样的等效导热系数。在零厚度时的热阻即为试样与热阻仪两接触面的接触热阻之和。 ASTM D5470方法的测量原理和相应的热阻测定仪如图 2.1所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223342865_01_3384_3.jpg图 2.1 ASTM D5470测量原理和相应的热阻测定仪 目前绝大多数热阻测定仪都对ASTM D5470方法进行了改进,主要的改进点体现在以下两方面: (1)ASTM D5470方法中规定热阻测量过程中的加载压力为100 500psi。就算最小的100psi加载压力也常常超过热界面材料实际工程应用时的加载压力。因此,热阻测定仪一般都把这个加载压力进行了调整,加载压力可以精确的控制到最小1psi,这样就可以满足不同工况下的热界面材料热阻测量。 (2)增加了在线厚度测量装置,可以实时测量试样加载后的厚度。 需要注意的是ASTM D5470是一种相对法(或二级方法),这种方法是采用已知导热系数的高导热材料作为热流计来测量流经试样上的热流密度。因此,热流密度的测量准确性首先要取决于热流计材质导热系数的测量准确性。3. HOTDISK方法 HOTDISK方法是一种瞬态测量方法,又称为瞬态平面热源法。HOTDISK方法作为一种绝对的热导率测量方法,在理论上可以达到很高测量精度。在被测试样尺寸和其它要素满足测试方法规定的边界条件时,热导率的测量范围理论上可以没有限制。因此,对于均质材料,采用瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高的范围内(-196℃~200℃),这种方法可以作为一种标准方法来使用,并与其它热导率测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。 瞬态平面热源法已具有国际标准测试方法,即ISO 22007-2:2008 Plastics-Determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (Hot Disk) method。 如图 3.1所示,Hot Disk探头是一种两片绝缘薄膜夹持双螺旋金属薄带的薄片结构,绝缘薄膜既起到强度支撑作用又具有电绝缘功能,整个HOTDISK探头既作为通电发热源又作为温度探测器使用。 在测试过程中,HOTDISK探头被夹持在两个被测试样中间,在试样和探头温度达到恒定后,在探头上加载一个短时间的固定电流,探头通电后产生热量,热量向四周的被测试样进行散热,使得探头和试样的温度升高。探头和试样的温度上升范围一般为0.5~5℃,通过测量探头的电阻变化可以获得探头温度整个变化过程,然后根据加载电流的大小和时间以及其它参数,可以计算出被测试样的导热系数。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223350830_01_3384_3.jpg图 3.1 HotDisk探头 HOTDISK方法针对不同的被测试样厚度有不同的测试模型和测试形式,针对众多形式的热界面材料,HOTDISK方法一般采用三种测试模型和相应软件,分别是块状模型、薄板模型和薄膜模型。3.1. HOTDISK块状试样测试方法 在块状试样测试方法中,如图 3.2所示,要求HOTDISK探头在通电加热所发出的热量,在整个测试过程中热量(或热波)不能达到试样的边界。由此可见,在块状试样测试时,被测试样尺寸要求较大较厚,从而满足测试模型要求。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223352816_01_3384_3.jpg图 3.2 HOTDISK块状试样测试模型 在众多热界面材料中,导热脂和导热胶类热界面材料非常适合采用HOTDISK块状试样测试方法进行导热系数测量,如图 3.3和图 3.4 所示就是采用HOTDISK块状测试方法对导热脂和导热胶片测试时的试样及探头安装形式。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223470761_01_0_3.jpg图 3.3 HOTDISK法块状形式测试中的导热脂试样和探头装配形式 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223472136_01_3384_3.jpg图 3.4 HOTDISK法块状形式测试中厚片状导热胶试样和探头装配形式 对于热界面材料,在HOTDISK块状法测量过程中,被测试样的最小厚度一般为20~25mm,最佳厚度最好在40mm以上,导热系数测量范围为0,005~500 W/(mK),导热系数测量重复性为±2%。3.2. HOTDISK薄板试样测试方法 对于薄板或薄片状材料,HOTDISK方法中有专门的测试模型和相应软件模块用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。如图 3.5所示,测量时先选择两块厚度一致的样品,精确测量样品厚度后,将两块薄板样品分别放置于探头的两边,然后用两块相同材质的绝热隔热材料压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223531345_01_3384_3.jpg[color=#3333f

  • 燃料电池膜电极中铂担载量测试方法研究

    燃料电池膜电极中铂担载量测试方法研究

    【摘要】膜电极(MEA)作为质子交换膜燃料电池(PEMFC)的能量转换单元,在催化剂作用下将化学能转化为电能。铂基催化剂目前仍是商用PEMFC不可替代的催化剂,其中膜电极中铂(Pt)担载量已成为PEMFC性能评价的一项重要指标。本文对现有PEMFC膜电极Pt担载量测试国标方法进行了改进,并开发了PEMFC膜电极Pt担载量测试的微波消解前处理方法。与国标方法相比,新方法不但提高了测试结果的准确性,还极大提高了测试效率,试剂用量大幅减少,更加绿色、安全和环保。【关键词】质子交换膜燃料电池,铂担载量,催化剂,膜电极,微波消解引言燃料电池是一种将化学能通过催化剂转换成电能的能量转换装置,具有能量密度高、利用率高、清洁安静等优点[1]。质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)是燃料电池的一个重要分类,由于其较高的功率密度、较低的工作温度,成为燃料电池在移动端应用的首选[2-4]。PEMFC通常由端板、双极板、气体扩散层、催化层、质子交换膜(PEM)等组成,其中气体扩散层[5]、催化层[6]与质子交换膜[7]构成的膜电极[8](membrane electrode assembly,MEA)是PEMFC的关键核心部件。气体扩散层由大孔基底层和微孔层两部分组成,主要材料为碳基材料;催化层材料一般包括催化剂、载体、质子导体、添加剂等,其中催化剂通常被质子交换膜覆盖;质子交换膜最常用的为全氟磺酸聚合物,具有聚四氟乙烯骨架特征的质子导体[9]。一般地,把在两侧分别涂覆阴极和阳极催化剂的质子交换膜称为“三合一”膜电极,把在质子交换膜两侧包括阴极和阳极催化层、气体扩散层的膜电极称之为“五合一”膜电极[10]。催化剂的催化效率将直接决定燃料电池的发电效率及性能。当前,铂基催化剂仍然是商用PEMFC中不可替代的催化剂。由于铂资源的稀缺性和贵重性,研究人员已经将贵金属铂(Pt)担载量从几十年前的10 mg/cm2降低至目前的0.1~0.4 mg/cm2,Pt担载量正朝超低铂方向发展[2]。作为催化剂的核心,Pt担载量直接影响电极催化性能和成本,如何提高催化剂的利用率来降低催化层的Pt担载量是目前研究的重要方向[11]。因此,准确测定MEA中的Pt担载量对于电极性能评价或电池适用性有实际的意义。目前对于Pt担载量的测试,标准GB/T 20042.4-2009[12]和标准GB/T 20042.5-2009[13]给出了参考方法,其中标准GB/T 20042.4-2009中给出的热重法适用于高Pt担载量的催化剂测试,不适用于目前低Pt担载量的催化剂。而标准GB/T 20042.5-2009采用的是灰化-酸解-ICP分析方法,不仅前处理操作繁琐且耗时长,采用ICP分析测试准确度也并不高。早期的也有测试人员做过相应测试研究,如付川[14]在2004年采用加王水-氢氟酸湿法消解膜电极的催化层,对催化层的Pt元素进行了石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定。景粉宁[15]等人也在2007年研究了灰化-酸解方式溶解膜电极中Pt元素的方法,还比较了石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url](FAAS)、电感耦合等离子体原子发射光谱(ICP)和极谱分析等三种设备的分析差异,最终认为ICP法是最有效的测定方法。这些对比现在低Pt担载量的测试均不适用,测试精准度不能保证。薛琼[16]等人采用灰化-酸解方式溶解膜电极中Pt元素,通过紫外光谱法测定,相较ICP测试方便,但前处理方法依旧繁琐,效率低。本文利用超级微波消解仪开发新的微波消解前处理方法,不但减少了酸用量,还明显提高测试效率和准确度。结合对不同方法效率和准确性的比较,微波消解处理方法为燃料电池膜电极催化剂、三合一膜电极以及五合一膜电极均提供了一种快捷、方便的前处理方案,结合[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测试,更是提供了一种膜电极Pt担载量的快速高效测试和评价方法。1 实验1.1 仪器及工作条件1.1.1 仪器同步热分析仪(TGA/DSC3+,瑞士梅特勒);安捷伦7900型[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url](安捷伦科技有限公司);Multiwave 7000超级微波消解仪(奥地利安东帕有限公司);X-G04133箱式电阻炉(天津市中环实验电炉有限公司);Milli-Q Academic超纯水系统(美国密理博公司)。1.1.2 仪器工作条件同步热分析仪(TGA)工作条件:初始温度30~40 ℃,以1~20 ℃/min升温速率,结束温度800~850 ℃,气体可选空气、氮气、氧气,流速50 mL/min。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])的工作条件:射频功率1550 W,载气流量1.2 mL/min,冷却气流量15 L/min,辅助气流量0.5 L/min,蠕动泵转速6 r/min,同心雾化器温度2 ℃,采样锥深度8 mm,检测器扫描方式为脉冲/模拟双模式,积分时间3 s。1.2 试剂及样品试验样品:(1)铂碳催化剂(2)三合一膜电极(3)五合一膜电极。[align=center][/align][align=center][img=,173,164]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010942337898_8412_6103278_3.png!w173x164.jpg[/img][/align][align=center](a) [/align][align=center][img=,260,173]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010942561683_9679_6103278_3.png!w260x173.jpg[/img][/align][align=center](b)[/align][align=center][img=,260,132]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010943232809_2189_6103278_3.png!w260x132.jpg[/img][/align][align=center](c)[/align][align=center](a). 铂碳催化剂;(b). 三合一膜电极;(c). 五合一膜电极。[/align][align=center]图1 膜电极试验样品[/align]Pt、Re单元素标准储备溶液(国家有色金属及电子材料分析测试中心):1000 mg/L;Pt标准系列溶液:使用Pt单元素标准储备液逐级稀释配制,溶质为1%(体积分数,下同)HCl和5% HNO3(体积分数,下同);Re内标溶液:1.000 mg/L。HCl、HNO3、H2SO4、H2O2为优级纯,其它试剂为分析纯;实验用水均为一级水。1.3 实验方法1.3.1 灰化-酸解-ICP法灰化:(1)对于铂碳催化剂样品,以Pt克重与样品总量的百分比表示,精确称量样品0.05~0.1 g至预先称重的坩埚中,放入马弗炉中灰化,第一阶段温度为400 ℃保持2 h,第二阶段温度为950 ℃保持1 h,灰化结束后待坩埚冷却后称重。(2)对于膜电极样品,以Pt克重与面积比表示(即Pt担载量),需要截取一定面积大小的膜电极样品,同时记录样品的重量和面积。剪碎后放入预先称重的坩埚中,放入马弗炉中灰化,第一阶段温度为400 ℃保持2 h,第二阶段温度为950 ℃,观察在950 ℃保持1 h、2 h、3 h、12 h不同时间下对Pt含量溶出的影响,灰化结束后待坩埚冷却后称重。酸解:灰化结束后,往坩埚中先加入2~3 mL水,再加硫酸与硝酸的混合酸(体积比为1:3)5~6 mL,加盖后在加热板上大约100 ℃附近消解,当酸液浓缩至一半时可加入0.3 mL左右的过氧化氢,可重复加酸和加热2~4次,直至溶液透明无悬浮物为止,最后加入5~10 mL新鲜王水(盐酸与硝酸体积比为3:1),多次少量,在100 ℃附近消解至澄清透亮,冷却后将消解液用一级水稀释到50 mL或100 mL容量瓶定容。仪器测试:将消解液稀释到适当的范围内,选择[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测试。1.3.2 微波消解-ICP法微波消解:(1)对于铂碳催化剂样品,直接称重0.05~0.1 g样品加入消解管中,避免沾到内壁上,加入5 mL的硝酸与盐酸的混酸(体积比为3:1),预消解后放入微波消解仪中进行消解。微波消解仪工作条件:消解温度250~280 ℃,消解时间30~45 min。(2)对于膜电极样品,需要截取一定面积的膜电极样品,预先在80 ℃真空干燥后称重和测量尺寸,然后剪碎置于消解管中,加入硝酸与盐酸的混酸5 mL,进行微波消解。消解结束后,进行容量瓶定容。有滤渣的先过滤,工作条件同铂碳催化剂样品。仪器测试:将消解液稀释到适当的范围内,选择[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测试。1.3.3 热重法(1)铂碳催化剂的TGA法:精确称取2~3 mg铂碳催化剂样品,不超过坩埚容积的1/3,按照标准方法和改进后的方法进行热重测试,升温从室温升至800~850 ℃,试验气氛选择空气模式与氮气/氧气切换模式进行对比。(2)膜电极的TGA法:精确称取5~8 mg三合一膜电极或五合一膜电极样品,试验方法与膜电极催化剂的TGA方法同。2 结果与讨论2.1 灰化-酸解-ICP法2.1.1 铂碳催化剂与三合一膜电极的ICP法铂碳催化剂以及三合一膜电极,相比于五合一膜电极较纯净,一般是铂碳材质类型,可通过灰化方式除掉碳物质与有机质后得到Pt的含量,或者还可以消解灰化后的灰分并通过[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测定Pt含量。下图2为对铂碳催化剂与三合一膜电极分别采用纯灰分法以及灰分后样品进行湿法消解-ICP法测试样品中的Pt含量效果比较。[align=center][img=,242,172]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010944401892_1549_6103278_3.png!w242x172.jpg[/img][/align][align=center](a)[/align][align=center][img=,242,172]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010944514650_39_6103278_3.png!w242x172.jpg[/img][/align][align=center](b)[/align][align=center](a). 催化剂;(b). 三合一膜电极。[/align][align=center]图2 催化剂和三合一膜电极在两种方法下的Pt含量结果比较[/align]对于铂碳催化剂,纯灰分法测试的Pt含量虽然不是标准的要求,但是通过试验发现这两类物质采用灰分测试与ICP测试的Pt结果基本保持一致;对于三合一膜电极,灰分测试结果与ICP测试结果基本也保持一致,与理论值相比的误差均在10%以内;但是对于三合一膜电极,鉴于样品本身质量轻,所得灰分极少,因此对于不足0.5 g的样品不建议采用纯灰分法,可以选择结合ICP测试结果更准确。2.1.2 五合一膜电极的ICP法对于五合一膜电极通常含有质子交换膜、催化剂层、气体扩散膜以及粘接胶黏剂等,质子交换膜为具有聚四氟乙烯结构的磺酸聚合物和导电碳,催化剂层一般为铂碳层,气体扩散层通常含有聚四氟乙烯支撑的碳材料。在对五合一膜电极进行马弗炉灰化预处理时发现,五合一膜电极在400~500 ℃质量下降不明显,大约失重20%,片状外观基本无变化,灰化的结果与热重的基本一致,考虑为胶黏剂的损失;而大部分质量损失主要发生在升温至950 ℃以及950 ℃保持阶段,在950 ℃保持1 h后失重量约80%,该温度段主要考虑为碳层、石墨纤维层、聚四氟乙烯结构膜等的损失。于此同时,试验以4 cm2为面积取样代表,考察了两份五合一膜电极在950 ℃在1 h、2 h、3 h各个阶段下的灰分质量与外观变化,如图3所示。[align=center][img=,242,159]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010949224814_6816_6103278_3.png!w363x235.jpg[/img] [/align][align=center]图3 膜电极在不同灰化阶段下的状态(从左至右分别为1h、2h、3h)[/align]结果显示从1h到3h不等时间段下的灰化后,各自膜电极的状态区别不明显。而后通过酸解进行了ICP分析,得到结果如下表1所示,与标准方法要求的950 ℃下12 h的处理相比,铂含量测试结果无实质差异。[align=center]表1 膜电极在不同灰化时间下的Pt含量的ICP结果(mgcm-2)[/align][table][tr][td][align=center]样品[/align][/td][td][align=center]Pt含量950℃-1h[/align][/td][td][align=center]Pt含量-950℃-2h[/align][/td][td][align=center]Pt含量950℃-3h[/align][/td][td][align=center]Pt含量950℃-12h[/align][/td][/tr][tr][td][align=center]五合一膜电极1[/align][/td][td][align=center]0.317[/align][/td][td][align=center]0.301[/align][/td][td][align=center]0.301[/align][/td][td][align=center]0.294[/align][/td][/tr][tr][td][align=center]五合一膜电极2[/align][/td][td][align=center]0.086[/align][/td][td][align=center]0.089[/align][/td][td][align=center]0.089[/align][/td][td][align=center]0.089[/align][/td][/tr][/table]因此由试验得到,将灰化处理方法中950 ℃灰化时间缩短2~3 h,不会影响Pt的测定结果的准确性,相比与标准灰化时间减少了近一半(试验时间省了近12 h)。图4为五合一膜电极样品采用灰分结果以及灰分后ICP测试的Pt含量结果对比。[align=center][img=,242,172]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010945538918_7151_6103278_3.png!w242x172.jpg[/img][/align][align=center]图4 五合一膜电极在两种方法下的Pt含量结果比较[/align]从图中看出,对于五合一膜电极,纯灰分法测试的Pt含量偏高于理论值以及ICP测试的Pt含量,可能原因是五合一膜电极中存在一些难以灰化的无机物质,造成测定结果偏高,因此对于五合一膜电极可以采用灰分后进行酸解再进行ICP测试,提高Pt测试的准确度,测试结果误差在10%以内。2.2 微波消解-ICP法2.2.1 铂碳催化剂的微波消解法对于铂碳催化剂粉末样品采用微波消解试验,消解程序:称取大约0.05~0.1 g样品置于消解管进行微波消解,整个程序将近耗时1~2 h。冷却后倒出消解液并定容,消解液保持澄清清亮状态,然后对消解液稀释后分别进行[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测试。下表2是铂碳催化剂在采用微波消解结合[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]与TGA方法、灰分-消解-ICP等几种不同处理方法下的Pt含量的测试结果比较。[align=center]表2 4种方法下催化剂的Pt含量结果比较(%)[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]理论值[/align][/td][td][align=center]微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/align][/td][td][align=center]TGA法[/align][/td][td][align=center]灰化-酸解-ICP[/align][/td][/tr][tr][td][align=center]1[/align][/td][td=1,3][align=center] [/align][align=center]57[/align][align=center] [/align][/td][td][align=center]57.8[/align][/td][td][align=center]56.8[/align][/td][td][align=center]57.3[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]57.9[/align][/td][td][align=center]56.4[/align][/td][td][align=center]55.7[/align][/td][/tr][tr][td][align=center]平均值[/align][/td][td][align=center]57.8[/align][/td][td][align=center]56.6[/align][/td][td][align=center]56.5[/align][/td][/tr][tr][td][align=center]相对误差[/align][/td][td][align=center]——[/align][/td][td][align=center]1.4[/align][/td][td][align=center]-0.7[/align][/td][td][align=center]-0.88[/align][/td][/tr][tr][td][align=center]RSD[/align][/td][td][align=center]——[/align][/td][td][align=center]0.12[/align][/td][td][align=center]0.5[/align][/td][td][align=center]2.0[/align][/td][/tr][/table]结果表明,直接采用微波消解结合[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]可以快速方便测定铂碳催化剂样品的铂含量,该测试效率比标准要求的两种方法要明显提高,而且准确性也有保证。2.2.2 三合一膜电极的微波消解法对于三合一膜电极的微波消解试验,称取0.025~0.05 g/5~10 cm2样品,用剪刀剪成碎屑,采用在上述同样条件下进行微波消解。选用2个典型三合一膜电极样品进行试验,发现该类型的消解溶液呈透明澄清,稀释后进行[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]分析。同时为了更好进行结果对比,采用灰分-酸解-ICP方式进行处理该样品,如图5所示。[align=center][img=,369,254]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010948347411_4202_6103278_3.png!w369x254.jpg[/img][/align][align=center]图5 三合一膜电极在三种方法下的Pt含量结果比较[/align]结果表明微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测得的结果与灰化-酸解-ICP的相当,但是测试效率也高于灰化-酸解方式,并且[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]具有较低的检出限,测定浓度在ng/mL级别,特别适合于低Pt的三合一膜电极样品的测试。2.2.3 五合一膜电极的微波消解法对于五合一膜电极,采用微波消解法进行消解,同样选择上述的消解条件。称取0.1~0.2 g且面积大约为5 cm2五合一膜电极样品,记录称样量和取样面积,在消解后发现膜电极并没有彻底被消解掉,仍然有黑色薄膜层或沉在底部或漂浮,静置后全部沉入底部,对消解液进行定容,然后进行[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测定Pt含量,结果表明微波消解的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]结果与灰化-酸解-ICP在铂含量分析结果上基本保持一致,Pt元素回收率百分比为90~110%。可见5 cm2的取样量对于高Pt和低Pt含量的五合一膜电极,均可以测定,即使有未消解的薄膜,也没有影响五合一膜电极的Pt元素的溶出效率。试验中对微波消解未能消解的不溶物进行定性分析,发现为聚四氟乙烯,为包裹中间层单膜电极的两侧的外层复合膜。值得注意的是在进行微波消解时,设定的温度最好低于280 ℃,最好低于仪器最高限30~50 ℃,设置在250~260 ℃附近,因为消解温度过高,则压力会增大,对消解罐体不利;采用石英或玻璃的消解管,因为膜电极材料含聚四氟乙烯材质,不建议是使用聚四氟乙烯消解罐,避免发生意外。通过微波消解的试验结果发现,对于五合一膜电极中的Pt含量测试,采用微波法完全可以将Pt溶解出来,即使一些复合薄膜层没有被消解掉,但也丝毫不影响Pt元素的溶出效率,Pt含量的测定结果还是满足试验要求。表3列出了膜电极中铂含量测试改进方法的耗时和误差比较。[align=center]表3 膜电极中铂含量的不同方法比较[/align][table][tr][td][align=center]样品种类[/align][/td][td][align=center]方法[/align][/td][td][align=center]TGA法(改进后)[/align][/td][td][align=center]灰化-酸解-ICP法(改进后)[/align][/td][td][align=center]微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法[/align][/td][/tr][tr][td=1,2][align=center]铂碳催化剂[/align][/td][td][align=center]耗时(h)[/align][/td][td][align=center]3-4[/align][/td][td][align=center]14-17[/align][/td][td][align=center]6-8[/align][/td][/tr][tr][td][align=center]误差(%)[/align][/td][td][align=center]±5[/align][/td][td][align=center]±2[/align][/td][td][align=center]±4[/align][/td][/tr][tr][td=1,2][align=center]三合一膜电极[/align][/td][td][align=center]耗时(h)[/align][/td][td][align=center]不适合[/align][/td][td][align=center]14-17[/align][/td][td][align=center]6-8[/align][/td][/tr][tr][td][align=center]误差(%)[/align][/td][td][align=center]/[/align][/td][td][align=center]±10[/align][/td][td][align=center]±10[/align][/td][/tr][tr][td=1,2][align=center]五合一膜电极[/align][/td][td][align=center]耗时(h)[/align][/td][td][align=center]不适合[/align][/td][td][align=center]14-17[/align][/td][td][align=center]6-8[/align][/td][/tr][tr][td][align=center]误差(%)[/align][/td][td][align=center]/[/align][/td][td][align=center]±10[/align][/td][td][align=center]±8[/align][/td][/tr][/table]对于铂碳催化剂而言,TGA法、灰化-酸解-ICP法、微波消解-ICP或[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法的测试误差都能保证在5%以内,其中耗时最短的为TGA,其次为微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法,最长为灰化-酸解-ICP法。对于三合一和五合一膜电极,在几乎相同的测试误差下,微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法具有较大的测试时间优势。3 结论1)灰化-酸解-ICP的国标测试法可以测试膜电极、催化剂的Pt含量,但国标方法测试周期较长尤其在灰化阶段。将灰分的950 ℃保持时间缩短为2~3 h后,灰化阶段提高了效率,缩短了将近一半时间,而后酸解过程也不受影响,Pt结果无差异。2)开发的微波消解-ICP不仅可以快速测定铂碳催化剂、三合一膜电极、五合一膜电极的Pt含量,测试时间相对于灰化-酸解-ICP大大缩短,其次还可以节省酸液试剂。综上所述,微波消解方法不仅可以快速有效溶出膜电极催化剂和三合一膜电极的Pt含量,对于五合一膜电极也同样可以有效的溶出Pt元素,测试的效率远远高于灰化-酸解法,测试结果的准确性好,为燃料电池膜电极中Pt含量的测试提供一种值得参考的实用方法。[s][s][img=,690,404]https://ng1.17img.cn/bbsfiles/images/2023/08/202308010951309118_2002_6103278_3.png!w690x404.jpg[/img][/s][/s]

  • 【资料】化验室常用分析测试操作技术标准应用手册 (上、中、下)

    [COLOR=RED]化验室常用分析测试操作技术标准应用手册 (上、中、下)[/COLOR][B]出版时间:2002年9月出版:万方数据电子出版社ISBN:7-900123-41-5/Z11主编:李斯规格:16开2106页册数:三册+光盘编号:5820规格:16开市场价: 798 元 [/B][QUOTE]第一篇 化验室建设管理与安全 第一章 化验室的基本建设 第二章 化验室安全管理第二篇 化验室分析测试操作基础知识 第一章 计量单位与基本常数 第二章 分析化学常用术语 第三章 化验操作须知 第四章 物理性质的检验与物理常数的测定 第五章 化验室分析化学基础知识 第六章 化学平衡(Chenical Equilibrimn) 第七章 化验室内质量保证与化工企业标准第三篇 化验室分析测试基本操作技术 第一章 试验溶液及其配制方法 第二章 各种化学元素与分子式的测定 第三章 一般实验技术与设备 第四章 质量分析法 第五章 定性分析法 第六章 滴定分析法 第七章 酸碱滴定法第四篇 化验室分析测试色谱技术操作 第一章 色谱技术概述 第二章 色谱仪 第三章 色谱分析法 第四章 色谱定性与定量分析 第五章 色谱分析样品处理第五篇 化验室分析测试操作与化工分析技术 第一章 化工分析概论 第二章 化工分析化验室分析天平 第三章 化工分析技术 第四章 气-固相催化反应工程 第五章 气液相反应过程与反应器 第六章 化学事故经过与讨论第六篇 化验室分析测试操作与绿色化学 第一章 绿色化学 第二章 绿色化学的研究选择 第三章 绿色化工技术第七篇 化工分析实验与常用化工产品分析法 第一章 分析化学实验基本知识 第二章 基本实验操作技能 第三章 重量与容量分析实验实例 第四章 有机物化学定量分析 第五章 药物合成实验 第六章 有机化工产品分析法 第七章 无机化工产品分析法第八篇化学工业基本试剂标准 第一章 一般无机试剂 化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)(GB6 61-92) 化学试剂 硫氰酸钾(GB 648--93) 化学试剂 溴化钾(GB/T649---1999) 化学试剂溴酸钾(GB 650--93) 化学试剂 碘酸钾(GB 651-93) 化学试剂氨水(GB 631-89) 化学试剂 十水合四硼酸钠(四硼酸钠)(GB 632--93) 化学试剂 亚硝酸钠(GB/T 633-94)…… 第二章 一般有机试剂(通用试剂、指示剂、特效试剂) 化学试剂 邻苯二甲酸氢钾(GBl291-88) 化学试剂 乙酸铵(GBl292--86) 化学试剂 1,10-菲■啉(GB 1293-89) 化学试剂 二氯甲烷(GB/T16983-1997) 化学试剂 N,N-二甲基甲酰胺(GB/T17521-1998)…… 第三章 基准试剂 第一基准试剂 (容量)乙二胺四乙酸二钠(GB l0734--89) 第一基准试剂 (容量)无水碳酸钠(GB l0736-89) 第一基准试剂 (容量)邻苯二甲酸氢钾(GB l257-89) 第一基准试剂(容量) 重铬酸钾(GB l0731-89) 工作基准试剂(容量)氯化钠(GB 253-89) 工作基准试剂(容量) 草酸钠(GB 254--90) 工作基准试剂(容量) 无水碳酸钠(GBl255-90) 工作基准试剂(容量) 苯甲酸(GB 2597--90). 第一基准试剂(容量) 氯化钠(GBl0733-89) 工作基准试剂(容量) 碘酸钾(GBl258--90)…… 第四章 化学试剂综合 化学试剂 磷酸盐测定通用方法(GB 9727-88) 化学试剂 硫酸盐测定通用方法(GB 9728-88) 化学试剂 氯化物测定通用方法(GB 9729----88) 化学试剂 草酸盐测定通用方法(GB 9730--88) 化学试剂 硫化合物测定通用方法(GB 9731-88) 化学试剂 草酸盐测定通用方法(GB 9730--88) 化学试剂 硫化合物测定通用方法(GB 9731-88)…… 化学试剂 铵测定通用方法(GB 9732--88) 第五章 附 录[/QUOTE][COLOR=BLUE]下载地址:[/COLOR] http://www.instrument.com.cn/download/shtml/039040.shtmlhttp://www.instrument.com.cn/download/shtml/039041.shtmlhttp://www.instrument.com.cn/download/shtml/039042.shtml

  • 织物接触冷暖感测试评价技术研究现状

    织物接触冷暖感测试评价技术研究现状

    [color=#cc0000]摘要:本文对目前织物冷暖感测试方法的研究现状进行综述,介绍了最大热流和吸热系数测试方法和仪器,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。  [/color][color=#cc0000]关键词:冷暖感、导热系数、吸热系数、织物、蓄热系数、热逸散系数[/color][align=center][img=织物接触冷暖感测试评价技术,690,325]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162131221607_2636_3384_3.png!w690x325.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  织物冷暖感(或热舒适)是织物与人体皮肤接触后织物给皮肤的温度刺激在人大脑中形成的关于冷和暖的判断。当织物与皮肤接触瞬间,由于存在温差,织物与皮肤之间会发生热交换,使皮肤的温度升高或降低。织物与皮肤之间的热交换形式主要为热传导,织物内部的热辐射和自然对流影响很小,可忽略不计。通常情况下(除环境温度高于皮肤温度外),皮肤温度高于环境温度,因此织物与皮肤接触后往往使皮肤温度下降,如果温度下降(或上升)的量超过一定限度,就会使人产生不舒适感。从物理意义而言,冷暖感的强弱,取决于织物和人体接触过程中织物导走或保有人体热量的多少。  织物与皮肤接触瞬间,二者之间存在温差,有明显的传热传质变化。影响皮肤温度及其变化的物理参数主要有:皮肤温度、温度变化速率、温度变化量、环境温度和时间等。织物的冷暖感可以用不同的物理参数进行描述,常用的有导热系数、吸热系数、人体与织物接触时由人体通过织物流向环境的最大瞬态热流。  本文对目前织物冷暖感测试技术的研究现状进行综述,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。[b][color=#cc0000]2. 测试方法[/color][/b]  织物的冷暖感常用最大瞬态热流法、吸热系数法和导热系数法来进行评价,但最大瞬态热流和吸热系数测试中都包含了导热系数这个参数。因此目前冷暖感的各种测试评价方法主要集中在最大瞬态热流和吸热系数的测试方面。[color=#cc0000]2.1. 最大热流法(Q-max Method)[/color]  最大热流法是日本学者Kawabata根据瞬态热传导理论提出的一种织物接触冷暖感测试评价方法,最大热流法的基本原理是在模拟人体皮肤接触织物的瞬态传热过程中对热流变化曲线进行实时测量。如图2-1所示,在测量之前,首先将样品放在温度保持恒定的样品座上,并将由良导热体制成的热板温度升高到比样品高约5~10℃。测量时将热板放置在样品的上表面,热量从温度高的热板流向样品,记录和测量热板温度和接触面上热流密度随时间的变化曲线。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162132495694_4159_3384_3.png!w690x230.jpg[/img][/color][/align][align=center][color=#cc0000]图2-1 最大热流法测量原理和测试模型[/color][/align]  目前国内外普遍用来测量织物热性能的仪器是日本KATO TEKKO公司生产的KES-F7 Thermo LABO型热性能测试仪器,如图2-2所示。对于织物接触冷暖感的测试,此仪器所采用的方法就是上述最大热流法。由于KES-F7型测试仪只考虑热板初始温度比样品表面温度高的情况,因此测出的最大热流密度实际上是相对冷暖感,大的热流密度值对应冷感,小的热流密度值对应暖感。[align=center][color=#cc0000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162135395707_2074_3384_3.jpg!w690x466.jpg[/img][/color][/align][align=center][color=#cc0000]图2-2 KES-F7型热物理性能测试仪[/color][/align]  如图2-3所示,KES-F7型冷暖感测试仪由以下三个基本部分及其控制系统构成:  (1)T. Box(Temperature Detecting Box, 温度测试以及蓄热板)  (2)B. T. Box(Bottom Temperature Box, 热源台)  (3)Thermo Cool(恒温台)[align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136193576_9190_3384_3.png!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图2-3 KES-F7 Thermo LABO接触冷暖感测试仪[/color][/align]  KES-F7型热性能测试仪具有以下三种测试能力:[color=#cc0000]2.1.1. Q-max测试(冷暖感测试)[/color]  如图2-4(a)所示,将样品放置在恒温台上,并将蓄热板放置在热源台上进行蓄热,然后将蓄热板快速放置在样品表面上。蓄积的热量立即移动至低温侧的样品上,此时测试出的热流峰值为Q-max值,测试过程可在1分以内完成。[align=center][color=#cc0000][img=,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136380354_6647_3384_3.png!w690x473.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 冷暖感测试仪操作示意图[/color][/align][color=#cc0000]2.1.2. 稳态导热系数和热扩散系数测试[/color]  如图2-4(b)所示,首先将恒温台设置为室温,将50 mm×50 mm的样品放置在上面,再将热源台的热板紧贴试样放置在上面。在热源台以及护环的温度达到稳定后,通过测量稳态热流既可得到稳态导热系数,测试过程可在2~3分以内完成。  通过达到稳定前的动态热流和温度变化曲线,并结合特定边界条件,还可以实现对热扩散系数的测量。  通过上述测量的导热系数和热扩散系数,如果知道样品的密度,则可以计算得到样品的比热容。  由此可见,KES-F7型热性能测试仪是一个非常经典的瞬态热物理性能测试仪器,通过测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量,即KES-F7型热性能测试仪的热性能测试带有明确的方向性。[color=#cc0000]2.1.3. 保温性能测试[/color]  将上述冷暖感测试仪结合风洞来进行织物的保温性能测试,如图2-5所示。  将样品(100 mm×100 mm以上、最大200 mm×20 mm)和样品安装框一起固定至100 mm×100 mm热源台上进行测试。通常风洞内的空气温度与室温相同,热源台温度为比室温高10℃。当热源台温度以及热流值稳定时,测量热流值就可计算得到保温性能,测试通常在2~5分钟内完成。在具体测试中,还可使用各种测试方法,例如Wet法、Space法和Wet Space法等。[align=center][img=,643,800]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136585934_7979_3384_3.png!w643x800.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-5 织物保温性能测试仪[/color][/align][color=#cc0000]2.1.4. 测试标准[/color]  尽管最大热流法测试技术已经开发了近30年,但一直没有形成国际化的标准测试方法,具体原因将在后续进行分析。基于最大热流法,目前已经建立了相应标准测试方法的国家和地区只有大陆和台湾,如国家标准GB/T 35263-2017《纺织品接触瞬间凉感性能的检测和评价》,以及台湾纺织产业综合研究所制定的《织物瞬间凉感验证规范》(FTTS-FA-019)产业标准。[color=#cc0000]2.2. 吸热系数法(Thermal Absorptivity Method)[/color]  由于人体皮肤在接触织物时的瞬态传热过程中,动态热传递会受到织物的导热系数、比热容和密度的影响。类似上述最大热流法原理和基于瞬态热传递,捷克学者Hes提出了另外一种表征织物冷暖感的参数——吸热系数。吸热系数的定义为:[align=center]b=( [i]λ ρ c[/i] )^0.5   [/align]  式中:[i]λ [/i]代表织物的导热系数;[i]ρ[/i] 代表织物的密度;[i]c[/i] 代表织物的比热容。由此可知,织物的热吸收能力与其导热系数、密度和比热容有关,反映织物和人体接触时织物从人体吸收热量的能力。  为了测试织物的吸热系数,Hes基于瞬态热传导理论开发了相应的测试仪器Alambeta,Alambeta仪器可快速测量瞬态和稳态热物理特性(隔热和热接触特性),也能测量样品厚度。该仪器由两个测量头组成,测试样品放置在两个测量头之间,如图2-6所示,两个测量头都配有热电偶和热流传感器。通过合适的冷却装置将底部测量头调节到环境温度,将顶部测量头调节到受控的恒定温差,热流传感器作用在两个测量头的接触面上。当顶部测量头下降接触被测样品时,可以测量流经样品的上下表面热流。Alambeta仪器可测量多个参数,主要包括导热系数、热扩散系数、吸热系数、热阻、最大热流与静态热流密度之比以及接触点处的静态热流密度,该仪器还可以用来测定织物的厚度。[align=center][color=#cc0000][img=,687,632]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137266204_8528_3384_3.png!w687x632.jpg[/img][/color][/align][align=center][color=#cc0000]图2-6 Alambeta测试仪结构示意图[/color][/align]  吸热系数(thermal absorptivity)也常称之为蓄热系数或热逸散系数(thermal effusivity),针对织物的吸热系数等热物理性能参数,2016年美国推出了ASTM D7984“采用改进型瞬态平面热源(MTPS)仪器测量织物吸热系数的标准试验方法”。  ASTM D7984改进型瞬态平面热源法是基于经典的瞬态平面热源法,将瞬态平面热源法中双样品夹持薄膜探头的测试结构改变为单样品测试形式,将另外一个样品用已知热物理性能的材料代替,并与薄膜探头集成为一个测试探头,同样可以实现瞬态平面热源法的大部分测试功能,可以实现对吸热系数和导热系数的测量,但无法直接测量最大热流密度。  执行ASTM D7984标准的典型测试仪器为加拿大C-Therm公司的TCi仪器,如图2-7所示。与瞬态平面热源法一样,TCi仪器测试过程中是给探头中的加热元件施加固定量的热能(已知电流),给被测样品提供少量热量。该热量导致样品表面温度升高1~1.5℃,接触面处的温度升高引起传感器元件的电压变化,根据温度升高的多少和快慢来测量吸热系数和导热系数。[align=center][img=,690,436]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137462214_3758_3384_3.png!w690x436.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-7 改进型瞬态平面热源仪器。(A)TCi仪器和测量探头,(B压缩测试附件[/color][/align][color=#cc0000][b]3. 分析和结论[/b][/color]  综上所述,上述各种测试方法具有以下特点:  (1)KES-F7和Alambeta仪器中的最大热流法测量实际上都是非常主观的相对测试仪器,织物冷暖感的最大热流取决于测试仪器和设定参数,最典型的如蓄热板的材质和尺寸,不同材质和尺寸的蓄热板代表不同的蓄热量,相应的就会得出不同的最大热流值。另外,热源台和恒温台的不同温度设定也会得到不同的测量结果。这也就是说最大热流值并不能代表织物自身的热物理性能,这也是造成三十多年来最大热流法一直无法形成标准测试方法的主要原因。  (2)KES-F7和Alambeta仪器都是瞬态热物理性能测试方法的典型应用,其最大特点就是通过一维传热测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量。改进型瞬态平面热源法是基于三维传热模型,测试的是样品整体的热物理性能,因此无法进行方向性的测试评价,而织物的各向异性特征非常明显。  (3)KES-F7和Alambeta仪器的测试模型都是基于等温或绝热边界条件,这与同样基于瞬态传热理论的闪光法非常相似,不同之处只是加载到样品前表面的热信号形状不同。在闪光法中,样品绝热边界条件通过空气或真空环境来实现,而在KES-F7和Alambeta仪器对织物的测试则只能采用低导热隔热材料,由此给导热系数和热扩散系数测量带来了较大测量误差(10%),而闪光法测量误差一般小于3%。这种较大的测量误差很容易将织物结构和纤维等的变化所带来的影响掩盖掉,不利于织物的研究、生产和评价。因此,如何使得测量装置更准确的符合测试模型边界条件要求,提供更准确的测试评价,将是下一步研究工作的重点。  (4)与其他测试方法一样,ASTM D7984标准方法也对边界条件有严格的要求,其中一个重要边界条件是加载到样品上的热量只能在样品内部传递,即瞬态平面热源法(包括改进型)测试模型中相对于加热量和加热时间而言要求样品是半无限大。对于很多较薄的织物则不能满足这种边界条件,由此使得测量结果的误差往往会非常巨大。因为这个原因,ASTM D7984标准方法比较适合最大热流密度比较小的保暖性织物的测试评价,而对于最大热流密度较大的轻薄凉爽型织物的测量则会误差较大。为了尝试解决使用ASTM D7984标准方法中存在的这个问题,TCi仪器采用将样品放置在探头之上,依靠样品另一侧的空气作为绝热边界条件,但这又带来了织物样品与探头表面接触不良的问题,测试结果中会包含很大的接触热阻。总之,对于织物这类较薄的材料,采用改进型的瞬态平面热源法进行测试非常勉强,这与经典的瞬态平面热源法一样,对薄膜热物性测试的可靠性很低。正因为如此,瞬态平面热源法测试仪器厂家HOT DISK公司为了解决较薄材料的测试,专门又开发了新的测试方法。  (5)ASTM D7984标准方法的最大问题是无法直接测量最大热流,需要测量一系列其他热性能参数并进行复杂的计算才能得到最大热流。但无论是瞬态平面热源法还是改进型的瞬态平面热源法,在热扩散系数和比热容测试中都存在较大的系统误差,这势必会对最大热流的计算结果带来较大的误差积累。  (6)对于织物热性能的上述测试方法,都存在的一个问题就是测量准确性的考核评价,缺乏稳定可靠的标准材料。在这方面美国ASTM已经开始着手开始进行相应的工作,并组织进行多个实验室的对比测试。  通过对上述两种织物接触冷暖感测试评价方法的介绍和分析,可以看出这两种测试方法都是基于人体皮肤接触织物时的瞬态传热进行测量。尽管两种方法测试的参数和物理意义都不同,但基于瞬态传热方式,最大热流密度和吸热系数这两个参数具有内在的关联性。后续我们将对这种内在关联性进行分析研究,并研究相应的测试方法和仪器,来同时满足上述两种测试方法。  下一步的研究重点还包括以下两方面内容:  (1)测试边界条件的保证:在最大热流法和吸热系数法测试中,边界条件包括等温边界条件和绝热边界条件两种。下一步工作重点是在硬件上如何更完美的实现这些边界条件要求,从而保证测量准确性和可靠性。  (2)仪器测量准确性考核:测量准确性考核从三方面进行,首先是采用数值模拟计算的方法对最大热流法测量准确性进行检验考核,第二是与其他热物性测试方法进行对比来考核导热系数、热扩散系数和吸热系数测量的准确性,第三是采用已知热性能的固体薄片材料(或标准材料)来进行考核。[color=#cc0000][b]4. 参考文献[/b][/color]  略[align=center]=======================================================================[/align]

  • 烧蚀防热材料高温热物理性能新型测试方法的初步研究

    烧蚀防热材料高温热物理性能新型测试方法的初步研究

    [color=#ff0000]摘要:文本针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期准确测试烧蚀防热材料的高温热物理性能,由此得到烧蚀防热材料在热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[/color][align=center][img=烧蚀防热材料导热系数测试,600,390]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011700416434_107_3384_3.png!w690x449.jpg[/img][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]烧蚀防热材料的高温热物理性能是高温下的传热管理和热化学烧蚀建模的必要参数,但因为烧蚀材料具有特殊性:它们具有相当低的热导率,加热过程中会产生气体,热性能非单调变化,甚至材料的热性能还取决于加热速率。这种特殊性造成目前的各种稳态法和瞬态法都不适合烧蚀防热材料的热物理性能测试,主要是因为在测试之前的温度稳定期间就已经发生了热化学反应。因此,烧蚀防热材料的高温热物理性能测试一直是个技术难题,需要开发一种新型测试方法,对整个使用温度范围内含有热化学反应过程的烧蚀防热材料热物理性能进行准确测量,甚至测试出不同加热速率下烧蚀防热材料的热物理性能。文本将针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期测试烧蚀防热材料的高温热物理性能,由此得到热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[size=18px][color=#ff0000]二、测试方法[/color][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此建立了如图1所示的传热学第二类正规热工工况测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面为绝热条件。[align=center][img=烧蚀防热材料导热系数测试,350,369]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702158319_7823_3384_3.png!w625x659.jpg[/img][/align][align=center]图1 恒定加热速率法测量原理[/align]在图1所示的测试模型中,假设其中的热传递为一维热流,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=烧蚀防热材料导热系数测试,500,140]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702541092_2146_3384_3.png!w690x194.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效热扩散率随平均温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到热流传感器的作用,即在线性升温过程中测量金属板前后两表面的温度,并结合金属板的已知热物理性能参数,可计算得到流经金属板的热流密度,由此间接测量得到流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效热导率随平均温度的变化曲线。根据上述测量获得热扩散率和热导率,并依据比热容、密度、热扩散率和热导率之间的关系式λ=ρ×C×α,可计算得到被测样品的质量热容随温度的变化曲线。如果采用热膨胀仪和热重分析仪精确测量被测材料在不同温度下的密度变化,通过关系式就可获得被测样品的比热容随温度变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热隔热材料热物性测试的有效性。[size=18px][color=#ff0000]三、今后的工作[/color][/size]尽管进行了详细的测试公式推导和有限元仿真计算,但对于这种新型的恒定加热速率热物性测试方法,还需进一步开展以下研究工作:(1)采用无热化学反应的高温隔热材料进行测试,以考核测试方法的重复性和进行测量不确定度评估。(2)采用无热化学反应的高温隔热材料与其他高温热物性测试方法进行对比,如稳态热流计法、热线法和闪光法等。(3)采用烧蚀防热材料进行高温测试,以考核测试方法的重复性,并结合其他热分析方法、热模拟考核试验(石英灯、氧乙炔、小发动机火焰和风洞)和建模分析,验证新型测试方法的有效性。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 激光粒度仪测试气溶胶粒径的研究

    气溶胶(Aerosol)是固体或液体微粒悬浮于气体介质中所形成的系统,气溶胶粒子的大小是决定气溶胶行为的最重要参数。粒子的沉降、扩散、蒸发、凝并、对光的散射等等都与粒子大小有关。我们日常所见到的雾、霾、灰尘等都属于气溶胶,气溶胶除了对我们的生活造成不便之外,还可被广泛应用于各种科学研究中,包括过滤材料对气体中粒子的过滤效率的检测,有害气溶胶对人体危害程度的研究等等,由于粒径大小对于气溶胶的行为影响最为关键,因此,在使用气溶胶过程中,对于粒径大小的检测尤为重要,本研究通过使用Winner311XP型激光粒度仪,在开放空间内(避免气溶胶相互凝并)直接检测,读取气溶胶粒径,为后续的研究工作提供了准确的数据支持。 目前,在使用气溶胶检测空气过滤材料过滤效率的相关标准中,最常用到的是邻苯二甲酸二辛酯(DOP)或与之类似的油性介质(如DOS、DEHP、玉米油等),在一定的压力和特制喷嘴作用下,通入压缩空气,在液体内部产生气泡,气泡上升至液体表面时破裂产生大量气溶胶,将气溶胶通入过滤材料上表面,并在风力作用下穿过过滤材料,对比过滤材料上表面和下表面的气溶胶浓度,即可计算得出过滤效率。除此之外,经常用到的气溶胶介质还有NaCl,将NaCl盐溶液在压力作用下产生气溶胶,并经干燥、除静电后作为检测用气溶胶进行测试。 青岛众瑞智能仪器有限公司专业研发、生产气溶胶发生仪器,用于高效过滤器、口罩等过滤材料的检测,在研制过程中,产生的气溶胶粒径作为最重要的指标之一,一直无法有效确认,由于相关标准规定测试气溶胶的粒径大多为0.3μm~1.0μm之间,属于亚微米级别,国外仪器价格昂贵,国内产品又难以检测亚微米气溶胶粒径,经过反复比较测试,济南微钠颗粒股份有限公司研制的Winner311XP型激光粒度仪检测范围可覆盖 0.1μm~100μm范围,有效检测亚微米级别的气溶胶粒径。现将检测结果报告如下。1仪器与方法1.1仪器与材料:ZR-1300型气溶胶发生器(青岛众瑞智能,油性气溶胶发生器);Winner311XP型激光粒度仪(济南微钠颗粒仪器0.1μm~100μm);PAO-4(聚α烯烃);2%NaCl水溶液。http://club.chem17.com/Services/ForumAttachment.ashx?AttachmentID=20040图一 Winner311XP(青岛众瑞实验室)1.2测试方法:1.2.1 PAO气溶胶粒径检测方法a)打开Winner311XP开机预热,使用标准粒子进行校准;b)将 1LPAO-4油注入 ZR-1300型气溶胶发生器油箱中,接通电源,打开气溶胶发生器开关,调节喷雾压力到合适范围,输出 PAO气溶胶;c)将气溶胶输入到 Winner311XP检测光路通道中,待稳定后,开始采集读数;d)采集读数结束后,形成检测报告。1.2.2 NaCl气溶胶粒径检测方法a)打开 Winner311XP开机预热,使用标准粒子进行校准;b)配制 2%NaCl水溶液,加入到 ZR-1300型气溶胶发生器油箱中,接通电源,打开气溶胶发生器开关,调节喷雾压力到合适范围,输出含水 NaCl气溶胶;c)将含水 NaCl气溶胶通入干燥器中,加热干燥,形成的干燥气溶胶通过除静电装置后,输出测试用 NaCl气溶胶;d)将 NaCl气溶胶输入到 Winner311XP检测光路通道中,待稳定后,开始采集读数;e)采集读数结束后,形成检测报告。2检测结果2.1 PAO气溶胶粒径检测结果 在同一测试条件(包括喷雾压力、喷嘴数量)下,多次反复测试 PAO-4气溶胶粒径,得出检测数据基本一致,Winner311XP仪器测试稳定性好,结果保持了较高的一致性,PAO气溶胶检测结果如图二所示;2.2 NaCl气溶胶粒径检测结果 NaCl气溶胶的检测结果随实验条件变化影响较大,包括盐溶液浓度、喷雾压力等都对粒径的大小有一定影响,可根据标准中对粒径的要求,通过改变实验条件,逐步探寻最佳的喷雾参数,为仪器研发提供很好的数据支持, NaCl气溶胶检测结果如下图所示。http://club.chem17.com/Services/ForumAttachment.ashx?AttachmentID=20039图一PAO气溶胶检测结果 图二NaCl气溶胶检测结果3.Winner311XP在气溶胶检测方面的应用分析 Winner311XP作为一款专业检测气溶胶粒径的高精度分析仪器,检测范围0.1μm~100μm,覆盖了整个常见气溶胶粒径范围,可广泛应用于环境监测、洁净环境检测、科学研究等领域。 环境监测方面,目前全国各地环境监测站普遍将 PM10(空气动力学粒径小于 10μm)及 PM2.5(空气动力学粒径小于 2.5μm)颗粒物检测作为重点,每小时向公众报告检测数据,PM10和PM2.5的粒径选择是通过标准切割器完成的,各种不同流量(包括小流量 16.7L/min、中流量 100L/min、大流量 1.05m /min)的切割器,质量良莠不齐,经过切割的颗粒物粒径是否符合标准规定有待检测,使用Winner311XP可有效解决这个问题,之前国内仅有少量几家国家级检测机构具备测试切割器准确性的能力,如果各地环境监测机构均实现对切割器的切割准确性检测,对于提高我们国家的 PM10、PM2.5检测数据准确性有很大作用。洁净环境检测方面,在高效过滤器检测、药厂洁净厂房检测、生物安全柜等洁净设备检测的应用上,过去对于使用的气溶胶粒径无明确要求,有的采用ISO标准,有的采用美国标准,还有的国内标准允许使用大气自然尘作为气溶胶来源,这些都无法保证检测数据的准确性,随着新的检测标准的推行,对气溶胶粒径提出了明确的要求,这样在检测过程中,检测单位必须要使气溶胶的粒径符合标准的规定,Winner311XP可以很好的满足高效过滤器检测过程中常用的亚微米级别的气溶胶粒径检测需要。 在科学研究方面,生物气溶胶、粉尘气溶胶等特定物质形成的气溶胶特性研究方面,由于粒径是影响其特性的最关键指标,粒径大小的准确测定对于研究其空气动力学特性、对人体的危害程度等都具有非常重要的作用。4结论 Winner311XP激光粒度仪在我们的仪器研制过程中,为产品性能提升、输出气溶胶粒径控制等关键技术突破提供了准确的数据支持,仪器运行稳定、检测数据准确度高、重复性好,产品品质值得信赖。

  • 【分享】几种常用荧光探针的化学发光成像研究

    [b][size=4]利用双(2, 4, 6)三氯苯基过氧化草酸酯( TCPO) 2过氧化氢(H2O2 ) 2咪唑2荧光探针的化学发光体系,研究了荧光探针化学发光成像,对几种常用的荧光探针(丁基罗丹明、罗丹明B、罗丹明6G、荧光素及异硫氰酸荧光素等)进行了定量分析。本方法具有高灵敏度、成像分析高通量等优点,线性范围宽,检出限达10 - 11mol/L。对四甲基异硫氰酸罗丹明(TR ITC)标记的单克隆羊抗人IgG的化学发光成像分析,比相同条件下荧光成像的检出限低一个数量级。[/size][/b]

  • 质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    [color=#cc0000]摘要:针对质子交换膜燃料电池中气体扩散层材料厚度方向导热系数测试,介绍了气体扩散层在压缩等条件下进行测试的几种有效测试方法,并分析了稳态法和瞬态法的特点、局限性和应用中存在的问题。并针对瞬态法开展了深入研究,提出了一种更实用的新型测试模型结构。[/color][color=#cc0000]关键词:燃料电池,气体扩散层,导热系数,温度波法,激光闪光法[/color][align=center][color=#cc0000][img=气体扩散层导热系数测试,690,454]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152122447766_8811_3384_3.jpg!w690x454.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 概述[/color][/b]  质子交换膜燃料电池中的气体扩散层(GDL)材料呈现明显的各向异性特点,而且厚度很薄,也就是气体扩散层材料是微米量级的物理尺度。在如此小的物理尺度下对薄膜材料性能进行准确测量评价,势必面临着严峻的技术挑战,这种技术挑战完全是薄膜材料面内方向热物理性能测试无法比拟的,毕竟物理尺度不在一个量级上。因此,上海依阳实业有限公司针对薄膜材料,特别是质子交换膜燃料电池中的气体扩散层薄膜材料,对厚度方向导热系数测试技术进行研究,以在实际工程应用中建立起测量准确性高、且操作简便的测试方法和测试仪器。[b][color=#cc0000]2. 气体扩散层厚度方向导热系数测试要求[/color][/b]  根据目前质子交换膜燃料电池中的气体扩散层(GDL)材料的现状,GDL薄膜材料在厚度方向上的导热系数测试,要考虑以下几方面的特性:  (1)各向异性条件:如文献报道,各种GDL材料的面内方向和厚度方向导热系数分别为3.5~15W/mK和0.2~2W/mK。这基本就确定了GDL薄膜厚度方向导热系数变化范围大致为0.05~5W/mK,这个范围基本就是非金属薄膜材料的导热系数范围。  (2)厚度范围:各种GDL材料的厚度基本都在100~500范围内。  (3)压缩力条件:在燃料电池装配过程中会对GDL产生一定的压缩力来改变电池性能,加载到GDL上的压力范围一般为1MPa以下,最大不超过6MPa。  [b][color=#cc0000]3. 测试方法及其特点分析[/color][/b]  薄膜材料的导热系数测试方法众多,但由于GDL被测样品要在上述加载压力下进行测试,有些方法并不适合。合适的测试方法基本上分为稳态法和瞬态法两类。[color=#cc0000]3.1. 稳态法3.1.1. 稳态热流计法[/color]  对于薄膜和薄层材料厚度方向导热系数的测试,最常用的方法是A-S-T-M D5470。由于这种方法基于稳态热流测量,所以通常称之为保护热流计法或恒定热流法。另外,由于这种方法可以对被测样品加载可控的压缩力和对接触热阻进行测量,使得这种方法在大多数GDL厚度方向导热系数测量中得到应用。[align=center][img=,690,547]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152116413556_4706_3384_3.jpg!w690x547.jpg[/img][/align][align=center][color=#cc0000]图3-1 气体扩散层(GDL)厚度方向导热系数测量装置示意图[/color][/align]  如图3-1所示,在稳态热流计法中,GDL样品夹在上下两个热流计棒之间。上热流计顶部与热板接触,下热流计棒底部与冷板接触,因此通过柱形棒轴线方向从顶部到底部存在连续的热流,实验装置也设计成热量仅允许沿轴向传递。通过温度传感器测量棒上的温度分布梯度(如图3-1所示,并排放置,在顶部和底部棒上具有相同间隔),施加到GDL样品上的压缩载荷也通过负载装置控制。在达到稳态条件下,分别测量流经样品的热流、样品厚度方向上的温差和样品厚度,就可根据稳态傅立叶传热定律计算得到GDL样品厚度方向上的导热系数。[color=#cc0000]3.1.2. 准稳态法[/color]  准稳态法是一种介于稳态和瞬态方法之间的一种导热系数测试方法,在板状被测样品的一面线性升温和降温过程中,在一维热流边界条件下,样品的冷热面温差会逐渐趋于一种相等状态,这个动态过程中的稳态阶段,就称之为准稳态。通过准稳态下的测量可确定被测样品导热系数随温度的实时变化曲线,准稳态法导热系数测试所对应的标准测试方法为A-S-T-M E2584。  准稳态法的测量原理如图3-2所示,Zamel等人采用准稳态法对用作GDL的碳纸在厚度方向的导热系数进行了测量,并测量了温度、压缩和PTFE加载对碳纸厚度方向导热系数的综合影响。在测试中所用的样品材料为日本东丽TPGH-120型号的碳纸,单张碳纸的厚度为370μm,被测样品由6层碳纸组成,总厚度为2.22 mm。测试温度范围为-50~120℃,压缩力大小最大为1.6 MPa。如所推测的那样,在碳纸未经处理和经PTFE处理过的不同情况下,随着压缩增加,导热系数增加。此外,他们还观察到温度的升高导致厚度方向导热系数提高。这种行为与面内导热系数研究的测量结果形成对比,表明碳纤维的热膨胀具有方向依赖性。[align=center][img=,690,561]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117126996_6136_3384_3.jpg!w690x561.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 准稳态法GDL厚度方向导热系数测量原理图[/color][/align][color=#cc0000]3.1.3. 稳态法应用中存在的问题和局限性[/color]  目前GDL厚度方向导热系数测量的大多数都是采用稳态测量方法,从文献报道上来看基本都是采用自行搭建的测试仪器。稳态法的最大特点是原理模型简单,这往往误导了很多此方法的使用者。因为稳态法原理模型所要求的边界条件非常苛刻且实现难度大,要做到对薄膜类材料导热系数准确测量需要非常精密的加工制造和复杂的校准过程,所以很多国外商品化稳态法测试仪器往往很昂贵,而这些往往是自行搭建仪器最容易忽略的关键内容,由此带来的结果就是测试数据波动性大和误差大,不同文献往往会得出相反的结论。  迄今为止,已经尝试了实验性努力以使用稳态法了解压缩对厚度方向导热系数的影响。用稳态法Khandelwal和Mench测量了温度在+26~+73℃范围内对TORAY碳纸导热系数的影响,他们报告了导热系数随温度升高而降低。他们的测量是在2MPa的压缩力下进行,该压缩力大小代表着接触热阻最小化的压力。在同一项研究中,他们还测量了Teflon对SIGRACET碳纸处理的影响,并表明在碳纸上添加PTFE会大大降低其导热系数。  在文献中还研究了压缩和添加PTFE对多个制造商碳纸的总导热系数的影响,观察到的一般趋势是厚度方向导热系数随着压缩压力的增加而增加,这主要归因于碳纤维之间总接触热阻的降低。在Burheim等人的研究中,他们研究了压缩、厚度、PTFE和液态水对碳纸的厚度方向导热系数的影响,他们报告说,添加PTFE会导致整体导热系数降低,而压缩和液态水会导致这种性能提高。此外,他们的主要观察之一是具有不同厚度的TORAY纸显示出不同的导热性,他们将这一发现主要归功于这种碳纸的制造过程,而且他们假设较厚的样品是通过将较薄的样品堆叠在一起而制成的。  在Nitta等人的研究中报道了,尽管施加的压力高达5.5MPa,但发现TORAY碳纸的导热系数与压缩压力无关,他们认为这种趋势主要是由于通过空气的热传递引起的,尽管其导热系数低于固体碳纤维的导热系数。值得注意的是,根据TORAY材料的规格参数,不考虑纸张厚度时,TORAY碳纸厚度方向导热系数在室温下为1.7 W/mK。没有关于TORAY所使用的测量方法的公开信息,此外,在已发表的文献中关于获得该值所需的压缩压力存在很大差异。例如,根据Khandelwal和Mench和Burheim等人的研究,压缩压力对整体导热系数有显著影响,而在参考文献中可以看出这种情况并非如此。  通过对大量文献进行分析,发现在气体扩散层(GDL)厚度方向热导率测试中很多研究机构选择稳态法测量导热系数,主要出于以下几方面的考虑:  (1)同时兼顾气体扩散层样品面内方向导热系数的测试。  (2)同时兼顾气体扩散层样品厚度方向电导率的测试。  (3)可进行仪器结构扩展以兼顾薄膜样品面内方向电导率和导热系数的测试。  由于在稳态法测试仪器研制过程中,缺乏对测试模型和边界条件的深刻理解,缺乏仪器设计和高精度制造的能力,缺乏校准和考核仪器的技术手段,以及稳态法自身存在的局限性,这些都会造成稳态法测试仪器对薄膜导热系数测量产生较大误差,使得薄膜热物理性能变化规律很容易淹没在仪器的系统误差内。  纵观各种稳态法测试仪器,在薄膜材料厚度方向导热系数测试应用中普遍存在的问题以及测试方法固有的局限性主要表现在以下几个方面。  (1)温度传感器的选择:温度测量的准确性差是目前稳态法薄膜导热系数测量的最严重问题。温度测量涉及到流经薄膜样品厚度方向热流测量和薄膜样品厚度方向上两个表面上的温度差,因此温度测量对导热系数和热阻测量精度有着直接影响。尽管在稳态法中温度测量可以是相对形式(温差值),但对温度传感器的灵敏度、稳定性和一致性要求非常高。绝大多数自制稳态法仪器普遍采用细径铠装热电偶进行测温,采用细径主要是为了减少铠装热电偶金属套管带来的侧向散热损失。而热电偶是一种测温精度较差的温度传感器,在常温附近更容易引起较大误差,所以热电偶的测温精度根本无法满足要求。但如果选择精度合适的电阻温度传感器,则会增大传感器尺寸,带来更大的定位误差,同时会增加传感器自身导热带来的散热损失。  (2)温度传感器的校准和配套措施:温度传感器除了在安装前需要进行自身校准之外,因为温度传感器还涉及到热流测量和样品表面温度的推算,安装后的温度传感器还需要进行一系列的在线校准来对传感器和装置做出准确的评估和合理的修正。另外,为了防止温度传感器引线带了的侧向热损,需要配套专门用于热电偶引线的热防护装置,这势必使得整个测量装置非常复杂。A-S-T-M D5470只是给出了原则性的规定,并没有详细的描述,这方面内容在A-S-T-M C177中有着详细描述以及试验考核验证过程。  (3)对于薄膜厚度方向导热系数测试,薄膜样品厚度,特别是在线受压时的厚度要求均匀性要好,这就对测量装置的机械移动机构和在线厚度测量机构提出非常高的要求,位移、平行度和位移测量至少要达到微米量级精度,否则很容易在加载压力过程中使得薄膜样品产生倾斜而带来很大的热阻和导热系数测量误差。同时,还需要测试仪器在整个生命周期内始终保持这个高精度。  (4)综上所述,可以将稳态法导热系数和热阻测量装置等效看作是一个精度更高的大号螺旋千分卡尺,位移及其厚度测量精度至少优于10微米,而且还要保证平行度,同时还要布置上多只温度传感器及其主动和被动热防护装置。所有这些都会使得相应的稳态法测试仪器较为复杂,在选材、设计和加工制作中要十分谨慎,并经过一系列复杂的校准和考核试验后,仪器才能正常使用。目前我们看到的国内外大多数自制的稳态法测试仪器,包括国内一些仪器厂商生产的一些低价的稳态法测试仪器,只能属于教学类仪器,根本经不起规范的考核验证的检验,无法真正在科研生产中进行准确测量,使得很多材料特征及其变化规律往往淹没在巨大的测试误差范围内。[color=#cc0000]3.2. 瞬态法[/color]  瞬态法不同于稳态法需要人为加载一个较大的温度梯度,瞬态法测量时只是在稳态样品上施加一个1℃左右的微小温度扰动,测量由于温度扰动所引起的温度幅度或相位变化,测试过程更快捷,测试边界条件更接近于薄膜材料的真实使用环境,直接得到的测量结果往往是热扩散系数。尽管瞬态法理论模型和数据处理十分复杂,但测量装置十分简单,可以直接放置在各种实际应用环境中进行测试,特别适用于老化过程中薄膜材料性能的实时衰减考核。  在ISO 22007标准测试方法中,比较全面的对各种瞬态法做出了规定。但针对气体扩散层(GDL)厚度方向导热系数在压力加载过程中的测试,比较合适的瞬态法是温度波法和激光闪光法。由于瞬态热线法和平面热源法测量的是体积导热系数,无法明确测量厚度方向导热系数,并不适合各向异性GDL厚度方向导热系数测试。[color=#cc0000]3.2.1. 温度波法[/color]  ISO 22007-3规定了一种温度波分析方法,用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。  ISO 22007-3中给出了温度波法测量装置示意图,如图3-3所示,同时还给出了直接溅射到薄膜样品前后表面上的加热器和传感器元件的示例,如图3-4所示。[align=center][img=3-3 温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925076294_8710_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图3-3 温度波法热扩散系数测量装置示意图[/color][/align][align=center][color=#cc0000][img=3-4 加热器和传感器单元示例,690,381]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925274567_6425_3384_3.jpg!w690x381.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 加热器和传感器单元示例[/color][/align]  从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。  由此可以看出,在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,温度波法也可以在测量过程中对样品加载一定的压力,但温度波法则规避了稳态法温度和热流测量方面的复杂问题,并采用交流加热和锁相放大技术可以有效的提取测量信号和减少误差,可以对薄膜材料进行高灵敏测量。  温度波法对薄膜热性能测试有着明显优势,Morikawa和Hashimoto采用此方法对芳香族族聚酰亚胺薄膜厚度方向热扩散系数进行了测量,获得了10~570K温度范围内厚度范围为0.1~300μm的薄膜热扩散系数。  但从图3-4所示的样品制备中可以看出,需要在薄膜样品的两个表面上进行繁琐的溅射工艺处理,这明显制约了温度波法的广泛应用,这也是ISO 22007-3温度波法标准颁布这么多年来一致没有推广使用的主要原因。[color=#cc0000]3.2.2. 激光闪光法[/color]  在ISO 22007-4对激光闪光法也做出的规定。激光闪光法的原理是使用短能量脉冲(通常由激光提供)照射样品的正面,并使用红外探测器记录样品背面的后续温度升高。从样品背面的温度-时间曲线的形状和样品厚度,可以确定样品的热扩散率。对于具有多孔或透明性质的薄膜材料,它们必须在测试前进行涂覆以确保分别在前后面进行吸收和发射。激光闪光法测量原理和样品表面处理如图3-5所示。[align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117530286_1398_3384_3.jpg!w690x236.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 激光闪光法测量原理和样品表面处理示意图[/color][/align]  激光闪光法最大的特点是非接触测量,很容易进行各种温度下的测试,因此激光闪光法在薄膜热物理性能测试中应用十分广泛。但对于气体扩散层(GDL)这种特殊薄膜材料的测试,采用激光闪光法则存在以下问题:  (1)气体扩散层(GDL)是一种多孔材料,相对于激光而言属于透光材料,在采用激光闪光法测试是需要对GDL样品进行表面处理,需要镀金和喷涂石墨来进行遮光处理,但这样的样品表面处理会使涂层材料通过孔隙进入GDL样品而对测量结果带来严重影响。  (2)GDL薄膜材料需要在可控压力加载情况下进行测试,而普通的激光闪光法测量装置并不具备压力加载和控制能力,由此使得激光闪光法很少用于GDL导热系数的测试。[color=#cc0000]3.2.3. 瞬态法特点和应用中存在的问题[/color]  在薄膜材料热性能测试方面,稳态法与瞬态法有着明显区别和各自的显著特点。  稳态法是基于温度和热流处于不随时间变化的稳定状态下进行测试的一种方法,测量薄膜材料热性能基本是基于较厚块体样品的测试软硬件体系。而在薄膜材料稳态法测试过程中,由于样品厚度的减小,相应的被测信号(如温度和热流)相应的也会变小,这使得在块体样品测试中一些并不明显的问题得到了放大和凸出,如温度传感器精度、热损影响和测量表面精度等。为了解决因样品变薄所带来的一系列问题,就需要增加相应的辅助措施来保证测试满足边界条件,从而造成测试设备整体十分复杂,并需要进行一系列的校准验证考核试验,但效果并不十分明显。从另一个方面来看,稳态法是在块体材料热性能基础上发展起来的测试方法,对于较大尺寸的块体样品测试技术非常成熟和稳定。为了进行薄膜材料测试,在稳态法上做的任何工作都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,但毕竟是测试能力下限,受到了稳态法自身的制约,这种扩展空间十分有限且效果很难保证。这也是市场上没有可用于薄膜材料热性能测试仪器的主要原因。  瞬态法与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小,这就是瞬态法测试设备往往比较简单的主要原因。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。  瞬态法与稳态法一样,在实际应用中都存在以下几方面的共性问题:  (1)在线厚度的均匀性和准确测量问题:样品尺寸越大,样品厚度越小,厚度均匀性越难保证。稳态法由于要布置多只温度传感器而使得样品面积尺寸没有多少减少余地,所以在厚度均匀性保证上有一个极限值。但瞬态法在样品尺寸变化上则有很大空间,瞬态法可以根据激励源和探测器的尺寸来改变样品尺寸大小,样品可以做到很小尺寸,如激光闪光法样品尺寸可以做到直径5~12mm,温度波法样品尺寸还可以更小,由此使得瞬态法更容易保证样品厚度的均匀性以及在线准确测量。  (2)接触热阻问题:无论是稳态法还是瞬态法,测量中都会面临接触热阻问题,在薄膜材料测试中会更为明显。稳态法解决接触热阻问题是通过测量一系列相同材质和表面状态但厚度不同的样品,通过测试结果推算出接触热阻。但对于薄膜材料而言,一系列不同厚度薄膜样品很难加工制作,另外薄膜厚度均匀性问题也会造成接触热阻测量误差很大。因此无论是稳态法还是瞬态法,采用变厚度测量方法测试接触热阻只能算是一种无奈之举。在瞬态法测试过程中,可以将接触热阻看作是另一种材质的样品薄膜,整个测试模型就可以看作是一个多层薄膜结构的测试问题。只要采用瞬态法测量结果推算出各分层样品的热性能参数,就可以消除接触热阻的影响。随着瞬态法理论模型的发展,目前已经找到多层结构求解的技术途径,还需要进一步的模拟计算和试验考核以验证此方法的准确性和可靠性。  (3)多层膜问题:大多数薄膜材料在实际应用中都是沉积在基材上,或是与其他薄膜材料进行复合后使用,呈现单层结构并能用于测量的薄膜材料很少,因此更有应用价值的是多层膜的测试问题,特别是对于多层膜样品要能够测试出各个单层薄膜的热物性参数,同时还要考虑压缩力等外部环境条件。多层膜问题与接触热阻问题类似,核心都是一个根据瞬态法测量结果求解单层膜信息的科学问题。[b][color=#cc0000]4. 瞬态法测试技术的深入研究[/color][/b]  从上述瞬态法特点和存在问题中可以看出,对于薄膜材料,特别是对于质子交换膜燃料电池气体扩散层薄膜材料,瞬态法测试中很大的问题是要对每个被测气体扩散层样品进行表面加工和处理,这显然会增大测试的难度和工作量。如果样品材料的刚度不够而发生皱着和弯曲,则会很难制造合适的被测薄膜样品,因此薄膜测试中被测样品的制作和提取一直是个比较棘手的问题。  我们通过分析,对瞬态法测试技术进行了更深入的研究,特别是在被测样品环节提出了一种新的试验方法。这种新方法就是不在被测样品上进行任何处理,将原来对样品表面的处理转移到两片基材上,通过两片基材把被测样品夹持在中心位置来达到样品表面处理的相同效果。新方法的原理如图4-1所示。[align=center][img=4-1 新型瞬态法测试模型原理示意图,690,396]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151926256162_9109_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#cc0000]图4-1 瞬态法新型模型原理示意图[/color][/align]  针对不同的瞬态测试方法,这种改进后的瞬态法模型可以有不同结构形式,并具有以下几方面的功能和特点:  (1)对于温度波法而言,基体就相当于图3-4中的背板,可以将加热器、探测器和电极引线直接溅射在背板上,然后将被测薄膜样品加持在两块背板之间。这样避免了对被测样品的表面处理,通过已经制作成型的背板对各种样品进行测试。  (2)不对样品进行表面处理,可以避免直接在样品表面进行沉积涂层过程中涂层材料进入多孔薄膜对测量结果的影响,这对于气体扩散层这种多孔材料的导热系数测试尤为重要。  (3)对于激光闪光法而言,基体材料为刚性透明材料,激励层和探测层为沉积在基体材料表面的金属材料,然后表面在喷涂石墨层。这相当于将以往对透明样品的表面处理形式挪用到对基体材料的表面惊醒处理。作为激励源的激光脉冲经过透明的基体材料照射到激励层使得激励层温度快速升高,同时热量穿过被测样品到达探测层。探测层的温度变化透过透明基体被探测器检测,这个测试过程与普通激光闪光法完全相同,不同的是要考虑热量在多层结构中的传递,而不是以往那样仅有被测样品一层。在实际薄膜激光闪光法测试过程中,经过表面处理后的样品,也应该按照多层结构进行数据处理才能真正得到薄膜样品的测量结果。  (4)采用新型结构形式的激光脉冲法,同样规避了每次测试薄膜样品都需要进行表面处理的繁琐程序,做多每次需要再在基体表面喷涂石墨以增加发射率。  (5)从理论上来说,激光闪光法也可以看作是温度波法的一种特殊形式,普通温度波法是周期性热激励和周期信号检测,而激光闪光法则是单脉冲式的热激励和单个温升信号检测。因此,如果将激光单脉冲激励源更换为连续激光加周期性调制,使得经过激光束按照一定周期对激励层进行加热,这就相当于温度波法,但可以实现非接触测量。  总之,采用瞬态温度波法可以很好的进行压缩环境下薄膜材料的热物性测试。如果能解决多层模型的单层热性能参数的提取问题,解决接触热阻的影响,温度波法将更为准确和实用,同时也为激光闪光法开辟了更广泛的应用领域。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20℃ to+120℃. Applied energy, 2011, 88(9): 3042-3050.  (2) American Society for Testing Material Committee, A-S-T-M D5470-17 Standard Test Method for Thermal Transmission Properties of ThermallyConductive Electrical Insulation Materials, A-S-T-M International, West Conshohocken,PA, 2011.  (3)Khandelwal M, Mench M M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106-1115.  (4) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells, 2008, 8(2): 111-119.  (5) Karimi G, Li X, Teertstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochimica Acta, 2010, 55(5): 1619-1625.  (6) American Society for Testing Material Committee, A-S-T-M E2584-14 StandardPractice for Thermal Conductivity of Materials Using a Thermal Capacitance(Slug) Calorimeter , A-S-T-M International, West Conshohocken,PA, 2007.  (7) Zamel N, Litovsky E, Li X, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from?50 to+120° C. international journal of hydrogen energy, 2011, 36(19): 12618-12625.  (8) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20° C to+120° C. Applied energy, 2011, 88(9): 3042-3050.  (9) Ramousse J, Didierjean S, Lottin O, Maillet D. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers. Int J Therm Sci 2008 47:1e6.  (10) Burheim O, Vie PJS, Pharoah JG, Kjelstrup S. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 2010 195: 249e56.  (11) Burheim OS, Pharoah JG, Lampert H, Vie PJS, Kjelstrup S. Through-plane thermal conductivity of PEMFC porous transport layers. J Fuel Cell Sci Technol 2011 8:021013-1e021013-11.  (12) Karimi G, Li X, Teerstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochim Acta 2010 55:1619e25.  (13) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. J Power Sources 2010. doi:10.1016/j. jpowsour.2010.06.039.  (14) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact reisstance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: hysteresis effect under cyclic compressive load. J Power Sources 2010 195:8104e9.  (15) Radhakrishnan A, Lu Z, Kandilkar SG. Effective thermal conductivity of gas diffusion layers used in PEMFC: measured with guarded-hot-plate method and predicted by a fractal model. ECS Trans 2010 33:1163e76.  (16) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells 2008 8:111e9.  (17) TORAY Speci?cation, www.fuelcell.com/techsheets/TORAY-TGP-H.pdf.  (18) Zamel N, Litovsky E, Shakhshir S, Li X, Kleiman J. Measurememedia in the temperature range of -20 to +120C. Appl Energy 2011.  (19) Litovsky E, Puchkelevitch N. Thermophysical properties of refractory materials, Reference book. Moscow:Metallurgy 1982.  (20) Volohov GM, Kasperovich AS. Monotonic heating regime methods for the measurement of thermal diffusivity. In: Maglic KD, Cezairliyan A, Peletsky VE, editors. Compendum of thermophysical property measurement methods: recommended measurement techniques and practices, vol.2.New York and London: Plenum Press 1989. pp. 429e454.  (21) ISO 22007-3, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 3: Temperature wave analysis method.  (22) Morikawa J, Hashimoto T. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis. Journal of Applied Physics, 2009, 105(11): 113506.  (23) ISO 22007-4, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 4: Laser flash method.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 招聘化学实验室研究组长及化学测试工程师各1名

    1. 岗位名称:化学测试工程师-无机元素仪器分析 1名岗位要求:熟悉掌握分析测定方案及相关SOP, 严格按照分析测定方案及相关SOP进行分析检测; 协助部分主管开发新的测试方法,对所负责检测项目做好原始记录,并进行数据分析,对分析检测结果和所出具数据负责; 3. 正确使用实验室的物质和设备,维护整个化学实验室的环境,设备满足ISO17025的要求,并保持实验室卫生责任区的清洁整齐。技能需求:1. 专业:分析化学/食品分析/仪器分析相关专业2. 经验:有无机元素定量分析经验,能独立熟练操作和维护电感耦合等离子体质谱仪(ICP-MS),能独立实施相关检测项目并有一定方法开发能力。熟悉第三方检测工作流程和ISO17025的质量体系。3. 外语:英文读写水平良好;4. 电脑:熟练操作仪器工作站,熟练进行数据处理,熟悉常用办公软件;5. 其他:细心严谨,责任感强,有团队精神。2. 岗位名称:化学实验室研究组长-食品接触材料及常规理化分析/检测 1名岗位职责:熟练掌握分析测定方案及相关SOP,严格按照分析测定方案及相关SOP进行分析; 协助部分主管开发新的测试方式,对所负责检测项目做好原始记录,并进行数据分析,对分析检测结果和所出具数据负责; 正确使用实验室的物质和设备; 维护整个化学实验室的环境,设备满足ISO17025的要求,并保持实验室卫生责任区的清洁整齐。 技能需求:1. 专业:分析化学/食品分析/食品安全相关专业2. 经验:熟悉食品和化妆品常规理化检测方法,能独立开展食品中常规理化项检测目。具有独立开发欧盟EC No.1935/2004、德国LFGB、法国DGCCRF、意大利、英国、西班牙、美国FDA、加州65测试、国标GB等食品接触材料检测的能力,能独立完成项目的能力验证和室间比对工作;熟悉第三方检测工作流程和ISO17025质量体系。3. 外语:英文读写水平良好;4. 电脑要求:熟悉常用办公软件,能做检测相关检测数据处理;5. 其他要求:细心严谨,责任感强,听从工作安排,有团队协作精神简历请直接投递邮件:job@instrument.com.cn 标题注明“xxxx应聘xxxxx职位”字样

  • 【讨论】食品微生物检测常用方法及相关设备

    欢迎从事食品微生物检测工作的同志进来,一起讨论食品微生物检测常用方法及相关设备。 我举个例子,乳制品行业,知名的如蒙牛、伊利等都已经在使用3M的测试纸了。 如果你是在从事相关工作,贵单位都用的是什么方法做微生物检测呢? 通过这样的讨论,主要是想让像我这样需要此类信息的人能够学到更多、更全面的知识。 谢谢大家。[em09505]

  • 230万!北京市科学技术研究院分析测试研究所先进检测方法研究化学试剂和助剂采购项目

    [quote][b]项目概况[/b]分析创新工程活性物质分析及功能构效的先进检测方法研究化学试剂和助剂采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2023-05-26 09:00(北京时间)前递交投标文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:11000023210200042989-XM001项目名称:分析创新工程活性物质分析及功能构效的先进检测方法研究化学试剂和助剂采购项目预算金额:230.42626 万元(人民币)采购需求:[table][tr][td]包号[/td][td]标的名称[/td][td]采购包预算金额(万元)[/td][td]数量[/td][td]简要技术需求或服务要求[/td][td]是否涉及进口产品[/td][/tr][tr][td]01[/td][td]耗材一[/td][td]82.1861万元[/td][td]1批[/td][td]满足北京市级财政项目“分析创新工程活性物质分析及功能构效的先进检测方法研究”研究工作开展实施的相关实验等试剂耗材的需要,支撑项目工作内容的顺利开展实施[/td][td]是[/td][/tr][tr][td]02[/td][td]耗材二[/td][td]87.41516万元[/td][td]1批[/td][td]是[/td][/tr][tr][td]03[/td][td]耗材三[/td][td]60.825万元[/td][td]1批[/td][td]是[/td][/tr][/table]合同履行期限:具体期限以合同约定为准本项目不接受联合体投标。[font=inherit]二、申请人的资格要求:[/font]1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:2.1 中小企业政策■本项目不专门面向中小企业预留采购份额。2.2 其它落实政府采购政策的资格要求(如有):_____/______。3.本项目的特定资格要求:3.1本项目是否接受分支机构参与响应:□是 ■否;3.2 本项目是否属于政府购买服务:■否3.3其他特定资格要求:第一包-耗材一:投标人具有危险化学品经营许可证(有效期内的)第二包-耗材二:无。第三包-耗材三:投标人具有危险化学品经营许可证(有效期内的)[font=inherit]三、获取招标文件[/font]时间:2023-05-05 至 2023-05-11 ,每天上午09:00至12:00,下午12:00至17:00(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台方式:供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。售价:¥0 元,本公告包含的招标文件售价总和[font=inherit]四、提交投标文件截止时间、开标时间和地点[/font]2023-05-26 09:00(北京时间)地点:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)理化实验楼五楼第一会议室(北京市海淀区西三环北路27号)[font=inherit]五、公告期限[/font]自本公告发布之日起5个工作日。[font=inherit]六、其他补充事宜[/font]1、本项目需要落实的政府采购政策:优先/强制采购节能环保产品有关政策、扶持中小企业有关政策、促进残疾人就业及支持监狱企业发展相关政策、扶持不发达地区和少数民族地区发展相关政策、政府采购其他相关政策。2、本项目采用电子化与线下流程结合招标方式,相关操作如下:1办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(hhttp://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南” ——“操作指南”—— “市场主体CA办理操作流程指引”,按照程序要求办理。2于北京市政府采购电子交易平台“用户指南”——“操作指南”——“市场主体注册入库操作流程指引”进行自助注册绑定。3招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。4未按上述获取方式和期限下载招标文件的投标无效。证书驱动下载:1于北京市政府采购电子交易平台“用户指南”——“工具下载”—— “招标采购系统文件驱动安装包”下载相关驱动。2 CA认证证书服务热线010-585110863技术支持服务热线010-86483801注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。[font=inherit]七、对本次招标提出询问,请按以下方式联系。[/font]1.采购人信息名 称:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)地址:北京市海淀区西三环北路27号联系方式:汪老师,010-684671382.采购代理机构信息名 称:中鼎传鸿(北京)招标代理有限公司地 址:北京市西城区北三环中路27号商房大厦423室联系方式:张文娟(女士)、纪志达(先生),010-623556113.项目联系方式项目联系人:张文娟(女士)、纪志达(先生)电 话:  010-62355611

  • 好文推荐:《口罩颗粒物过滤效率测试仪校准方法研究》_等邹亚雄

    [font=Tahoma, &][color=#444444]邹亚雄 王婷 张明 刘巍 刘伟光 陈全森[/color][/font][font=Tahoma, &][color=#444444]青岛市计量技术研究院[/color][/font][font=Tahoma, &][color=#444444]摘要:口罩颗粒物过滤效率的检测过程比较复杂,涉及到气溶胶的发生、输送与上下游质量浓度的测量,影响过滤效率测量结果的因素包括试验气溶胶的粒径和分布、试验流量、气溶胶浓度测量等。为了确保测量结果的准确性和一致性,需要对过滤效率测试仪进行校准或验证。由于尚不存在具备计量溯源性的过滤效率标准试验设备或标准过滤膜,无法通过比较法对仪器进行直接校准,所以采用分部法对各影响因素进行评定,以判断测试仪是否满足口罩检测标准的要求。其中,气溶胶的粒径及分布采用了国际标准推荐的测试方法,而气溶胶浓度测量仪除进行示值误差[/color][/font][font=Tahoma, &][color=#444444]的校准外,还对上下游浓度测量值的相关性进行了评价。[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制