当前位置: 仪器信息网 > 行业主题 > >

仪器分析及样品预处理

仪器信息网仪器分析及样品预处理专题为您整合仪器分析及样品预处理相关的最新文章,在仪器分析及样品预处理专题,您不仅可以免费浏览仪器分析及样品预处理的资讯, 同时您还可以浏览仪器分析及样品预处理的相关资料、解决方案,参与社区仪器分析及样品预处理话题讨论。

仪器分析及样品预处理相关的论坛

  • 【展会小记者】中国化学会第七届全国仪器分析及样品预处理学术研讨会

    【展会小记者】中国化学会第七届全国仪器分析及样品预处理学术研讨会

    中国化学会第七届全国仪器分析及样品预处理学术研讨会http://ng1.17img.cn/bbsfiles/images/2013/08/201308260920_460088_1782539_3.jpg中国化学会第七届全国仪器分析及样品预处理学术研讨会于2013年8月24日至25日在山东烟台召开。8月24日上午8:20会议隆重开幕,首先由中国化学会微量元素研究与进展专业委员会副主任李玉珍致辞,李玉珍代表会议筹备组欢迎来自全国各地的同行们,希望通过会议搭建的平台互相交流,共同提高,为提升我国的分析化学样品预处理的水平共同努力。此后,研讨会进入报告阶段,报告内容如下。 序号报告人所在单位报告题目主持人:杨学东、何洪巨1陈令新中科院烟台海岸带研究所环境/生命体系中典型污染物与指示物新方法研究2王红梅中国环境科学研究院生物芯片分析筛选十溴二苯醚暴露时的分子标志物方法研究3马继平青岛理工大学磁固相萃取-HPLC法测定水中微囊藻毒素4梁冰四川大学一阶导数紫外光谱-H点标准加入法快速测定牛奶中的三聚氰胺主持人:陈令新、梁冰5李学哲山西省产品质量监督检验所化学实验室标准配备规范研究6毕鹏禹防化研究院溶剂浮选法在样品前处理中的应用7李金花中科院烟台海岸带研究所基于分子印迹材料与微萃取样品前处理技术研究进展8张骁辉北京莱伯泰科仪器有限公司莱伯泰科与样品前处理持人:尹洧、陈卓9王宗花青岛大学石墨烯及其复合物在样品前处理中的应用研究10杨海军清华大学化学系处理方法对水分子团簇结构影响的17O-NMR研究

  • 【原创】 硫分析仪用样品预处理

    硫分析仪用样品预处理 型 号: MKY-6 厂 商: MAKE 数 量: 单 价: 电议 类 别: 其他 麦克在线(香港)实业有限.. 袁经理 成为商务伙伴 联系电话: 0833-8161168 传真: 0833-8161588 联系地址: 眉山市科技工业园2路 邮政编码: 620010 公司网址: www.makedevice.com http://mkzhaa.testmart.cn 产品介绍 本预处理用来将新鲜合成气及补给新鲜合成气进行二次过滤、稳压、脱油处理,输出指标: 输出压力≤1KG 杂质颗粒≤5μM 油品含量≤0.2% ●通过脱油罐,将样气中各种重油组份过滤到较小值,以减少重油对分析得影响。 ●通过过滤器将样气中的杂质颗粒减小到5μM以内,保证测量不受干扰。 ●通过调整样品气减压阀将样气稳压到1KG。 ●通过调整H2气减压阀将燃烧H2气稳压到1KG。 ●调节流量计,使样气流速及氢气流速稳定在刻度的15% ●通过KV抽提泵,保证测量气的出口压力恒定在大气压下。 ●S1为流路切换电磁阀,不通电时分析流路1,通电时分析流路2。 ●S2为分析模式切换阀,不通电时分析H2S,通电时分析总硫。本仪表设为总硫分析。 ●K3、K6针阀主要用于调节样气排放速度,减少分析滞后时间。 ●CV为单向阀,用于保证H2S分析时,总硫回路不通 麦克在线(香港)实业有限.. 袁经理 成为商务伙伴 联系电话: 0833-8161168 传真: 0833-8161588 联系地址: 眉山市科技工业园2路 邮政编码: 620010 公司网址: www.makedevice.com http://mkzhaa.testmart.cn 产品介绍 本预处理用来将新鲜合成气及补给新鲜合成气进行二次过滤、稳压、脱油处理,输出指标: 输出压力≤1KG 杂质颗粒≤5μM 油品含量≤0.2% ●通过脱油罐,将样气中各种重油组份过滤到较小值,以减少重油对分析得影响。 ●通过过滤器将样气中的杂质颗粒减小到5μM以内,保证测量不受干扰。 ●通过调整样品气减压阀将样气稳压到1KG。 ●通过调整H2气减压阀将燃烧H2气稳压到1KG。 ●调节流量计,使样气流速及氢气流速稳定在刻度的15% ●通过KV抽提泵,保证测量气的出口压力恒定在大气压下。 ●S1为流路切换电磁阀,不通电时分析流路1,通电时分析流路2。 ●S2为分析模式切换阀,不通电时分析H2S,通电时分析总硫。本仪表设为总硫分析。 ●K3、K6针阀主要用于调节样气排放速度,减少分析滞后时间。 ●CV为单向阀,用于保证H2S分析时,总硫回路不通

  • 《分析样品预处理及分离技术》(第2版)

    1.系统全面介绍了样品预处理和分析方法;2.本次修订增加了实际样品处理技术、生物样品的沉淀技术、溶剂萃取新技术、微萃取技术等内容;3.适合从事分析检测的初学者阅读.内容简介:全书对样品的预处理和分离方法作了比较系统的讲述,主要内容有分析样品的准备与预处理、沉淀分离技术、萃取分离技术、离子交换分离技术、液相色谱分离技术、电泳分离技术、膜分离技术、泡沫浮选分离技术。此次修订增加了实际样品处理技术、生物样品的沉淀分离技术、溶剂萃取新技术、微萃取技术与加压及旋转薄层色谱分离技术等内容,也对第一版中部分内容作了适当的修订。但由于书中篇幅有限,书中只原则性介绍了相关内容,具体样品的处置还需进一步参考相关文献或技术手册。本书适用于各层次的分析测试工作者,也可供从事其他有关专业的工程技术人员和科研人员参考。目录:第一章 分析样品的准备与预处理/001第一节概述001一、样品采集与处理的基本原则001二、样品制备与处理的注意事项004第二节试样的处理005一、无机样品的处理005二、有机样品的处理009三、生物样品的处理010第三节微波及超声波在样品处理中的应用012一、微波在样品处理中的应用012二、超声波在样品处理中的应用015第四节实际样品处理技术018一、大气样品处理技术018二、水样品处理技术019三、土壤样品处理技术020四、有机及生物样品处理技术021第二章 沉淀分离技术/027第一节沉淀分离技术概述027第二节无机沉淀分离法028一、氢氧化物沉淀分离法028二、硫化物沉淀分离法032三、其他沉淀分离法033第三节有机沉淀分离法033一、生成螯合物的沉淀分离体系034二、生成缔合物的沉淀分离体系036三、生成三元配合物的沉淀分离体系036第四节均相沉淀及共沉淀分离法037一、均相沉淀分离法037二、共沉淀分离法039第五节生物样品的沉淀分离技术043一、等电点沉析044二、盐析沉淀045三、有机溶剂沉析049四、有机聚合物沉析051五、其他沉析技术052第三章 萃取分离技术/055第一节溶剂萃取分离技术055一、溶剂萃取分离基本原理056二、重要的萃取体系060三、有机物的萃取077四、萃取方式与装置079第二节溶剂萃取新技术083一、快速萃取技术083二、反胶团溶剂萃取技术085三、离子液体萃取技术088四、双水相萃取技术090五、微波萃取及超声萃取技术092六、电泳萃取技术097第三节固相萃取技术098一、固相萃取基本原理098二、固相萃取的吸附剂099三、固相萃取装置100四、固相萃取的操作程序100五、固相萃取技术的应用101第四节微萃取技术102一、分散液相微萃取技术102二、分子印迹微萃取技术105三、固相微萃取技术107第五节萃取分离的实际应用110一、应用溶剂萃取分离干扰物质110二、萃取联用分析111三、萃取分离其他示例111第四章 离子交换分离技术/116第一节概述116第二节离子交换剂的结构、性质和分类117一、离子交换剂的结构和性质117二、离子交换树脂的分类与用途120第三节离子交换的基本理论124一、Donnan理论124二、交换反应过程及离子交换选择系数125第四节离子交换的分离操作方法128一、离子交换树脂的选择及预处理128二、离子交换分离操作方法131第五节离子交换分离的实际应用135一、去离子水的制备135二、痕量元素的预富集136三、性质相似离子间的彼此分离137四、生物大分子分离137第五章 液相色谱分离技术/139第一节概述139第二节常压柱色谱分离法140一、吸附柱色谱分离140二、分配柱色谱分离144三、柱色谱分离的操作145第三节平面色谱分离技术146一、纸色谱分离技术146二、薄层色谱分离技术150三、加压及旋转薄层色谱分离技术174第四节柱液相色谱分离技术177一、高效液相色谱分离技术177二、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分离技术185三、离子对色谱分离技术189四、凝胶色谱分离技术191五、亲和色谱分离技术192六、超临界流体色谱分离技术194第六章 电泳分离技术/197第一节电泳的基本原理197一、电泳迁移率197二、影响迁移率的因素198第二节常用电泳分离技术199一、区带电泳200二、等电聚焦电泳205三、等速电泳206四、毛细管电泳207第三节电泳分析应用210一、在药物分离分析中的应用210二、在生命科学中的应用211三、在临床医学中的应用211四、在环境分析中的应用211五、在作物品种鉴定中的应用212六、在动物和植物科学研究中的应用212第七章 膜分离技术/213第一节概述213第二节膜分离的基本原理214一、反渗透分离法基本原理214二、纳滤分离的基本原理215三、微孔过滤基本原理215四、透析分离基本原理216五、电渗析分离基本原理216六、液膜分离法基本原理217第三节膜材料和膜组件220一、板框式膜组件220二、圆管式膜组件222三、螺旋卷式膜组件223四、中空纤维式膜组件225第四节膜分离技术及应用226一、膜分离的基本流程226二、膜分离的应用227第八章泡沫浮选分离技术/233第一节概述233第二节浮选装置和操作235第三节离子浮选法236第四节沉淀浮选法238一、氢氧化物沉淀浮选238二、有机试剂沉淀浮选239第五节溶剂浮选法240

  • 果蔬农残预处理的仪器清洗

    各位前辈果蔬农残样品预处理后的仪器应该怎样清洗?如装过乙腈、丙酮的烧杯在预处理过程中用到了有机试剂,用水直接洗好像不能洗净。

  • 【原创】样品处理过程可能对红外分析仪器造成的测量误差

    红外线气体分析仪的样品处理系统承担着除尘、除水和温度、压力、流量调节等任务,处理后应使样品满足仪器长期稳定运行要求。除应保证送入分析仪的样品温度、压力、流量恒定和无尘外,特别应注意的是样品的除水问题。当样气中含水量较大时,主要危害有以下几点:1、样气中存在的水分会吸收红外辐射,从而给测量造成干扰;2、当水分冷凝在晶片上时,会产生较大的测量误差;3、水分存在会增强样气中腐蚀性组分的腐蚀作用;4、样气除水后可能造成样气的组成发生变化。高含水的气样温度降至室温,过饱和的水析出后,各组分的浓度均会发生变化。若气样中有一些易溶于水的组分,这些组分被水部分溶解,会使各组分的浓度变化更大。 工艺要求检测的浓度指标一般是不含水分的“干气”中的含量,而经预处理后的气样中水分不可能完全除掉,仍将占有一定的比例。随着预处理运行状况的变化,环境温度、压力的变化,气样中的水含量亦随之变化。一些极性极强的组分如CO2、SO2、NO等,随着水温、气样压力及水气接触时间长短的不同而有不同的溶解度。 经过预处理后,气样的组成及各组分的浓度变化是十分复杂的,由此造成的示值偏离对微量组分检测尤为严重。但这种偏离并不都是附加误差,其中一部分往往反映了浓度变化的真实情况,对此,应通过样品组成分析及预处理运行条件测试等,从系统误差角度加以消除。而对预处理运行状态变化引起的附加误差则需创造条件,使之降至最低。 为了降低样气汗水的危害,在样气进入仪器之前,应先通过冷却器降温除水(最好降至5摄氏度以下),降低其露点,然后伴热保温,使其温度升高之40摄氏度左右,送入分析器进行分析,由于红外分析器恒温在50至60摄氏度下工作,远高于样气的露点温度,样气中的水分就不会冷凝析出了。

  • [资料] 分析样品的预处理

    如题[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18125]分析样品的预处理[/url]

  • 实验室分析仪器--有机质谱分析仪样品制备及预处理技术

    采集的样品一般需要采用溶解、蒸馏、萃取吸附、膜分离、低温浓集、衍生化处理等过程,使样品中待测组分的形态和浓度转变成适宜质谱仪器检测的形态和浓度。这里将这些技术做简略介绍。[b]一、蒸馏技术[/b]蒸馏是分离液体混合物的单元操作。利用混合物中各组分间挥发性质的不同,通过加入或去除热量的方法,使混合物形成气液两相,并让它们相互接触进行质量传递,致使易挥发组分在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中增浓,难挥发组分在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]中增浓,实现混合物的分离,这种操作统称为蒸馏。由此可见,蒸馏分离的依据是混合物中各组分的挥发度不同,分离的条件是必须形成气液两相系统。蒸馏操作的特点:①蒸馏操作较简单,可以直接获得所需要的产品;②蒸馏分离的使用范围广,它不仅可以分离液体混合物,而且也可以分离气体混合物或固体混合物,例如,可以将空气加压液化或将脂肪酸混合物加热熔化并减压,以建立气液两相系统,用蒸馏方法进行分离;③在蒸馏中由于要产生大量的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url],因此需消耗大量的能量;或者为建立气液两相系统,通常需要高压、真空、高温或低温等条件,也会带来技术问题等,这也是不易采用蒸馏分离某些物系的原因。蒸馏一般包括简单蒸馏、分馏、减压蒸馏和水蒸气蒸馏等技术。[b]1.简单蒸馏[/b]简单蒸馏是使混合液逐渐汽化并使蒸气及时冷凝以分段收集的分离操作,适用于易分离物系或分离要求不高的场合。[b]2.分馏[/b]分馏是利用分馏柱将多次汽化-冷凝过程在一次操作中完成的方法。因此,分馏实际上是多次蒸馏。它更适合于分离提纯沸点相差不大的液体有机混合物。进行分馏的必要性:①蒸馏分离不彻底;②多次蒸馏操作烦琐、费时、浪费极大。混合液沸腾后蒸气进入分馏柱中被部分冷凝,冷凝液在下降途中与继续上升的蒸气接触,两者进行热交换,蒸气中高沸点组分被冷凝,低沸点组分仍呈蒸气上升,而冷凝液中低沸点组分受热汽化,高沸点组分仍呈液态下降。结果是上升的蒸气中低沸点组分增多,下降的冷凝液中高沸点组分增多。如此经过多次热交换,就相当于连续多次的普通蒸馏,以致低沸点组分的蒸气不断上升,而被蒸馏出来,而高沸点组分则不断流回蒸馏瓶中,最终将它们分离。[b]3.减压蒸馏[/b]液体的沸点随外界压力的变化而变化,如果借助于真空泵降低系统内压力,就可以降低液体的沸点,这便是减压蒸馏操作的理论依据。减压蒸馏是分离和提纯有机化合物的常用方法之一,它特别适用于那些在常压蒸馏时未达沸点即已受热分解、氧化或聚合的物质。[b]4.水蒸气蒸馏[/b]水蒸气蒸馏法是指将含有挥发性成分的试料与水共蒸馏,使挥发性成分随水蒸气一并馏出,经冷凝分取挥发性成分的浸提方法。该法适用于具有挥发性、能随水蒸气蒸馏而不被破坏、在水中稳定且难溶或不溶于水的试料成分的浸提。水蒸气蒸馏法可分为共水蒸馏法、通水蒸气蒸馏法、水上蒸馏法。为提高馏出液的浓度,一般需将馏出液进行重蒸馏或加盐重蒸馏。常用设备为多能提取罐、挥发油提取罐,它在生产活动中被广泛使用。[b]二、萃取技术[/b]萃取是利用溶质在互不混溶的两相之间分配系数的不同而使溶质得到纯化或浓缩的技术。[b]1.液-液萃取[/b]用溶剂从溶液中抽提物质叫液-液萃取,也称溶剂萃取。经典的液液萃取指的是有机溶剂萃取。其广泛应用于分析化学中许多性质相似物质的分离、大量基体中微量成分的分离浓集;也广泛应用于抗生素、有机酸、维生素、激素等发酵产物工业规模的提取。其具有比化学沉淀法分离程度高;比离子交换法选择性好传质快;比蒸馏法能耗低;生产能力大、周期短、便于连续操作、易实现自动化控制等优点。[b]2.液-固萃取[/b]用某种溶剂把有用物质从固体原料中提取到溶液中的过程称为液固萃取,也称浸取或浸出。如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏。这类技术在质谱分析的样品制备中也得到广泛运用。[b]3.固相萃取[/b]固相萃取(solid phase extraction,SPE)是从20世纪80年代中期开始发展起来的一项样品前处理技术。由液固萃取和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]技术相结合发展而来,主要用于样品的分离、净化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。SPE技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离和净化,是一种包括[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和固相的物理萃取过程,也可以将其近似地看作一种简单的色谱过程。SPE利用选择性吸附与选择性洗脱的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法分离原理。较常用的方法是使液体样品溶液通过吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量溶剂迅速洗脱被测物质,从而达到快速分离净化与浓缩的目的;也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。[b]4.固相微萃取[/b]固相微萃取(solid-phase microextraction,SME)技术是20世纪90年代兴起的一项新型的样品前处理与富集技术,它由加拿大 Waterloo Pawliszyn教授的研究小组于1989年首次进行开发研究,属于非溶剂型选择性萃取法。SPME是在固相萃取技术基础上发展起来的一种微萃取分离技术,是一种集采样、萃取浓缩和进样于一体的无溶剂样品微萃取新技术。固相微萃取装置类似于微量进样器,不过其手柄接有一个受不锈钢保护的、可伸缩或进出的有吸附剂涂层的石英纤维头(萃取头)。固相微萃取采样时,将固相微萃取针管穿过样品瓶密封垫,插入样品瓶中,然后推出萃取头,将萃取头浸入样品(浸入方式)或置于样品上部空间(顶空方式)进行萃取。与固相萃取技术相比,固相微萃取操作更简单,设备携带更方便,操作费用也更加低廉。另外,固相微萃取克服了固相萃取回收率低、吸附剂孔道易堵塞的缺点,因此成为目前所采用的样品前处理术中应用较为广泛的方法之一。[b]5.[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]微萃取[/b][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]微萃取(liquid-phase microextraction,LPE)技术是20世纪90年代由 Jeannot kn和 Cantwell等最早报道的一种样品前处理技术,和固相微萃取类似,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]微萃取只是将固相微萃取有吸附剂涂层的石英纤维换成了有机溶剂,进行类似的顶空萃取。其基本原理是目标分析物在样品与微升级的萃取溶剂之间达到分配平衡,从而实现溶质的微萃取。LPME克服了传统液液萃取技术烦琐、浪费、污染等缺点,具有消耗溶剂少(仅需微升级)、富集倍数大萃取效率高、操作更简便和便于实现分析的自动化等优点。[b]6.毛细管固相微萃取[/b]毛细管固相微萃取技术使用一段中空的熔融石英毛细管柱作为萃取介质的载体,在管内壁涂上固定相或者在管内部填充介质。该技术与传统固相微萃取技术比较具有以下优点:①吸附表面积大,萃取效率高;②脱附时固定相流失少,无样品组分残留;③有大量的不同固定相商品毛细管柱可选择;④方便与分析仪器在线联用。毛细管固相微萃取技术从1997年问世至今取得了飞速发展,被广泛应用于生物、医药、环境、食品等领域。各种萃取模式、萃取介质和涂层不断涌现,新型涂层及其制备技术是当前的一个研究热点,尤其是溶胶-凝胶技术和分子印迹技术制备的固定相具有更高的灵敏度和更好的选择性,在固相微萃取涂层制备中有着广泛的应用前景。另一个研究热点是毛细管萃取柱与现代分析设备在线联用,如与HPLC、GC、CE、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]等联用,实现了自动进样、萃取、脱附、分析一体化操作,适合批量样品高通量与高重复度分析。样品预处理装置微型化、自动化高通量、无溶剂化在线联用将是这一技术今后发展的主要趋势。[b]7.气体萃取(静态顶空技术、动态顶空技术)[/b]顶空技术亦即气体萃取技术,常常用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析。静态顶空技术是在一个密闭的容器中,当样品与样品上方的气体达到平衡后,直接抽取样品上方气体进行测定的技术。动态顶空是相对于静态顶空而言的。与静态顶空不同,动态顶空不是分析平衡状态的顶空样品,而是用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物质吸附下来,然后经热解吸将样品送入GC、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]进行分析。因此,通常称为吹扫捕集(purge&trap)进样技术。在绝大部分吹扫捕集应用中都采用氦气作为吹扫气,将其通入样品溶液鼓泡。在持续的气流吹扫下,样品中的挥发性组分随氦气逸出,并通过一个装有吸附剂的捕集装置进行浓缩。在一定的吹扫时间之后,待测组分全部或定量地进入捕集器。此时,关闭吹扫气,由切换阀将捕集器接入GC、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]的开气气路,同时快速加热,捕集的样品组分解吸后随载气进入GC、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]分离分析。所以,吹扫-捕集的原理是:动态顶空萃取→吸附捕集热解吸→GC分析。吹扫-捕集进样技术已广泛应用于环境分析,如饮用水或废水中的有机污染物分析。也用于食品中挥发物(如气味成分)的分析。显然,许多用吹扫-捕集技术分析的样品也可以用静态顶空技术分析,只是前者灵敏度较高,且可分析沸点相对高(蒸气压低)的组分。此外,吹扫捕集技术比静态顶空技术的平衡时间短。[b]8.超临界流体萃取[/b]超临界流体萃取( supercritical fluid extraction,SFE)技术就是利用超临界流体为溶剂,从固体或液体中萃取出某些有效组分,并进行分离的一种技术。超临界流体萃取法的特点在于充分利用超临界流体兼有气、液两重性的特点,在临界点附近,超临界流体对组分的溶解能力随体系的压力和温度发生连续变化,从而可方便地调节组分的溶解度和溶剂的选择性。超临界流体萃取法兼具萃取和分离的双重作用且物料无相变过程因而节能明显,工艺流程简单,萃取效率高,无有机溶剂残留,产品质量好,无环境污染。可作超临界流体的气体很多,如二氧化碳、乙烯、氨、氧化亚氮、二氯二氟甲烷等,通常使用二氧化碳作为超临界萃取剂。应用二氧化碳超临界流体作溶剂,具有临界温度与临界压力低、化学惰性等特点,适合于提取分离挥发性物质及含热敏性组分的物质。但是,超临界流体萃取法也有其局限性,二氧化碳-超临界流体萃取法较适合于亲脂性、分子量较小的物质萃取,超临界流体萃取法设备属高压设备,投资较大。[b]9.微波萃取[/b]微波是指频率在300kHz~300MHz的电磁波。微波萃取是利用电磁场的作用使固体或半固体物质中的某些有机物成分与基体有效地分离,并能保持分析对象的原始化合物状态的一种分离方法。由于微波的频率与分子转动的频率相关联,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24.5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使样品分解或细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。[b]微波具有波动性、高频性、热效应和非热效应四大特点,这决定了微波萃取具有以下特点:[/b]①试剂用量少、节能、污染小。②加均均匀,且热效率较高。传统热萃取是以热传导、热辐射等方式自外向内传递热量,而微波萃取是一种“体加热”过程,即内外同时加热,因而加热均匀,热效率较高。微波萃取时没有高温热源,因而可消除温度梯度,且加热速度快,物料的受热时间短,因而有利于热敏性物质的萃取。③微波萃取不存在热惯性,因而过程易于控制。④微波萃取无需干燥等预处理,简化了工艺,减少了投资。⑤微波萃取的处理批量较大,萃取效率高,省时。与传统的溶剂提取法相比,可节省50%~90%的时间。⑥微波萃取的选择性较好。由于微波可对萃取物质中的不同组分进行选择性加热,因而可使目标组分与基体直接分离开来,从而可提高萃取效率和产品纯度。⑦微波萃取的结果不受物质含水量的影响,回收率较高。基于以上特点,微波萃取常被誉为“绿色提取工艺”。[b]10.搅拌棒吸附萃取[/b]搅拌棒吸附萃取(stirbarsorptiveextraction,SBSE)是一种新型的固相微萃取样品前处理技术,是将聚二甲基硅氧烷(polydimethylsiloxane,PDMS)套在内封磁芯的玻璃管上作为萃取涂层,由Baltussen等于1999年提出, MGerstelGmbH公司2000年将其商品化。SBSE萃取原理与SPME的萃取原理一致,具有固定相体积大、萃取容量高、无需外加搅拌子、可避免竞争性吸附、能在自身搅拌的同时实现萃取富集等优点,已广泛应用于食品、环境和生物样品分析的前处理。[b]三、吸附-热解吸技术[/b]吸附(adsorption)是指溶质从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]转移到固相的现象。按吸附作用力的不同将吸附分为三个类型:①物理吸附,依靠吸附剂表面与溶质间的范德华力;②化学吸附,吸附剂表面活性点与溶质间发生化学结合、产生电子转移现象;③功能基吸附,通过吸附剂表面固定化的功能基团吸附目标溶质。待测组分吸附到固相材料后,还需要解吸出来才能进行分析应用。常用的解吸方法为热解吸,与吸附技术联用称为吸附-热解吸技术。热解吸是用固体吸附材料进行富集浓缩采集气体和液体样品,或者使用固相萃取、吹扫-捕集和膜分离技术制备色谱分析样品,使待测组分吸附在固体吸附剂上,然后通过快速加热将这些待测组分从固体吸附剂上解吸下来,送进分析系统进行分析的技术。随后发展的直接热解吸技术是建立在热解吸技术的基础上,充分利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进口技术和衬管技术,省去了许多中间环节,直接实现样品的热解吸-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析,尤其适用于固体样品的分析。从吸附理论可知,温度越低,吸附剂与被吸附物之间的吸附力越强,随着温度的升高,吸附剂与被吸附物之间的吸附力越弱。因此,加热可以使吸附在吸附剂上的待测组分解吸下来,加热的温度(即热解吸温度)与待测组分的沸点、热稳定性和吸附剂的热稳定性有关。热解吸温度低可能会使样品中组分解吸不完全,回收率低,管中残存量大;热解吸温度太高可能会由于某些组分对热的不稳定性而使回收率低。此外,某些吸附剂对某些物质具有催化活性,致使它们的回收率低。热解吸的过程受升温速率和最终温度的影响,所以,热解吸时要求严格控制升温速率和最终温度。升温速率快,最终温度越高,解吸速度就越快。最终温度取决于待测组分和吸附剂的热稳定性,一般在300℃以下,因为大多数高分子吸附剂在300℃时就开始分解了。热解吸过程中载气的流速也对热解吸有影响,一般是载气流速越快,越有利于热解吸。[b]四、低温浓缩技术[/b]低温浓缩技术也是一种应用于气体样品中某些组分的分离和浓缩的常用技术。通过控制浓缩捕集管(管内可填充玻璃微球)温度将气体样品中待测的有机物质冷凝并滞留(浓缩)在浓缩捕集管内,而样品中沸点低于浓缩捕集管温度的组分则会通过浓缩捕集管,由此达到分离和浓缩的目的。低温浓缩技术早期主要应用于果汁及中药提取液的处理。与传统的多级真空浓缩法相比,低温浓缩技术具有保持果汁风味营养物质降低能耗、操作简单等优点。后来,人们开发了商品化的微冷阱,可选择性地应用于各种样品制备中。例如,微冷阱技术与顶空技术、热萃取技术、搅拌棒吸附萃取技术串联使用,可广泛用于环境、食品、材料和法庭分析等的样品预处理过程。[b]五、膜分离技术[/b]膜分离是利用一张由特殊材料制造的、具有选择透过性能的薄膜,在外力推动下对混合膜分离、提纯、浓缩的一种分离新方法。膜可以是固相、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]。目前使用的分离膜绝大多数是固相膜。物质透过分离膜的能力可以分为两类:一种借助外界能量,物质发生由低位向高位的流力;另一种是以化学位差为推动力,物质发生由高位向低位的流动。表1列出一些主要膜分离过程的特性及分离的驱动力。[table][tr][td][b]过程[/b][/td][td][b]主要功能[/b][/td][td][b]膜材料[/b][/td][td][b]驱动力[/b][/td][/tr][tr][td]微滤(MF)[/td][td]滤除≥50nm的颗粒[/td][td]对称细孔,高分子膜,孔径0.03~10nm[/td][td]压力差[/td][/tr][tr][td]超滤(UF)[/td][td]滤除5~100nm的颗粒[/td][td]非对称结构的多孔,孔径1~20nm[/td][td] [/td][/tr][tr][td]反渗透(RO)[/td][td]水溶液中溶解盐类的脱除[/td][td]中空纤维,第三代复合膜[/td][td] [/td][/tr][tr][td]气体分离(GP)[/td][td]混合气体的分离[/td][td]硅橡胶、聚砜、聚酰亚胺等非对称膜[/td][td] [/td][/tr][tr][td]渗析(透析)(D)[/td][td]水溶液中无机酸、盐的脱除[/td][td]强碱性离子交换膜、聚乙烯醇中性膜[/td][td]浓度差[/td][/tr][tr][td]电渗析(ED)[/td][td]水溶液中酸、碱、盐的脱除[/td][td]阴阳离子交换膜[/td][td]电位差[/td][/tr][tr][td]渗透汽化(PV)[/td][td]水-有机物的分离[/td][td]聚乙烯醇等由皮层和多孔支撑结构层构成的复合膜[/td][td]浓度差(分压差)[/td][/tr][tr][td]液膜(L)[/td][td]盐、生理活性物质的分离[/td][td]液体保存在对称或者非对称多孔膜的孔中[/td][td]浓度差加化学反应[/td][/tr][/table]表1 主要膜分离过程的特性及分离的驱动力不同的分离任务应采用不同的分离工艺和不同的膜材料。膜材料研究的不断发展使膜分离的应用领域日益扩大。图1为各种膜分离方法能够截留的物质种类和截留物的分子量。1963年G.Hock和B.Kok首先报道了在光合成气体的研究中采用膜与质谱结合测定了水样中的溶解气体,而后相继出现了膜分离技术作为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]与质谱的接口、膜引进质谱、膜[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱、膜-微捕集-质谱、膜萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]等技术和分析方法,并在分析仪器市场出现膜直接进样装置、膜萃取-微捕集串联装置、膜-质谱联用仪器等。使膜分离技术在环境保护和监控监测、生物分析、材料分析、工业卫生调查与评价、食品分析、医疗诊断、化妆品和香料分析、商品检验等行业得到应用。20世纪90年代的膜引进质谱技术产品,其中膜分离模块替代了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]部分,并直接与质谱仪的离子源连接,该装置用于空气中挥发性有机污染物分析具有简便、灵敏、低成本、可在线检测等优点。[b]六、衍生化技术[/b]衍生化技术是通过化学反应将样品中难于分析检测的目标化合物定量地转化成另一种易于分析检测的化合物,通过后者的分析检测可以对目标化合物进行定性和/或定量分析以及结构鉴定。该技术较早主要用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析,后来发展用于质谱分析。依据衍生化技术在色谱分析过程中柱分离的前后不同,有柱前衍生和柱后衍生之分,质谱分析主要使用柱前衍生方法。柱前衍生化的条件是:反应能迅速、定量地完成,重现性好,且反应条件不苛刻,容易操作;反应的选择性高,最好是与目标化合物反应,即反应要有专一性;衍生化反应产物只有一种,反应的副产物和过量衍生化试剂应不干扰目标化合物的分离与检测;衍生化试剂应方便易得,通用性好。柱前衍生化方法有[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]化学衍生化法和固相化学衍生化法。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]化学衍生化方法的衍生化反应都是液-液反应的方式,操作起来比较烦琐、费时,而且需要一些进行微量有机合成的小型装置。同时,由于反应后过量的衍生化试剂存在,对下一步检测形成干扰,有时还需要进一步的分离,这就增加了分析测试的时间和成本。固相化学衍生化方法则以硅球、玻璃微球、氧化铝、聚丙烯酰胺、葡聚糖凝胶、琼脂凝胶和纤维素等为载体,在其表面结合一种反应剂,然后装填在段管内,当样品液通过反应管时就可以发生各种化学反应,包括还原、氧化、基团转移、催化等反应,实现目标化合物的衍生化过程。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析所用各种衍生化方法在[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的有机物质谱分析中可以得到应用,但是具有操作烦琐、费时的缺点,影响了质谱分析快速、高效优势的发挥。因此,固相化学衍生化方法和微萃取技术在[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]方面得到了较好应用

  • 在线分析必须使用样品预处理吗?

    [font=宋体]由于近红外光较强的穿透能力和散射效应,对大多数类型的样本来说,在线分析时不需要进行任何预处理。对于液体样品,通常可选用适宜型号的流通池或光纤探头进行在线光谱采集。对于固体样品,通常采用漫反射的方式通过光纤探头进行光谱数据的采集。但是在石油产品等液体样品的在线分析中,则需要控制样品的温度、压力和流速,以及除去样品中的气泡、水分和机械杂质等,确保分析结果准确、有效。[/font]

  • 红外碳硫分析样品预处理

    请教各位专家,针对有电镀层的金属样品碳硫分析,是否有规定样品的预处理?比如我们的样品是弹簧,材质是琴钢线,表面有电镀环保锌。那在验收测试时是否要去镀层再测碳硫?国标方法似乎没提到。钢铁国标:钢铁总碳总硫含量的测定高频感应炉燃烧后红外线吸收法 GB/T 20123-2006谢谢!我们困惑的地方:原材料测符合标准,但做成成品就不符合,碳偏低了。

  • 【分享】分析样品的预处理

    [color=#DC143C][size=4]分析样品的预处理格式:pdf,23M下载后记得顶帖啊![/size][/color][URL=http://www.namipan.com/d/3ae894ce00fa687e998cdbe782db4126c74629c18baa7501 ]http://www.namipan.com/d/3ae894ce00fa687e998cdbe782db4126c74629c18baa7501 [/URL]

  • 【原创】无预处理的在线气体分析仪

    气体分析仪一般都是将气体进行预处理后再进行测量,但预处理系统受外界条件的变化及本身系统部件的因素使得气体测量和分析时常难以进行,而且耽误测量、耗时费力,近期,又出现了新型的气体测量方法,该方法不用预处理,直接进行测量,那就是用激光进行测量。不过此仪器100多万,带预处理的60多万。就我个人还是用激光的好,07年到现在为止未出现过任何故障。

  • 【资料】-液相色谱使用中样品预处理注意的几个环节

    [b]液相色谱使用中样品预处理注意的几个环节[/b] 高效液相色谱具有分离效率高、分析速度快和应用范围广等特点,特别适合于高沸点、大分子、强极性和热稳定性差的化合物的分离分析。目前高效液相色谱已成为化学、生化、医学、工业、农业、环保、商检和法检等学科领域中重要的分离技术,是分析化学家和生物化学家手中用于解决他们面临的各种实际分析和分离课题必不可少的工具之一。虽然在检测分析中使用了昂贵的、性能优越的高档精密仪器,但是由于在样品的前处理,标准溶液的制备,样品液的测定,分析中的污染,仪器常见故障等等问题上的不注意,而引起大的系统误差,使整个测定分析失败。现就液相色谱分析的应用中样品预处理注意的几个环节,作简要分析,以达到更好的检测效果。1  样品预处理方法样品预处理应包括进样前的一切操作。除了称重、溶解、稀释等步骤外,样品需要: ①过滤 ②萃取 ③衍生化(柱前衍生) ④液相色谱(低压柱层析) 。这些操作可以是手工进行或实行自动化操作。样品预处理的目的是除去干扰物、增加检测器灵敏度(富集) 、保护色谱柱等。样品预处理同时也是为了避免色谱分离故障,其中样品萃取是关键的一步,要从大量的干扰物中萃取出微量组分难度极大。有些样品经预处理后还不能作进样分析,需进行衍生化处理,使一些无紫外吸收或无荧光的组分,经过衍生化后能用紫外和荧光检测器检测,这样既提高了灵敏度,又改善了分离度(质量变化) 。样品预处理的同时也会带来一些问题,如样品损失、样品被污染、衍生化反映不完全或多种反应物生成等。衍生反应常会影响试验的精确度,或者在整个样品预处理过程中带来误差。用于液相色谱分析的样品溶液必须均匀而无颗粒,有颗粒会损坏进样器并阻塞柱头。处理好的样品在准备上柱前应对准光线摇动,检查样品溶液中有无颗粒。只要看到颗粒、混浊或乳化,就应过滤一下,过滤膜要能截留住015μm 以上的颗粒,样品过滤的过程中可能引起:样品被污染,因过滤吸附降低样品组分的含量,样品溶剂挥发引起误差。萃取的目的是从共溶的样品介质中分离出被分析的组分,或者减少损坏柱的物质(如蛋白质等)和干扰物。一般采用有机溶剂萃取,要求萃取用的溶剂毒性低、挥发性好、杂质少、对待测样品有良好的溶解度且又与水不相混溶。常用的有乙醚、醋酸乙酯、二氯甲烷、氯仿、苯或者两种以上的混合溶剂。萃取后一般可直接进样,有时需要浓缩或吹干浓缩,再用定体积的液体或流动相溶解进样。这样增加了样品浓度,提高了灵敏度,同时避免了溶剂峰对样品峰的干扰。在萃取是要考虑样品分子的溶解能力。除了脂溶性和水溶性组分外,还有用脂溶性的组分制成水溶性的盐。萃取方法如下:

  • 【求助】土壤样品能否一起预处理,再分别检测其中的多环芳烃与正构烷烃?

    本人刚接触仪器分析,目前的任务是检测一批土壤样品中多环芳烃和正构烷烃含量,进而分析上述2种持久性有机污染物的迁移转化规律。拟采用的实验方案如下采取索氏提取法提取土壤中的有机污染物,采用氧化铝-硅胶柱对提取液进行净化,最后采用气-质联用仪对同一个样品既分析多环芳烃又分析正构烷烃。实验所用的主要药品为:无水硫酸钠(分析纯)、硅胶(层析用分析纯)、氧化铝(层析用分析纯)、二氯甲烷(高效液相色谱级)、正己烷(高效液相色谱级)、丙酮(高效液相色谱级)、重铬酸钾(分析纯)、Cu片、浓硫酸(分析纯)、蒸馏水;内标六甲基苯问题:(1)多环芳烃与正构烷烃能否采用同样的预处理方法,只是在上机的时候分别进行检测?(2)回收率指示物应怎样选择?

  • 新书简介:《分析样品预处理及分离技术》(第2版)

    编辑推荐:1.系统全面介绍了样品预处理和分析方法;2.本次修订增加了实际样品处理技术、生物样品的沉淀技术、溶剂萃取新技术、微萃取技术等内容;3.适合从事分析检测的初学者阅读.内容简介:全书对样品的预处理和分离方法作了比较系统的讲述,主要内容有分析样品的准备与预处理、沉淀分离技术、萃取分离技术、离子交换分离技术、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离技术、电泳分离技术、膜分离技术、泡沫浮选分离技术。此次修订增加了实际样品处理技术、生物样品的沉淀分离技术、溶剂萃取新技术、微萃取技术与加压及旋转薄层色谱分离技术等内容,也对第一版中部分内容作了适当的修订。但由于书中篇幅有限,书中只原则性介绍了相关内容,具体样品的处置还需进一步参考相关文献或技术手册。本书适用于各层次的分析测试工作者,也可供从事其他有关专业的工程技术人员和科研人员参考。目录:第一章 分析样品的准备与预处理/001第一节概述001一、样品采集与处理的基本原则001二、样品制备与处理的注意事项004第二节试样的处理005一、无机样品的处理005二、有机样品的处理009三、生物样品的处理010第三节微波及超声波在样品处理中的应用012一、微波在样品处理中的应用012二、超声波在样品处理中的应用015第四节实际样品处理技术018一、大气样品处理技术018二、水样品处理技术019三、土壤样品处理技术020四、有机及生物样品处理技术021第二章 沉淀分离技术/027第一节沉淀分离技术概述027第二节无机沉淀分离法028一、氢氧化物沉淀分离法028二、硫化物沉淀分离法032三、其他沉淀分离法033第三节有机沉淀分离法033一、生成螯合物的沉淀分离体系034二、生成缔合物的沉淀分离体系036三、生成三元配合物的沉淀分离体系036第四节均相沉淀及共沉淀分离法037一、均相沉淀分离法037二、共沉淀分离法039第五节生物样品的沉淀分离技术043一、等电点沉析044二、盐析沉淀045三、有机溶剂沉析049四、有机聚合物沉析051五、其他沉析技术052第三章 萃取分离技术/055第一节溶剂萃取分离技术055一、溶剂萃取分离基本原理056二、重要的萃取体系060三、有机物的萃取077四、萃取方式与装置079第二节溶剂萃取新技术083一、快速萃取技术083二、反胶团溶剂萃取技术085三、离子液体萃取技术088四、双水相萃取技术090五、微波萃取及超声萃取技术092六、电泳萃取技术097第三节固相萃取技术098一、固相萃取基本原理098二、固相萃取的吸附剂099三、固相萃取装置100四、固相萃取的操作程序100五、固相萃取技术的应用101第四节微萃取技术102一、分散[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]微萃取技术102二、分子印迹微萃取技术105三、固相微萃取技术107第五节萃取分离的实际应用110一、应用溶剂萃取分离干扰物质110二、萃取联用分析111三、萃取分离其他示例111第四章 离子交换分离技术/116第一节概述116第二节离子交换剂的结构、性质和分类117一、离子交换剂的结构和性质117二、离子交换树脂的分类与用途120第三节离子交换的基本理论124一、Donnan理论124二、交换反应过程及离子交换选择系数125第四节离子交换的分离操作方法128一、离子交换树脂的选择及预处理128二、离子交换分离操作方法131第五节离子交换分离的实际应用135一、去离子水的制备135二、痕量元素的预富集136三、性质相似离子间的彼此分离137四、生物大分子分离137第五章 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离技术/139第一节概述139第二节常压柱色谱分离法140一、吸附柱色谱分离140二、分配柱色谱分离144三、柱色谱分离的操作145第三节平面色谱分离技术146一、纸色谱分离技术146二、薄层色谱分离技术150三、加压及旋转薄层色谱分离技术174第四节柱[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离技术177一、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离技术177二、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分离技术185三、离子对色谱分离技术189四、凝胶色谱分离技术191五、亲和色谱分离技术192六、超临界流体色谱分离技术194第六章 电泳分离技术/197第一节电泳的基本原理197一、电泳迁移率197二、影响迁移率的因素198第二节常用电泳分离技术199一、区带电泳200二、等电聚焦电泳205三、等速电泳206四、毛细管电泳207第三节电泳分析应用210一、在药物分离分析中的应用210二、在生命科学中的应用211三、在临床医学中的应用211四、在环境分析中的应用211五、在作物品种鉴定中的应用212六、在动物和植物科学研究中的应用212第七章 膜分离技术/213第一节概述213第二节膜分离的基本原理214一、反渗透分离法基本原理214二、纳滤分离的基本原理215三、微孔过滤基本原理215四、透析分离基本原理216五、电渗析分离基本原理216六、液膜分离法基本原理217第三节膜材料和膜组件220一、板框式膜组件220二、圆管式膜组件222三、螺旋卷式膜组件223四、中空纤维式膜组件225第四节膜分离技术及应用226一、膜分离的基本流程226二、膜分离的应用227第八章泡沫浮选分离技术/233第一节概述233第二节浮选装置和操作235第三节离子浮选法236第四节沉淀浮选法238一、氢氧化物沉淀浮选238二、有机试剂沉淀浮选239第五节溶剂浮选法240………[img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204222109101470_6913_1626119_3.png[/img]

  • 在线Amtax Compact氨氮分析仪+FILTRAX样品预处理系统 常见问题讨论

    在线Amtax Compact氨氮分析仪+FILTRAX样品预处理系统 常见问题讨论我厂这款氨氮分析仪运行情况比较正常,但今年出现维护校准一次后只能保持3-4天,氨氮分析仪就开始漂移,不是偏大就是偏小.请各位老大指教下,维护周期我们一般是1个星期一次,氨氮分析仪试剂和管道,灯泡透镜都是全新的.

  • 【转帖】液相色谱使用中样品预处理注意的几个环节

    高效液相色谱具有分离效率高、分析速度快和应用范围广等特点,特别适合于高沸点、大分子、强极性和热稳定性差的化合物的分离分析。目前高效液相色谱已成为化学、生化、医学、工业、农业、环保、商检和法检等学科领域中重要的分离技术,是分析化学家和生物化学家手中用于解决他们面临的各种实际分析和分离课题必不可少的工具之一。虽然在检测分析中使用了昂贵的、性能优越的高档精密仪器,但是由于在样品的前处理,标准溶液的制备,样品液的测定,分析中的污染,仪器常见故障等等问题上的不注意,而引起大的系统误差,使整个测定分析失败。现就液相色谱分析的应用中样品预处理注意的几个环节,作简要分析,以达到更好的检测效果。1  样品预处理方法样品预处理应包括进样前的一切操作。除了称重、溶解、稀释等步骤外,样品需要: ①过滤 ②萃取 ③衍生化(柱前衍生) ④液相色谱(低压柱层析) 。这些操作可以是手工进行或实行自动化操作。样品预处理的目的是除去干扰物、增加检测器灵敏度(富集) 、保护色谱柱等。样品预处理同时也是为了避免色谱分离故障,其中样品萃取是关键的一步,要从大量的干扰物中萃取出微量组分难度极大。有些样品经预处理后还不能作进样分析,需进行衍生化处理,使一些无紫外吸收或无荧光的组分,经过衍生化后能用紫外和荧光检测器检测,这样既提高了灵敏度,又改善了分离度(质量变化) 。样品预处理的同时也会带来一些问题,如样品损失、样品被污染、衍生化反映不完全或多种反应物生成等。衍生反应常会影响试验的精确度,或者在整个样品预处理过程中带来误差。用于液相色谱分析的样品溶液必须均匀而无颗粒,有颗粒会损坏进样器并阻塞柱头。处理好的样品在准备上柱前应对准光线摇动,检查样品溶液中有无颗粒。只要看到颗粒、混浊或乳化,就应过滤一下,过滤膜要能截留住015μm 以上的颗粒,样品过滤的过程中可能引起:样品被污染,因过滤吸附降低样品组分的含量,样品溶剂挥发引起误差。萃取的目的是从共溶的样品介质中分离出被分析的组分,或者减少损坏柱的物质(如蛋白质等)和干扰物。一般采用有机溶剂萃取,要求萃取用的溶剂毒性低、挥发性好、杂质少、对待测样品有良好的溶解度且又与水不相混溶。常用的有乙醚、醋酸乙酯、二氯甲烷、氯仿、苯或者两种以上的混合溶剂。萃取后一般可直接进样,有时需要浓缩或吹干浓缩,再用定体积的液体或流动相溶解进样。这样增加了样品浓度,提高了灵敏度,同时避免了溶剂峰对样品峰的干扰。在萃取是要考虑样品分子的溶解能力。除了脂溶性和水溶性组分外,还有用脂溶性的组分制成水溶性的盐。萃取方法如下:111  水溶性样品(1) 酸性组分及生成的盐萃取方法:有机溶剂萃取杂质后调成酸性,再加有机溶剂萃取或进样,或在N2 流下吹干,用适当的溶剂解后进样。(2) 碱性组分及生成的盐萃取方法:有机溶剂萃取杂质后调成碱性,再加有机溶剂萃取或进样,或在N2 流下吹干,用适当的溶剂溶解后进样。(3) 中性组分萃取方法:有机溶剂萃取杂质后,直接用反相色谱法分析。112  脂溶性组分萃取方法:有机溶剂萃取或进样,或在N2 流下吹干,用适当的溶剂溶解后进样。2  分析中的污染一般检测的环境、容器、试剂都是影响测定结果的因素。211  环境污染仪器室的有害气体、气溶液、灰尘等等都能造成污染,影响检测结果,这种污染很难校正。因此,仪器室与其他实验室应隔离,保持清洁,仪器室内应安装空调,注意防潮、防腐、防震、空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]对湿度应小于70 %为宜。212  容器实验室常用的器皿有玻璃类、瓷类、石英类、塑料类等,在进行分析时,应按照待则样品的要求来选则器皿,不管使用哪种器皿,容器的洗条清洁都是很重要的,也是取得好的检测结果的基本保证。213  试剂在液相色谱分析中,所选用的试剂必须是色谱纯、优级纯或分析纯,如果用含量有杂质的试剂,则会出现杂峰而影响测定结果。3  标准溶液的配置在配置标准溶液时,先要配置现定浓度的内标溶液,在标准溶液和样品溶液中最好使用同一批次配制的内标溶液以减少误差。(1) 配制标准溶液的物质应当是色谱纯的、性质稳定。(2) 常用的标准溶液应存放在棕色溶液瓶中低温保存。(3) 在配制维生素类标准品时,要放置在棕色容量瓶中或避光放置以免分解。4  样品预处理过程中的主要故障与解决办法(1) 色谱图中出现无关的峰,原因有可能是样品过滤器带来污染,解决方法如下:①将过滤器浸泡在样品溶剂中并进样试验 ②改变过滤器类型 ③采用交替清洗技术。(2) 一些或全部化合物的峰比预期的小,尤其是低浓度的样品,原因可能是样品过滤器表面吸附下降,解决方法如下:①改变过滤器类型 ②严格按相同条件处理所用样品 ③采用交替清洗技术。(3) 回收率太低或差,原因可能是萃取不完全,解决方法如下:①增加萃取时间,使用热溶剂 ②修改清洗方法。(4) 色谱峰变宽,柱寿命缩短,原因可能是样品带来的干扰与污染,应改进清洗方法。(5) 精度差,原因可能是回收不完全,解决方法如下:①改进或替换衍生化、分离、萃取或其他条件 ②用自动化处理装置提高精度。总之,对分析仪器来说,避免故障的最主要的做法是正确的操作和调节,切忌盲目操作,对核心部位如离子室、微电流放大器等减少震动和碰撞,保证绝缘,并减少各种系统误差要注意以上要点,但还要注意日常的仪器保养,色谱柱子的维护,仪器室保持清洁,这样才能使液相色谱处于最佳工作状态,在分析中发挥其重要的作用。

  • 【“仪”起享奥运】固体样品中无机元素分析的预处理技术与方法

    [font=宋体]对样品中的无机元素进行检测前,需要对样品进行预处理。样品的预处理是微量元素分析不可或缺的重要环节,对检测结果的准确性有着直接影响。随着检测分析方法的不断改进,对样品制备也提出了比过去更高的要求。目前常用的样品预处理方法主要有干法灰化、湿法消解和微波消解。其中干法灰化和湿法消解是传统的样品前处理方法,微波消解是近年来新兴的一种消解方法。[/font][font='Times New Roman', serif]1[/font][font=宋体]、三种预处理方法原理比较[/font][font=宋体]干法灰化原理:将样品置于坩埚内,先在电热板上加热,使其中的有机成分脱水、炭化、分解、氧化,再置于高温炉中,于一定温度范围内加热分解、灼烧、灰化,直至残灰为白色或灰色为止,所得残渣用适当溶剂溶解后即为无机成分。[/font][font=宋体]湿法消解原理:在样品中加入强酸,加热消解,利用强酸的氧化性与酸性,使样品中的有机物质完全分解、氧化,呈气态逸出,分析物质及共存离子转化为无机物状态,以稳定的化学形式存在于澄清溶液中。[/font][font=宋体]微波消解原理:将样品置于消解罐中,加人适量酸[/font][font='Times New Roman', serif] ([/font][font=宋体]通常选用[/font][font='Times New Roman', serif] HNO3[/font][font=宋体]、[/font][font='Times New Roman', serif]HCI[/font][font=宋体]、[/font][font='Times New Roman', serif]HF[/font][font=宋体]、[/font][font='Times New Roman', serif]H2O2[/font][font=宋体]等[/font][font='Times New Roman', serif])[/font][font=宋体],罐盖盖好,放入炉中。当微波通过样品时,加入的极性溶剂在微波电场作用下,随微波频率快速变换取向,分子或离子间产生高速的碰撞与磨擦,总能量增加,使样品温度急剧上升。样品与溶剂在此高温作用下发生反应,产生气体并在密闭的消解罐内形成压力。样品在高温高压条件下表层搅动并破裂,不断产生新的样品表面与溶剂接触,直到样品完全溶解。[/font][font='Times New Roman', serif]2[/font][font=宋体]、[/font][font='Times New Roman', serif]3[/font][font=宋体]种预处理方法优缺点比较[/font][table=465][tr][td][font=宋体]比较参数[/font][/td][td][font=宋体]干法灰化[/font][/td][td][font=宋体]湿法消解[/font][/td][td][font=宋体]微波消解[/font][/td][/tr][tr][td][font=宋体]试剂用量[/font][font='Times New Roman', serif]/(mL)[/font][/td][td][font='Times New Roman', serif]1~2[/font][/td][td][font='Times New Roman', serif]5~6[/font][/td][td][font='Times New Roman', serif]5~6[/font][/td][/tr][tr][td][font=宋体]消解时间[/font][font='Times New Roman', serif]/(h)[/font][/td][td][font='Times New Roman', serif]4~6[/font][/td][td][font='Times New Roman', serif]6~8[/font][/td][td][font='Times New Roman', serif]1~2[/font][/td][/tr][tr][td][font=宋体]消解程度[/font][/td][td][font=宋体]消解完全[/font][/td][td][font=宋体]消解完全[/font][/td][td][font=宋体]消解完全[/font][/td][/tr][tr][td][font=宋体]通量[/font][font='Times New Roman', serif]/([/font][font=宋体]个[/font][font='Times New Roman', serif])[/font][/td][td][font='Times New Roman', serif]10~20[/font][/td][td][font=Symbol][font=Arial, 微软雅黑 !important]3[/font][/font][font='Times New Roman', serif]20[/font][/td][td][font=宋体]取决仪器型号,通常[/font][font=Symbol][font=Arial, 微软雅黑 !important]3[/font][/font][font='Times New Roman', serif]40[/font][/td][/tr][tr][td][font=宋体]能量消耗[/font][font='Times New Roman', serif]/(kW)[/font][/td][td][font='Times New Roman', serif]10~16[/font][/td][td][font='Times New Roman', serif]16~20[/font][/td][td][font='Times New Roman', serif]2~4[/font][/td][/tr][tr][td][font=宋体]污染程度[/font][/td][td][font=宋体]较小[/font][/td][td][font=宋体]大[/font][/td][td][font=宋体]小[/font][/td][/tr][tr][td][font=宋体]应用范围[/font][/td][td][font=宋体]不适合高温易挥发元素[/font][/td][td][font=宋体]不适合高温易挥发元素[/font][/td][td][font=宋体]绝大多数元素[/font][/td][/tr][/table][font=宋体]微波消解是一种崭新、高效、高速、节能的样品前处理技术,具有空白值低、干扰小、高通量、消解时间短、能量消耗低、污染程度小等干法消解和湿法消解不可比拟的优点,尤其解决了难消解样品(高蛋白、高脂肪类)和易挥发元素([/font][font='Times New Roman', serif]As[/font][font=宋体]、[/font][font='Times New Roman', serif]Hg [/font][font=宋体]等)的制备难题。但是,对于有机成分含量高的样品,如油、酒等,易产生剧烈的氧化还原反应,造成消解罐的泄压甚至损坏,此类样品不宜采用微波消解。[/font][font=宋体]干法消解具有有机物分解彻底、操作简单、污染程度较小等优点,因基本不加或加入很少的试剂,空白值低,样品经灼烧后灰分体积很少,故样品称样量可较大,可富集被测元素,降低检测限,消解效果比湿法消解好。但干法消解耗用时间较长,能量消耗较大,高温易造成易挥发元素([/font][font='Times New Roman', serif]As[/font][font=宋体]、[/font][font='Times New Roman', serif]Hg [/font][font=宋体]等)的损失,坩埚对被测元素有一定吸留作用,致使测定结果和回收率降低。[/font][font=宋体]湿法消解通用性较强,高通量,可同时进行多个样品的操作。缺点是:试剂用量较多,空白值偏高;消解时间长;消解初期,易产生大量泡沫外溢;高温易造成易挥发元素([/font][font='Times New Roman', serif]As[/font][font=宋体]、[/font][font='Times New Roman', serif]Hg [/font][font=宋体]等)的损失;能量消耗大;常产生大量有害气体,污染环境;消解过程在敞开体系中进行,易造成交叉污染。[/font][font=宋体]综上所述,微波消解是一种非常适合固体样品前处理的消解方法。随着微波技术的发展,微波消解技术在样品分析方面必将发挥越来越重要的作用。[/font]

  • 在线分析仪的配置中,有多少用户或采购把预处理系统作为非常重要的部分

    经常到设计、用户、成套商那里交流奖品并且作一些在线分析仪的配置,同时也为项目提出一些可靠的建议。但在多年的工作中,我感觉到,许多用户、设计、工程公司经常把分析系统中的分析仪当作重点,而经常忽视取样和预处理的环节。对于一些了解技术和现场的用户与设计还好一些,他们会对预处理部分进行详细的讨论,而一些工程公司,特别是那种搞承包的,经常会在预处理系统上尽可能缩减成本,甚至将一些已经协商讨论好的预处理方案进行简化,从而造成后续的分析仪运行出现不正常甚至是无法运行投用。造成这种情况的根本原因,可能是以下几个:1. 用户与设计不了解分析仪对样品的要求,而仪器制造商又不了解现场工艺条件与样品条件2. 通过商务代理采购,而制造商没有充分与用户和设计进行技术层面的沟通,造成技术脱节3. 采购方只注重以低的采购价格为迁居先导,忽视了不同分析系统供应商或制造商的技术内含,并且不认真听取用户或设计方的技术评价(也可能是根本不了解技术)4. 分析系统或成套商刻意对应有的系统部分进行低成本配置,造成在样品处理过程中达不到预想的处理效果与能力5. 用户操作者对分析系统不能很好的调节与应用,而制造商又没有很好地提供技术支持与现场服务我能想到就是这些,不知道其他朋友是否也有其他可以讨论的。

  • 生物样品预处理方法

    生物样品预处理方法 生物样品的前处理是体内药物分析的一个重要环节,也是整个分离分析过程中最繁琐的一个步骤。与原料药物和制剂相比,生物样品更为复杂:微量药物分布在大量生物介质中,对分析仪器的灵敏度提出了更高的要求;样品中含有大量内源性物质,不仅能与药物及其代谢物结合,而且常干扰测定。因此,生物样品中的药物必须经过分离、纯化与浓集,必要时还需对待测组分进行化学改性处理,从而为最后测定创造良好的条件。传统的样品前处理方法仍为溶剂萃取法,方法耗时、危害人体、污染环境,萃取使用大量溶剂,分析时需浓缩,会导致有效组分的损失。本文仅对近年相关文献报道的几种药物分析过程中生物样品预处理技术及应用进行综述。一、超临界流体萃取技术超临界流体萃取( supercritical fluid extraction ,SFE) 是环保型分离浓集技术,具有萃取效率和选择性高、省时、萃取溶剂(如CO2 ) 便于挥发、提取物较为“干净”、环境污染少、操作条件易于改变等特点,不仅广泛应用于食品、化妆品、环境、医药及一些天然产物的分析,在生物体内药物分析方面也显示出一定的优势。超临界流体萃取技术的原理是控制超临界流体在高于临界温度和临界压力的条件下,从目标物中萃取成分,当恢复到常压和常温时,溶解在超临界流体中的成分立即与气态的超临界流体分开。该技术对于挥发性成分、脂溶性成分、小分子萜类及热敏物质等的提取,较传统方法有很多优越性。常用萃取剂为CO2。由于超临界流体CO2是非极性溶剂,对于低极性和非极性的化合物表现出优异的溶解性能,而对于大多数无机盐、极性较强的物质几乎不溶。通过添加改性剂,如甲醇、乙醇、丙酮、乙酸乙酯和水等,并通过加压改善其溶解性能,使超临界流体萃取技术对生物碱类、黄酮类、皂甙类等的应用也日趋普遍。针对生物样品中通常含有不同极性组分或含有大量脂溶性成分干扰的特点[font=Times New Rom

  • 【原创】原子荧光分析中的样品预处理技术(1)

    一、As、Sb测定常见的样品预处理技术1、易分解含大量有机质的样品,主要包括: 临床样品、食品、饮料;动植物组织、蔬菜水果等。用HNO3+HClO4+H2SO4敞开或微波消解;2、难分解含大量有机质的样品, 主要包括:煤、油类、脂肪、塑料、橡胶、树脂等。 用干式灰化,Mg(NO3)2+ MgO防止As挥发或微波消解;3、易分解无机样品, 主要包括:土壤、水系沉积物、易分解岩石等。用HNO3+3HCl敞开、微波消解、或高压密封分解样品;4、难分解无机样品,主要包括:石英、臭葱石及酸难分解金属样品, 用HNO3+HF分解或Na2O2、Na2CO3+KNO3熔融分解;5、能溶于酸的金属样品,主要包括:Fe, Mn, Zn, Pb, Cu, Ni 等金属产品,用稀HNO3敞开体系分解;6、形态、有效态分析样品,包括:食品、农业等样品的形态分析,餐具、包装材料等,用适当的提取试剂偏提取。二、As、Sb样品预处理应注意事项:(1)很多As,Sb化合物具有挥发性,因此样品不应该灼烧;(2)三价As,Sb氯化物容易挥发,在分解样品时必须有氧化剂存在,使它们呈高价状态,通常情况下不能单独用HCl分解样品;(3)As,Sb极易水解,因此在分解和稀释样品时,应该注意As,Sb的水解。通常(4)情况下保持高酸度、加入酒石酸或硫酸均可防止水解;(5)在用HG-AFS测定As,Sb时,通常要用还试剂将As,Sb预还原为三价,因此通常要将样品分解过程中残留的氧化性酸驱赶干净,特别是在分解含有大量有机物的样品,这一点显得特别重要。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制