当前位置: 仪器信息网 > 行业主题 > >

拉曼光谱探针

仪器信息网拉曼光谱探针专题为您整合拉曼光谱探针相关的最新文章,在拉曼光谱探针专题,您不仅可以免费浏览拉曼光谱探针的资讯, 同时您还可以浏览拉曼光谱探针的相关资料、解决方案,参与社区拉曼光谱探针话题讨论。

拉曼光谱探针相关的资讯

  • 我国自主研发拉曼光谱探针助力南海首次发现裸露“可燃冰”
    p   日前,我国新一代远洋综合科考船“科学”号在执行中国科学院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”的航次中,船上搭载的“发现”号遥控无人潜水器携带我国自主研发的拉曼光谱探针,在我国南海海域首次发现了裸露在海底的“可燃冰”,并证实其为天然气水合物。这一成果形成的研究论文日前在国际权威学术期刊《地球化学 地球物理学 地球系统学》上在线发表。 /p p   据中科院海洋研究所特聘研究员、课题负责人张鑫介绍,通过“发现”号无人潜水器携带的深海激光拉曼光谱探针,科考团队在我国南海约1100米的深海海底探测到两个站点存在裸露在海底的可燃冰。经拉曼光谱探针现场探测,证实其为标准的I型水合物。 /p p style=" text-align: center " img width=" 450" height=" 276" title=" QQ截图20170925083353.jpg" style=" width: 450px height: 276px " src=" http://img1.17img.cn/17img/images/201709/noimg/90eac4cc-7b2e-4455-88be-da8921bd2583.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   据悉,“科学号”通过其配备的“发现”号无人潜水器携带自主研发的国际上首台可以直接插入天然气水合物的RiP拉曼光谱探针,在我国海域首次发现了裸露在海底的天然气水合物。这也是在国际上首次使用原位拉曼光谱数据证实快速生成的天然气水合物并非单一的笼型结构,其内部其实存在大量的甲烷、硫化氢等自由气体。 /p p style=" text-align: center " img width=" 450" height=" 421" title=" QQ截图20170925084236.jpg" style=" width: 450px height: 421px " src=" http://img1.17img.cn/17img/images/201709/noimg/551c3e3d-f083-41df-83b4-b0f02884f980.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   据介绍,2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,科研人员在南海圈定了裸露在海底的疑似“可燃冰”精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015-2016年,科研人员自主研发了世界首台可以直接插入高温热液喷口(450 oC)进行原位探测的系列化拉曼光谱探针,可对深海热液流体、冷泉流体、“可燃冰”和沉积物孔隙水进行原位化学成分分析,成为了本次发现的主要高技术手段。原位探测技术可以避免传统取样方式由于从深海海底到海面之间巨大的温度、压力等环境因素变化导致的样品物理化学性质的变化,已成为国际深海研究的热点。 /p p style=" text-align: right "   (整理自央视新闻、科技日报、青岛早报等) /p p & nbsp /p
  • 中国海洋大学400.00万元采购电化学工作站,扫描探针,激光拉曼光谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 电化学工作站,扫描探针,激光拉曼光谱 开标时间: 2021-09-07 14:00 采购金额: 400.00万元 采购单位: 中国海洋大学 采购联系人: 崔老师 采购联系方式: 立即查看 招标代理机构: 海逸恒安项目管理有限公司 代理联系人: 臧圣诚 代理联系方式: 立即查看 详细信息 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目公开招标公告 山东省-青岛市-崂山区 状态:公告 更新时间: 2021-08-13 招标文件: 附件1 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目公开招标公告 2021年08月13日 15:57 公告信息: 采购项目名称 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器 采购单位 中国海洋大学 行政区域 青岛市 公告时间 2021年08月13日 15:57 获取招标文件时间 2021年08月16日至2021年08月20日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300获取招标文件的地点 zangshengcheng@sdhyha.com 开标时间 2021年09月07日 14:00 开标地点 青岛市崂山区文岭路5号白金广场C座202B室 预算金额 ¥400.000000万元(人民币) 联系人及联系方式: 项目联系人 臧圣诚 项目联系电话 0532-85761207 采购单位 中国海洋大学 采购单位地址 青岛市崂山区松岭路238号中国海洋大学崂山校区行远楼 采购单位联系方式 崔老师0532-66781989 代理机构名称 海逸恒安项目管理有限公司 代理机构地址 青岛市崂山区文岭路5号白金广场C座202A室 代理机构联系方式 臧圣诚0532-85761207 附件: 附件1 附件2 项目概况 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 招标项目的潜在投标人应在zangshengcheng@sdhyha.com获取招标文件,并于2021年09月07日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HYHAQD2021-0448 项目名称:中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 预算金额:400.0000000 万元(人民币) 采购需求: 详见附件采购需求 合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)通过“信用中国”网站(www.creditchina.gov.cn)查询,近三年内在经营活动中没有重大违法记录,响应人须提供声明函。重大违法记录指投标人因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚;(2)在“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等网站中被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;(3)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;(4)为采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的投标人及其附属机构,不得再参加该采购项目的其他采购活动。 三、获取招标文件 时间:2021年08月16日 至 2021年08月20日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:zangshengcheng@sdhyha.com 方式:详见附件招标公告 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年09月07日 14点00分(北京时间) 开标时间:2021年09月07日 14点00分(北京时间) 地点:青岛市崂山区文岭路5号白金广场C座202B室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 预算金额:400万元,其中第一包(全自动共聚焦显微拉曼光谱仪)140万元,第二包(原子力显微镜)130万元,第三包(微区电化学分析仪)130万元。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国海洋大学 地址:青岛市崂山区松岭路238号中国海洋大学崂山校区行远楼 联系方式:崔老师0532-66781989 2.采购代理机构信息 名 称:海逸恒安项目管理有限公司 地 址:青岛市崂山区文岭路5号白金广场C座202A室 联系方式:臧圣诚0532-85761207 3.项目联系方式 项目联系人:臧圣诚 电 话: 0532-85761207 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:电化学工作站,扫描探针,激光拉曼光谱 开标时间:2021-09-07 14:00 预算金额:400.00万元 采购单位:中国海洋大学采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:海逸恒安项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目公开招标公告 山东省-青岛市-崂山区 状态:公告 更新时间: 2021-08-13 招标文件: 附件1 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目公开招标公告 2021年08月13日 15:57 公告信息: 采购项目名称 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器 采购单位 中国海洋大学 行政区域 青岛市 公告时间 2021年08月13日 15:57 获取招标文件时间 2021年08月16日至2021年08月20日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 zangshengcheng@sdhyha.com 开标时间 2021年09月07日 14:00 开标地点 青岛市崂山区文岭路5号白金广场C座202B室 预算金额 ¥400.000000万元(人民币) 联系人及联系方式: 项目联系人 臧圣诚 项目联系电话 0532-85761207 采购单位 中国海洋大学 采购单位地址 青岛市崂山区松岭路238号中国海洋大学崂山校区行远楼 采购单位联系方式 崔老师0532-66781989 代理机构名称 海逸恒安项目管理有限公司 代理机构地址 青岛市崂山区文岭路5号白金广场C座202A室 代理机构联系方式 臧圣诚0532-85761207 附件: 附件1 附件2 项目概况 中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 招标项目的潜在投标人应在zangshengcheng@sdhyha.com获取招标文件,并于2021年09月07日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HYHAQD2021-0448 项目名称:中国海洋大学全自动共聚焦显微拉曼光谱仪、原子力显微镜、微区电化学测试系统设备采购项目 预算金额:400.0000000 万元(人民币) 采购需求: 详见附件采购需求 合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)通过“信用中国”网站(www.creditchina.gov.cn)查询,近三年内在经营活动中没有重大违法记录,响应人须提供声明函。重大违法记录指投标人因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚;(2)在“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等网站中被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;(3)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;(4)为采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的投标人及其附属机构,不得再参加该采购项目的其他采购活动。 三、获取招标文件 时间:2021年08月16日 至 2021年08月20日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:zangshengcheng@sdhyha.com 方式:详见附件招标公告 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年09月07日 14点00分(北京时间) 开标时间:2021年09月07日 14点00分(北京时间) 地点:青岛市崂山区文岭路5号白金广场C座202B室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 预算金额:400万元,其中第一包(全自动共聚焦显微拉曼光谱仪)140万元,第二包(原子力显微镜)130万元,第三包(微区电化学分析仪)130万元。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国海洋大学 地址:青岛市崂山区松岭路238号中国海洋大学崂山校区行远楼 联系方式:崔老师0532-66781989 2.采购代理机构信息 名 称:海逸恒安项目管理有限公司 地 址:青岛市崂山区文岭路5号白金广场C座202A室 联系方式:臧圣诚0532-85761207 3.项目联系方式 项目联系人:臧圣诚 电 话: 0532-85761207
  • 基于表面增强拉曼光谱的高灵敏度探针可检测癌症转移相关生物标记物
    记者4日从中科院合肥物质科学研究院了解到,该院智能所黄青研究员课题组研发出基于表面增强拉曼光谱(SERS)的超灵敏生物传感器,该生物传感器可以用于检测癌症转移相关的程序性死亡配体(PD-L1)生物标志物。研究成果日前发表在国际期刊《生物传感器和生物电子学:X》上。  PD-1全名为程序性死亡受体1,是人体的一种重要的免疫抑制分子。PD-1受体在活化的T细胞表面表达。以PD-1为靶点的免疫调节对抗肿瘤、抗感染、抗自身免疫性疾病及器官移植存活等均有重要的意义。PD-1与其配体PD-L1相互作用可确保仅在适当的时间激活免疫系统,以便将慢性自体免疫炎症的可能性降至最低。然而肿瘤细胞为了免疫逃逸会在细胞表面表达高表达PD-L1,这样就能够使肿瘤细胞逃避T细胞的作用,使肿瘤细胞得以继续生存。  为了检测PD-L1,研究人员首先制备了具有SERS活性的磁性纳米复合材料,同时又制备了SERS纳米标签。然后,科研人员用特定的适配体修饰这些纳米粒子,从而可以特异性地捕获循环外泌体PD-L1,形成三明治夹层式的SERS探针,通过分析拉曼报告信号,可以定量分析PD-L1生物标志物。该方法非常灵敏,可检测低至4.31ag/mL的PD-L1。进一步研究表明,在小鼠模型中,科研人员可以通过分析肿瘤中PD-L1随时间变化的表达水平,进而分析小鼠肿瘤发展情况。  目前循环外泌体PD-L1检测仍缺乏公认有效的手段。这项工作为检测PD-L1生物标志物提供了新的超灵敏的方法,对于以PD-L1生物标志物诊断具有重要意义和潜在临床应用价值,并可为接受PD-L1/PD-1免疫疗法的患者提供服务。
  • 光谱探针在指导手术方面潜力无限!
    帕金森式症又称震颤麻痹,是一种常见的神经退行性疾病,已成为继心脑血管病、肿瘤之后老年人的第三大“杀手”,严重影响患者的生活能力和质量。据统计,我国65岁以上的老年人中约有1.7%患有该症状。而大脑深部刺激(DBS)逐渐成为晚期帕金森患者常见的治疗方法,但是仍具有重大风险。该治疗方式是通过在大脑中放置电极、以破坏导致与晚期帕金森病相关的衰弱性震颤和僵硬的错误信号。对于不再受益于药物治疗的患者来说,这可能是非常有效的治疗方法,但是将电极放在错误位置会降低有效性并导致心理障碍。来自拉瓦尔大学魁北克CERVO脑研究中心的研究小组提出使用两种光谱分析的新探针可以帮助医生更准确地在大脑中导航仪器,从而使手术更安全,并提高成功率。小组成员Mireille Quémener表示:“改善DBS电极插入的神经外科指导将简化手术过程,减少手术时间,降低整体健康治疗成本并防止不良的心理后果。”光谱探针提供实时位置导航DBS手术过程由两部分组成,一部分是将电极放置在大脑特定部位,另一部分是植入电池组,便于将电流输送到电极。传统插入电极的方式是依靠磁共振成像(MRI)扫描来确定位置。然而,在颅骨钻孔的过程中,大脑可能会移动2毫米,导致电极放置位置不准确。基于上述问题,研究人员创建了一个装有光学探针的DBS电极,该电极通过光学探针增强,在插入过程中对脑组织进行相干反斯托克斯拉曼散射光谱(CARS)和漫反射光谱(DRS)。光学探针包含两根用于CARS和DRS照明的光纤和第三根用于收集信号的光纤。然后从组织学切片(HISTO)中目视识别组织类型,以生成由黑色(灰质)和白色(白质)区域组成的条形码。将该条形码与使用光学探针采集的数据进行比较,并使用PCA agorithm(探针条形码)进行分析。一旦电极到达目标位置,光学探针就可以在电极保持在原位的同时进行工作。图1 左半球和右半球的组织切片显示两个电极插入(a)大脑右半球的脱靶部分(使用CARS)和(b)大脑左半球的丘脑下核(STN)(使用DRS)光谱探针在指导手术方面潜力无限为了测试这种新探针,神经外科医生用它来在人类尸体大脑的六个区域植入电极,并沿着大脑两个半球各50mm的总长度收集了CARS和DRS测量值。手术后,研究人员提取大脑并目视识别了探针通过的白质和灰质。将CARS和DRS测量的读数与大脑结构的视觉记录进行比较,研究人员发现CARS和DRS方法非常准确地识别脑组织。这些发现证实,光谱学可能是帮助神经外科医生导航大脑的有用工具。Quémener 表示:“我们的团队目前正在研究调整光学探针,使其用于将接受DBS手术的患者的临床试验。我们相信光学方法在手术指导方面具有巨大的潜力,并希望我们的技术将在临床中出现,以协助外科医生进行各种脑部手术。”
  • HORIBA前沿用户报道∣上交大最新拉曼探针有望精准定位肿瘤君,助力攻克医学难题
    撰文 ∣ 张雨晴中国的恶性肿瘤发病率和死亡率逐年上升,2010年开始已成为致死率高的疾病。传统的手术治疗很多情况下无法将肿瘤全部切除,因此术中需要精确定位肿瘤,医生才能精准切除肿瘤。遗憾的是,尚未有合适的影像方法来辅助实现。随着研究的深入,近年来,表面增强拉曼(SERS)成像技术在这方面被寄予厚望。(图片来源于网络)近,上海交通大学“青年千人计划”、“国家优秀青年基金”获得者叶坚研究员与“青年千人计划”、“东方学者”获得者肖泽宇教授等人组成的研究团队传来喜讯,他们通过制备新型的介孔硅包被的缝隙增强拉曼探针,可以实现超稳定快速的拉曼成像,这种技术将有望被应用于术中肿瘤精准定位。01拉曼光谱成像清晰识别肿瘤组织因肿瘤部位血管的高滞留通透(EPR)效应,SERS探针被动地富集在肿瘤组织中。拉曼光谱仪可以检测到这些SERS探针,并迅速成像,医生利用该成像图可以清晰识别肿瘤组织。与荧光成像技术相比,上海交大研发的“新型的介孔硅包被的缝隙增强拉曼探针”,不仅能够实现超快速、超清晰的生物医学成像,而且具有超高的光稳定性。下图发光的位置是肿瘤组织所在的区域,图c是SERS探针富集在肿瘤组织,被激光照射10分钟、20分钟和30分钟后的拉曼光谱成像。从中可以发现,肿瘤区域的边界清晰可见,这为进一步的术中肿瘤精准切除提供可靠影像保障。SERS探针在组织层面的超稳定及超快速成像,发光位置是肿瘤组织02增强拉曼探针的制备及稳定性表现那么,神奇的SERS探针是如何制备的?其超高的稳定性又是如何实现的?原来,该团队是通过种子生长法制备出SERS探针(如下图a),结构包括核壳结构的金纳米颗粒、亚纳米缝隙区域内嵌的拉曼信号分子对二巯基苯硫醇以及外层的介孔硅。通过下面的实验图(图b, c),我们来看一下该探针的稳定性的表现:图a:探针的透射电镜照片。图b和c:经长时间激光照射后,探针分子的拉曼光谱通过上图b和c,我们可以看到探针分子经30分钟照射后,拉曼信号仍没有衰减。值得一提的是,在本次研究过程中,该团队使用HORIBA XploRA显微共聚焦拉曼光谱仪作为主要分析工具采集样品的拉曼信号,同时配备Labspec-6软件直接进行数据处理分析,终简单快速地得到了不同结构探针被激光持续照射30分钟后的光稳定性比较数据。其中Labspec-6软件自带的A峰/B峰的显示方式,可以让研究人员直接看到参照硅峰进行数据校准后的结果,这让研究数据处理非常直观、方便,大大提高了工作效率。此项工作得到了国家青年千人计划、国家自然科学基金、上海高校特聘教授(东方学者)项目和上海市自然科学基金的支持。相关研究成果以“Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging”为题发表在国际著名期刊《ACS Applied Materials & Interfaces》上。团队介绍叶坚,中组部“青年千人”计划获得者,国家自然科学基金优秀青年基金项目获得者,理学博士,上海交通大学研究员,博士生导师。主要研究领域:(1)等离激元纳米材料的模拟设计、合成制备、光学属性及其生物医学应用;(2)表面增强拉曼光谱及其生物医学应用。如果您对同类拉曼研究感兴趣,或者希望与作者取得联系,欢迎您手机扫描下方二维码留下信息,我们的应用专家将乐于协助您。 点击标题,查看往期精华文章【优惠报名倒计时】光学光谱小白入门,打造光谱知识体系——中山大学|11月29-30日用户动态 | 表面增强拉曼光谱探究银@碳点核壳纳米粒子的催化性能用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 上海交大开发新型探针:小至70nm 依然可实现超强拉曼信号 | 前沿用户报道
    供稿:张雨晴编辑:Chen导读:近日,上海交通大学叶坚教授团队开发了一种新型拉曼探针(P-GERTs),尺寸仅为70nm左右,依然可实现拉曼信号的整体增强和成像速度的大幅提高,为突破SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟新机。SERS生物成像技术的发展前景与瓶颈得益于表面增强拉曼散射(SERS)技术灵敏度高、分辨率高、稳定性好等优点及其“探针”所特有的指纹图谱(高特异性)和超窄线宽(多指标检测)优势,SERS技术在生物体内成像方面表现出广阔的前景,目前临床肿瘤的治疗手术中,利用拉曼成像检测肿瘤边缘和残留微小肿瘤就是重要应用之一。然而,现有的SERS成像速度远远落后于临床需要,通常需要几十分钟甚至几小时才能获得一个大范围的拉曼活体图像。其中影响SERS成像速度的重要因素之一便是SERS探针的整体拉曼信号不够强。Tips: SERS探针的信号强度和成像速度很大程度上取决于探针电磁场热点区域(hot spots)的信号分子数量。常用增强信号强度的策略是通过控制探针的形貌,使其具有一些尖端或者粗糙表面来形成电磁场热点区域;或者通过在金属纳米结构表面或内部引入纳米缝隙来有效地构建电磁场热点。但大多数都不能产生均匀且稳定的SERS信号增强。研究人员一般通过改变探针形貌来提高SERS探针信号强度,但大多数都不能产生均匀且稳定的SERS信号增强。而且这类探针尺寸相对较大,通常在100-200 nm之间,应用于生物成像领域,会降低探针在体内的血液循环时间,影响探针的体内分布情况和代谢动力学,不利于体内的靶向识别、成像和检测等应用的实现。因此,如何获得尺寸较小、且可实现信号强度和成像速度大幅提高的探针,成为研究人员面临的重要课题。 新型探针突破SERS生物成像发展瓶颈近日,上海交通大学叶坚教授团队便开发出了这样一款强大探针——新型的、外壳为花瓣状结构的“多热点”缝隙增强拉曼探针(P-GERTs),尺寸仅为70 nm左右,且同时实现了拉曼信号的整体增强和成像速度的大幅提高,为突破目前SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟了新机。叶坚教授团队采用将拉曼信号分子同时嵌入核壳颗粒内部和外部花瓣状结构之间的亚纳米缝隙这一方法制得探针,表征发现该探针能够大程度地提高单颗粒上报告分子的吸附量,实现超强的拉曼信号。此外,研究人员还可以通过调节内嵌的拉曼信号分子数量,来调节探针的形貌和SERS性能;或通过改变外部拉曼信号分子的种类,获得多种信号探针以实现多重检测和成像。实验结果验证为了进一步验证P-GERTs探针的信号强度和成像速度,研究人员对实验结果进行了进一步表征。研究人员使用HORIBAXploRA INV拉曼成像光谱仪和NanoRaman系统对P-GERTs探针的拉曼增强效果进行表征,发现:P-GERTs拉曼信号增强因子高达5 × 109,相较于常见的拉曼探针提高了1-3个数量级,实现了超强的拉曼信号。结合HORIBA拉曼成像技术(Duoscan成像模式和Swift数据处理方式),研究人员进一步发现成像单点采集时间仅为0.7 ms /像素,成像速度大幅提升。在低至370 uW功率时6秒内就获得高分辨单细胞拉曼成像(2500个像素),52秒内获得高对比度大范围(3.2 × 2.8 cm2)的小鼠活体前哨淋巴结拉曼成像,表现出良好的信号均一性和光稳定性。 “多热点”缝隙增强拉曼探针结果图a) 示意图;b) 单细胞透射电镜图;c) 明场图d) 高分辨快速拉曼成像图 (50×50像素)e) 高对比度大范围 (3.2×2.8cm2) 的小鼠活体前哨淋巴结拉曼成像上海交通大学叶坚教授团队的这项研究结果表明:P-GERTs作为超亮和超稳定的SERS探针,为克服目前SERS生物成像发展瓶颈,实现高速、高对比度超灵敏的细胞和生物组织成像提供了新机会。文章作者&论文直达文章作者:Yuqing Zhang, Yuqing Gu, Jing He, Benjamin D. Thackray, Jian Ye*题目&杂志:Ultrabright gap-enhanced Raman tagsfor high-speed bioimaging. Nature Communications, 2019, 10, 3509.DOI:https://doi.org/10.1038/s41467-019-11829-y课题组网页:http://www.yelab.sjtu.edu.cn/致谢:叶坚课题组提供论文注:如果您对本报道的研究方法感兴趣,希望联系作者,或者想对本研究拉曼光谱测试方法一探究竟,欢迎点击“阅读原文”留言,我们的拉曼应用专家将乐于为您提供解答服务。今日话题表面增强拉曼散射(SERS)技术应用广泛,那么具体应用有哪些呢?欢迎您分享科研过程中与SERS技术相关的内容。我们会在下次前沿应用专栏中分享给大家,本文发出后3个工作日内留言获赞多的读者我们还将送出星巴克咖啡券一份哦。? 点击查看更多往期精彩文章 拉曼与统计分析神助攻,复旦破译PM2.5重要成分 | 前沿用户报道清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!复旦巧用增强拉曼“识”雾霾 | 前沿用户报道1+1≥3,AFM-Raman 材料表征新技术!——附新相关论文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • Nat. Commun. 复旦大学季敏标教授合作研究:设计出光敏特性的拉曼探针,实现可控开关的受激拉曼散射成像 | 前沿用户报道
    供稿:敖建鹏成果简介2021年5月,复旦大学季敏标课题组与南方科技大学吴长锋课题组合作,在国际期刊 Nature Communications 发表了题为 Switchable stimulated Raman scattering microscopy with photochromic vibrational probes 的论文,通过在二芳基乙烯母体分子中引入炔基,设计出一类具有光敏特性的拉曼探针,实现了可控开关的受激拉曼散射成像。背景介绍在生命科学研究中,直接可视化细胞内大量不同的分子种类对于理解复杂的系统和过程愈渐重要。而对于荧光显微技术而言,由于荧光分子本质上的宽光谱特性,限制了其可分辨标记对象的能力,常称为“多色复用壁垒”。与荧光分子电子跃迁相对,拉曼散射表征的是振动跃迁,谱线宽度较窄,具有优越的化学特异性,目前基于炔基、氰基等拉曼信源开发出的拉曼探针已经实现了超多色复用成像,但成像分辨率依旧受到光学衍射极限的限制。在此研究背景下, 复旦大学季敏标课题组与南方科技大学吴长锋课题组合作通过赋予拉曼信号光敏活性,实现可逆光开关的拉曼振动光学成像,探索具有光敏活性的拉曼探针及其显微技术的应用可行性,为开发具备超多色复用的远场超分辨显微技术突破了关键一环。图文导读受激拉曼散射(SRS)以快速、免标记和本征三维化学组分分析的优点在显微成像领域备受青睐。为了提高成像灵敏度与特异性,基于炔基、氰基的拉曼探针被开发并用于SRS,打破了荧光显微成像中难以逾越的“多色复用壁垒”,展现了这些生物正交拉曼探针对比荧光标记分子所具备的窄峰宽、无漂白、信源尺寸小而对目标分子干扰小等优势。基于化学键振动的拉曼信号具有很好的光稳定性,早期开发的拉曼探针几乎都是“always-on”类型,意味着信号不受外界调控,失去了随机发光、光开关性等性质,直接通过外界光刺激改变拉曼信号几乎是不可能的。为了解决这一难题,课题组将炔基通过化学合成的手段连接到光异构母体分子(二芳基乙烯)上,通过光异构分子对外界光刺激的响应来调控拉曼信号,从而实现对光敏感的拉曼光谱响应。1. 通过化学合成将拉曼探针(炔基,拉曼信号强且峰位处于生物静默区,有利于后续推进至生物体系)引入二芳基乙烯母体分子中;2. 通过自发拉曼及受激拉曼散射技术对紫外与可见光照射下的分子的炔基伸缩振动模式峰位表征;左:自发拉曼;右:受激拉曼3. 将分子匀涂成膜,通过光在薄膜上自由书写/擦除文字信息并以受激拉曼散射显微读出信息;通过紫外光在薄膜上手写的“复旦”字样,并通过SRS对其成像4. 将分子进一步修饰以靶向线粒体,在细胞层面展示光开关性质的受激拉曼散射成像。光控可逆点亮/擦除喂食过光活性分子的HeLa细胞,并通过SRS对其成像受激拉曼散射作为相干模式下的拉曼散射,虽然极大的提高了拉曼信号,使得快速化学成像成为可能,但由于两束光的共振激励(ωp-ωs=Ω)局限在某一个拉曼峰位,相比于自发拉曼而言损失了全光谱信息,因此在对未知物质检测时自发拉曼光谱的测定依旧不可或缺。HORIBA LabRAM HR Evolution的1064nm激发模式很大程度上解决了常用可见光光源激发自身对光敏分子的影响,对我们的实验可靠性论证起到了极大的帮助。HORIBA LabRAM HR Evolution如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望“山重水复疑无路,柳暗花明又一村。”实验过程中课题组抛开固有实验套路,另辟蹊径,最终实现了可控开关的受激拉曼散射成像,不仅为开发具有光开关性质的振动光谱探针提供了新思路,同时为光开关受激拉曼散射显微成像技术的提供可行性基础,拓展了SRS的应用范围,将有望推动超多色复用拉曼显微跨入超分辨时代。文献信息Switchable stimulated Raman scattering microscopy with photochromic vibrational probes文章署名作者:Jianpeng Ao, Xiaofeng Fang, Xianchong Miao, Jiwei Ling, Hyunchul Kang, Sungnam Park, Changfeng Wu & Minbiao Ji文章链接:https://doi.org/10.1038/s41467-021-23407-2扫码查看文献季敏标教授课题组简介季敏标教授课题组主要从事非线性光谱学和显微成像技术研发,并将它们用于生物医学光子学应用研究和新型材料的光电性质基础研究。在生物医学光子学领域主要发展用于肿瘤组织的快速无标记病理检测方法和脂质代谢等生物医学问题;在材料学领域主要研究新型二维材料的超快载流子和声子动力学问题等。
  • HORIBA用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移
    撰文:李俊博研究背景一般情况下利用拉曼光谱技术可以非常方便的鉴定物质成分,获得结构信息。但是,一些化学物质直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,提高拉曼信号信噪比,从而检测出待检物质。表面增强共振拉曼(SERS)活性基底的快速发展促进了人们对SERS机理的探究,这使SERS的应用范围拓宽至更广的领域。大量的研究表明SERS的增强机理主要有两种:表面等离子体共振及电荷转移机理。对于过渡金属基底来说,其增强能力取决于自身的性质及材料的表面形态,电磁场与化学增强的共同作用使之产生增强的拉曼信号。然而,目前只有几种有机小分子在过渡金属上能够被选择性的增强,这限制了过渡金属的实际应用。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授等人制备了四种SERS活性基底(两种过渡金属和两种贵金属),并通过细胞色素c (Cyt c)在基底上SERS光谱的变化,讨论了Cyt c与这些活性基底间的电子转移路径与机理。本研究中, SERS光谱的采集采用了HORIBA LabRam系列拉曼光谱仪,所有的拉曼数据则通过LabSpec软件进行分析。下面让我们走进该项研究:﹀﹀﹀1为什么选择Cyt c 细胞色素c是一种水溶性的血红素蛋白质并常作为呼吸链中的电子载体。大部分Cyt c的SERS光谱的获得是通过电化学结合拉曼光谱的方法,从而研究氧化还原蛋白质在基础及应用科学领域的结构与反应动力学。基于Cyt c的电子转移的能力,Cyt c常用作新型的探针来探究SERS活性基底与吸附生物分子之间的电子转移。图1. 细胞色素c与SERS活性材料之间的电子转移示意图。2具体的研究过程作者通过紫外光谱表征发现过渡金属镍和钴纳米粒子可将氧化态的Cyt c还原,并且通过SERS光谱发现二者与还原剂连二硫酸钠的作用相同,二者作为良好的还原剂与Cyt c之间发生了电子转移,且通过谱峰的对比证实了在过渡金属的作用下,蛋白质仍保持着良好的二级结构。另一方面,对惰性金属Au和Ag纳米粒子也进行了相同的实验,通过紫外图的表征说明二者对氧化态和还原态的Cyt c均未产生价态上的影响,而SERS光谱则表明Ag纳米粒子能使还原态Cyt c氧化,并且谱峰相对强度的变化意味着Cyt c结构的改变。基于以上现象,作者对Cyt c与金属纳米粒子之间的电子转移机理进行了探究并给出合理解释。氧化态Cyt c与Ni NWs之间的转移方向是从Ni的费米能级至Cyt c的导带,此处由于Cyt c的电导性表现出半导体的行为,因此根据肖特基势垒和欧姆接触可知,金属镍的功函与Cyt c的电子亲和能值十分接近,促移则基于SERS的电子转移机理,实验所用的激发光能量恰能够激发Cyt c HOMO能级上的电子转移至Ag的费米能级。3研究的创新点本研究将氧化还原蛋白质的电子转移与SERS中的电荷转移机理相结合,为电荷转移理论提出了新的见解。并且,Cyt c与过渡金属之间直接的电子转移行为的发现将会拓宽过渡金属在氧化还原蛋白质光谱研究领域的应用。 此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《Chemistry - A European Journal》上: Junbo Li, Weina Cheng, Xiaolei Wang, Haijing Zhang, Jin Jing, Wei Ji, Xiao Xia Han, Bing Zhao, “Electron Transfer of Cytochrome c on Surface-Enhanced Raman Scattering-Active Substrates: Material Dependence and Biocompatibility”. Chem. Eur. J. 2017, DOI: 10.1002/chem.201702307HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 中科院海洋所研制出国际首套深海多通道拉曼光谱探测系统
    近日,国际学术期刊《Deep-Sea Research Part I: Oceanographic Research Papers》在线发表了题为“Development and deployment of lander-based multi-channel Raman spectroscopy for in-situ long-term experiments in extreme deep-sea environment”的文章,报道了中国科学院海洋研究所成功研制国际首套多通道深海拉曼光谱探测系统,实现了冷泉喷口流体、天然气水合物动力学过程、冷泉生物群落的长期原位观测与现场实验,在我国南海冷泉区域构建首套深海原位光谱实验室。   研究团队前期研发的探针式深海激光拉曼光谱探测系统已常态化应用到深海沉积物孔隙水、冷泉和热液喷口流体、化能合成生物群落内部流体、天然气水合物以及冷泉和热液喷口系统附近岩石矿物的原位探测与定量分析。但是,随着对深海热液和冷泉系统研究的深入,科学家逐渐认识到深海热液或冷泉系统是有机统一的整体,冷泉和热液活动在时间和空间上都具有强烈的不均匀性。已有的深海原位拉曼光谱仪的探测是短期瞬时且相对独立的,难以捕捉冷泉和热液系统等高动态和非均匀环境中不同目标之间的动态规律和潜在联系。   为此,研究团队研制了国际上首套深海多通道拉曼光谱探测系统(Multi-channel Raman insertion probes system, Multi-RiPs),研发光路切换技术,实现了主要光学器件(如激光器、光谱仪、光电传感器等)的分时复用(如图1所示),结合系列化拉曼光谱探针,实现了深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。 图1 多通道拉曼光谱探测系统关键光学器件布局图和光路切换原理示意图   为了明确甲烷在深海冷泉喷口附近的转换通道以及冷泉区域的甲烷释放通量,研究团队使用深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统(Long-term ocean observation platform, LOOP)于2020年、2021年、2022年前后3次布放于我国南海北部的台西南冷泉区域(如图2所示),实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,成功建设国际首套深海原位光谱实验室,并常态化运行。 图2 Mulit-RiPs搭载LOOP连续三年(a:2020年;b:2021年;c:2022年)布放于我国台西南冷泉区域对深海原位实验进行探测与分析   论文第一作者为海洋所副研究员杜增丰,通讯作者为海洋所研究员张鑫。研究得到了国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。
  • 跨界,让拉曼光谱极具魅力
    仪器信息网讯 2024年3月29-30日,由中国物理学会光散射专业委员会主办,上海交通大学、武汉大学、上海师范大学和华中农业大学联合承办的第三届全国生物医学拉曼光谱学术会议在上海召开。本次会议给国内外拉曼光谱在生物学、基础医学、临床医学以及生命科学相关领域的学者和拉曼仪器制造商提供了一个直接交流与合作的平台,也让各与会嘉宾充分挖掘拉曼光谱技术在生物医学领域的潜在应用需求。跨界,让拉曼光谱与生物、医学、人工智能等多个学科融合发展,引领科研前沿。而恰恰因为多学科的交叉融合,让本次会议的报告极具看点。30日上午的跨界论坛,5位嘉宾分享了精彩的报告。海军军医大学陆峰教授主持跨界论坛。浙江大学 周民研究员报告题目:《表面增强拉曼光谱的肿瘤及细菌感染成像及治疗》浙江大学周民教授在报告《表面增强拉曼光谱的肿瘤及细菌感染成像及治疗》中讲述了表面增强拉曼光谱在肿瘤及细菌感染成像及治疗中的应用,其详细介绍了SERS 材料设计制备,微小肿瘤病灶成像及术中导航、细菌成像及治疗、干细胞长期活体示踪等内容。西安电子科技大学 陈雪利教授报告题目:《计算拉曼光谱与成像》西安电子科技大学陈雪利教授的报告题目是《计算拉曼光谱与成像》,其介绍说,基于拉曼散射效应和投影断层成像技术的发展,将投影断层成像策略与拉曼光谱技术相结合,可实现大体积复杂系统的高速、无标记和高分辨率的体积化学成像。基于此,他们开展了一系列的研究工作。上海交通大学 林俐助理教授报告题目:《深穿透拉曼技术的活体无创病灶成像及定位》上海交通大学林俐助理教授以《深穿透拉曼技术的活体无创病灶成像及定位》为报告主题,介绍在深穿透活体拉曼成像技术领域的一系列新进展,这些进展在深部病灶的检测、定位和重建方面展示了显著的潜力。据介绍,该工作是拉曼光谱技术向临床转化的一大迈进,也给无创光学诊断和精准医学提供新的思路。上海交通大学医学院附属仁济医院 包州州副主任医师报告题目:《拉曼探针用于肿瘤转移前哨淋巴结的原位活检》本次报告上海交通大学医学院附属仁济医院包州州副主任医师介绍了基于拉曼探针比率式成像方法的前哨淋巴结定位及诊断。该工作开发了缝隙增强拉曼探针,并证实其具有良好的稳定性,能提供较长时间的手术窗口,在诊断SLN转移方面可能优于现有的组织病理学评估,有望指导未来的外科手术。上海交通大学医学院附属仁济医院 潘家骅主治医师报告题目:《拉曼光谱技术在前列腺癌早期诊断和肿瘤评估的研究》上海交通大学医学院附属仁济医院潘家骅主治医师在报告中介绍到,他们利用拉曼光谱技术所围绕前列腺癌早期诊断、肿瘤评估、药物治疗反应等进行的一系列研究,揭示了拉曼光谱技术具有很强的临床转化价值和应用前景。不仅如此,30日上午会议还安排了拉曼与生物医学其他相关、拉曼相关显微技术及生物成像、拉曼光谱与疾病诊断等主题论坛,多位专家的报告也充分显示了跨界的力量,比如海军军医大学陆峰教授、昌平国家实验室王平教授、复旦大学季敏标研究员、上海交通大学医学院附属瑞金医院医学芯片研究所陈昌教授和上海交通大学医学院肖泽宇教授等20位专家分享各自领域中的进展和经验。海军军医大学陆峰教授报告题目:《拉曼光谱药理学研究的可行性探讨》昌平国家实验室 王平教授报告题目:《超快超分辨受激拉曼成像应用于生物医学》复旦大学 季敏标研究员报告题目:《受激拉曼显微镜用于快速无标记病理成像与诊断》上海交通大学医学院附属瑞金医院医学芯片研究所 陈昌教授报告题目:《基于光谱技术的无创血糖检测的机遇和挑战》上海交通大学医学院 肖泽宇教授报告题目:《肿瘤治疗的活体拉曼成像分析》本次跨界论坛不止邀请学术界专家,还特别邀请了医学界救死扶伤的专家医师进行交流分享,可谓是一场行业跨界盛典。会议吸引了全国各地专家参与,现场气氛热烈,互动频繁,提问接连不断。通过跨学科的交流,增强了合作,专家学者们互相学习,大家都满载而归。
  • 朱幸俊研究员团队:镧系发光纳米温度探针及光学测温技术
    镧系发光纳米温度探针及光学测温技术胡倩1 朱幸俊11上海科技大学物质科学与技术学院生物体温度监测在医学诊断和治疗方面有着重要意义。传统的生物体测温方式依赖于侵入式探头或者局限于体表检测的热成像设备。对于体内深层组织的无损温度探测仍然是一项挑战。光学测温技术基于温度敏感的发光材料和器件,以光信号作为输出实现温度检测。在发光材料中,镧系发光纳米材料(LLNs)具有光稳定性好、发射谱带丰富、低自发荧光干扰等独特优点,在体内成像检测和疾病诊断方面具有广泛应用。目前已报道了一系列LLNs的发光信号的强度、寿命等光学性质与温度相关,因此可以作为温度检测探针。与此同时,LLNs本身的纳米级尺寸有别于传统温度检测的宏观设备,因此可以胜任亚细胞级别的微观热效应检测以及热传递过程研究,提升测温的空间精度,借助LLNs的近红外发光,能进一步提高光信号在组织中穿透深度,更好的实现深组织、非侵入性温度检测。(一)LLNs温度探针的测温策略温度可以改变LLNs的发光强度比、带宽、光谱偏移、寿命等方式影响LLNs的发光特性[1]-[3]。其中,发光强度比和发光寿命这两种策略受生理环境的干扰更小,从而具有更高的测温准确性[4]-[5]。基于发光强度比率构建温度探针电子在两个相邻激发能级(能级差一般小于1000 cm-1)中的分布与温度有关,满足Boltzmann分布,因此具有热依赖性的两个能级发光强度比与温度之间的关系可描述为, [6]-[7],其中I2/I1为两个能级的发射强度比;ΔE是两个能级能量差,C是由发光基质材料确定的常数,T为温度,kB为玻耳兹曼常数。因此,通过在不同温度下检测两条发射峰的比值,可得到温度以发射强度比值的关系,作为温度检测的校正曲线。基于发光寿命构建温度探针在LLNs体系中,温度敏感的能量转移也会导致激发态寿命的变化,从而可以测量在脉冲激发下特定能级跃迁的寿命与温度的依赖关系,通过发光衰减曲线推断温度信息[8]-[9]。(二)LLNs测温技术与设备基于发光强度比率的测温技术较为直观,相关设备的设置与光谱检测系统类似,主要特点是恒温控制系统的附加。其装置如图1所示,由半导体激光器、样品台、控温器、滤光片、光谱检测器和计算机组成,其中激光器、样品台、滤光片、光谱检测器用于发光材料的光信号激发与收集,控温器件用于样品的恒温与变温进而得到不同温度的光谱。类似的基于发光强度比率的成像检测设备的光谱检测器被替换为CCD相机,通过滤光片系统采集不同波段的发射带,通过光强度成像图的计算得到温度分布结果。光强比率测温技术的设备较为简单,但这项测温方法易受生物环境引起的光散射或吸收的干扰[4],需在组织或模拟组织的假体中对温度曲线进行校正来减小误差[10];基于发光比率的温度检测其优点是检测速度较快,对于快速变化的温度具有更好的实时跟踪能力。发光寿命作为荧光团固有特性,受环境干扰较小,因此可以提高测量准确性[11]-[12],而且LLNs的发光寿命相对小分子荧光探针更长,对于基于成像的寿命检测系统的构建相对短寿命检测难度较低。具体的设备构建如图2所示,将常规的荧光成像代替为时间门控荧光成像系统,配合波形发生器、斩波器等,对相机的分辨率要求高,并且由于寿命衰减曲线的测试需要借助时间门控单元,对光信号进行多次采集,因此获取完整衰减曲线的图像时间较长,不利于检测快速变化的温度信号[8]。两种发光温度检测技术各有优势,目前研究工作中所报道的比率型温度检测技术较为成熟,寿命检测的测温技术仍然处于优化阶段,主要难点是长波长近红外发射的寿命检测技术尚不成熟。图1. 基于发光强度比率温度计的实验设备图2. 基于发光寿命温度计的实验设备[8](三)LLNs温度探针的生物应用LLNs体内无创温度监测的特性促使了一些新兴的生物医学领域应用,尤其在疾病诊断和指导治疗方面[4],[13]-[16]。我们最近总结了基于镧系发光纳米复合材料的温度检测技术及其生物学应用的研究工作,并梳理了不同测温技术在生物应用上的特点(Chem. Eur. J., 2022, 28, e202104237),希望和大家一起探讨光学测温技术的应用空间以及相关设备的研制。基于LLNs的生物体温度检测,近年来我们开展了一系列的应用。例如我们曾经报道了一种以上转换发光材料为核心(NaLuF4:Yb,Er@NaLuF4),以光热材料(碳)作为外壳的LLNs,其中上转换发光材料的Er3+发光中心特征的525与545 nm发射强度的比值与温度呈现相关性,因此可作为光学温度探针。通过检测光热过程中的微观温度变化,进一步发现光热效应下纳米颗粒的升温幅度和速率大于常规的外部加热方式。利用这一特性,可以实现温和宏观温度下的微观高温,进而在保证光热治疗剂标记的恶性细胞被有效杀伤的同时,减少不必要的热扩散而损伤病灶周边的正常组织,提升治疗的精度(如图3a)[17]。寿命检测技术上,复旦大学李富友课题组利用PAA-PEG包裹的NaNdF4:Yb@CaF2纳米颗粒,此种材料的Yb3+离子能够发射980 nm光信号,由于Nd3+与Yb3+在不同温度下的能量传递效率不同,Yb3+的980 nm发光寿命随着温度发生线性变化。在活体动物光学成像仪上进行了时间门控系统的附加,利用脉冲激光器对材料进行照射,然后采集材料的发光衰减,最终获得温度-寿命曲线,进一步在活体动物的血管部位进行光信号的采集,考察血管内血液温度与血流相关性,为心血管疾病的诊断和疗效评估提供了重要途径(如图3b)[8]。图3. (a)基于强度比率的Er3+掺杂上转换光热LLNs用于光热治疗过程微观温度监测[17]。(b) 基于寿命的Yb3+-Nd3+共掺杂的LLNs温度计用于心血管疾病[8]。(四)LLNs温度探针的展望合成可调控的LLNs温度探针的发展加速了其作为体内潜在温度传感工具的应用,但为了使其具有更准确的读数结果,还需进一步优化。其中,减少外部干扰和校准通过组织的发光衰减是亟待解决的重要问题。同时进一步探索波长更长的光谱区域,可实现更深层次的组织传感,促进LLNs在体内疾病诊断和治疗方面的生物应用。参考文献1. C. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater., 2019, 7, 1801239. 2. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak, Appl. Phys. Rev., 2021, 8, 011317.3. H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo, Laser Photon. Rev. 2021, 15, 2000319.4. N. Kong, Q. Hu, Y. Wu and X. Zhu, Chem. Eur. J., 2022, 28, e202104237.5. M. Jia, Z. Sun, M. Zhang, H. Xu, Z. Fu, Nanoscale., 2020, 12, 20776-20785.6. J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Nat. Methods., 2020, 17, 967-980.7. A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque, Nanoscale., 2020, 12, 14405-14421.8. M. Kong, Y. Gu, Y. Chai, J. Ke, Y. Liu, X. Xu, Z. Li, W. Feng, F. Li, Sci. China Chem. 2021, 64, 974-984.9. L. Marciniak, K. Trejgis, J. Mater. Chem. C., 2018, 6, 7092-7100. 10. L. Labrador-Páez, M. Pedroni, A. Speghini, J. Garcí a-Solé , P. Haro-Gonzá lez, D. Jaque, Nanoscale., 2018, 10, 22319-22328.11. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118. 12. K. Maciejewska, A. Bednarkiewicz, L. Marciniak, Nanoscale Adv., 2021, 3, 4918-4925.13. M. Quintanilla, M. Henriksen-Lacey, C. Renero-Lecuna and L. M.Liz-Marzán, Chem. Soc. Rev., 2022.14. Z. Yi, Z. Luo,X. Qin, Q. Chen, X. Liu, Acc. Chem. Res., 2020, 53, 2692-2704.15. B. del Rosal, E. Ximendes, U. Rocha, D. Jaque, Adv. Opt. Mater., 2017, 5, 1600508.16. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118.17. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, F. Li, Nat. Commun. 2016, 7, 10437.【作者简介】胡倩 博士研究生2020年毕业于湖南师范大学,获化学专业学士学位。目前是上海科技大学物质科学与技术学院博士研究生,师从朱幸俊教授,主要从事近红外发射镧系纳米复合材料的温度传感和生物成像应用的研究。朱幸俊 研究员上海科技大学物质科学与技术学院研究员、博士生导师。2017年博士毕业于复旦大学生物研究院(导师李富友教授),2017-2019年在美国斯坦福大学材料科学与工程系作为博士后学者从事生物医学成像以及神经调控材料与器件的研发工作。目前已在Nature Communications, Chemical Society Reviews, Nano Letters, ACS Nano, PNAS, Biomaterials等国际著名期刊上发表研究论文30余篇,他引3500余次(H因子26),并持有多项专利。多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文(Highly Cited Paper)。研究项目获国家自然科学基金、上海市浦江人才计划资助。课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,利用其光、热、磁、声等性质,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。欢迎感兴趣的同学报考上海科技大学研究生,课题组长期招聘化学、材料学以及生物学相关专业博士后。具体可邮件沟通咨询,zhuxj1@shanghaitech.edu.cn(本文编辑:刘立东)专家约稿招募中若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!
  • 原位拉曼光谱定量探测深海高温热液喷口流体获新突破
    p   近日,中国科学院海洋大科学研究中心研究员阎军团队、李超伦团队在深海热液系统原位拉曼光谱定量探测研究中获得进展,基于自主研发的深海原位激光拉曼光谱探测系统(Raman insertion probe-RiP)对冲绳海槽中部热液区的高温热液流体进行了原位拉曼光谱定量探测,在国际上首次获得高温热液流体中溶解二氧化碳及硫酸根离子的原位浓度。相关研究成果以封面论文的形式,发表在Geochemistry,Geophysics,Geosystems上。 /p p   深海热液系统作为20世纪地球科学重大发现,沟通了不同圈层之间的物质能量交换。近年来,高温热液喷口流体理化性质及其对大洋环境影响已成为热液活动新的研究热点。温度、压力变化以及海水混入的影响会明显改变热液喷口流体的化学成分或浓度,尽管科学家使用保真取样方法进行实验室分析取得了较为贴近的数据,但由于取样方法的限制而一直无法获取高温热液喷口内流体的准确样本,造成分析数据与实际仍有明显差异。研究团队攻克了光学镜头耐高温和高浓度颗粒附着对光学系统的影响等国际技术难题,成功研制了国际首台耐高温(450℃)的热液流体拉曼光谱探针-RiP(Xin Zhang et al.,DSR-I, 2017)。该系统自2015年以来依托“科学”号科考船和“发现”号深海缆控潜器(ROV)对马努斯热液区、冲绳海槽热液区的高温热液喷口进行了原位拉曼光谱探测,采集到大量原位光谱数据。 /p p   该研究基于2016年“科学”号热液冷泉综合航次获得的冲绳海槽中部热液区三个高温热液喷口流体的原位拉曼光谱(最高273℃),结合实验室内大量高温模拟实验建立的CO2、SO42-的拉曼光谱定量分析模型(Lianfu Li, Xin Zhang*, et al., Applied Spectroscopy, 2018 Shichuan Xi, Xin Zhang*, et al.,Applied Spectroscopy, 2018),成功确定了冲绳海槽中部热液喷口流体中CO2、SO42-的浓度(Lianfu Li, Xin Zhang*, et al.,G-cubed, 2018)。研究发现,硫酸根含量作为海水混入程度的指标,在所测高温热液流体中的含量几乎为零,证明原位拉曼探测系统采集的热液流体中并未发生海水混入,即所测样本代表原始的热液流体喷出物。通过对比ROV在同一热液喷口保压取样方法测量的二氧化碳浓度发现,原位测量的浓度可高出保压取样实验室测试浓度的三倍以上。基于该成果可以认为热液活动对全球碳循环以及气候变化的影响很有可能被大大低估。该研究对于推动原位光谱探测技术在深海极端环境下的应用具有重要意义,有助于重新认识热液活动对全球海洋环境的影响。 /p p   该研究得到了国家自然科学基金、中科院海洋先导专项、中科院前沿科学重点研究项目的资助。博士研究生李连福为论文第一作者,研究员张鑫为通讯作者。 /p p   论文链接 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/19da6824-497c-4fb2-9d20-5fe1a3483365.jpg" title=" W020180803573736486382.jpg" / /p p style=" text-align: center " 原位拉曼光谱数据获得的二氧化碳、硫酸根离子浓度数据与传统保压方式获得的数据对比 /p p style=" text-align: center " (红色符号代表二氧化碳,黑色符号代表硫酸根) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/9f6f2c0d-ba2c-411d-8b06-829b5dd26482.jpg" title=" W020180803573560140519.png" / /p p style=" text-align: center " 刊物封面 /p
  • 拉曼及椭圆偏振光谱应用技术交流会通知
    姓名: 公司/院校: 部门/院系: 电话: 传真: 邮件: 应用领域: 感兴趣的技术(拉曼光谱/椭圆偏振光谱/全部): 是否需要测试样品(是/否): 对讲座内容的建议和意见: 备注 : HORIBA JobinYvon 公司 HORIBA Jobin Yvon 公司成立于1819年,是世界上大的光谱分析系统及部件生产商之一。致力于为 用户提供优质、先进的产品和解决方案,并提供专业的技术支持。产品包括衍射光栅、光学元 器件以及成套光谱分析系统:如:拉曼光谱仪、椭圆偏振光谱仪、荧光光谱仪、辉光放电光谱仪、等离子体 发射光谱仪等。可广泛应用于各种研究及分析领域,并在全球居领先水平。 Jobin Yvon公司隶属于HORIBA集团,该集团有高达10亿美元的销售额,在全球拥有4700多名员工。www.jobinyvon.cn 华南理工大学分析测试中心(计量认证合格单位) 华南理工大学分析测试中心组建于1982年10月,现有专业技术教师和管理人员共27人分析测试工作十年以上人 员占80%,整体的检测分析能力强。中心装备了高分辨透射电镜、热场发射扫描电镜、超导核磁共振谱仪、液-质联用仪、多功能化学电子能谱、电子探针、X射线荧光光谱仪、拉曼光谱仪、多功能生物质谱、气-质联用仪、单晶衍射仪等大型精密贵重仪器30台,仪器总价值5000多万元;拥有独立且相对集中的现代化实验室,使用面积达3000m2;是华南地区规模宏大、设备先进、富具特色、队伍精良的现代分析测试中心之一 .www.scut.edu.cn/test/
  • 拉曼光谱的跨界对话——全国第二届生物医学拉曼光谱学术会议之跨界论坛
    p   为推动生物医学及相关研究领域持续向前发展,加强学术交流,由中国物理学会光散射专业委员会主办,上海师范大学、华中农业大学和武汉大学联合承办的全国第二届生物医学拉曼光谱学术会议于2018年12月7-10日在上海成功举办。 br/ /p p   “跨界论坛”作为本次会议的一大亮点,邀请了学术界、医学界和仪器厂家等不同领域的老师和专家跨界交流,带给大家国际前沿的专题报告,分享各自领域中的进展和经验。这次会议不仅是一场行业跨界盛典,更是引领未来生物医学拉曼光谱技术发展趋势的地标。 /p p   跨界论坛分上下两场,分别由吉林大学赵冰教授和中山大学陈建教授主持。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/c0b423b2-7d67-453c-a853-5abae3dfbf08.jpg" title=" 吉林大学赵冰教授.jpg" alt=" 吉林大学赵冰教授.jpg" / /p p style=" text-align: center " strong 吉林大学赵冰教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/35069fdc-6b0c-4536-a162-89cf596124b3.jpg" title=" 中山大学陈建教授.jpg" alt=" 中山大学陈建教授.jpg" / /p p style=" text-align: center " strong 中山大学陈建教授 /strong /p p   南开大学谢微教授开场首讲,做题为《表面增强拉曼光谱在催化检测中的应用》,介绍了表面增强拉曼光谱技术的发展以及在催化检测中的具体应用 上海交通大学肖泽宇教授做题为《核酸适体拉曼纳米诊疗探针用于活体生物医学分析》,介绍了核酸适体纳米诊疗技术及结合探针分子拉曼技术如何应用于活体生物医学 福建师范大学冯尚源教授做题为《基于表面增强拉曼光谱技术的液体活验研究》,他指出了表面增强拉曼光谱技术与液体活验研究的联系 此外,学术界专家北京航空航天大学岳蜀华和洪维礼副教授,首都师范大学王培杰教授,中国科学院长春光学精密机械与物理研究所李晓天副研究员也分别做了精彩的报告。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/83f6c6cf-cef8-4551-aeb0-be08d1f49b40.jpg" title=" 南开大学谢微教授.jpg" alt=" 南开大学谢微教授.jpg" / /p p style=" text-align: center " strong 南开大学谢微教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/295043b8-2ed3-4886-8352-8e244596bea5.jpg" title=" 上海交通大学肖泽宇教授.jpg" alt=" 上海交通大学肖泽宇教授.jpg" / /p p style=" text-align: center " strong 上海交通大学肖泽宇教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5ef16c8f-ca87-40be-9219-b3c1105361fe.jpg" title=" 岳蜀华副教授.jpg" alt=" 岳蜀华副教授.jpg" / /p p style=" text-align: center " strong 北京航空航天大学岳蜀华副教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5ba141ed-315f-43f8-8b5f-89803d2b96f7.jpg" title=" 王培杰教授.jpg" alt=" 王培杰教授.jpg" / /p p style=" text-align: center " strong 首都师范大学王培杰教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/8b8bd8d7-c1f1-4798-b13a-583085c17f31.jpg" title=" 冯尚源教授.jpg" alt=" 冯尚源教授.jpg" / /p p style=" text-align: center " strong 福建师范大学冯尚源教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3fab1d5f-d5d3-47cf-ac5e-14c990455d5c.jpg" title=" 洪维礼副教授.jpg" alt=" 洪维礼副教授.jpg" / /p p style=" text-align: center " strong 北京航空航天大学洪维礼副教授 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e53b5233-86b1-4d45-aa84-b8672b47d72a.jpg" title=" 李晓天副研究员.jpg" alt=" 李晓天副研究员.jpg" / /p p style=" text-align: center " strong 中国科学院长春光学精密机械与物理研究所李晓天副研究员 /strong /p p   值得一提的是,本次跨界论坛还邀请到了来自上海交通大学附属第六人民医院黄修燕教授做题为《肝癌从手术刀下逃逸的基础与临床研究浅谈》的报告,他介绍了手术切除肿瘤面临的挑战以及当前术中影像手段面临的挑战。此外医学领域专家、上海中医药大学关节病研究所兼上海光华中西医结合医院孙阳也做了详细的报告。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e4990541-bd83-4b98-9f22-96f8772a2508.jpg" title=" 黄修燕副主任医生.jpg" alt=" 黄修燕副主任医生.jpg" / /p p style=" text-align: center " strong 上海交通大学附属第六人民医院黄修燕副主任医生 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/86f9209f-03f8-40e9-af4c-666a09a9544a.jpg" title=" 孙阳医生.jpg" alt=" 孙阳医生.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" style=" width: 300px height: 400px " / /p p style=" text-align: center " strong 上海中医药大学关节病研究所,上海光华中西医结合医院孙阳医生 /strong /p p   此次会议同时也邀请了仪器厂商代表,HORIBA科学仪器事业部胡恩萍博士、雷尼绍Martin Isabelle博士、湖南湘雅医院科技部(与赛默飞共建实验室)胡亮医生、必达泰克Jack Zhou博士、德国威泰克北京代表处胡海龙博士和上海如海光电科技有限公司詹德坚博士也做了专业精彩报告,详细介绍了各自的拉曼光谱仪器及拉曼光谱最新技术在生物医学领域的应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/550a0d13-9d36-4c69-b2a2-9741ad17020b.jpg" title=" B88D39D8-09DE-49AF-B084-6E2A92065F00.jpeg" alt=" B88D39D8-09DE-49AF-B084-6E2A92065F00.jpeg" / /p p style=" text-align: center " strong 湖南湘雅医院科技部(与赛默飞共建实验室)胡亮医生 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d6af5557-571b-4a5e-b6e4-8ca80939e7f1.jpg" title=" 胡恩萍博士.jpg" alt=" 胡恩萍博士.jpg" / /p p style=" text-align: center " strong Horiba科学仪器事业部胡恩萍博士 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f2a5c9fd-0320-458f-b850-df412956352a.jpg" title=" Martin Isabelle博士.jpg" alt=" Martin Isabelle博士.jpg" / /p p style=" text-align: center " strong Reinshaw(雷尼绍)Martin Isabelle博士 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a390cb53-096d-45f1-afb6-719d21c937af.jpg" title=" Jack Zhou博士.jpg" alt=" Jack Zhou博士.jpg" / /p p style=" text-align: center " strong B& amp W Tek(必达泰克)Jack Zhou博士 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d1c9a5de-36f7-4b6a-a1dd-ad19bbeb399f.jpg" title=" 胡海龙博士.jpg" alt=" 胡海龙博士.jpg" / /p p style=" text-align: center " strong 德国WITec(威泰克)北京代表处胡海龙博士 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/dee02db7-a72a-447e-9f49-c50503a98a8e.jpg" title=" 詹德坚博士.jpg" alt=" 詹德坚博士.jpg" / /p p style=" text-align: center " strong 上海如海光电科技有限公司詹德坚博士 /strong /p p   本届会议顺应拉曼光谱技术在生物医学领域日新月异发展的现状,旨在推动国内拉曼光谱学界同仁与生物学、基础医学、临床医学及纳米科学等相关领域学者的交流与合作。来自全国各地的数百位专家莅临会议,现场热情互动,提问不断!跨界交流,增强合作,相互学习拉曼光谱知识、应用及发展,彼此都收获满满! /p
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。   该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。   由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。   急需速测技术   我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。   据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。   而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。   食品检验新兵   化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。   在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。   利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。   杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。   应用前景广阔   该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。   吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。 胶体金快速检测试纸
  • 拉曼光谱:如何让应用更落地?
    近10多年来,拉曼光谱在人们生活中发挥着越来越重要的作用,在食品及农产品安全、环境保护、药品安全、生物医疗、公安缉毒、安全检查、珠宝鉴定、材料等多个领域都得到了广泛的应用,同时市场规模也在快速扩大。特别是在食品领域,虽然拉曼光谱技术使用比较晚,但是由于其无损分析、检测灵敏度高、操作简单等优势,在食品安全检测中发挥着非常重要的作用,社会各界也越来越关注此项技术的发展和应用。此外,随着微塑料等各项污染问题的频发,拉曼光谱技术在环境领域的应用也越来越凸显出其优势。当然,从科研到应用,拉曼光谱的应用落地必然面临各种各样的问题。助力科学研究,拉曼光谱可以破解哪些科学难题?伴随应用需求的提升,各种各样复杂的样品该如何处理?应对新应用场景的拓展,拉曼光谱又将发挥什么样重要的作用?即将召开的第四届拉曼光谱网络会议(iCRS2022 ) 特别邀请了多位专家进行相关的分享,部分报告预告如下( 点击报名 ) :中山大学化学学院分析科学研究所所长 李攻科教授《表面增强拉曼光谱快速检测复杂样品方法研究》(点击报名)李攻科教授一直致力于食品药物分析、生命环境分析等领域的色谱及光谱分析,分析仪器研制,复杂样品分离分析、快速检测技术等相关研究。在Chemical Science,Analytical Chemistry, Journal of Chromatography A、分析化学等杂志发表论文480篇,出版著作1部、编写3个专章、参编教材2部;授权国家发明专利43件。2015年获 “中国女分析化学家奖”,被The analytical scientist分别评为分析科学界"2016年最有影响力的50位女科学家"、“2019年世界最具影响力100位分析科学家”及“2021年世界最具影响力100位分析科学家”。本次报告中李攻科教授将给大家分享表面增强拉曼光谱快速检测复杂样品的研究进展。 内容包括:(1) 同时分离、富集和原位SERS检测方法;(2) 快速前处理和高通量分析一体化方法;(3) 化学衍生化方法; (4)场辅助加速方法; (5)在线处理和实时SERS检测方法等。The University of British Columbia 杨天溪助理教授《拉曼光谱技术创新:可持续食品生产的新机遇》(点击报名) 杨天溪助理教授主要研究领域是开发创新分析技术和先进材料,以提高农业和食品系统的安全性、可持续性和弹性,并专注于采用跨学科方法来应对可持续食品生产和食品工业中当前和新出现的挑战,在Nature Nanotechnology, Small, Analytical Chemistry, Biosensors and Bioelectronics, ACS Applied Materials & Interfaces 等学术期刊发表文章35篇。世界范围内快速增长的人口对日益增长的粮食需求产生了巨大挑战。联合国粮食及农业组织强调,三分之一的食品在供应链中被浪费,主要由于食品的安全和质量问题以及食品包装过期。这些浪费的食品和资源又会进一步破坏环境和气候,给粮食生产产生更大的压力。发展可持续农业和食品系统对于增加粮食供应、减轻不利的环境影响和改善人类健康至关重要。创新的拉曼光谱技术和分析策略为农业和食品系统的安全性、可持续性和弹性提供了巨大的机会。本报告,杨天溪助理教授将结合研究工作介绍如何利用拉曼光谱技术来促进农业和食品系统的安全性和可持续性,从而确保可持续的粮食生产。山东大学 占金华教授《等离子体膜与环境微纳米颗粒分析》(点击报名) 占金华教授主要从事拉曼光谱联用分析技术与纳米材料催化降解环境污染物的研究,在Angewandte Chemie、Advanced Materials、Environmental Science & Technology等期刊发表论文160多篇,被引用7000多次,H因子46,获得国家发明专利18项。随着纳米科技以及工业生产的持续发展,大量颗粒污染物被排放到环境中,其中工程纳米颗粒占据着十分重要的地位,已对环境安全和生物健康造成严重威胁,微纳塑料颗粒作为新兴污染物也日益受到关注。表面增强拉曼光谱(SERS)具有高灵敏度、亚微米的高空间分辨率以及无损等优势,不仅能够提供特征指纹光谱信息来确定颗粒物的组成,还可以结合拉曼成像技术来获得颗粒物的分布信息。然而环境中颗粒物的残留水平较低,需要对样品进行分离与富集。膜过滤技术因具有富集效率高、适用范围广以及无损等优势而被广泛应用于环境颗粒物的分离与富集过程中。为避免样品转移过程中造成的损失,占金华教授课题组提出了面向环境中痕量纳米颗粒污染物的膜过滤富集与SERS分析的一体化方法,实现了对颗粒污染物(纳塑料颗粒和银纳米颗粒)的高效截留和超灵敏检测。对于本身具有拉曼特征信号的微纳塑料颗粒,通过将1D银纳米线(AgNWs)负载至商用滤纸表面,得到了既具有滤膜结构,又具有优异SERS性能的2D AgNWs滤膜,结合拉曼成像技术获得了纳塑料颗粒在滤膜上的分布信息,实现了环境水样中痕量纳塑料颗粒的高效富集与灵敏检测。而对于本身没有拉曼特征信号的颗粒污染物,如银纳米颗粒(AgNPs),通过添加可以结合到AgNPs表面的拉曼探针分子,利用探针分子的信号来识别AgNPs。该研究实现了对抗菌产品中低浓度AgNPs的分析,为 AgNPs 的检测提供了新途径。本次会议中,占金华教授将就以上研究给大家进行详细分享。中科院生态环境研究中心环境化学与生态毒理学国家重点实验 刘睿研究员《基于拉曼光谱的微观结构解析与定量研究》(点击报名) 刘睿研究员主要研究方向为基于表面增强拉曼散射等谱学技术的环境污染物分析方法与催化转化过程/机制研究。目前在Adv. Mater./Adv. Funct. Mater., CCS Chem., Anal.Chem., Environ.Sci.Technol等期刊已发表SCI论文60余篇,获授权2项PCT发明专利。 催化还原过程作为氧化处理技术的重要补充,在污染物减量化处理和资源回收中起着重要作用。钯(Pd)可以在室温常压下活化H2或者电解水获得活性H等电子供体,同时高效活化碳-卤,碳-氮等高稳定的化学键,处理卤代物有机物,含氧酸离子等污染物。但Pd的低活性和稳定性限制了其在环境还原过程中的广泛使用。因此,亟需发展高灵敏度Pd位点结构解析方法,识别高活性Pd位点并原位追踪其催化过程中结构转变过程,从而指导设计高活性和稳定的Pd催化剂,用于环境催化。刘睿研究员研究发展了基于苯异腈分子的不同结构Pd位点识别方法,并结合球差校正电镜和X-射线吸收谱实现了不同催化剂Pd位点原子数的估算,从而明确了在还原脱卤过程具有最佳催化活性的Pd位点。进一步,研究将拉曼解析Pd位点结构分辨率提升到埃尺度,发现在拉伸应力作用下,Pd位点内部Pd-Pd键键长会发生一定程度拉伸,其催化活性随之提升上百倍。在此基础上,研究引入标记元素,实现了不同结构Pd位点的准确定量,实现了位点结构与活性的深度关联。同时,结合理论计算,研究预测了Pd基金属间化合物是潜在的高活性/高稳定Pd位点,原位拉曼证实该材料可以通过多相反应途径活化碳卤键,为回答Pd催化碳卤键活化的均相/多相这一长期争议提供了新的实验证据。此外,研究还通过原位拉曼解析了金属离子配位结构转化过程,提出了通过配体共享设计负载型金属间化合物团簇的新方法。本次会议中,刘睿研究员将给大家做详细的分享。除了精彩的专家报告之外,赛默飞世尔科技(中国)有限公司 拉曼应用科学家吕歆玥也将在本会场分享赛默飞显微拉曼光谱技术在微塑料表征方面的最新研究和应用进展。赛默飞世尔科技(中国)有限公司 拉曼应用科学家 吕歆玥《赛默飞显微拉曼光谱技术表征微塑料》(点击报名) 为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2022年9月22-23日联合举办第四届拉曼光谱网络会议(iCRS2022) 。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2022/
  • 我国科研团队研发国际首个RiP-SERS探针
    据悉,3月8日,中国科学院海洋研究所科研团队成功研制一种适用于深海的新型表面增强拉曼散射插入式探针(RiP-SERS),搭载“发现”号ROV机器人在南海冷泉区完成常态化航次应用,获取了深海冷泉生物群落中纳摩尔浓度的乙酰辅酶A、β-胡萝卜素等生物大分子的拉曼光谱。这是国际上首次将表面增强拉曼技术用于深海,检测灵敏度达纳摩尔级,为研究冷泉和热液极端环境中的生命现象提供了一种新方法。相关成果以《表面增强拉曼光谱对深海生物分子的原位检测》为题,近日在线发表于国际学术期刊《应用表面科学》。图1 深海冷泉口微生物群落原位SERS探测概念图(面板右侧为RiP-SERS概念设计;面板左侧RiP-SERS原位检测照片。)中科院海洋所供图深海极端环境下的化能合成生命现象一直被认为是地球早期生命起源的一种可能,是国际深海科学和生命科学的研究热点。然而深海生物,尤其是微生物,对环境因素的变化高度敏感,导致传统采样实验中很多数据不准确。因此,迫切需要开发能够全面开展深海生物原位研究的探测技术。但由于深海化能合成细胞外代谢产物等有机大分子的浓度极低,且周围环境复杂,国际上暂无任何原位检测技术手段。激光拉曼光谱是一种无损、非接触、快速的探测技术,广泛应用于深海极端环境的原位探测。然而,拉曼光谱的高检出限和低灵敏度限制了其在深海极端环境中检测超低浓度生物分子的可能性。表面增强拉曼光谱(SERS)技术可以使分子吸附在粗糙金属表面的拉曼信号强度提高数百万倍。因此,深海原位拉曼系统可以与SERS技术相结合,实现深海生物分子的原位检测。图2 (a) 南海海马冷泉喷口生物群落的原位拉曼光谱(无SERS;带SERS);(b) 各种生物分子的SERS光谱与原位拉曼光谱的比较。中科院海洋所供图基于此,科研团队使用前期研发的新型纳米材料,突破了深海耐高压、低温、高盐和浑浊流体环境下的SERS检测技术,研发了一种新型的RiP-SERS探针,这是继团队研发RiP-Cs、RiP-Pw、RiP-Hv和RiP-Gh探针后的又一突破性进展。团队成功利用RiP-SERS探针获取了海马冷泉口海水-沉积物界面生物信息分子的拉曼光谱数据,成功检测到纳摩尔级浓度的乙酰辅酶A、β-胡萝卜素等生物大分子。这也是国际上首次利用SERS技术在原位获得深海生物大分子拉曼光谱数据的研究,为深海原位检测低浓度的微生物代谢产物提供了新手段。据悉,该技术的适用范围也涵盖了极端工业环境下的原位检测,有一定的推广应用前景。
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • HORIBA用户动态 | 表面增强拉曼光谱探究银@碳点核壳纳米粒子的催化性能
    撰文:金静碳点(CDs)作为小的碳材料之一,自2004年被发现以来,已逐渐发展成为一种明星材料。作为一种新型的量子点,CDs具有可实用的光电转化能力,良好的生物相容性和低毒性,双光子吸收和上转换荧光能力,以及易于化学修饰和功能集成性等优点,在光催化,光电器件,环境检测和生物成像领域有着广泛的应用。将CDs与金属复合,以表面增强拉曼光谱(SERS)技术来研究复合基底界面与分子的化学相互作用和化学反应以及催化反应的机理,将为SERS技术的发展带来新的契机。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授和宋薇副教授等人在这方面做了新的研究,有了新的发现。该研究利用碳点的还原性制备出了浓度和尺寸都可调控的核壳结构银@碳点核壳纳米粒子(Ag@CDs NPs),作为SERS基底,检测到PATP探针分子低浓度为10-9 M,增强因子达6.7*10-5M,获得了佳的SERS信号。接着,与相同浓度的银纳米粒子(Ag NPs)进行SERS对比,结果发现Ag@CDs NPs具有更好的SERS性能。同时CDs荧光被猝灭后得到了其本身碳材料固有的D带和G带。之后,研究人员以Ag@CDs NPs同时作为SERS基底和催化剂,成功监测了Ag@CDs NPs催化氧化TMB,催化还原PNTP-DMAB以及PNTP-PATP的过程。他们欣喜地发现:由于CDs和Ag NPs的协同作用和电荷转移作用,Ag@CDsNPs的催化效率比相同浓度的单独的Ag NPs和CDs要高很多,并且检测到非常具有意义的H2O2的低浓度为1.6*10-8 M。由此得出Ag@CDs NPs具有更优良的SERS和催化性能的结论。图2.(a)SERS监控Ag@CDs NPs催化氧化TMB,(b) 不同浓度的H2O2催化氧化TMB的SERS,(c)Ag@CDs NPs 等离子体催化耦合PNTP-DMAB,(d) 以NaBH4为还原剂,Ag@CDS NPs 催化还原PNTP-PATP。本研究利用拉曼光谱不仅得到了被催化分子的变化信息,对分子的定性和定量具有重要意义,而且促进了核壳结构SERS基底的发展,扩展了CDs在SERS和催化领域的应用。值得一提的是,本研究中,SERS光谱的采集使用了HORIBA激光共聚焦拉曼光谱仪,所有的拉曼数据通过LabSpec软件进行分析。此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《ACS Applied Materials& Interfaces》上,受到了业界同行的广泛关注,同时受邀报道在HORIBA科学仪器事业部上。Jing Jin,Shoujun Zhu, Yubin Song, Hongyue Zhao, Zhen Zhang, YueGuo, Junbo Li, Wei Song,Bai Yang, and Bing Zhao,“Precisely Controllable Core?Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions”.ACS Appl. Mater. Interfaces 2016, 8, 27956?27965.HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 显微拉曼探究猪肉组织拉曼光谱信号
    一、研究背景猪肉含有丰富的营养成分,在储藏过程中受到微生物的污染而产生质量变化,以致腐坏。猪肉冷藏或冷冻后仍会缓慢变质,营养价值和品质降低。肉类品质是影响人们生活和健康的重要因素。肉类品质的好坏单凭感官检测易受主观因素的影响,感官评价的可靠性、可比性差,存在一定缺陷,因此国内外专家一直致力于建立一套快速科学、客观的对肉类食品品质进行仪器测定的方法,并使之与感官评价相结合,以确保评价结果的准确性。研究采用如海三通道显微拉曼光谱仪对猪肉进行检测分析,选择与猪肉品质指标相关的主要拉曼峰进行研究。探讨肉品变化与拉曼峰的内在联系,得到简单有效的检测方法,为猪肉储存过程中肉品变化提供检测依据。本次研究旨在利用显微拉曼光谱仪对猪肉进行测试,为检测猪肉信号提供一种新的技术手段,推动绿色实验开发技术的可持续发展。二、测试样品及实验仪器设备1. 测试样品样品从左到右分别为:石英载片猪肉样品、玻璃载片猪肉样品和钢板载片猪肉样品。图1猪肉样品图2. 设备搭建使用三通道显微拉曼光谱测量(如图2所示),测试时可直接将样品载玻片放置在升降台口处采集样品的拉曼光谱。图2 三通道显微拉曼光谱仪样品测试过程 三、测试结果 三种不同载片的猪肉光谱图覆盖了低波数区域(或称指纹区),这个区域大约在200-500cm-¹ ,包含了分子振动的详细信息,常常用于物质的鉴定。中波数区域大约500-1500cm-¹ ,通常包含了更多的分子振动的信息。高波数区域在1500-3000cm-¹ ,通常涉及更高级的振动模式和某些特定的官能团。从总光谱图中可以看出,每种样品随波长的变化呈现出独特的拉曼光谱特征,这些特征峰的位置和强度是猪肉组织识别和分类的重要依据。为了更详细地了解这些猪肉的性质,对猪肉的单个光谱图进行了详细的分析。图4钢板-10倍物镜猪肉拉曼图谱发现钢板上测得猪肉的拉曼光谱,在900cm-1、1000cm-1、1100cm-1、1400cm-1、1650cm-1、2800cm-1和2900cm-1处为猪肉的拉曼特征峰。1000cm-1处对应于顺式双键的异相面外弯曲振动,1100cm-1处对应脂肪族面外伸缩振动υ(C–C),1400cm-1处为亚甲基(CH2)剪式振动峰;1650cm-1处归属为不饱和双键(C=C)的伸缩振动,2800cm-1左右的谱带主要归属为对称的次甲基(-CH2)伸缩。图5钢板不同倍物镜猪肉对比拉曼图谱由图5可以看出,分别是物镜倍数为10倍、20倍和50倍。发现10倍与20倍的拉曼光谱的特征趋势是一致的,样品表面脂肪的拉曼特征位移集中在1200~1800cm-1和2800~3000cm-1附近,其中1120cm-1为C-C键伸缩振动,1300cm-1为-CH2-弯曲振动,1440cm-1为-CH2-剪切振动,1650cm-1左右为C=C伸缩振动,2800cm-1为-CH3的对称振动不饱和脂肪酸的特征峰,可以表征脂肪的饱和程度,在一定程度上反映猪肉脂肪的氧化程度。 四、实验结论使用如海光电三通道显微拉曼光谱仪,测得的拉曼光谱曲线能快速、简便,得出猪肉组织脂肪族氨基酸、肽链和蛋白质拉曼信号。根据猪肉的拉曼光谱间的差异和特征峰可初步评价猪肉组织的新鲜度评价。五、仪器推荐
  • 我国率先实现紧邻不同分子的拉曼光谱识别
    p   纳米尺度上的化学识别对于微观结构的设计与功能调控至关重要,而实现相邻不同分子的化学识别则代表着识别技术的一种极限挑战。中国科技大学微尺度物质科学国家实验室单分子科学团队董振超研究组,在国际上首次实现紧邻的不同分子的 a href=" http://www.instrument.com.cn/zc/34.html" target=" _self" title=" " 拉曼光谱 /a 识别。该成果7月27日在线发表在《自然· 纳米技术》上。 /p p   董振超介绍说,由于拉曼散射光中包含了丰富的分子振动结构的信息,不同分子具有不同“指纹”特征的拉曼光谱,因此拉曼光谱技术已成为物理、化学、材料、生物等领域研究物质组成和结构的重要手段。但常规拉曼技术无法在分子水平上识别微观物质的组成与结构,而新兴的针尖增强拉曼(TERS)技术则结合了拉曼光谱技术高化学灵敏度和扫描探针显微术高空间分辨的双重优势。此前,董振超小组将非线性过程融入到TERS中,在单个分子体系实现了亚纳米分辨的化学识别。 /p p   实际的微观体系常由不同分子组成,识别相邻的不同分子具有更为重要的实际应用价值。董振超小组选取了两种结构相似的卟啉衍生物分子,研究结果表明,既便二者同属卟啉分子家族,利用超高分辨的非线性TERS技术,仍然可以对距离在约0.3纳米的不同卟啉分子进行清晰的化学识别,所测得的拉曼光谱具有各自特征的振动“指纹”,能够明显区分分子的“身份”和结构。 /p p   董振超表示,该成果对于任何需要在分子尺度上对材料的成分和结构进行识别的领域,都具有重要的科学意义和实用价值,有望在未来的表面反应、催化、分子器件、甚至包括蛋白质测序在内的生物分子高分辨识别等研究中得到广泛应用。 /p p br/ /p
  • 这些研究为拉曼光谱实际应用提供新思路 ——第五届拉曼光谱网络会议报告提前看
    作为分子光谱领域最为活跃的仪器类别之一,拉曼光谱的发展一直在吸引业界的目光。一方面,科研级拉曼光谱仪性能不断提升以探索科学前沿;另一方面为了解决实际应用问题,相关仪器及解决方案也在不断提升和完善中。从实用的角度出发,拉曼光谱一直彰显着极具诱惑的发展前景,高灵敏、低成本、快速检测一直都是大家努力的方向。食品农产品、生物医药、环境、材料、石油化工、毒品……甚至是最近比较热门的无创血糖检测等相关的拓展一直都在进行中。当然,从科研走向应用的道路总是充满着挑战,比如SERS体系的可靠性、普适性,分子之间的相互作用,复杂基质的检测等,各位科研专家正在为解决这些问题不遗余力地努力着。第五届拉曼光谱网络会议(iCRS2023)期间,多位专家将现场分享,就拉曼光谱在环境、食品、消费品等多个领域的应用拓展及技术突破等展开探讨,为下一步的工作开展和应用推进提供新思路,点击报名》》》部分报告提前看:西南交通大学 范美坤教授《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》(点击报名 )西南交通大学范美坤教授长期从事环境监测检测技术研究,已主持承担国家级课题6项,获授权发明专利10余项,在国际期刊上发表论文80余篇,2021和2022年度两次荣登斯坦福大学发布的年度科学影响力全球前2%顶尖科学家榜单。本次会议中,范美坤教授将给大家分享《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》的主题报告。华中师范大学 高婷娟教授《土壤重金属与石油类污染物的界面微传感成像》(点击报名 )华中师范大学高婷娟教授研究领域涉及分子内增强拉曼散射、高灵敏快速多色拉曼成像、超容量拉曼编码,以及分子间相互作用、表界面化学反应、细胞生理过程的原位光电测量等。近三年以通讯作者在JACS、ACS Central Science、Chemical Science、Analytical Chemistry、Water Research等化学、环境类期刊发表系列研究论文。重金属和石油烃是典型土壤污染物,严重影响土壤环境质量。研究重金属与石油烃的土水界面微传感成像,有望提供土壤重金属与石油烃的现场快速检测方法,是土壤分析与污染控制领域的迫切需求。本次会议中,高婷娟教授将分享《土壤重金属与石油类污染物的界面微传感成像》主题报告。针对土壤六价铬和土壤铅的研究对象,她提出固相微传感探针的策略,这种策略集土壤六价铬和土壤铅的提取、富集、分离和后续检测于一体;针对土壤石油烃的研究对象,她采用共聚焦显微拉曼成像,观察石油烃污染的土壤地下水界面原位修复动力学过程。中国检验检疫科学研究院、工业与消费品安全研究所 席广成研究员《基于准金属纳米结构的表面增强拉曼光谱分析研究》(点击报名 )中国检科院首席专家席广成研究员,长期从事消费品安全相关研究,在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed.,等国际期刊发表论文100余篇(其中SCI一区论文40余篇),授权发明专利12件(转化2件),制定国家标准9项,主持应对“真假珍珠粉”、“化妆品纳米粒子”等消费品重大安全事件的技术研发。本次会议中,席广成研究员将分享《基于准金属纳米结构的表面增强拉曼光谱分析研究》。表面增强拉曼光谱(SERS) 具有高灵敏和现场检测等优点,在痕量测定、真伪鉴别等领域具有广泛的应用前景,但仍然存在瓶颈问题束缚了其大规模应用。针对以上问题,席广成研究员研究团队以公共安全检测领域国家重大需求为导向,以发展 SERS 新原理和新方法为目标,开创了准金属 SERS 研究,并取得了系列成果。浙江大学刘湘江教授《柔性SERS传感器》(点击报名 )浙江大学刘湘江教授的工作围绕农业信息智能感知技术与装备的薄弱环节,聚焦研发柔性传感器,突破了作物生理信息的长期活体无损感知(茎流、叶温等)、农产品安全信息的原位快速检测(化学残留、重金属、亚硝酸盐等)的难题,在Science Advances、Advanced Science(IF=17.521)、Advanced Functional Materials、Advanced Optical Materials发表论文多篇。本次会议中,刘湘江教授将围绕《柔性SERS传感器》给大家做分享。 瑞士万通中国有限公司 产品经理 王睿《用于农残检测的表面增强技术》(点击报名 )瑞士万通中国有限公司拉曼光谱产品线产品经理王睿,从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业、食品、化工、高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,王睿一直负责近红外光谱和拉曼光谱产品的推广工作。 快速检测农药残留一直是政府和企业关心的应用方向。瑞士万通公司在2018年就推出了基于SERS技术的可以稳定分析农药残留的表面增强试剂和试纸。本报告王睿将介绍基于该技术的几项成熟应用,以及相关的光谱仪发展现状。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023)。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 拉曼光谱在宫颈癌转移前哨淋巴结活检中的应用
    文献分享-拉曼光谱在宫颈癌转移前哨淋巴结活检中的应用一、研究背景宫颈癌是全球范围内女性生殖系统最常见的恶性肿瘤之一,广泛性全子宫切除加盆腔淋巴结清扫术仍为宫颈癌的常规术式。然而此类手术可能会导致神经损伤、淋巴水肿等并发症的发生,同时也明显降低了患者的生活质量。前哨淋巴结是恶性肿瘤发生淋巴转移的第一站淋巴结,对恶性肿瘤区域淋巴结的转移情况及指导淋巴结清扫具有重要意义,通过前哨淋巴结活检可以判断区域淋巴结的转移状态。目前,前哨淋巴结示踪技术仅能做到对前哨淋巴结的定位,尚无法在术中直接评估淋巴结的转移状态。因此,能在术中示踪前哨淋巴结的同时实现对宫颈癌前哨淋巴结转移状态的评估,将具有非常重大的临床意义。(图片来源于网络)目前临床中应用的前哨淋巴结示踪技术包括染料法、放射性核素法和近红外荧光成像法,但均有其局限性,没有任何一种技术具有绝对优势。表面增强拉曼光谱(SERS)纳米探针因其特有的指纹图谱具有非常高的灵敏性和特异性,使其在生物医学成像方面有明显优势。SERS纳米探针作为肿瘤成像技术已得到了极大关注,但其在示踪前哨淋巴结中的研究几乎空白。本文分享了上海交通大学团队使用如海便携式拉曼光谱仪(SEED3000)在前哨淋巴结拉曼成像中的应用案例。老师通过在活体内探索介孔硅包被的缝隙增强拉曼探针(GERTs)进入前哨淋巴结的动态过程,明确其示踪前哨淋巴结的时间窗口;并利用便携式拉曼光谱仪在活体动物体内进行前哨淋巴结示踪实验,实现术中实时探测的目的。二、研究内容2.1测试方法实验以BALB/c小鼠为实验样本。取小鼠4只,分别于左侧后足爪垫皮下注射1 nM MS-GERTs探针生理盐水溶液25μL,自由活动24h。1%戊巴比妥钠腹腔注射,麻醉小鼠。麻醉成功后,小鼠仰卧位固定,分离暴露左侧后足腘窝淋巴结,用如海光电的SEED3000便携式拉曼探测仪对前哨淋巴结部位进行拉曼信号探测。检测参数设置为:使用激光为785 nm激发波长,激光功率密度为2.4×103 W/cm2,积分时间5 s,每个淋巴结检测5个单点(上、下、中、左、右),收集拉曼光谱。2.2测试结果小鼠麻醉后,用手持式拉曼探测仪对前哨淋巴结区域进行定点检测,每个淋巴结检测5个部位(图1)。结果发现淋巴结任何一个部位都能探测到非常明显的探针拉曼信号,表明使用如海便携式拉曼光谱仪SEED3000可以对前哨淋巴结进行实时定位。图1 手持式拉曼探测仪示踪前哨淋巴结。(a)活体内拉曼探测,图中比例尺为1 cm;(b)前哨淋巴结检测的5个部位(7上,8右,9下,10左,11中),图中比例尺为400 μm;(c)b中5个部位7-11相对应的拉曼光谱文献来源参考文献[1]包州州. 缝隙增强拉曼探针在宫颈癌转移前哨淋巴结中的成像研究[D]. 上海交通大学, 2020.四、SEED3000便携式拉曼光谱仪SEED3000便携式拉曼光谱仪是一款高性价比的785 nm小型拉曼光谱仪;结构简单,检测快速,预留USB和串口通信,方便多功能系统集成,可满足实验室、野外以及工业现场等多种实验场景。已被广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。产品特点◆ 高度集成,应用灵活,轻巧便捷,方便携带;◆ 可适配光谱范围在200 cm-1~3200 cm-1 ◆ 高稳定性,光谱响应稳定性◆ 高分辨率,分辨率最佳可达4 cm-1。
  • 越来越深入的拉曼光谱研究——第21届全国分子光谱学学术会议之拉曼光谱新技术及应用分会场
    p style=" text-align: justify "    strong 仪器信息网讯 /strong 2020年10月31日,第21届全国分子光谱学学术会议暨 2020年光谱年会在成都召开,虽然因为疫情一度延期,但是丝毫没有影响大家的参会积极性,500余位来自全国各地的老师和同学们齐聚一堂,共同探讨光谱技术的前沿研究和长远发展。 /p p style=" text-align: justify "   第一天的大会报告和主旨报告之后,组委会安排了不同主题的分会场报告,包括原子光谱新技术及应用、拉曼光谱新技术及应用、红外光谱新技术及应用、荧光光谱新技术及应、光谱新技术及应用等5个分会场。特别值得一提的是,拉曼光谱的蓬勃发展依旧是大家目光的聚焦点,这一点在本次会议上表现的也尤为突出。从会议出席的人数来说,拉曼光谱新技术及应用分会场从始至终都几乎座无虚席,甚至有不少代表站着听会,与上一届分子光谱会相比,拉曼研究的热潮有增无减。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202011/uepic/88eb0ea7-0c4e-4c49-b2ed-512a013ed647.jpg" title=" 会场.JPG" alt=" 会场.JPG" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 拉曼光谱新技术及应用分会场现场 /strong /p p style=" text-align: justify "   本次拉曼光谱新技术及应用分会场共安排了31个报告,从内容层面来看,拉曼光谱的相关研究越来越深入,融入了科研工作者更多的思考和探究:既有二维材料等的拉曼光谱表征,也有相关机理探究;既有热度一直在线的SERS基底制备及应用,也有相关探针分子的设计;既有复杂体系的SERS快检新技术,也有拉曼光谱的原位监测、表界面研究等。 /p p style=" text-align: justify "   作为科研级拉曼光谱仪的使用大户,物理材料领域的研究一直代表着拉曼光谱研究和应用的前沿。本次会议中,北京大学童廉明教授介绍了其课题组开展的关于二维材料的圆偏振拉曼散射研究工作,包括MoS sub 2 /sub 的螺旋度分辨拉曼散射效应,ReS sub 2 /sub 的手性拉曼散射效应等;中国科学院半导体研究所谭平恒研究员分享了其课题组关于转角双层MoS sub 2 /sub 、MoS sub 2 /sub /Gr vdWHs、WS sub 2 /sub /hBN vdWHs的拉曼光谱研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/34edaea4-4eea-409f-959b-5def66872d1c.jpg" title=" d9e38650-c7a7-4d9a-9803-05b5f2683884.jpg" alt=" d9e38650-c7a7-4d9a-9803-05b5f2683884.jpg" / /p p style=" text-align: center " strong style=" text-align: center " 报告人:北京大学 童廉明教授 /strong /p p style=" text-align: center " strong 报告题目:二维材料的圆偏振拉曼散射效应 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/220c07a5-d136-47ff-84dc-b22f6780b38e.jpg" title=" 谭平恒-1.jpg" alt=" 谭平恒-1.jpg" / /p p style=" text-align: center " strong 报告人:中国科学院半导体研究所 谭平恒研究员 /strong /p p style=" text-align: center " strong 报告题目:Raman spectra from two-dimensional van der Waals Heterostructures /strong /p p style=" text-align: justify "   延续了历届会议SERS研究“火爆”的场面,拉曼光谱新技术及应用分会场安排的报告中超过一半涉及了SERS的相关研究,包括SERS基底的制备、SERS探针的构建、SERS分析方法的开发及其在生物分析、材料等多领域的应用。特别值得注意的是,本次会议中大家分享报告的同时,还特别提出并讨论了SERS目前存在的挑战,并针对相关问题给出了相应的研究思路,比如SERS基底的工业化发展,拉曼光谱分析的前处理问题,便携拉曼仪器的发展等方面。 /p p style=" text-align: justify "   吉林大学徐抒平教授介绍了其课题组开发的基于微液滴技术的SERS分析方法,以及基于光谱成像技术的单细胞分选技术;武汉大学沈爱国教授介绍了复杂体系中多分析物的SERS快检新技术,还特别介绍了多光谱呈现的包装防伪新技术;西安交通大学方吉祥教授详细解析了当前单分子SERS实用中的瓶颈问题,并分享了其课题组研究的基于避雷针效应多刺结构SERS新机制等研究成果;上海师范大学杨海峰教授分享了其课题组构建的一系列特异性拉曼探针以及多种物质的检测案例,其特别指出,未来SERS的发展要和小型仪器结合起来;西南交通大学范美坤教授介绍了其课题组在SERS的快速定性筛选和定量分析方面开展的一系列工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/0274a393-78be-4479-818d-63192c894fee.jpg" title=" 徐抒平-1.jpg" alt=" 徐抒平-1.jpg" / /p p style=" text-align: center " strong 报告人:吉林大学 徐抒平教授 /strong /p p style=" text-align: center " strong 报告题目:基于微液滴技术的SERS分析方法 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/1409b863-0038-4e77-8ede-9b87f1f763bf.jpg" title=" 沈爱国-1.jpg" alt=" 沈爱国-1.jpg" / /p p style=" text-align: center " strong 报告人:武汉大学 沈爱国教授 /strong /p p style=" text-align: center " strong 报告题目:复杂体系中多分析物的SERS快检新技术—从生化分析到智能包装 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ac80ab66-5cf9-4d47-812b-01c9b5fe88e8.jpg" title=" 方吉祥-1.jpg" alt=" 方吉祥-1.jpg" / /p p style=" text-align: center " strong 报告人:西安交通大学 方吉祥教授 /strong /p p style=" text-align: center " strong 报告题目:浓缩富集与分子定位型SERS关键技术及分子传感 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5b15b297-0c91-47e8-a293-c5bf5f549dbd.jpg" title=" 杨海峰-2.jpg" alt=" 杨海峰-2.jpg" / /p p style=" text-align: center " strong 报告人:上海师范大学 杨海峰教授 /strong br/ /p p style=" text-align: center " strong 报告题目:特异性拉曼探针构建及其应用 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9b37d91c-b421-41e1-8c63-0eb8104fc451.jpg" title=" 范美坤-1.jpg" alt=" 范美坤-1.jpg" / /p p style=" text-align: center " strong 报告人:西南交通大学 范美坤教授 /strong br/ /p p style=" text-align: center " strong 报告题目:On-site SERS analysis: from fast qualitative screening to convenient quantitative detection /strong /p p style=" text-align: justify "   吉林大学宋薇教授介绍了其课题组开展的SERS纳米材料催化体系机制研究以及SERS催化体系在环境医学中的应用,探索了材料独特的催化与SERS响应性;苏州大学姚建林教授介绍了纳米阵列材料的光谱增强、催化剂传感性能等,详细介绍了SERS“热点”调控及制备,表面SPR催化脱氢反应及机理、指纹识别等应用案例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/6f09edc3-14ad-40d7-a6a5-b612cf4737f1.jpg" title=" 宋薇-1.jpg" alt=" 宋薇-1.jpg" / /p p style=" text-align: center " strong 报告人:吉林大学 宋薇教授 /strong br/ /p p style=" text-align: center " strong 报告题目:表面增强拉曼光谱在纳米材料催化体系中的应用 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/693a9e51-70a2-49a5-8ba2-c08d18caa304.jpg" title=" 姚建林-1.jpg" alt=" 姚建林-1.jpg" / /p p style=" text-align: center " strong 报告人:苏州大学 姚建林教授 /strong br/ /p p style=" text-align: center " strong 报告题目:纳米阵列材料的光谱增强、催化剂传感性能 /strong /p p style=" text-align: justify "   来自厦门大学的任斌教授一直从事拉曼技术的研究,他在SERS和TERS技术方面有着很深的见解。本次会议中,王翔副教授代为报告,详细介绍针尖制备方法、TERS可靠性验证、TERS在表界面研究中的应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/42d94b3a-7314-496a-86d9-d28141ef1ba6.jpg" title=" 王翔-1.jpg" alt=" 王翔-1.jpg" / /p p style=" text-align: center " strong 报告人:厦门大学王翔副教授 /strong br/ /p p style=" text-align: center " strong 报告题目:纳米分辨针尖增强拉曼光谱技术及其在表界面研究中的应用 /strong /p p style=" text-align: justify "   随着科研及工业需求的发展,原位分析越来越吸引大家的关注,本次会议中,多位老师的报告涉及了拉曼光谱的原位研究。厦门大学李剑锋教授介绍了综述了电极/溶液界面水的各种研究方法,详细介绍了界面水的原位拉曼光谱研究;中科院青岛生物能源与过程研究所黄长水研究员分享了拉曼光谱原位监测新型碳纳米材料器件过程,包括拉曼用于偶极分子与石墨烯相互作用表征,以及拉曼光谱用于偶极分子石墨烯半导体器件原位监测等;中山大学陈建教授介绍了电催化还原反应中的表面吸附调控及其原位拉曼研究,包括CO sub 2 /sub 电催化还原中间体监测及调控,电解水析氢反应中间体检测及调控等;上海大学尤静林教授介绍了二元Bi sub 2 /sub O sub 3 /sub -B sub 2 /sub O sub 3 /sub 晶体及其熔体结构的原位拉曼光谱研究,其间特别介绍了高温拉曼光谱原位分析技术。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/37601b84-2bb6-4d0d-ac83-f3ac1b757c90.jpg" title=" 李剑锋-1.jpg" alt=" 李剑锋-1.jpg" / /p p style=" text-align: center " strong 报告人:厦门大学 李剑锋教授 /strong /p p style=" text-align: center " strong 报告题目:界面水的原位拉曼光谱研究 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 250px height: 350px " src=" https://img1.17img.cn/17img/images/202011/uepic/fc449755-bbdd-4f8f-a425-75b12432fd10.jpg" title=" 90136f69-40c1-40ca-8358-286e7cdfb646.jpg" alt=" 90136f69-40c1-40ca-8358-286e7cdfb646.jpg" width=" 250" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院青岛生物能源与过程研究所 黄长水研究员 /strong br/ /p p style=" text-align: center " strong 报告题目:拉曼光谱原位监测新型碳纳米材料器件过程 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/63e52585-4dc0-4c93-bbcb-afa12ff2c055.jpg" title=" 陈建-1.jpg" alt=" 陈建-1.jpg" / /p p style=" text-align: center " strong 报告人:中山大学 陈建教授 /strong br/ /p p style=" text-align: center " strong 报告题目:电催化还原反应中的表面吸附调控及其原位拉曼研究 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/feb982da-a044-4bea-8d99-f2cca6b7d617.jpg" title=" 尤静林 (2)-1.jpg" alt=" 尤静林 (2)-1.jpg" / /p p style=" text-align: center " strong 报告人:上海大学 尤静林教授 /strong br/ /p p style=" text-align: center " strong 报告题目:二元Bi sub 2 /sub O sub 3 /sub -B sub 2 /sub O sub 3 /sub 晶体及其熔体结构的原位拉曼光谱研究 /strong /p p style=" text-align: justify "   除了各位专家的报告之外,雷尼绍、天美仪拓、布鲁克等仪器公司的代表也分享了最新的仪器技术,鉴知技术还在中午的时间进行了产品宣介。不仅如此,在第一天的主旨报告中,赛默飞、HORIBA也分享了拉曼相关产品的最新进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/f82644cd-3502-4b37-9879-79bc6c12af3c.jpg" title=" 徐媛-1.jpg" alt=" 徐媛-1.jpg" / /p p style=" text-align: center " strong 报告人:雷尼绍(上海)贸易有限公司 徐媛博士 /strong br/ /p p style=" text-align: center " strong 报告题目:雷尼绍拉曼光谱成像技术的发展 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/90ba1a7d-9765-45a8-ab17-e7dcb2f7aefa.jpg" title=" 徐涛涛-1.jpg" alt=" 徐涛涛-1.jpg" / /p p style=" text-align: center " strong 报告人:天美仪拓实验室设备(上海)有限公司 徐涛涛博士 /strong br/ /p p style=" text-align: center " strong 报告题目:爱丁堡仪器全新科研级显微共聚焦拉曼光谱 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/86b61237-35e6-4546-a51e-836b3b34e4e6.jpg" title=" 陈贵平-1.jpg" alt=" 陈贵平-1.jpg" / /p p style=" text-align: center " strong 报告人:布鲁克(北京)科技有限公司 陈贵平经理 /strong br/ /p p style=" text-align: center " strong 报告题目:布鲁克全自动显微共聚焦拉曼光谱仪SENTERRA II介绍 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/1b478823-82b1-4280-95d9-7d9ae51808e4.jpg" title=" 李兆芬-1.jpg" alt=" 李兆芬-1.jpg" / /p p style=" text-align: center " strong 报告人:雷尼绍(上海)贸易有限公司 李兆芬博士 /strong br/ /p p style=" text-align: center " strong 报告题目:Renishaw Raman 光谱产品最近进展 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/3a0ecdd4-1db8-4e6d-8336-d4dfe3b80211.jpg" title=" IMG_6088 (1).jpg" alt=" IMG_6088 (1).jpg" / /p p style=" text-align: center " strong 北京鉴知技术有限公司总经理 王红球 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/81d228c3-820d-4ec4-bf22-a776e345c6f7.jpg" title=" IMG_6093 (1).jpg" alt=" IMG_6093 (1).jpg" / /p p style=" text-align: center " strong 北京鉴知技术有限公司 算法工程师 王健年 /strong /p p strong    /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 备注:除了文中的报告嘉宾外,还有十余位报告老师也在本分会场中分享了精彩的报告,但是由于篇幅有限,不能展现全部老师的报告内容,还请见谅! /span /p p strong /strong /p
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率: 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 【瑞士步琦】基于喷雾干燥技术的表面增强拉曼光谱研究进展
    基于喷雾干燥技术的表面增强拉曼光谱研究进展水污染是一个全球性问题,威胁着人类健康并损害生态系统的健康。水污染物含有多种对人体健康和生态系统产生不利影响的重金属和有机化合物,需要及时发现和分析以维持环境,同时可以尽量减少对人类健康的危害和对生态系统健康的损害。水样中重金属的检测常用检测方法如下原子吸收光谱法(AAS)阳极溶出伏安法(ASV)电感耦合等离子体质谱法(ICP-MS)电化学检测除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳米颗粒的聚集程度是 SERS 中拉曼信号增强效果的关键决定因素。喷雾干燥法是将储存溶液中的微小液滴雾化,研究者可以通过改变液滴的大小和液滴内纳米颗粒的浓度来控制纳米微粒的聚集程度。纳米微粒的形成是由于液滴内部溶剂蒸发的结果(图1)。同时,喷雾干燥法也可以在不添加表活物质的情况下制备纳米微粒。该方法获得的纳米微粒可以在使用中将探针分子困在热点中,获得比使用传统 SERS 衬底的方法更有效的信号增强效果。在使用传统 SERS 方法时,通常需要通过将待分析溶液滴到衬底上的方式使探针分子分散到热点附近。也可以将 SERS 制备成溶胶,在测试过程中需要添加表面活性剂,这导致在目标物质信号被放大的同时,表面活性剂的拉曼信号也被放大,会干扰测试。而采用喷雾干燥法制备的纳米微粒可避免这些情况的发生。▲图1,用于制备纳米银微粒的喷雾干燥系统示意图本研究采用喷雾干燥方法制备纳米微粒用于探针分子的痕量分析。首先,研究者采用定制化的喷雾干燥系统制备纳米微粒。之后研究制备的银纳米微粒的大小如何影响探针分子(罗丹明B)的 SERS 信号。最后,我们雾化了银纳米粒子和探针分子罗丹明 B 的预混合溶液,以促进探针分子在热点的捕获,从而进一步增强探针分子拉曼信号。1材料在本研究中选择银纳米颗粒(AgNPs)。购买主粒径为 30 nm的AgNP颗粒(Ag Nanocolloid H-1, Mitsubishi Materials Corporation),用超纯水(18.2 MΩ cm)稀释,得到 0.01wt% 和 0.1wt% AgNP 溶胶。罗丹明 B (RhB)作为探针分子。所有材料均未经进一步提纯使用。2采用喷雾干燥法制备 AgNP 微粒用含有 AgNP 的雾化液滴制备用于 SERS 测试的 AgNP 微粒。实验装置示意图如图1所示。液滴雾化使用了一个定制的系统,该系统带有加压双流体喷嘴。当加压气体被引入时,液体样品通过喷嘴内出现的负压被吸入系统。在喷嘴内形成一层液体膜,然后在剪切应力的作用下分解成液滴。在雾化之前,将超纯水与 AgNPs 溶胶混合,以进一步稀释溶胶中任何浓度的潜在污染物。使用氮气作为干燥气和雾化气,将雾化后的液滴从喷嘴输送到加热区。再以 4.5 L/min 的流量将 N2 气体引入加热区,将雾化后的液滴加热至 150℃,促进溶剂蒸发,使 AgNP 气溶胶干燥。雾化系统总流量为 6.9 L/min,液滴停留时间为 0.93s。最后,使用定制的冲击器将干燥气溶胶形式的 AgNPs 沉积在直径为 14mm 的铜制圆形基板上。撞击喷嘴直径为 1mm,因此 AgNPs 以 17L/min 的流速加速撞击。在 SERS 实验前,将沉积的 AgNP 在常温常压下保存 24h。本次共制备四种不同粒径的 AgNPs 微粒,并对其在 SERS 分析中的敏感性进行了检验。雾化 0.01wt.% 的溶胶得到的 AgNP 微粒粒径最小,雾化 0.1wt.% 的溶胶得到的 AgNP 微粒粒径最大。溶胶中 AgNP 的浓度直接影响单个液滴中 AgNPs 的数量。此外,采用差分迁移率分析仪对制备的四种 AgNPs 微粒进行颗粒度分析,四种微粒的平均粒径分别为 48、86、151 和 218nm。3SERS 分析将制备的四种不同大小的 AgNPs 微粒用于微量罗丹明 B 溶液的 SERS 信号获取。 将 100μL 一定浓度的罗丹明 B 标准水溶液滴在铜基底上制备的 AgNP 微粒上。采用 532nm 激光器,在激光功率为 0.157mW,曝光时间为 1s 的条件下获得 SERS 谱图。每个样品在不同位置获得十几张 SERS 光谱。利用数据处理软件对所得光谱进行背景减除,并获得罗丹明 B 位于 1649 cm&minus 1 处的峰强度。4尺寸和形态表征图2 显示了用浓度分别为 0.01wt% 和 0.1wt% 的 AgNg 溶胶喷雾制备的微粒的尺寸分布。可以看到二者的平均尺寸分别约为 38nm 和 66nm,前者微粒的大小与纯 AgNP 颗粒(~ 30nm)的大小大致一致,这证明前者微粒中主要为纯 AgNP 颗粒。后者微粒增大可归因于 AgNPs 浓度的增加,即溶胶浓度的增加。这表明由 0.1wt% 溶胶喷雾干燥得到的微粒中有聚集。由此可知,用该喷雾干燥系统得到的微粒大小可通过气溶胶浓度的大小控制。▲ 图2,由 0.01wt%、0.1wt% 和 0wt% 的纳米银溶胶喷雾干燥获得的纳米银微粒的粒径大小▲ 图3,沉积后纳米银微粒的SEM图像和尺寸分布。(a, e) 48 nm, (b, f) 86 nm, (c, g) 151 nm, (d, h) 218 nm图3 的 SEM 图像分别显示了在未添加探针分子(即RhB)情况下沉积在铜板上的四种纳米银微粒的相应尺寸分布。由 0.01wt% 的纳米银溶胶喷雾干燥获得的微粒形成了亚单层膜(图3a),颗粒的平均测量尺寸为 48nm(图3e),与制备溶胶前的纯颗粒尺寸(30nm)和气溶胶颗粒尺寸(38nm)基本一致,这表明滴在铜板上的纳米银微粒并未明显聚集。如 图3f 和 图3g 所示 3b 和 3c 的纳米银微粒的尺寸为 86 和 151nm。由 0.1wt% 溶胶制备得到的纳米银微粒形成了更大的球形聚集体(图3d),尺寸为 218nm (图3h),是气相测量中发现的 AgNP 气溶胶(图2)的两倍多。气相测量和 SEM 观察之间的这种尺寸差异可能归因于颗粒反弹效应。只有大的 AgNPs 微粒才能更好地沉积,因为微粒与基底之间的接触面积较大,所以具有较高的附着力。最终使用两种浓度的溶胶和 DMA,我们制备了四种不同尺寸的微粒:48、86、151 和 218 nm。5拉曼增强效果与微粒尺寸大小有关图4 显示了不同浓度的罗丹明 B(分别为 10&minus 6、10&minus 8 和 10&minus 10 M),用四种纳米银微粒(尺寸分别为 48、86、151 和 218nm 时)获得的 SERS 光谱。在罗丹明浓度为 10&minus 6 M 时,采用四种纳米银微粒获得的谱图在 500-1700 cm&minus 1 处都均能清晰地观察到罗丹明 B 的所有特征峰(图4a)。表1 列出了罗丹明 B 的拉曼特征峰归属。其中,1649 cm&minus 1 处的 C-C 伸缩振动信号最为强烈,因此被用作计算 AEF,用于评价拉曼信号的增强情况。在未采用 SERS 增强时,没有观察到罗丹明 B 的特征峰(图4a),这证实了纳米银微粒对罗丹明 B 的拉曼信号起到了增强作用。▲ 图4,(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 浓度下罗丹明 B 溶液的 SERS 光谱。箭头表示罗丹明 B 的拉曼特征峰(表1)表1,罗丹明 B 的主要特征峰及特征峰归属拉曼位移(cm-1)特征峰归属1199C-C 键的伸缩振动1281C-H 键的弯曲振动1360芳香基 C-C 键的弯曲振动1528C-H 键的伸缩振动1649C-C 键的伸缩振动6AgNPs 溶胶和探针分子混合后喷雾干燥图4 和 图5 表明,尺寸为 86nm 的 AgNP 微粒是信号增强效果是最好的。研究者又过在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶进行预混合(即采用预混合雾化途径),制备微粒。进一步探索了微粒的拉曼增强效果。图6显示了浓度为 10&minus 6、10&minus 8 和 10&minus 10 M 的罗丹明 B 溶液在 86nm AgNP 微粒中的 SERS 光谱。▲图5,粒径为 48、86、151和 218nm 的 AgNP 微粒在 浓度为 10-6 和 10-8 M 罗丹明 B 的 AEF 值。部分测试未获得罗丹明 B 特征峰,因此未计算 AEF 值▲图6 采用 AgNP 溶胶与罗丹明 B 预混后获得的微粒对浓度分别为(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 的罗丹明 B 溶液进行信号放大获得的 SERS 光谱▲图7 喷雾干燥制得 86nm 纳米银颗粒后加入罗丹明 B 溶液和罗丹明 B 溶液与 86nm 纳米银微粒预混后喷雾干燥后的 AEF 值▲图8 (a)喷雾干燥后滴入罗丹明B溶液 (b)罗丹明B 溶液与微粒预混后喷雾干燥7结论本研究采用喷雾干燥方法制备高灵敏度的纳米银微粒。使用定制的系统制备了粒径为 48、86、151 和 218nm 的 AgNP 微粒。滴入10&minus 6 M 罗丹明 B 溶液后,48、86、151 和 218nm AgNP 微粒的 AEF 值分别为 2.4 × 103、4.2 × 103、3.3 × 103 和 4.0 × 103,而滴入 10&minus 8 M 罗丹明 B 溶液后,86和 151nm 微粒的 AEFs 为 3.4 × 104 和 2.2 × 104。我们发现 86nm 的 AgNP 微粒是本研究中最敏感的纳米结构。与 218nm AgNP 微粒相比,86nm AgNP 微粒的拉曼增强效果更好,这是由于高浓度溶胶制备的 AgNPs 微粒中电子云变形,降低了它的拉曼增强效果。在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶预混后获得的拉曼增强效果较喷雾干燥后加入罗丹明 B 溶液更强。在测试浓度为 10&minus 6 M 和 10&minus 8 M 的罗丹明 B 溶液时,预混后喷雾干燥得到 86nm 微粒的 AEF 值分别为 5.1 × 104 和 3.7 × 106。该方式获得的 AEF 值分别是喷雾干燥后加入方式的 12 倍和 110 倍。该方法应该是更适合用于环境污染物痕量分析的方法。8文献引用Chigusa M. etc. Development of spray‐drying‐based surface‐enhanced Raman spectroscopy. Scientific Reports (2022)12:4511雷尼绍公司总部位于英国,自上世纪九十年代 开始提供显微拉曼光谱仪,是最早的商用显微拉曼供应商之一,一直在拉曼光谱领域是公认的领导者。雷尼绍为一系列应用生产高性能拉曼系统,具有完备的光谱产品系列:inVia 系列显微共焦拉曼光谱仪、 RA802 药物分析仪、 RA816 生物组织分析仪、Virsa 高性能光纤拉曼系统、Raman-AFM 联用系统接口、 Raman-SEM 联用系统等。 凭借优越的产品性能及完善的售后服务, 雷尼绍光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于高校科研和制药、材料、新能源、光伏等多个领域研发中。瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 大海里也能捞针 拉曼光谱显身手
    大海里也能捞针拉曼光谱显身手 众所周知,形容一件事难度很大,人们通常会说大海捞针,在苍茫的深海中寻针,目测是不可能完成的任务。这句话同样适用于低浓度物质的检出。普遍认为拉曼光谱仪很难检测低浓度样品,这是因为拉曼效应产生概率很小。如果样品越来越稀释,测得的 Raman 信号变弱,直至它在噪声中消失。虽然某种情况下可以通过增加光谱平均次数提高物理降噪能力,或延长光谱积分时间提高信号强度,亦或是降低探测器制冷下限来提高信噪比,但多数拉曼光谱仪的应用仍然会受到检测浓度的制约。嗯,听起来似乎就这样了啊难道就没有拌饭(办法)了吗?当当当隆重推出安东帕Cora5001拉曼光谱仪颜值担当安东帕的 Cora5001拉曼光谱仪可以获得高通量光谱,进而极大提高了检测灵敏度。我们的实验结果证明:Cora5001 可以检测水中超低浓度的自由基引发剂和氧化剂过硫酸铵(APS),检出浓度为 0.005 M,测量时间低于10 s。实验测量 APS 时使用 785nm 的激光波长,Cora 5001 配备了冷却到低于环境温度的 CCD 探测器和二极管激光器,可在样品位置提供高达450 mW的激光功率。准备 7 种 APS 水溶液,浓度为 1.0M,0.5M,0.2M,0.04M,0.02M,0.01M 和 0.005M,并倒入标准玻璃瓶中。曝光时间为 4000ms,并对光谱进行了背景校正。测量每个样品所需的时间仅为10 s。在相同条件下测量纯水样品并用作参考基线。结果证明使用Anton Paar Cora 5001 拉曼光谱仪,获得了超低浓度的 APS 水溶液的清晰可辨光谱特征。同时也证明了拉曼技术的优势,可以设计出具有高灵敏度和低检测限度的高性能的光谱仪。
  • 宁波材料所SERS探针肿瘤体外诊断研究进展
    恶性肿瘤严重威胁人类生命健康,“早诊、早治”是根治肿瘤的最佳途径。目前临床肿瘤诊断方法主要依赖手术和穿刺活检,是侵入性检查手段,给患者带来了生理痛苦和心理负担。因此开发一种非入侵式、高检测灵敏度的谱学/图像分析引导技术应用于实体肿瘤的前期诊断和术后评估是实现肿瘤精准诊断的关键,也已成为材料科学和生物学科等多学科交叉领域共同关注的重要科学问题。纳米材料表面增强拉曼散射(SERS)光谱/图像具有高检测灵敏度、选择性增强特性、稳定性高、可提供组分指纹信息等检测优势,可高效应用于肿瘤的液体活检,实现外周血样中肿瘤细胞的精准诊断。中国科学院宁波材料技术与工程研究所纳米生物材料团队在SERS生物探针材料设计及应用研究方面取得了系列进展。纳米生物材料团队开发了基于表面增强拉曼散射(SERS)光谱和磁共振造影(MRI)增强的Fe3O4双模态成像生物探针,研究发现超小粒径Fe3O4纳米粒子具有显著的SERS活性(5×10-9 M检测极限)。Fe3O4纳米粒子具有高效的光诱导电荷转移(PICT)效应归因于Fe元素的多个价态能级促进电子跃迁。密度泛函理论计算进一步揭示了超小粒径Fe3O4纳米粒子的窄带隙和高电子态密度能够明显提高SERS-目标分子体系中的振动耦合共振效应。通过构建具有高灵敏度和肿瘤靶向特异性的Fe3O4生物探针,可以实现不同亚型三阴乳腺癌肿瘤细胞的体外SERS信号/成像区分鉴定。同时,Fe3O4的生物探针也展现出对荷瘤小鼠体内肿瘤的主动靶向MRI造影特性,实现了半导体生物探针的SERS-MRI双模态成像分别用于体外和体内肿瘤成像,不仅在肿瘤早期诊断中具有优势,而且在影像引导肿瘤治疗方面具有巨大潜力(图1)。相关成果以“Multiple Valence States of Fe Boosting SERS Activity of Fe3O4 Nanoparticles and Enabling Effective SERS-MRI Bimodal Cancer Imaging”为题发表在国家自然科学基金委主办的综合性英文学术期刊Fundamental Research上。进一步,为了高效提取外周血样中的肿瘤细胞,提高SERS纳米生物探针对肿瘤细胞的靶向检测能力。纳米生物材料团队联合宁波诺丁汉大学任勇副教授团队,合作开发了微流控富集分离与拉曼光谱快速检测肿瘤细胞技术,开发出一种新型的基于微筛分离手段和肿瘤靶向特性的黑色氧化钛(B-TiO2)SERS生物探针用于循环肿瘤细胞(CTC)原位检测。该研究先利用微筛芯片对人体血液中目标细胞进行纯化分离,以排除大部分血液细胞的干扰,再利用叶酸修饰的SERS生物探针识别芯片上捕获的肿瘤细胞,从而实现外周血样中单个肿瘤细胞筛选和原位检测,实验结果具有高检测灵敏度、特异性和准确性。更重要的是,该研究工作设计的微流控-SERS生物探针能够有效应用于临床肿瘤样本的有效检测,有望为循环肿瘤细胞的检测提供新的策略(图2)。相关成果以“TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter“为题发表在Biosensors and Bioelectronics,2022,210:114305(https://doi.org/10.1016/j.bios.2022.114305)。此外,纳米生物材料团队开发了生物相容性较好、具有选择性增强特性、光谱稳定性强的半导体氧化银SERS纳米生物探针,应用于外周血样的循环肿瘤细胞检测。该研究先利用淋巴细胞分离液对外周血样中的血细胞进行分离,排除红细胞和白细胞对SERS检测的干扰,再通过叶酸修饰的SERS生物探针靶向识别血样中的肿瘤细胞,从而实现外周血样中单个循环肿瘤细胞的原位精准检测。肺癌患者外周血样的有效准确检测也证明了Ag2O基SERS生物探针具有优异的临床应用前景(图3)。相关成果以”Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells”为题发表在Science China life science,2022,65: 561-571(https://doi.org/10.1007/s11427-020-1931-9)。图3 Ag2O基SERS生物探针用于肿瘤细胞检测为了进一步研发高SERS活性的半导体纳米材料,纳米生物材料团队联合北京航空航天大学郭林教授团队,通过制备多孔ZnO纳米片,在材料表面引入大量缺陷态,提高了ZnO材料的SERS增强因子,并发现一种低温增强半导体SERS活性的方法,低温可以有效削弱晶格的热振动,从而减少声子相关的非辐射跃迁复合,能够有效促进表面缺陷态能级相关的电子跃迁,展现出了低温SERS生物传感的应用潜力(图4)。相关成果以”Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets”为题发表在Chemical Science,2020, 11, 9414(https://doi.org/10.1039/d0sc02712j)。图4 半导体材料低温SERS效应基于上述开发的系列SERS纳米生物探针,通过与浙江省肿瘤医院邵国良主任医师团队合作,SERS探针能够有效用于临床病人外周血样中的乳腺癌、肝癌和肺癌循环肿瘤细胞的准确检测,已完成180例不同癌种临床样本有效检测,检测灵敏度可以达到单细胞水平,检测准确度可达90%以上。进一步的研究发现,SERS生物探针可有效区分不同亚型的乳腺癌肿瘤细胞,实现乳腺癌分子分型鉴定检测(专利申请号:202110745849.1、202210148829.0、202210425260.8)。
  • 拉曼光谱:生物医药领域的“新晋红人”
    随着技术的发展和应用需求的提升,拉曼光谱生物医学分析已经成为生命分析化学重要的前沿研究领域之一。作为一种无标记的单细胞分析技术,拉曼成像能够从分子水平获得细胞的结构和组成信息,在生物医药研究领域的应用愈发凸显了其极具诱惑的发展前景。从制药领域的原料筛查、晶型识别、过程监控,到疾病的诊断、新冠病毒的检测,拉曼光谱一直在引领前沿,并向实用推进,已然成为生物医药领域的“新晋红人”!即将召开的第四届拉曼光谱网络会议(iCRS2022 ) 特别邀请了多位专家进行相关的分享,部分报告预告如下( 点击报名 ) :武汉大学 沈爱国教授《叁键拉曼散射:新一代光学标记技术》(点击报名)沈爱国教授课题组主要从事面向生命健康、环境和食品安全的生化传感、多光谱成像及仪器研制等领域的研究工作,迄今已在Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Functional Materials等杂志上发表SCI论文100余篇。在本次报告中,沈爱国教授将总结三键拉曼散射技术的最新研究成果,并对其应用作系统的介绍。此外,还将讨论这些新型拉曼信号分子在生物标记分析中的应用前景和主要挑战。上海交通大学医学院 肖泽宇教授《药物递送中的活体时空拉曼光谱成像》(点击报名)肖泽宇教授团队长期致力于可视化药物递送领域的研究,在Chem.Soc.Rev., Nature Comm. Angew.Chem., Nano Lett, ACS Nano等杂志发表论文40余篇,其中研发的1种可视化药物载体已进入人体临床研究。本次报告中,肖泽宇教授将着重给大家介绍药物递送中的活体时空拉曼光谱成像。中国科学院上海硅酸盐研究所 杨勇研究员《新冠病毒快速高灵敏SERS检测研究进展》(点击报名)杨勇研究员课题组的研究工作包括激光与物质表界面光学效应调控机制研究,采用表面增强拉曼散射SERS方法检测癌症、病毒及其传染性等,迄今已在Matter等发表论文140多篇。日前,杨勇研究员与中国科学院上海硅酸盐研究所黄政仁研究员、安徽省疾病预防控制中心、上海交通大学仁济医院以及中国科学技术大学第一附属医院团队合作,开发了一种新型超敏半导体表面增强拉曼散射(SERS)活性材料及新冠病毒传染性诊断新技术。本次报告中,杨勇研究员将给大家详细分享新冠病毒快速高灵敏SERS检测研究进展。南开大学 分析科学中心副主任 刘定斌教授《零背景拉曼光谱传感、成像与医学检测研究》(点击报名)刘定斌教授一直从事疾病诊断相关的研究,涉及利用先进的分离富集技术进行肿瘤标志物筛选;发展高灵敏、高特异性的肿瘤影像探针;建立面向临床转化的体外诊断新方法等多个方面。近年来,已在生物医学检测和临床诊断领域发表论文80余篇(Chem. Rev.、Angew. Chem. Int. Ed.、ACS Nano等期刊)。本次报告,刘定斌教授将给大家分享零背景拉曼光谱传感、成像与医学检测研究最新进展。HORIBA科学仪器事业部 拉曼应用工程师 王春阳《HORIBA 光谱技术在药物分析领域的应用》(点击报名)北京鉴知技术有限公司 产品经理 陈敏璠《拉曼光谱技术在制药领域的应用》(点击报名)除了专家的精彩报告之外,HORIBA科学仪器事业部、海洋光学亚洲公司、北京鉴知技术有限公司、梅特勒-托利多中国等相关仪器公司也将分享最新的产品和应用。其中,HORIBA科学仪器事业部拉曼应用工程师王春阳将介绍HORIBA Scientific拉曼光谱技术在药物分析领域的解决方案,并分享拉曼光谱技术在API晶型研究,原辅料成分分布,颗粒分析,生产工艺分析等药物相关领域的应用案例;北京鉴知技术有限公司产品经理陈敏璠将分享拉曼光谱技术在制药领域的应用,内容围绕原辅料入库快筛、制药过程质量控制及中药质量快检三个方面展开。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与上海师范大学将于2022年9月22-23日联合举办第四届拉曼光谱网络会议(iCRS2022) 。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2022/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制